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Fig. 1: Despite their difference in vertical height, PDFs A and B are all statistically identical.

Abstract— Probability density function (PDF) curves are among the few charts on a Cartesian coordinate system that are commonly
presented without y-axes. This design decision may be due to the lack of relevance of vertical scaling in normal PDFs. In fact, as long
as two normal PDFs have the same means and standard deviations (SDs), they can be scaled to occupy different amounts of vertical
space while still remaining statistically identical. Because unfixed PDF height increases as SD decreases, visualization designers may
find themselves tempted to vertically shrink low-SD PDFs to avoid occlusion or save white space in their figures. Although irregular
vertical scaling has been explored in bar and line charts, the visualization community has yet to investigate how this visual manipulation
may affect reader comparisons of PDFs. In this paper, we present two preregistered experiments (n = 600, n = 401) that systematically
demonstrate that vertical scaling can lead to misinterpretations of PDFs. We also test visual interventions to mitigate misinterpretation.
In some contexts, we find including a y-axis can help reduce this effect. Overall, we find that keeping vertical scaling consistent, and
therefore maintaining equal pixel areas under PDF curves, results in the highest likelihood of accurate comparisons. Our findings
provide insights into the impact of vertical scaling on PDFs, and reveal the complicated nature of proportional area comparisons.

Index Terms—visualization, probability density function, uncertainty, vertical scaling, perception, area chart
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1 INTRODUCTION

Area encoding, which represents information through the size and shape
of geometric regions, plays a pivotal role in many data visualizations
[33]. In most approaches, areas are visually encoded through the
proportional allocation of space. For example, bar charts typically
represent larger amounts with taller bars, and treemaps represent larger
percentages of a whole with bigger rectangles. This visual metaphor
that equates a larger area with a larger amount of a plotted concept is
informed by humans’ learned experiences in the world [50]. Probability
density functions (PDFs) are mathematical constructs that characterize
a distribution of relative likelihoods for a range of possible outcomes.
PDFs are ubiquitous in modern statistical education and employed
outside of classrooms to communicate scientific results. Whereas
some analytical results can also be encoded via other methods, results
of Bayesian analyses often rely on PDF plots to convey prior and
posterior beliefs [51]. In the case of communicating Bayesian results,
misconstruing PDFs could drastically affect interpretation and lead to
false conclusions that may propagate through research.

Typically, PDFs are visualized using an area chart, like those shown
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in Fig. 1. These PDF plots encode possible (continuous) outcomes
along the x-axis, and probability density along the y-axis, such that
the area under the curve represents 100% probability [46]. However,
unlike other area charts, the y-axis of a PDF does not encode readily
usable information. In Fig. 1, for example, the top and bottom PDFs in
each column are statistically identical (normal distributions, y = 125,
SD=T7), although one occupies much less pixel area than the other. To
extract PDF plots’ underlying probabilities, readers must estimate the
proportions of the area under a plot’s curve. Unfortunately, creators
of PDFs may feel compelled to irregularly scale PDF plots such that
each plot has the same height but different pixel areas (see Fig. 2, far
right). The demand for this type of scaling is so common that statistical
plotting packages, such as bayesplot [14] or ggdist [28], have presets
to accommodate such a design decision.

Vertical compression may be motivated by spatial constraints or
aesthetic preferences. For example, consider a researcher who needs to
present the results of their Bayesian analysis in a research paper. The
researcher has nine different posterior distributions that they want to
visualize using PDF plots, and a page limit constraint due to journal
requirements. Initially, when plotting the results, the PDF plots overlap
and occasionally occlude one another (see Fig. 2, a), making the figure
hard to read and visually cluttered. The researcher contemplates spacing
the plots to avoid overlap, as in Fig. 2 (b), but this design is space-
inefficient. Ultimately, they decide to vertically compress the Bayesian
posteriors to have the same height, as in Fig. 2 (¢). Although this
solution may satisfy the researcher, it introduces the risk of misguiding
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Why would anyone compress a PDF plot?
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Fig. 2: A decision flow that may lead to visualization designers compressing some PDF plots at different rates. Findings from our experiments show
that this "perfect solution" can lead to imperfect interpretation. Panel A shows equal-area PDFs with occlusion, B shows equal-area PDFs without

occlusion, and C shows equal-height PDFs that have different areas.

readers because common visual encodings associate larger areas with
greater quantities, potentially leading readers to incorrectly infer that
shorter plots represent lower probabilities. In this paper, we investigate
the impact of vertical scaling on readers’ comparison of cumulative
probabilities in PDFs.

‘We contribute two preregistered human-subjects experiments (n =
600, n = 401). Experiment 1 explores the effect of compressing the
height and resulting area of PDF plots on readers’ comparisons of cumu-
lative probabilities (i.e., the probability of some, but not all, outcomes
occurring — illustrated in the question text in Fig. 1). Experiment 1 in-
vestigates two levels of compression across statistically equivalent PDF
plots and two visual interventions. Experiment 1 establishes that verti-
cal compression of otherwise identical PDF plots can mislead readers.
In practice, statistically identical PDF plots are not likely to be scaled
differently because these plots already occupy the same height and
pixel area. Experiment 2 prioritizes ecological validity by testing more
realistic plot compression. We investigate the comparison of PDF plots
with different standard deviations, scaled to equal heights—a method
commonly preset in visualization software [14,28]. Additionally, this
experiment employs the same visual interventions as Experiment 1.

In our Discussion, we distill key design guidelines for practitioners
who wish to present PDF plots that can be accurately compared to one
another, particularly emphasizing the importance of avoiding irregular
vertical compression altogether. Lastly, we discuss open questions
surrounding PDF plot comprehension and outline potential future work.

These experiments mark important extensions of prior work. We
expand past examinations of the risk of y-axis scaling from bar and line
graphs to a more complex mark type. We also build upon perceptual
studies that investigate the complicated nature of comparing irregularly-
shaped areas, and provide experimental evidence to illuminate current
theory and systems contributions within probability communication.

2 BACKGROUND AND MOTIVATION
2.1 Area Judgments in Visualization

Perceptual comprehension of PDF plots has not been extensively stud-
ied; however, there is a strong body of research on human perception of
other two-dimensional areas. For example, research has examined the
comparison of rectangular areas [12,32,34,47], irregular polygons [1]
and ovals [12, 34, 60]. Notably, polygonal area estimation has been
shown to be significantly more accurate when viewed in comparison
to another equally-scaled, polygon than when viewed one-by-one [1].
Recent perceptual work has also distinguished that perceived area of
shapes can differ from the actual pixel area of those shapes [59, 60],
and that general dimensions of a set of shapes (i.e., "additive areas")
may be used by readers as proxies for area judgment [59]. Other vision
research has led to the hypothesis that perimeter length is used as a
proxy for visually estimating the area of rectangles [32], and that reader

judgment of circles’ area and perimeter is significantly less accurate
than their judgment of radius length [44], suggesting that readers might
be prone to comparing straight-line distances, such as the height of
PDF plots, over the area of nonrectilinear shapes.

In light of these findings, our investigation into the perceptual com-
prehension of PDF plots aims to bridge the gap between existing re-
search on area measurement and the unique characteristics of PDF plot
comparisons. The established reliance on perimeter length [32] and
straight-line distances, coupled with the variability in perceived versus
actual pixel area [59, 60], underscores the complexity of accurate area
judgment in nonrectilinear shapes such as PDF plots.

2.2 \Vertical Scaling in Visualization

Representing increasing quantities in graphs via upward vertical space
reflects a universal convention observed across diverse human groups
and historical periods [50]. A wealth of research supports the cognitive
association between higher vertical positions and larger values [16,
31,57]. This “More Is Up” concept suggests that numerical increases
and vertical elevation align in intrinsic human perception and that
representing growth of a quantity through increasing height can enhance
reader clarity and understanding of graphical data [39,45,50].

Thus, visualizations commonly use difference in height of two vi-
sual objects to represent which object encodes larger values. Because
the heights of visual elements can intrinsically represent quantities,
literature on visualization best practices often advises against varying
the vertical scaling of individual visual objects [19,49]. Past research
has explored how rescaling and truncating y-axes in line and bar charts
can lead to misperceptions of encoded values and worse reader accu-
racy [6,9,37,48]. Research also suggests that superimposing variables
in a single graph with multiple y-axes (i.e., dual axis charts) should
be avoided [21]. This body of work on vertical space in visualizations
provides the basis for our hypothesis that inconsistent vertical scaling
may decrease readers’ ability to successfully compare PDF plots.

2.3 Vertical Stacking In Visualizations

Vertically stacking individual graphs is a commonly used layout to fa-
cilitate easy comparison of visualizations. However, vertically stacking
PDF plots can lead to occlusion and significant space consumption,
often prompting irregular compression of these plots, as discussed in
Sec. 1. This problem is not unique to PDF plots; past research has in-
vestigated the impact of vertically stacking time series (i.e., line or area
charts that encode a temporal variable along their x-axes [15,17,23,40]),
and stacking multiple line charts with a wide range of different aspect
ratios [22]. In particular, research on time series visualizations has
proposed solutions to enhance the compactness of multiple charts that
require visual comparison. These solutions include horizon graphs,
which cut large peaks and align them flush with the x-axis on top
of their bases. Another option is braided graphs, which interweave
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Fig. 3: Correct visual strategies for comparing cumulative probabilities of two PDFs. Left: Equal-area PDF plots can be compared via a single area
comparison. Right: Equal-height PDF plots must be compared via a proportional area comparison.

multiple time series by dynamically ordering their segments, so they
appear from the largest value at the back to the smallest value at the
front of the composite graph [17,23,40]. These solutions save vertical
space by truncating and moving lines such that the area between the
lines and x-axis is minimized, which could make them less ideal for
area-encoded charts, like PDF plots.

Vertical stacking of area charts that encode distributions has been ex-
plored in the form of ridgeline (a.k.a "joy" [30]) plots, which stack area
charts such that their contours resemble the ridges of mountains [55].
Individually, ridgeline plots overlap with one another to save vertical
space and facilitate comparison of “relative heights across groups" [55].
Thus, accurate comprehension of these plots is contingent on equal
vertical scaling across all ridgelines; unlike PDF plots, irregular vertical
scaling of ridgeline plots is canonically (and mathematically) incor-
rect. Ridgeline plots’ overlapping can lead to occlusion in cases where
distributions with a wide range of heights occupy similar horizontal
positions. Although we explore only the impact of scaling PDF plots
in this paper, further work comparing PDF plots and ridgeline plots
may shed more light on best practices for communicating probability
densities.

2.4 Probability Distribution Visualizations

Communicating probability distributions is commonly required to ade-
quately relay experimental results [36]. There are several methods for
doing so, each of which has different implications (for review, see [38]).

Confidence intervals (with and without indication of a distributional
mean), box plots, and standard deviation intervals show only summa-
rizing statistical moments of distributions to reduce visual complexity
and facilitate easier comparisons. These methods are still used after
many decades, taught in statistics curricula (e.g., [46]), and popular in
scientific communication to experts and the general public [52]. These
visualizations, however, do not depict distribution shape and reduce
the statistical resolution of the information they communicate [10].
Confidence intervals and box plots also have been shown to fall prey to
the deterministic construal error, in which readers disproportionately
attribute more probability to values that lie inside delineated visual en-
codings than to those that lie right outside those encodings, essentially
discounting the desired conveyance of uncertainty [10,24].

PDF plots are another classic method for visualizing probability
distributions by using area to encode distributional data. This method
is part of a broader array of techniques that employ area to articulate
distributional characteristics, including violin [18], ridgeline [56], and
raincloud plots [3]. These plots maintain high statistical resolution and
are less known to incur deterministic construal errors because of their
continuous visual nature [10]. However, as we exhibit in this paper,
many readers, especially those without strong levels of graph literacy,
may not intuitively grasp important properties of PDF plots.

For scientists interested in making probability densities more ac-
cessible to an audience without strong statistical training, frequency
framing may be of interest. Natural frequency framing (i.e., presenting
probabilities as "6 times out of 100" instead of "6%") has been shown
to be a more intuitive method for conveying uncertainty in textual con-
texts [11]. In recent years, visualization researchers have used this

theory to inspire new visual encodings in which probability is con-
veyed discretely, such as quantile dot plots (QDPs) and hypothetical
outcome plots (HOPs) [20,29]. Both of these solutions are more likely
to be correctly interpreted by members of the general public in some
contexts [13,20,25,26,29]. At the same time, HOPs is an animated
solution, making it incompatible with nondigital formats and requiring
a larger amount of viewing time for more precise readings [29]. QDPs
do not suffer from these drawbacks but sacrifice statistical detail in
favor of discrete dots. These drawbacks are especially relevant for low
(20)-quantile QDPs, which past evaluations have found to be more
effective than higher (100)-quantile versions [29].

Although each of the aforementioned methods has its own advan-
tages and disadvantages, PDF plots remain widely used for presenting
experimental outcomes, particularly in Bayesian analysis, which yields
posterior distributions as its statistical result. Moreover, past work de-
tails how individuals, including statistical experts, can struggle to read
skewed PDF plots correctly [41]. We contribute to this research by in-
vestigating an unstudied, yet common, method of visually manipulating
PDF plots and offering subsequent design recommendations.

2.5 Interpreting PDF Plots

Unlike standard Cartesian-coordinate-system plots, in which value can
be derived from the y-axis positions of visual objects [53], correctly
comparing PDF plots does not require referencing the y-axis [46]. In
fact, attempting to estimate y-axis values along a PDF plot’s curve
can lead readers to mathematically incorrect conclusions. PDF plots
convey probability via the area beneath their curves [46]. A distinct
characteristic of PDF plots is that their total under-curve area must sum
to one (i.e., unity) [46]. We hypothesize this assumption of unity can
be de-emphasized, and sometimes not communicated at all, when the
heights of neighboring PDF plots are rescaled to different degrees.

We are not the first to consider how the visual representation of
density plots can mislead viewers. Pu and Kay define a “correct”
probabilistic visualization as one in which the “proportions of visual
elements (such as counts or areas) and their spatial placement reflect the
underlying probability distribution, including any... part-to-whole rela-
tionships." [42]. Although individual PDF plots meet this requirement
for correctness regardless of their scaling, multiple PDF plots that are
scaled incongruently may not accurately reflect underlying probability
distributions in a perceptually relative manner. Pu and Kay illustrate
several examples where density estimates are plotted in a single frame
without statistical corrections to account for the part-to-whole percep-
tual relationship that a singular frame with multiple interior pieces
communicates. Pu and Kay posit that these are incorrect probability
visualizations because they are likely to cause viewers to misinterpret
the densities in their true context, and suggest that independently scal-
ing y-axes by sample size is a necessary correction for appropriate
visual comparison of part-to-whole density plots [42]. We propose
an extension of Pu and Kay’s notion of correctness to emphasize the
importance of scaling in comparative probabilistic visualizations.

We describe two PDF plots that cover an equal amount of physical
or pixel space beneath their curves as equal-area plots. In equal-area
plots, the probability of some but not all outcomes occurring (i.e., the
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“cumulative probability" as shown in purple in Fig. 3) can be compared
by contrasting the portions of areas that lie between outcomes of interest
under each plot’s curve [46]. For example, on the left side of Fig. 3,
the probability that Solute A presents at 20 ppm or less versus that of
Solute B can be measured by visually determining which purple area is
larger. On the right side of Fig. 3, where PDF plots have equal heights
but not equal areas, to compare the same probabilities readers must
visually determine which two-part area proportion is larger. Because of
the multiple visual calculations it requires, the latter comparison may be
more cognitively complex. If readers are comparing equal-height PDF
plots, or other PDF plots without equal area, then comparing height,
length, or total area can lead to false conclusions.

Other strategies may exist as well. For example, when comparing
normal PDF plots, regardless of their area or height, readers familiar
with the correlation of standard deviations and well-known probabilities
in normal PDFs (u4 SD covers ~ 68% of the PDF, u =2 SD covers
~ 95%) can use these mathematical concepts to estimate general likeli-
hoods of outcomes [46]. When comparing normal PDF plots, readers
could also contrast the horizontal position of the plots’ means and SDs
to comparatively estimate their cumulative probabilities.

PDF plots convey more information than just cumulative probabili-
ties. The shape of PDFs can be used to convey probability distributions
(e.g., large area concentrated around plot tails convey skewed proba-
bilities). However, non-normal PDFs are drastically harder for people,
even statistical experts, to interpret [41]. For this reason, we restrict our
investigation to the comparison of normal PDF plots. However, in the
Discussion section we note that future work should exploring accurate
comparison of non-normal PDFs, so as to shed light on probability
communication under a wide range of circumstances.

3 EXPERIMENT 1

We investigate the effects of vertically compressing PDF plots through
two preregistered experiments. The first experiment? investigates read-
ers’ comparisons of two statistically identical PDF plots that are scaled
to different heights, and uses re-test conditions to examine potential mis-
interpretation. This experiment also explores two visual interventions
and their impact in reducing possible misinterpretations.

3.1 Materials and Methods
3.1.1 Investigative Questions and Hypotheses

We hypothesized that participants will be more likely to report that
taller PDF plots (e.g., Fig. 1, bottom row) show a higher cumulative
probability than their shorter counterparts and that we can mitigate this
misconception with design interventions. Specifically, we hypothesized
that (H1) adding a y-axis (e.g., Fig. 1, middle) and (H2) adding vertical
lines to indicate standard deviations from the mean (SD annotations)
(e.g., Fig. 1, right) will decrease the likelihood of incorrect comparisons.
Lastly, we hypothesized that (H3) SD annotations will be more likely
to reduce incorrectness than y-axes, but not to a large extent.

3.1.2 Stimuli

We tested a range of paired normal PDF plots. Each pair either had
both plots with 5, 7, or 9 SDs and the same mean, as shown in Fig. 4’s
top row. We generated the plots using Python and edited them in Adobe
Ilustrator. We compressed each plot using Illustrator’s transform tool,
generating versions that are 50% and 75% of the original height (Fig. 4,
middle row). We explore the effect of two visual interventions: a y-axis
that scales along with its PDF (Fig. 1, center) and lines demarcating +1
and +2 standard deviations (SDs) from the mean (Fig. 1, right). We
hypothesized that the y-axis condition would further indicate vertical
compression, possibly making the compression more salient and allow-
ing readers to notice that the presented plots are statistically identical.
Because the SD lines do not move as the heights of their plots are
compressed, we hypothesized that these SD annotations may make it
easier to notice the x-axis positioning of plots are statistically identical.
To control for effects related to the visual location of the plots, we
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Fig. 4: Within subjects conditions in Experiment 1. Top row: Normal PDF
plots with SDs of 5, 7, and 9. Middle row: scaling of 100% (equal area
and height), 75%, and 50%. Bottom row: positions of compressed PDF
plot on the top and bottom or left and right, depending on stacking.

counterbalanced the composition (horizontal vs vertical stacking) and
the position of the scaled plots as shown in Fig. 4’s bottom row.

3.1.3 Experimental Design

We utilized a 3 (Scaling: 100% vs 75% vs 50%) x 3 (Visual Inter-
vention: No Intervention vs Y-axis vs SDAnnotations) x 2 (Stacking:
Horizontal vs Vertical) x 2 (Position of compressed PDF: Top/Left
vs Bottom/Right) x 3 (SD: 5, 7, 9) mixed-subjects design. This de-
sign results in 15 graph combinations (3 with equally scaled plots and
12 with differently scaled PDF plots). The between-subject variables
were Stacking—whether compared plots were horizontally or verti-
cally faceted—and Visual Intervention—whether plots had a scaled
y-axis, SD annotations, or no visual intervention—making six par-
ticipant groups. The within-subject variable of interest was vertical
Scaling, which varied the difference in height between compared PDF
plots, either asking participants to compare two plots with equal scaling
(100%), one plot that was scaled to 75% of the height of the other, or
one plot that was scaled to 50% of the height of the other.

We included Position as a within-subject manipulation control for
where the scaled plot was located. Thus, we ensured that the scaled
graph occurred in all four locations (top, bottom, left, right). We
included three standard deviations (SD=5, SD=7, and SD=9) to increase
the number of trials and ensure test-retest reliability. We did not have
predictions for Position or SD and considered these covariates in our
analysis. Prior to this experiment, we ran a series of pilot studies to
confirm question legibility and inform a power analysis to determine
sample size. The pilot data inform our preregistration.

3.1.4 Participants

In our pilot data, we observed a large effect in which participants
were more likely to incorrectly compare PDF plots with unequal pixel
areas. However, we anticipated a more conservative effect size for the
visualization interventions, falling within the range of small to medium,
according to Cohen’s guidelines [7]. We utilized the pwr package in
R to determine the required sample size by specifying six degrees of
freedom, a significance level of 0.05, a desired power of 0.8, and f2
=0.135 [5,43]. This analysis indicated that we need a sample size of
approximately 100 participants per between-subject group.

We recruited participants via the online platform Prolific.com. Par-
ticipants were all above the age of 18, currently residing in the U.S.,
self-reported as fluent in English, had an approval rate > 98% on Pro-
lific, had not participated in any of our pilot studies, and used desktop
displays to complete the study.

We crowdsourced our participants so we could examine whether
the general public has difficulty interpreting PDF plots with different
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modifications. This study primarily involves perceptual judgment,
which is why we felt it was appropriate to use participants from the
general public to examine this principle. Further, in our experiment we
employ a scenario from [20], which crowdsourced its participants. It
is possible that more educated participants may not exhibit the same
biases, and future research should examine the relationship between
statistical knowledge and the results observed in this study.

3.2 Procedure

Participants completed Experiment 1 online via Qualtrics [8] on their
personal machines. After giving IRB-approved consent to participate
in the study, if participants successfully completed an attention check,
they were asked to “please make [their] screen window as large as
possible." Next, participants were shown the definition of a solute and
provided with a scenario in which scientists measured the concentration
of samples of sea water and generated corresponding plots. We adopted
this scenario from previous research on how a general audience inter-
prets probability distributions through HOPs [20]. Participants were
then shown an example PDF plot with basic "how-to-read" instructions.
They then answered 15 multiple-choice questions, one about each pair
of charts shown, which were presented in a randomized order. Each
of these multiple choice questions asked participants, "Which solute,
if either, has a higher probability of being present at X or more ppm
in the sampled sea water?". The threshold X ppm was in the same
position across all PDF plots (at 130ppm as shown in Fig. 1) but varied
in actual number depending on the x-axis labeling of the stimuli. All
pairs of PDFs were statistically identical, so the correct answer to all
multiple-choice questions was that Solute A and B have the same
probability. We selected this task to investigate if a scaling-related bias
occurs; the task requires readers to consider the peaks of PDF plots,
which are affected by vertical scaling. This task is not representative of
all PDF plot use cases, nor is it a quintessential use case.

Following the experiment, participants completed a short graph
literacy test [35], and finally answered demographic questions. The full
survey is available in our Supplemental Materials.

3.2.1  Analysis

Our preregistered analysis> consists of several binomial Bayesian mod-
els. Two of the preregistered models investigate participants’ strategy—
whether participants were more likely to report taller or shorter PDF
plots as showing a higher cumulative probability. Across all conditions,
these models show that participants were much more likely to indicate
that taller plots depicted higher cumulative probabilities. Although
useful for considering perceptual tactics, we focus this paper on the
more complex results stemming from our model of binary accuracy.
We include the strategy models in our Supplemental Materials.

Below, we focus on the analysis for evaluating Experiment 1°s accu-
racy across variables. To do so, we utilize the R packages tidyverse v.
2.0.0 for data processing [54], brms v. 2.20.4 for Bayesian modeling [4],
and tidybayes v. 3.0.6 for data processing and visualization [27,43].

We assess the amount of variance in binary correctness explained
by the interaction between Scaling and Visual Interventions, as well as
their lower-order terms (levels of each variable described in Sec. 3.1.3).
Additionally, we account for the variance explained by Stacking, Posi-
tion, Graph Literacy, and SD in the following model:

Binary Correctness ~ Scaling x Visual Interventions
+ Stacking + Position 1)
+ Graph Literacy + SD + (1|ID).

We evaluate correctness with a response of "A and B have the same
probability" coded as 1 and all other responses coded as 0. Our model
specified an interaction term between Scaling and Intervention so that
we could test all of Experiment 1°s hypotheses (H1 - H3). We include
Stacking, Position, Graph Literacy, and SD as covariates to account for
their potential meaningful effect on our effects of interest.
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Fig. 5: Bayesian posteriors of accuracy as determined by scaling of PDF
plots (rows) and visual interventions (colors).

For all models, we include random intercepts for participants. Our
model specifications include uninformative priors centered at 0, with a
standard deviation of 2.5. Our preregistered model originally included
priors center at .5, which we corrected here. To assess the impact
of an effect, we utilize 95% credible intervals, considering predictors
with credible intervals excluding zero as having a reliable effect on
participants’ judgments. Additionally, for all models, we analyze results
including and excluding participants who fail to pass the attention
check. We preregistered a possible exclusion of these participants, if a
sensitivity analysis indicates they significantly skew results.

3.3 Results
3.3.1 Participants

We collected a total of 600 participants (n = 100 per between-subject
condition). 297 were female, 290 male, 11 nonbinary, and 2 opted
not to say. The median age was 38.5 years (mean = 40.4, SD = 12.9),
and the median short graph literacy score was 2 out of 4 (mean = 2.3,
SD = 1.1). The median survey completion time was 8 minutes and 46
seconds, making the average compensation $13.58/hr.

3.3.2 Binary Correctness

Examining H1. To examine if including a y-axis meaningfully de-
creases the number of participants that incorrectly interpret differently
scaled PDF plots, we analyzed the accuracy of participant responses
using Eq. (1). We computed this model with and without participants
who failed an attention check and found no marked differences between
the groups. Below we report the results of the entire sample for a more
conservative statistical analysis.

Our model for Binary Correctness reveals interactions between all
of the Scaling and Visual Intervention conditions. See Fig. 5 for a
visual description of posteriors. Overall, the results reveal that irregular
vertical scaling drastically decreases binary accuracy, which can be
mitigated by the y-axis condition.

To investigate the model’s interactions, we change its referents to
each of the Scaling and Visual Intervention conditions, as is recom-
mended to examine interaction effects [2]. These analyses reveal that
the interactions are driven by two distinctly different relationships be-
tween Visual Interventions and Scaling. The model outputs for these
comparisons at each level of Scaling are shown in Tab. 1. Firstly, as
depicted in the top row of Fig. 5, each visualization condition has a high
level of accuracy when comparing two distributions of equal area (100%
scaling). Further, there is no evidence for a difference between the no
intervention condition and the y-axis scale (see Tab. 1 first row). How-
ever, there is a meaningful difference between the SD annotation and
y-axis, and SD annotation and no intervention conditions (second and
third rows of Tab. 1). Fig. 5 is annotated with these results. In contrast,
the response patterns when the distributions were not equally scaled
(75% and 50%) are drastically different. For both the 75% and 50%
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Intervention

Scaling . Est. 195% CI u-95% CI
Comparison
100% Y-axis x None 0.02 -0.53 0.56
100% Y-axis x SD Annot. 1.34 0.75 1.92
100% SD Annot. x None -1.19 -1.76 -0.61
75% Y-axis x None -2.89 -3.40 -2.40
75% Y-axis x SD Annot. ~ -2.81 -3.33 -2.31
75% SD Annot. x None -0.13 -0.66 0.40
50% Y-axis x None -3.67 -4.23 -3.12
50% Y-axis x SD Annot. ~ -3.34 -3.89 -2.80
50% SD Annot. x None -0.42 -1.03 0.16

Table 1: Breakdown of interaction effects in Model 1 (Binary Correctness)
across scaling levels. Rows compare visual intervention conditions at
three scaling levels and show 95% credible intervals in log odds. Darker
cell backgrounds indicate stronger effects.

Scaling conditions, the y-axis intervention’s accuracy was substantially
higher than that of the other two visual interventions. Moreover, no
evidence for differences was detected between the SD annotations and
the no intervention conditions within the 75% or 50% scaling contexts.
We detail the direct comparisons in Tab. 1 and annotate them in Fig. 5.
The improvement in accuracy among participants reviewing PDF plots
with a y-axis in the 75% and 50% conditions provides evidence for
H1. This enhancement in performance validates the utility of y-axes in
PDF plots under specific scaling conditions.

Examining H2. To examine if adding vertical lines to indicate
standard deviations would improve comparison of differently scaled
PDF plots, we can look at the direct comparisons in Tab. 1 (rows 6
and 9). For both 75% and 50% conditions, we find no meaningful
difference between the SD annotation condition and no intervention.
Interestingly, for the 100% condition, accuracy is higher for the SD
annotation than the other two conditions. However, overall, we do not
find sufficient evidence for H2, finding that SD annotations do not
consistently improve accuracy. It is worth reiterating SD annotation’s
positive impact on correctness (top-right corner of Fig. 5), indicating a
potential use for SD annotations when PDF plots are visually similar.

Examining H3. To investigate whether SD annotations improve
accuracy more than y-axes when comparing differently scaled plots, we
can look to the direct comparisons in Tab. 1 (rows 5 and 8), which shows
evidence for the effect that y-axes meaningfully improve accuracy over
SD annotations for the relevant 75% and 50% scaling conditions.
Therefore, we document no support for H3.

Covariates. We observe no evidence for effects of the covariates
Stacking or SD on participant accuracy in this model. We note the
covariates Position and Graph Literacy account for a meaningful pro-
portion of variance in the model’s outcomes. All the effects we report
control for the effect of these covariates. We describe some of the ef-
fects of Graph Literacy in Sec. 5.1, and the full model output detailing
all the effects is in the supplemental materials.

4 EXPERIMENT 2
4.1 Methods

The results from Experiment 1 reveal that, at a minimum, roughly
50% of participants incorrectly deduced that vertically compressing
PDF plots decreases the probability shown. Experiment 1 varies only
vertical height, which in turn varies area; thus, its experimental design
confounds pixel area and height. Additionally, Experiment 1 tests
identical PDFs, which are unlikely to be irregularly scaled in practice.
To explore the effects of compressing PDF plots in a more realistic
layout, we preregistered Experiment 24,

In this experiment, we asked participants to compare the cumulative
probabilities of PDF plots with different SDs, but which have been
scaled to occupy the same pixel height (i.e., equal-height PDF plots,
as shown in Fig. 6). We also test this comparison against a control in
which participants compare uncompressed, "equal-area" PDF plots with
different SDs, and, thus, different heights. Experiment 2’s comparison

“https://osf.io/uxb7n

investigates a design decision that may occur when chart creators are
keen to save space and do not want to allocate a great deal of vertical
white space to charts with small SDs, as illustrated in Fig. 2 (c).

411

Motivated by our results from Experiment 1, we investigated if partici-
pants may be conflating pixel area with probability. To do so, we varied
the SDs of compared PDFs (1 SD & 5 SD, 2 SD & 5 SD, 3SD & 5
SD, 4 SD & 5 SD, 5 SD & 5 SD - see Fig. 6) and hypothesized that
(H4) participants would be more likely to incorrectly compare cumula-
tive probabilities of two PDFs when their plots had a large difference
in SDs. We reasoned that PDF plots with larger differences in SDs
would have larger differences in pixel area, potentially misleading more
participants to incorrectly choose the visually larger plots.

We tested the same visual interventions as in Experiment 1, which
we again hypothesized (HS) would mitigate some of the inaccuracy
from vertically compressing PDF plots to have equal-heights (Fig. 6,
right columns). Although we saw only the y-axis intervention increase
accuracy in Experiment 1, we reasoned that perhaps the SD annotations
would prove more useful when comparing PDF plots of varying SDs.

Lastly, we included a control equal-area condition in which we
asked participants to compare PDF plots with different SDs that were
proportionally scaled to occupy the same pixel area, as is traditional
practice when visualizing PDFs (Fig. 6, equal area). We hypothesized
that (H6) participants would be more likely to accurately compare
cumulative probabilities when PDF plots occupied equal areas.

4.1.2 Stimuli

Experiment 2 compares PDF plots with varying SDs. We created all
plots using similar methods and tools to Experiment 1. We detail the
reasoning for each stimulus in Sec. 4.1.1.

Investigative Questions & Hypotheses

4.1.3 Experimental Design

We utilized a 4 (Visual Intervention: Equal-area, Equal-height, Y-axis,
SD Annotations) x 5 (SD Pairs: 1-5 SD, 2-5 SD, 3-5 SD, 4-5 SD, 5-5
SD ) x 2 (Position of smaller-SD PDF: Top, Bottom) mixed-subjects
design. Visual Intervention was Experiment 2’s only between-subjects
condition. SD Pairs and Position were within-subjects conditions. In
Experiment 1, we found no meaningful effect from stacking plots
vertically or horizontally, so in Experiment 2, we tested only vertically
stacked plots. Vertical stacking is more likely to result in occlusion
from tall, low-SD PDFs overlapping (see Fig. 2), and thus is more likely
to motivate designers to compress plot heights. This design resulted in
9 graph combinations (4 SD Pairs with Position = Top, 4 SD Pairs with
Position = Bottom, and / SD Pair = 5-5 SD with Position = N/A).

4.1.4 Participants

We used the effect size and power analysis from Experiment 1 to inform
our preregistered sample size of 100 participants per between-subjects
group. We recruited participants using the same criteria as in Sec. 3.1.4.

4.1.5 Procedure

Experiment 2 mimicked the procedure of Experiment 1. We provided
all the same instructional information and added additional labeling
to the SD annotation condition to indicate its statistical implications.
To accommodate the PDF plots in Experiment 2, we also asked a
slightly different cumulative probability question. We asked partici-
pants, "Which solute, if either, has a higher probability of being present
at X or less ppm in the sampled seawater?" As in Experiment 1, the
threshold X was set at the same position across all plots—at x = 20 in
Fig. 6 plots—but varied in number depending on x-axis labeling.
Participants were again instructed to select one of three possible
multiple choices: "Solute A has a higher probability", "Solute B has
a higher probability", or "Solute A and B have the same probability".
In almost all pairs of plots, the PDF with the lower SD was the correct
answer. This distribution had more probability concentrated around its
mode. For the stimulus with the SD Pair 5-5 SD, the correct answer
was that the plots show the same probability. Experiment 2 participants
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Fig. 6: Visual Intervention conditions shown between subjects. SDs vary from 1 at the top of each column to 5 at the bottom, and each pair of SDs is

compared within subjects.

Interaction Est 1-CI u-CI
5/5 v 4/5 x Equal-area v Equal-height  -2.27  -3.20 -1.36
5/5 v 3/5 x Equal-area v Equal-height  -1.65  -2.57  -0.75
5/5 v 2/5 x Equal-area v Equal-height  -1.61 -2.51  -0.70
5/5 v 1/5 x Equal-area v Equal-height  -1.62  -2.51  -0.73
5/5 v 4/5 x Equal-area v Y-axis -1.17  -2.07 -0.29
5/5 v 3/5 x Equal-area v Y-axis -0.72 -1.61 0.14
5/5 v 2/5 x Equal-area v Y-axis -0.75 -1.63 0.11
5/5 v 1/5 x Equal-area v Y-axis -1.15 -2.06 -0.27
5/5 v 4/5 x Equal-area v SD Lines -1.97  -2.89 -1.05
5/5 v 3/5 x Equal-area v SD Lines -1.85 277  -0.95
5/5 v 2/5 x Equal-area v SD Lines -1.94 286 -1.05
5/5 v 1/5 x Equal-area v SD Lines -1.75  -2.66  -0.85

Table 2: Interactions for referents 5-5 SD Pair & Equal Area from Model 2.
Rows show 95% credible intervals in log odds. Darker cell backgrounds
indicate stronger effects.

filled out the same postexperiment information as those in Experiment 1.
The full survey is available in our Supplemental Materials.

4.1.6 Analysis

We preregistered a binomial Bayesian model to test our hypotheses in
Experiment 2°. Using the same packages and logic as in Experiment 1,
we assess Binary Correctness as follows:

Binary Correctness ~ Visual Interventions x SD Pairs

- . @3]
+ Position+ Graph Literacy + (1|ID).

This model specifies an interaction term between Visual Intervention
and SD Pairs so that we could test all of Experiment 2’s hypotheses (H4
- H6). We include Position and Graph Literacy as covariates to control
for their potential meaningful effect on our effects of interest. We code
correct answers (as described in Sec. 4.1.5) as 1 and incorrect answers
as 0. We also include participants as random intercepts and specify
the same priors and credible intervals as in Experiment 1. We evaluate
this model with the full sample of participants and with a population
that excludes participants who failed a simple attention check, again
preregistering a possible exclusion criteria if participants who fail the
attention check meaningfully impact results.

Shttps://osf.io/uxb7n

4.2 Results
4.2.1 Participants

We collected a total of 401 participants (n = 101 for SD Annotation
intervention, n = 100 for each other between-subject conditions). 195
were female, 197 male, 7 nonbinary, and 2 opted not to say. The
median age was 37.0 years (mean = 38.8 years, SD = 13.8 years), and
the median short graph literacy score was 3 out of 4 (mean = 2.4, SD
= 1.1). The median survey completion time was 8 minutes and 31
seconds, making the average compensation $10.32/hr.

4.2.2 Binary Correctness

We investigate our hypotheses using our Bayesian model, setting

as the referent for Visual Interventions and 5-5 SD as the referent
for SD pair. We see very few differences between the model results
using data from the entire tested population and those using data from
just participants who pass the attention check. In this paper, we discuss
only the more statistically conservative results of the entire population,
but include the second model in our Supplemental Materials.

Examining H4. To evaluate whether participants’ accuracy declines
as SD disparity increases between compared plots, we employ Eq. (2).
This analysis unveils numerous meaningful interactions between visual
interventions and specific SD pairs, as detailed in Tab. 2. To decode
these interactions, we systematically adjusted the model’s referents to
each visual intervention and SD pair condition combination. These
adjustments allowed us to examine participants’ accuracy by assessing
the influence of varying SD pairs across visual interventions.

Fig. 7 illustrates a uniform increase in accuracy when transition-
ing from SD pairs 4-5 to 1-5. Our analysis reveals that this trend
is consistently observed across all visual interventions—specifically, a
meaningful difference in accuracy occurs between comparisons sep-
arated by two levels. For instance, the accuracy for SD pairs 4-5 is
smaller than that of 2-5 and 1-5. Similarly, the accuracy of 1-5 was
meaningfully larger than that of 3-5, with the sole exception of com-
parisons with y-axes. The comparisons between the SD pairs for each
visual intervention are documented in Tab. 3, and those with credible
intervals that do not include zero are annotated at the bottom of Fig. 7.

These empirical findings substantiated a meaningful effect, albeit in
a direction opposite to that which we originally hypothesized, thereby
providing no evidence for H4. Interestingly, we consistently find
that participants’ accuracy improves when there are larger differences
between the standard deviations of the two PDF plots they are compar-
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ing. Future work stands to benefit from investigating the relationship
between PDF’s SDs and their accurate comparison.

Examining H5. To examine if the visual interventions we tested
improve accuracy, we look at the comparisons in our model between
the visualization types that we revealed in the previous interaction
examination. Firstly, we observe no evidence for a main effect between
visual interventions at the level of our referent SD Pair (5-5 SD). As
the top row of Fig. 7 shows, accuracy is relatively high for this SD pair
condition, with only marginal differences between visual interventions.

Secondly, we observed a noteworthy pattern in our analysis of SD
pairings that are not equivalent (4-5 SD through 1-5 SD): the

plots consistently outperformed most other visual interventions.
Specifically, for the SD pairs (1-5 SD) and (4-5 SD), the
plots yielded superior accuracy compared to all other visual interven-
tions. However, for SD pairs 2-5 SD and 3-5 SD, only negligible
differences between the visualization and the y-axis inter-
vention were detected. We annotate these effects in Fig. 7 and show the
meaningful comparisons in Tab. 4.

Further examination of Fig. 7 reveals a consistent ranking among
the visualizations for SD pairs ranging from 1-5 SD to 4-5 SD. Here,
the equal-height plots typically underperformed or were comparable
to SD annotations, followed by the y-axis condition, and finally the

visualizations. Focusing on the equal-height PDF plots,
we find that at the level of 4-5 SD, it performs meaningfully worse
than the y-axis and interventions. For 3-5 SD, 2-5 SD,
and 1-5 SD, the equal-height plots perform only markedly worse than
the plots. Consequently, we find some support for HS,
only within the context of y-axis performance outperforming the equal-
height plot in some cases. In other cases, the y-axis condition performs
as well as the plot. We also do not find sufficient evidence
for HS in the context of SD annotations, which did not show sizable
improvement from equal-height plots.

Examining H6. We can use the previously described analysis to
also examine if PDF plots increase accuracy over equal-
height PDF plots when the SD pairs are not equal (i.e., not 5-5 SD). We
find that the visual intervention meaningfully improves the
likelihood of accuracy compared to all of the other visual interventions
for SD pairs 1-5 SD and 4-5 SD. Further, we find that plots
meaningfully improve the likelihood of accuracy over equal-height and
SD annotations for 2-5 SD and 3-5 SD. These conclusions provide
evidence for H6, finding that versions of PDF plots produce
the best performance out of the visual interventions we tested.

Covariates. We observe no evidence for effects of the covariates
Position or Graph Literacy in Model 2.

5 DISCUSSION

In this paper, we provide empirical evidence of the impact of irregu-
lar vertical compression on PDF comparisons. Although nonuniform
vertical scaling of visualizations is generally thought to mislead read-
ers, previous work on vertical scaling has examined only line and bar
charts [6,9,37,48]. Similarly, previous work on area comparisons is
largely reserved to ovals and polygons [1,12,32,34,47,60]. We explore
a manipulation that is not uncommon in PDF visualizations—as can be
seen by its implementation into presets in popular statistical plotting
packages [14,28]-and highlight its potential to mislead readers, along
with some mitigating tactics.

The two experiments we present in this paper vary the width and
height of PDF plots, not only providing general design guidance, but
also generating insight about the implications of mapping probability
to area. Our findings, although specific to compressing PDF plots, can
shed light on the mental strategies that lay audiences use to make sense
of area-encoded probability visualizations. For example, we present
strong evidence from both experiments that PDF plots with equal areas
are more consistently correctly interpreted than PDF plots with equal
heights or other vertical compression. These patterns could indicate
that, even when informed of the unity of each PDF plot, individuals
rely on single area comparisons to make judgments about probabili-
ties instead of the mathematically correct strategy of proportional area
judgments, as depicted in Fig. 3, right. Future research should investi-
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Fig. 7: Bayesian posteriors of accuracy as determined by SD Pairs, and
Visual Interventions (colors). Rectangular connectors indicate compar-
isons where the credible interval do not include zero within and across
SD Pairs and Visual Interventions.

gate whether this finding is attributable to readers’ failure to recognize
PDF plots as continuous part-to-whole visualizations, to the increased
difficulty of single area judgments compared to two-part proportional
area judgments, or to a combination of both factors. Regardless of
underlying reasons, this work provides key evidence of the complicated
nature of interpreting and comparing PDF plots.

5.1 Implications for Visualization Design

In practice, probability densities that need to be visualized will most
likely not share identical means and standard deviations. Experiment 2
demonstrates how equal-height PDF plots are susceptible to incor-
rect comparison and to what degree y-axes and SD annotations can
improve comparison. We find that, regardless of visual intervention,
equal-area PDF plots lead to more accurate probability compar-
isons than equal-height PDF plots. Frustratingly, this recommendation
can require large amounts of dedicated space, or can result in visual
occlusion from PDF plot overlap. In some cases, the overlap may not
seem inhibiting, although the range of effects from slight to extreme
PDF plot overlap, like that in ridgeline plots, is yet to be explored.

If visualization designers are compelled to compress PDF plot
heights, which our experiments indicate is inadvisable, adding a y-axis
could mitigate some miscomprehension. This signal was especially
strong in Experiment 1, in which we found an effect of graph literacy.
To understand the impact of graph literacy on visual interventions, we
conducted an exploratory analysis by adding an interaction term be-
tween visual intervention and graph literacy in Experiment 1. This
analysis revealed that the influence of graph literacy becomes espe-
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SD Pair Comparison Intervention Est. 1:95%CI u-95%CI Visual Il'ltervention SD Pair Est. 195%CI  u-95%CI
1-5v3-5 Equal-area  -0.77 -1.29 -0.28 Comparison
1-5v4-5 Equal-area -1.14 -1.64 -0.64 Equal-area v Equal-height  1-5 -0.97 -1.68 -0.25
2-5v4-5 Equal-area -0.77 -1.27 -0.27 Equal-area v Equal-height ~ 2-5 -0.99 -1.70 -0.28
3-5v5-5 Equal-area 1.02 0.39 1.66 Equal-area v Equal-height ~ 3-5 -1.05 -1.77 -0.36
4-5v5-5 Equal-area 1.42 0.80 2.06 Equal-area v Equal-height ~ 4-5 -1.62 -2.33 -0.94
1-5v3-5 Equal-height  -0.87 -1.36 -0.39 Equal-area v Y-axis 1-5 -0.76 -1.44 -0.06
1-5v4-5 Equal-height ~ -1.85 -2.35 -1.35 Equal-area v Y-axis 4-5 -0.80 -1.49 -0.13
1-5v5-5 Equal-height 2.02 1.34 2.73 Equal-area v SD Annot. 1-5 -0.87 -1.59 -0.17
2-5v3-5 Equal-height ~ -0.50 -0.98 -0.01 Equal-area v SD Annot. 2-5 -1.09 -1.79 -0.41
2-5v4-5 Equal-height ~ -1.48 -1.98 -0.98 Equal-area v SD Annot. 3-5 -1.03 -1.74 -0.34
2-5v5-5 Equal-height 2.38 1.71 3.08 Equal-area v SD Annot. 4-5 -1.11 -1.81 -0.44
3-5v4-5 Equal-height  -1.01 -1.52 -0.49
3-5v5-5 Equal-height =~ 2.85 2.17 3.58 Table 4: Breakdown of meaningful interaction effects in Model 2 by SD
45v55 Eq“a_l'he‘ght 3.72 3.02 443 Pair. Rows compare Visual Interventions per SD Pair and show 95%
1-5v4-5 Y-axis -1.24 -1.72 0.77 credible intervals in log odds. Darker cells indicate stronger effects.
1-5v5-5 Y-axis 1.51 0.86 2.18
2-5v4-5 Y-axis -1.18 -1.67 -0.70 mark types that do not encode cumulative probability with area are
2-5v5-5 Yeaxis 1.58 0.93 226 likely unaffected by the misconceptions highlighted in this paper, we
3-5v4-5 Yeaxis -0.79 -1.26 -0.31 caution readers that they may exhibit other unknown misconceptions.
3-5v5-5 Y-axis 1.97 1.31 2.66
4-5v5-5 Y-axis 2.72 2.04 3.41 5.2 Limitations and Future Work
ig V2 SD Annot. -0-60 -1.08 013 We limit the scope of this investigation to normal probability distribu-
-5v3-5 SD Annot. -0.94 -1.42 -0.47 R L . . .
15 v 4.5 SD Annot. 144 191 2095 tions, which is not the entire set Qf PDFS that science communicators
1-5 v 5-5 SD Annot. 215 1.44 .86 might need to present. We do this in part because non-normal PDFs
2.5 v 4-5 SD Annot. 20.88 137 20.39 can be challenging to read [41], perhaps because they do not adhere
2.5v5.5 SD Annot. 2.68 1.97 3.43 to symmetry or well-known percentage-to-SD ratios. In the future, it
3-5v4-5 SD Annot. -0.53 21.02 -0.05 would be worthwhile to investigate reader comparison of non-normal
3-5v5-5 SD Annot. 3.04 2.34 3.80 and nonsymmetric PDF plots. However, given that these plots are even
4-5v5-5 SD Annot. 3.52 2.80 4.28 more challenging to read [41], it is possible that additional errors may

Table 3: SD comparisons with 95% credible intervals that do not include
zero from testing H4, broken down by Visual Intervention. The first SD
condition listed in each row is the referent. Units are in log odds and
darker cells indicate stronger effects.

cially impactful for participants when a y-axis is present, as shown in
Fig. 8. This finding implies that for audiences with a high level of graph
literacy, adding y-axes to compressed PDF plots could mitigate misun-
derstandings to some degree. However, considering the more minimal
impact of the y-axis intervention in Experiment 2, our results about
its usefulness for a general audience are mixed. Also, a background
grid may function similarly to y-axes by making visual compression
more obvious, but the effects of other visual interventions still need to
be explored. Finally, we find little evidence that standard deviation
annotations are useful.

Beyond the visual interventions that we discuss in this paper, design-
ers could also encode densities with a different mark type. For example,
distributions with large SDs may be too short to be visible when uni-
formly scaled along with other PDF plots. In these cases, designers
may consider visualizations that do not encode probability with height,
such as gradient plots [10] or dual histogram intervals [58]. Although

intervention
- y-axis
75- &2 sD Annot.

—— none

Accuracy
n
o

N
o

Graph Literacy

Fig. 8: Conditional effects for graph literacy in Exp. 1. Darker lines show
means, color bands show 95% Cls.

arise. The results we present here act as preliminary motivation for fur-
ther investigating how manipulations of distributional area plots affect
reader comprehension. The studies we present indicate a difference
in accuracy dependent on vertical scaling, but do not advise on the
mental strategies that produce this difference. Future work is needed to
investigate the mechanisms behind this observed loss of accuracy.

Additionally, the two experiments we present hold many variables
constant, leading to cleaner signals but reduced ecological validity. It
would be useful to evaluate how readers compare more than two PDF
plots, especially those that are aligned along a single x-axis, like we use
to communicate our results in the top of Fig. 7. Investigating vertically
compressed PDFs across multipage reports could also lend interesting,
ecologically valid findings to this body of research.

We also have yet to explore how PDF plots’ height-to-width ratio
impacts the perception of them individually. Future work could ask,
‘How does perceived certainty change as the height-to-width ratio of
a singular PDF plot shifts?” There may be an optimal height-to-width
ratio for PDF curves that has yet to be uncovered. Lastly, future work
could build on our experimental design by evaluating analogous manip-
ulations to raincloud, ridgeline, violin, and quantile dot plots, as well
as other visualizations that encode probability via area.

6 CONCLUSION

In this paper, we contribute evidence of the impact of compressing PDF
curves on reader comprehension. Specifically, we find that equal-area
PDF plots consistently result in more accurate comparisons than their
equal-height counterparts. We also test potential visual interventions
to improve the accuracy of comparing differently compressed PDF
plots. In some cases, we find adding y-axes can improve the accuracy
of comparisons of compressed plots. In most cases, we find adding
standard deviation annotations impacts the accuracy of comparisons
very little. Our experimental data also informs base standards for the
accuracy of readers’ comparisons of cumulative probabilities in PDF
plots. We find that when two PDF plots are visually and statistically
identical, a general audience (graph literacy mean =2.4 of 4, SD = 1.1)
can accurately compare cumulative probabilities around 80% of the
time. This number drops when PDF plots have different SDs or verti-
cally scaling. Our findings inform best practices for visualizing PDFs
and provide motivation for future work exploring PDF comprehension.
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SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/7k5un/,
released under a CC BY 4.0 license. In particular, they include

(1) Expl > Exp_1_Survey: Qualtrics .QSF and .PDF versions of Exper-
iment 1’s survey

(2) Exp2 > Exp_1_Survey: Qualtrics .QSF and .PDF versions of Exper-
iment 2’s survey

(3) Expl > Exp_1_Analysis:Anonymous data, analysis files, and mod-
els for Experiment 1 (.pdf, html, and .Rproj files)

(4) Exp2 > Exp_2_Analysis: Anonymous data, analysis files, and mod-
els for Experiment 2 (.pdf, html, and .Rproj files)

(5) stimuli.zip: all stimuli
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