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Abstract. We study the problem of jointly pricing and designing a smart transit system, where
a transit agency (the platform) controls a fleet of demand-responsive vehicles (cars) and a fixed
line service (buses). The platform offers commuters a menu of options (11odes) to travel between
origin and destination (e.g., direct car trip, a bus ride, or a combination of the two), and commu-
ters make a utility-maximizing choice within this menu, given the price of each mode. The goal
of the platform is to determine an optimal set of modes to display to commuters, prices for these
modes, and the design of the transit network in order to maximize the social welfare of the sys-
tem. In this work, we tackle the commuter choice aspect of this problem, traditionally approached
via computationally intensive bilevel programming techniques. In particular, we develop a
framework that efficiently decouples the pricing and network design problem: Given an effi-
cient (approximation) algorithm for centralized network design without prices, there exists an
efficient (approximation) algorithm for decentralized network design with prices and commuter
choice. We demonstrate the practicality of our framework via extensive numerical experiments
on a real-world data set. We moreover explore the dependence of metrics such as welfare, reve-
nue, and mode usage on (i) transfer costs and (ii) cost of contracting with on-demand service
providers and exhibit the welfare gains of a fully integrated mobility system.
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1. Introduction
Providing efficient, comprehensive, and cost-effective
transportation solutions has long been a challenge for
public transit agencies. In particular, a central problem
faced by these agencies is the fact that they are resource
constrained and often face a ridership versus coverage
problem (Walker 2018). On the one hand, a key objec-
tive of ridership-oriented transit is efficiency: By maxi-
mizing the number of commuters served, not only do
transit agencies benefit from lower public subsidies per
rider, but they also reduce traffic congestion and the
environmental impact of gas emissions by targeting cit-
ies” highest-demand corridors. On the other hand, pub-
lic transit ideally should provide access to mobility for
the entire community and be an equitable service,
which in many cases comes at the cost of reduced ser-
vice in high ridership areas.

In the past decade, however, mobility-on-demand
(MoD) companies such as Lyft and Uber have entered
into the conversation, dramatically altering the mobility
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landscape. These flexible and adaptive transportation
services are increasingly viewed as a means of (par-
tially) reconciling the aforementioned tension between
ridership and coverage. Indeed, by using ride-hailing
services to connect previously underserved communi-
ties to transit hubs, agencies can expand access to more
affordable and sustainable transportation solutions, all
while being able to concentrate resources on high-
density corridors. Examples of pilot projects focusing
on enhancing first/last-mile connectivity via multi-
modal trips (with supporting services including micro-
transit and ride-sharing options like UberPool) include
LA Metro and Via (LA Metro 2019), Dallas Area Rapid
Transit and Lyft (DART 2019), Moovel in Germany
(Moovel 2024), Whim in Helsinki (Bloomberg 2018),
UbiGo in Stockholm (Civitas 2020), and MARTA
(MARTA Reach 2022).

Central to the operations of these types of integrated
systems is the ability to design a system that is consis-
tent with commuter choice. Specifically, transit systems
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are characterized by their inherently decentralized
nature; that is, rather than being assigned to trips, com-
muters choose the mass transit routes that minimize their
travel times. In a similar vein, when faced with hybrid
transportation options, commuters will choose the option
that maximizes their net utility, a more meaningful metric
than travel times given the heterogeneity of options along
different dimensions, for example, travel time, comfort,
convenience, and, importantly, price. This last aspect is
crucial in the successful design of a multimodal system;
whereas certain transit systems charge a flat fare for all
trips (e.g., $2.9 for a subway ride in New York City; New
York City MTA 2024), there exists a tradeoff between sim-
ple pricing (such as a flat fare) and trip-specific pricing,
which is potentially more efficient. Thus, the question
preoccupying transit agencies should no longer solely be
how to design such a transportation network, but how
to simultaneously price and design this integrated sys-
tem. Indeed, it has been empirically shown that jointly
solving these two problems—that have by and large
been considered separately in the literature—can lead to
substantial gains in system efficiency (Bertsimas, Sian
Ng, and Yan 2020). Although joint pricing and network
design is considered computationally difficult in general
(see Section 2), in this paper, we develop a new frame-
work that demonstrates that pricing and designing a net-
work in the presence of commuter choice is no harder
than network design under nonstrategic behavior for a
large family of problem instances.

1.1. Summary of Our Contributions

We consider a model in which a transit agency (hence-
forth, the platform) controls a fixed-line service and has
access to a fleet of demand-responsive vehicles (e.g., via
a prenegotiated contract with a ride-hailing service or an
in-house fleet of taxis). The platform is faced with a set of
nonatomic passenger flows and offers commuters the
choice of a number of ways of traveling between origin
and destination nodes: A commuter can travel by bus for
the entirety of the trip (walking to and from the bus sta-
tions closest to their origin and destination); they can use
a ride-hailing service; or they can combine these two
travel options by using the ride-hailing service for the
first and last legs of their trip, and traveling by bus in
between. We refer to these different options as travel
modes.

A commuter has a valuation for each mode, drawn
from a known distribution. Given the prices set by the
platform, they choose the mode that maximizes their
net utility. The platform, on the other hand, incurs an
operating cost for each mode, as well as a cost to design
the transit network (e.g., a fixed cost for each bus line).
The focus of the platform is the long-term planning and
design of the multimodal marketplace. Concretely, the
goal is to determine the optimal set of modes to display
to commuters, prices for these modes, and the design of

the transit network in order to maximize the total wel-
fare of the system, that is, the sum of its profit and com-
muter utilities. We refer to this problem as the welfare
maximization problem.

One of the key hurdles of transit planning is account-
ing for commuters’ strategic behavior: doing so requires
computing equilibria of an underlying game, a task
known to be Polynomial Parity Arguments on Directed
graphs (PPAD) complete in general (Daskalakis, Gold-
berg, and Papadimitriou 2009). Indeed, the vast majority
of existing techniques use computationally intensive
iterative methods based on a bilevel programming for-
mulation to compute the optimal set of planning deci-
sions that are consistent with commuter choice (Parbo,
Nielsen, and Prato 2014, Verbas and Mahmassani 2015,
Yu et al. 2015, Pinto et al. 2019). Our main methodologi-
cal contribution in this respect is to show that, when the
transit planner can use pricing as a lever to coordinate
commuter choice, joint pricing and line planning is no
harder than vanilla line planning in the presence of non-
strategic behavior. More specifically, we propose a meth-
odological framework that disentangles the two sources
of complexity in the welfare maximization problem: (i)
designing the transportation network and (ii) pricing
the trips offered by the platform. The framework tackles
the problem in two steps:

1. (Approximately) solve a centralized welfare maxi-
mization problem, that is, a single-level assignment
problem that relaxes the commuter choice constraints
of the original problem.

2. Compute the prices that induce the flows corre-
sponding to this (approximate) solution.

A priori, not only is it unclear how to compute the
prices described in Step 2, but it is also not evident that
such prices even exist. Our work answers these two
questions in the affirmative for a broad class of com-
muter valuation distributions. As a warmup, we first
consider the widely used multinomial logit (MNL)
model of commuter choice, showing that the tractable
closed-form expression for commuters” choice proba-
bilities can be inverted to yield the appropriate prices.
We then show that such an approach efficiently com-
putes prices for a much broader class of continuous val-
uation distributions, under mild regularity conditions.

A natural next question is whether such an approach—
that is, solving a centralized problem and computing
prices that induce at least as high a welfare—can be lever-
aged for the space of discrete valuation distributions. This
space of distributions is of particular interest because, in
the case of transportation networks, supply costs and
constraints (e.g., budget, capacity, and circulation con-
straints) are often linear in the decision variables. Model-
ing commuter valuations by a discrete distribution (e.g.,
by bucketing commuters into different types), in such
cases, allows the platform to leverage the computational
sophistication of mixed integer linear programming
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solvers compared with mixed integer convex program-
ming solvers, which one would need under continuous
valuation distributions. We show that, for arbitrary dis-
crete valuation distributions, the welfare-maximizing
prices arise from the dual of an appropriately chosen lin-
ear program. This framework thus has far-reaching com-
putational implications for pricing and network design in
decentralized settings: Given an efficient (approximation)
algorithm for the centralized welfare maximization problem,
there exists an efficient (approximation) algorithm for the wel-
fare maximization problem in the presence of commuter choice.

Although the approach of solving pricing problems in
the assignment space has been explored in simple settings
within the revenue management and mechanism design
communities (Gallego and Van Ryzin 1994), our contribu-
tion here is demonstrating that these insights can be lever-
aged in much more complicated settings arising in the
transportation literature, wherein one frequently only has
access to an approximate solution. This powerful idea
then vastly simplifies the computational complexity of
many problems considered in recent work.

Finally, we demonstrate the practicality of our frame-
work via extensive numerical experiments on a real-
world data set. In particular, we show that in large-scale
settings, the time required to solve the mixed integer lin-
ear program (MILP) associated with the centralized wel-
fare maximization problem dwarfs that of the linear
program that computes the welfare-maximizing prices.
In other words, you can plan your system and price for
“free.” Our framework enables us to explore the depen-
dence of key platform metrics such as welfare, revenue,
profit, travel times, and mode usage on the quality of
bus lines considered by the planner, transfer costs
incurred by commuters because of first- and last-mile
connections, as well as the per-mile cost a ride-hailing
company would charge the platform for its services.
Our results highlight that the major gains from introduc-
ing hybrid trips come from efficiently partitioning trip
types: In such a system, MoD-only options are reserved
for short trips, with longer trips reserved for transit-only
options. Hybrid modes, finally, are most useful for the
longest trips that are poorly connected to existing transit
lines. These experiments also emphasize the importance
of reducing transfer frictions for hybrid trips, as well as
low MoD operating costs.

1.2. Paper Organization

In Section 2, we survey relevant literature. We then pre-
sent the basic model and define the welfare maximiza-
tion problem in Section 3. In Section 4, we develop
intuition for our main approach by solving the pricing
problem under MNL commuter choice and extend this
result to continuous valuation distributions under mild
conditions. We then build on this basic approach in Sec-
tion 5 and present our pricing framework for the setting
of discrete valuation distributions. Finally, in Section 6

and Online Appendix C, we demonstrate its applicability
via numerical experiments on a real-world data set. All
proofs are relegated to the Online Appendix.

2. Related Work

We review the most closely related lines of work in this
section.

2.1. Line Planning and Commuter Choice

Much of the work on finding an optimal set of lines that
minimizes some function of passenger waiting times
and transit operator costs, subject to commuter choice,
has relied on bilevel programming formulations (Con-
stantin and Florian 1995). Although bilevel optimiza-
tion is known to be strongly NP-hard in general
(Hansen, Jaumard, and Savard 1992), Fontaine and
Minner (2014) show that, under the assumption that the
principal is allowed to choose among agents” optimal
decisions, the bilevel network design problem with the
objective of minimizing passenger waiting times can
be cast as a nonlinear single-level problem via the
Karush-Kuhn-Tucker (KKT) conditions, and then
approximately solved via linearization tricks. From a
technical perspective, our work is most similar in spirit
to this latter paper in its reliance on linear programming
duality to reduce the decentralized pricing problem to
a centralized pricing problem.

From a modeling perspective, a typical objective con-
sidered in prior work is that of commuter travel times
(Borndorfer, Grotschel, and Pfetsch 2007, Bertsimas,
Sian Ng, and Yan 2020) rather than system welfare. The
problem we consider subsumes this objective under the
assumption that commuter valuations are a nonincreas-
ing function travel times. When commuters all take the
same mode (e.g., mass transit), travel times are a natural
objective to minimize; however, we argue that this
ceases to be the case once hybrid modes—and, as a
result, heterogeneity in factors such as comfort and
convenience—are introduced. System welfare has more
commonly been considered as an objective in the line of
work on pricing and matching for ride-hailing platforms
(Cashore, Frazier, and Tardos 2023). Moreover, although
our work does not consider the important problem of
incentivizing ride-hailing services to lend their services
to a welfare-maximizing platform (e.g., a transit agency),
the fact that welfare includes the platform’s profit (and
as a result, operating costs incurred from the ride-hailing
legs of each mode) captures the true cost to the ride-
hailing firm for serving those rides.

2.2. Design of Multimodal Mobility Systems

Although the bulk of the work on network design has
focused exclusively on bus routing for mass transit sys-
tems, a recent line of work which considers the integra-
tion of public transportation and ride-hailing services
has emerged. Auad-Perez and Van Hentenryck (2022)
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and Périvier et al. (2021), respectively, consider shuttle
fleet-sizing and line planning optimization for multi-
modal systems; these works, however, do not incorpo-
rate commuter choice in their models. Basciftci and Van
Hentenryck (2023) address this gap, using a bilevel
exact decomposition method to capture riders” mode
preferences. Pinto et al. (2019) also proposed a bilevel
heuristic for the problem of joint transit network rede-
sign and shared-use autonomous vehicle fleet sizing.
Finally, closely related to our paper is recent work by
Lanzetti et al. (2023), who study the interactions of a
public transit provider with profit-maximizing opera-
tors of autonomous fleets. In contrast to us, their focus
is on analyzing game theoretic equilibria that arise
from commuter choice in a fragmented system; they do
not consider the transit operator’s network design
problem. Motivated by a recent push from cities to cre-
ate integrated mobility marketplaces (U.S. Department
of Transportation 2015), our focus is not on profit maxi-
mization for the MoD provider but solely on the transit
operator’s welfare maximization problem.

2.3. Pricing and Commuter Choice
The most active line of work with respect to pricing
applied to transportation has been on toll setting, in
which the goal is to either maximize the revenue raised
from tolls located on edges of a network or to induce
desirable equilibrium flows (Colson, Marcotte, and
Savard 2007). Although bilevel schemes have been
used to solve variants of this problem (Huang 2002),
various heuristics have been proposed to reduce the
bilevel complexity of the problem (Brotcorne et al. 2001,
Wu, Yin, and Lawphongpanich 2011, Wu et al. 2012).
Our work is technically closely related to that of
Wischik (2018), who considers a similar problem from
the perspective of a ride-hailing service offering multiple
modes. The key insight of this work is that, when the
multinomial logit model is used to model passenger
choice, the problem can efficiently be solved by formu-
lating it as an equivalent resource allocation problem.
We generalize this work with respect to the MNL model
by (i) considering the line planning and assortment opti-
mization problem and showing that one can still obtain
(approximately) optimal prices, assuming oracle access
to a feasible solution of the associated centralized prob-
lem, and (ii) showing that these insights extend to a
broader class of continuous valuation distributions. We
moreover differ from this work by considering arbitrary
discrete valuation distributions and showing that dual-
based pricing is optimal for this setting.

2.4. Joint Pricing and Frequency Setting of
Transportation Networks

Our paper joins a small line of work that considers the

problem of joint pricing and frequency setting of trans-

portation networks. Sun and Szeto (2019) propose a

bilevel programming model to find the set of profit-
maximizing fares and frequencies, although they do not
consider multimodal options. Also in the single mode set-
ting, Bertsimas, Sian Ng, and Yan (2020) consider the
problem of pricing and frequency setting in order to mini-
mize system wait time in mass transit networks under an
MNL choice model. In order to handle the nonconvexity
induced by the passengers” demand function, they pro-
pose a first-order method that solves a series of locally lin-
ear approximations. Our work shows that, in the case of
the MNL model, this nonconvexity in the prices is a red
herring; as long as the problem is concave in the quantile
(i.e., the assignment) space—which we show it is in the
case of the welfare objective—the pricing aspect of the
problem can be solved exactly.

3. Preliminaries

We model the transportation network as a directed
weighted graph G =(V,E), with |V| =n nodes corre-
sponding to pickup and dropoff locations and edges
representing roads between nodes.

3.1. Supply Model

A single mobility provider (henceforth, the platform)
operates the network and controls a fleet of demand-
responsive vehicles, as well as a fixed-line, mass-transit
service. The platform makes a set of network design-
related (or supply) decisions, such as the set of routes its
mass transit service operates, and the routes’ corre-
sponding frequencies. Given the network design, the
platform presents commuters with a menu of possible
ways to travel between their origin and destination
nodes: A commuter can complete their trip entirely
by transit (with potential walking for first/last mile)
entirely via the demand-responsive service or via a
hybrid combination of demand-responsive and fixed-
line legs. Formally, given origin-destination pair (s, t),
a hybrid trip option m (henceforth referred to as a
mode) is defined by a sequence of trip segments ((s,i1),
(i2,13), ..., D)|i1,...,ix € VF), and the service (e.g.
transit operating at a certain frequency, or demand-
responsive option) associated with each segment. Let
M, denote the set of all possible modes that can feasi-
bly complete an (s, t) trip, with M = {My](s,t) € V?}.
Figure 1 provides a simple illustration of two modes
available to a commuter traveling from s to t. We
assume that commuters sharing the same origin and
destination are shown the same set of modes and that
the platform has an upper bound k € N on the number
of modes it wishes to display to commuters. We use y €
{0,1}'M! to denote the indicator vector representing the
set of modes displayed to commuters. Finally, the plat-
form sets a price p,, for each mode m, uniform across
commuters, with p = (Pi),erq- We specify later on how
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Figure 1. (Color online) Example of a Transit Network with a Single Bus Line ¢ and a Single (s, ) Commuter

(a) Hybrid option 1

[ Line ¢ |

(b) Hybrid option 2

6‘—%.

‘ ‘ Line ¢

Note. The commuter can use one of the two hybrid modes comprising a bus segment, and first- and last-mile car segments.

the set of supply decisions, as well as p and y will be
chosen.

We use C(z) to denote the total cost incurred by the
platform for a vector of supply decisions z and assume C
is convex in z. We let ¢, denote the cost incurred by the
platform for a trip completed via mode m. This cost may
include, for instance, the cost of compensating the ride-
hailing service for the trip (prenegotiated as part of a con-
tract) and the associated mass transit operating costs.

3.2. Commuter Choice Model
We consider a large-market, fluid scaling of the demand
side of the system. That is, each pair of nodes (s, t) € V2 is
associated with an exogenous nonatomic mass (or flow) of
commuters seeking to travel from s to t (henceforth
referred to as (s, f) commuters), denoted by Ay € R,. An
(s, t) commuter has valuation V,, for mode m € My,
drawn from a known, exogenous distribution Fy with
support V C RIMsl; Jet Vi = (V) e M, (the assumption
that valuations are drawn from a known distribution is
common in much of the pricing literature; Gallego and
Van Ryzin 1994, Banerjee, Freund, and Lykouris 2022).
Example 1 illustrates the generality of the valuation
abstraction, and how it allows the platform to model
broad heterogeneity in commuters’ travel preferences.

Example 1. Consider an (s, ) commuter, whose valu-
ation for mode m is given by

Vin = st + B tS" + y st + g,

st'm

where € ~ N (0,1), t$" denotes the duration of the trip
from s to t completed by car, and 7! denotes the
duration completed by mass transit. Here, a; € R,
represents the commuter’s base valuation for complet-
ing the trip, and B, € R,y € R, respectively, represent
the value the commuter places on the relative conve-
nience of a car and the sustainability of transit.

Given a set of displayed modes and their corre-
sponding prices, commuters make a randomized
utility-maximizing decision about their chosen mode.

If all modes generate negative utility, commuters opt
out of the marketplace. (The assumption that the opt-
out option produces zero utility is without loss of gen-
erality.) Let x,,(Vy, p,y) denote the probability that an
(s, t) commuter with valuation vector V chooses m
given price menu p and displayed modes y, with

Xst(VSt/ P, Y) = (xm (Vst, P y))meMst . Formally,

xst(Vst, P, Y) € arg max { Z (Vi — Pm)x:n | Z xlm
X meM:y,=1 memM

<1L,x, £ Ym, %, 20 ‘v’me./\/l}.

)

In case of nonuniqueness, commuters break ties in
favor of the platform, a commonly made assumption
in the literature known as partial cooperation (Bialas
and Karwan 1984, Dempe 2002, Fontaine and Minner
2014). Let x(V,p,y) = (x(Vg, p,y), (s,t) € V). For ease
of notation, we at times omit dependence of x on its
arguments.

Remark 1. In theory, commuters could deviate from
the mode they have chosen (e.g., by getting on one
bus line instead of another, if both bus lines get them
to the same destination). We preclude such deviations
(also referred to as “self-constructed” modes) from
the model, an assumption that could be practically
implementable via, for example, trip-specific tickets.

Remark 2. We briefly remark on the choice of the
fluid model. In addition to flow models being com-
monly used in the line planning literature (Borndor-
fer, Grotschel, and Pfetsch 2007), it is well known that
they provide strong approximations to many stochas-
tic systems in large-market regimes and have been
used widely for the study of these systems. Notable
examples include dynamic pricing and revenue man-
agement (Gallego and Van Ryzin 1994, Gallego and
Topaloglu 2019). Fluid models have also found exten-
sive use in the study of ride-hailing systems (Banerjee,
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Freund, and Lykouris 2022), where there are theoretical
guarantees of convergence between these systems and
the corresponding fluid model. Moreover, though our
model assumes stationary arrival demand patterns, our
framework can be used to solve for optimal flows and
prices in nonstationary settings by solving separately for
“stationary periods” (e.g., peak versus off-peak hours).
One can also interpret the demand flows as forecasts of
future demand. The use of such forecasts to compute
long-term plans in advance of online decision making
given realized demand is used extensively in industry,
wherein a central planning system uses forecasts to gen-
erate a high-level, aggregate network plan. This is done
even if all components of the system are flexible; in our
setting, doing so is even more important because one
component of the system—the bus lines—must be fixed
in advance.

3.3. Welfare Maximization Problem

We now introduce the platform’s optimization prob-
lem. We consider the problem of long-term planning
and pricing decisions for the multimodal marketplace,
with the goal of maximizing platform welfare, which we
formally define below.

Definition 1 (Welfare). Given a set of displayed modes
y, a price vector p for these modes, and supply deci-
sions z, the welfare W(p,y,z) of the platform is the
sum of the expected commuter utilities and platform
profit (where the expectation is taken with respect to
the valuation distributions). Formally,

W(p,y,z)= Z AstE Z (Vm—Cm)Xm(VsnP/Y) _C(Z)-
(s,H)eV? meMs

)

The platform’s optimization problem is to determine
the network design, set of modes, and associated
prices to maximizes the induced welfare, subject to a
set of network design constraints (also referred to as
the feasible region), denoted by V' (to be specified at the
end of the section). This is given by the following bile-
vel program:

max Z AgE

P/y,z (. HeVv?

Z (Vm - Cm)xm(vst/ | Y) - C(Z)

meMsg

(P)

s.t. Xst(Ve, p,y) €arg max{ Z (Vi —pm)x,,| Z X,

meM:y,=1 meM

m =

<1,x,, <yu,x, >0 ‘v’m}

Y(s,t)eV?, VyePIMal
3)

> yu <k V(s,HeV?
meMsg
(Ex(Ve,p,Y),y,2) €N, yn€{0,1} Vme M,
pm€R Vme M. 4)

Here, Constraint (3) encodes commuters” utility maxi-
mization problem, and Constraint (4) ensures that at
most k modes are displayed to commuters for each
origin-destination pair. We use OPT to denote the
optimal value of (P).

The platform’s network design constraints N couple
supply and flow of demand. We first present two exam-
ples of possible constraint sets that our model encom-
passes, before presenting them in complete generality.

Example 2. Our first example models a platform that
operates a fleet of buses and contracts with a ride-
hailing company to provide first- and last-mile car
rides, as in Périvier et al. (2021). Let x € N denote the
fixed capacity of a bus. A bus route is a fixed sequence
of consecutive edges of G, said to be served at frequency
fe{0,1,.. ., F} if f buses are operated on the route
throughout the time window of interest, with F € N
(assuming an upper bound on the set of possible fre-
quencies is without loss of generality for a system with
a finite number of passengers). We define a bus line ¢ to
be a combination of a bus route r, and an associated fre-
quency f;, and let L£={(r,f)|(r,f) € R x[F]}, with
L=|L]. Let £,, denote the set of lines used by m, and
Em the set of edges of m traversed by the lines in £,,.
Finally, we let ¢, € R, denote the fixed cost of opening
line £, assumed to be increasing in f;. Because a mode is
partially defined by a set of bus lines in this example,
each of which has an associated frequency, a commu-
ter’s valuation here will be both route and frequency
dependent.

In this case, the platform’s supply decision z is the
set of bus lines to operate, and the constraint it seeks
to enforce is that the bus capacity is not exceeded on
any given edge of its route, in expectation. Formally,
C(z) =Y sepCeze, and the network design constraint is

S A Y Elxn(Va,py)] < kfeze VEeLecr,.
(s, t)eV? meMsg :
KELM/
ee,y,

We include the welfare maximization problem associ-
ated with this example in Online Appendix B.1.

Although Example 2 models a situation in which
the platform contracts out ride-hailing trips to create
hybrid modes, our general model also subsumes a set-
ting in which the platform operates both a fleet of
buses and a fleet of unit-capacity vehicles (cars), as
shown in Example 3.
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Example 3. In this setting, as in Example 2, the plat-
form must (i) decide the set of lines to operate,
denoted by z’ € {0,1}*, and (ii) make a set of empty-
vehicle rebalancing decisions to satisfy the demand
for car trips. We use 7, € R, to denote the rebalancing
rate between nodes i and j and let c; € R, be the cost
per unit of rebalancing. Moreover, for m € M let 7,
denote the set of source and destination nodes (or ter-
minal nodes) for the car segments of mode .

In this case, C(z) =3 e Ce2) + 3 jeveCily, and the
constraint set V' is the same as that of Example 2, with the
additional constraint that the flow of unit-capacity vehi-
cles must form a valid circulation, that is, for all i € [n],

Yot D As

jeln] (s,1eV? meMg:
(i, )ET m

E[x(Vs, p,y)]

:Z T]ﬁ—{— Z Ast Z E[xm(Vst/PrY)] .
jeln]

(s,1)eV? meMyg:
G, )eTn
In addition to the basic capacity and circulation con-
straints presented in the examples above, the platform
may be interested in incorporating the following con-
straints in V-
e A budget constraint for the fixed costs for opening
lines and operating each mode:

D oczp+ > Ax Y cuBlxn(Va,p,y)| <B, BeRs.

tel (s,H)eV2  meMgy

e An upper bound N € N on the number of buses:

ZT(ng} <N,

el

where 7, € R, represents the time required for a bus to
complete route r,.

Having presented these motivating examples for
the network design constraints, we now define the
problem’s feasible region that our results encompass,
in complete generality. In particular, we assume that
N is defined by a collection of convex functions
8,1 €[N1], hj,j € [N2], with Ny eN,N; €N, and con-
stants a,;, m € M,i € [N1],B8,.,m € M,j € [N,], as follows:

mj’

NZ {(E[X(Vstler)]/YIz)l Z Ast

(s,1)eV?

> aniElxu(p,y,2)] +8ily,z) <0 Vie [Ni],
meMqy

D Aa D BuBlralp,y,2)] +hi(y,2)
]

(s,1)EV? meMg

=0 V]E[Nz]}

In words, our results capture settings in which the
functions defining the network design constraints are
linear in the expected demand and additively separa-
ble across E[x] and (y, z), as is the case in the practical
examples above.

4. Warmup: MNL Commuter Choice

As motivation for our main result, we consider the set-
ting in which commuter choices are governed by a
discrete-choice model typically used in the transporta-
tion and revenue management literature: the MNL
model (McFadden 1973). Under this model, an (s, t) com-
muter has valuation V,,, = v,, + € for mode m, where v,,
is a deterministic base valuation, and € is a Gumbel-
distributed random variable with location 0 and scale 1,
drawn independent and identically distributed (i.i.d.)
across modes. Commuters’ value for the outside option
is simply € ~ Gumbel(0,1). Let g,,(p,y) denote the ex
ante probability an (s, ) commuter chooses mode m
given prices p, that is, §u(p,y) = E[xu(Vs, p,y)], and
qP,y) = @u(P.¥)mer- We will equivalently refer to
these probabilities q(p, y) as quantiles. Under the MNL
model, we have

evm 7pmym
T e P
Proposition 1 leverages (5) to establish that, under the
MNL model, our original bilevel problem reduces to a

single-level problem. We defer its proof to Online
Appendix A.1.

an(p,y) = (5)

Proposition 1. Under MINL choice, the welfare maximiza-
tion problem (P) reduces to the following single-level opti-
mization problem:

max Z Ast( Z (Um_cm)CIm(Pry))
(s,t)eV?

Py, z meMy

— Z /\st( Z Qm(PIY) IOg %rl(PzY))

(s,t)eV? meMs;

- Z /\st (1_ Z Qm(P/y)>

(s,HeV? meMs;

log <1— > Eim(p,y)> ~C(z)

meMes
e Py,
R
1 +Zm'eM5,e P 1y

Z ym <k V(s,t)eV?
meMg

(a(p.y)y, 2 eN,

Vme Mg, (s,t) € V2

s.t. qu(p,y)=

yn€f{0,1} Vme M, peR.
(MNL-P)

Note that the objective of (MNL-P) depends only on
the prices to the extent that the prices determine the
quantiles q. In addition to this, the objective—although
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nonconvex in the space of prices—is concave in the
quantile space (Cover 1999). In light of these two facts,
in what follows, it will be useful to instead think of wel-
fare as a function of the quantiles q rather than p.

4.1. Solving a Decentralized Problem via a
Centralized Assighment Program

As a first step toward building a solution for the welfare
maximization problem, we consider a relaxation of this
problem: the centralized welfare maximization problem. In
the centralized welfare maximization problem, the goal
is to determine the network design, set of modes, and
an assignment of demand to modes that maximizes the
induced welfare. Under the MNL model, this can be
formulated via following mixed integer convex pro-
gram (MICP):

max Z /\St< Z (Om — Cm)qm)

VY2 Theve meMy

-y A5t< > qmlogqm>

(s, H)eV? meMs;
— Z )\st<1— Z qm>log<1— Z qm)
(s,t)eV2 meMs meMs

—C(z)

s.t. Z Gm <1

meMsg

Y(s,t) € V2

Gm < Ym YmeM

> ym <k Vs,peV?
meMy

(Qyz)eN, gu=0 VmeM,

ym €{0,1} Vme M.
(MNL-CP)

We emphasize that the centralized welfare maximi-
zation problem is not a pricing problem, and thus q is a
decision variable rather than a function of the prices p.
We call this problem “centralized” because it considers
a world in which commuters have no choice and can be
dictated by the transit operator to travel via a specific
mode.

Our key insight is that, given any feasible solution to
(MNL-CP), there exists a set of prices that implement a
decentralized solution without any loss to the objective. Other-
wise stated, pricing and designing a network in the pres-
ence of strategic behavior is no harder than simply
designing the network with nonstrategic commuters. We
defer the proof of Proposition 2 to Online Appendix A.2.

Proposition 2. Suppose the platform has access to an ora-
cle O that returns a feasible solution (q°,y®,z°) to (MNL-

CP) and let W© be the objective value of (MNL-CP) corre-
sponding to this solution. Define prices p* as follows:

A 7
A=y, —log| —="—
P " & 1- Zm’eMsfqg’

Y(s,t) € V2, me Mgy s.t. yg =1.

Finally, let WA denote the system welfare induced by
(pA,y9,2°). Then, the following holds:

1. The commuter choice probabilities induced by p™ are
feasible for (MNL-P), and

2. The objectives satisfy WA = W©.

In practice, the oracle O can be any heuristic for solv-
ing this mixed integer convex program. For instance,
one may feed this problem to a state-of-the-art solver.
Depending on the complexity of the constraint set
the solver need not output an optimal solution within a
desired time limit but the best solution after a fixed
number of iterations.

Observe that, for any feasible solution p to (MNL-P),
the induced expected choice q(p,y) is feasible to (MNL-
CP). Thus, (MNL-CP) is an upper bound on (MNL-P),
and we obtain the following corollary, which states that
under our framework, any approximation scheme for
(MNL-CP) can be leveraged to obtain an approximation
scheme for (MNL-P) with the same performance
guarantee.

Corollary 1. Let OPT" and OPT respectively denote the
optimal values of (MNL-CP) and (MNL-P). Suppose moreover
that WO > a OPT, for some a > 0. Then, WA > a OPT.

Proposition 2 shows that joint pricing and network
design under the MNL model is no harder than net-
work design in a centralized setting. This insight, how-
ever, does not simply hold for MNL choice. Proposition 3
establishes that, under mild regularity conditions, it
extends to the entire space of continuous valuation
distributions.

Proposition 3. Suppose that the valuation distributions
{Fst} (s, pyev2 are such that the following conditions hold:

1. q(p,y) is efficiently invertible, and

2. The welfare function W(q,y, z) is concave in the quan-
tiles q.

Then, given an oracle O that produces a feasible solution
(q%,y9,2°) to (MNL-CP), prices p* = p~1(q®) induce a
feasible flow, and moreover WA = WO.

We omit the proof of this fact, as it is identical to that
of Proposition 2.

Having established minimal conditions for the use of
this centralized pricing framework within the space of
continuous valuations, a natural next step is to see
whether it can be extended to the space of discrete
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valuation distributions. Discrete valuation distributions
are particularly attractive from a computational per-
spective because in real-world settings the welfare
maximization problem (P) tends to be linear in the sup-
ply decisions z (see Examples 2 and 3). Thus, modeling
commuters’ valuations via discrete distributions would
allow the platform to formulate the centralized welfare
maximization problem as an MILP, for which existing
solvers outperform MICP solvers (Lubin et al. 2018).

Remark 3. The technique of solving for optimal quan-
tiles and inverting these to obtain prices is frequently
used in revenue management (Gallego and Van Ryzin
1994). This idea is presented here within the context of
the lesser considered problem of welfare maximization
in order to motivate our main result in the following
section, in particular, in settings where the quantile
function is not easily invertible.

5. Main Result

In this section, we show how to leverage a similar
approach—that is, obtaining prices via a single-level
centralized problem in the assignment space—for the
space of arbitrary discrete valuation distributions. We
first introduce some notation.

5.1. Notation

A commuter is associated with a discrete type 0 defined
by their origin-destination pair, as well as a valuation
profile vg = (Vgm),cpq, for the available modes, with
vg € V. Abusing notation, we let A9 denote the total flow
of type O commuters and define © to be the set of all
commuter types. We use xg,,(p,y) to denote the proba-
bility that a type 6 commuter chooses mode m given
price menu p and displayed modes y, with xg(p,y) =
(x0m(P.¥)) e, - For ease of notation, in the remainder of
the paper we often omit the dependence of the set of
modes on the origin-destination pair (s, t), with it being
clear from context that vg,, = 0 for m ¢ My, for (s, t) com-
muters of type 0. Under this model, welfare is given by

Wp,y,2)= |3 A0S @on — cn)on(p,y) | — Cl2).

0cO mem

Recall, in the MNL setting, given a feasible flow to
(MNL-CP), we obtained the prices inducing at least as
high a welfare by inverting commuters’ choice proba-
bilities. Unfortunately, for arbitrary discrete valuation
distributions, existence of such an inverse is not guaran-
teed. We next show that invertibility is in fact not neces-
sary to obtain equivalent prices. As in the MNL setting,
consider the centralized welfare maximization problem
for discrete valuations, which, instead of optimizing
over prices, optimizes over ¢, = Agxenm, the flow of

21
type 6 commuters assigned to mode m:
max Z Z (UGm - Cm)¢6m - C(Z)
Y2 5@ mem
(CP)
st. Y ¢, S Ao VOEO,
memM
> bgn < ym<z A9> Vme M
0e€O,, 0€®,,
Z Ym <k V(s,t) € V? (6)
meMsg

(by,z2) €N, ¢,,20 VO€O,me M,
ym €{0,1} Vme M,

where ©,, denotes the set of types for whom mode m is
available, and ¢ = (¢y,,)oco, mer- Here, Constraint (6)
enforces that the set of commuters ®,, who can feasibly
take mode m to complete their trip cannot be assigned
to m unless it is displayed.

Given the modes displayed y and the supply deci-
sions z, what remains of (CP) is a linear program in ¢,
solvable in polynomial time. We formally define this
subproblem, denoted by SP(z, y):

max 2 2, (0on =)o (SP(z,y))
st. Y (g, <A VOEO, ?)
meM
> Ggu < ym<z /\3> Vime M, )
0e®,, 0€®,,
Zami<z (Pem) +gi(YIZ)S0 Vie[N1], (9)
meM 0e€®,,
> Bu < > %m) +hi(y,z)=0 Vje[Na].
memM 0€®,,
(10)
Gp, 20 VEeL

Our algorithm makes use of the dual of SP(z, y), given by

min ZAQHQ + Z Cmym<z /\9> - Z [Jigl'(yrz)

u,C, v ) mem 0e®,, i€[N1]

— Z V]h](y, Z)

jEIN2]
(D-SP(z,y))

s.t. ug = vgm — Cm — Cm - Z Omild; — Z ,ijvj

i€[Ny ] JEIN2]
VmeM, 0@y,
up>0 VvVOeO, (,>20 VmeM, ;20
Vie [Ny]

(11)
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Here, the dual variables u, , 1, and v, respectively, cor-
respond to primal Constraints (7), (8), (9), and (10) and
dual Constraints (11) to primal variables ¢. For con-
creteness, we present the centralized welfare maximiza-
tion problem for Example 2 and its corresponding dual
subproblem in Online Appendix B.1.

We now present our algorithm. As in the MNL setting,
Algorithm 1 assumes access to an oracle that produces a
feasible solution to (CP). Algorithm 1 is particularly attrac-
tive because of the interpretability of its outputs: The
price of mode m is composed of its operating cost c,,, the
cost C,, of displaying the mode (i.e., using up one unit of
the budget k for modes), andthe costs > ¢y, @mitt; and

2 elNs] B,y,v; related to the network design constraints.

Algorithm 1 (Multimodal Pricing via LP Duality)

Input: oracle O for (CP)

Output: prices p, displayed modes y and supply

decisions z
Run O. Let z denote the set of supply decisions
returned by O.
Solve linear program D-SP(z,y). Let (u,C u,v)
denote an optimal solution to D-SP(z,y).
Set pu = cm + L+ Yieqny Qmitl; + DjeinyiBuVi VM E M.
Make supply decisions z, display modes y, and
set prices p.

Let WA denote the welfare induced by Algorithm 1.
Theorem 1 establishes that pricing the decentralized
system is no harder than planning and assignment for a
centralized system. We defer its proof to Online Appen-
dix B.2.

Theorem 1. Suppose the platform has access to an oracle O
that returns a feasible solution ($°,y°,z°) to (CP), and let
WO be the objective value of (CP) corresponding to this solu-
tion. Let W denote the system welfare induced by p*, the
prices output by Algorithm 1. Then, the following holds:

1. The commuter choice probabilities induced by p* are
feasible for (P), and

2. The objectives satisfy WA > WO,

As in the setting with MNL choice, for any feasible
solution p to the original expected problem, the induced
flow is feasible to (CP). Thus, (CP) is an upper bound on
the optimal welfare for the original problem, and we
obtain the following corollary of Theorem 1, which
establishes that our algorithm inherits any approxima-
tion guarantee that the oracle has with respect to (CP).

Corollary 2. Let OPT®? and OPT, respectively, denote the
optimal values of (CP) and (P). Suppose moreover that
WO > a OPT*?, for some a > 0. Then, WA > a OPT.

When (CP) can be solved exactly (i.e., @ = 1), Corol-
lary 2 implies that W = OPT. That is, p** is optimal for
the original problem. Because W#=WY > OPT" >
OPT and W+ =OPT, this immediately implies that
OPT? = OPT as well.

Thus, we have shown that, given an efficient oracle
for the nonstrategic problem, our framework efficiently
computes prices for arbitrary discrete valuation distri-
butions by leveraging the power of linear program-
ming duality.

6. Numerical Experiments: Case Study on
the Manhattan Network
Finally, we demonstrate the practicality of our frame-
work by deploying it on the Manhattan road network,
using real data from the OpenStreetMap (OSM) database
(Boeing 2017) and historical records of for-hire vehicle
trips in New York City (NYC) (NYC Open Data 2024).
Although optimizing for welfare, we are also inter-
ested in the platform’s revenue and profit, fraction of
demand served (i.e., throughput), the distribution of trips
across commuter types (which we partition based on
value of time), and travel times, as we vary key inputs to
the model. All experiments were run on a workstation
with an eight-core, 3.6-GHz processor and 16 GB RAM,
using a state-of-the-art solver (Gurobi 10.0).

6.1. Experimental Setup

We consider the setting described in Example 2, in
which a platform operates a fleet of shuttles (also
referred to as buses) and contracts with a ride-hailing
company for first- and last-mile car rides (see Online
Appendix B.1 for the mathematical formulation of the
corresponding centralized welfare maximization prob-
lem and dual subproblem).

6.1.1. Line Inputs. We assume access to a candidate set
of lines £, constructed by Périvier et al. (2021).
(Although our numerical experiments make use of a
candidate set, our framework can be deployed without
access to such a set. Such an assumption is however
standard in the transit planning literature (Ceder and
Wilson 1986, Chakroborty and Wivedi 2002, Fan and
Machemehl 2006, Auad-Perez and Van Hentenryck
2022) and is necessary to develop constant-factor
approximations to the line planning problem (Périvier
etal. 2021).) We let ¢, = $50d,, where d, denotes the dis-
tance (in miles) traveled by line £. We moreover set the
bus capacity x = 160 and frequency f; = 1 for all lines ¢.
(Note that this is equivalent to running a 40-person
shuttle every 15minutes.) In Online Appendix C.4, we
perform a sensitivity analysis on x to determine the
impact of bus capacity on key system metrics.

6.1.2. Travel Modes. A mode consists of at most one
trip segment completed by bus and at most two car
trips. This design decision stems from the fact that
mixed trips force commuters to incur at the minimum
first- or last-mile car-to-bus transfers; any additional
trip segments could be deemed excessive. (We study
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the impact of allowing for more than one bus segment
in Online Appendix C.3.) We refer to any mode that is
composed of a transit segment and at least one MoD
segment as a hybrid mode.

For each (s, t) pair, we assume that the MoD-only
mode consists of the shortest path between s and .
Moreover, for each line in £, we construct either a
transit-only or a hybrid mode. Specifically, we consider
the nearest bus stops to s and ¢, respectively, and calcu-
late the associated first- and last-mile distances, d'™
and d'M. We fix a maximum walking radius dmax = 0.25
miles (Yang and Diez-Roux 2012); if the first- and last-
mile distances are both lower than d,,,, then this mode
is transit only. Otherwise, it is hybrid, with either the
first or last mile (or both) served by MoD. We omit
hybrid modes for which the total first- and last-mile dis-
tances exceed the length of the direct MoD trip. We
assume average speeds of 3 miles per hour (mph) for
walking, 7mph for transit (New York City Department
of Transportation 2021), and 8.5mph for ride-hailing
(Bertsimas et al. 2019), respectively, and let 7,, denote
the duration of the (s, t) trip completed by m.

The platform incurs no operating cost for the transit
segment of mode m (i.e., all transit costs are subsumed
in the line costs ¢/). The operating cost ¢, for a mode
with a MoD leg is composed of a fixed initial cost of $3,
as well as a constant cost per-MoD mile, denoted by
MoD_ Formally, we let ¢, =3 +cMOP - (M 1(dPM > dyp00)
+dM. (@M > d,,00)). We initially assume cMOP = $3.5
per mile (New York City Taxi & Limousine Commis-
sion 2022) and later on perform a sensitivity analysis to
determine the effect of cM°P on marketplace outcomes.
Finally, we let k = 5 for the display constraint.

6.1.3. Demand Inputs. We consider one hour’s worth
of for-hire vehicle trips in Manhattan on February §,
2018, using the NYC Open Data platform (NYC Open
Data 2024). For computational efficiency, we cluster the
trips into 4,700 origin-destination pairs, imposing an
upper bound of dpax on cluster diameter.

Commuters have a base valuation y,, for mode m,
with y, =$10 for a direct trip by car, y,, =$7 for a
hybrid mode, and y,, = $5 if m exclusively uses transit.

The average value of time across the entire commuter
population is taken to be a; =$18.6/hour (Liu et al.
2019). We further partition the population based on their
value of time (different time sensitivities across the com-
muter population may, for instance, depend on the
income level (Borjesson, Fosgerau, and Algers 2012)):
75% of commuters are of “low” type and have an aver-
age value of time of B,a, =0.75a, = $13.95 per hour;
25% of commuters are of “high” type and have a value
of time of 1.75a; = $32.55 per hour. (These multipliers
were chosen to ensure the aggregate average value of
time of a;. We perform a sensitivity analysis on the type
multipliers in Online Appendix C.5 to study the impact
of type heterogeneity on system outcomes.) Commuters
incur a transfer disutility c™" > 0 for each transfer. We
initially assume c™™fer =$2  although in subsequent
experiments, we vary ™ to understand its impact on
the efficiency benefits of an integrated marketplace.

Putting this together, the valuation of a type 6 com-
muter for mode m is given by

_ max transfer , transfer) *

Vom = (Y, + Boe (T — Tp) — € npnsten)T (12)
where 0% is the walking time from origin to destina-
tion, and nﬁflamfer is the number of transfers associated
with mode m.

6.2. Results
We run Algorithm 1 on the above setup, where the
solution oracle O is an exact solution to CP.

6.2.1. Impact of Size of Candidate Set of Lines. We
first investigate how the quality of the returned solution
trades off with the runtime associated with the two
optimization problems solved by our algorithm, as the
size of the candidate set of lines, denoted by L,
increases. Intuitively, by increasing the size of the can-
didate set, the quality of the welfare-optimal solution
improves, as potentially higher-quality lines are
included into the set. This, however, comes at the cost
of a significantly larger decision space.

Tables 1 and 2 illustrate this tradeoff. We observe
that the number of modes, and the corresponding vari-
ables and constraints in the MILP, increase linearly in L.

Table 1. Runtime Dependence on the Size of the Candidate Set of Lines

Number of variables

Runtime (s)

L [ M] Binary Continuous Number of constraints MIP gap (%) CP D-SP
50 152,402 152,452 304,804 169,503 0.55% 30.9 2.5
100 298,981 299,081 597,962 320,121 0.45% 123.1 5.0
200 604,866 605,066 1,209,732 634,654 0.86% 1,115.2 16.6
400 1,221,573 1,221,973 2,443,146 1,268,104 0.79% 9,765.5 35.9
800 2,434,172 2,434,972 4,868,344 2,513,553 0.66% 42,582.2 57.2

Note. The CP and D-SP columns respectively correspond to the runtimes associated with solving the Centralized Welfare Maximization MILP
and the smaller welfare maximization subproblem, given the set of lines returned by the MILP.
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Table 2. Dependence of System Metrics on Size of the Candidate Set of Lines

L Welfare Revenue Profit MoD costs Transit costs Throughput No. of open lines
50 276,942 179,453 26,565 136,315 16,573 96.58% 40
100 288,160 121,026 1,058 97,822 22,147 96.42% 48
200 295,359 95,279 —10,678 82,868 23,088 96.55% 43
400 298,867 81,554 —18,464 76,342 23,676 96.30% 44
800 301,099 78,903 —18,125 73,274 23,754 96.61% 45

Although the MILP solver is able to return a near-
optimal solution for all instances, the runtime required
to solve (CP) exhibits a supra-linear increase, with more
than 11 hours required when L = 800. This dwarfs that
of the linear program whose solution we use to com-
pute the optimal set of prices. These results highlight
the methodological contribution of our algorithmic
framework: Despite the intractability of the centralized
problem, computing welfare-optimal prices, given a
solution, remains a tractable task.

In regard to system metrics, as L increases, so does
the total welfare of the system, with a more than 8%
increase between L = 50 and L = 800. Although
throughput remains approximately constant at 96%,
revenue and profit steeply decrease, with the system
being unprofitable for L>200. Table 3 helps to
understand this behavior. As the size (and as a result,
the quality) of the candidate set of lines increases,
there is a significant increase in transit usage across
both types of commuters. This increase results in a
drop in revenue; although total costs also decrease,
this net decrease is not sufficient to recoup the reve-
nue loss.

Table 3 also displays how mode usage varies by
type under welfare-optimal solutions. As noted above,
both high- and low-type commuters migrate toward
transit options as line quality increases; the way in
which they do this, however, differs. The fraction of
high-type commuters using hybrid options (a little
over a third) drops 3 points between L = 50 and L =
800, whereas there is a more than 20-point decrease in
MoD usage. Low-type commuters, on the other hand,
see a more than 25-point drop in hybrid usage and a
13-point drop in MoD usage. Still, across both types of
commuters, hybrid options are almost (if not more)
attractive than MoD-only options from a welfare

Table 3. Mode Usage by Commuter Type

perspective, thus highlighting the gains from intro-
ducing these mixed trips. Table 4 also illustrates that
the different modes serve different “types” of trips:
MoD-only trips are heavily biased toward short trips,
with the median MoD-only trip lasting 10-15 minutes;
the median transit-only trip is significantly longer,
lasting 45-50 minutes; finally, hybrid trips are the lon-
gest, with a median trip length of 50-55 minutes. This
precisely highlights the type of trip for which hybrid
options are most advantageous: long trips that are
poorly connected to existing transit lines.

6.2.2. Impact of Transfer Costs. We next study how
the benefits of such an integrated system vary with
transfer costs, for a fixed candidate set of lines of size L
=100. Our results are shown in Table 5, which illustrate
the welfare gains of a fully integrated platform. We
observe a 14% decrease in welfare between csfer = §0
and c™nsfer =¢8 and a 50-point decrease in hybrid
usage across both types of commuters. As transfer costs
increase, MoD-only options become significantly more
attractive to commuters; this then explains the corre-
sponding increase in revenue and profit. Still, more
than 20% of served commuters choose the hybrid
option when cransfer = g8,

Figure 2 (see Online Appendix C.1) further illus-
trates the change in selected bus lines as the transfer
cost increases. Under zero transfer costs, more than
70% of served demand uses options involving transit,
which results in a dense set of open bus lines. As
transfer costs increase, this set becomes more sparse;
still, we see that selected lines serve the region
evenly.

These results highlight the existence of settings in
which hybrid trips improve on nonmixed options from

Table 4. Trip Time Quantiles (in Hours) by Mode Type

High-type commuters Low-type commuters

Hybrid Transit MoD

L 25% 50% 75% 25% 50% 75% 25% 50% 75%

L Hybrid  Transit MoD Hybrid = Transit =~ MoD

50 38.56% 1.57%  59.86%  53.33% 6.21%  40.47%
100 48.52% 8.72%  4276%  51.10%  16.84%  32.06%
200 42.74%  17.99%  39.27%  41.53%  27.96%  30.51%
400  3837%  23.83%  37.79%  32.84%  37.62%  29.54%
800 35.23%  2843%  36.33%  27.53%  45.19%  27.28%

50 072 092 118 056 076 1.01 015 025 038
100 0.67 087 115 053 070 09 014 020 0.28
200 064 08 116 058 081 103 013 019 0.25
400 062 084 115 060 080 1.06 013 018 0.24
800 0.62 084 111 057 078 106 012 018 0.23
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Table 5. Dependence of System Metrics on ctransfer
High-type commuters Low-type commuters

ctransfer Welfare Revenue Profit Hybrid Transit MoD Hybrid Transit MoD Throughput
0 306,033 108,614 —2,068 68.02% 1.91% 30.07% 74.98% 3.85% 21.17% 95.96%

2 288,160 121,026 1,056 48.52% 8.72% 42.76% 51.10% 16.84% 32.06% 96.42%

4 276,624 141,317 6,569 33.21% 11.78% 55.00% 37.70% 22.79% 39.51% 96.46%

6 268,844 159,927 14,318 24.74% 13.45% 61.81% 29.67% 22.71% 47.61% 96.38%

8 262,335 178,304 18,194 16.10% 14.17% 69.73% 24.71% 24.01% 51.28% 96.26%

a welfare standpoint, even under high transfer costs;
they moreover emphasize the importance of frictionless
MoD-to-transit transfers within these settings.

6.2.3. Impact of MoD Cost. We next study the impact
of the per-mile MoD cost on system metrics. (Recall, we
assume that these costs are prenegotiated and enforced
via a contract between the platform and a ride-hailing
company.) Our results are shown in Table 6. As the per-
mile cost of the MoD service increases from $2 to $10
per mile, we observe a more than 30% decrease in wel-
fare. Revenue and profit, on the other hand, are nonmo-
notonic: They exhibit a decrease from $2 to $4 per mile,
followed by an increase from $5 to $10 per mile. The
reason for this behavior is as follows: When ¢™°P is low,
commuters can take high-valuation, MoD-only trips at
low cost, resulting in high welfare. As the per-mile cost
of these trips increases, commuters move away from
MoD-only trip to hybrid trips, which are associated
with lower valuations; because these also include tran-
sit legs, these cannot be priced as high, which results in
lower revenue and profit. However, past a certain
point, the high cost per mile of the first- and last-mile
legs, their maintained high usage, and decreased costs
because of the MoD-only trips result in both higher rev-
enue and profit.

Opverall, these results highlight the welfare optimality
of hybrid options, even at high MoD per-mile costs, as
well as the importance of the inclusion of MoD-only
options in an integrated marketplace.

Table 6. Dependence of System Metrics on ¢M°P

7. Conclusion

Although ride-hailing services have been viewed as com-
petitors to cities” public transit operations in recent years,
in this paper, we investigated the extent to which, to the
contrary, they can be leveraged as complements, because
of the potentially massive gains from combining their
on-demand capabilities with the sustainability of mass
transit options. Specifically, we approached the question
of designing an integrated mobility marketplace from a
central planner’s perspective via a market design lens,
that is, by tackling the joint problem of pricing and net-
work design of such an system. In our main methodologi-
cal contribution, we leveraged linear programming
duality to show that the pricing and optimization of these
systems can be decoupled by solving a closely related
centralized assignment problem that ignores commuter
choice entirely, and deployed this framework to a real-
world data set to obtain insights into the welfare impacts
of such an integration relative to the status quo fragmen-
ted system.

This paper lends itself to a number of natural direc-
tions for future work. First, our work was concerned
with problem of long-term planning and pricing of the
multimodal system, before commuter flows are even
realized. As noted above, the ability to solve the fluid
problem we consider is often a necessary precursor to
the design of real-time algorithms in online settings; the
question of how to optimally dispatch an on-demand
fleet to match the target flows computed by the plat-
form is an important direction for future work.

High-type commuters

Low-type commuters

cMoD Welfare Revenue Profit Hybrid Transit MoD Hybrid Transit MoD Throughput
2 329,823 250,057 34,459 5.29% 0.58% 94.14% 14.26% 2.84% 82.90% 96.36%
3 296,704 166,943 24,113 35.16% 4.47% 60.37% 39.75% 8.92% 52.33% 95.99%
4 279,284 114,719 208 52.39% 10.56% 37.06% 53.15% 21.65% 25.20% 96.33%
5 266,711 107,939 2,745 58.10% 16.09% 25.80% 56.33% 26.78% 16.88% 96.24%
6 256,176 110,134 10,100 60.59% 21.27% 18.14% 57.71% 31.19% 11.11% 96.11%
8 239,423 113,463 21,148 61.03% 29.20% 9.77% 54.46% 39.18% 6.36% 94.63%
10 225,688 121,717 38,492 59.64% 34.54% 5.82% 48.95% 47.44% 3.62% 90.36%
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Additionally, our work does not treat the question of
stakeholder incentives. An important question would be
how to design contracts with ride-hailing services,
which we assume in this work to be prenegotiated.
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