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Abstract. We study the problem of jointly pricing and designing a smart transit system, where 
a transit agency (the platform) controls a fleet of demand-responsive vehicles (cars) and a fixed 
line service (buses). The platform offers commuters a menu of options (modes) to travel between 
origin and destination (e.g., direct car trip, a bus ride, or a combination of the two), and commu
ters make a utility-maximizing choice within this menu, given the price of each mode. The goal 
of the platform is to determine an optimal set of modes to display to commuters, prices for these 
modes, and the design of the transit network in order to maximize the social welfare of the sys
tem. In this work, we tackle the commuter choice aspect of this problem, traditionally approached 
via computationally intensive bilevel programming techniques. In particular, we develop a 
framework that efficiently decouples the pricing and network design problem: Given an effi
cient (approximation) algorithm for centralized network design without prices, there exists an 
efficient (approximation) algorithm for decentralized network design with prices and commuter 
choice. We demonstrate the practicality of our framework via extensive numerical experiments 
on a real-world data set. We moreover explore the dependence of metrics such as welfare, reve
nue, and mode usage on (i) transfer costs and (ii) cost of contracting with on-demand service 
providers and exhibit the welfare gains of a fully integrated mobility system.

Funding: This work was supported by the National Science Foundation [Awards CMMI-2308750, CNS- 
1952011, and CMMI-2144127]. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0452. 
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1. Introduction
Providing efficient, comprehensive, and cost-effective 
transportation solutions has long been a challenge for 
public transit agencies. In particular, a central problem 
faced by these agencies is the fact that they are resource 
constrained and often face a ridership versus coverage 
problem (Walker 2018). On the one hand, a key objec
tive of ridership-oriented transit is efficiency: By maxi
mizing the number of commuters served, not only do 
transit agencies benefit from lower public subsidies per 
rider, but they also reduce traffic congestion and the 
environmental impact of gas emissions by targeting cit
ies’ highest-demand corridors. On the other hand, pub
lic transit ideally should provide access to mobility for 
the entire community and be an equitable service, 
which in many cases comes at the cost of reduced ser
vice in high ridership areas.

In the past decade, however, mobility-on-demand 
(MoD) companies such as Lyft and Uber have entered 
into the conversation, dramatically altering the mobility 

landscape. These flexible and adaptive transportation 
services are increasingly viewed as a means of (par
tially) reconciling the aforementioned tension between 
ridership and coverage. Indeed, by using ride-hailing 
services to connect previously underserved communi
ties to transit hubs, agencies can expand access to more 
affordable and sustainable transportation solutions, all 
while being able to concentrate resources on high- 
density corridors. Examples of pilot projects focusing 
on enhancing first/last-mile connectivity via multi
modal trips (with supporting services including micro
transit and ride-sharing options like UberPool) include 
LA Metro and Via (LA Metro 2019), Dallas Area Rapid 
Transit and Lyft (DART 2019), Moovel in Germany 
(Moovel 2024), Whim in Helsinki (Bloomberg 2018), 
UbiGo in Stockholm (Civitas 2020), and MARTA 
(MARTA Reach 2022).

Central to the operations of these types of integrated 
systems is the ability to design a system that is consis
tent with commuter choice. Specifically, transit systems 
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are characterized by their inherently decentralized 
nature; that is, rather than being assigned to trips, com
muters choose the mass transit routes that minimize their 
travel times. In a similar vein, when faced with hybrid 
transportation options, commuters will choose the option 
that maximizes their net utility, a more meaningful metric 
than travel times given the heterogeneity of options along 
different dimensions, for example, travel time, comfort, 
convenience, and, importantly, price. This last aspect is 
crucial in the successful design of a multimodal system; 
whereas certain transit systems charge a flat fare for all 
trips (e.g., $2.9 for a subway ride in New York City; New 
York City MTA 2024), there exists a tradeoff between sim
ple pricing (such as a flat fare) and trip-specific pricing, 
which is potentially more efficient. Thus, the question 
preoccupying transit agencies should no longer solely be 
how to design such a transportation network, but how 
to simultaneously price and design this integrated sys
tem. Indeed, it has been empirically shown that jointly 
solving these two problems—that have by and large 
been considered separately in the literature—can lead to 
substantial gains in system efficiency (Bertsimas, Sian 
Ng, and Yan 2020). Although joint pricing and network 
design is considered computationally difficult in general 
(see Section 2), in this paper, we develop a new frame
work that demonstrates that pricing and designing a net
work in the presence of commuter choice is no harder 
than network design under nonstrategic behavior for a 
large family of problem instances.

1.1. Summary of Our Contributions
We consider a model in which a transit agency (hence
forth, the platform) controls a fixed-line service and has 
access to a fleet of demand-responsive vehicles (e.g., via 
a prenegotiated contract with a ride-hailing service or an 
in-house fleet of taxis). The platform is faced with a set of 
nonatomic passenger flows and offers commuters the 
choice of a number of ways of traveling between origin 
and destination nodes: A commuter can travel by bus for 
the entirety of the trip (walking to and from the bus sta
tions closest to their origin and destination); they can use 
a ride-hailing service; or they can combine these two 
travel options by using the ride-hailing service for the 
first and last legs of their trip, and traveling by bus in 
between. We refer to these different options as travel 
modes.

A commuter has a valuation for each mode, drawn 
from a known distribution. Given the prices set by the 
platform, they choose the mode that maximizes their 
net utility. The platform, on the other hand, incurs an 
operating cost for each mode, as well as a cost to design 
the transit network (e.g., a fixed cost for each bus line). 
The focus of the platform is the long-term planning and 
design of the multimodal marketplace. Concretely, the 
goal is to determine the optimal set of modes to display 
to commuters, prices for these modes, and the design of 

the transit network in order to maximize the total wel
fare of the system, that is, the sum of its profit and com
muter utilities. We refer to this problem as the welfare 
maximization problem.

One of the key hurdles of transit planning is account
ing for commuters’ strategic behavior: doing so requires 
computing equilibria of an underlying game, a task 
known to be Polynomial Parity Arguments on Directed 
graphs (PPAD) complete in general (Daskalakis, Gold
berg, and Papadimitriou 2009). Indeed, the vast majority 
of existing techniques use computationally intensive 
iterative methods based on a bilevel programming for
mulation to compute the optimal set of planning deci
sions that are consistent with commuter choice (Parbo, 
Nielsen, and Prato 2014, Verbas and Mahmassani 2015, 
Yu et al. 2015, Pinto et al. 2019). Our main methodologi
cal contribution in this respect is to show that, when the 
transit planner can use pricing as a lever to coordinate 
commuter choice, joint pricing and line planning is no 
harder than vanilla line planning in the presence of non
strategic behavior. More specifically, we propose a meth
odological framework that disentangles the two sources 
of complexity in the welfare maximization problem: (i) 
designing the transportation network and (ii) pricing 
the trips offered by the platform. The framework tackles 
the problem in two steps: 

1. (Approximately) solve a centralized welfare maxi
mization problem, that is, a single-level assignment 
problem that relaxes the commuter choice constraints 
of the original problem.

2. Compute the prices that induce the flows corre
sponding to this (approximate) solution.

A priori, not only is it unclear how to compute the 
prices described in Step 2, but it is also not evident that 
such prices even exist. Our work answers these two 
questions in the affirmative for a broad class of com
muter valuation distributions. As a warmup, we first 
consider the widely used multinomial logit (MNL) 
model of commuter choice, showing that the tractable 
closed-form expression for commuters’ choice proba
bilities can be inverted to yield the appropriate prices. 
We then show that such an approach efficiently com
putes prices for a much broader class of continuous val
uation distributions, under mild regularity conditions.

A natural next question is whether such an approach— 
that is, solving a centralized problem and computing 
prices that induce at least as high a welfare—can be lever
aged for the space of discrete valuation distributions. This 
space of distributions is of particular interest because, in 
the case of transportation networks, supply costs and 
constraints (e.g., budget, capacity, and circulation con
straints) are often linear in the decision variables. Model
ing commuter valuations by a discrete distribution (e.g., 
by bucketing commuters into different types), in such 
cases, allows the platform to leverage the computational 
sophistication of mixed integer linear programming 
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solvers compared with mixed integer convex program
ming solvers, which one would need under continuous 
valuation distributions. We show that, for arbitrary dis
crete valuation distributions, the welfare-maximizing 
prices arise from the dual of an appropriately chosen lin
ear program. This framework thus has far-reaching com
putational implications for pricing and network design in 
decentralized settings: Given an efficient (approximation) 
algorithm for the centralized welfare maximization problem, 
there exists an efficient (approximation) algorithm for the wel
fare maximization problem in the presence of commuter choice.

Although the approach of solving pricing problems in 
the assignment space has been explored in simple settings 
within the revenue management and mechanism design 
communities (Gallego and Van Ryzin 1994), our contribu
tion here is demonstrating that these insights can be lever
aged in much more complicated settings arising in the 
transportation literature, wherein one frequently only has 
access to an approximate solution. This powerful idea 
then vastly simplifies the computational complexity of 
many problems considered in recent work.

Finally, we demonstrate the practicality of our frame
work via extensive numerical experiments on a real- 
world data set. In particular, we show that in large-scale 
settings, the time required to solve the mixed integer lin
ear program (MILP) associated with the centralized wel
fare maximization problem dwarfs that of the linear 
program that computes the welfare-maximizing prices. 
In other words, you can plan your system and price for 
“free.” Our framework enables us to explore the depen
dence of key platform metrics such as welfare, revenue, 
profit, travel times, and mode usage on the quality of 
bus lines considered by the planner, transfer costs 
incurred by commuters because of first- and last-mile 
connections, as well as the per-mile cost a ride-hailing 
company would charge the platform for its services. 
Our results highlight that the major gains from introduc
ing hybrid trips come from efficiently partitioning trip 
types: In such a system, MoD-only options are reserved 
for short trips, with longer trips reserved for transit-only 
options. Hybrid modes, finally, are most useful for the 
longest trips that are poorly connected to existing transit 
lines. These experiments also emphasize the importance 
of reducing transfer frictions for hybrid trips, as well as 
low MoD operating costs.

1.2. Paper Organization
In Section 2, we survey relevant literature. We then pre
sent the basic model and define the welfare maximiza
tion problem in Section 3. In Section 4, we develop 
intuition for our main approach by solving the pricing 
problem under MNL commuter choice and extend this 
result to continuous valuation distributions under mild 
conditions. We then build on this basic approach in Sec
tion 5 and present our pricing framework for the setting 
of discrete valuation distributions. Finally, in Section 6

and Online Appendix C, we demonstrate its applicability 
via numerical experiments on a real-world data set. All 
proofs are relegated to the Online Appendix.

2. Related Work
We review the most closely related lines of work in this 
section.

2.1. Line Planning and Commuter Choice
Much of the work on finding an optimal set of lines that 
minimizes some function of passenger waiting times 
and transit operator costs, subject to commuter choice, 
has relied on bilevel programming formulations (Con
stantin and Florian 1995). Although bilevel optimiza
tion is known to be strongly NP-hard in general 
(Hansen, Jaumard, and Savard 1992), Fontaine and 
Minner (2014) show that, under the assumption that the 
principal is allowed to choose among agents’ optimal 
decisions, the bilevel network design problem with the 
objective of minimizing passenger waiting times can 
be cast as a nonlinear single-level problem via the 
Karush–Kuhn–Tucker (KKT) conditions, and then 
approximately solved via linearization tricks. From a 
technical perspective, our work is most similar in spirit 
to this latter paper in its reliance on linear programming 
duality to reduce the decentralized pricing problem to 
a centralized pricing problem.

From a modeling perspective, a typical objective con
sidered in prior work is that of commuter travel times 
(Borndörfer, Grötschel, and Pfetsch 2007, Bertsimas, 
Sian Ng, and Yan 2020) rather than system welfare. The 
problem we consider subsumes this objective under the 
assumption that commuter valuations are a nonincreas
ing function travel times. When commuters all take the 
same mode (e.g., mass transit), travel times are a natural 
objective to minimize; however, we argue that this 
ceases to be the case once hybrid modes—and, as a 
result, heterogeneity in factors such as comfort and 
convenience—are introduced. System welfare has more 
commonly been considered as an objective in the line of 
work on pricing and matching for ride-hailing platforms 
(Cashore, Frazier, and Tardos 2023). Moreover, although 
our work does not consider the important problem of 
incentivizing ride-hailing services to lend their services 
to a welfare-maximizing platform (e.g., a transit agency), 
the fact that welfare includes the platform’s profit (and 
as a result, operating costs incurred from the ride-hailing 
legs of each mode) captures the true cost to the ride- 
hailing firm for serving those rides.

2.2. Design of Multimodal Mobility Systems
Although the bulk of the work on network design has 
focused exclusively on bus routing for mass transit sys
tems, a recent line of work which considers the integra
tion of public transportation and ride-hailing services 
has emerged. Auad-Perez and Van Hentenryck (2022) 
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and Périvier et al. (2021), respectively, consider shuttle 
fleet-sizing and line planning optimization for multi
modal systems; these works, however, do not incorpo
rate commuter choice in their models. Basciftci and Van 
Hentenryck (2023) address this gap, using a bilevel 
exact decomposition method to capture riders’ mode 
preferences. Pinto et al. (2019) also proposed a bilevel 
heuristic for the problem of joint transit network rede
sign and shared-use autonomous vehicle fleet sizing. 
Finally, closely related to our paper is recent work by 
Lanzetti et al. (2023), who study the interactions of a 
public transit provider with profit-maximizing opera
tors of autonomous fleets. In contrast to us, their focus 
is on analyzing game theoretic equilibria that arise 
from commuter choice in a fragmented system; they do 
not consider the transit operator’s network design 
problem. Motivated by a recent push from cities to cre
ate integrated mobility marketplaces (U.S. Department 
of Transportation 2015), our focus is not on profit maxi
mization for the MoD provider but solely on the transit 
operator’s welfare maximization problem.

2.3. Pricing and Commuter Choice
The most active line of work with respect to pricing 
applied to transportation has been on toll setting, in 
which the goal is to either maximize the revenue raised 
from tolls located on edges of a network or to induce 
desirable equilibrium flows (Colson, Marcotte, and 
Savard 2007). Although bilevel schemes have been 
used to solve variants of this problem (Huang 2002), 
various heuristics have been proposed to reduce the 
bilevel complexity of the problem (Brotcorne et al. 2001, 
Wu, Yin, and Lawphongpanich 2011, Wu et al. 2012).

Our work is technically closely related to that of 
Wischik (2018), who considers a similar problem from 
the perspective of a ride-hailing service offering multiple 
modes. The key insight of this work is that, when the 
multinomial logit model is used to model passenger 
choice, the problem can efficiently be solved by formu
lating it as an equivalent resource allocation problem. 
We generalize this work with respect to the MNL model 
by (i) considering the line planning and assortment opti
mization problem and showing that one can still obtain 
(approximately) optimal prices, assuming oracle access 
to a feasible solution of the associated centralized prob
lem, and (ii) showing that these insights extend to a 
broader class of continuous valuation distributions. We 
moreover differ from this work by considering arbitrary 
discrete valuation distributions and showing that dual- 
based pricing is optimal for this setting.

2.4. Joint Pricing and Frequency Setting of 
Transportation Networks

Our paper joins a small line of work that considers the 
problem of joint pricing and frequency setting of trans
portation networks. Sun and Szeto (2019) propose a 

bilevel programming model to find the set of profit- 
maximizing fares and frequencies, although they do not 
consider multimodal options. Also in the single mode set
ting, Bertsimas, Sian Ng, and Yan (2020) consider the 
problem of pricing and frequency setting in order to mini
mize system wait time in mass transit networks under an 
MNL choice model. In order to handle the nonconvexity 
induced by the passengers’ demand function, they pro
pose a first-order method that solves a series of locally lin
ear approximations. Our work shows that, in the case of 
the MNL model, this nonconvexity in the prices is a red 
herring; as long as the problem is concave in the quantile 
(i.e., the assignment) space—which we show it is in the 
case of the welfare objective—the pricing aspect of the 
problem can be solved exactly.

3. Preliminaries
We model the transportation network as a directed 
weighted graph G � (V, E), with |V | � n nodes corre
sponding to pickup and dropoff locations and edges 
representing roads between nodes.

3.1. Supply Model
A single mobility provider (henceforth, the platform) 
operates the network and controls a fleet of demand- 
responsive vehicles, as well as a fixed-line, mass-transit 
service. The platform makes a set of network design- 
related (or supply) decisions, such as the set of routes its 
mass transit service operates, and the routes’ corre
sponding frequencies. Given the network design, the 
platform presents commuters with a menu of possible 
ways to travel between their origin and destination 
nodes: A commuter can complete their trip entirely 
by transit (with potential walking for first/last mile) 
entirely via the demand-responsive service or via a 
hybrid combination of demand-responsive and fixed- 
line legs. Formally, given origin-destination pair (s, t), 
a hybrid trip option m (henceforth referred to as a 
mode) is defined by a sequence of trip segments ((s, i1), 
(i2, i3), : : : , (ik, t) | i1, : : : , ik ∈ Vk), and the service (e.g., 
transit operating at a certain frequency, or demand- 
responsive option) associated with each segment. Let 
Mst denote the set of all possible modes that can feasi
bly complete an (s, t) trip, with M � {Mst | (s, t) ∈ V2}. 
Figure 1 provides a simple illustration of two modes 
available to a commuter traveling from s to t. We 
assume that commuters sharing the same origin and 
destination are shown the same set of modes and that 
the platform has an upper bound k ∈ N on the number 
of modes it wishes to display to commuters. We use y ∈
{0, 1} |M | to denote the indicator vector representing the 
set of modes displayed to commuters. Finally, the plat
form sets a price pm for each mode m, uniform across 
commuters, with p � (pm)m∈M. We specify later on how 

Banerjee et al.: Fast Algorithms for Multimodal Transit Operations 
16 Transportation Science, 2025, vol. 59, no. 1, pp. 13–27, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

60
.3

2.
39

.1
39

] o
n 

02
 Ju

ne
 2

02
5,

 a
t 2

0:
36

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



the set of supply decisions, as well as p and y will be 
chosen.

We use C(z) to denote the total cost incurred by the 
platform for a vector of supply decisions z and assume C 
is convex in z. We let cm denote the cost incurred by the 
platform for a trip completed via mode m. This cost may 
include, for instance, the cost of compensating the ride- 
hailing service for the trip (prenegotiated as part of a con
tract) and the associated mass transit operating costs.

3.2. Commuter Choice Model
We consider a large-market, fluid scaling of the demand 
side of the system. That is, each pair of nodes (s, t) ∈ V2 is 
associated with an exogenous nonatomic mass (or flow) of 
commuters seeking to travel from s to t (henceforth 
referred to as (s, t) commuters), denoted by λst ∈ R+. An 
(s, t) commuter has valuation Vm for mode m ∈Mst, 
drawn from a known, exogenous distribution Fst with 
support V ⊆ R |Mst | ; let Vst � (Vm)m∈Mst 

(the assumption 
that valuations are drawn from a known distribution is 
common in much of the pricing literature; Gallego and 
Van Ryzin 1994, Banerjee, Freund, and Lykouris 2022).

Example 1 illustrates the generality of the valuation 
abstraction, and how it allows the platform to model 
broad heterogeneity in commuters’ travel preferences.

Example 1. Consider an (s, t) commuter, whose valu
ation for mode m is given by

Vm � αst + βstt
car
m + γstt

transit
m + ɛ, 

where ɛ ~ N (0, 1), tcar
m denotes the duration of the trip 

from s to t completed by car, and ttransit
m denotes the 

duration completed by mass transit. Here, αst ∈ R+
represents the commuter’s base valuation for complet
ing the trip, and βst ∈ R,γst ∈ R, respectively, represent 
the value the commuter places on the relative conve
nience of a car and the sustainability of transit.

Given a set of displayed modes and their corre
sponding prices, commuters make a randomized 
utility-maximizing decision about their chosen mode. 

If all modes generate negative utility, commuters opt 
out of the marketplace. (The assumption that the opt- 
out option produces zero utility is without loss of gen
erality.) Let xm(Vst, p, y) denote the probability that an 
(s, t) commuter with valuation vector Vst chooses m 
given price menu p and displayed modes y, with 
xst(Vst, p, y) � (xm(Vst, p, y))m∈Mst

: Formally,

xst(Vst,p,y) ∈ arg max
x′

�
X

m∈M:ym�1
(Vm�pm)x′m |

X

m∈M
x′m

≤ 1,x′m ≤ ym, x′m ≥ 0 ∀m ∈M

�

:

(1) 

In case of nonuniqueness, commuters break ties in 
favor of the platform, a commonly made assumption 
in the literature known as partial cooperation (Bialas 
and Karwan 1984, Dempe 2002, Fontaine and Minner 
2014). Let x(V, p, y) � (xst(Vst, p, y), (s, t) ∈ V2). For ease 
of notation, we at times omit dependence of x on its 
arguments.

Remark 1. In theory, commuters could deviate from 
the mode they have chosen (e.g., by getting on one 
bus line instead of another, if both bus lines get them 
to the same destination). We preclude such deviations 
(also referred to as “self-constructed” modes) from 
the model, an assumption that could be practically 
implementable via, for example, trip-specific tickets.

Remark 2. We briefly remark on the choice of the 
fluid model. In addition to flow models being com
monly used in the line planning literature (Borndör
fer, Grötschel, and Pfetsch 2007), it is well known that 
they provide strong approximations to many stochas
tic systems in large-market regimes and have been 
used widely for the study of these systems. Notable 
examples include dynamic pricing and revenue man
agement (Gallego and Van Ryzin 1994, Gallego and 
Topaloglu 2019). Fluid models have also found exten
sive use in the study of ride-hailing systems (Banerjee, 

Figure 1. (Color online) Example of a Transit Network with a Single Bus Line ℓ and a Single (s, t) Commuter 

Note. The commuter can use one of the two hybrid modes comprising a bus segment, and first- and last-mile car segments.
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Freund, and Lykouris 2022), where there are theoretical 
guarantees of convergence between these systems and 
the corresponding fluid model. Moreover, though our 
model assumes stationary arrival demand patterns, our 
framework can be used to solve for optimal flows and 
prices in nonstationary settings by solving separately for 
“stationary periods” (e.g., peak versus off-peak hours). 
One can also interpret the demand flows as forecasts of 
future demand. The use of such forecasts to compute 
long-term plans in advance of online decision making 
given realized demand is used extensively in industry, 
wherein a central planning system uses forecasts to gen
erate a high-level, aggregate network plan. This is done 
even if all components of the system are flexible; in our 
setting, doing so is even more important because one 
component of the system—the bus lines—must be fixed 
in advance.

3.3. Welfare Maximization Problem
We now introduce the platform’s optimization prob
lem. We consider the problem of long-term planning 
and pricing decisions for the multimodal marketplace, 
with the goal of maximizing platform welfare, which we 
formally define below.

Definition 1 (Welfare). Given a set of displayed modes 
y, a price vector p for these modes, and supply deci
sions z, the welfare W(p, y, z) of the platform is the 
sum of the expected commuter utilities and platform 
profit (where the expectation is taken with respect to 
the valuation distributions). Formally,

W(p,y,z)�
X

(s,t)∈V2

λstE
X

m∈Mst

(Vm�cm)xm(Vst,p,y)
" #

�C(z):

(2) 

The platform’s optimization problem is to determine 
the network design, set of modes, and associated 
prices to maximizes the induced welfare, subject to a 
set of network design constraints (also referred to as 
the feasible region), denoted by N (to be specified at the 
end of the section). This is given by the following bile
vel program:

max
p,y,z

X

(s, t)∈V2

λstE
X

m∈Mst

(Vm� cm)xm(Vst, p, y)

" #

�C(z)

(P) 

s:t: xst(Vst,p,y) ∈arg max
x′

(
X

m∈M:ym�1
(Vm�pm)x′m |

X

m∈M
x′m

≤ 1,x′m ≤ ym,x′m≥0 ∀m

)

∀(s,t) ∈V2,Vst ∈V |Mst | ,
(3) 

X

m∈Mst

ym ≤ k ∀(s,t) ∈V2

(E[x(Vst,p,y)],y,z) ∈N , ym ∈{0,1}∀m∈M,
pm ∈R∀m∈M: (4) 

Here, Constraint (3) encodes commuters’ utility maxi
mization problem, and Constraint (4) ensures that at 
most k modes are displayed to commuters for each 
origin-destination pair. We use OPT to denote the 
optimal value of (P).

The platform’s network design constraints N couple 
supply and flow of demand. We first present two exam
ples of possible constraint sets that our model encom
passes, before presenting them in complete generality.

Example 2. Our first example models a platform that 
operates a fleet of buses and contracts with a ride- 
hailing company to provide first- and last-mile car 
rides, as in Périvier et al. (2021). Let κ ∈ N denote the 
fixed capacity of a bus. A bus route is a fixed sequence 
of consecutive edges of G, said to be served at frequency 
f ∈ {0, 1, : : : , F} if f buses are operated on the route 
throughout the time window of interest, with F ∈ N 
(assuming an upper bound on the set of possible fre
quencies is without loss of generality for a system with 
a finite number of passengers). We define a bus line ℓ to 
be a combination of a bus route rℓ and an associated fre
quency fℓ, and let L � {(r, f ) | (r, f ) ∈R × [F]}, with 
L � |L | . Let Lm denote the set of lines used by m, and 
Em the set of edges of m traversed by the lines in Lm. 
Finally, we let cℓ ∈ R+ denote the fixed cost of opening 
line ℓ, assumed to be increasing in fℓ. Because a mode is 
partially defined by a set of bus lines in this example, 
each of which has an associated frequency, a commu
ter’s valuation here will be both route and frequency 
dependent.

In this case, the platform’s supply decision z is the 
set of bus lines to operate, and the constraint it seeks 
to enforce is that the bus capacity is not exceeded on 
any given edge of its route, in expectation. Formally, 
C(z) �

P
ℓ∈Lcℓzℓ, and the network design constraint is

X

(s, t)∈V2

λst
X

m∈Mst :

ℓ∈Lm,
e∈Em

E[xm(Vst, p, y)] ≤ κ fℓ zℓ ∀ℓ ∈ L, e ∈ rℓ:

We include the welfare maximization problem associ
ated with this example in Online Appendix B.1.

Although Example 2 models a situation in which 
the platform contracts out ride-hailing trips to create 
hybrid modes, our general model also subsumes a set
ting in which the platform operates both a fleet of 
buses and a fleet of unit-capacity vehicles (cars), as 
shown in Example 3.

Banerjee et al.: Fast Algorithms for Multimodal Transit Operations 
18 Transportation Science, 2025, vol. 59, no. 1, pp. 13–27, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

60
.3

2.
39

.1
39

] o
n 

02
 Ju

ne
 2

02
5,

 a
t 2

0:
36

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Example 3. In this setting, as in Example 2, the plat
form must (i) decide the set of lines to operate, 
denoted by z′ ∈ {0, 1}L, and (ii) make a set of empty- 
vehicle rebalancing decisions to satisfy the demand 
for car trips. We use ηij ∈ R+ to denote the rebalancing 
rate between nodes i and j and let cij ∈ R+ be the cost 
per unit of rebalancing. Moreover, for m ∈M let Tm 
denote the set of source and destination nodes (or ter
minal nodes) for the car segments of mode m.

In this case, C(z) �
P
ℓ∈Lcℓz′ℓ +

P
(i, j)∈V2 cijηij, and the 

constraint set N is the same as that of Example 2, with the 
additional constraint that the flow of unit-capacity vehi
cles must form a valid circulation, that is, for all i ∈ [n],

X

j∈[n]
ηij +

X

(s, t)∈V2

λst
X

(i, j)∈T m

m∈Mst:

E[xm(Vst, p, y)]

2

6
6
4

3

7
7
5

�
X

j∈[n]
ηji +

X

(s, t)∈V2

λst
X

(j, i)∈T m

m∈Mst:

E[xm(Vst, p, y)]

2

6
6
4

3

7
7
5:

In addition to the basic capacity and circulation con
straints presented in the examples above, the platform 
may be interested in incorporating the following con
straints in N : 
• A budget constraint for the fixed costs for opening 

lines and operating each mode:
X

ℓ∈L

cℓz′ℓ+
X

(s,t)∈V2

λst
X

m∈Mst

cmE[xm(Vst,p,y)] ≤ B, B∈R>0:

• An upper bound N ∈ N on the number of buses:
X

ℓ∈L

τℓ fℓ z′ℓ ≤ N, 

where τℓ ∈ R>0 represents the time required for a bus to 
complete route rℓ.

Having presented these motivating examples for 
the network design constraints, we now define the 
problem’s feasible region that our results encompass, 
in complete generality. In particular, we assume that 
N is defined by a collection of convex functions 
gi, i ∈ [N1], hj, j ∈ [N2], with N1 ∈ N, N2 ∈ N, and con
stants αmi, m ∈M, i ∈ [N1],βmj, m ∈M, j ∈ [N2], as follows:

N �

(

(E[x(Vst, p, y)], y, z
�
|
X

(s, t)∈V2

λst

X

m∈Mst

αmiE[xm(p, y, z)] + gi(y, z) ≤ 0 ∀i ∈ [N1],
X

(s, t)∈V2

λst
X

m∈Mst

βmjE[xm(p, y, z)] + hj(y, z)

� 0 ∀j ∈ [N2]

)

:

In words, our results capture settings in which the 
functions defining the network design constraints are 
linear in the expected demand and additively separa
ble across E[x] and (y, z), as is the case in the practical 
examples above.

4. Warmup: MNL Commuter Choice
As motivation for our main result, we consider the set
ting in which commuter choices are governed by a 
discrete-choice model typically used in the transporta
tion and revenue management literature: the MNL 
model (McFadden 1973). Under this model, an (s, t) com
muter has valuation Vm � vm + ɛ for mode m, where vm 
is a deterministic base valuation, and ɛ is a Gumbel- 
distributed random variable with location 0 and scale 1, 
drawn independent and identically distributed (i.i.d.) 
across modes. Commuters’ value for the outside option 
is simply ɛ ~ Gumbel(0, 1). Let qm(p, y) denote the ex 
ante probability an (s, t) commuter chooses mode m 
given prices p, that is, qm(p, y) � E[xm(Vst, p, y)], and 
q(p, y) � (qm(p, y))m∈M. We will equivalently refer to 
these probabilities q(p, y) as quantiles. Under the MNL 
model, we have

qm(p, y) � evm�pm ym

1+
P

m′∈Mst
evm′�pm′ym′

: (5) 

Proposition 1 leverages (5) to establish that, under the 
MNL model, our original bilevel problem reduces to a 
single-level problem. We defer its proof to Online 
Appendix A.1.

Proposition 1. Under MNL choice, the welfare maximiza
tion problem (P) reduces to the following single-level opti
mization problem:

max
p,y,z

X

(s,t)∈V2

λst
X

m∈Mst

(vm�cm)qm(p,y)
 !

�
X

(s,t)∈V2

λst
X

m∈Mst

qm(p,y) log qm(p,y)
 !

�
X

(s,t)∈V2

λst 1�
X

m∈Mst

qm(p,y)
 !

log 1�
X

m∈Mst

qm(p,y)
 !

�C(z)

s:t: qm(p,y)� evm�pm ym

1+
P

m′∈Mst
evm′�pm′ ym′

∀m∈Mst, (s,t) ∈V2

X

m∈Mst

ym ≤ k ∀(s,t) ∈V2

(q(p,y),y,z) ∈N , ym ∈{0,1} ∀m∈M, p∈R:

(MNL-P) 

Note that the objective of (MNL-P) depends only on 
the prices to the extent that the prices determine the 
quantiles q. In addition to this, the objective—although 
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nonconvex in the space of prices—is concave in the 
quantile space (Cover 1999). In light of these two facts, 
in what follows, it will be useful to instead think of wel
fare as a function of the quantiles q rather than p.

4.1. Solving a Decentralized Problem via a 
Centralized Assignment Program

As a first step toward building a solution for the welfare 
maximization problem, we consider a relaxation of this 
problem: the centralized welfare maximization problem. In 
the centralized welfare maximization problem, the goal 
is to determine the network design, set of modes, and 
an assignment of demand to modes that maximizes the 
induced welfare. Under the MNL model, this can be 
formulated via following mixed integer convex pro
gram (MICP):

max
q, y, z

X

(s, t)∈V2

λst
X

m∈Mst

(vm � cm)qm

 !

�
X

(s, t)∈V2

λst
X

m∈Mst

qm log qm

 !

�
X

(s, t)∈V2

λst 1�
X

m∈Mst

qm

 !

log 1�
X

m∈Mst

qm

 !

� C(z)

s:t:
X

m∈Mst

qm ≤ 1 ∀(s, t) ∈ V2

qm ≤ ym ∀m ∈M

X

m∈Mst

ym ≤ k ∀(s, t) ∈ V2

(q, y, z) ∈ N , qm ≥ 0 ∀m ∈M,

ym ∈ {0, 1} ∀m ∈M:

(MNL-CP) 

We emphasize that the centralized welfare maximi
zation problem is not a pricing problem, and thus q is a 
decision variable rather than a function of the prices p. 
We call this problem “centralized” because it considers 
a world in which commuters have no choice and can be 
dictated by the transit operator to travel via a specific 
mode.

Our key insight is that, given any feasible solution to 
(MNL-CP), there exists a set of prices that implement a 
decentralized solution without any loss to the objective. Other
wise stated, pricing and designing a network in the pres
ence of strategic behavior is no harder than simply 
designing the network with nonstrategic commuters. We 
defer the proof of Proposition 2 to Online Appendix A.2.

Proposition 2. Suppose the platform has access to an ora
cle O that returns a feasible solution (qO, yO, zO) to (MNL- 

CP) and let WO be the objective value of (MNL-CP) corre
sponding to this solution. Define prices pA as follows:

pA
m � vm� log qO

m
1�

P
m′∈Mst

qO
m′

 !

∀(s, t) ∈ V2, m ∈Mst s:t: yO
m � 1:

Finally, let WA denote the system welfare induced by 
(pA, yO, zO). Then, the following holds: 

1. The commuter choice probabilities induced by pA are 
feasible for (MNL-P), and

2. The objectives satisfy WA �WO:

In practice, the oracle O can be any heuristic for solv
ing this mixed integer convex program. For instance, 
one may feed this problem to a state-of-the-art solver. 
Depending on the complexity of the constraint set N , 
the solver need not output an optimal solution within a 
desired time limit but the best solution after a fixed 
number of iterations.

Observe that, for any feasible solution p to (MNL-P), 
the induced expected choice q(p, y) is feasible to (MNL- 
CP). Thus, (MNL-CP) is an upper bound on (MNL-P), 
and we obtain the following corollary, which states that 
under our framework, any approximation scheme for 
(MNL-CP) can be leveraged to obtain an approximation 
scheme for (MNL-P) with the same performance 
guarantee.

Corollary 1. Let OPTCP and OPT respectively denote the 
optimal values of (MNL-CP) and (MNL-P). Suppose moreover 
that WO ≥ αOPTCP, for some α > 0. Then, WA ≥ αOPT.

Proposition 2 shows that joint pricing and network 
design under the MNL model is no harder than net
work design in a centralized setting. This insight, how
ever, does not simply hold for MNL choice. Proposition 3
establishes that, under mild regularity conditions, it 
extends to the entire space of continuous valuation 
distributions.

Proposition 3. Suppose that the valuation distributions 
{Fst}(s, t)∈V2 are such that the following conditions hold: 

1. q(p, y) is efficiently invertible, and
2. The welfare function W(q, y, z) is concave in the quan

tiles q.
Then, given an oracle O that produces a feasible solution 
(qO, yO, zO) to (MNL-CP), prices pA � p�1(qO) induce a 
feasible flow, and moreover WA �WO.

We omit the proof of this fact, as it is identical to that 
of Proposition 2.

Having established minimal conditions for the use of 
this centralized pricing framework within the space of 
continuous valuations, a natural next step is to see 
whether it can be extended to the space of discrete 
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valuation distributions. Discrete valuation distributions 
are particularly attractive from a computational per
spective because in real-world settings the welfare 
maximization problem (P) tends to be linear in the sup
ply decisions z (see Examples 2 and 3). Thus, modeling 
commuters’ valuations via discrete distributions would 
allow the platform to formulate the centralized welfare 
maximization problem as an MILP, for which existing 
solvers outperform MICP solvers (Lubin et al. 2018).

Remark 3. The technique of solving for optimal quan
tiles and inverting these to obtain prices is frequently 
used in revenue management (Gallego and Van Ryzin 
1994). This idea is presented here within the context of 
the lesser considered problem of welfare maximization 
in order to motivate our main result in the following 
section, in particular, in settings where the quantile 
function is not easily invertible.

5. Main Result
In this section, we show how to leverage a similar 
approach—that is, obtaining prices via a single-level 
centralized problem in the assignment space—for the 
space of arbitrary discrete valuation distributions. We 
first introduce some notation.

5.1. Notation
A commuter is associated with a discrete type θ defined 
by their origin-destination pair, as well as a valuation 
profile vθ � (vθm)m∈Mst 

for the available modes, with 
vθ ∈ V. Abusing notation, we let λθ denote the total flow 
of type θ commuters and define Θ to be the set of all 
commuter types. We use xθm(p, y) to denote the proba
bility that a type θ commuter chooses mode m given 
price menu p and displayed modes y, with xθ(p, y) �
(xθm(p, y))m∈Mst

. For ease of notation, in the remainder of 
the paper we often omit the dependence of the set of 
modes on the origin-destination pair (s, t), with it being 
clear from context that vθm � 0 for m ∉Mst for (s, t) com
muters of type θ. Under this model, welfare is given by

W(p, y, z) �
X

θ∈Θ

λθ
X

m∈M
(vθm� cm)xθm(p, y)

" #

�C(z):

Recall, in the MNL setting, given a feasible flow to 
(MNL-CP), we obtained the prices inducing at least as 
high a welfare by inverting commuters’ choice proba
bilities. Unfortunately, for arbitrary discrete valuation 
distributions, existence of such an inverse is not guaran
teed. We next show that invertibility is in fact not neces
sary to obtain equivalent prices. As in the MNL setting, 
consider the centralized welfare maximization problem 
for discrete valuations, which, instead of optimizing 
over prices, optimizes over φθm � λθxθm, the flow of 

type θ commuters assigned to mode m:

max
f,y,z

X

θ∈Θ

X

m∈M
(vθm� cm)φθm �C(z)

s:t:
X

m∈M
φθm ≤ λθ ∀θ ∈Θ,

(CP) 

X

θ∈Θm

φθm ≤ ym
X

θ∈Θm

λθ

 !

∀m ∈M

X

m∈Mst

ym ≤ k ∀(s, t) ∈ V2

(f, y, z) ∈N , φθm ≥ 0 ∀θ ∈Θ, m ∈M,
ym ∈ {0, 1} ∀m ∈M,

(6) 

where Θm denotes the set of types for whom mode m is 
available, and f � (φθm)θ∈Θ, m∈M. Here, Constraint (6) 
enforces that the set of commuters Θm who can feasibly 
take mode m to complete their trip cannot be assigned 
to m unless it is displayed.

Given the modes displayed y and the supply deci
sions z, what remains of (CP) is a linear program in f, 
solvable in polynomial time. We formally define this 
subproblem, denoted by SP(z, y):

max
f

X

θ∈Θ

X

m∈M
(vθm� cm)φθm (SP(z, y))

s:t:
X

m∈M
φθm ≤ λθ ∀θ ∈Θ, (7) 

X

θ∈Θm

φθm ≤ ym
X

θ∈Θm

λθ

 !

∀m ∈M, (8) 

X

m∈M
αmi

X

θ∈Θm

φθm

 !

+ gi(y,z) ≤ 0 ∀i∈[N1], (9) 

X

m∈M
βmj

X

θ∈Θm

φθm

 !

+ hj(y,z)�0 ∀j∈[N2]:

(10) 
φθm≥0 ∀ℓ∈L 

Our algorithm makes use of the dual of SP(z, y), given by

min
u,ζ,µ,ν

X

θ∈Θ

λθuθ +
X

m∈M
ζmym

X

θ∈Θm

λθ

 !

�
X

i∈[N1]

µigi(y, z)

�
X

j∈[N2]

νjhj(y, z)

(D-SP(z, y))

s:t: uθ ≥ vθm � cm� ζm�
X

i∈[N1]

αmiµi�
X

j∈[N2]

βmjνj

∀m ∈M, θ ∈Θm

uθ ≥ 0 ∀θ ∈Θ, ζm ≥ 0 ∀m ∈M, µi ≥ 0
∀i ∈ [N1]

(11) 
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Here, the dual variables u,ζ,µ, and ν, respectively, cor
respond to primal Constraints (7), (8), (9), and (10) and 
dual Constraints (11) to primal variables f. For con
creteness, we present the centralized welfare maximiza
tion problem for Example 2 and its corresponding dual 
subproblem in Online Appendix B.1.

We now present our algorithm. As in the MNL setting, 
Algorithm 1 assumes access to an oracle that produces a 
feasible solution to (CP). Algorithm 1 is particularly attrac
tive because of the interpretability of its outputs: The 
price of mode m is composed of its operating cost cm, the 
cost ζm of displaying the mode (i.e., using up one unit of 
the budget k for modes), andthe costs 

P
i∈[N1]
αmiµi and P

j∈[N2]
βmjνj related to the network design constraints.

Algorithm 1 (Multimodal Pricing via LP Duality)
Input: oracle O for (CP)
Output: prices p, displayed modes y and supply 
decisions z

Run O. Let z denote the set of supply decisions 
returned by O.
Solve linear program D-SP(z, y). Let (u,ζ,µ,ν)
denote an optimal solution to D-SP(z, y).
Set pm � cm + ζm +

P
i∈[N1]
αmiµi +

P
j∈[N2]
βmjνj, ∀m ∈M.

Make supply decisions z, display modes y, and 
set prices p.

Let WA denote the welfare induced by Algorithm 1. 
Theorem 1 establishes that pricing the decentralized 
system is no harder than planning and assignment for a 
centralized system. We defer its proof to Online Appen
dix B.2.

Theorem 1. Suppose the platform has access to an oracle O 

that returns a feasible solution (fO, yO, zO) to (CP), and let 
WO be the objective value of (CP) corresponding to this solu
tion. Let WA denote the system welfare induced by pA, the 
prices output by Algorithm 1. Then, the following holds: 

1. The commuter choice probabilities induced by pA are 
feasible for (P), and

2. The objectives satisfy WA ≥WO:

As in the setting with MNL choice, for any feasible 
solution p to the original expected problem, the induced 
flow is feasible to (CP). Thus, (CP) is an upper bound on 
the optimal welfare for the original problem, and we 
obtain the following corollary of Theorem 1, which 
establishes that our algorithm inherits any approxima
tion guarantee that the oracle has with respect to (CP).

Corollary 2. Let OPTCP and OPT, respectively, denote the 
optimal values of (CP) and (P). Suppose moreover that 
WO ≥ αOPTCP, for some α > 0. Then, WA ≥ αOPT.

When (CP) can be solved exactly (i.e., α � 1), Corol
lary 2 implies that WA �OPT. That is, pA is optimal for 
the original problem. Because WA �WO ≥OPTCP ≥

OPT and WA �OPT, this immediately implies that 
OPTCP �OPT as well.

Thus, we have shown that, given an efficient oracle 
for the nonstrategic problem, our framework efficiently 
computes prices for arbitrary discrete valuation distri
butions by leveraging the power of linear program
ming duality.

6. Numerical Experiments: Case Study on 
the Manhattan Network

Finally, we demonstrate the practicality of our frame
work by deploying it on the Manhattan road network, 
using real data from the OpenStreetMap (OSM) database 
(Boeing 2017) and historical records of for-hire vehicle 
trips in New York City (NYC) (NYC Open Data 2024).

Although optimizing for welfare, we are also inter
ested in the platform’s revenue and profit, fraction of 
demand served (i.e., throughput), the distribution of trips 
across commuter types (which we partition based on 
value of time), and travel times, as we vary key inputs to 
the model. All experiments were run on a workstation 
with an eight-core, 3.6-GHz processor and 16 GB RAM, 
using a state-of-the-art solver (Gurobi 10.0).

6.1. Experimental Setup
We consider the setting described in Example 2, in 
which a platform operates a fleet of shuttles (also 
referred to as buses) and contracts with a ride-hailing 
company for first- and last-mile car rides (see Online 
Appendix B.1 for the mathematical formulation of the 
corresponding centralized welfare maximization prob
lem and dual subproblem).

6.1.1. Line Inputs. We assume access to a candidate set 
of lines L, constructed by Périvier et al. (2021). 
(Although our numerical experiments make use of a 
candidate set, our framework can be deployed without 
access to such a set. Such an assumption is however 
standard in the transit planning literature (Ceder and 
Wilson 1986, Chakroborty and Wivedi 2002, Fan and 
Machemehl 2006, Auad-Perez and Van Hentenryck 
2022) and is necessary to develop constant-factor 
approximations to the line planning problem (Périvier 
et al. 2021).) We let cℓ � $50dℓ, where dℓ denotes the dis
tance (in miles) traveled by line ℓ. We moreover set the 
bus capacity κ � 160 and frequency fℓ � 1 for all lines ℓ. 
(Note that this is equivalent to running a 40-person 
shuttle every 15minutes.) In Online Appendix C.4, we 
perform a sensitivity analysis on κ to determine the 
impact of bus capacity on key system metrics.

6.1.2. Travel Modes. A mode consists of at most one 
trip segment completed by bus and at most two car 
trips. This design decision stems from the fact that 
mixed trips force commuters to incur at the minimum 
first- or last-mile car-to-bus transfers; any additional 
trip segments could be deemed excessive. (We study 
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the impact of allowing for more than one bus segment 
in Online Appendix C.3.) We refer to any mode that is 
composed of a transit segment and at least one MoD 
segment as a hybrid mode.

For each (s, t) pair, we assume that the MoD-only 
mode consists of the shortest path between s and t. 
Moreover, for each line in L, we construct either a 
transit-only or a hybrid mode. Specifically, we consider 
the nearest bus stops to s and t, respectively, and calcu
late the associated first- and last-mile distances, dFM

m 
and dLM

m . We fix a maximum walking radius dmax � 0:25 
miles (Yang and Diez-Roux 2012); if the first- and last- 
mile distances are both lower than dmax, then this mode 
is transit only. Otherwise, it is hybrid, with either the 
first or last mile (or both) served by MoD. We omit 
hybrid modes for which the total first- and last-mile dis
tances exceed the length of the direct MoD trip. We 
assume average speeds of 3 miles per hour (mph) for 
walking, 7mph for transit (New York City Department 
of Transportation 2021), and 8.5mph for ride-hailing 
(Bertsimas et al. 2019), respectively, and let τm denote 
the duration of the (s, t) trip completed by m.

The platform incurs no operating cost for the transit 
segment of mode m (i.e., all transit costs are subsumed 
in the line costs cℓ). The operating cost cm for a mode 
with a MoD leg is composed of a fixed initial cost of $3, 
as well as a constant cost per-MoD mile, denoted by 
cMoD. Formally, we let cm � 3+ cMoD · (dFM

m · 1(dFM
m > dmax)

+ dLM
m · 1(dLM

m > dmax)). We initially assume cMoD � $3:5 
per mile (New York City Taxi & Limousine Commis
sion 2022) and later on perform a sensitivity analysis to 
determine the effect of cMoD on marketplace outcomes. 
Finally, we let k � 5 for the display constraint.

6.1.3. Demand Inputs. We consider one hour’s worth 
of for-hire vehicle trips in Manhattan on February 8, 
2018, using the NYC Open Data platform (NYC Open 
Data 2024). For computational efficiency, we cluster the 
trips into 4,700 origin-destination pairs, imposing an 
upper bound of dmax on cluster diameter.

Commuters have a base valuation γm for mode m, 
with γm � $10 for a direct trip by car, γm � $7 for a 
hybrid mode, and γm � $5 if m exclusively uses transit. 

The average value of time across the entire commuter 
population is taken to be ατ � $18:6/hour (Liu et al. 
2019). We further partition the population based on their 
value of time (different time sensitivities across the com
muter population may, for instance, depend on the 
income level (Börjesson, Fosgerau, and Algers 2012)): 
75% of commuters are of “low” type and have an aver
age value of time of βθατ � 0:75ατ � $13:95 per hour; 
25% of commuters are of “high” type and have a value 
of time of 1:75ατ � $32:55 per hour. (These multipliers 
were chosen to ensure the aggregate average value of 
time of ατ. We perform a sensitivity analysis on the type 
multipliers in Online Appendix C.5 to study the impact 
of type heterogeneity on system outcomes.) Commuters 
incur a transfer disutility ctransfer > 0 for each transfer. We 
initially assume ctransfer � $2, although in subsequent 
experiments, we vary ctransfer to understand its impact on 
the efficiency benefits of an integrated marketplace.

Putting this together, the valuation of a type θ com
muter for mode m is given by

vθm � γm + βθατ(τ
max
m � τm)� ctransferntransfer

m
� �+, (12) 

where τmax
m is the walking time from origin to destina

tion, and ntransfer
m is the number of transfers associated 

with mode m.

6.2. Results
We run Algorithm 1 on the above setup, where the 
solution oracle O is an exact solution to CP.

6.2.1. Impact of Size of Candidate Set of Lines. We 
first investigate how the quality of the returned solution 
trades off with the runtime associated with the two 
optimization problems solved by our algorithm, as the 
size of the candidate set of lines, denoted by L, 
increases. Intuitively, by increasing the size of the can
didate set, the quality of the welfare-optimal solution 
improves, as potentially higher-quality lines are 
included into the set. This, however, comes at the cost 
of a significantly larger decision space.

Tables 1 and 2 illustrate this tradeoff. We observe 
that the number of modes, and the corresponding vari
ables and constraints in the MILP, increase linearly in L. 

Table 1. Runtime Dependence on the Size of the Candidate Set of Lines

L |M |

Number of variables

Number of constraints MIP gap (%)

Runtime (s)

Binary Continuous CP D-SP

50 152,402 152,452 304,804 169,503 0.55% 30.9 2.5
100 298,981 299,081 597,962 320,121 0.45% 123.1 5.0
200 604,866 605,066 1,209,732 634,654 0.86% 1,115.2 16.6
400 1,221,573 1,221,973 2,443,146 1,268,104 0.79% 9,765.5 35.9
800 2,434,172 2,434,972 4,868,344 2,513,553 0.66% 42,582.2 57.2

Note. The CP and D-SP columns respectively correspond to the runtimes associated with solving the Centralized Welfare Maximization MILP 
and the smaller welfare maximization subproblem, given the set of lines returned by the MILP.
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Although the MILP solver is able to return a near- 
optimal solution for all instances, the runtime required 
to solve (CP) exhibits a supra-linear increase, with more 
than 11 hours required when L � 800. This dwarfs that 
of the linear program whose solution we use to com
pute the optimal set of prices. These results highlight 
the methodological contribution of our algorithmic 
framework: Despite the intractability of the centralized 
problem, computing welfare-optimal prices, given a 
solution, remains a tractable task.

In regard to system metrics, as L increases, so does 
the total welfare of the system, with a more than 8% 
increase between L � 50 and L � 800. Although 
throughput remains approximately constant at 96%, 
revenue and profit steeply decrease, with the system 
being unprofitable for L ≥ 200. Table 3 helps to 
understand this behavior. As the size (and as a result, 
the quality) of the candidate set of lines increases, 
there is a significant increase in transit usage across 
both types of commuters. This increase results in a 
drop in revenue; although total costs also decrease, 
this net decrease is not sufficient to recoup the reve
nue loss.

Table 3 also displays how mode usage varies by 
type under welfare-optimal solutions. As noted above, 
both high- and low-type commuters migrate toward 
transit options as line quality increases; the way in 
which they do this, however, differs. The fraction of 
high-type commuters using hybrid options (a little 
over a third) drops 3 points between L � 50 and L �
800, whereas there is a more than 20-point decrease in 
MoD usage. Low-type commuters, on the other hand, 
see a more than 25-point drop in hybrid usage and a 
13-point drop in MoD usage. Still, across both types of 
commuters, hybrid options are almost (if not more) 
attractive than MoD-only options from a welfare 

perspective, thus highlighting the gains from intro
ducing these mixed trips. Table 4 also illustrates that 
the different modes serve different “types” of trips: 
MoD-only trips are heavily biased toward short trips, 
with the median MoD-only trip lasting 10–15 minutes; 
the median transit-only trip is significantly longer, 
lasting 45–50 minutes; finally, hybrid trips are the lon
gest, with a median trip length of 50–55 minutes. This 
precisely highlights the type of trip for which hybrid 
options are most advantageous: long trips that are 
poorly connected to existing transit lines.

6.2.2. Impact of Transfer Costs. We next study how 
the benefits of such an integrated system vary with 
transfer costs, for a fixed candidate set of lines of size L 
� 100. Our results are shown in Table 5, which illustrate 
the welfare gains of a fully integrated platform. We 
observe a 14% decrease in welfare between ctransfer � $0 
and ctransfer � $8 and a 50-point decrease in hybrid 
usage across both types of commuters. As transfer costs 
increase, MoD-only options become significantly more 
attractive to commuters; this then explains the corre
sponding increase in revenue and profit. Still, more 
than 20% of served commuters choose the hybrid 
option when ctransfer � $8.

Figure 2 (see Online Appendix C.1) further illus
trates the change in selected bus lines as the transfer 
cost increases. Under zero transfer costs, more than 
70% of served demand uses options involving transit, 
which results in a dense set of open bus lines. As 
transfer costs increase, this set becomes more sparse; 
still, we see that selected lines serve the region 
evenly.

These results highlight the existence of settings in 
which hybrid trips improve on nonmixed options from 

Table 2. Dependence of System Metrics on Size of the Candidate Set of Lines

L Welfare Revenue Profit MoD costs Transit costs Throughput No. of open lines

50 276,942 179,453 26,565 136,315 16,573 96.58% 40
100 288,160 121,026 1,058 97,822 22,147 96.42% 48
200 295,359 95,279 �10,678 82,868 23,088 96.55% 43
400 298,867 81,554 �18,464 76,342 23,676 96.30% 44
800 301,099 78,903 �18,125 73,274 23,754 96.61% 45

Table 3. Mode Usage by Commuter Type

L

High-type commuters Low-type commuters

Hybrid Transit MoD Hybrid Transit MoD

50 38.56% 1.57% 59.86% 53.33% 6.21% 40.47%
100 48.52% 8.72% 42.76% 51.10% 16.84% 32.06%
200 42.74% 17.99% 39.27% 41.53% 27.96% 30.51%
400 38.37% 23.83% 37.79% 32.84% 37.62% 29.54%
800 35.23% 28.43% 36.33% 27.53% 45.19% 27.28%

Table 4. Trip Time Quantiles (in Hours) by Mode Type

L

Hybrid Transit MoD

25% 50% 75% 25% 50% 75% 25% 50% 75%

50 0.72 0.92 1.18 0.56 0.76 1.01 0.15 0.25 0.38
100 0.67 0.87 1.15 0.53 0.70 0.90 0.14 0.20 0.28
200 0.64 0.85 1.16 0.58 0.81 1.03 0.13 0.19 0.25
400 0.62 0.84 1.15 0.60 0.80 1.06 0.13 0.18 0.24
800 0.62 0.84 1.11 0.57 0.78 1.06 0.12 0.18 0.23
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a welfare standpoint, even under high transfer costs; 
they moreover emphasize the importance of frictionless 
MoD-to-transit transfers within these settings.

6.2.3. Impact of MoD Cost. We next study the impact 
of the per-mile MoD cost on system metrics. (Recall, we 
assume that these costs are prenegotiated and enforced 
via a contract between the platform and a ride-hailing 
company.) Our results are shown in Table 6. As the per- 
mile cost of the MoD service increases from $2 to $10 
per mile, we observe a more than 30% decrease in wel
fare. Revenue and profit, on the other hand, are nonmo
notonic: They exhibit a decrease from $2 to $4 per mile, 
followed by an increase from $5 to $10 per mile. The 
reason for this behavior is as follows: When cMoD is low, 
commuters can take high-valuation, MoD-only trips at 
low cost, resulting in high welfare. As the per-mile cost 
of these trips increases, commuters move away from 
MoD-only trip to hybrid trips, which are associated 
with lower valuations; because these also include tran
sit legs, these cannot be priced as high, which results in 
lower revenue and profit. However, past a certain 
point, the high cost per mile of the first- and last-mile 
legs, their maintained high usage, and decreased costs 
because of the MoD-only trips result in both higher rev
enue and profit.

Overall, these results highlight the welfare optimality 
of hybrid options, even at high MoD per-mile costs, as 
well as the importance of the inclusion of MoD-only 
options in an integrated marketplace.

7. Conclusion
Although ride-hailing services have been viewed as com
petitors to cities’ public transit operations in recent years, 
in this paper, we investigated the extent to which, to the 
contrary, they can be leveraged as complements, because 
of the potentially massive gains from combining their 
on-demand capabilities with the sustainability of mass 
transit options. Specifically, we approached the question 
of designing an integrated mobility marketplace from a 
central planner’s perspective via a market design lens, 
that is, by tackling the joint problem of pricing and net
work design of such an system. In our main methodologi
cal contribution, we leveraged linear programming 
duality to show that the pricing and optimization of these 
systems can be decoupled by solving a closely related 
centralized assignment problem that ignores commuter 
choice entirely, and deployed this framework to a real- 
world data set to obtain insights into the welfare impacts 
of such an integration relative to the status quo fragmen
ted system.

This paper lends itself to a number of natural direc
tions for future work. First, our work was concerned 
with problem of long-term planning and pricing of the 
multimodal system, before commuter flows are even 
realized. As noted above, the ability to solve the fluid 
problem we consider is often a necessary precursor to 
the design of real-time algorithms in online settings; the 
question of how to optimally dispatch an on-demand 
fleet to match the target flows computed by the plat
form is an important direction for future work. 

Table 5. Dependence of System Metrics on ctransfer

ctransfer Welfare Revenue Profit

High-type commuters Low-type commuters

ThroughputHybrid Transit MoD Hybrid Transit MoD

0 306,033 108,614 �2,068 68.02% 1.91% 30.07% 74.98% 3.85% 21.17% 95.96%
2 288,160 121,026 1,056 48.52% 8.72% 42.76% 51.10% 16.84% 32.06% 96.42%
4 276,624 141,317 6,569 33.21% 11.78% 55.00% 37.70% 22.79% 39.51% 96.46%
6 268,844 159,927 14,318 24.74% 13.45% 61.81% 29.67% 22.71% 47.61% 96.38%
8 262,335 178,304 18,194 16.10% 14.17% 69.73% 24.71% 24.01% 51.28% 96.26%

Table 6. Dependence of System Metrics on cMoD

cMoD Welfare Revenue Profit

High-type commuters Low-type commuters

ThroughputHybrid Transit MoD Hybrid Transit MoD

2 329,823 250,057 34,459 5.29% 0.58% 94.14% 14.26% 2.84% 82.90% 96.36%
3 296,704 166,943 24,113 35.16% 4.47% 60.37% 39.75% 8.92% 52.33% 95.99%
4 279,284 114,719 208 52.39% 10.56% 37.06% 53.15% 21.65% 25.20% 96.33%
5 266,711 107,939 2,745 58.10% 16.09% 25.80% 56.33% 26.78% 16.88% 96.24%
6 256,176 110,134 10,100 60.59% 21.27% 18.14% 57.71% 31.19% 11.11% 96.11%
8 239,423 113,463 21,148 61.03% 29.20% 9.77% 54.46% 39.18% 6.36% 94.63%
10 225,688 121,717 38,492 59.64% 34.54% 5.82% 48.95% 47.44% 3.62% 90.36%
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Additionally, our work does not treat the question of 
stakeholder incentives. An important question would be 
how to design contracts with ride-hailing services, 
which we assume in this work to be prenegotiated.
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