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Abstract

The increasing frequency and severity of extreme weather events, such as hurri-
canes and tropical cyclones, address the importance of prompt and effective natu-
ral disaster response strategies. Our research aims at developing a learning-based
decision-making framework tailored for evacuation shelter opening time (ESOT),
with a focus on prioritizing the demands of vulnerable populations. This approach
seamlessly integrates various complex supply- and demand-related factors, includ-
ing evacuation demand forecasting and shelter operations requirements. The shelter
opening time is formulated as a multi-class optimal stopping problem, which read-
ily addresses the trade-off between the risks of false alarms and the perilous con-
sequences of delayed responses, accommodating the uncertainties in disaster state
evolution. To improve the computational and sample efficiency, we created a hier-
archical policy approximation approach, providing provable optimality guarantees.
Through a case study of Hurricane Florence in 2018 using historical wind speed
data, our findings demonstrate the efficiency and flexibility of the ESOT policy,
clearly outperforming standard stochastic optimization methods. For example, the
total cost saving using our approach ranges from 6.6 to 28.2%, and the cost saving is
more significant when the variance of the predictor is larger. These results highlight
the benefits of integrating learning-based disaster management strategies with phys-
ics-informed forecasting models for protecting vulnerable populations in the face of
disasters.

Keywords Emergency response - Evacuation shelter management - Optimal
stopping problem

1 Introduction

The increasing frequency and intensity of extreme weather events, driven by the

confluence of physical and societal causes [1], have highlighted the importance of
adaptive disaster response strategies. In 2021, the United States was struck by 20
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severe natural disasters, including wildfires, floods, tornadoes, and tropical cyclones,
resulting in damages amounting to over $145 billion [2]. An alarming trend in the
intensification of major natural disasters was discovered by [3—5]. Consequently, dis-
aster response management has become a critical research field aimed at optimizing
the allocation of resources and mitigating their impacts within local communities.
These management strategies consider a wide array of prediction and decision-mak-
ing problems, including forecasting behavioral responses [6], calculating evacuation
routes [7], operating shelters [8], and coordinating humanitarian aid [9, 10].

This paper focuses on the ESOT problem because of its critical role in the tran-
sition from pre-disaster preparedness to during-disaster responses. The ESOT pol-
icy outlines how authorities dynamically determine evacuation and/or sheltering
directives to local communities [11], taking into account the evolving forecasts and
damage assessments. This policy can guide disaster management entities to initiate
disaster preparedness and communicate with the public via mass media and mobile
technologies [12, 13]. Nevertheless, deriving adaptive ESOT policies necessitates a
combination of advanced weather forecasting techniques and reliable decision-sup-
port tools [14].

Since ESOT orders and the corresponding hurricane preparedness policies are
irrevocable in the face of unpredictable hurricane trajectory and intensity scenarios
[15, 16], the optimal ESOT policy must balance between false alarms and delayed
responses. Specifically, issuing evacuation and sheltering directives too early may
lead to false alarms, squandering preparedness efforts and diminishing the public’s
trust in authorities. Conversely, delayed directives can directly endanger lives and
property [15, 17, 18]. The evacuation order for Hurricane Ian in September 2022,
criticized for being over 24 h late in Lee County, led to 61 deaths [19]. The delay
was primarily attributed to an unforeseen shift in the projected storm despite prior
warnings of severe flooding by meteorologists. Given the unpredictable nature of
hurricane events, our paper presents a learning-based method adapting to hurricane
predictors modeled by stochastic processes, including shifts in hurricane trajecto-
ries characterized by jumps. Our research focuses on determining when and where
to issue evacuation orders and initiate shelter operations. Nevertheless, the insights
obtained from this analysis are also applicable to the broader context of disaster
response management [20, 21].

Previous studies have primarily concentrated on two distinct areas: the develop-
ment of precise statistical models for predicting hurricane severity and forecasting
demand [22, 23], and the formulation of the optimal policy for shelter operations
[21], with the assumption that such models are readily available. For example, the
predict-and-optimize (PAO) framework distinguishes between estimating param-
eters and determining shelter opening times as two sequential tasks, aiming to strike
a balance between them. Recently, there is a notable shift toward employing end-fo-
end learning for leveraging physics-informed forecasting models. For example, [24]
developed a deep-learning approach to predict evacuation traffic conditions. [25]
extracted useful hurricane-related information from social media text. Yet, these
models lack adaptability within constantly evolving hurricane events. An alterna-
tive solution is integrating dynamic programming [26, 27] with simulation-based
environments to address sequential decision-making. However, this method faces
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a nuanced trade-off between the model complexity and computational complexity.
Using physics-informed forecasting and simulation models will improve predictive
accuracy but may adversely complicate the assessment of ESOT strategies. This is
exemplified by the intense computational resource required for running the FEMA’s
HURREVAC [28] and Hazus [29] models for risk assessment and damage estima-
tion. In conclusion, optimizing ESOT policy in conjunction with simulated scenar-
ios at granular scales necessitates substantial computing resources.

This study proposes a direct policy approximation (DPA) approach to address the
challenges of interdependent shelter opening time decisions with continuous state
spaces. The DPA approach constructs hierarchical neural networks (HNNs) to esti-
mate the optimal opening times for different classes of shelters, which are arranged
according to a predetermined priority sequence. When the demand exceeds the
capacity of shelters in the current priority class, it is transferred to the next class
in the sequence only if they are open. This strategy aims to reduce both the opera-
tional costs of the shelters and the penalties associated with failing to meet demand
from the most vulnerable populations. The DPA method can automatically balance
the total cost induced by early and delayed shelter opening time decisions. We con-
duct numerical experiments that show notable robustness with respect to prediction
and model misspecification errors. The results outperform the PAO benchmark,
using the sample average approximation (SAA) method for simulation-based policy
evaluations.

Our study enhances disaster response strategies by addressing a key tradeoff in
ESOT decisions: the balance between false alarms and delayed responses due to
predictive accuracy. Our main contributions include: (1) We apply a deep-learning-
based DPA approach to integrate hurricane forecasts with evacuee behavior and
decision-making processes; (2) We propose an HNN model to approximate ESOT
policies with theoretical guarantees for the optimality of these policies with a small
sample complexity. Since the DPA approach and its HNN-based policy representa-
tion are tailored to this particular problem, they are anticipated to surpass the effec-
tiveness of generic model-free methods in approximate dynamic programming. Our
contributions to optimizing disaster preparedness and shelter management lay the
foundation for advanced computational techniques to deploy scientifically reliable
and practically feasible disaster response strategies.

The remainder of this paper is organized as follows. Section 2 provides a for-
mal statement of the ESOT problem as multiclass optimal stopping and proposes a
deep-learning-based optimal stopping framework. Section 3 conducts comparative
numerical experiments based on Hurricane Florence data in 2018. Section 4 con-
cludes and discusses future research directions.

2 Optimal opening times for evacuation shelters
2.1 Problem statement

Since the execution of hurricane evacuation plans is delegated to local government
agencies [19], local emergency management authorities must determine shelter
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operations plans for their local communities after receiving the hurricane watch.
Consider a decision-maker (DM) who determines whether and when to send a shel-
tering notification to its administered areas over N periods. The DM’s decision-
making process is modeled as a Markov decision process (MDP) where the ESOT
decisions are interdependent optimal stopping time and the state transitions are
determined by simulation-based hurricane and evacuation demand forecasts. The
beginning of the planning horizon is set at the first time that the National Hurricane
Center (NHC) issues a tropical storm or hurricane watch (tropical storms sustained
winds of 39 to 73 miles per hour (mph); hurricanes sustained winds of 74 mph or
higher), which is typically 48 h in advance of the anticipated onset of tropical storm
or hurricane conditions within the specified area [30]. The terminal period of the
planning horizon corresponds to the hurricane landfall time or when the hurricane
watch is canceled due to weakened tropical storm forces. The DM reassesses the
shelter opening decision using 12-hour intervals to match with the NHC’s hurricane
forecast update frequency. For example, the case study of Hurricane Florence con-
siders a planning horizon of six days, which include twelve intervals.

MDP formulation Hurricane preparedness is organized within a network consist-
ing of a set of residential nodes R and shelters S (see examples in Fig. 3). The hur-
ricane forecast data at time 7 is denoted by the predicted hurricane state X, € RIFIX!,
where [ represents the number of attributes of the hurricane, such as wind inten-
sity, wind speed, the stage of the cyclone, and environmental variables such as the
sea-surface temperature. For example, (X,),cv can be predicted by multiple differ-
ent forecast models developed by NHC [31]. Let X denote this high-dimensional
hurricane state space. Given hurricane forecasts at time »n, the evacuation demands

are estimated by f, : X — IRLR‘ [32]. Specifically, the evacuation demand vector for
each observed X, is represented by D, (X,) = fp(X,) = {d;(n)};cx. enabling to inte-
grate simulation-based damage prediction and evacuation behavior models.

According to the operational guidelines from various states [33], shelters are
organized into K priority levels (classes), where: (1) shelters within the same prior-
ity level are activated simultaneously, and (2) a shelter of a certain priority level
can only be activated if all shelters of higher priority levels have already been acti-
vated. The prioritization of shelters is determined by their capacity and proximity
to the most vulnerable households, as defined in [33]. The allocation of individuals
from their origins to shelters, denoted as D, € Rf , can be inferred from D, through
related evacuation behavior models [16, 18]. Since this aspect falls outside the scope
of our research, we assume that such allocations are pre-established, meaning that
the demand for shelters across the K classes, contingent upon the hurricane condi-
tion X, at each time period n, is predetermined.

Transition process Upon the realization of the current hurricane state, the DM
will predict the future demand to guide subsequent decisions. Since the transition
function, denoted as P, (X, |X,), has incorporated complex physics-informed hurri-
cane forecasts, it does not have a closed-form expression for transitioning from state
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X, to X,,,. We approach the hurricane evolution process as a grey-box environment,
indicating the limited knowledge about the system evolution through data-driven
simulations. Our case study applies a simulation-based approach to reconstruct the
hurricane’s wind speed forecast model using historical hurricane data, a commonly
used method in literature [34]. Therefore, we consciously avoid making specific
assumptions about the transition function, acknowledging the inherent uncertainties
and complexities in accurately modeling hurricane dynamics.

ESOT policy An ESOT policy maps the hurricane state space X to multi-
class shelter opening decisions, which is denoted by = : X -» A. The deci-
sion space A is defined by A={a€ {0,1}¥ : Vke {l,....K—1},a, > az,,}.
Given the demand model, the DM’s decision at time n reduces to a vector
a, =@y, s ps - »ag ) € A, where each a;, denotes whether or not shelters
in class k are open at time n. The implementable ESOT policy follows the follow-
ing assumptions: (1) Since the opening and operations of shelters require substantial
resources and maintenance personnel, once a shelter is open, it will remain in opera-
tion until the end of the planning horizon N. (2) The DM can commence evacuation
procedures prior to the recommended action time, i.e., when a,, = 1is implemented,
it is assured that all evacuees have securely arrived at the shelters by the time point
n.

Cost function The shelters’ cost at time n, denoted as c¢,(X,,,a,), consists of two
types of cost, the shelter operational cost and penalty cost. Specifically, an opera-
tional shelter will incur a fixed cost of & =y, - ), .p b; Where 7, is the unit cost and
b;=(b;y,...,b; )7 is the shelter capacities allocated to residential node i for all
classes. This fixed cost & accounts for personnel, material supplies, and maintenance
costs depending on the shelters’ capacities. The penalty cost incorporates the number
of evacuees who are underserved, including the ones who cannot find sheltering spaces
due to late notification or insufficient sheltering capacity. This is because only qualified
evacuees [33] for each class of shelters will be assigned to facilities following a first-
come-first-serve policy. Thus, the cost function ¢, (X,,, a,)) can be written as:

(X = { h'-a, + Y cp0i,(X,)min{D, (X,),(1 —a,)'h;} ne[N—-1]
cy(Xy) n=N,

(H

where o, ,(X,) € R is the unit penalty for the underserved population in node i at
time n.

The objective is to find the optimal ESOT policy z* that minimizes the expected

total cost over the planning horizon. The expected total cost under any policy 7z is given

by

N—-1
FX) =E, | Y e,(X,a,) +cy(Xy) | X =X]|. )

n=1
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Challenges of solving the optimal ESOT policy The challenges of solving the
optimal opening time problem described in (2) include: (i) The transition functions
and demand estimation models are based on simulations or other physics-informed
disaster forecast models. Thus, the state space is continuous and the transition func-
tions do not have explicit forms; (ii) A feasible multi-class optimal stopping policy
must satisfy the irrevocable decisions and the order of priority in opening shelters,
i.e., a feasible policy satisfies that q; , > a;,,,forn=1,...,N,k=1,...,K —land
Oy Ly for n=1,...,N-1,k=1,...,K. Alternative approximate dynamic
programming methods may encounter challenges related to sample complex-
ity stemming from the expense involved in evaluating policies through physics-
informed simulations.

2.2 Optimal ESOT policy with priority constraints

Define J as the optimal total cost at time n. Given the irrevocable nature of open-
ing shelters, the feasible policy must consider the current state of the hurricane, X,,,
and the decisions made in the previous time step, a,_,. Thus, the optimal total cost,
J*(X,,a, ) forn <N — 1is given by the following expression:

Lpa = min{e(.a) + B, (e 3)
This optimality equation highlights the challenge of dealing with a continuous state
space problem constrained by the dependent and irrevocable decisions of shel-
ter opening times. Various discretization and approximation approaches have been
proposed to manage the computational and analytical hurdles associated with such
constrained decision variables. We consider a more direct approach to address the
challenges associated with the dependency among the decisions by segmenting the
problem into a sequential HNN structure.

In the following discussion, we elaborate on the methodology for determining
the optimal stopping decision a, , for any single class k. Let JZ,,(Xn) represent the
expected optimal total cost for shelter class k at time n, which is conditional on the
optimal actions of classes k' > k. The optimal ESOT policy for class k is to seek
ay, that achieves Ji' (X,). In this structure, each class k is treated as an independ-
ent subproblem. When disaggregating by class, we first consider the condition of
irrevocable decisions. Specifically, once a; , = 1, the shelter class cannot be closed
in subsequent periods, eliminating further decision-making for class k and introduc-
ing a terminal condition and cost y;,, = (N —n+ Dh, where b, =y, X.cp biy is
the holding cost for class k. Notably, activating a,,, = 1 allows decisions for classes
greater than k at time n, thereby J; +1,,,(Xn) is given by

TE (X)) =y, + U5

ie1a K, forag, = 1.

Conversely, if a;, = 0, implying sequential opening, all classes greater than k must
remain closed, accruing a penalty cost ¢; ,(X,,) at time n for classes k to K
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[ Timen+1output |
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Get optimal action —.E;m(xn)
l Ajen (Xn) ; [ Class k — 1 input ]

Fig.1 The two-layer backward induction framework

[ Class k + 1 output ]

X)) = 3 0,,(X,) min {(Dn (X)) — 2 biy)*. Z b,J}

i€R Jj=k

where b, ; is the shelter capacities allocated to residential node i for class j, b;, = 0,
0;,(X,) E R is the unit penalty. Furthermore, g, , = 0 implies a potential opening in
future periods, the optimal cost for next period J ]’: il (X,,) must be considered:

J;n(Xn) =, (X,) + [EP[JZHI(XHl)], for a;, = 0.

Combining these conditions, the expected total cost at time J7(X,), is recursively
computed as:

Ji(X,) = Jik,,,(Xn)’ and forallk=1,2,...,K

T, %) = min {awi, + 70,60 + (1= (€ () + Bl (XD .
@

where J tln (X,,) = 0. This approach involves two layers of backward inductions,
starting from time N to 1 and from class K down to class 1. Appendix A provides
a detailed proof of the validity of this optimality equation. The advantage of this
approach lies in its simplicity for the design of DPA methods. The decision g, is
directly derived from the set {0, 1}, eliminating the need to account for interdepend-
ent decision vectors without loss of optimality. The flowchart of the methodology is
provided by Fig. 1.

The translation from a sequence of actions a, to the opening times for
K classes of shelters is provided below. From time n onwards, we define
T, €{n,n+1,... ,N}X as a vector of opening times where each entry
Ten € {n,n+1,...,N}is the ESOT for shelters in class k. Let r;: denote the opti-
mal ESOT accordingly. Because of the shelter opening priority rules, 7, , < 7;_y .
Therefore, 7, , (7, ) can be represented as a function of a;, (a; ). For any shelter
class k during tlme n to N, the optimal opening time, m € [n, N] should be the first

instance following 7, _, , which ¢; = 1. By definition,
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N m—1
Tlf,n = Z malt,m H (1 _alij)' (5)

M=Tp_1n J=Tk—1n

Apply this calculation across all classes from k = 1to k = K with 7, = 0, the DM
can calculate 7, ,. The product-form optimal stopping time representation [26] can
substitute the direct calculation of optimal policies. In the next section, we will
derive a policy approximation framework that outputs the binary action with a con-
tinuum approximation.

2.3 Neural network approximation for ESOT policy

Recall that deriving optimal ESOT policies is challenging because: (i) The classic
curse of dimensionality in dynamic programming arises due to the compact hurri-
cane state space /X', potentially continuous, and the corresponding high dimensional
and potentially implicit demand forecast models; (ii) The state transition P, (X, 1X,)
is driven by physics-informed models, preventing the application of standard solu-
tion methods for solving the Bellman’s optimality equation (4). An alternative is
to use approximate dynamic programming techniques [35], such as Q-learning, to
compute approximate J. However, these generic methods may require extensive
parameter tuning and are sensitive to input data.

DPA method We propose a DPA method that exploits the structure of the ESOT
policy. Let ff%(X,) : RIFX! — 10,1} with parameter 0., € R? denoting the HNNs
that approximate the optimal policy for opening times. For simplicity, we assume
that the terminal conditions are fixed with decisions ay = 1. The HNN approxima-
tion is implemented as follows:

1. Inthe backward induction of n € {0, 1,...,N — 1},let0; 1,0, .12, ..., 0y € RY
denote parameters such that

N-1 m—1
G =, mfX,) [ a-rha)
M=Tp_ 1 py1 J=Tk=1n+1

produces an near-optimal value for J;' (X, ).

2. For notational convenience, we use a vector of f¢ : RI®* — {0, 1} to denote
the HNN approximation for the policy function. Compared to generic value or
policy approximation methods, this HNN approximation is more sample-efficient.
The architecture and operational dynamics of the HNNs for sequential opening
time decisions are shown in Fig. 2. The effectiveness of this policy approach is
validated in Appendix B, demonstrating its utility in efficiently solving complex
ESOT problems in disaster management.

f?is given by

0 0 0 0
I7 = 110108100, 08;_10 - 0@y o8|, (6)
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Fig.2 Sequential hierarchical NNs structure

where (1) o’ denotes the composition of functions; (2) 1,q,,q,, ...,q;_, are
positive integers specifying the depth of the network and the number of nodes in
the hidden layers (if there are any); (3) g7 : RIFX — R, ¢ @RI — R
and g/ : R%-1 — R are affine functions; (4) for j € N, ¢; : R/ — R/ is the com-
ponent-wise activation function (e.g., ReLU) given by
@j(xy, X)) = (], . ,x;r); (5) 1jp00) - R = {0, 1} is the indicator function of
[0, o0).
3. Since f? takes values in {0, 1}, it does not directly lend itself to a gradient-based
optimization method. So, as an intermediate step, we introduce a feed-forward
HNN 7 : RIEX [0, 1] of the form

29 _ 0 0 9
" =wogiop, og_i0...00, 08,

where v : R — (0, 1) is the logistic function w(x) = ¢*/(1 + €¥), and all other
functions are defined the same way with (6).

The parameter 6 € R? of f" consists of (1) the entries of the matri-
ces A € R A, €RU-*2 A € R>4-1 and (2) the vectors
b, €R?%,...,b;_; € Ru-1,b, € R. The affine functions fori =1, ...,I are given
by gf(x) = A;x + b;. So, the dimension of the parameter space is

_{d+1 ifl =1
Ltg+ g +da + -+ 454+ g, f1>22°

Based on the HNN approximation of the ESOT policy, the objective is to find
0;,, € R?and f%: (X,) € [0, 1] such that

T = E{ 1w, + T T () + [0, (6,) + 7 K )I = X, ) }

o min E{ [y, + Ty, I 0) + (60, () + 77, (DI =7/CX)

oe

4. SetJ,  (X,)=0.Apply steps 2 and 3 for each class reversely from k = K to 1.

K+1,n
5. The approximate policy calculates the binary action by a threshold rule

1 iff% > 1/2
On — A _
f { 0 iff% < 1/2 @

6. Let fo(X,) = az’n, we compute the optimal cost functions Jl’:’n(X,,) at time n.
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3 Case study: response policies for Hurricane Florence in South
Carolina

Our numerical case study focuses on the hurricane response decision-making pro-
cess related to Hurricane Florence in September 2018. While Hurricane Florence
started with a modest tropical storm, a rapid intensification on September 4 upgraded
it to a Category 4 hurricane on the Saffir-Simpson scale (SSHWS) [36]. It reached
estimated peak winds of 130 miles per hour (mph) and caused catastrophic dam-
age in the Carolinas, including significant destruction of homes and infrastructure
and widespread power outages, with some areas experiencing inundation from the
storm surge. Hurricane Florence caused an estimated $24 billion in damages across
the Carolinas, marking its place as one of the most destructive storms in recent his-
tory [36]. The DM in this context is the South Carolina Emergency Management
Division (SCEMD), deciding whether to evacuate residents across South Carolina
and open shelters for those most vulnerable. The specific elements included in the
SCEMD’s decision are described below.

3.1 Experiment setup and data description

Hurricane data Our numerical experiments collected Hurricane Florence forecast
data from September 8 at 0:00 to September 14 at 0:00 with a 12-hour time inter-
val for each period, resulting in N = 12 periods in total. The goal of this numeri-
cal experiment is to trace back to the incident’s starting time and check the perfor-
mance of our algorithm in identifying the optimal ESOT policy to reduce potential
damages. The hurricane made landfall on September 14, 2018, near Wrightsville
Beach, North Carolina, with maximum sustained winds of 90 mph. The NHC’s
Geographic Information Systems archive provided various hurricane forecast data
and products, allowing us to reconstruct the evolution of the hurricane’s progression
over the planning horizon. To test the impacts of uncertainties in system states, our
numerical experiments also examine the impacts of varying volatility levels through
simulations.

Shelter data The South Carolina Hurricane Management Plan [37] divides all
hurricane-related general population shelters in South Carolina into four regions:
Central, North, South, and West. The division of each region is shown in Fig. 3.
Within each region, shelters are further divided into four shelter classes (C1 to C4),
ranked by their priority in operations. Each class contains a group of shelters (16,
18, 10, 4) for C1 to C4 to serve potential evacuees in each county in disaster events
(Fig. 3). Fig. 3 shows an example of the distribution of shelters in SC and the con-
nections between counties and shelter classes in the Central region.

Hurricane state representation Our first set of experiments focuses on the shelter
opening plans within the Central region of South Carolina, which includes 48 shel-
ters located throughout seven counties. The uncertainties in hurricane forecasts are
simulated by combining the historical Wind Speed Probabilities (WSP) distribution
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@® Central

® North
South

® West

Fig.3 Shelters in SC are divided into the 4 regions (left); The connections between counties and shelter
classes (C1,C2,C3,C4) in the Central region (right) from SCEMD
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Fig.4 Mean wind intensity and total penalty cost estimation of Hurricane Florence in Central region,
SC. based on NOAA’s WSP data

and a continuous-time Brownian motion for spatiotemporal uncertainties. The WSP
data provided by the NOAA offers the probability of a specific level of hurricane
occurring within a county in the next five days [30]. Specifically, it provides three
probabilities: the probability of a hurricane with wind speeds of at least 34 knots (39
mph), at least 50 knots (58 mph), and at least 64 knots (74 mph) hitting the county
in the future. The hurricane intensity, denoted by X,, is represented by Gaussian pro-
cesses. Given the observation at time ¢, the tail distributions are combined to esti-
mate the average intensity X, during the interval and its covariance. Figure 4 shows
the average hurricane intensity X, used in our experiments. As a result, the wind
intensity in X, can be expressed by:

dX, = aX,di + odB,, (8)

where a is a constant parameter, o represents the infinitesimal variance estimated
from the historical data, and B, is a Brownian motion. This state evolution pro-
cess can also be extended for the case where the hurricane state X, includes other
attributes.
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Tabl? ! Centfal coastal County Vulnerable Cl1 C2 C3 C4
hurricane region vulnerable o
. .. population

population and capacities
Berkeley 3507 0 1792 1215 0
Calhoun 389 0 0 265 561
Charleston 18,173 1976 459 243 0
Dorchester 1677 3427 404 459 1906
Lexington 3788 1061 1829 846 500
Orangeburg 2450 3577 2328 174 0
Richland 1478 1196 1672 267 0

The instantaneous demand D, (X,) for shelters employs a simplified evacuation
behavior model from [38, 39] and the data from the South Carolina hurricane man-
agement plan [37]. Initially, the behavioral model determines the number of evacu-
ees by estimating the probability of individuals deciding to evacuate. The evacuation
decision follows a probit model y(X,) = f,X,, + f,I + e. In this model, y represents
the propensity of a household to evacuate. The variable / includes other static per-
sonal data, including attributes like gender, race, income, and the nature of the evac-
uation notice. The coefficient f, is tied to hurricane-centric conditions, whereas g,
concerns personal traits; e is the error term. The derived probability of evacuation is
d(y(X,)), with @ denoting the cumulative normal distribution function. Next, we use
the census data in these counties to make a general estimation of / and generate a
comprehensive map of y(X,), representing the percentage of vulnerable individuals
in each county who opted to evacuate. Various statistical and discrete choice models
have been developed for estimating evacuation demand based on the hurricane fore-
cast and other factors [18, 38, 40]. In our study, the total demand was calculated as
D,(X,) = ®(y(X,))p, where p represents the population in each county. The propor-
tion of individuals choosing public shelters was also provided by the aforementioned
study [37]. A summary of shelter capacities and evacuee populations in each county
is displayed in Table 1.

Cost functions The holding and penalty costs for each shelter class follow (1), the
coefficients of which are specified as follows. Let i, = Z!ill Yobix» where b, is the
total capacity of shelter class k for county i and y, is the unit holding cost. For sim-
plicity, y, has been normalized based on varying operational conditions in different
counties. The unit penalty cost function is 0,(X,,) = 7,X,,, where y, is a constant rep-
resenting the impact of hurricane intensity on unsheltered population. The estima-
tion of demand and the evolution of hurricane states are well-determined by numer-
ous resources with standardized and predictive models. The distinction between the
holding cost y, and penalty costs y, has a substantial impact on the optimal policies.
Acknowledging that there are no universally accepted standards to define the open-
ing and penalty costs, we propose a separable cost function and test its sensitivity
beyond a general examination of hurricane data. This sensitivity analysis also ena-
bles us to understand the effects of cost differentials on the associated decisions.

Evaluation and experiment setting The evaluation procedure is as follows: First,
using the hurricane state generation model detailed in (8), we choose a relatively
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Table 2 Sensitivity analysis for three regions in SC

Region  Parameter Time Lower Mean Upper bound  Decisions
(seconds)  bound

Central 7, =05y, =1/30 2175 124491 124,570 124,649 1,7,7.12
Central 7, =057, =1/40 2232 114,048 114,134 114219 7,7,7, 12
Central  y, =05y, =1/50 2150 97,969 98,102 98,236 7,12,12, 12
Central  y, =057, =1/60 2150 85668 85810 85953 12,12, 12,12
North  y, =05y, =1/30 2164 83527 83,669 83812 7,12,12, 12
North 7, =057, =1/40 2195 62.880 63019 63,158 12,12, 12,12
North  y,=05,7,=1/50 2195 50499 50,611 50,723 12,12, 12, 12
North  y, =05y, =1/60 2214 42,005 42,097 42,190 12,12, 12,12
South  y, =05y, =1/30 2174 59,061 59,197 59,333 12,12, 12, 12
South  y, =05y, =1/40 2145 44298 44401 44,503 12,12, 12,12
South 7, =057, =1/50 2115 35452 35532 35612 12,12, 12, 12
South  y, =05y, =1/60 2115 29497 29564 29,631 12,12, 12,12

small parameter o = 1.5 to ensure that our generated tracks closely align with the
hurricane predictions made by NOAA. We simulate 10,000 trajectories and split
them into two halves. The first half of these trajectories are used for training the pol-
icy f and the second half of them are used for testing. The boundary condition is set
by the proportion of f(X,) values as follows: if more than 50% of trajectories (i.e.,
over 2500) choose class k shelters to open at time 7, then we set A, =1, otherwise
we set q;,, = 0. Then we apply (5) to get the optimal shelter opening time T:’n. The
HNN architecture is determined by a distributed hyperparameter tuning tool (Ray-
Tune) [41]. Each network comprises two hidden layers between the input and output
layers, with each hidden layer containing 40 more neurons than the number of input
features. The Adam optimizer [42] was employed for training, with a learning rate
set at 0.001.

3.2 Results for central region in South Carolina

To understand the variation in the optimal costs and to verify the efficacy of our
stopping time policy, we conducted tests using actual hurricane tracks while vary-
ing coefficients y, and y, values. Note that ¥, and y, have been normalized as relative
costs to address the tradeoff between false alarms and delayed responses. Our sensi-
tivity analysis ranges from a high penalty scenario with y; = 1/30 to moderate pen-
alty scenarios at y; = 1/40 and y; = 1/50, and a low penalty scenario at y, = 1/60.
The running time, average cost and optimal decisions are provided in Table 2.

The actual historical hurricane tracks in the central region can be used to check if
our solution method can precisely determine the optimal shelter opening time based
on hurricane forecasts across various y, situations. In particular, for moderate pen-
alty scenarios, the optimal shelter opening time is pinpointed at time 7 (Septem-
ber 11th, 12:00 PM), which aligns with South Carolina’s official evacuation time
[43]. In higher penalty scenarios, our model recommends an earlier opening time
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of period 1 (September 8th, 12:00 PM), providing a longer duration for evacuation
preparations. Conversely, in Southern regions like Beaufort County, evacuation
orders were issued but our model withheld an opening decision until the terminal
time n = N, irrespective of the penalty level, because of the low hurricane intensity
predicted for these counties. The considerable resources spent in the preparations
were ultimately not needed [44]. The comparison between simulated experiments
and historical ground truth data confirms that the implementation of ESOT policy
can mitigate adversarial impacts in these areas [43] and improve resource alloca-
tions during disaster events. On the other hand, it is important to acknowledge the
intricate nature of decision-making in the actual planning. The local governments
must consider more nuanced costs and other factor [33] and prioritize the safety of
citizens, even if risks are deemed to be low.

3.3 Comparative study and sensitivity analysis

PAO benchmark model The PAO approach is commonly used to solve optimal stop-
ping problems where the state forecasts and system uncertainty are estimated from his-
torical observations. The benchmark model uses an SAA-based MDP model for hur-
ricane evacuation decisions [21]. In this case, the primary challenge in solving MDPs
is determining the transition probability matrix after discretizing the state space. This
transition model can be estimated using regression on Monte Carlo sampled state evo-
lution trajectories [21, 45]. The general form of the MDP model can be expressed as:

Jin®) = min, {“[""ﬂn 1K)

+1- a)[ck,n(Xn) + Z qn(Xn+l IXn)J]in+1(Xn+l)] }
X

n+l1

Different from the DPA approach which calculates the near-optimal policy directly,
the PAO approach consists of two consequent steps similar to SAA. In the first step,
the transition matrix is estimated based on the simulated training data. In the second
step, the optimal shelter opening time decisions are computed by the standard back-
ward induction. The assumption is that geographically proximate counties share
identical transition matrices and hurricane intensities due to their similar hurricane
intensity evolution trajectories, as depicted in Fig. 4. Given that Hurricane Florence
impacted SC was at Category 1, the storm’s intensity was capped at 100 knots for
our simulation. While the hurricane generation model is consistent with (8), any
intensity values surpassing the 100 kt threshold were set to 100 kt. To discretize the
continuous state space of hurricane intensity, they were partitioned into 10 non-
overlapping intervals (i.e., 0-10, 10-20, ..., 90-100). These intervals were denoted
by w,,®,, ..., w;,. The middle point of each interval (e.g., 15 for the 10-20 range)
was employed to represent the hurricane’s intensity. The same training sample used
in the DPA method was utilized for this analysis. The training sample size is denoted
ZZ:] IX,,Eu)i IX,H_lej

by
m=1 "Xy €w;

by M, and the transition probability is g,(X,,,, € v;|X, € »;) =
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3.3.1 Parameter sensitivity analysis

Our numerical results include additional sensitivity analyses, aiming to explore the
performances of the DPA and the PAO method under various conditions by alter-
ing specific parameters related to the forecast model. These analyses provide deeper
insights into the robustness characteristics of the DPA method. To enhance the
assessment of models’ efficacy, we incorporate a quadratic penalty cost function,
defined as 0,(X,) = (y,X,)*. This quadratic formulation is intentionally chosen for
its greater sensitivity over linear models, allowing for a more precise calibration of
penalty costs in relation to hurricane preparedness. Under this model, the penalty for
unsheltering remains relatively low for minor hurricane intensities. However, as the
intensity of the hurricane increases, the penalty for unsheltering rises quadratically,
reflecting a steep costs increasing with escalating hurricane severity.

Sensitivity analysis for y; In the first experiment, we investigate the effect of vary-
ing the penalty parameter y, while keeping other variables fixed. Specifically, we
analyze how the DPA method’s performance changes relative to the SAA method
when the penalty cost sensitivity varies. The results of this experiment are shown
in Table 3. As the value of y, increases, the DPA method demonstrates a more pro-
nounced performance. For instance, when y, is 1/60, the improvement proportion is
0.32%, while at 1/30, it increases to 9.78%. This indicates that the DPA method per-
forms more effectively when dealing with sensitive penalty costs. Conversely, when
7, 1s small, the DPA method’s cost saving is less significant.

Sensitivity analysis for ¢ In the second experiment, we examine the impact of
changing the prediction variance (¢) while keeping other variables fixed. The results
are presented in Table 4. When ¢ is small (between 1.5-5), the DPA method’s saving
is relatively modest, ranging from 5.52% to 8.21%. However, as the prediction vari-
ance increases (e.g., o = 10,20), the improvement proportion increases to 16.09%
and 28.16%. This finding highlights the DPA method’s ability to adapt to larger pre-
diction ranges or uncertainties, which can be particularly useful in real-world situa-
tions with variable hurricane intensity predictions.

In conclusion, our sensitivity analyses offer insightful revelations about the per-
formance of the DPA method in comparison to the PAO method under a variety of

Table 3 Sensitivity analysis for y, (o = 1.5)

Parameter Mean cost of SAA Mean cost of DPA Relative
improvement
(%)

7o =0.5,7, =1/60 62,495 62,297 0.32

7o =0.5,7, =1/50 87,260 86,493 0.88

7o =0.5,7, =1/40 118,024 110,274 6.57

Y0 =0.5,7,=1/30 143,644 129,595 9.78
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Table 4 Sensitivity analysis for Parameter Mean cost of SAA  Mean cost of DPA  Relative

o (ry =1/40) improvement
(%)
oc=15 117,876 110,044 6.64
c=3 119,603 112,998 5.52
c=5 128,841 118,267 8.21
o=10 155,150 130,185 16.09
o=20 197,184 141,657 28.16

conditions. Based on the same training datasets, the DPA method exhibits a supe-
rior performance edge, particularly in scenarios characterized by larger prediction
variances and large late-response penalty costs. This enhanced performance can be
attributed to the inherent complexities of managing a large-scale continuous state
space. The PAO method requires additional assumptions for defining the transition
processes and state space. For instance, it discretizes the state space and employs the
Monte Carlo method for estimating transition probabilities, which compromises its
precision relative to the DPA method. To potentially boost the PAO method’s per-
formance, one strategy involves refining the number of grids and employing smaller
intervals as in other SAA approaches. However, this improvement in estimation
necessitates a significantly larger number of training samples for a large-scale state
space, a requirement that is markedly more demanding than for the DPA method.
Despite DPA’s advantage in facilitating more accurate policy estimations, it requires
more computational resources, especially for training HNNS.

3.3.2 Discussion and policy implications

Our numerical results highlight the potential of the DPA method as a robust
approach to calculate adaptive operations decisions the context of disaster manage-
ment. By offering enhanced performance in diverse scenarios, the DPA method can
contribute to the development of more effective and efficient disaster management
strategies, ultimately helping to save lives and mitigate the societal impacts of severe
disaster events.

e The data-driven component in our proposed method balances between model
complexity and sample complexity, leading to more accurate estimates than the
transition matrix based on state space discretization.

e The structure of HMMs allows for a better representation of constrained opening
time decisions, adeptly manages multiple interdependent decisions. This repre-
sentation of shelter opening time policy can also be used in other hierarchical
decision-making that coordinates multi-stage decisions with priority constraints.

e This end-to-end learning method excels in flexibility, not limited by transition
function forms or state space continuity. It effectively uses various data sources,
from historical events to simulations, enhancing accuracy and robustness in pre-
dictions and developing dynamic disaster management strategies.
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e Qur approach can be adapted to different types of natural disasters by modeling
them as Markov processes, defining a suitable cost function for the specific disas-
ter, and ensuring the decision structure can be transformed into binary and irrev-
ocable decisions. This allows for the application of our method across various
natural disaster scenarios, maintaining its effectiveness and flexibility.

4 Conclusion

The escalating impacts of extreme weather events necessitate adaptive and prompt
data-driven decision-making techniques. This paper tackles the challenge of deter-
mining ESOT policies by formulating it as an MDP with a compact state space and
sequential opening time decisions with priority constraints. Our novel approach
departs from conventional methods by integrating an intricate interplay of estima-
tion and optimization that affects effectiveness. With the aid of HNNs, this learn-
ing-based framework can maintain computational feasibility while substantiating
the efficacy of the proposed method. With the increasing use of physics-informed
models in disaster and evacuee behavior forecasts, our data-driven approach can be
expanded as a pivotal tool for data-driven disaster management.

The main limitations of our method include requiring disaster intensity levels
to be modeled as Markov processes. Additionally, the irrevocable evacuation deci-
sions must be framed as a set of binary variables with full knowledge about their
disaster-related costs. When dealing with more complex stochastic scenarios with
multi-dimensional decisions over networks, translating them into this structure can
exponentially increase the complexity and lead to the persistent curse of dimen-
sionality in dynamic programming. Future endeavors should focus on extending the
methodology to accommodate more complex emergency response decisions, which
could pave the way for addressing more complex uncertain situations during natural
disasters.

Appendix A: Supplementary Proofs for Sect. 2.2

Proof for optimality equation in (4): According to Bellman’s principle of opti-
mality, the optimal expected cost J;ck,n(xﬂ) for class k at time n is determined by the
instantaneous cost, CenXy> @), based on the action a € {0, 1}, as well as the expected
future cost contingent on the action a taken at time n. For any class k, if the DM
decides to open shelters in this class at time #z (i.e., a = 1), the expected future cost
becomes Jlt+1,n(X’l)' This is because the cost function for the next class becomes
active immediately after opening the current class, by definition. However, if the
DM decides not to open shelters in this class (i.e., a = 0), all subsequent shelter
classes must be closed. The expected future cost then depends on J;/, ,(X,,,,), which
is the cost function for the same class k in time n + 1.
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To minimize the total cost, we select the action a that minimizes the sum of the
immediate cost and the expected future cost. This leads to the following recursive
equations fork =1,2,...K — 1:

J,jn(xn)=a2?(iﬂ}{a(wkn+J,j+ln(Xn))+(1 — a)(cp,(X,) + Epl} (X, +1)])}

where IEP[ n+1( +1)] /X,, P (X +1|X )J*_H( +1)d n+1*

The cost function J7 (X,) represents the optimal cost for the first class at time 7.
Given the sequential nature of the multi-class decisions and the dependency of all
subsequent classes on the first class, the decision concerning class 1 at time n sets
the stage for all other classes. When class 1 is considered, it encapsulates the deci-
sions of all subsequent classes. This expression means that the effect of all further
classes on the cost is already considered. As such, the optimal cost of the entire sys-
tem at time »n is simply the optimal cost for class 1:

JE(X,) = TA(X,).

This completes the proof. a

Appendix B: Supplementary Proofs for Sect. 2.3

Recall that
TeaX) = min E{wi,a+ e, () + g Kl - o) |

Next, we want to show that, using the NN approximation 7% to derive f% for all
classes k, the corresponding value function will approximate the optimal value with
a small error bound.

Theorem 1 Let J (X)) denote the approximate value function using actions flnin
(7). [26] For any decmon k, for every depth I > 2 and constant € > 0, there exists a
neural network f”KH(Xn) : RIRXE €0, 1} in (6) with parameter Ok, € R that has:

Ty 060 = E{ g f 50 0,) + T (X,) + Ty (10 = £ (X)) |
gag{%r% [E{wKna+[cKn(X)+ Jine1 KA = a)}+£

= J;n(Xn) + }

Expanding upon the theorem, we explore its implications for multiple opening
time decisions. Initially, we focus on its application for J}(_l LX)
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T p ) = E{ o, + T30 D7 (X,)
Lm0+ Ty K1 = X, ) }
< E{ Wi + T, () + 15 (X,)
Lo ) + i )1 = 500X, ) |

Given the structure of f%-1:(X ) where outputs fall in the set {0, 1}, it is clear that
fOo-1a(X ) < 1. This property lets us further bind our function:

T X)) < [E{ Wkmr + T ) + 109X,
Lk + Ty Ko)I = 50X, |
< E{ W1 + T, I (X,)

ek 106 + Ty IO = () |+

<
< min E{ w1, + 75, (X)la

+ [ekarnX) + 751 (KA —a)}

k 1n(X)+f

By recursively extending this logic, we can extrapolate the results to the optimal
total cost. Specifically, when considering the estimation Ji (X,)=J;(X,), we

observe:

7,0 = E{ ly, + 45, GOI(X,)

160,00+ 77, (DI =170 (X,) |
K (B1)
ST X+ Y
1, ; K
<UE(X) e =THX) + e

In sum, this theorem and its proof suggest that HNNs, with hyperparameters tuned
from backward propagation, can be instrumental in making nearly optimal shelter
opening time decisions. These HNNs are structured sequentially in the same order
of the multi-class ESOT setup.
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