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ABSTRACT. We study a class of active scalar equations with even non-local
operator in the drift term. Non-trivial stationary weak solutions in the space
CO%~ are constructed using the iterative convex integration approach.

1. Introduction. We consider the active scalar equation on T%
o0 +u-VO+ A0 =0,
U= T[e]a (1)
Vou=0

where A = (—A)% and T is a Calderén-Zygmund operator with even Fourier symbol.
Since V - T'[0] = 0, without loss of generality, we assume

T[0) =V x T 0]

where I'~! is the inverse operator of I'. The operator I' has Fourier symbol m(k)
which is odd and homogeneous of degree 1. Such active scalar equations with even
drift operator arise from several physical contexts, such as the incompressible porous
media (IPM), magneto-geostrophic (MG) model, etc. In these physical examples,
f denotes an unknown scalar function and u stands for the velocity field. In (1) a
dissipation term with generalized Laplacian is present, with v > 0.

Classical well-posedness problems have been studied for the aforementioned ac-
tive scalar equations in many articles, for instance, see [9, 15, 20] and references
therein. The current note concerns the non-uniqueness of weak solutions for (1).
It is known that uniqueness of a solution to a nonlinear PDE is only guaranteed
if the solution is regular enough. One usually does not expect uniqueness to hold
for weak solutions. Although there are different ways to show non-uniqueness, the
recent development of convex integration techniques first innovated by Nash [21] in
1950’s has shown it is a systematic and generic approach to construct weak solutions
for PDEs which violate uniqueness or physical conservation laws. The successful
implementation of convex integration schemes in PDEs started from the pioneering
work of De Lellis and Székelyhidi [13, 14] for Euler equations. Since then we have
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seen a real blossom of the techniques applied to many fluid equations with break-
through outcomes, including the resolution of the Onsager conjecture for the Euler
equations [1, 17, 16]. For more work in this regard, we refer the reader to the survey
paper [2].

Due to the special nonlinear structure of the active scalar equations, we face
more obstacles in exploiting the application of convex integration schemes to these
equations. One main difficulty is that there is not a suitable family of stationary
solutions as building blocks which possesses nice properties as those for the Euler
equations. Using the convex integration scheme within the Tartar framework, the
author of [22] constructed infinitely many bounded weak solutions for (1); non-
unique bounded weak solutions for the 2D IPM equation were also obtained in [7]
and [23]; it was shown the existence of non-unique mixing solutions for the 2D IPM
in some particular geometry settings in [6] and [8]. Obtaining non-unique weak
solutions for (1) in Holder space was contributed in the work [18]. In particular, the
authors developed new ideas to realize the key cancellations in the iterative convex

integration process to achieve C'¢ regularity with o < ﬁ.

1.1. Main result. In this paper we will construct non-trivial stationary (time in-
dependent) weak solutions for (1) on T? for d > 2. The analysis is presented in 2D,
i.e. d = 2 for simplicity. Therefore we consider the stationary active scalar equation
on T2

u-Vo+ A0 =0,

u="TI[0] = VT1[0]. @)

Denote P< by the standard Littlewood-Paley projection operator with frequency
support below the frequency A.

Definition 1.1. A function 6 : T2 — R is said to be a stationary weak solution of
(2) if
—/ 9u-V1/)da;+/ ON"Ydr =0
T2 T2
is satisfied for any function ¢ € C°°(T?) satisfying ¢ = P<,1 for some frequency
number Ag.

Our main result is:

Theorem 1.2. Let 0 < v < 2 —«a and o < 1. There exists a non-trivial weak
solution 0 of (2) with A=*0 € C*(T?).

1.2. Relevant previous work. In fact, using the method of convex integration,
non-uniqueness has been obtained previously for stationary fluid equations, includ-
ing active scalar equations and Navier-Stokes equations. For the stationary Navier-
Stokes equations on T¢ with d > 4, it was shown in [19] that there exists a non-
trivial weak solution in L?. Non-unique stationary weak solutions were constructed
in [5] (without external forcing) and [11] (with external forcing) for the surface
quasi-geostrophic (SQG) equation, which is of active scalar equation with an odd
drift operator. Comparing stationary equations to their evolutionary cases, it is
in general more challenging to construct weak solutions with high regularity, while
implementing the convex integration approach. The reason is that the time di-
mension can be regarded as additional flexibility, since the principal idea of convex
integration is to exploit the flexibility of the underlying equations.
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Although it is known from [18] that non-unique weak solutions with Holder reg-
ularity exist for the evolutionary even active scalar equations without forcing, it
remains open to show non-uniqueness of weak solutions in L? or C® for a > 0 for
the unforced stationary even active scalar equations. On the other hand, unlike the
SQG for which weak solutions can be defined in H _%, it seems not applicable to
define weak solutions for even active scalar equations with negative regularity index.
This motivates the study of a particular type of weak solutions as in Definition 1.1.

In the direction of investigating forced equations within the framework of convex
integration, the flexibility of allowing a forcing has been revealed in [3, 4, 10, 11, 12].
In [3] the authors were able to obtain non-unique weak solutions with regularity
higher than Onsager’s critical % regularity for forced Euler equation. While non-
unique weak solutions with sharp regularity were constructed in [4, 12] for forced
SQG. Recently, the authors of [10] obtained non-unique weak solutions for time
dependent forced even active scalar equations in space CYC¢ for a < ﬁ, which
has higher spatial regularity compared to the solutions obtained in [18]. However,
surprisingly, allowing an external forcing does not help to improve the regularity of
convex integration weak solutions for the stationary even active scalar equations.
This indicates that the nonlinear structures of the even and odd active scalar equa-
tions (and Euler equation) are intrinsically different.

1.3. Organization of the paper. We provide a proof of Theorem 1.2 in Section
2. We begin with a simple convex integration construction for the unforced active
scalar equation (2), which yields a sequence of approximating solutions {f,} with
A719, € C'~. We then conclude the convergence of the sequence gives a limit weak
solution for the active scalar equation (2) in the sense of Definition 1.1. It also
reveals the failure of constructing non-trivial L? weak solutions for the stationary
even active scalar equation using current scheme. In Section 3, we present the sum-
difference framework of convex integration for the forced equation (18) and provide
heuristics to show that the regularity of convex integration weak solutions does not
improve the claimed regularity in Theorem 1.2 for the unforced equation. We omit
the detail of a complete proof in the forced case, as the proof would be a slight
modification of the proof for the forced stationary SQG equation in [11].

2. Construction for the unforced active scalar equation. In this section
we construct approximating solutions for the active scalar equation (2). Denote
f=T"10] and hence § = I'f. Equation (2) with g = 0 can be written as

V- (VYT +ATf=0 (3)
and further in the form
VHTf - AN 72VTf = ViV (4)
for some vector field V. The relaxed equation of (4) is
Vit f,— N3V f, = VG, + V1V, geN. (5)

The iteration process relies on constructing an appropriate increment Wy, =
fq+1 — fq to obtain a new solution f,11 associated with a new stress field Gig41.
That is, (fg+1, Gg+1) satisfies

V- fgral farr = N2V fp1 = VGoia + V- Vo (6)
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for a new vector V41 which does not play a role after taking + on (6). It is not

difficult to verify
VG = (VT Woir + VEWgiaD fy) = AV 72VIWqia
(7)

+ (VAW 1 TWoin + VGy)
=:VGN +VGp +VGo

where Gy, Gp and Go stand for the Nash error, dissipation error and oscillation
error, respectively. The essential goal of constructing Wy, is to ensure Ggy1 is

smaller than G, for all ¢ > 0, which can be achieved if

VAW, 1 TW,i1 + VG,

is small. In other words, the purpose of W4, is to reduce the error Gj.

2.1. Main iteration. Fixe \y > 1. For b > 1 and 0 < 8 < 1, denote

Ag = D‘Sﬁ’ 0g = )‘q_ﬂv Tq = (AgAg41) 2.

Inductively we expect that f, and G, are localized to frequency ~ )4, and the size
of Gq is g, i.e. |Gg| ~ dg.
We first consider the single plane wave f(z) = a(z) cos(\¢ - ). We can write
_ 1 IAE-x 1 —iXEx
rf= 2F[ae ]+2F[ae ]
1 . 1 .
= 7F+[a]e“‘5‘” + if‘,[a]e_“‘&”

with
T la] = m(k + A)a, T_[a] = m(k — \)a.

We further rearrange the terms in I'f to have

m@@dmé&“+;m—&m@k4&w

(T sfa] — m(A&a(x)) 6% + 1 (T[] — m(-A&alr)) e~

1
2
= im(X§)a(z) sin(A - ) + T1 aela] cos(AE - x) + T aela] sin(X - x)

Tf=

where we used the odd property of m, with

Tinela] = (m(k + &) +m(k — A¢))
Tonela] = (m(k + A&) — m(k — X&) — 2m(A)) @

a,

We observe T4 x¢[a] ~ 2m(A)a up to leading order term, which is the symbol for
2T'a approximately; while T5 ¢[a] represents a small error term, since m is odd.

On the other hand we have
V4 f = —a(z)Aet sin(AE - z) + V3a(x) cos(AE - z).
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Therefore,
1
VETf == Sida®(@)m(A§)E+

+ %i)\aQ(m)m()\f)fL cos(2X¢ - x) + %im(/\f)a(x)VLa(m) sin(2X¢€ - x)

+ (-3 e Tisclal + 39 ale) Tasela ) sin(22¢ -2

+ V4ta(2)Ty xela] cos?(AE - o) — AeFa(x)Toze[a] sin? (X - ).

The first term on the right hand side is a low frequency term which is the leading
order term and is the source to cancel the aforementioned error Gj.
To realize the cancellation, we need the following decomposition lemma.

Lemma 2.1. Let G € C§°(T?) be a vector field. Take & = (2,2) and & = (1,0).
There exist operators Ry and Ro of degree 1 such that the decomposition
2
> im(§)8 R;G = VG + VY (8)
j=1
holds for some vector field V.

Proof. Let R1 and Rz be the operators with Fourier symbols
R1(k) = Ak, + Bks, Ra(k) = Cky + Dks

with coefficients A, B,C, D to be determined. Acting V- on the identity (8) and
taking Fourier transform, we need to solve

2
> Pm(&)E - kR;G = —|k[’G
j=1

which is equivalent to

4 3 = —~
m(&) (=g + k) Ra+ m(&2)keRe = k|2

It is easy to find that the following conditions
—4Am(&1) =5,
3Bm(&1) +5Dm(&2) = 5, 9)
(BA—4B)m(&1) +5Cm(&2) =0

guarantee the identity is satisfied. We note for m(&;) # 0 and m(&2) # 0, there are

more than one solutions for the coefficients. For instance we can choose
5 5 25 4

) B = ) = ) M
4m(&) 3m(&1) 12m(&2) 5m(&2)
It concludes the proof.

O
We also recall a technical lemma from [5] to be used in some of the estimates.

Lemma 2.2. [5] Let a € L°°(T?) with zero mean and supp(a) C {|k| < r} for

@ > 10. Let T be the Fourier multiplier defined by T[f](k) = m(k)f(k) for a
homogeneous function m € C°°(R?/{0}) of degree 0. Then

IT(alllze < lla]| e~ logr
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up to a constant depending on a.
Let X be the space equipped with the norm
2
IGlx = 1G]l + Y IR;Gll =
j=1

Denote P~ by the standard Littlewood-Paley projection operator localized around
the frequency A. The main iteration statement is given below.

Proposition 2.3. Let \p > 1, 0< 7y <2—«a and a < 1. There exist b > 1 and
0 < B < 1 satisfying

C(2(2—7) =1 2b+20—3
2b(a—1)+1<,8<m1n{ 1 ' 21 (10)
such that, if (fq, Gq, Vy) satisfies (5) with f, € C* and
fo=P<er. foo Gq =P<ion, Gy, (11)
||Gq||X < 5qa (12)
[Gqlles S A30q, 525, (13)

there exits (fg+1, Ggy1, Vyt1) satisfying (5) with fer1 € C%, and (11)-(13) satisfied
with q replaced by q + 1.

Proof. We first consider the increment
2
War1(z) =Y ajg41(x) cos(5BAg1§; - )
j=1

to motivate the choice of the coefficient functions a; 411(z) in the following. Similar
analysis as before, we have

2 2
TWyi1 =Y im(5Ag16)a5411 5511 - ) + > Thsa, e, [a5.g11] cos(BAg 1€ - )
j=1 Jj=1
2
+ Z T2,5>\q+1§j [aj,qul] Sin(5)‘q+1§j - )
=1

and

2 2
VEWor1 == 5hr1&f ajgrrsin(dAgi1és - @) + ) Vi aj041 c08(5Ag41€; - @)

j=1 j=1
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It follows that

2
VAWt TWon == Y 2502 m(&)€) a3 44y sin®(5Agqa§; - @)

=1

— > 25N 1m(&5)657 a5 91105 41 S0 (BAG & - @) sin(BAg 16 -

J#5’

+ ) 5iA1m(€) 25,041V a5 g1 (A€ - @) cos(5Ag 16
07

— Z 5)‘q+1T1,5Aq+1§j [aj7q+1]§j7aj/7q+1 COS(5>\q+1€j . IE) sin(5)\q+1§j/ .

3,3’

+ Z T1 55,11 [aj>q+1}VLaj’,q+1 cos(5Ag 41§ - @) cos(5Ag 41§57 -
3,3’

x)

x)

x)

— Z 5>\q+1T2,5/\q+1§j [aj7q+1]£j7aj/7q+1 sin(5/\q+1§j . ZZ?) sin(5)\q+1§j/ .

IRT
+ 3 Tosng g [aj.001]S(BAG1E - ) Va1 cos(BAga1€yr -
T

= J1+ Vs + Vs + VI, + Vs + Vs + VJr.

The first term jl can be further written as

~ 25
J =— Z TiNZ o m(&5)Ead 0 + Z z)\2+1m (&) a3 441 c08(10A g1 - @)
j=1
=: jl,l +VJiz

where the low frequency term jl,l will be used to cancel the error G4 from the
previous level. Indeed, in view of Lemma 2.1, we choose

V2 G,
aj7Q+1 Aq—',{l)\ 52 ( )\ 5 ) (14)

for a constant ¢y such that Rqu + Agdgco > 0 for j =1,2. We observe

(NI

—1 \5 ¢35
|@j.qv1] ~ Agf1Adbd
since G is localized to frequency ~ A, with size d, and R; is of order 1. To ensure
Wyi1 € C°, we impose the condition

1
)\q+1/\q+1)\ 52 <1
It thus follows
1
a<l——+4+ —. (15)

To make sure Wy is localized to frequency ~ Aq11, the final form of the incre-
ment is

Wyt (x Prxgir [@j.g+1(7) cos(BAg118; - )] -

H'Mw

In view of (14), we have

IWarllx S A Ad 07 (16)

2)

x)

x)



8 MIMI DAI AND CHAO WU

We proceed to the estimates of the errors Gn,Gp and Go in (7). Note
VGo = (J11 4+ VGy) + Vo + Vs + Vs + VJy + Vs + Vs + VJs.

We also observe that the items VGy, VGp and VG have zero mean.
To estimate G, applying the inverse operator of the gradient, we obtain

Gy = A_lv : (VquFWq—&-l + VLWq-&-lqu)

where the right hand side is localized to ~ Ag41. Hence, since I' is of order 1, it
follows from (16)

[Grlx S ||Wq+1||Loo IV falloe + T foll)

SALAZoEN o

where we used f; € C* and ||V follco 4 T fellco S AL
Regarding Gp we have
Gp=—AN"TW,,1,
and
1y— 2
||GD||X S )‘q+1 HWq+1||X N )‘Z+1)‘qi1>‘252 N A;Y+1>‘252
The estimate of Go takes more effort. Recall that from the analysis above
< 2,25
Jig=— Z 3i)\(2,+1m(§j)ff(PgrqHaj,qH)z
j=1
with 7411 = (AgAgr1)?. In view of the choice a;j 441 in (14), we apply the decom-
position Lemma 2.1 and observe the cancelation to obtain that

Jia+ VG, =X Z M(E)E Pearyin (=205,011P 51005041 + (Poryy0.q41)%) -

Hence, by the deﬁnltlon of aj4+1 and Lemma 2.2 we deduce

IAT'Y - (i1 + VGy)llx

)‘q-ﬁ_Q(k’g Tq+1) (Haj,q-i-l”L“ ||P>7'q+1aj,q+1||L°° + ||P>7'q+1aj,q+1||2L°°)
< A (logrgq) (||a37q+1||L°°Tq+1||Aa]aQ+1||L°° +r A g i)

< Aarilog ror DAL M G rs 22N A o8

)‘q_+11>‘ 0, Tqul logrg41.

Similarly as before, we note
252
Jip=A"'V" Z A2 m(€5)€5 a5 41y cos(10Ag41&; - ),

and

[T12llx S Apit  lageillzo S Ag+iAgf1Xe0q

Moreover we can write
Jo = ATV Y 250N m(€)Efa500105,g 01 5I0(5Ag 1 - @) sin(BAg1 € - @),
%3
J3 = ATV Y 5idgm(€))ag eV ag, g sin(5Ag 1 - @) cos(BAg1€yr - @),
%5
and thus

12l x S Mg Nag+1llEo S Aqr1Agiireda.
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13l x S Agti Agllagalldo S Ay firedy-
As observed earlier, the Fourier symbol of T} x¢[a] satisfies T@] ~2m(A§)a. We
thus have
171 574165 [a5,q41]1x S [mBAG+1§)|aj,0+1 11 x S Agalm(E)lllaz,grallnee,

which implies

Iallx S At AarillaggrilZe S AeriAgfiAedy S AitiAgdy,

—1 -2 —2

||J5||X 5 )\q+1)‘q)‘q+1||aj,q+l||2L°° 5 )‘q)‘q+1)‘q6q 5 )\q+1/\35q-

We also observe that 75 . is a minor error term compared to 77,.. Hence we have
1 6llx S 1Jallx S AgtiAgdo,

172lx S Isllx S Ap2iA26,.

Summarizing the estimates above gives the estimate for the new error

1 1 _ 1 1 _ _ —
[Gaiillx S Ay b AFSEAL T ATZAG6F + AL NS,y 2y log g + Ayl Aol

Therefore, to show the estimate (12) holds for ¢ + 1, we only need to verify
1 2.1 _
/\q+1)‘57;551’\; * S
[, T
AgriAd 0 S Ot
/\;+11)\25q7“q121 log g1 < 0g41
-1
)‘q+1)‘q5q S 5q+1
which is equivalent to, (recalling rq41 = ()\q)\q+1)%)

bB—b+5—58+1-a<0
bB+b(y—2)+1-18<0
b3 —2b+2—-B8<0
b3 —b+1—B<0.

Since o < 1 — 35 + % from (15), it follows from the first inequality of (17) that

(17)

a—1 L4 L
<1_~_ 2b 2b
b—1 b—1

B<1+

which is equivalent to

20+1)b-1)(B—1) <0.
It is satisfied for all b > 1 and 0 < B < 1. Hence when b = 17, it yields a <
1-— % + % < 1. The second inequality of (17) gives

1 8 3 1
L A TR T I
for b =1%. The third and forth inequalities of (17) yield

(B-2)b-1)<0, (B-1)(b—1) <0
which are satisfied for all b > 1 and 0 < 8 < 1. On the other hand, we notice the
conditions on the parameters of the proposition are compatible with (17). Hence
the estimate (12) for ¢ + 1 is verified.
The claim f,41 € C* follows from (15) and (16). The frequency support property
of (11) for g + 1 follows directly from the definition of Wy, . While the estimate
(13) for ¢ + 1 follows from (12) with ¢ + 1 and (11) with ¢ + 1.
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O

2.2. Proof of Theorem 1.2. Under the assumptions on the parameters as in
Proposition 2.3, we first choose fo = 0 and Gy = 0 which satisfies equation (5) with
a zero-vector field V5. Note fy and Gy also satisfy (11)-(13). Applying Proposition
2.3 inductively we obtain a sequence of solutions {f,, G4, V4 } to (5) satisfying (11)-
(13) and f, € C*. Taking the limit ¢ — oo, it is clear that G, — 0 in L'. We
need to show that as ¢ — oo, there is a limit function f of the sequence {f,;} such
that 6 = T'f is a weak solution of (2) in the sense of Definition 1.1. Indeed, for any
1 € C°(T?) with ¢ = P<p,% for some frequency number Ag, we have

/ Oquq - Vi do = / Py (Oguq) - Vipdr — 0 as g — oo,
T2 T2

since P<p,(84u,) — 0 in L', due to the property of compact support in frequency
space.

3. The forced stationary equation. In this section we move on to construct
non-unique weak solutions for the forced stationary active scalar equation

u-VO+ A0 =g,
u="TI[0] = VT 1[0].

We first describe the convex integration scheme applied to the sum-difference forma-
tion of the forced equation, which was previously exploited in [10, 11, 12]. Then we
state the main iteration proposition, which will lead to the conclusion of existence
of non-unique weak solutions with regularity consistent as stated in the proposi-
tion. The purpose is to show that, peculiarly, the presence of a forcing does not
necessarily improve the regularity of convex integration weak solutions.

(18)

3.1. Sum-difference formulation. Assume (6,g;) and (6, gs) are two solutions
of (18). Denote

n=0719, 7=0""0, II= %(Wrﬁ% p= %(n*?ﬁ,
and
p=TI, m="Tpu, T[p=V*L, T[m]=V'u
It follows from (18) that
TV +TuVip — AV72VIIL = VG + V1Y,

_ - 19
LpuVAI + TV — A2Vl = VG + VYV (19)

with vector fields G and G satisfying AG = (g1 + g2) and AG = (g1 — 92), and
some vector fields V and V. The relaxed system of (19) is

T, V*1L, + Ty Vg, — AY2VIT, = VG, + V4V,

~ . 20
Ty VAL, + T, Vg — A2V, = VG, + V1V, (20)

To obtain a sequence of approximating solutions {(Ily, iq, G, éq)}ng of (20), we
will perform an active convex integration scheme to the second equation and a pas-
sive scheme for the first equation, which will be described in detail below. The goal
is to have G, approaches zero as ¢ — co. Consequently the limit (II, 4, G, 0) with
non-vanishing p solves (19). It then follows that there are two distinct stationary
solutions 6 = T'(IT + ) and 6 = T'(IT — ) of (2) with forcing g = AG.
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Denote
by = F<Hq + Mq)v gq = F<Hq - Mq)v 91,4 = A(Gq + éq)a 92,4 = A<Gq - éq)-

It is obvious that (64, g1,4) and (6, g2,4) satisfy the stationary forced active scalar
equation (18). We describe the construction from g-th to (g + 1)-th level and from
(¢ + 1)-th to (¢ + 2)-th level in the following.

We will design perturbations M,1; and Mo such that

Pag+1 = ftg + Mgi1, Hgp1 =g — Mgy,

fgt2 = pigt1 + Mgyo, Tlgro =Tlgp1 + Mgypo.
Straightforward computation shows that

D7 0011 = g1 = Mg + pgen = Iy + pg
= ’[’Iq = A_19q7
F710q+1 = Ng+1 = Hgp1 — g1 =1lg — prg = 2Mg4a
= ﬁq - 2Mq+1 == A_19q - 2Mq+1,
T 0g40 = ngra = Ugyo + pigro = M1 + prge1 + 2Mg o
= MNg+1 + 2Mq+2 = A_19q+1 + 2Mq+2,
1_‘_10q+2 = Ngt+2 = gy — pigre = g1 — pig41
= Tg+1 = A719q+1'

Let Ggq1, éq_H, Gg42 and éq+2 be the new stress errors respectively for the solu-
tions IIg41 and pgy1, Hgto and pgio. Applying (20) gives

VGyp1 =—vAT7'VMyy1 — (A5 V- Myyq + AMy 1V 7,)

! (21)
+2AMg 1 V-My1 + VG,
VGq+2 = VA771VMq+2 + (Anq+1VLMq+2 + AMq+2vLT}q+1) (22)
+ 2AM 12V Mo + VGyy1,
VGyp1 = — NI My + (D77, Myyq + DMy V47,)
_ (23)
+ (VGy = 20 My V4 My )
VG(H.Q == — A’yilvquJ’_Q + (FT]q+1VJ_Mq+2 + FMq+2anq+1) ( )
~ 24
+ (VGgi1 + 2T M2V My )
Similarly as in Section 2, M4 and M .o will be designed to ensure
VGy — 20 My VI Moy ~ Vi (25)
VGyi1 + 20 My oV Mo ~ ViV (26)

up to small errors, for some vector fields V41 and V.
The advantage of allowing external forcing relies on the property of this particular
scheme
Ng+1 = Ngs Tlg+2 = Tlq+1, for any even ¢ > 0. (27)
This directly improves the estimates for the Nash errors in (23) and (24) compared
to the case in Section 2.
The main iteration statement is
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Proposition 3.1. Assume \g > 1, 0 < v <2 —«a and o < 1. There exist b > 1
and 0 < 8 < 1 satisfying

2%(a—1)+1< B < min { Zb(z%_j)l_ L2 ;io‘l_ 3} (28)

such that, if (Hq,,uq,Gq,éq) satisfies (20) with Iy, pg € C* and
M, =Peer, Iy, ptg =Peor,ttg, Gq =Pcizn, Gy, Gy =Pcizy, G, (29)
IGallx <165, (30)
[Gqlles < Agdq, 5= B, (31)
1G]l x <4, (32)

there exits (ILgy1, g1, Gg+1, Ggr1) satisfying (20) with gyq, pgr1 € C, and
(29)-(32) satisfied with q replaced by q + 1.

3.2. Heuristics for the proof of Proposition 3.1. Based on the proof of Propo-
sition 2.3, Proposition 3.1 can be proved in a close analogous way as the Proposition
3.6 from [11] (or the iteration propositions from [10, 12]). To avoid repetition, we
only give the precise construction of M, 1 and M, 42, and provide heuristic analysis
to show the estimates claimed in Proposition 3.1.

The perturbations M,, 11 and M, o have the form

2
Myi1(x) =Y Peryy (a5411(2)) cos(BAg1€; - ),

j=1

(33)
2
Myr2(2) =Y Peyyy (a)q12(2) cos(5Ag426; - )
j=1
with the coefficient functions
1
V2. ., 11 G 2
aj»q+1 = 7>\q<‘,{1)\q2 5‘12 CO - Rj - bl
5 Ag0q
(34)

V2,1 1 G +1 :
Gjat2 = o AgiaAii10411 | €0+ R, m

for a constant ¢y > 100 such that the quantities under the square root are positive.
Such choice of the perturbations will make the cancellations (25) and (26) achieved,
similarly as shown in Section 2.

It is clear that

IPRNERS PR
| M| ~ /\q+1>\q2 0f, [ Mgia| ~ >‘q+2)‘§+15q2+1~ (35)
For « satisfying
1 B
a<l——+—,
2b + 2b
the perturbation M,, ;1 is in C* since
—1 \% % ab—b+Li-1p
ar1r1A 07 S A 7 TS L
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Thanks to (27), the error equation of (23) is essentially
VGyi1 = — N2V My + (D71 VE Mgy + T My V4, -1)
+ (VGy = 20 My V4 My ) (36)
=: VGp + VGy + VGo.

We observe that G p and éo can be estimated exactly as Gp and Go from Section
2. Hence we have

~ _9. 1.1
IGpllx S AFiAdoq,
1Gollx S AgiiAedqry 2ilog g + AgA 16q.
The essential difference compared to the non-forced case comes from the Nash error
Gn. Indeed, recalling 7,—1 = II;—1 — pg—1 and applying the inductive assumption
Iy—1, pg—1 € C*, we have
IT7g-1llee S ITTg 1 llzoe + [Tpg-1llze S AL~
and similarly
IV Tl S IV Tgaallpe + Vg1l S AT
Thus combining with (35) we obtain
1GNlx S IMntillzes (IV Tn-tllzee + D1 r)

1 y3s53 1-a
1o
< Agr1Ad 8¢ Ag—1-

Therefore we have

1Gorillx S NZENES7 + AL N80, 2] L 5 4 =L abgdyima
g+111X S Ng+17q Y%q q+17'q qrq-i-l 08 Tq+1 a2 g+19q ISP YLD

Again, to carry on the iteration process, we need to make sure that ||éq+1||x <
dg+1. Following a similar analysis for the parameters as in Section 2, we need to
impose

—1 y3s54y1-a
A ARSI S 6y

qg—1 ~
V=243 53 <
)‘q+1)‘q 0¢ S Og+1

-1 -2
/\q+1)\25qrq+1 log Tq+1 SJ 5q+1
-1
Ag+12a0g S Ogt1-
By the definitions of Ay, §, and rg, the system above is satisfied provided that

b3—b+i-18+1(1-a)<0
b3+b(y—2)+3—38<0
b3—2b+2—-5<0
bB—b+1-pB<0.

Comparing (37) with (17), the difference is in the first inequality. Note that the last
inequality of (37) gives the most stringent condition for 3, that is, 8 < 1. Hence
(37) yields essentially the same conditions on parameters as in Section 2 for the
unforced case.

Through the analysis above, we do not see an improvement on the regularity of
the weak solutions for the forced equation, constructed via the convex integration
scheme. The key observation is that, although the estimate for the Nash error can
be improved, the estimates for the oscillation errors can not be improved. This

(37)
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discovery exposes the intrinsic difference in the nonlinear structures between the
even active scalar equations and other fluid equations, like the odd active scalar
equations and the Euler equation.

Acknowledgments. The authors are grateful for the anonymous referees’ com-
ments and suggestions that have improved the manuscript.
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