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Abstract. We study a class of active scalar equations with even non-local
operator in the drift term. Non-trivial stationary weak solutions in the space
C0� are constructed using the iterative convex integration approach.

1. Introduction. We consider the active scalar equation on Td

@t✓ + u ·r✓ + ⇤�
✓ = 0,

u = T [✓],

r · u = 0

(1)

where ⇤ = (��)
1
2 and T is a Calderón-Zygmund operator with even Fourier symbol.

Since r · T [✓] = 0, without loss of generality, we assume

T [✓] = r⇥ ��1[✓]

where ��1 is the inverse operator of �. The operator � has Fourier symbol m(k)
which is odd and homogeneous of degree 1. Such active scalar equations with even
drift operator arise from several physical contexts, such as the incompressible porous
media (IPM), magneto-geostrophic (MG) model, etc. In these physical examples,
✓ denotes an unknown scalar function and u stands for the velocity field. In (1) a
dissipation term with generalized Laplacian is present, with � > 0.

Classical well-posedness problems have been studied for the aforementioned ac-
tive scalar equations in many articles, for instance, see [9, 15, 20] and references
therein. The current note concerns the non-uniqueness of weak solutions for (1).
It is known that uniqueness of a solution to a nonlinear PDE is only guaranteed
if the solution is regular enough. One usually does not expect uniqueness to hold
for weak solutions. Although there are di↵erent ways to show non-uniqueness, the
recent development of convex integration techniques first innovated by Nash [21] in
1950’s has shown it is a systematic and generic approach to construct weak solutions
for PDEs which violate uniqueness or physical conservation laws. The successful
implementation of convex integration schemes in PDEs started from the pioneering
work of De Lellis and Székelyhidi [13, 14] for Euler equations. Since then we have
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seen a real blossom of the techniques applied to many fluid equations with break-
through outcomes, including the resolution of the Onsager conjecture for the Euler
equations [1, 17, 16]. For more work in this regard, we refer the reader to the survey
paper [2].

Due to the special nonlinear structure of the active scalar equations, we face
more obstacles in exploiting the application of convex integration schemes to these
equations. One main di�culty is that there is not a suitable family of stationary
solutions as building blocks which possesses nice properties as those for the Euler
equations. Using the convex integration scheme within the Tartar framework, the
author of [22] constructed infinitely many bounded weak solutions for (1); non-
unique bounded weak solutions for the 2D IPM equation were also obtained in [7]
and [23]; it was shown the existence of non-unique mixing solutions for the 2D IPM
in some particular geometry settings in [6] and [8]. Obtaining non-unique weak
solutions for (1) in Hölder space was contributed in the work [18]. In particular, the
authors developed new ideas to realize the key cancellations in the iterative convex
integration process to achieve C

↵
x
regularity with ↵ <

1
4d+1 .

1.1. Main result. In this paper we will construct non-trivial stationary (time in-
dependent) weak solutions for (1) on Td for d � 2. The analysis is presented in 2D,
i.e. d = 2 for simplicity. Therefore we consider the stationary active scalar equation
on T2

u ·r✓ + ⇤�
✓ = 0,

u = T [✓] = r?��1[✓].
(2)

Denote P� by the standard Littlewood-Paley projection operator with frequency
support below the frequency �.

Definition 1.1. A function ✓ : T2 ! R is said to be a stationary weak solution of
(2) if

�
Z

T2

✓u ·r dx+

Z

T2

✓⇤�
 dx = 0

is satisfied for any function  2 C
1(T2) satisfying  = P⇤0 for some frequency

number ⇤0.

Our main result is:

Theorem 1.2. Let 0 < � < 2 � ↵ and ↵ < 1. There exists a non-trivial weak
solution ✓ of (2) with ⇤�1

✓ 2 C
↵(T2).

1.2. Relevant previous work. In fact, using the method of convex integration,
non-uniqueness has been obtained previously for stationary fluid equations, includ-
ing active scalar equations and Navier-Stokes equations. For the stationary Navier-
Stokes equations on Td with d � 4, it was shown in [19] that there exists a non-
trivial weak solution in L

2. Non-unique stationary weak solutions were constructed
in [5] (without external forcing) and [11] (with external forcing) for the surface
quasi-geostrophic (SQG) equation, which is of active scalar equation with an odd
drift operator. Comparing stationary equations to their evolutionary cases, it is
in general more challenging to construct weak solutions with high regularity, while
implementing the convex integration approach. The reason is that the time di-
mension can be regarded as additional flexibility, since the principal idea of convex
integration is to exploit the flexibility of the underlying equations.
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Although it is known from [18] that non-unique weak solutions with Hölder reg-
ularity exist for the evolutionary even active scalar equations without forcing, it
remains open to show non-uniqueness of weak solutions in L

2 or C↵ for ↵ � 0 for
the unforced stationary even active scalar equations. On the other hand, unlike the
SQG for which weak solutions can be defined in H

� 1
2 , it seems not applicable to

define weak solutions for even active scalar equations with negative regularity index.
This motivates the study of a particular type of weak solutions as in Definition 1.1.

In the direction of investigating forced equations within the framework of convex
integration, the flexibility of allowing a forcing has been revealed in [3, 4, 10, 11, 12].
In [3] the authors were able to obtain non-unique weak solutions with regularity
higher than Onsager’s critical 1

3 regularity for forced Euler equation. While non-
unique weak solutions with sharp regularity were constructed in [4, 12] for forced
SQG. Recently, the authors of [10] obtained non-unique weak solutions for time
dependent forced even active scalar equations in space C

0
t
C

↵
x
for ↵ <

1
2d+1 , which

has higher spatial regularity compared to the solutions obtained in [18]. However,
surprisingly, allowing an external forcing does not help to improve the regularity of
convex integration weak solutions for the stationary even active scalar equations.
This indicates that the nonlinear structures of the even and odd active scalar equa-
tions (and Euler equation) are intrinsically di↵erent.

1.3. Organization of the paper. We provide a proof of Theorem 1.2 in Section
2. We begin with a simple convex integration construction for the unforced active
scalar equation (2), which yields a sequence of approximating solutions {✓q} with
⇤�1

✓q 2 C
1�. We then conclude the convergence of the sequence gives a limit weak

solution for the active scalar equation (2) in the sense of Definition 1.1. It also
reveals the failure of constructing non-trivial L2 weak solutions for the stationary
even active scalar equation using current scheme. In Section 3, we present the sum-
di↵erence framework of convex integration for the forced equation (18) and provide
heuristics to show that the regularity of convex integration weak solutions does not
improve the claimed regularity in Theorem 1.2 for the unforced equation. We omit
the detail of a complete proof in the forced case, as the proof would be a slight
modification of the proof for the forced stationary SQG equation in [11].

2. Construction for the unforced active scalar equation. In this section
we construct approximating solutions for the active scalar equation (2). Denote
f = ��1[✓] and hence ✓ = �f . Equation (2) with g ⌘ 0 can be written as

r · (r?
f�f) + ⇤��f = 0 (3)

and further in the form

r?
f�f � ⇤��2r�f = r?

V (4)

for some vector field V . The relaxed equation of (4) is

r?
fq�fq � ⇤��2r�fq = rGq +r?

Vq, q 2 N. (5)

The iteration process relies on constructing an appropriate increment Wq+1 =
fq+1 � fq to obtain a new solution fq+1 associated with a new stress field Gq+1.
That is, (fq+1, Gq+1) satisfies

r?
fq+1�fq+1 � ⇤��2r�fq+1 = rGq+1 +r?

Vq+1 (6)



4 MIMI DAI AND CHAO WU

for a new vector Vq+1 which does not play a role after taking ÷ on (6). It is not
di�cult to verify

rGq+1 =
�
r?

fq�Wq+1 +r?
Wq+1�fq

�
� ⇤��2r�Wq+1

+
�
r?

Wq+1�Wq+1 +rGq

�

= : rGN +rGD +rGO

(7)

where GN , GD and GO stand for the Nash error, dissipation error and oscillation
error, respectively. The essential goal of constructing Wq+1 is to ensure Gq+1 is
smaller than Gq for all q � 0, which can be achieved if

r?
Wq+1�Wq+1 +rGq

is small. In other words, the purpose of Wq+1 is to reduce the error Gq.

2.1. Main iteration. Fixe �0 � 1. For b > 1 and 0 < � < 1, denote

�q = d�b
q

0 e, �q = �
��

q
, rq = (�q�q+1)

1
2 .

Inductively we expect that fq and Gq are localized to frequency ⇠ �q, and the size
of Gq is �q, i.e. |Gq| ⇠ �q.

We first consider the single plane wave f(x) = a(x) cos(�⇠ · x). We can write

�f =
1

2
�[aei�⇠·x] +

1

2
�[ae�i�⇠·x]

=
1

2
�+[a]e

i�⇠·x +
1

2
��[a]e

�i�⇠·x

with

\�+[a] = m(k + �⇠)ba, \��[a] = m(k � �⇠)ba.

We further rearrange the terms in �f to have

�f =
1

2
m(�⇠)a(x)ei�⇠·x +

1

2
m(��⇠)a(x)e�i�⇠·x

+
1

2
(�+[a]�m(�⇠)a(x)) ei�⇠·x +

1

2
(��[a]�m(��⇠)a(x)) e�i�⇠·x

= im(�⇠)a(x) sin(�⇠ · x) + T1,�⇠[a] cos(�⇠ · x) + T2,�⇠[a] sin(�⇠ · x)

where we used the odd property of m, with

\T1,�⇠[a] = (m(k + �⇠) +m(k � �⇠))ba,
\T2,�⇠[a] = (m(k + �⇠)�m(k � �⇠)� 2m(�⇠))ba.

We observe \T1,�⇠[a] ⇠ 2m(�⇠)ba up to leading order term, which is the symbol for

2�a approximately; while \T2,�⇠[a] represents a small error term, since m is odd.
On the other hand we have

r?
f = �a(x)�⇠? sin(�⇠ · x) +r?

a(x) cos(�⇠ · x).
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Therefore,

r?
f�f =� 1

2
i�a

2(x)m(�⇠)⇠?

+
1

2
i�a

2(x)m(�⇠)⇠? cos(2�⇠ · x) + 1

2
im(�⇠)a(x)r?

a(x) sin(2�⇠ · x)

+

✓
�1

2
�⇠

?
a(x)T1,�⇠[a] +

1

2
r?

a(x)T2,�⇠[a]

◆
sin(2�⇠ · x)

+r?
a(x)T1,�⇠[a] cos

2(�⇠ · x)� �⇠
?
a(x)T2,�⇠[a] sin

2(�⇠ · x).
The first term on the right hand side is a low frequency term which is the leading
order term and is the source to cancel the aforementioned error Gq.

To realize the cancellation, we need the following decomposition lemma.

Lemma 2.1. Let G 2 C
1
0 (T2) be a vector field. Take ⇠1 = ( 35 ,

4
5 ) and ⇠2 = (1, 0).

There exist operators R1 and R2 of degree 1 such that the decomposition
2X

j=1

im(⇠j)⇠
?
j
RjG = rG+r?

V (8)

holds for some vector field V .

Proof. Let R1 and R2 be the operators with Fourier symbols

cR1(k) = Ak1 +Bk2,
cR2(k) = Ck1 +Dk2

with coe�cients A,B,C,D to be determined. Acting r· on the identity (8) and
taking Fourier transform, we need to solve

2X

j=1

i
2
m(⇠j)⇠

?
j
· kcRj

bG = �|k|2 bG

which is equivalent to

m(⇠1)(�
4

5
k1 +

3

5
k2)cR1 +m(⇠2)k2cR2 = |k|2.

It is easy to find that the following conditions
8
><

>:

�4Am(⇠1) = 5,

3Bm(⇠1) + 5Dm(⇠2) = 5,

(3A� 4B)m(⇠1) + 5Cm(⇠2) = 0

(9)

guarantee the identity is satisfied. We note for m(⇠1) 6= 0 and m(⇠2) 6= 0, there are
more than one solutions for the coe�cients. For instance we can choose

A = � 5

4m(⇠1)
, B =

5

3m(⇠1)
, C =

25

12m(⇠2)
, D =

4

5m(⇠2)
.

It concludes the proof.

We also recall a technical lemma from [5] to be used in some of the estimates.

Lemma 2.2. [5] Let a 2 L
1(T2) with zero mean and supp (â) ⇢ {|k|  r} for

µ � 10. Let T be the Fourier multiplier defined by dT [f ](k) = m(k)f̂(k) for a
homogeneous function m 2 C

1(R2
/{0}) of degree 0. Then

kT [a]kL1 . kakL1 log r
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up to a constant depending on a.

Let X be the space equipped with the norm

kGkX = kGkL1 +
2X

j=1

kRjGkL1 .

Denote P⇡� by the standard Littlewood-Paley projection operator localized around
the frequency �. The main iteration statement is given below.

Proposition 2.3. Let �0 � 1, 0 < � < 2 � ↵ and ↵ < 1. There exist b > 1 and
0 < � < 1 satisfying

2b(↵� 1) + 1 < � < min

⇢
2b(2� �)� 1

2b� 1
,
2b+ 2↵� 3

2b� 1

�
(10)

such that, if (fq, Gq, Vq) satisfies (5) with fq 2 C
↵ and

fq = P6�nfq, Gq = P12�nGq, (11)

kGqkX  �q, (12)

kGqkCs . �
s

q
�q, s � �, (13)

there exits (fq+1, Gq+1, Vq+1) satisfying (5) with fq+1 2 C
↵, and (11)-(13) satisfied

with q replaced by q + 1.

Proof. We first consider the increment

Wq+1(x) =
2X

j=1

aj,q+1(x) cos(5�q+1⇠j · x)

to motivate the choice of the coe�cient functions aj,q+1(x) in the following. Similar
analysis as before, we have

�Wq+1 =
2X

j=1

im(5�q+1⇠j)aj,q+1 sin(5�q+1⇠j · x) +
2X

j=1

T1,5�q+1⇠j [aj,q+1] cos(5�q+1⇠j · x)

+
2X

j=1

T2,5�q+1⇠j [aj,q+1] sin(5�q+1⇠j · x)

and

r?
Wq+1 =�

2X

j=1

5�q+1⇠
?
j
aj,q+1 sin(5�q+1⇠j · x) +

2X

j=1

r?
aj,q+1 cos(5�q+1⇠j · x).
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It follows that

r?
Wq+1�Wq+1 =�

2X

j=1

25i�2
q+1m(⇠j)⇠

?
j
a
2
j,q+1 sin

2(5�q+1⇠j · x)

�
X

j 6=j0

25i�2
q+1m(⇠j)⇠

?
j0aj,q+1aj0,q+1 sin(5�q+1⇠j · x) sin(5�q+1⇠j0 · x)

+
X

j,j0

5i�q+1m(⇠j)aj,q+1r?
aj0,q+1 sin(5�q+1⇠j · x) cos(5�q+1⇠j0 · x)

�
X

j,j0

5�q+1T1,5�q+1⇠j [aj,q+1]⇠
?
j0aj0,q+1 cos(5�q+1⇠j · x) sin(5�q+1⇠j0 · x)

+
X

j,j0

T1,5�q+1⇠j [aj,q+1]r?
aj0,q+1 cos(5�q+1⇠j · x) cos(5�q+1⇠j0 · x)

�
X

j,j0

5�q+1T2,5�q+1⇠j [aj,q+1]⇠
?
j0aj0,q+1 sin(5�q+1⇠j · x) sin(5�q+1⇠j0 · x)

+
X

j,j0

T2,5�q+1⇠j [aj,q+1] sin(5�q+1⇠j · x)r?
aj0,q+1 cos(5�q+1⇠j0 · x)

=: eJ1 +rJ2 +rJ3 +rJ4 +rJ5 +rJ6 +rJ7.

The first term eJ1 can be further written as

eJ1 =�
2X

j=1

25

2
i�

2
q+1m(⇠j)⇠

?
j
a
2
j,q+1 +

2X

j=1

25

2
i�

2
q+1m(⇠j)⇠

?
j
a
2
j,q+1 cos(10�q+1⇠j · x)

= : eJ1,1 +rJ1,2

where the low frequency term eJ1,1 will be used to cancel the error Gq from the
previous level. Indeed, in view of Lemma 2.1, we choose

aj,q+1 =

p
2

5
�
�1
q+1�

1
2
q �

1
2
q

✓
Rj

Gq

�q�q
+ c0

◆ 1
2

(14)

for a constant c0 such that RjGq + �q�qc0 > 0 for j = 1, 2. We observe

|aj,q+1| ⇠ �
�1
q+1�

1
2
q �

1
2
q

since Gq is localized to frequency ⇠ �q with size �q and Rj is of order 1. To ensure
Wq+1 2 C

↵, we impose the condition

�
↵

q+1�
�1
q+1�

1
2
q �

1
2
q . 1.

It thus follows

↵ < 1� 1

2b
+
�

2b
. (15)

To make sure Wq+1 is localized to frequency ⇡ �q+1, the final form of the incre-
ment is

Wq+1(x) =
2X

j=1

P⇡�q+1 [aj,q+1(x) cos(5�q+1⇠j · x)] .

In view of (14), we have

kWq+1kX . �
�1
q+1�

1
2
q �

1
2
q . (16)
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We proceed to the estimates of the errors GN , GD and GO in (7). Note

rGO = ( eJ1,1 +rGq) +rJ1,2 +rJ2 +rJ3 +rJ4 +rJ5 +rJ6 +rJ7.

We also observe that the items rGN ,rGD and rGO have zero mean.
To estimate GN , applying the inverse operator of the gradient, we obtain

GN = ��1r ·
�
r?

fq�Wq+1 +r?
Wq+1�fq

�

where the right hand side is localized to ⇡ �q+1. Hence, since � is of order 1, it
follows from (16)

kGNkX . kWq+1kL1
�
kr?

fqkL1 + k�fqkL1
�

. �
�1
q+1�

1
2
q �

1
2
q �

1�↵

q

where we used fq 2 C
↵ and kr?

fqkC0 + k�fqkC0 . �
1�↵
q

.
Regarding GD we have

GD = �⇤��2�Wq+1,

and
kGDkX . �

��1
q+1kWq+1kX . �

��1
q+1�

�1
q+1�

1
2
q �

1
2
q . �

��2
q+1�

1
2
q �

1
2
q .

The estimate of GO takes more e↵ort. Recall that from the analysis above

eJ1,1 = �
2X

j=1

25

2
i�

2
q+1m(⇠j)⇠

?
j
(Prq+1aj,q+1)

2

with rq+1 = (�q�q+1)
1
2 . In view of the choice aj,q+1 in (14), we apply the decom-

position Lemma 2.1 and observe the cancelation to obtain that

eJ1,1 +rGq = �
2
q+1

X

j

m(⇠j)⇠
?
j
P4rq+1

�
�2aj,q+1P>rq+1aj,q+1 + (P>rq+1aj,q+1)

2
�
.

Hence, by the definition of aj,q+1 and Lemma 2.2 we deduce

k��1r · ( eJ1,1 +rGq)kX
. �

�1+2
q+1 (log rq+1)

�
kaj,q+1kL1kP>rq+1aj,q+1kL1 + kP>rq+1aj,q+1k2L1

�

. �
�1+2
q+1 (log rq+1)

�
kaj,q+1kL1r

�2
q+1k�aj,q+1kL1 + r

�4
q+1k�aj,q+1k2L1

�

. �q+1(log rq+1)�
�1
q+1�

1
2
q �

1
2
q r

�2
q+1�

2
q
�
�1
q+1�

1
2
q �

1
2
q

. �
�1
q+1�

3
q
�qr

�2
q+1 log rq+1.

Similarly as before, we note

J1,2 = ��1r ·
X

j

25i

2
�
2
q+1m(⇠j)⇠

?
j
a
2
j,q+1 cos(10�q+1⇠j · x),

and
kJ1,2kX . �

�1+2
q+1 kaq+1k2C0 . �q+1�

�2
q+1�q�q.

Moreover we can write

J2 = ��1r ·
X

j 6=j0

25i�2
q+1m(⇠j)⇠

?
j0aj,q+1aj0,q+1 sin(5�q+1⇠j · x) sin(5�q+1⇠j0 · x),

J3 = ��1r ·
X

j 6=j0

5i�q+1m(⇠j)aj,q+1r?
aj0,q+1 sin(5�q+1⇠j · x) cos(5�q+1⇠j0 · x),

and thus
kJ2kX . �

�1+2
q+1 kaq+1k2C0 . �q+1�

�2
q+1�q�q,
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kJ3kX . �
�1+1
q+1 �qkaq+1k2C0 . �q�

�2
q+1�q�q.

As observed earlier, the Fourier symbol of T1,�⇠[a] satisfies \T1,�⇠[a] ⇠ 2m(�⇠)ba. We
thus have

kT1,5�q+1⇠j [aj,q+1]kX . |m(5�q+1⇠j)|kaj,q+1kX . �q+1|m(⇠j)|kaj,q+1kL1 ,

which implies

kJ4kX . �
�1+1
q+1 �q+1kaj,q+1k2L1 . �q+1�

�2
q+1�q�q . �

�1
q+1�q�q,

kJ5kX . �
�1
q+1�q�q+1kaj,q+1k2L1 . �q�

�2
q+1�q�q . �

�2
q+1�

2
q
�q.

We also observe that T2,· is a minor error term compared to T1,·. Hence we have

kJ6kX . kJ4kX . �
�1
q+1�q�q,

kJ7kX . kJ5kX . �
�2
q+1�

2
q
�q.

Summarizing the estimates above gives the estimate for the new error

kGq+1kX . �
�1
q+1�

1
2
q �

1
2
q �

1�↵

q
+ �

��2
q+1�

1
2
q �

1
2
q + �

�1
q+1�

3
q
�qr

�2
q+1 log rq+1 + �

�1
q+1�q�q.

Therefore, to show the estimate (12) holds for q + 1, we only need to verify
8
>>>><

>>>>:

�
�1
q+1�

1
2
q �

1
2
q �

1�↵
q

. �q+1

�
��2
q+1�

1
2
q �

1
2
q . �q+1

�
�1
q+1�

3
q
�qr

�2
q+1 log rq+1 . �q+1

�
�1
q+1�q�q . �q+1

which is equivalent to, (recalling rq+1 = (�q�q+1)
1
2 )

8
>>><

>>>:

b� � b+ 1
2 � 1

2� + 1� ↵ < 0

b� + b(� � 2) + 1
2 � 1

2� < 0

b� � 2b+ 2� � < 0

b� � b+ 1� � < 0.

(17)

Since ↵ < 1� 1
2b +

�

2b from (15), it follows from the first inequality of (17) that

� < 1 +
↵� 1

b� 1
2

< 1 +
� 1

2b +
�

2b

b� 1
2

which is equivalent to
(2b+ 1)(b� 1)(� � 1) < 0.

It is satisfied for all b > 1 and 0 < � < 1. Hence when b = 1+, it yields ↵ <

1� 1
2 + 1

2 < 1. The second inequality of (17) gives

� < 2� � � 1

2b
+
�

2b
<

3

2
� 1

2
�

for b = 1+. The third and forth inequalities of (17) yield

(� � 2)(b� 1) < 0, (� � 1)(b� 1) < 0

which are satisfied for all b > 1 and 0 < � < 1. On the other hand, we notice the
conditions on the parameters of the proposition are compatible with (17). Hence
the estimate (12) for q + 1 is verified.

The claim fq+1 2 C
↵ follows from (15) and (16). The frequency support property

of (11) for q + 1 follows directly from the definition of Wq+1. While the estimate
(13) for q + 1 follows from (12) with q + 1 and (11) with q + 1.
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2.2. Proof of Theorem 1.2. Under the assumptions on the parameters as in
Proposition 2.3, we first choose f0 = 0 and G0 = 0 which satisfies equation (5) with
a zero-vector field V0. Note f0 and G0 also satisfy (11)-(13). Applying Proposition
2.3 inductively we obtain a sequence of solutions {fq, Gq, Vq} to (5) satisfying (11)-
(13) and fq 2 C

↵. Taking the limit q ! 1, it is clear that Gq ! 0 in L
1. We

need to show that as q ! 1, there is a limit function f of the sequence {fq} such
that ✓ = �f is a weak solution of (2) in the sense of Definition 1.1. Indeed, for any
 2 C

1(T2) with  = P⇤0 for some frequency number ⇤0, we have
Z

T2

✓quq ·r dx =

Z

T2

P⇤0(✓quq) ·r dx ! 0 as q ! 1,

since P⇤0(✓quq) ! 0 in L
1, due to the property of compact support in frequency

space.

3. The forced stationary equation. In this section we move on to construct
non-unique weak solutions for the forced stationary active scalar equation

u ·r✓ + ⇤�
✓ = g,

u = T [✓] = r?��1[✓].
(18)

We first describe the convex integration scheme applied to the sum-di↵erence forma-
tion of the forced equation, which was previously exploited in [10, 11, 12]. Then we
state the main iteration proposition, which will lead to the conclusion of existence
of non-unique weak solutions with regularity consistent as stated in the proposi-
tion. The purpose is to show that, peculiarly, the presence of a forcing does not
necessarily improve the regularity of convex integration weak solutions.

3.1. Sum-di↵erence formulation. Assume (✓, g1) and (e✓, g2) are two solutions
of (18). Denote

⌘ = ��1
✓, e⌘ = ��1e✓, ⇧ =

1

2
(⌘ + e⌘), µ =

1

2
(⌘ � e⌘),

and
p = �⇧, m = �µ, T [p] = r?⇧, T [m] = r?

µ.

It follows from (18) that

�⇧r?⇧+ �µr?
µ� ⇤��2r�⇧ = rG+r?

V,

�µr?⇧+ �⇧r?
µ� ⇤��2r�µ = r eG+r? eV

(19)

with vector fields G and eG satisfying �G = 1
2 (g1 + g2) and � eG = 1

2 (g1 � g2), and

some vector fields V and eV . The relaxed system of (19) is

�⇧qr?⇧q + �µqr?
µq � ⇤��2r�⇧q = rGq +r?

Vq,

�µqr?⇧q + �⇧qr?
µq � ⇤��2r�µq = r eGq +r? eVq.

(20)

To obtain a sequence of approximating solutions {(⇧q, µq, Gq,
eGq)}q�0 of (20), we

will perform an active convex integration scheme to the second equation and a pas-
sive scheme for the first equation, which will be described in detail below. The goal
is to have eGq approaches zero as q ! 1. Consequently the limit (⇧, µ,G, 0) with
non-vanishing µ solves (19). It then follows that there are two distinct stationary

solutions ✓ = �(⇧+ µ) and e✓ = �(⇧� µ) of (2) with forcing g = �G.
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Denote

✓q = �(⇧q + µq), e✓q = �(⇧q � µq), g1,q = �(Gq + eGq), g2,q = �(Gq � eGq).

It is obvious that (✓q, g1,q) and (e✓q, g2,q) satisfy the stationary forced active scalar
equation (18). We describe the construction from q-th to (q + 1)-th level and from
(q + 1)-th to (q + 2)-th level in the following.

We will design perturbations Mq+1 and Mq+2 such that

µq+1 = µq +Mq+1, ⇧q+1 = ⇧q �Mq+1,

µq+2 = µq+1 +Mq+2, ⇧q+2 = ⇧q+1 +Mq+2.

Straightforward computation shows that

��1
✓q+1 = ⌘q+1 = ⇧q+1 + µq+1 = ⇧q + µq

= ⌘q = ⇤�1
✓q,

��1e✓q+1 = e⌘q+1 = ⇧q+1 � µq+1 = ⇧q � µq � 2Mq+1

= e⌘q � 2Mq+1 = ⇤�1e✓q � 2Mq+1,

��1
✓q+2 = ⌘q+2 = ⇧q+2 + µq+2 = ⇧q+1 + µq+1 + 2Mq+2

= ⌘q+1 + 2Mq+2 = ⇤�1
✓q+1 + 2Mq+2,

��1e✓q+2 = e⌘q+2 = ⇧q+2 � µq+2 = ⇧q+1 � µq+1

= e⌘q+1 = ⇤�1e✓q+1.

Let Gq+1, eGq+1, Gq+2 and eGq+2 be the new stress errors respectively for the solu-
tions ⇧q+1 and µq+1, ⇧q+2 and µq+2. Applying (20) gives

rGq+1 =� ⌫⇤��1rMq+1 �
�
⇤e⌘qr?

Mq+1 + ⇤Mq+1r?e⌘q
�

+ 2⇤Mq+1r?
Mq+1 +rGq,

(21)

rGq+2 = ⌫⇤��1rMq+2 +
�
⇤⌘q+1r?

Mq+2 + ⇤Mq+2r?
⌘q+1

�

+ 2⇤Mq+2r?
Mq+2 +rGq+1,

(22)

r eGq+1 =� ⇤��1r�Mq+1 +
�
�e⌘qr?

Mq+1 + �Mq+1r?e⌘q
�

+
⇣
r eGq � 2�Mq+1r?

Mq+1

⌘
,

(23)

r eGq+2 =� ⇤��1r�Mq+2 +
�
�⌘q+1r?

Mq+2 + �Mq+2r?
⌘q+1

�

+
⇣
r eGq+1 + 2�Mq+2r?

Mq+2

⌘
.

(24)

Similarly as in Section 2, Mq+1 and Mq+2 will be designed to ensure

r eGq � 2�Mq+1r?
Mq+1 ⇠ r?

Vq+1 (25)

r eGq+1 + 2�Mq+2r?
Mq+2 ⇠ r?

Vq+2 (26)

up to small errors, for some vector fields Vq+1 and Vq+2.
The advantage of allowing external forcing relies on the property of this particular

scheme
⌘q+1 = ⌘q, e⌘q+2 = e⌘q+1, for any even q � 0. (27)

This directly improves the estimates for the Nash errors in (23) and (24) compared
to the case in Section 2.

The main iteration statement is
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Proposition 3.1. Assume �0 � 1, 0 < � < 2 � ↵ and ↵ < 1. There exist b > 1
and 0 < � < 1 satisfying

2b(↵� 1) + 1 < � < min

⇢
2b(2� �)� 1

2b� 1
,
2b+ 2↵� 3

2b� 1

�
(28)

such that, if (⇧q, µq, Gq,
eGq) satisfies (20) with ⇧q, µq 2 C

↵ and

⇧q = P6�q⇧q, µq = P6�qµq, Gq = P12�qGq,
eGq = P12�q

eGn, (29)

kGqkX  1� �

1
2
q , (30)

kGqkCs . �
s

q
�q, s � �, (31)

k eGqkX  �q (32)

there exits (⇧q+1, µq+1, Gq+1,
eGq+1) satisfying (20) with ⇧q+1, µq+1 2 C

↵, and
(29)-(32) satisfied with q replaced by q + 1.

3.2. Heuristics for the proof of Proposition 3.1. Based on the proof of Propo-
sition 2.3, Proposition 3.1 can be proved in a close analogous way as the Proposition
3.6 from [11] (or the iteration propositions from [10, 12]). To avoid repetition, we
only give the precise construction of Mn+1 and Mn+2, and provide heuristic analysis
to show the estimates claimed in Proposition 3.1.

The perturbations Mn+1 and Mn+2 have the form

Mq+1(x) =
2X

j=1

Prq+1 (aj,q+1(x)) cos(5�q+1⇠j · x),

Mq+2(x) =
2X

j=1

Prq+2 (aj,q+2(x)) cos(5�q+2⇠j · x)

(33)

with the coe�cient functions

aj,q+1 =

p
2

5
�
�1
q+1�

1
2
q �

1
2
q

 
c0 �Rj

 
eGq

�q�q

!! 1
2

,

aj,q+2 =

p
2

5
�
�1
q+2�

1
2
q+1�

1
2
q+1

 
c0 +Rj

 
eGq+1

�q+1�q+1

!! 1
2

(34)

for a constant c0 � 100 such that the quantities under the square root are positive.
Such choice of the perturbations will make the cancellations (25) and (26) achieved,
similarly as shown in Section 2.

It is clear that

|Mq+1| ⇠ �
�1
q+1�

1
2
q �

1
2
q , |Mq+2| ⇠ �

�1
q+2�

1
2
q+1�

1
2
q+1. (35)

For ↵ satisfying

↵ < 1� 1

2b
+
�

2b
,

the perturbation Mn+1 is in C
↵ since

�
↵

q+1�
�1
q+1�

1
2
q �

1
2
q . �

↵b�b+ 1
2�

1
2�

q . 1.
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Thanks to (27), the error equation of (23) is essentially

r eGq+1 =� ⇤��2r�Mq+1 +
�
�e⌘q�1r?

Mq+1 + �Mq+1r?e⌘q�1

�

+
⇣
r eGq � 2�Mq+1r?

Mq+1

⌘

=: r eGD +r eGN +r eGO.

(36)

We observe that eGD and eGO can be estimated exactly as GD and GO from Section
2. Hence we have

k eGDkX . �
��2
q+1�

1
2
q �

1
2
q ,

k eGOkX . �
�1
q+1�

3
q
�qr

�2
q+1 log rq+1 + �q�

�1
q+1�q.

The essential di↵erence compared to the non-forced case comes from the Nash error
eGN . Indeed, recalling e⌘q�1 = ⇧q�1 � µq�1 and applying the inductive assumption
⇧q�1, µq�1 2 C

↵, we have

k�e⌘q�1kL1 . k�⇧q�1kL1 + k�µq�1kL1 . �
1�↵

q�1

and similarly

kr?e⌘q�1kL1 . kr?⇧q�1kL1 + kr?
µq�1kL1 . �

1�↵

q�1 .

Thus combining with (35) we obtain

k eGNkX . kMn+1kL1
�
kr?e⌘n�1kL1 + k�e⌘n�1kL1

�

. �
�1
q+1�

1
2
q �

1
2
q �

1�↵

q�1 .

Therefore we have

k eGq+1kX . �
��2
q+1�

1
2
q �

1
2
q + �

�1
q+1�

3
q
�qr

�2
q+1 log rq+1 + �q�

�1
q+1�q + �

�1
q+1�

1
2
q �

1
2
q �

1�↵

q�1 .

Again, to carry on the iteration process, we need to make sure that k eGq+1kX .
�q+1. Following a similar analysis for the parameters as in Section 2, we need to
impose 8

>>>><

>>>>:

�
�1
q+1�

1
2
q �

1
2
q �

1�↵

q�1 . �q+1

�
��2
q+1�

1
2
q �

1
2
q . �q+1

�
�1
q+1�

3
q
�qr

�2
q+1 log rq+1 . �q+1

�
�1
q+1�q�q . �q+1.

By the definitions of �q, �q and rq, the system above is satisfied provided that
8
>>><

>>>:

b� � b+ 1
2 � 1

2� + 1
b
(1� ↵) < 0

b� + b(� � 2) + 1
2 � 1

2� < 0

b� � 2b+ 2� � < 0

b� � b+ 1� � < 0.

(37)

Comparing (37) with (17), the di↵erence is in the first inequality. Note that the last
inequality of (37) gives the most stringent condition for �, that is, � < 1. Hence
(37) yields essentially the same conditions on parameters as in Section 2 for the
unforced case.

Through the analysis above, we do not see an improvement on the regularity of
the weak solutions for the forced equation, constructed via the convex integration
scheme. The key observation is that, although the estimate for the Nash error can
be improved, the estimates for the oscillation errors can not be improved. This
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discovery exposes the intrinsic di↵erence in the nonlinear structures between the
even active scalar equations and other fluid equations, like the odd active scalar
equations and the Euler equation.
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