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Abstract. We consider forced active scalar equations with even and homoge-
neous degree 0 drift operator on Td. Inspired by the non-uniqueness construc-
tion for dyadic fluid models [17, 23], by implementing a sum-difference convex
integration scheme we obtain non-unique weak solutions for the active scalar
equation in space C

0
t C

↵
x with ↵ <

1
2d+1 . Without external forcing, Isett and

Vicol [30] constructed non-unique weak solutions for such active scalar equa-
tions with spatial regularity C

↵
x for ↵ <

1
4d+1 .
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1. Introduction

1.1. Background. The active scalar equation with external forcing
@t✓ + u ·r✓ =� ⌫⇤�✓ + f,

u = T [✓],

r · u = 0

(1.1)

describes a number of physical phenomena arising in fluid dynamics. The unknown
✓ is a real-valued scalar function, while u is the drift velocity defined from ✓ through
the nonlocal Zygmund operator T . The given function f denotes the external
buoyancy forcing. The parameter ⌫ � 0 is the dissipation coefficient, and � > 0
indicates the strength of the dissipation. The operator T has Fourier symbol m(⇠)
which is even, homogeneous of degree 0, and satisfies ⇠ · m(⇠) = 0. We consider
(1.1) on Td ⇥ [0,1) with d � 2.

Particular physical examples of (1.1) with even drift operators include the in-
compressible porous media (IPM) equation [1, 16] and the magnetogeostrophic
(MG) equation [25, 33, 34]. These physical models have attracted attention due to
their application in various physics contexts and their connection to hydrodynamic
equations.

The class of active scalar equations with odd drift operators, including the surface
quasi-geostrophic equation (SQG) [13], has also been extensively studied in the
literature. The different symmetry features of the even and odd classes result in
different ill/well-posedness theories. The cancellation property for the odd class of
scalar equations is beneficial in establishing well-posedness, see [7, 14, 31, 32, 35];
while such cancellation structure is absent for the even class. The main objective of
this paper is to investigate the ill-posedness phenomena for (1.1) with even operators
T through the lens of convex integration techniques.

M.D. is partially supported by the NSF grants DMS–2009422 and DMS–2308208.
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A pair (✓, u) is a weak solution of (1.1) if the equations in (1.1) are satisfied in
the distributional sense. In the inviscid case ⌫ = 0, the existence of global weak
solution for the active scalar equation with even operators is a challenging problem
in the framework of classical energy method. Nevertheless, it was shown in [36] that
there are infinitely many bounded weak solutions for (1.1) with ⌫ = 0 and f ⌘ 0 via
the application of convex integration techniques, which were developed for Euler
equations in [20, 22]. In separate works [15, 37], non-unique bounded weak solutions
were also constructed for the 2D IPM equation based on the convex integration
method. In the recent work [8] for the 2D IPM, the authors obtained infinitely
many mixing solutions in Sobolev space by combining convex integration, contour
dynamics and pseudodifferential operators techniques. Similar result for the 2D
IPM with curved interfaces was established in [10]. We emphasize that the convex
integration method in the aforementioned works is rooted in the Tartar framework
through the concept of subsolution. In particular, the solutions constructed in
[15, 36, 37] are in the space L1

t,x.
In the time line of the progress toward solving Onsager’s conjecture (verifying 1

3
Hölder regularity threshold for energy conservation) for the Euler equation, it was
first shown the existence of bounded weak solutions violating the energy conserva-
tion in [22], then improvements were obtained in [12, 20, 21, 27, 2, 3] by producing
continuous and C↵ dissipative solutions for ↵ < 1

5 . Eventually dissipative solutions
with spatial regularity C↵ for any ↵ < 1

3 were constructed in [28]. In this de-
velopment, the improvement from constructing bounded weak solutions to Hölder
continuous solutions relies on a crucial cancellation property which involves the use
of stationary plane wave solutions for the Euler equation. The benefit of taking
such plane waves as building blocks is that interference terms between different
waves can be controlled.

Coming back to active scalar equations with even drift operators, an analogous
Onsager’s conjecture is that 1

3 spatial regularity is expected to guarantee energy
conservation for the solution. However, it is not trivial to adapt the ideas for the
Euler equations in the hope of obtaining wild weak solutions that are continuous
or C↵ for ↵ > 0. The obstacle is that interference terms in different waves for
active scalar equations can not be controlled efficiently due to the lack of a similar
cancellation structure as that for the Euler equation. Remarkably the authors of
[30] discovered a new mechanism for producing cancellations between overlapping
waves for active scalar equations with even operators, and constructed non-unique
dissipative solutions in C↵

x with ↵ < 1
4d+1 for (1.1) with ⌫ = 0 and f ⌘ 0. The

cancellation comes from the vanishing of self-interaction terms which is due to the
property ⇠·m(⇠) = 0 (the divergence free condition). Such a cancellation determines
that the iteration convex integration scheme is essentially based on one dimensional
oscillations. Hence considering the problem in d-dimension, i.e. on Td, requires d
stages to correct the stress error in the iteration step from Rq to Rq+1. This explains
why the spatial regularity obtained in [30] depends on dimension, which appears to
be counter intuitive in some sense since one expects to have more flexibility in the
higher dimensional case.

We note that the forced surface quasi-geostrophic (SQG) equation (an active
scalar equation with odd drift operator) was recently studied in [6, 18, 19]. For
the forced stationary SQG, it was shown that there are more than one solutions
in the space C↵

x with ↵ < � 1
4 in [18]. As a contrast, a non-trivial weak solution
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was constructed in C↵
x with ↵ < � 1

3 for stationary SQG without external forcing in
[11]. For the evolutionary SQG without external forcing, non-unique weak solutions
with spatial regularity C↵

x for ↵ < � 1
5 were constructed independently in [4] and

[29]. While for the forced evolutionary SQG, the authors of [6] and [19] recently
constructed non-unique weak solutions with spatial regularity C↵

x for ↵ < 0. The
construction of [6] is in the framework of [4] and the construction of [19] is in
the framework of [29]. Moreover in both [18] and [19], the authors exploit the
flexibility due to the presence of forcing through the sum-difference formulation of
two solutions for the underlying system, which was inspired by [17, 23]. Such sum-
difference formulation will be adapted in the current paper as well. More details
will be provided in Section 3.

Comparing the active scalar equations with even and odd drift operators, we
observe that it seems much harder to construct weak solutions with higher regularity
that violate uniqueness and the energy law in the odd case. The reason is that the
cancellation property in the odd case presents an obstruction, see [4].

Among the active scalar equations with even operator, the MG equation is of
particular interest since the operator T has an unbounded region in the Fourier
space (c.f. [26]). Due to the unboundedness and evenness of T , ill-posedness for
(1.1) with ⌫ = 0, f ⌘ 0 and the MG operator T was shown in [26] in the sense
that there is no Lipschitz solutions map at the initial time. While when ⌫ > 0,
the unforced MG equation was shown well-posed in [25] since the diffusion term
plays a dominant role. In the case of fractional diffusion for the MG equation, i.e.
(1.1) with ⌫ > 0 and f ⌘ 0, the authors of [24] identified a threshold value � = 1
by proving that: the MG equation with � 2 (1, 2) is locally well-posed, the MG
equation with � 2 (0, 1) is ill-posed and the MG equation with � = 1 is globally
well-posed for small initial data.

1.2. Main result. In this current paper we study the active scalar equation (1.1)
with ⌫ � 0 and f 6⌘ 0. The purpose is to test whether the flexibility of allowing an
external forcing can lead to the construction of wild solutions that reach the crit-
ical spatial regularity 1

3 for the energy law. We adapt the cancellation mechanism
discovered in [30] in our construction, and thus our result also depends on dimen-
sion. In particular, the wild solutions we obtain have spatial regularity C↵

x with
↵ < 1

2d+1 and violate uniqueness. It is clear that this regularity is higher than 1
4d+1

for the non-forced case in [30]. The improvement on the regularity for the forced
equation is explained in the item (ii) of Subsection 3.2 below. The key idea is to
design a particular increment in the iterative convex integration scheme such that
✓q+1 = ✓q, which leads to improvement in the estimates of the stress errors. Such
improvement can be seen by comparing the heuristic estimates (3.11) for the forced
case and the error estimates on the stress error for the unforced case in Section 2.

The main result is stated below.
Theorem 1.1. Let ↵ < 1

2d+1 , 0  � < 1�↵ and ⇣ < 1
2d . There exists f 2 C0

t C
2↵�1
x

such that there are more than one solutions ✓ 2 C0
t C

↵
x (Td)\C⇣

t C
0
x(Td) to (1.1) with

external forcing f .
Theorem 1.1 implies that the forced MG equation with � < 1� 1

2d+1 = 6
7 (since

the dimension is d = 3) is ill-posed due to the lack of uniqueness. This result is
complementary to the ill-posedness result shown in [24] for the unforced MG with
� < 1, where the solution map is not Lipschitz continuous.
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The paper is organized as follows. Section 2 gives a heuristic analysis for the
result of non-forced active scalar equation with even drift operators which was
proven in [30]; Section 3 provides a heuristic analysis for the forced active scalar
equation with an even operator. In Section 4 we lay out technical preparations and
the main iterative process. Section 5 is devoted to the proof of the main iteration
statement. Section 6 concludes the proof of Theorem 1.1.

2. Heuristics of non-uniqueness for (1.1) with ⌫ = 0 and f ⌘ 0

We provide an outline of heuristics for the earlier result of Isett and Vicol in their
article [30] concerning unforced active scalar equations. We present the analysis in
the latter notation of [5] for the Navier-Stokes equation.

Theorem 2.1. Let ↵ < 1
4d+1 and I be an open time interval. There exist non-

trivial solutions ✓ 2 C↵
x,t(Td⇥R) to (1.1) with ⌫ = 0 and f ⌘ 0 such that ✓(x, t) = 0

for t /2 I.

First, consider the approximating systems in 2D

@t✓q +r · (uq✓q) = r · eRq,

uq = T [✓q].
(2.1)

Assume the image of the even part of the multiplier m contains d linearly indepen-
dent vectors given by

Aj = m(⇠j) +m(�⇠j), j = 1, 2, ..., d, |⇠j | = 1.

The stress vector eRq can be decomposed as
eRq = c1,qA1 + c2,qA2 =: c1,qA1 +Rq.

Without loss of generality, we assume |c1,q| � |c2,q|. The goal is to construct a new
solution such that the principal part c1,qA1 in the stress error gets reduced.

We specify the index I = (k,±) 2 Z⇥ {±} := ⌦. Denote Ī = (k,⌥). For I 2 ⌦,
let ✓I,q+1 and ⇠I be the amplitude and phase functions respectively, satisfying

✓Ī = ✓̄I , ⇠Ī = �⇠I .

Moreover, ⇠I is advected by uq on a short time interval ⌧q with initial state b⇠I . The
increment ⇥q+1 = ✓q+1 � ✓q is constructed to take the form

⇥I,q+1 = PI,�q+1(e
i�q+1⇠I✓I,q+1) = ei�q+1⇠I (✓I,q+1 + �✓I,q+1),

⇥q+1 =
X

I2⌦

⇥I,q+1

where the error term �✓I,q+1 comes from the application of a microlocal lemma.
Applying the microlocal lemma again yields

UI,q+1 = T [⇥I,q+1] = ei�q+1⇠I (uI,q+1 + �uI) with uI,q+1 = m(r⇠I)✓I,q+1

Uq+1 = T [⇥q+1] =
X

I2⌦

T [⇥I,q+1].

We also have
uq+1 = uq + Uq+1 = T [✓q] + T [⇥q+1].
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The tuple (✓q+1, uq+1, eRq+1) is a solution of (2.1) with q replaced by q+1 and with
the new stress error eRq+1 satisfying

r · eRq+1 =(@t + uq ·r)⇥q+1 +r · (Uq+1✓q)

+r ·
X

J 6=Ī

UJ,q+1⇥I,q+1

+r ·
X

I2⌦

�
UI,q+1⇥Ī,q+1 + c1,qA1 +Rq

�

= : r ·RT +r ·RN +r ·RH +r ·RS .

(2.2)

For parameters �0 � 1, b > 1 and 0 < � < 1, define

�q =
l
�bq

0

m
, q 2 N [ {0}

and let �q = ���
q . Assume ✓q and uq are localized to frequency ⇠ �q. The cancel-

lation UI,q+1⇥Ī,q+1 + c1,qA1 suggests the scaling |c1,q| ⇠ |✓I,q+1|2. We make the
inductive assumptions:

krkuqkC0 + krk✓qkC0 . �k
q�

1
2
q�1, k = 1, 2, ..., L, (2.3)

krk(@t + uq ·r)✓qkC0 . �k+1
q �q�1, k = 0, 1, 2, ..., L� 1, (2.4)

krkc1,qkC0 . �k
q�q, k = 1, 2, ..., L, (2.5)

krk(@t + uq ·r)c1,qkC0 . �k+1
q �

1
2
q�1�q, k = 0, 1, 2, ..., L� 1, (2.6)

krkRqkC0 . �k
q�q+1, k = 1, 2, ..., L, (2.7)

krk(@t + uq ·r)RqkC0 . �k+1
q �

1
2
q�1�q+1, k = 0, 1, 2, ..., L� 1. (2.8)

The increments ⇥q+1 and Uq+1 = T [⇥q+1] satisfy

krk⇥q+1kC0 + krkUq+1kC0 . �k
q+1�

1
2
q , k = 0, 1, (2.9)

k(@t + uq ·r)⇥q+1kC0 + k(@t + uq ·r)Uq+1kC0 . ⌧�1
q �

1
2
q (2.10)

where the time scale ⌧q is to be determined in the following.
Since we can find RT and RN such that

RT = r��1P⇠�q+1 [(@t + uq ·r)⇥q+1]

RN = r��1(Uq+1 ·r✓q),

it follows from (2.3), (2.9) and (2.10)

kRT kC0 . ��1
q+1k(@t + uq ·r)⇥q+1kC0 . ��1

q+1⌧
�1
q �

1
2
q ,

kRNkC0 . ��1
q+1kUq+1 ·r✓qkC0 . ��1

q+1�
1
2
q �q�

1
2
q�1.
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On the other hand, we have

kRHkC0 =

������

X

J 6=Ī

UJ,q+1⇥I,q+1

������
C0

.
X

I

k✓I,q+1k2C0

⇣
km(r⇠I)�m(rb⇠I)kC0 + kr⇠I �rb⇠IkC0

⌘

.
X

I

k✓I,q+1k2C0kr⇠I �rb⇠IkC0

.
X

I

k✓I,q+1k2C0�q⌧qkuqkC0

. �q�q�
1
2
q�1⌧q.

To balance the error RT and RH , we choose ⌧q = �
� 1

4
q�1�

� 1
4

q �
� 1

2
q �

� 1
2

q+1 such that

��1
q+1⌧

�1
q �

1
2
q ⇠ �q�q�

1
2
q�1⌧q.

In the end, we observe (up to small errors)

RS = c2,q+1A2

for some coefficient c2,q+1 with |c2,q+1|  �q+1. We then denote Rq+1 = RT +RN +
RH . Combining the estimates above gives

kRq+1kC0 . ��1
q+1⌧

�1
q �

1
2
q + ��1

q+1�
1
2
q �q�

1
2
q�1

. �
� 1

2
q+1�

1
2
q �

3
4
q �

1
4
q�1 + ��1

q+1�
1
2
q �q�

1
2
q�1

. �
� 1

2 b+
1
2�

3
4��

�
4b

q + �
�b+1� 1

2��
�
2b

q .

To make sure kRq+1kC0 . �q+2, we require

(
� 1

2b+
1
2 � 3

4� � �
4b < �b2�,

�b+ 1� 1
2� � �

2b < �b2�.

Thus we solve, by recalling b > 1

b2� � 1

2
b+

1

2
� 3

4
� � �

4b
< 0

() b�(b� 1) + �(b� 1) +
�

4b
(b� 1)� 1

2
(b� 1) < 0

() b� + � +
�

4b
� 1

2
< 0

() � <
1

2b+ 2 + 1
2b

.



NON-UNIQUENESS OF ACTIVE SCALAR EQUATIONS 7

When b = 1+, the inequality above implies � < 2
9 . Similarly, the other inequality

gives

b2� � b+ 1� 1

2
� � �

2b
< 0

() b�(b� 1) + �(b� 1) +
�

2b
(b� 1)� 1

2
(b� 1) < 0

() b� + � +
�

2b
� 1 < 0

() � <
1

b+ 1 + 1
2b

which indicates � < 2
5 for b = 1+. The C↵ of ⇥q+1 requires

k⇥q+1kC↵ . �↵
q+1k⇥q+1kC0 . �↵

q+1�
1
2
q . �

b↵� 1
2�

q . 1

which leads to ↵ < �
2b < 1

9 .
In d-dimension, we need to make sure kRq+1kC0 . �q+d in order to carry on the

iteration, and hence require
(
� 1

2b+
1
2 � 3

4� � �
4b < �bd�,

�b+ 1� 1
2� � �

2b < �bd�.

The first inequality is equivalent to

bd� � b+ 1� 1

2
� � �

2b
< 0

() bd�1�(b� 1) + bd�2�(b� 1) + ...+ �(b� 1) +
�

4b
(b� 1)� 1

2
(b� 1) < 0

() bd�1� + bd�2� + ...+ � +
�

4b
� 1

2
< 0

() � <
1

2(bd�1 + bd�2 + ...+ 1 + 1
4b )

,

following which we have � < 1/(2d+ 1
2 ) for b > 1. Similarly the second inequality

is equivalent to

� <
1

bd�1 + bd�2 + ...+ 1 + 1
2b

and hence � < 1/(d+ 1
2 ) for b > 1. Combining the two conditions yields � < 2

4d+1

and hence ↵ < �
2b < 1

4d+1 .

3. Outline of non-uniqueness constructions for forced equation (1.1)

In this section we sketch a generic convex integration scheme for forced active
scalar equations with even operators. We will explore the flexibility in the convex
integration construction due to the presence of an external forcing. Such flexibility
was exploited in the previous works [18, 19] through the sum-difference formulation
of two distinct solutions for SQG. We note an alternating formulation of convex
integration techniques was used in [6] for forced SQG.
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3.1. Sum-difference system of two solutions. Assume (✓, u) and (e✓, eu) are two
distinct solutions of (1.1). The new variables

P =
1

2
(✓ + e✓), M =

1

2
(✓ � e✓)

satisfy the system

Pt + T [P ] ·rP + T [M ] ·rM =� ⌫⇤�P + f,

Mt + T [P ] ·rM + T [M ] ·rP =� ⌫⇤�M,

r · T [P ] = 0, r · T [M ] = 0.

(3.1)

Allowing forcing in the equation of M , we have the flexibility to find a pair (✓, u)

and (e✓, eu) with ✓ � e✓ 6⌘ 0, satisfying the relaxed system

Pt + T [P ] ·rP + T [M ] ·rM =� ⌫⇤�P + f1,

Mt + T [P ] ·rM + T [M ] ·rP =� ⌫⇤�M + f2,

r · T [P ] = 0, r · T [M ] = 0

(3.2)

for some external forcing functions f1 and f2. We then apply a convex integration
scheme to the equation of M with the aim to erase the forcing f2 iteratively, and
eventually arrive at the system (3.1).

3.2. The convex integration scheme. For f2 6⌘ 0, we will apply a convex inte-
gration scheme to system (3.2) with the aim of reducing the forcing f2 in the second
equation. We thus consider the approximating system

@tPq + T [Pq] ·rPq + T [Mq] ·rMq =� ⌫⇤�Pq +r · R̄q,

@tMq + T [Pq] ·rMq + T [Mq] ·rPq =� ⌫⇤�Mq +r · eRq

(3.3)

inductively. Consistent with notation, we have

✓q = Pq +Mq, e✓q = Pq �Mq,

T [✓q] = T [Pq] + T [Mq] = uq, T [e✓q] = T [Pq]� T [Mq] = euq.

Due to the presence of forcing terms in both equations, we have the abundance to
find an initial tuple (P0,M0, R̄0, eR0) with M0 6⌘ 0 satisfying (3.3). Starting from
this tuple, we construct another solution (P1,M1, R̄1, eR1) of (3.3) with eR1 smaller
than eR0 in an appropriate way. Without loss of generality, assume (Pq,Mq, R̄q, eRq)
satisfies (3.3) for an even integer q. To take the advantage of the flexibility of having
two unknown variables, each stage of the construction consists two steps: from
(Pq,Mq, R̄q, eRq) to (Pq+1,Mq+1, R̄q+1, eRq+1) and from (Pq+1,Mq+1, R̄q+1, eRq+1)

to (Pq+2,Mq+2, R̄q+2, eRq+2). In particular, we construct Wq+1 and Wq+2 such that

Mq+1 = Mq +Wq+1, Pq+1 = Pq �Wq+1

and
Mq+2 = Mq+1 +Wq+2, Pq+2 = Pq+1 +Wq+2.

Consequently we note, for even q

✓q+1 = Pq+1 +Mq+1 = Pq +Mq = ✓q,

e✓q+1 = Pq+1 �Mq+1 = Pq �Mq � 2Wq+1 = e✓q � 2Wq+1

(3.4)
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and
✓q+2 = Pq+2 +Mq+2 = Pq+1 +Mq+1 + 2Wq+2 = ✓q+1 + 2Wq+2,

e✓q+2 = Pq+2 �Mq+2 = Pq+1 �Mq+1 = e✓q+1.
(3.5)

The “pause” reflected in ✓q+1 = ✓q and e✓q+2 = e✓q+1 will play a key role to gain
better estimates in stress errors.

Since the three tuples (Pq+j ,Mq+j , R̄q+j , eRq+j) with j = 0, 1, 2 all satisfy (3.3),
the stress terms can be expressed as

r · eRq+1 =
⇣
@t + T [e✓q] ·r

⌘
Wq+1 + ⌫⇤�Wq+1 + T [Wq+1] ·re✓q

+
⇣
r · eRq � 2T [Wq+1] ·rWq+1

⌘
,

(3.6)

r · eRq+2 =(@t + T [✓q+1] ·r)Wq+2 + ⌫⇤�Wq+2 + T [Wq+2] ·r✓q+1

+
⇣
r · eRq+1 + 2T [Wq+2] ·rWq+2

⌘
,

(3.7)

r · R̄q+1 =�
⇣
@t + T [e✓q] ·r

⌘
Wq+1 � ⌫⇤�Wq+1 � T [Wq+1] ·re✓q

+
�
r · R̄q + 2T [Wq+1] ·rWq+1

�
,

(3.8)

r · R̄q+2 =(@t + T [✓q+1] ·r)Wq+2 + ⌫⇤�Wq+2 + T [Wq+2] ·r✓q+1

+
�
r · R̄q+1 + 2T [Wq+2] ·rWq+2

�
.

(3.9)

The forms of the stress terms above provide some insights on the construction of
the increments in the two steps q ! q + 1 and q + 1 ! q + 2:
(i) Wq+j with j = 1, 2 will be designed such that

r · eRq � 2T [Wq+1] ·rWq+1 and r · eRq+1 + 2T [Wq+2] ·rWq+2 (3.10)

are small;
(ii) in view of (3.5), we have e✓q = e✓q�1 in the iteration process and hence expect
to have better estimates for the terms containing e✓q in (3.6); similarly, thanks to
✓q+1 = ✓q in (3.4), better estimates may be achieved for eRq+2 as in (3.7);
(iii) comparing (3.6) and (3.8), the reduced stress error in the process eRq ! eRq+1 is
gained in the process Rq ! Rq+1; while according to (3.7) and (3.9), both processes
eRq+1 ! eRq+2 and Rq+1 ! Rq+2 have stress error reduced by the same amount. It
indicates that this scheme is likely to reduce the forcing in one equation, but not
in both equations.

3.3. Heuristics. Now we estimate eRq+1 given in (3.6) using the “pause” feature
T [e✓q] = T [e✓q�1] described in item (ii) above. As before, we write

r · eRq+1 = r ·RT +r ·RN +r ·RH +r ·RS +r ·RD

with

r ·RT =
⇣
@t + T [e✓q�1] ·r

⌘
Wq+1

r ·RN = T [Wq+1] ·re✓q�1

r ·RH = r ·
X

J 6=Ī

UJ,q+1⇥I,q+1

r ·RD = ⌫⇤�Wq+1
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and RS similar as in (2.2). We point out that the forms of the stress errors here are
not exactly the same as the stress errors in the rigorous analysis to be carried out in
Section 5, since we need to include an additional step of mollification. Nevertheless,
the scalings of the stress errors here and those in Section 5 are consistent. Applying
(2.3), (2.9) and (2.10) gives

kRT kC0 . ��1
q+1k(@t + euq�1 ·r)⇥q+1kC0 . ��1

q+1⌧
�1
q �

1
2
q ,

kRNkC0 . ��1
q+1kUq+1 ·re✓q�1kC0 . ��1

q+1�
1
2
q �q�1�

1
2
q�2,

kRDkC0 . ��1+�
q+1 kWq+1kC0 . ��1+�

q+1 �
1
2
q ,

kRHkC0 .
X

I

k✓I,q+1k2C0�q�1⌧qkeuq�1kC0 . �q�q�1�
1
2
q�2⌧q

(3.11)

where in the last inequality we used the fact that ⇠I is now advected by euq�1. To
balance the estimates of kRT kC0 and kRHkC0 , we set

��1
q+1⌧

�1
q �

1
2
q = �q�q�1�

1
2
q�2⌧q

which implies
⌧q = �

� 1
2

q�1�
� 1

2
q+1�

� 1
4

q�2�
� 1

4
q .

In the end, to obtain
kRq+1kC0 . �q+2

we need to require 8
>><

>>:

��1
q+1⌧

�1
q �

1
2
q . �q+2,

��1
q+1�

1
2
q �q�1�

1
2
q�2 . �q+2,

��1+�
q+1 �

1
2
q . �q+2

which are valid provided

b2� � 3

4
� � �

4b2
+

1

2b
� b

2
< 0

() b�(b� 1) + �(b� 1) +
�

4b2
(b2 � 1)� 1

2b
(b2 � 1) < 0

() b� + � +
�

4b2
(b+ 1)� 1

2b
(b+ 1) < 0

() � <
1
2b (b+ 1)

b+ 1 + b+1
4b2

and
b(�1 + �)� 1

2
� + b2� < 0 () � <

2b(1� �)

2b2 � 1
.

So for b = 1+, we have � < 2
5 , ↵ < �

2b < 1
5 , and � < 1� ↵.

In general for d-dimension, we need to impose

kRq+1kC0 . �q+d

and hence 8
>><

>>:

��1
q+1⌧

�1
q �

1
2
q . �q+d,

��1
q+1�

1
2
q �q�1�

1
2
q�2 . �q+d,

��1+�
q+1 �

1
2
q . �q+d.
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Thus we have

bd� � 3

4
� � �

4b2
+

1

2b
� b

2
< 0

() bd�1�(b� 1) + ...+ �(b� 1) +
�

4b2
(b2 � 1)� 1

2b
(b2 � 1) < 0

() bd�1� + ...+ b� + � +
�

4b2
(b+ 1)� 1

2b
(b+ 1) < 0

() � <
1
2b (b+ 1)

bd�1 + ...+ b+ 1 + b+1
4b2

and
b(�1 + �)� 1

2
� + bd� < 0 () � <

2b(1� �)

2bd � 1
.

For b = 1+, � < 1
d+ 1

2
, ↵ < �

2b < 1
2d+1 , and � < 1� ↵.

3.4. Key idea to reduce the stress error. We discuss how to achieve the error
reduction in (3.10). The assumptions on the Fourier symbol m of the operator T
imply that there are two linearly independent vectors in the image of the even part
of m

A1 = m(⇠(1)) +m(�⇠(1)), A2 = m(⇠(2)) +m(�⇠(2)) (3.12)
with ⇠(1), ⇠(2) 2 Z2.

Consider the increment ansatz
WI,q+1 = PI,�q+1

�
aI,q+1(x, t)e

i�q+1⇠I
�
,

Wq+1 =
X

I2⌦

WI,q+1.

By the Microlocal Lemma 4.1 and zero degree of homogeneity of m, the drift term
takes the form

T [WI,q+1] = m(r⇠I)WI,q+1 + �T [WI,q+1]

with a small error term �T [WI,q+1]. A straightforward computation shows that

T [Wq+1]Wq+1 =
1

2

X

I2⌦

�
T [WI,q+1]WĪ,q+1 + T [WĪ,q+1]WI,q+1

�

+
X

J 6=Ī

T [WI,q+1]WJ,q+1

=
1

2

X

I2⌦

|aI,q+1|2 (m(r⇠I) +m(�r⇠I)) + error

+
X

J 6=Ī

T [WI,q+1]WJ,q+1.

Since m is not odd, the leading order (low frequency) term is non zero,

|aI,q+1|2 (m(r⇠I) +m(�r⇠I)) 6= 0.

The goal is to construct coefficient functions aI,q+1 and phase functions ⇠I such
that

r ·
 
eRq �

X

I2⌦

|aI,q+1|2 (m(r⇠I) +m(�r⇠I))

!
(3.13)
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is small. As A1 and A2 defined in (3.12) span R2, we expect to choose ⇠I to
guarantee

m(r⇠I) +m(�r⇠I) ⇡ A1 or m(r⇠I) +m(�r⇠I) ⇡ A2.

Then with an appropriate choice of aI,q+1 we hope the principal part of eRq can be
canceled through (3.13). The reduction of eRq+1 is achieved analogously.

To ensure other terms in the stress fields given in (3.6) and (3.7) can be controlled
appropriately, we need several technical tools which will be provided in Section 4.

4. Construction of the increment

We describe the construction of the highly oscillatory correction (increment) in
this section. We start with some technical preparations.

4.1. Microlocal Lemma. The drift operator T is a nonlocal differential operator.
When acting T on plane waves, we need the following lemma from [30] to extract
the leading order term.

Lemma 4.1 (Microlocal Lemma). Let K : R2 ! C be a Schwartz function and

T [⇥](x) =

Z

R2

⇥(x� h)K(h) dh

for ⇥ : T2 ! C. For any ⇥ = ei�⇠(x)✓(x) with � 2 Z and smooth functions
⇠ : T2 ! R and ✓ : T2 ! C, we have

T [⇥](x) = ei�⇠(x)
⇣
✓(x) bK(�r⇠) + �[T⇥](x)

⌘

with the error term given by

�[T⇥](x) =

Z 1

0

d

dr

Z

R2

e�i�r⇠·heiZ(r,x,h)✓(x� rh)K(h) dr dh

Z(r, x, h) = r�

Z 1

0
hjhl@j@l⇠(x� sh)(1� s) ds.

4.2. Mollification. As is standard in convex integration method, to avoid loss
of derivative, we need to regularize the solution (Pq,Mq, R̄q, eRq) before adding
increments to produce (Pq+1,Mq+1, R̄q+1, eRq+1). We first regularize Pq,Mq, T [Pq]

and T [Mq]. Fix some L � 1. Choose µq = �
1
L
q+1�

1� 1
L

q . Denote Pµq by the
Littlewood-Paley projection onto frequency  µq. Define

P✏,q = P2
µq

Pq, M✏,q = P2
µq

Mq,

T [P✏,q] = P2
µq

T [Pq], T [M✏,q] = P2
µq

T [Mq].

Lemma 4.2. The estimates
kPq � P✏,qkC0 . µ�j

q krjPqkC0 ,

kMq �M✏,qkC0 . µ�j
q krjMqkC0 ,

kT [Pq]� T [P✏,q]kC0 . µ�j
q krjT [Pq]kC0 ,

kT [Mq]� T [M✏,q]kC0 . µ�j
q krjT [Mq]kC0

hold for 0  j  L.



NON-UNIQUENESS OF ACTIVE SCALAR EQUATIONS 13

The regularization of eRq is slightly more involved. We first define the coarse
scale flow �q(x, s; t) : T2 ⇥ R⇥ R ! T2 ⇥ R to be the solution of

(
@s�q(x, s; t) = euq(�q(x, s; t), s)

�q(x, t; t) = x

with euq = T [Mq]. Let ⌘ be a standard mollifier in space with supp ⌘ ⇢ B(0, 1) and
⇢ be a standard mollifier in time with supp ⇢ ⇢ (�1, 1). Denote

⌘�(x) = ��d⌘(��1x), ⇢�(s) = ��1⇢(��1s).

Without loss of generality, assume eRq can be decomposed as

eRq = c1,qA1 +R⇤
q .

For the spatial scale ✏x and time scale ✏t to be determined later, we define the
regularized stress and component

R⇤
q,✏x = ⌘✏x ⇤R⇤

q ,

R⇤
q,✏(x, t) =

Z

R
R⇤

q,✏x(�q(x, t+ s; t), t+ s)⇢✏t(s) ds,

c1,q,✏x = ⌘✏x ⇤ c1,q,

c1,q,✏(x, t) =

Z

R
c1,q,✏x(�q(x, t+ s; t), t+ s)⇢✏t(s) ds,

and
eRq,✏ = c1,q,✏A1 +R⇤

q,✏.

The purpose of such regularization is to have better estimates on the advective
derivatives, since the advective derivative commutes with the flow map �. See [27]
for more details.

Choose the length and time scales

✏x = (��1
q+1�q)

1
L��1

q , ✏t = ��1
q+1�

� 1
2

q . (4.1)

Lemma 4.3. The regularized stress field satisfies the following estimates

k(c1,q,✏ � c1,q)A1kC0 + kR⇤
q,✏ �R⇤

qkC0 . �
1
2
q�1�

1
2
q �

�1
q+1�q,

krkc1,q,✏kC0 . �k
q�q(�q+1�

�1
q )

(k+1�L)+
L ,

krkR⇤
q,✏kC0 . �k

q�q+1(�q+1�
�1
q )

(k+1�L)+
L ,

krk D

Dt
c1,q,✏kC0 . �k

q�q�q�
1
2
q�1(�q+1�

�1
q )

(k+1�L)+
L ,

krk D

Dt
R⇤

q,✏kC0 . �k
q�q+1�q�

1
2
q�1(�q+1�

�1
q )

(k+1�L)+
L ,

krk(
D

Dt
)2c1,q,✏kC0 . �k

q�q�q�
1
2
q�1�q+1�

1
2
q (�q+1�

�1
q )

(k+1�L)+
L ,

krk(
D

Dt
)2R⇤

q,✏kC0 . �k
q�q+1�q�

1
2
q�1�q+1�

1
2
q (�q+1�

�1
q )

(k+1�L)+
L .
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4.3. Lifting function. To achieve the cancellation in (3.13), we further decompose
R⇤

q,✏ as
R⇤

q,✏ = c1,q,rA1 + c2,q+1A2 (4.2)
and hence

eRq,✏ = (c1,q,✏ + c1,q,r)A1 + c2,q+1A2.

Then we require
X

I

|aI,q+1|2A1 = eq(t)A1 + (c1,q,✏ + c1,q,r)A1

for some function eq(t) such that

eq(t) + (c1,q,✏ + c1,q,r) > 0, eq(t) > 2 (c1,q,✏ + c1,q,r) .

The function eq is referred to be the lifting function.

4.4. Time cutoff. To optimize the control of main error terms, we choose the life
span ⌧q of the increment WI,q+1 to be an appropriate short time interval. The size
of ⌧q will be specified later. Let � satisfy the condition of partition of unity in time

X

n2Z
�2(t� n) = 1.

Define

�k(t) = �

✓
t� k⌧q

⌧q

◆

and consider the amplitude function

aI,q+1 = e
1
2 (t)�k(t)(1 + (c1,q,✏ + c1,q,r)e

�1(t))
1
2 , I = (k,±).

The choice of �k indicates that the amplitude function aI,q+1 with I = (k, f) has
support [k⌧q � 2

3⌧q, k⌧q +
2
3⌧q] in time.

4.5. Phase functions. Denote euq,✏ = T [Pq,✏] � T [Mq,✏]. We identify the phase
functions ⇠I to be solutions of the transport equation

(@t + euq,✏ ·r)⇠I = 0

⇠I(k⌧q, x) = b⇠I(x),
(4.3)

where the initial data for the phase function is given by
b⇠I(x) = b⇠(k,±)(x) = ±10[k]⇠(1) · x

with

[k] =

(
0, if k is even,
1, if k is odd.

In the iteration step of q + 1 ! q + 2, the initial data is chosen as
b⇠I(x) = b⇠(k,±)(x) = ±10[k]⇠(2) · x.

The time scale ⌧q will be chosen such

|r⇠I �rb⇠I | 
1

4
|rb⇠I |.
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4.6. Construction of the increment Wq+1. We are ready to introduce the in-
crement Wq+1,

Wq+1 =
X

I2⌦

WI,q+1, WI,q+1 = P⇡�q+1 [aI,q+1e
i�q+1⇠I ] (4.4)

with the amplitude function

aI,q+1(x, t) = e
1
2 (t)�k(t)

�
1 + (c1,q,✏ + c1,q,r)(x, t)e

�1(t)
� 1

2 , I = (k,±). (4.5)

The projection operator P⇡�q+1 is defined through its Fourier multiplier as

\P⇡�q+1f(⇠) = ⌘�q+1(⇠)f̂(⇠).

We specify the multiplier ⌘�q+1 in the following. Let ⌘ be a smooth bump function
in Fourier space with frequency support on B|⇠(1)|/2(⇠

(1)), satisfying

⌘(⇠) = 1, if |⇠ � ⇠(1)|  1

4
|⇠(1)|.

Then we define
⌘�q+1(⇠) = ⌘(±10�[k]��1

q+1⇠).

Applying the Microlocal Lemma 4.1 gives

WI,q+1 = ei�q+1⇠I (aI,q+1 + �aI,q+1),

T [WI,q+1] = ei�q+1⇠I (uI,q+1 + �uI,q+1)

with uI,q+1 = m(�q+1r⇠I)aI,q+1 = m(r⇠I)aI,q+1 since m is homogeneous of order
0, where �aI,q+1 and �uI,q+1 are error terms.

4.7. Main iteration process. For the tuple (Pq,Mq, R̄q, eRq) satisfying (3.3), we
make the following inductive assumptions. Assume eRq can be written as

eRq =

(
c1,qA1 +R⇤

q , if q is even
c2,qA2 +R⇤

q , if q is odd.
(4.6)

Assume the estimates below hold:
krkPqkC0 + krkMqkC0

+ krkT [Pq]kC0 + krkT [Mq]kC0 . �k
q�

1
2
q�1, k = 1, ..., L

(4.7)

krk(@t + T [Pq] ·r)T [Mq]kC0

+ krk(@t + T [Mq] ·r)T [Mq]kC0 . �k+1
q �q�1, k = 0, 1, ..., L� 1

(4.8)

krkc1,qkC0 . �k
q�q, k = 0, 1, ..., L (4.9)

krk(@t + T [Pq] ·r)c1,qkC0

+ krk(@t + T [Mq] ·r)c1,qkC0 . �k+1
q �

1
2
q�1�q, k = 0, 1, ..., L� 1

(4.10)

krkR⇤
qkC0 . �k

q�q+1, k = 0, 1, ..., L (4.11)

krk(@t + T [Pq] ·r)R⇤
qkC0

+ krk(@t + T [Mq] ·r)R⇤
qkC0 . �k+1

q �
1
2
q�1�q+1, k = 0, 1, ..., L� 1.

(4.12)
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In view of the crucial feature (3.4)-(3.5) of the two-step scheme, we have for even
q and k = 0, 1, ..., L

(
e✓q = e✓q�1, krke✓qkC0 . �k

q�1�
1
2
q�2,

✓q+1 = ✓q, krk✓qkC0 . �k
q�

1
2
q�1.

(4.13)

Proposition 4.4 (Main Iteration). Let L � 2 and K,C � 4. Assume (Pq,Mq, R̄q, eRq)
satisfies (3.3) and (4.6)-(4.13). Let It ⇢ R be a nonempty closed interval such that

suppR⇤
q [ supp c1,q ⇢ It ⇥ T2. (4.14)

Let e be a function of time satisfying

e(t) � K�q 8 t 2 It ± ⌧̂q (4.15)

with the natural time scale ⌧̂q = ��1
q �

� 1
2

q�1, and

k dr

dtr
e

1
2 (t)kC0  C(�q�

1
2
q�1)

r�
1
2
q , 0  r  2. (4.16)

There exists another tuple (Pq+1,Mq+1, R̄q+1, eRq+1) satisfying (3.3) with q replaced
by q + 1 in the form

(
Mq+1 = Mq +Wq+1, Pq+1 = Pq �Wq+1, if q is even,
Mq+1 = Mq +Wq+1, Pq+1 = Pq +Wq+1, if q is odd

and Wq+1 = r ·fWq+1. Moreover, eRq+1 can be written as

eRq+1 =

(
c2,q+1A2 +R⇤

q+1, if q is even,
c1,q+1A1 +R⇤

q+1, if q is odd
(4.17)

with
(suppR⇤

q+1 [ supp cj,q+1) ⇢ supp e⇥ T2, j = 1, 2. (4.18)

The estimates (4.7)-(4.12) are satisfied with q replaced by q + 1 and in particular
c1,q replaced by c2,q+1. The correction Wq+1 satisfies the estimates

krkWq+1kC0 + krkT [Wq+1]kC0 . �k
q+1�

1
2
q , k = 0, 1, (4.19)

k(@t + T [P✏,q] ·r)Wq+1kC0 + k(@t + T [P✏,q] ·r)T [Wq+1]kC0

+ k(@t + T [M✏,q] ·r)Wq+1kC0 + k(@t + T [M✏,q] ·r)T [Wq+1]kC0

. ⌧�1
q �

1
2
q ,

(4.20)

krkfWq+1kC0 . �k�1
q+1�

1
2
q , k = 0, 1, (4.21)

k(@t + T [P✏,q] ·r)fWq+1kC0

+ k(@t + T [M✏,q] ·r)fWq+1kC0 . ⌧�1
q ��1

q+1�
1
2
q .

(4.22)
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5. Proof of the main iteration argument

5.1. Basic estimates of increments.

Lemma 5.1. Let L � 2 be the integer in Proposition 4.4. The regularizations
T [P✏,q] and T [M✏,q] satisfy

krkT [P✏,q]kC0 + krkT [M✏,q]kC0

. �k
q�

1
2
q�1(�q+1�

�1
q )

(k�L)+
L , k � 1,

krk(@t + T [P✏,q] ·r)T [M✏,q]kC0

+ krk(@t + T [M✏,q] ·r)T [M✏,q]kC0

. �k+1
q �q�1(�q+1�

�1
q )

(k+1�L)+
L , k � 0.

See [30] (Lemma 7.1) for a proof.

Lemma 5.2. Let h be a kernel function satisfying

k|x|a|rbh|(x)kL1(R2)  �b�a, � � �q+1, 0  a  b  N.

Denote
DP,q,✏

Dt
= @t + T [P✏,q] ·r,

DM,q,✏

Dt
= @t + T [M✏,q] ·r.

For the convolution operator

Qf(x) =

Z

R2

f(x� y)h(y) dy,

the commutators
h
DP,q,✏

Dt , Q
i

and
h
DM,q,✏

Dt , Q
i

are bounded operators on C0(T2 ⇥R)
and satisfy

����r
k[
DP,q,✏

Dt
,Q]

����+
����r

k[
DM,q,✏

Dt
,Q]

���� . �q�
1
2
q�1�

k, 0  k  N � 1.

Lemma 5.3. Let L � 2 be the integer in Proposition 4.4. For Dq

Dt 2 {DP,q

Dt , DM,q

Dt },
define

D(k,r)
q = rk1(

Dq

Dt
)r1rk2(

Dq

Dt
)r2rk3 , k1 + k2 + k3 = k, r1 + r2 = r.

The phase function ⇠I satisfies

krk(
Dq

Dt
)rr⇠IkC0 + kD(k,r)

q r⇠IkC0

. �k
q (�q�

1
2
q�1)

r(�q+1�
�1
q )

(k+1+(r�1)+�L)+
L , k � 1, r = 0, 1, 2.

Moreover, we have

|r⇠I(�q(x, s; t))�rb⇠I(x)|  C⌧q�q�
1
2
q�1, |s|  ⌧q.

Lemma 5.4. Let L � 2. The principal part of the amplitude function satisfies the
estimate

kD(k,r)
q0 aI,q+1kC0 + kD(k,r)

q0 uI,q+1kC0 . �k
q0�

1
2
q ⌧

�r
q0 (�q0+1�

�1
q0 )

(k+1�L)+
L

for q0 � 0, k � 0 and r = 0, 1, 2.
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Lemma 5.5. Let L � 2. The amplitude error terms �aI,q+1 and �uI,q+1 satisfy

kD(k,r)
q0 �aI,q+1kC0 + kD(k,r)

q0 �uI,q+1kC0 . (��1
q0+1�q0)�

k
q�

1
2
q ⌧

�r
q0 (�q+1�

�1
q )

(k+2�L)+
L

for q0 � 0, k � 0 and r = 0, 1, 2.

Lemma 5.6. The estimates for the corrections Wq+1 and T [Wq+1]

kD(k,r)
q0 WI,q+1kC0 + kD(k,r)

q0 T [WI,q+1]kC0 . �k
q0+1⌧

�r
q0 �

1
2
q

hold for q0 � 0, k � 0 and r = 0, 1, 2.

The lemmas above can be proved analogously as in [30].

5.2. Proof of Proposition 4.4. We only prove the statements for even q; the
statements for odd q can be established by minor modifications of the proof. Let
Wq+1 be the correction term constructed in Subsection 4.6 and define

Mq+1 = Mq +Wq+1, Pq+1 = Pq �Wq+1.

For R̄q+1 and eRq+1 defined respectively through (3.8) and (3.6), the tuple

(Pq+1,Mq+1, R̄q+1, eRq+1)

satisfies (3.3) with q replaced by q + 1.
The estimates (4.19) and (4.20) follow from Lemma 5.6. Since WI,q+1 is localized

near frequency �q+1 in phase space, we can define
fWI,q+1 = r��1P⇡�q+1(aI,q+1e

i�q+1⇠I )

and hence Wq+1 = r ·fWq+1 with fWq+1 =
P

I
fWI,q+1. Then the estimate (4.21)

follows from Lemma 5.4 with k = r = 0. Regarding the advective derivative, we
can rewrite
(@t + T [M✏,q] ·r)fWI,q+1

=


DM,q,✏

Dt
,r��1P⇡�q+1

�
(aI,q+1e

i�q+1⇠I ) +r��1P⇡�q+1

✓
ei�q+1⇠I DM,q,✏

Dt
aI,q+1

◆
.

As a consequence, it follows from Lemma 5.2 with a suitable rescaling and Lemma
5.4 with k = 0 and r = 1

k(@t + T [M✏,q] ·r)fWI,q+1kC0 . �q�
1
2
q�1�

�1
q+1�

1
2
q + ��1

q+1�
1
2
q ⌧�1

q

. ��1
q+1�

1
2
q ⌧�1

q

provided
⌧q . ��1

q �
� 1

2
q�1. (5.1)

Other terms in (4.22) can be estimated similarly.
By (4.7) and (4.19), we have

krkPq+1kC0  krkPqkC0 + krkWq+1kC0

. �k
q�

1
2
q�1 + �k

q+1�
1
2
q

. �k
q+1�

1
2
q

since b > 1 and k � 1. The estimate of rkMq+1,rkT [Pq+1],rkT [Mq+1] and hence
(4.7) with q replaced by q + 1 follows analogously.
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Next we show (4.8) with q replaced by q + 1. We write
(@t + T [Mq+1] ·r)T [Mq+1]

= (@t + T [Mq] ·r)T [Mq] + T [Wq+1] ·rT [Mq] + T [Wq+1] ·rT [Wq+1]

+ (@t + T [Mq] ·r)T [Wq+1]

and further decompose
(@t + T [Mq] ·r)T [Wq+1]

=(@t + T [M✏,q] ·r)T [Wq+1] + (T [Mq]� T [M✏,q]) ·rT [Wq+1].

Immediately it follows from the induction assumption (4.8)

k(@t + T [Mq] ·r)T [Mq]kC0 . �q�q�1,

and the estimate (4.20)

k(@t + T [M✏,q] ·r)T [Wq+1]kC0 . ⌧�1
q �

1
2
q .

The assumption (4.7) and estimate (4.19) together yield

kT [Wq+1] ·rT [Mq]kC0  kT [Wq+1]kC0krT [Mq]kC0 . �
1
2
q �q�

1
2
q�1.

The estimate (4.19) also implies

kT [Wq+1] ·rT [Wq+1]kC0  kT [Wq+1]kC0krT [Wq+1]kC0 . �
1
2
q �q+1�

1
2
q .

In view of Lemma 4.2 and (4.19) we have
k(T [Mq]� T [M✏,q]) ·rT [Wq+1]kC0 kT [Mq]� T [M✏,q]kC0krT [Wq+1]kC0

. µ�L
q �L

q �
1
2
q�1�q+1�

1
2
q .

Summarizing the estimates above we obtain for b > 1 and 0 < � < 1

k(@t + T [Mq+1] ·r)T [Mq+1]kC0 . �q�q�1 + ⌧�1
q �

1
2
q + �

1
2
q �q�

1
2
q�1

+ �q+1�q + µ�L
q �L

q �
1
2
q�1�q+1�

1
2
q

. �q+1�q

where we used µq = �
1
L
q+1�

1� 1
L

q and supposed

⌧�1
q  �q+1�

1
2
q . (5.2)

For 1  k  L� 1, higher order derivatives in (4.8) with q replaced by q+1 can be
estimated similarly.

Next we establish the estimates for the new stress field. Invoking e✓q = e✓q�1 and
recalling (3.6), we have

r · eRq+1 =
⇣
@t + T [e✓✏,q�1] ·r

⌘
Wq+1 + ⌫⇤�Wq+1 + T [Wq+1] ·re✓✏,q�1

+r ·
�
c1,qA1 +R⇤

q � 2T [Wq+1]Wq+1

�

=
⇣
@t + T [e✓✏,q�1] ·r

⌘
Wq+1 + ⌫⇤�Wq+1 + T [Wq+1] ·re✓✏,q�1

+r ·
�
c✏,1,qA1 +R⇤

✏,q � 2T [Wq+1]Wq+1

�

+r ·
⇣
(T [e✓q�1]� T [e✓✏,q�1])Wq+1 + T [Wq+1](e✓q�1 � e✓✏,q�1)

+(c1,q � c✏,1,q)A1 + (R⇤
q �R⇤

✏,q)
�
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with e✓✏,q�1 = P✏,q�1 �M✏,q�1. We denote

r ·RT =
⇣
@t + T [e✓✏,q�1] ·r

⌘
Wq+1,

r ·RD = ⌫⇤�Wq+1,

r ·RN = T [Wq+1] ·re✓✏,q�1,

r ·RO =r ·
�
c✏,1,qA1 +R⇤

✏,q � 2T [Wq+1]Wq+1

�
,

r ·RM =r ·
⇣
(T [e✓q�1]� T [e✓✏,q�1])Wq+1 + T [Wq+1](e✓q�1 � e✓✏,q�1)

+(c1,q � c✏,1,q)A1 + (R⇤
q �R⇤

✏,q)
�
.

Estimates of RT : Note Wq+1 is localized to frequency ⇡ �q+1 in Fourier space.
Therefore we can find RT such that

RT = r��1P⇡�q+1

h
(@t + T [e✓✏,q�1] ·r)Wq+1

i
.

As a consequence we obtain

kRT kC0 . ��1
q+1k(@t + T [e✓✏,q�1] ·r)Wq+1kC0 .

Since
T [e✓✏,q�1] = T [P✏,q�1]� T [M✏,q�1],

applying Lemma 5.6 with q0 = q, r = 1 and k = 0 we have

k(@t + T [e✓✏,q�1] ·r)Wq+1kC0

k (@t + T [P✏,q�1] ·r)Wq+1kC0 + k (@t + T [M✏,q�1] ·r)Wq+1kC0

. ⌧�1
q �

1
2
q .

Therefore, we conclude
kRT kC0 . ��1

q+1⌧
�1
q �

1
2
q . (5.3)

Estimates of RD: It is obvious that there exists RD satisfying
RD = ⌫r��1⇤�Wq+1.

It follows from (4.19) that

kRDkC0 . ��1+�
q+1 kWq+1kC0 . ��1+�

q+1 �
1
2
q . (5.4)

Estimates of RN : Again, due to the frequency localization property of e✓✏,q�1

and Wq+1, we can define

RN = r��1P⇡�q+1 [T [Wq+1] ·re✓✏,q�1].

Applying (4.13) and (4.19) gives

kRNkC0 . ��1
q+1kT [Wq+1]kC0kre✓✏,q�1kC0

. ��1
q+1�

1
2
q �q�1�

1
2
q�2.

(5.5)

Estimates of RO: It follows from Microlocal Lemma 4.1 that
WI,q+1 = P⇡�q+1 [aI,q+1e

i�q+1⇠I ]

= aI,q+1⌘�q+1(�q+1r⇠I)e
i�q+1⇠I + �aI,q+1e

i�q+1⇠I

= aI,q+1e
i�q+1⇠I + �aI,q+1e

i�q+1⇠I
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and

T [WI,q+1] = TP⇡�q+1 [aI,q+1e
i�q+1⇠I ]

= aI,q+1m(�q+1r⇠I)⌘�q+1(�q+1r⇠I)e
i�q+1⇠I + �uI,q+1e

i�q+1⇠I

= aI,q+1m(r⇠I)e
i�q+1⇠I + �uI,q+1e

i�q+1⇠I .

Consequently we compute

T [Wq+1] ·rWq+1 =
1

2
·r
X

I2⌦

�
T [WI,q+1]WĪ,q+1 + T [WĪ,q+1]WI,q+1

�

+
X

J 6=Ī

T [WJ,q+1] ·rWI,q+1

with
1

2

X

I2⌦

�
T [WI,q+1]WĪ,q+1 + T [WĪ,q+1]WI,q+1

�

=
1

2

X

I2⌦

a2I,q+1

⇣
m(rb⇠I) +m(�rb⇠I)

⌘

+
1

2

X

I2⌦

a2I,q+1

⇣
m(r⇠I)�m(rb⇠I) +m(�r⇠I)�m(�rb⇠I)

⌘

+
1

2

X

I2⌦

�
aI,q+1�uĪ,q+1 + aI,q+1m(r⇠I)�aĪ,q+1 + aĪ,q+1�uI,q+1

+aĪ,q+1m(r⇠Ī)�aI,q+1 � �aĪ,q+1�uI,q+1 � �aI,q+1�uĪ,q+1

�

= :
1

2

X

I2⌦

a2I,q+1

⇣
m(rb⇠I) +m(�rb⇠I)

⌘
+RO,1 +RO,2.

Since

rWI,q+1 = i�q+1r⇠IP⇡�q+1 [aI,q+1e
i�q+1⇠I ] + P⇡�q+1 [raI,q+1e

i�q+1⇠I ],

we further compute
X

J 6=Ī

T [WJ,q+1] ·rWI,q+1

=
X

J 6=Ī

i�q+1T [WJ,q+1] ·r⇠IP⇡�q+1 [aI,q+1e
i�q+1⇠I ]

+
X

J 6=Ī

T [WJ,q+1] · P⇡�q+1 [raI,q+1e
i�q+1⇠I ]

=
X

J 6=Ī

i�q+1aJ,q+1m(r⇠J)e
i�q+1⇠J ·r⇠IP⇡�q+1 [aI,q+1e

i�q+1⇠I ]

+
X

J 6=Ī

i�q+1�uJ,q+1e
i�q+1⇠J ·r⇠IP⇡�q+1 [aI,q+1e

i�q+1⇠I ]

+
X

J 6=Ī

T [WJ,q+1] · P⇡�q+1 [raI,q+1e
i�q+1⇠I ].
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Note that

m(r⇠J) ·r⇠I = m(r⇠J,in) ·r⇠I,in +m(r⇠J,in) · (r⇠I �r⇠I,in)

+ (m(r⇠J)�m(r⇠J,in)) ·r⇠I

= m(r⇠J,in) · (r⇠I �r⇠I,in)

+ (m(r⇠J)�m(r⇠J,in)) ·r⇠I

since

m(r⇠J,in) ·r⇠I,in = m(±r⇠I,in) ·r⇠I,in = 0.

Therefore we have
X

J 6=Ī

T [WJ,q+1] ·rWI,q+1

=
X

J 6=Ī

i�q+1aJ,q+1m(r⇠J,in) · (r⇠I �r⇠I,in)e
i�q+1⇠JP⇡�q+1 [aI,q+1e

i�q+1⇠I ]

+
X

J 6=Ī

i�q+1aJ,q+1(m(r⇠J)�m(r⇠J,in)) ·r⇠Ie
i�q+1⇠JP⇡�q+1 [aI,q+1e

i�q+1⇠I ]

+
X

J 6=Ī

i�q+1�uJ,q+1e
i�q+1⇠J ·r⇠IP⇡�q+1 [aI,q+1e

i�q+1⇠I ]

+
X

J 6=Ī

T [WJ,q+1] · P⇡�q+1 [raI,q+1e
i�q+1⇠I ]

= : r ·RO,3 +r ·RO,4 +r ·RO,5 +r ·RO,6.

Summarizing the analysis above we obtain

T [Wq+1] ·rWq+1 =
1

2
r ·

X

I2⌦

a2I,q+1 (m(r⇠I,in) +m(�r⇠I,in)) +r ·RO,1

+r ·RO,2 +r ·RO,3 +r ·RO,4 +r ·RO,5 +r ·RO,6.

According to the choice of aI,q+1 in (4.5), we have that

r ·RO = r ·
�
c✏,1,qA1 +R⇤

✏,q � 2T [Wq+1]Wq+1

�

= r · (c2,q+1A2 � 2RO,1 � 2RO,2 � 2RO,3 � 2RO,4 � 2RO,5 � 2RO,6) .

Now we estimate the error terms above. It follows from the definition of c2,q+1 and
the assumption (4.11) that

kc2,q+1kC0 . kR⇤
✏,qkC0 . kR⇤

qkC0 . �q+1.

Applying Lemma 5.3 and 5.4, noticing that ⇠I is advected by euq = euq�1, leads to

kRO,1kC0 .
X

I2⌦

kaI,q+1k2C0 |r⇠I �rb⇠I |

.
X

I2⌦

kaI,q+1k2C0�q�1⌧qkeuq�1kC0

. �q�1⌧q�
1
2
q�2�q.
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Applying Lemma 5.4 and Lemma 5.5

kRO,2kC0 .
X

I2⌦

kaI,q+1kC0k�uĪ,q+1kC0 +
X

I2⌦

kaI,q+1kC0k�aĪ,q+1kC0

+
X

I2⌦

k�aI,q+1kC0k�uĪ,q+1kC0

. �
1
2
q �

�1
q+1�q�

1
2
q .

We observe that due to the frequency support of Wq+1 and T [Wq+1], we can define

RO,3 +RO,4 +RO,5 +RO,6 =
X

J 6=Ī

r��1P⇡�q+1 [T [WJ,q+1] ·rWI,q+1] .

Therefore we deduce from Lemma 5.3 and Lemma 5.4

kRO,3kC0 .
X

J 6=Ī

kaJ,q+1kC0kaI,q+1kC0km(r⇠I,in)kC0 |r⇠I �r⇠I,in|

.
X

J 6=Ī

kaJ,q+1kC0kaI,q+1kC0�q�1⌧qkeuq�1kC0

. �q�1⌧q�
1
2
q�2�q

kRO,4kC0 .
X

J 6=Ī

kaJ,q+1kC0kaI,q+1kC0km(r⇠J)�m(r⇠J,in)kC0kr⇠IkC0

.
X

J 6=Ī

kaJ,q+1kC0kaI,q+1kC0 |r⇠I �r⇠I,in|

. �q�1⌧q�
1
2
q�2�q

where we used the fact km(r⇠J)�m(r⇠J,in)kC0 . kr⇠J �r⇠J,inkC0 ;

kRO,5kC0 .
X

J 6=Ī

k�uJ,q+1kC0kaI,q+1kC0kr⇠IkC0

. ��1
q+1�q�

1
2
q �

1
2
q

using (4.19) and Lemma 5.5, and

kRO,6kC0 .
X

J 6=Ī

��1
q+1kT [WJ,q+1]kC0kraI,q+1kC0

. ��1
q+1�

1
2
q �q�

1
2
q .

Summarizing the estimates above gives

kRO,1kC0 + kRO,3kC0 + kRO,4kC0 . �q�1⌧q�
1
2
q�2�q, (5.6)

kRO,2kC0 + kRO,5kC0 + kRO,6kC0 . ��1
q+1�q�q. (5.7)
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Estimates of RM : It follows from the fact e✓q = e✓q�1, Lemma 4.2 and estimate
(4.19) that

k(T [e✓q�1]� T [e✓✏,q�1])Wq+1kC0 + kT [Wq+1](e✓q�1 � e✓✏,q�1)kC0

= k(T [e✓q]� T [e✓✏,q])Wq+1kC0 + kT [Wq+1](e✓q � e✓✏,q)kC0

. �
1
2
q µ�L

q �L
q �

1
2
q�1

. �
1
2
q �

1
2
q�1�

�1
q+1�q.

By Lemma 4.3, we have

k(c1,q,✏ � c1,q)A1kC0 + kR⇤
q,✏ �R⇤

qkC0 . �
1
2
q �

1
2
q�1�

�1
q+1�q.

Therefore
kRMkC0 . �

1
2
q �

1
2
q�1�

�1
q+1�q. (5.8)

In summary, the new stress error can be written as
eRq+1 = c2,q+1A2 +R⇤

q+1

with
kc2,q+1kC0 . �q+1

and
R⇤

q+1 = RT +RN +RD +RM � 2(RO,1 + ...+RO,6).

Thus (4.9) is satisfied with c1,q replaced by c2,q+1. To show (4.11) with q replaced
by q+1, we just need to show kR⇤

q+1kC0  �q+2. We choose ⌧q = �
� 1

2
q+1�

� 1
2

q�1�
� 1

4
q �

� 1
4

q�2

to optimize the two estimates (5.3) and (5.6) such that

kRT kC0 + kRO,1kC0 + kRO,3kC0 + kRO,4kC0 . �
� 1

2
q+1�

1
2
q�1�

3
4
q �

1
4
q�2.

In view of the last estimate, (5.5), (5.4), (5.7) and (5.8), we impose
8
>>>>>>><

>>>>>>>:

�
� 1

2
q+1�

1
2
q�1�

3
4
q �

1
4
q�2 . �q+2

��1
q+1�q�1�

1
2
q �

1
2
q�2 . �q+2

��1+�
q+1 �

1
2
q . �q+2

��1
q+1�q�q . �q+2

��1
q+1�q�

1
2
q �

1
2
q�1 . �q+2

which are satisfied provided b = 1+ (close enough to 1 from the right), � < 2
5 and

for � � 0 satisfying � < 2b(1��)
2b2�1 . Recall ✓ is in C0

t C
↵
x with ↵ < �

2b < 1
5 . The

conditions � < 2b(1��)
2b2�1 and ↵ < �

2b together imply 0  � < 1� ↵.

Estimates of higher order spatial derivatives: For c2,q+1, each derivative
cost is . �q+1. Combining with the C0 estimate of c2,q+1, we have

krkc2,q+1kC0 . �k
q+1�q+1.

We observe that RT , RD, RN , RO,3, RO,4,RO,5 and RO,6 are localized in Fourier
space near frequency �q+1. Hence each spatial derivative of them costs at most
⇡ �q+1. From Lemma 4.2, we know

ke✓q�1 � e✓q�1,✏kC0 . ��1
q �q�1�

1
2
q�2.
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We also have the estimate from (4.13)

kre✓q�1kC0 + kre✓q�1,✏kC0 . �q�1�
1
2
q�2.

Therefore one spatial derivative cost of e✓q�1 � e✓q�1,✏ and T [e✓q�1] � T [e✓q�1,✏] is at
most ⇡ �q. On the other hand, one spatial derivative cost of Wq+1 and T [Wq+1]
is at most ⇡ �q+1. Hence one spatial derivative cost of RM is at most ⇡ �q+1.
Regarding RO,1, we compare the estimates from Lemma 5.3

kr2⇠I(�q(x, s, t))kC0 . �q,

kr⇠I(�q(x, s, t))�r⇠I,inkC0 . ⌧q�q�
1
2
q�1.

Thus one spatial derivative of r⇠I(�q(x, s, t))�r⇠I,in is at most ⇡ ⌧�1
q �

� 1
2

q�1 . �q+1.
The analysis shows that

krkR⇤
q+1kC0 . �k

q+1�q+2, 0  k  L.

Estimates of advective derivative: First we rewrite

@t + T [Mq+1] ·r = @t + T [Mq,✏] ·r+ (T [Mq]� T [Mq,✏]) ·r+ T [Wq+1] ·r

and

@t + T [✓q+1] ·r = @t + T [✓q,✏] ·r+ (T [✓q]� T [✓q,✏]) ·r+ T [Wq+1] ·r.

For RD:

krk(@t + T [Mq+1] ·r)RDkC0

. krk(@t + T [Mq,✏] ·r)RDkC0 + krk ((T [Mq]� T [Mq,✏]) ·r)RDkC0

+ krk(T [Wq+1] ·r)RDkC0

. �k+1
q+1�

1
2
q �q+1.

In view of the definition of c2,q+1 in (4.2), we observe

krk(@t + T [Mq+1] ·r)c2,q+1kC0

. krk(@t + T [Mq+1] ·r)R⇤
q,✏kC0

. krk(@t + T [Mq+1] ·r)R⇤
qkC0

. krk(@t + T [Mq,✏] ·r)R⇤
qkC0 + krk ((T [Mq]� T [Mq,✏]) ·r)R⇤

qkC0

+ krk(T [Wq+1] ·r)R⇤
qkC0

. �k+1
q �

1
2
q�1�q+1 + �k

q+1�
1
2
q �q�q+1

. �k+1
q+1�

1
2
q �q+1.

Lemma 5.7. Let k � 0 and 0  r  2, we have

krk

✓
Dq

Dt

◆r

(r⇠I �r⇠I,in)kC0 . �k
q+1⌧

�r
q ⌧q+1�q�

1
2
q�1.

Lemma 5.8. Let k � 0 and 0  r  2, we also have

krk

✓
Dq

Dt

◆r

(m(r⇠I)�m(r⇠I,in))kC0 . �k
q+1⌧

�r
q ⌧q�q�

1
2
q�1.
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Proof: Note

m(r⇠I)�m(r⇠I,in) = (r⇠I �r⇠I,in)

Z 1

0
@am ((1� s)r⇠I,in + sr⇠I) ds.

The estimate follows from Lemma 5.7.
⇤

Combining Lemma 5.4, Lemma 5.5, Lemma 5.7, Lemma 5.8, we have

krk(@t + T [Mq+1] ·r)RO,1kC0 + krk(@t + T [Mq+1] ·r)RO,2kC0

. krk(@t + T [Mq,✏] ·r)RO,1kC0 + krk ((T [Mq]� T [Mq,✏]) ·r)RO,1kC0

+ krk(T [Wq+1] ·r)RO,1kC0 + krk(@t + T [Mq,✏] ·r)RO,2kC0

+ krk ((T [Mq]� T [Mq,✏]) ·r)RO,2kC0 + krk(T [Wq+1] ·r)RO,2kC0

. �k+1
q+1�

1
2
q �q+2.

For RT , recall

RT = r��1P⇡�q+1 [(@t + T [e✓q�1] ·r)Wq+1].

Then
k(@t + T [✓q+1] ·r)RT kC0

. k(@t + T [✓q,✏] ·r)RT kC0 + k(T [✓q]� T [✓q,✏]) ·rRT kC0

+ kT [Wq+1] ·rRT kC0 .

Denote
Dq,✓,✏

Dt
= @t + T [✓q,✏] ·r,

eDq,✓

Dt
= @t + T [e✓q] ·r

For the first term, we apply the commutator

(@t + T [✓q,✏] ·r)RT =


Dq,✓,✏

Dt
,r��1P⇡�q+1

� eDq�1,✓

Dt
Wq+1

+r��1P⇡�q+1

Dq,✓,✏

Dt

eDq�1,✓

Dt
Wq+1.

Hence applying Lemma 5.2, Lemma 5.6

k(@t + T [✓q,✏] ·r)RT kC0  k

Dq,✓,✏

Dt
,r��1P⇡�q+1

� eDq�1,✓

Dt
Wq+1kC0

+ kr��1P⇡�q+1

Dq,✓,✏

Dt

eDq�1,✓

Dt
Wq+1kC0

. �q�
1
2
q�1⌧

�1
q�1�

1
2
q + ��1

q+1⌧
�1
q ⌧�1

q�1�
1
2
q .

Applying Lemma 4.2, estimate (4.19) and the spatial derivative established earlier

k(T [✓q]� T [✓q,✏]) ·rRT kC0 . kT [✓q]� T [✓q,✏]kC0krRT kC0

. ��1
q+1�q�

1
2
q�1�q+1�q+2,

kT [Wq+1] ·rRT kC0 . kT [Wq+1]kC0krRT kC0

. �
1
2
q �q+1�q+2.
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Summarizing we have

k(@t + T [✓q+1] ·r)RT kC0 . �q�
1
2
q�1⌧

�1
q�1�

1
2
q + ��1

q+1⌧
�1
q ⌧�1

q�1�
1
2
q

+ ��1
q+1�q�

1
2
q�1�q+1�q+2 + �

1
2
q �q+1�q+2.

The advective derivative of RN can be handled similarly. Recall

RN = r��1P⇡�q+1 [T [Wq+1] ·re✓q�1].

k(@t + T [✓q+1] ·r)RNkC0

. k(@t + T [✓q,✏] ·r)RNkC0 + k(T [✓q]� T [✓q,✏]) ·rRNkC0

+ kT [Wq+1] ·rRNkC0 .

(@t + T [✓q,✏] ·r)RN =


Dq,✓,✏

Dt
,r��1P⇡�q+1

�
(T [Wq+1] ·re✓q�1)

+r��1P⇡�q+1

Dq,✓,✏

Dt
(T [Wq+1] ·re✓q�1).

The advective derivative of RO,3, ..., RO,6 can be estimated similarly and the
details are omitted.

To estimate the material derivative of RM , we first consider the term (T [e✓q�1]�
T [e✓q�1,✏])Wq+1,

k(@t + T [Mq+1] ·r)
⇣
(T [e✓q�1]� T [e✓q�1,✏])Wq+1

⌘
kC0

. k(@t + T [Mq,✏] ·r)
⇣
(T [e✓q�1]� T [e✓q�1,✏])

⌘
Wq+1kC0

+ k(@t + T [Mq,✏] ·r)Wq+1(T [e✓q�1]� T [e✓q�1,✏])kC0

+ k(T [Mq]� T [Mq,✏]) ·r
⇣
(T [e✓q�1]� T [e✓q�1,✏])

⌘
Wq+1kC0

+ k(T [Mq]� T [Mq,✏]) ·rWq+1(T [e✓q�1]� T [e✓q�1,✏])kC0

+ k(T [Wq+1] ·r)
⇣
(T [e✓q�1]� T [e✓q�1,✏])

⌘
Wq+1kC0

+ k(T [Wq+1] ·r)Wq+1(T [e✓q�1]� T [e✓q�1,✏])kC0 .

We see from Lemma 5.1 that the cost of (@t + T [Mq,✏] ·r) is �q�
1
2
q�1. Combining

with Lemma 4.2 and estimate (4.19) we deduce

k(@t + T [Mq,✏] ·r)
⇣
(T [e✓q�1]� T [e✓q�1,✏])

⌘
Wq+1kC0

. k(@t + T [Mq,✏] ·r)
⇣
(T [e✓q�1]� T [e✓q�1,✏])

⌘
kC0kWq+1kC0

. �q�
1
2
q�1�

�1
q �q�1�

1
2
q�2�

1
2
q ,

k(@t + T [Mq,✏] ·r)Wq+1(T [e✓q�1]� T [e✓q�1,✏])kC0

. k(@t + T [Mq,✏] ·r)Wq+1kC0k(T [e✓q�1]� T [e✓q�1,✏])kC0

. �q�
1
2
q�1�

1
2
q ��1

q �q�1�
1
2
q�2.



NON-UNIQUENESS OF ACTIVE SCALAR EQUATIONS 28

Using Lemma 4.2, (4.13) and estimate (4.19),

k(T [Mq]� T [Mq,✏]) ·r
⇣
(T [e✓q�1]� T [e✓q�1,✏])

⌘
Wq+1kC0

. kT [Mq]� T [Mq,✏]kC0kr(T [e✓q�1]� T [e✓q�1,✏])kC0kWq+1kC0

. ��1
q+1�q�

1
2
q�1�q�1�

�1
q �q�1�

1
2
q�2�

1
2
q ,

k(T [Mq]� T [Mq,✏]) ·rWq+1(T [e✓q�1]� T [e✓q�1,✏])kC0

. kT [Mq]� T [Mq,✏]kC0kT [e✓q�1]� T [e✓q�1,✏]kC0krWq+1kC0

. ��1
q+1�q�

1
2
q�1�

�1
q �q�1�

1
2
q�2�q�

1
2
q ,

Applying Lemma 4.2 and estimate (4.19),

k(T [Wq+1] ·r)
⇣
(T [e✓q�1]� T [e✓q�1,✏])

⌘
Wq+1kC0

. kT [Wq+1]kC0kr(T [e✓q�1]� T [e✓q�1,✏])kC0kWq+1kC0

. �
1
2
q �q�1�

�1
q �q�1�

1
2
q�2�

1
2
q ,

k(T [Wq+1] ·r)Wq+1(T [e✓q�1]� T [e✓q�1,✏])kC0

. kT [Wq+1]kC0kT [e✓q�1]� T [e✓q�1,✏]kC0krWq+1kC0

. �
1
2
q ��1

q �q�1�
1
2
q�2�q�

1
2
q .

Other terms in RM can be estimated analogously.

Hölder estimates in time: It follows from

@tWq+1 = Dt,qWq+1 � uq ·rWq+1

that

kWq+1kC1
t C

0
x
. �

1
2
q�1�q+1�

1
2
q ,

and hence by interpolation

kWq+1kC⇣
t C

0
x
. (�q+1�

1
2
q�1)

⇣�
1
2
q ⇠ �

(b� 1
2b�)⇣�

1
2�

q .

The C⇣ regularity in time is assured if

(b� 1

2b
�)⇣ � 1

2
� < 0

i.e.

⇣ <
�

2b� 1
b�

<
1

2d

when choosing b = 1+ and � < 2
2d+1 .
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6. Proof of Theorem 1.1

Due to the presence of an external forcing in each equation of (3.3), there is
redundancy to find an initial tuple (P0,M0, R̄0, eR0) satisfying the system (3.3) and
(4.6)-(4.12) at level 0, such that M0 6⌘ 0. For instance, we can choose P0 ⌘ 0 and
M0 6⌘ 0 with M0 = P�0M0. We then define R̄0 and eR0 such that

r · R̄0 = r · (T [M0]M0) ,

r · eR0 = @tM0 + ⌫⇤�M0.

Obviously, such tuple (P0,M0, R̄0, eR0) satisfies the system (3.3) at level q = 0. It
is easy to see that, choosing �0 > 0 large enough and ��1 = 1, the estimates (4.6)-
(4.12) at level 0 can be satisfied. Applying the inductive Proposition 4.4 iteratively
we obtain a sequence {(Pq,Mq, R̄q, eRq} satisfying (3.3) and (4.6)-(4.12). Thanks
to the estimates (4.7), (4.9) and (4.11), there exists a subsequence such that Pq

converges to a function P , Mq converges to a function M and eRq converges to 0 as
q ! 1. Note

M = M0 +
1X

q=0

(Mq+1 �Mq) = M0 +
1X

q=0

Wq+1

and Wq+1 are supported on frequencies near �q+1. Hence M 6⌘ 0. Regarding the
convergence of R̄q, it follows from (3.8) that

r · (R̄q+1 � R̄q) =�
⇣
@t + T [e✓q] ·r

⌘
Wq+1 � ⌫⇤�Wq+1 � T [Wq+1] ·re✓q

+ 2r · (T [Wq+1]Wq+1)

which implies

R̄q+1 � R̄q = �RT �RD �RN + 2T [Wq+1]Wq+1.

We then obtain from the estimates (5.3), (5.4), (5.5) and Lemma 5.6 that

kR̄q+1 � R̄qkC0 . ��1
q+1⌧

�1
q �

1
2
q + ��1+�

q+1 �
1
2
q + ��1

q+1�
1
2
q �q�1�

1
2
q�2 + �q . �q . ���

q

for � > 0. Therefore there is a subsequence of R̄q which converges to a vector field
R̄. The limit tuple (P,M, R̄, 0) is a weak solution of (3.1) with f = r · R̄. Hence
there are at least two weak solutions to (1.1) with external forcing f = r · R̄. It
follows from (3.8), (3.9) and the estimates in Proposition 4.4 that f 2 C0

t C
2↵�1
x .
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� 1

2 . Commun. Math. Phys., 277(1):45–67, 2008.
[33] H. K. Moffatt. Magnetostrophic turbulence and the geodynamo. In: IUTAM Symposium

on Computational Physics and New Perspectives in Turbulence, vol. 4 of IUTAM Bookser.
Springer, Dordrecht, pp 339-346, 2008.

[34] H. K. Moffatt and D. E. Loper. The magnetostrophic rise of a buoyant parcel in the Earth’s
core. Geophys. J. Int., 117(2):394-402, 1994.

[35] S.G. Resnick. Dynamical problems in non-linear adjective partial differential equations. Ph.
D. Thesis, University of Chicago, 1995.

[36] R. Shvydkoy. Convex integration for a class of active scalar equations. J. Am. Math. Soc.,
24(4): 1159–1174, 2011.

[37] L. Székelyhidi Jr. Relaxation of the incompressible porous media equation. Ann. Sci. Éc.
Norm. Supér., (4) 45(3): 491–509, 2012.

Department of Mathematics, Statistics and Computer Science, University of Illi-
nois at Chicago, Chicago, IL 60607, USA

Email address: mdai@uic.edu

Department of Mathematics, University of Southern California, Los Angeles, CA
90089, USA

Email address: susanfri@usc.edu


