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ABsTRACT. We consider forced active scalar equations with even and homoge-
neous degree 0 drift operator on T%. Inspired by the non-uniqueness construc-
tion for dyadic fluid models [17, 23], by implementing a sum-difference convex
integration scheme we obtain non-unique weak solutions for the active scalar

equation in space C?Cg with a < #H Without external forcing, Isett and

Vicol [30] constructed non-unique weak solutions for such active scalar equa-
tions with spatial regularity CS for a < ﬁ.
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1. INTRODUCTION

1.1. Background. The active scalar equation with external forcing
00 +u-V0=—vAN0+ f,
u=T[0], (1.1)
V.ou=0

describes a number of physical phenomena arising in fluid dynamics. The unknown
0 is a real-valued scalar function, while v is the drift velocity defined from 6 through
the nonlocal Zygmund operator 7. The given function f denotes the external
buoyancy forcing. The parameter v > 0 is the dissipation coefficient, and v > 0
indicates the strength of the dissipation. The operator T" has Fourier symbol m(&)
which is even, homogeneous of degree 0, and satisfies £ - m(§) = 0. We consider
(1.1) on T¢ x [0, 00) with d > 2.

Particular physical examples of (1.1) with even drift operators include the in-
compressible porous media (IPM) equation [1, 16] and the magnetogeostrophic
(MG) equation [25, 33, 34]. These physical models have attracted attention due to
their application in various physics contexts and their connection to hydrodynamic
equations.

The class of active scalar equations with odd drift operators, including the surface
quasi-geostrophic equation (SQG) [13], has also been extensively studied in the
literature. The different symmetry features of the even and odd classes result in
different ill/well-posedness theories. The cancellation property for the odd class of
scalar equations is beneficial in establishing well-posedness, see [7, 14, 31, 32, 35];
while such cancellation structure is absent for the even class. The main objective of
this paper is to investigate the ill-posedness phenomena for (1.1) with even operators
T through the lens of convex integration techniques.

M.D. is partially supported by the NSF grants DMS-2009422 and DMS-2308208.
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A pair (0, u) is a weak solution of (1.1) if the equations in (1.1) are satisfied in
the distributional sense. In the inviscid case v = 0, the existence of global weak
solution for the active scalar equation with even operators is a challenging problem
in the framework of classical energy method. Nevertheless, it was shown in [36] that
there are infinitely many bounded weak solutions for (1.1) with v = 0 and f = 0 via
the application of convex integration techniques, which were developed for Euler
equations in [20, 22|. In separate works [15, 37|, non-unique bounded weak solutions
were also constructed for the 2D IPM equation based on the convex integration
method. In the recent work [8] for the 2D IPM, the authors obtained infinitely
many mixing solutions in Sobolev space by combining convex integration, contour
dynamics and pseudodifferential operators techniques. Similar result for the 2D
IPM with curved interfaces was established in [10]. We emphasize that the convex
integration method in the aforementioned works is rooted in the Tartar framework
through the concept of subsolution. In particular, the solutions constructed in
[15, 36, 37] are in the space L<,.

In the time line of the progress toward solving Onsager’s conjecture (verifying %
Holder regularity threshold for energy conservation) for the Euler equation, it was
first shown the existence of bounded weak solutions violating the energy conserva-
tion in [22], then improvements were obtained in [12, 20, 21, 27, 2, 3] by producing
continuous and C¢ dissipative solutions for a < % Eventually dissipative solutions
with spatial regularity C* for any a < j were constructed in [28]. In this de-
velopment, the improvement from constructing bounded weak solutions to Holder
continuous solutions relies on a crucial cancellation property which involves the use
of stationary plane wave solutions for the Euler equation. The benefit of taking
such plane waves as building blocks is that interference terms between different
waves can be controlled.

Coming back to active scalar equations with even drift operators, an analogous
Onsager’s conjecture is that % spatial regularity is expected to guarantee energy
conservation for the solution. However, it is not trivial to adapt the ideas for the
Euler equations in the hope of obtaining wild weak solutions that are continuous
or C for a > 0. The obstacle is that interference terms in different waves for
active scalar equations can not be controlled efficiently due to the lack of a similar
cancellation structure as that for the Euler equation. Remarkably the authors of
[30] discovered a new mechanism for producing cancellations between overlapping
waves for active scalar equations with even operators, and constructed non-unique
dissipative solutions in C¢ with o < ﬁlﬂ for (1.1) with » = 0 and f = 0. The
cancellation comes from the vanishing of self-interaction terms which is due to the
property £-m(€) = 0 (the divergence free condition). Such a cancellation determines
that the iteration convex integration scheme is essentially based on one dimensional
oscillations. Hence considering the problem in d-dimension, i.e. on T%, requires d
stages to correct the stress error in the iteration step from R, to R,41. This explains
why the spatial regularity obtained in [30] depends on dimension, which appears to
be counter intuitive in some sense since one expects to have more flexibility in the
higher dimensional case.

We note that the forced surface quasi-geostrophic (SQG) equation (an active
scalar equation with odd drift operator) was recently studied in [6, 18, 19]. For
the forced stationary SQG, it was shown that there are more than one solutions
in the space C& with o < —1 in [18]. As a contrast, a non-trivial weak solution
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was constructed in C¢ with a < —% for stationary SQG without external forcing in
[11]. For the evolutionary SQG without external forcing, non-unique weak solutions
with spatial regularity C¢ for a < —% were constructed independently in [4] and
[29]. While for the forced evolutionary SQG, the authors of [6] and [19] recently
constructed non-unique weak solutions with spatial regularity C& for o < 0. The
construction of [6] is in the framework of [4] and the construction of [19] is in
the framework of [29]. Moreover in both [18] and [19], the authors exploit the
flexibility due to the presence of forcing through the sum-difference formulation of
two solutions for the underlying system, which was inspired by [17, 23|. Such sum-
difference formulation will be adapted in the current paper as well. More details
will be provided in Section 3.

Comparing the active scalar equations with even and odd drift operators, we
observe that it seems much harder to construct weak solutions with higher regularity
that violate uniqueness and the energy law in the odd case. The reason is that the
cancellation property in the odd case presents an obstruction, see [4].

Among the active scalar equations with even operator, the MG equation is of
particular interest since the operator 7" has an unbounded region in the Fourier
space (c.f. [26]). Due to the unboundedness and evenness of T', ill-posedness for
(1.1) with v = 0, f = 0 and the MG operator T' was shown in [26] in the sense
that there is no Lipschitz solutions map at the initial time. While when v > 0,
the unforced MG equation was shown well-posed in [25] since the diffusion term
plays a dominant role. In the case of fractional diffusion for the MG equation, i.e.
(1.1) with v > 0 and f = 0, the authors of [24] identified a threshold value v = 1
by proving that: the MG equation with v € (1,2) is locally well-posed, the MG
equation with v € (0,1) is ill-posed and the MG equation with v = 1 is globally
well-posed for small initial data.

1.2. Main result. In this current paper we study the active scalar equation (1.1)
with v > 0 and f # 0. The purpose is to test whether the flexibility of allowing an
external forcing can lead to the construction of wild solutions that reach the crit-
ical spatial regularity % for the energy law. We adapt the cancellation mechanism
discovered in [30] in our construction, and thus our result also depends on dimen-
sion. In particular, the wild solutions we obtain have spatial regularity C& with
a < Tl-s—l and violate uniqueness. It is clear that this regularity is higher than ﬁ
for the non-forced case in [30]. The improvement on the regularity for the forced
equation is explained in the item (ii) of Subsection 3.2 below. The key idea is to
design a particular increment in the iterative convex integration scheme such that
0q+1 = 04, which leads to improvement in the estimates of the stress errors. Such
improvement can be seen by comparing the heuristic estimates (3.11) for the forced

case and the error estimates on the stress error for the unforced case in Section 2.

The main result is stated below.

Theorem 1.1. Leta < ﬁ, 0<y<l—aand( < ﬁ. There exists f € CYC20~1

such that there are more than one solutions 6 € C2C(T4)NCECO(T?) to (1.1) with
external forcing f.

Theorem 1.1 implies that the forced MG equation with y < 1 — 55k = & (since

the dimension is d = 3) is ill-posed due to the lack of uniqueness. This result is
complementary to the ill-posedness result shown in [24] for the unforced MG with
v < 1, where the solution map is not Lipschitz continuous.



NON-UNIQUENESS OF ACTIVE SCALAR EQUATIONS 4

The paper is organized as follows. Section 2 gives a heuristic analysis for the
result of non-forced active scalar equation with even drift operators which was
proven in [30]; Section 3 provides a heuristic analysis for the forced active scalar
equation with an even operator. In Section 4 we lay out technical preparations and
the main iterative process. Section 5 is devoted to the proof of the main iteration
statement. Section 6 concludes the proof of Theorem 1.1.

2. HEURISTICS OF NON-UNIQUENESS FOR (1.1) WITH » =0 AND f =0

We provide an outline of heuristics for the earlier result of Isett and Vicol in their
article [30] concerning unforced active scalar equations. We present the analysis in
the latter notation of [5] for the Navier-Stokes equation.

Theorem 2.1. Let a < ﬁﬂ and I be an open time interval. There exist non-
trivial solutions 0 € CS (T xR) to (1.1) withv = 0 and f = 0 such that 6(z,t) =0
fort e 1.

First, consider the approximating systems in 2D
Oy +V - (ugby) = V- Ry, 2.1)
ug = T1[0,].

Assume the image of the even part of the multiplier m contains d linearly indepen-
dent vectors given by

Aj :m(fj)er(ffj), j:].,Q,...,d, ‘gjl :1
The stress vector Eq can be decomposed as
IA‘—L;q = Cl,qu + CquAQ = CLqu + Rq.

Without loss of generality, we assume |c1 4| > |c24]. The goal is to construct a new
solution such that the principal part ¢; 4A; in the stress error gets reduced.

We specify the index I = (k,+) € Z x {&} := Q. Denote I = (k,F). For I € (),
let 07 4+1 and &; be the amplitude and phase functions respectively, satisfying

Or =101, &r=—¢r

Moreover, &; is advected by u, on a short time interval 7, with initial state E 1. The
increment ©441 = 0441 — 04 is constructed to take the form

Orgt1 = Proa, o (€507 g 11) = €018 (Or g1 + 8071 411),
@qul = Z @I,qul
IeQ
where the error term 67 441 comes from the application of a microlocal lemma.
Applying the microlocal lemma again yields
U[7q+1 = T[@[7q+1] = 6”“”151 (qu+1 + 5U1) with Ur,g+1 = m(VfI)GLqH
Ugsr = TOg11] = Y T[Or441]-
IeQ

We also have
Ugy1 = g + Ugp1 = T[04] + T[Og11].
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The tuple (6441, ug+1, Rg+1) is a solution of (2.1) with ¢ replaced by ¢+ 1 and with
the new stress error R, satisfying

V- §q+1 = (0 +uq V) Oqp1 + V- (Ugs10g)

+V Y Usgs101401
T (2.2)

+V Z (Ul,q+19f,q+l +Cl’qA1 +Rq)
IeQ
=:V-Rr+V -RN+V-Rg +V-Rg.

For parameters A\g > 1, b > 1 and 0 < 8 < 1, define
g = [Agﬂ , geNu{0}

and let 6, = A, 7. Assume 6, and u, are localized to frequency ~ Aq. The cancel-
lation Us,q4107 411 + ¢1,¢A1 suggests the scaling |c1 4] ~ [07,441]*. We make the
inductive assumptions:

IV uqllco + V50, llco S AES2,, k=1,2,..., L, (2.3)
[V*(0r + ug - V)gllco S Net16,_1, k=0,1,2,..,L—1, (2.4)
IV ergllco S AEdq, k=1,2,..,L, (2.5)
V50 + g - V)erglloo S MFLG2 10, k=0,1,2,.,L—1,  (2.6)
IVFRyllco S Aigp1, k=1,2,.., L, (2.7)
V500 + g - V) Rylleo S AEFLOZ 16401, k=0,1,2,, L—1.  (28)
The increments ©441 and Uyq1 = T[O441] satisfy
IV*@qtillco + V¥ Upallco S Noadd, k=0,1, (2.9)
11 +1tg - 9)Ogiallen + 1101+ g - V)Upralleo S 77767 (2.10)

where the time scale 7, is to be determined in the following.
Since we can find Rt and Ry such that

Rp = VA_IIPN)\qul [(at + ug - v)@qul]

Ry =VA Y Uy41 - V0,),
it follows from (2.3), (2.9) and (2.10)
[Brlco S >‘q_4l1||(at + g V)Ogiillco S A;ﬁﬁf;léqfa

1 1
IRNllco S AptallUgsr - Vlgllco S AL 65 X027 5.
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On the other hand, we have

|Rellco = Z Ujsg+1©91,4+1
JZT oo

S N0rg41l2e (Im(VEr) =m(VED o + V€ = Véilleo)
I

S 105 g1 120 VEr = Vil o
I

S Z 107,441 H%“J)‘qTqHuq”CO
I

1
< 5q)\q5;717q.

~1 11 1
To balance the error Ry and Ry, we choose 75 = d, %d¢ *Aq * A% such that

s 3
Aj41Tqg 04 ~ 0gAg07 174
In the end, we observe (up to small errors)

Rs = 82,q+1A2

for some coefficient ¢z 441 with |cg g41]| < dg+1. We then denote Ry41 = Rr+ Ry +

Rp. Combining the estimates above gives

1 1 1
-1 —1¢3 -1 <3 2
[Rotilloo S Agi17q 0¢ + A10G Agdg—4

—1
2

1 3 1 1 1
S AN G 65  + A 1108 A2,

—lpyl_3p 8 —b+1-1p- L
< )\q 2 2 4 4b + )\q 2 2b .
To make sure ||Rgi1]|co < 0g42, We require

{_1b+1_3 _ﬁ<_b25’
1 B 2

Thus we solve, by recalling b > 1

,. 1 1 3. 8
BB~ gbt 5 = 18— o <0
<:>bB(b—1)+B(b—1)+4%(b—1)—%(b—l)<0
<:>bﬂ+ﬁ+4%—%<0
1
— <

20+ 2+ 5
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When b = 17, the inequality above implies 5 < %. Similarly, the other inequality
gives
B

1
Y- _ —np_ =
b*B—-b+1 25 2b<0

<:>b5(b—1)+5(b—1)+2%(b—1)
B
1

b+ 1+ 3

1
_i(b_1)<0

— <

which indicates g < % for b =1%. The C* of ©,41 requires
1 ba—lﬁ
H6q+1”0" § /\:11+1H@q+1||6'0 5 )‘?Jrl(sr? 5 )‘(1 2 5 1

which leads to a < % < %.
In d-dimension, we need to make sure ||Ry11]co S 0444 in order to carry on the
iteration, and hence require

{_1b+1_35_ﬁ < _bdﬁ’
1 d
—b+1 _,ﬁ_ﬁ<_b B.

The first inequality is equivalent to

d 1 g
= BB~ ) BB~ 1) 44 B 1) L1~ 1) <0
d—1 d—2 g1
S VTIBFVTEB 4 4 B — 5 <O
1

— B< ;
P 20001+ 002 4 L+ 1+ )

following which we have § < 1/(2d + %) for b > 1. Similarly the second inequality
is equivalent to
1

<
b1+ b2+ L+ 14 o

and hence 3 < 1/(d+ %) for b > 1. Combining the two conditions yields 3 < ﬁ
1

4d+1"

B

and hence o < % <

3. OUTLINE OF NON-UNIQUENESS CONSTRUCTIONS FOR FORCED EQUATION (1.1)

In this section we sketch a generic convex integration scheme for forced active
scalar equations with even operators. We will explore the flexibility in the convex
integration construction due to the presence of an external forcing. Such flexibility
was exploited in the previous works [18, 19] through the sum-difference formulation
of two distinct solutions for SQG. We note an alternating formulation of convex
integration techniques was used in [6] for forced SQG.
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3.1. Sum-difference system of two solutions. Assume (6, u) and (6, %) are two
distinct solutions of (1.1). The new variables

1, = 1~
= 5(0+8). M=3(0-0)

satisfy the system
P,+T[P]-VP+T[M]-VM =—vA"P + f,
My +T[P]-VM+T[M]-VP=—-vA"M, (3.1)
V-TPl=0, V-T[M]=0.
AllowiNng forcing in the equation of M, we have the flexibility to find a pair (6, u)
and (0,u) with 6 — 0 £ 0, satisfying the relaxed system
P+ T[P]-VP+T[M]-VM =—-vA"P + fi,
M+ T[P]- VM +T[M]-VP=—vA"M + fo, (3.2)
V-T[Pl=0, V-T[M]=0
for some external forcing functions f; and f. We then apply a convex integration

scheme to the equation of M with the aim to erase the forcing fy iteratively, and
eventually arrive at the system (3.1).

3.2. The convex integration scheme. For f; # 0, we will apply a convex inte-
gration scheme to system (3.2) with the aim of reducing the forcing f5 in the second

equation. We thus consider the approximating system

0Py + TP, - VP, +T[M,)-VM,=—-vA"P,+V-R (3.3)
~ 3.3
oM, +T[P,]- VM, +T[M,] - VP, =—vA"M,+V -R,

inductively. Consistent with notation, we have
0= P,+M,, 0,=P,—M,,

T[04) = T[P] + T[My] = uq, T[] =T[Py] — T[My] = tg.
Due to the presence of forcing terms in both equations, we have the abundance to
find an initial tuple (P, Mo, Ro, Ro) with My # 0 satisfying (3.3). Starting from
this tuple, we construct another solution (Py, M, R1, Ry) of (3.3) with R; smaller
than Ro in an appropriate way. Without loss of generality, assume (P,, My, Rq, R 7)
satisfies (3.3) for an even integer ¢q. To take the advantage of the flexibility of having
two unknown variables, each stage of the construction consists two steps: Nfrom
(anMqaquRq) to (Pg+17Mq+17Rq+1>Rq+l) and from (Pq+17Mq+17Rq+17Rq+1)
to (Pyt2, My+2, Rg+2, Rgt2). In particular, we construct W41 and Wy o such that

Myi1=Mg+Wop1, Py =P, — Wy
and
Myyo = Mgi1 +Wypo, Pypo= Py + Wego.
Consequently we note, for even ¢
Og+1 = Pogr1 + Mgp1 = Py + My =0y,

- _ (3.4)
Og+1 = Pgr1 — Mg1 = Py — Mg = 2Wop1 = 04 — 2Wo s
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and
Og+2 = Pyio + Myio = Pyp1 + My1 +2Wopo = 0411 + 2Wo, 55)
§q+2 = Pq+2 - Mq+2 = Pq+1 - Mq+1 = §q+1. ’
The “pause” reflected in 0,41 = 6, and §q+2 = §q+1 will play a key role to gain
better estimates in stress errors. - _
Since the three tuples (Pyyj, M1, Rgtj, Rg+;) with j =0, 1,2 all satisfy (3.3),
the stress terms can be expressed as

V- Ry = (004 T0,] - V) Wora + vA Woy + TIW,a] - VO,

~ (3.6)
+ (v Ry — 2T W] - VWqH) :

AV Eq_;,_g = (8t + T[9q+1] . V) Wq+2 + VA’YWq_A'_Q + T[Wq+2] . V9q+1 ( )
~ 3.7

+ (V : Rq+1 + 2T[ q+2] VWq+2)
V- Rq-i-l - <8t + T[gq] ) V) Wos1 = vA " Wopq — T[Woa] - vgq (3.8)

+ (V : Rq + QT[Wq-&-l} : VWq-i-l) ’

V- Rq+2 = (0 + T0g41] - V) Woga + VAT Wyio + T[Wyia] - VO (3.9)

+ (V "Ry + 277 q+2] VVVq—&-2)
The forms of the stress terms above provide some insights on the construction of
the increments in the two steps ¢ - ¢+ 1and g+ 1 — ¢+ 2:
(1) Wyq; with j = 1,2 will be designed such that

VR, —2T[Wyi1] - VWay1 and V- Rgpq + 2T [Wyio] - ViWgss (3.10)
are small;
(ii) in view of (3.5), we have §q = gq,l in the iteration process and hence expect
to have better estimates for the terms containing gq in (3 6); similarly, thanks to
0,41 = 0, in (3.4), better estimates may be achieved for R,y as in (3.7);
(iii) comparing (3.6) and (3.8), the reduced stress error in the process R — Rq+1 is
gained in the process R; — Rgyy1; while according to (3.7) and (3.9), both processes
éq+1 — RHQ and Rg41 — Ry have stress error reduced by the same amount. It

indicates that this scheme is likely to reduce the forcing in one equation, but not
in both equations.

3.3. Heuristics. Now we estimate équl given in (3.6) using the “pause” feature
T[0,] = T'[04—1] described in item (ii) above. As before, we write

V-Ryy1=V-Rr+V-Ry+V-Ry+V-Rs+V-Rp
with
Ve Rp = (04Tl V) Wora

V' Ry = T[Wy] Vo
V- RH =V Z UJ,q+1@I,q+1
J£T

V-Rp =vAN W,
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and Rg similar as in (2.2). We point out that the forms of the stress errors here are
not exactly the same as the stress errors in the rigorous analysis to be carried out in
Section 5, since we need to include an additional step of mollification. Nevertheless,

the scalings of the stress errors here and those in Section 5 are consistent. Applying
(2.3), (2.9) and (2.10) gives

[Rrllco S Agfall(@ + g1 - V)Ogiallco S /\q+17_15qz7

IR llco € AhllUgi1 - VOg-1llco < Aqilé Ag_182_s,

13 (3.11)
q+1

1
I1Rzllco S 10ra+1lZoAq-17gl8g-1llco S 6eAq-167 o7,
I

where in the last inequality we used the fact that &7 is now advected by ug—1. To
balance the estimates of || Rr||co and ||Ryl|co, we set

-1
”RDHC0 5 /\q+1‘r’YHWq+1”CO S A

-1 _—1
0+17Tq 5q = g Ag— 15q 9T
which implies
1 1 1
Tq = )\ 2 )\q+1(5q Y
In the end, to obtain

[Rg+1llco < dg+2
we need to require

-1 -1
q+lT ‘Sq N5q+27

/\qﬁ15 Ag— 15q 5 S 0g+2,

A8 S by
which are valid provided
3 B 1 b
2 —_— — —_ — S —
D T R A T
= bBOb-1)+80b-1)+ b (b2—1)—i(b2—1)<0
4b2 2b
B
<:>bﬂ+ﬁ+@(b+1) 2—b(b+) <0
L(b+1)
= pf<
o b+ 1+ 5
and ( )
1 9 2b(1 —

Soforb:1+,wehaveﬁ<%,a<%<%,and’y<1—a.
In general for d-dimension, we need to impose
||Rq+1||C0 S Og+d
and hence
q+17—715 S 5q+d7
)‘q+116 Aq- 15q 5 S Og+ds

—1+y
)‘q+1 6 S Og+d-
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Thus we have

. B 1 b
- 4P 5 <

VIR -1+ .+ B —1)+ 4[;2(b2*1)*%(52*1)<0

S BB B (b 1)~ (1) <0

25 (b+1)
b=l b+ 1+ 5

— <

and

1 2b(1 —
b(—1+7)—§ﬁ+bd6<0<:>6<ﬂ.

B 1
a<g <gggpandy<l-—o

Forb=1%, 8 < 57,
2

3.4. Key idea to reduce the stress error. We discuss how to achieve the error
reduction in (3.10). The assumptions on the Fourier symbol m of the operator T
imply that there are two linearly independent vectors in the image of the even part
of m

Ay =m(EW) +m(=€W), Ay =m(E®)) + m(—¢®) (3.12)
with €1 ¢2) ¢ 72,

Consider the increment ansatz
i
Wrg1 = Pra,, (al g1(@,t)e’ qulgI) )
Worr = Wiger
S

By the Microlocal Lemma 4.1 and zero degree of homogeneity of m, the drift term
takes the form

TWr 1] = m(VENWrg41 + 6T [W g41]
with a small error term 67 [Wy g41]. A straightforward computation shows that

1
T[Wq+1]Wq+1 25 Z (T[W])q+1]WI‘7q+l + T[Wl_,q+1]W1,q+1)

IeQ

+ Z TWre1IWigt1
JAT

5 Z lar,g+11> (m(VEr) + m(=VEp)) + error
IEQ

+ Z TWrg1]Wigt1-
TAT

Since m is not odd, the leading order (low frequency) term is non zero,

lazg+1l* (M(VEr) +m(=Ver)) # 0.

The goal is to construct coeflicient functions ay 441 and phase functions &; such
that

(R =Y largl® (m(VEr) +m(— V&))) (3.13)

1eQ)
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is small. As A; and Ay defined in (3.12) span R?, we expect to choose &; to
guarantee

m(VEr) + m(=V&r) = A1 or m(VE&r) + m(=V¢&r) = As.

Then with an appropriate choice of ay 441 we hope the principal part of Eq can be

canceled through (3.13). The reduction of Eq+1 is achieved analogously.
To ensure other terms in the stress fields given in (3.6) and (3.7) can be controlled
appropriately, we need several technical tools which will be provided in Section 4.

4. CONSTRUCTION OF THE INCREMENT

We describe the construction of the highly oscillatory correction (increment) in
this section. We start with some technical preparations.

4.1. Microlocal Lemma. The drift operator T' is a nonlocal differential operator.
When acting T' on plane waves, we need the following lemma from [30] to extract
the leading order term.

Lemma 4.1 (Microlocal Lemma). Let K : R? — C be a Schwartz function and
T[O)(z) = O(z — h)K(h)dh
]R2
for © : T2 — C. For any © = @ @(x) with X\ € Z and smooth functions
£:T? =R and 0 : T? — C, we have

TIB](x) = ¢4 (0(x) R (AVE) + 3[TO] ()

with the error term given by

1
8[TO)(z) = / di / e AVEhGZrah) g — rh) K (h) dr dh
0o ar Jr2

1
Z(r,z,h) = r)\/ R h'9;016(x — sh)(1 — s) ds.
0

4.2. Mollification. As is standard in convex integration method, to avoid loss
of derivative, we need to regularize the solution (P, My, R4, R,) before adding

increments to produce (Pyy1, Myy1, Rgt1, Rg+1). We first regularize Py, M, T[P,]
1

and T'[M,]. Fix some L > 1. Choose p, = )\‘1%+1)\q7%. Denote P<,, by the
Littlewood-Paley projection onto frequency < p4. Define
P.,= IP’QSMqPq, M., = IPQSMMq,
T[Pe,q] = PQSMQT[Pq]v T[Me,q] = P%MQT[MIJ}-
Lemma 4.2. The estimates
HPq - Pe,q”CO N Mq_j||Vqu||C07
HMq - Me,qHCO N Mq_j”VquHCO,
IT[Py) = T[Peglllce S 1g? IV TPl o,
IT[My] = T[Meglllco S ng? IV T[Mg) | o
hold for 0 < j < L.
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The regularization of Eq is slightly more involved. We first define the coarse
scale flow ®,(z,s;t) : T2 x R x R — T2 x R to be the solution of

0sPy(z, ;1) = Ug(Py(z, 53 1), 5)
Oz, t;t) =2

with @, = T[M,]. Let  be a standard mollifier in space with suppn C B(0,1) and
p be a standard mollifier in time with suppp C (—1,1). Denote

ns() =6~ x), ps(s) =8 "p(d7 ).

Without loss of generality, assume Eq can be decomposed as
Eq =4 + Ry

For the spatial scale €, and time scale €; to be determined later, we define the
regularized stress and component

RZ,GI = 1e, * Ry,

[z, 1) /Rqen (@, t+s:t),t+ 8)pe, (s)ds,
Cl,q,ex = ey * Cl,qs

c1,q.e(,t) :/ Clge. (Pg(@,t + 551), 1+ 5)pe, (5) ds,
R

and

Rq’e = Cl,q,EAl —+ R;,e‘
The purpose of such regularization is to have better estimates on the advective
derivatives, since the advective derivative commutes with the flow map ®. See [27]
for more details.
Choose the length and time scales

= OghA) TN quld . (4.1)

Lemma 4.3. The regqularized stress field satisfies the following estimates

H(Cl,q,e - Cl,q)AlHCO + ”R;,e - RZHCU N 52 104 )‘(1_-&1)‘
L Geb1-L)g

Hvkcl,q,encﬂ 5 AII;(SQ()\Q"Fl)\q 1) L ’
(k+1—L) |

194 Rl S i Ggsady ) =7,

(k+1—L)

% Clqellco</\5>\5 1Agr1Ag ),

(k+1—L)y4

1
||v’€ER;,E||Co SRV AER VR CYIEE i B

(k+1—L)

D 1 1 _
Hvk( ) clgellco S A§5q/\q5q2_1)\q+155 ()‘Q"rl)\q 1) L )

Dt
k _q -y
v (ﬁt) elloo S AEGq41) 5 +15 (Ag+1Ag ) T
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4.3. Lifting function. To achieve the cancellation in (3.13), we further decompose
Ry . as

R;e = Cl,q,rAl + 027q+1A2 (42)
and hence

Ry.e = (c1,g,e + C1,9,0) A1 + 2,941 42
Then we require

Z |ar,g1112A1 = eq(H) A1 + (c1,g,e + C140) Ar
I

for some function e,(t) such that
eq(t) + (crge+c1ar) >0, eq(t) >2(c1,q,e + C1,000) -

The function e, is referred to be the lifting function.

4.4. Time cutoff. To optimize the control of main error terms, we choose the life
span 7, of the increment Wy 4,41 to be an appropriate short time interval. The size
of 7, will be specified later. Let ¢ satisfy the condition of partition of unity in time

> (t—n)=1.

ne”Z

on(t) =¢(t_'”‘Z)

Tq

Define

and consider the amplitude function

arqe1 = 2 (O)op(t)(1+ (crge + crgre ()2, I = (k,L).

The choice of ¢, indicates that the amplitude function as 441 with I = (k, f) has
support [kT, — %Tq, kry + %Tq} in time.

4.5. Phase functions. Denote u,. = TP, ] — T[M,.]. We identify the phase
functions &; to be solutions of the transport equation

(3t + ﬂq’E . V)ﬁ] =0
§1<k7—q7 :E) = f[(l‘)7
where the initial data for the phase function is given by

Er(@) = Egay (x) = £10HeD g

] = 0, if k is even,
)1, if ks odd.

In the iteration step of ¢ +1 — ¢+ 2, the initial data is chosen as
Er(x) = Ep oy (@) = £10Me@) - g,

The time scale 7, will be chosen such

(4.3)

with

1.
V& — VEr| < 1|V£1|-
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4.6. Construction of the increment W, ;. We are ready to introduce the in-
crement W1,

iA
Wor1 = Z Wi+, Wigt1 = Pz}\wl[aLtﬁ-lel q+151] (4.4)
IeQ

with the amplitude function

argi1(z,t) = 2 (H)di(t) (1+ (c1,q,e + cl,q,r)(x,t)efl(t))% , IT=(k,£). (4.5)

The projection operator Pxy, ., is defined through its Fourier multiplier as

o —

Pz)\q_u f(g) = Mgt1 (g)f(f)

We specify the multiplier 7., in the following. Let n be a smooth bump function
in Fourier space with frequency support on Bje))/2(§ (1), satisfying

nEO)=1, if g~V < 710
Then we define
Mg (§) = n(£107 AT E).
Applying the Microlocal Lemma 4.1 gives
Wi g1 = €28 (ag g4+ 8az 411),
T[Wrg41] = €08 (ug g1 + dup g11)

with ur 41 = m(Ag+1VEr)ar,g+1 = m(VEr)as ¢g+1 since m is homogeneous of order
0, where daj ¢+1 and dus 441 are error terms.

4.7. Main iteration process. For the tuple (P, M, R, IAi;q) satisfying (3.3), we
make the following inductive assumptions. Assume R, can be written as

Rq _ {cl,qu + Ry, ?f q %s even (4.6)
c2,4A2 + Ry, if ¢ is odd.
Assume the estimates below hold:
IV* Pylloo + [IV* Myl co
+ IVET[P ]l co + IVFT[M,]||co < Ai;(sf_l, k=1,...L (1)
IV*(9; + TIP,) - V)T (M, co s

+ IV5(0 + T[M,] - V)T [M]llco S Aet161, k=0,1,..,L—1
[VFergllco S AEdq, k=0,1,...,L (4.9)
IV*(0: + T[Py] - V)erqllco 1 (410)
+IVE(0: + T[M,) - V)ergllco S A2 164, k=0,1,...,L—1
IV*R:lco S Nidgr1, k=0,1,...,L (4.11)
IV*(8% + T[P] - V) Ry [l co

) (4.12)
+ V0 + T[My) - V)R, || co S A162_ 1041, k=0,1,...,.L—1.
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In view of the crucial feature (3.4)-(3.5) of the two-step scheme, we have for even
qgand k=0,1,...,L

=1 (4.13)
9q+1 = an ||vk9q||()0 N >\k52

q7gq—1"

{%%_1, IVEG,llco < k52

Proposition 4.4 (Main Iteration). Let L > 2 and K,C > 4. Assume (P,, My, Ry, Ry)
satisfies (3.8) and (4.6)-(4.13). Let I; C R be a nonempty closed interval such that

supp Ry U suppey 4 C Iy X T2. (4.14)

Let e be a function of time satisfying

e(t)>Ks, V tel, +7, (4.15)
with the natural time scale 79 = A5, 21, and
d” 1 3 \rsd
H%(i? (B)llco < C(Ab7-1)"0¢, 0<r <2 (4.16)

There exists another tuple (P41, My+1, Rys1, Eqﬂ) satisfying (3.3) with q replaced
by ¢+ 1 in the form

Myy1 = Mg+ Wop1, Pypr =Py — Wy, if q is even,
Mq+1 M +W+17 Pq+1:Pq+Wq+1, Zf q 7/‘3 Odd

and Wyi1 =V - Wyy1. Moreover, Ryy1 can be written as

~ Coq+1 42+ R4, if q 1is even,
Rypq =4 2% ot f . (4.17)
crg+1A1 + Ry, if q is odd
with
(supp Ry 1 U suppcjgr1) C suppe X T, j=1,2. (4.18)

The estimates (4.7)-(4.12) are satisfied with q replaced by q + 1 and in particular
c1,q replaced by ca g41. The correction Wy satisfies the estimates

1

IV*Wosllco + VT Woslllco S A6, k=01, (4.19)
[1(0r + T[Peg] - VIWyrallco + [[(0r + T[Peq
+ 10 + T[Mc q] - VI)Wyiallco + 1|0 + T

Lol
- 2
STy 00

~

- V)T Wylllco
Mgl - V)T Wyiillen  (4.20)

VEW, 1 CO<A*152 k=01, 4.21
q q+1

(8% + T[Pe.q] - V)Weyra || co

1 (4.22)
+ H(at + T[Me,q] ) V) q+1||C'0 N Tq 1)‘q+1(52
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5. PROOF OF THE MAIN ITERATION ARGUMENT

5.1. Basic estimates of increments.

Lemma 5.1. Let L > 2 be the integer in Proposition 4.4. The reqularizations
T[P. 4] and T[M, 4] satisfy

IV*TP. gllleo + | VFTIMe g]llco
(k—L)
SN g Ay D) T , k 2

q7q—1 )

IV (8: + T[Pe.q] - V)T [Me,g]llco
+ V0 + T[Me ) - V)T M gl co

(k+1—L) 4

S A1 (AN, ) 7, k>0.

See [30] (Lemma 7.1) for a proof.
Lemma 5.2. Let h be a kernel function satisfying
2] [Vhl (@)l L ey S A% A2 Agp1, 0<a<b<N

Denote D
P,q,e
—ZPge _ T[P.,]-V,
Dt 8t + [ »q] V

For the convolution operator

Qf(x) = . f(z —y)h(y) dy,

DM,q,e o
Dt Oy +T[M.4]-V.

the commutators [DP“ < Q] and [DM T Q} are bounded operators on C°(T? x R)

and satisfy

Dpg,e
Dt

D 1
‘vk[ ,Q]HJrHV’“[M’q’E,Q]H gxqaj,le, 0<k<N-1

Lemma 5.3. Let L > 2 be the integer in Proposition 4.J. For 2 or € {Dgf, DM 38
define

D,
A

(k T‘) vkl(
D

Dt t)”V’“" ki+ke+ks=k, ri+ro=r.

The phase functz'on &1 satisfies

HV‘“( D Veilleo + 1D VE | co

(k+14+(r—1)4 —L)4

SNOGE ) Qg A]) T T k21 r=0,12.
Moreover, we have
VEH(®y(x, 5:t)) — VEI ()] < Cryhg 5q 1 I8l <7

Lemma 5.4. Let L > 2. The principal part of the amplitude function satisfies the
estimate
(k+1—L) ¢

L

k, k,r i . _
IDS " ar giallco + DS urgalico S Mo 7" (Agradyt)
forqd >0, k>0andr=0,1,2.
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Lemma 5.5. Let L > 2. The amplitude error terms day g+1 and dur q+1 satisfy

(k+2-L)4
T

k,r k,r — i —
1D 8ar g 1llco + DS 0ur gillco S Ak Ag )AESG 70" (Ag127 )
forqd >0,k>0andr=0,1,2.

Lemma 5.6. The estimates for the corrections Wyy1 and T[Wq14]
k,r k,r —res
IDS W g llco + IDS T giallleo S Abyy7y "6
hold for ¢ >0, k>0 andr =0,1,2.

The lemmas above can be proved analogously as in [30].

5.2. Proof of Proposition 4.4. We only prove the statements for even ¢; the
statements for odd ¢ can be established by minor modifications of the proof. Let
Wy41 be the correction term constructed in Subsection 4.6 and define

My = Mg+ Wypr, FPopr = Py = Wopa
For R,y and Ry, defined respectively through (3.8) and (3.6), the tuple

(Pq+lqu+laRq+1,Rq+l)

satisfies (3.3) with ¢ replaced by ¢ + 1.
The estimates (4.19) and (4.20) follow from Lemma 5.6. Since W7 441 is localized
near frequency ;11 in phase space, we can define

W -1 i\
WI,qul =VA P%)\(ﬁl (aI,qulel q+1&)

and hence Wy = V- ,V\[;q+1 with WQH =3 Wj,q+1. Then the estimate (4.21)
follows from Lemma 5.4 with k = r = 0. Regarding the advective derivative, we
can rewrite

(B + T[Meq] - V)Wi g1

Dt Dt

As a consequence, it follows from Lemma 5.2 with a suitable rescaling and Lemma
54with k=0and r =1

—~ 1 1 1
10 + T[Me) - VIWrgrilleo S A0 21103 + A3 7,

D 4 4 D
10,€ -1 A -1 A M,q,e
= | =225 VA Pay, | (a1,g41€2708) + VATIPL, | eMon& =208, 0y ).

1 ¢35 -1
1t
< )\q+1(5q T

provided
1
Te SA 0 (5.1)

Other terms in (4.22) can be estimated similarly.
By (4.7) and (4.19), we have

IV  Pysallco < IVEPyllco + V" Wl co
SN2, Ak, 07
~ 7'qg7gq—1 q+1Y4
e oL
S Ag10¢

since b > 1 and k > 1. The estimate of V*M, 1, V*T[Py41], VFT[M,11] and hence
(4.7) with ¢ replaced by ¢ + 1 follows analogously.
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Next we show (4.8) with ¢ replaced by g + 1. We write
(01 + T[Mg41] - V)T[Mg1]
= (0 + T[Mq} 'V)T[Mq] + T[Wqul] VT[M, ] + 17 q+1] VT q+1]
(0 + TIM, ] - V)T W]
and further decompose
(at + T[Mq] ’ V)T[Wqul]
=(0r + T[Meg) - V)T[Wya] + (T[Mg] = T[Meg)) - VT [Wya].
Immediately it follows from the induction assumption (4.8)
100 + TIM,] - 9)TIM lleo S Agdy-1,
and the estimate (4.20)
1
10 + T[Meg] - V)T [Wosallleo < 75105 -
The assumption (4.7) and estimate (4.19) together yield
1
ITIWya] - VTIM, o < ITIWyi]lloo [T, oo S 03 A0
The estimate (4.19) also implies
IT(Wa] - VT Woa]llen < [TWoan] o VT Wosa]llcn < 65 Agsay
In view of Lemma 4.2 and (4.19) we have
(T[My] = T[Meq]) - VT [Wypa]llco <[IT[My] = T[Me gl col[ VT [Wyia]llco
< Hq L>‘q 5(] 1 q+15q§'
Summarizing the estimates above we obtain for b > 1 and 0 < 8 < 1
o1 1
100 + T[My ) - V) TMyalllco S Nbgor + 75768 + 04 A0
1
+ )‘q+15 + lj’q L)\g(sq 1 q+15<;
S Aq+10q

1 1
where we used g = )\;H)\(l] L and supposed

1
7ot < Mg 0. (5.2)

For 1 < k < L —1, higher order derivatives in (4.8) with ¢ replaced by ¢+ 1 can be
estimated similarly.

Next we establish the estimates for the new stress field. Invoking gq = 5(1_1 and
recalling (3.6), we have

V- Ryr = (00 4+ Tleg1] - V) Won + vA Wopr + T[Wyia] - Vb1
+ V- (crgAr + R — 2T[Woia] W)
= (044 Teq] - 7 ) Wasa +vA Wys + T W] - Vb
+ V- (Cepgdi + RE, — 2T W ia]Woia)
+ 9 ((T0g1] = T )DWast + TWoi1 (041 — 1)
+erq = cera) A+ (B — RYp))
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with ge,q—l =P q-1 — M 4—1. We denote
V- Rp = (at S Tfey1] v) Wost,
V-Rp =vA"Wyiq,
V- Ry = T[Wyta] - Vo1,
V- Ro =V (cer,qd1+ RE, — 2T Wy ]Wey1)

V.-Ry =V- ((T[aq—l} - T[GE,q—l])Wq—H + T[Wq+1](9q—1 - 06711—1)
+(Cl7q - Ce,l,q)Al + (R; - R:,q)) .

Estimates of Rp: Note W, is localized to frequency ~ A, in Fourier space.
Therefore we can find R such that

Ry = VA Pa,., [0+ Tlleg1]- V) Wora -

As a consequence we obtain

IRrlco < Agfall (@ + Tlfeq—1] - V)Woralco.

Since B
T[oe,q—l] = T[Peq—l] - T[Me,q—l]a
applying Lemma 5.6 with ¢’ = ¢, r = 1 and & = 0 we have

||(8t + T[ee,qfl] ’ V)WqulHCO
< (O + T[Peg-1] - V) Wopallco + [ (9 + T[Meg-1] - V) Wosa|lco
S rtes.
Therefore, we conclude
|Rrlloo S Ahyry '3 (5.3)
Estimates of Rp: It is obvious that there exists Rp satisfying
Rp =vVA TN W, 4.
It follows from (4.19) that

1
IRpllco S Apid M Waslleo S Mgty 702 (5.4)

Estimates of Ry: Again, due to the frequency localization property of ge,qq
and Wy, we can define
Ry = VA Py, [T[Wyi1] - Ve g1
Applying (4.13) and (4.19) gives
IRNlloo S Al TWas]lleo | VOe,g—1llco

1

1
—1 ¢35
SA0F N1 82 .

(5.5)

Estimates of Rp: It follows from Microlocal Lemma 4.1 that

i\
Wi+ = Pqu+l[aI7q+1el QH&]
i\ i\
= a1,g41M g (A1 VEN NS 4 S gy qetatitr

— aI)q+1ez>‘q+1§I + 5a17q+161)\q+151
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and
T[Wrg41] = TP [ Patalr]
I,q+1 ~Ag41AT,q+1€

= ar,g1MAqr1VEN DA oy A1 VEN) T 4 Sup oy qePPattér
— aI)q+1m(V§I)ei>‘q+1fI + 5UI,q+lqu+1£I-

Consequently we compute

TWysa] - VWoir = 5 -V Y (TWrge1]Wr g1 + T[Wr 41 Wrg11)
IeQ
+ Z TWiqt1] - VWig
JAT
with
5 Z TWrg1]Wr g1 + T[Wr q+1]WI,q+1)
IEQ
= 5 36 (m(VE) + (V)
IGQ
43 @ (m(VE) — m(VE) + m(~Ver) — m(~VE))
IEQ
+3 > (argi10us g4+ ar,g1m(VENSAs 441 + Gf g4 10U5q41
IeQ
Jraf a1m(VEp)dar g1 — 0az , 10us g41 — 6ag,q+10UF 41 1)
Z a7 q+1 ( (VEr) +m(— VEAI)) + Ro,1 + Ro.
IEQ
Since

. i\ i\
VWi g1 = A1 VERPx, (01,4118 + Pay,  [Vag gt ],

we further compute

Z TWyg1] - VW g1

JAT
=Y idg 1 T[Wogi1] - VEPar, , argrae? o]
J£T
+ 3 TWiga] - Pan,[Varggreeé]
JAT

=Y idgr1asg1m(VE)) e VP [ar g et ]
TAT

- i\ i\
+ D i 10u g 1€ VE PRy far gia e
T4

+ 3 TWoga] - Pas,,, [Vargpae?e 1],
J#T

21
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Note that
m(VEy) -V m(VErin) - VErin + m(VEsin) - (V& — VErin)
+ (m(VE&s) = m(VE&sn)) - V&
= m(v€J,zn) . (V§I - vfl,in)
+ (m(VEr) —m(VEsmn)) - V&1
since

m(VEJ,in) : vg[,in = m(ivfl,zn) : vf[,in = 0.

Therefore we have

D TWigr] - VWign
TA

=Y " idgr1arg11m(Vézin) - (V& = VErin)eP 1 Poy  [ar g 1€ ]
JAT
+ Z iAg+1@,g+1(M(VES) —m(VEsin)) - Vf]em‘”lg"ﬂbz)\q“ [a17q+1ei>‘q+151}
JAT
; ) A +187 L €, P iXgr1&r
+ Z%)‘qﬂ UJ,q+1€ &r quH[aI,qu }
JAT
+ Z TWyq+] - Prrgs [vaf,qulei/\ﬁl&]
JAT
=:V-Ros+V -Ro4s+V-Ros+V-Rog.

Summarizing the analysis above we obtain
TWota] - VWoq1 = *V Z a/17q+l m(VErin) +m(=VErin)) + V- Roa

IeQ
+V -Ro2+V -Ro3+V-Ros+V-Ros+V-Rog.

According to the choice of ar 441 in (4.5), we have that
V:Ro=V"(cerqd1+ RE, — 2T W1 ]Wyi1)
=V - (c29+142 —2R0,1 —2Ro2 —2Ro 3 —2R0.4 —2Ro5 — 2Ro6) -

Now we estimate the error terms above. It follows from the definition of ¢3 441 and
the assumption (4.11) that

llea,grilloo SIERE Gllco S 1Ry llco S dgr1-

Applying Lemma 5.3 and 5.4, noticing that &; is advected by uq = U4—1, leads to

1Rolleo S largrilléol VEr = Vér|

IeQ

S llargrllgoAq-17qll@g-1llco
IeQ

1
S )\qfqu(S;_Qéq.
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Applying Lemma 5.4 and Lemma 5.5

[Rozllco S largiillcolldurgillco + Y largslleo 16az 411 llco

I1eQ I1eQ
+ > 6argrllcolldur gialico
Ien
1
< 0T A8

We observe that due to the frequency support of W11 and T[W,41], we can define
Ros+Roa+Ros+Roe= Y VA 'Pay, , [TWygi1] - VIWrg41].
JAT
Therefore we deduce from Lemma 5.3 and Lemma 5.4
[Rosllee S Z lasg+illcollargrillcollm(VErin)llco[VEr — VErin
JAT

Y asgiallcollargiallcoAg—17qllig-1llco
JAT

1
N )‘qfqu5q2725q

[Roallco £ llasgsllcollargrillcolm(VEs) = m(Vesin)lloo | Ve co
JAT

Y lasgiillcollargrilcol Vér = Vér il
JAT
1
< )‘qfqu(S;—Qaq

~

where we used the fact |m(VE&s) — m(VEzin)llco SIIVES — VEsinllco;
IRosllco £ I6usgsllcollargrillco Vel co
J#£I
S AL A2 62
using (4.19) and Lemma 5.5, and
[Rosllco £ AL ITWaglllcol|Vargallco
J£I
S AL 02N

Summarizing the estimates above gives

1
[1Roallco + [Rosllco + | Roallco S Aq-17407 20, (5.6)

IR0 2llco + [1Roslleo + [ Roslico S AgtiAgda- (5.7)



NON-UNIQUENESS OF ACTIVE SCALAR EQUATIONS 24

Estimates of Rj,: It follows from the fact gq = gq_l, Lemma 4.2 and estimate
(4.19) that

||(T[§q,1] - T[ge,qfl])Wqul”CO + |‘T[Wq+1](6qf1 - ee,qfl)HCO
|(T[0q] - T[Gs,q])Wq-i-l”CO + ||T[Wq+1}(0q - 9641)”00

1 1
L Lt
S 6‘12/'l’q )\q 5(1271
353 -1
S 0405 1M 110

By Lemma 4.3, we have
L1
I(crg.e = c1.0)Arlleo + 1R« = Rylleo S 0¢ 5105112
Therefore
11
HRM”C0 S 0q 5;—1)‘(1-&1/\11- (5~8)

In summary, the new stress error can be written as

Ry1 = ca,g1142 + Ry
with
le2,g41llco < g1
and
Ri.y = Rr+ Ry + Rp + Rar — 2(Ro + ... + Rog).

Thus (4.9) is satisfied with ¢ 4 replaced by ¢z ¢41. To show (4.11) with ¢ replaced
by q+1, we just need to show || Ry |lco < dg42. We choose 7, = )\q_él)\(;%léq_%éq_éz
to optimize the two estimates (5.3) and (5.6) such that

—1
2

181
|Rrllco + [Rollco + [Rosllco + [Ro.allco S A 2iAe104 0, o
In view of the last estimate, (5.5), (5.4), (5.7) and (5.8), we impose

N AN 8y S By
)‘;4:1)‘1171535;72 S 5q+2
A T07 S Guia
/\q_—i{l)‘q(sql 51 Og-+2

Agt12a03 01 S dgr2

which are satisfied provided b = 17 (close enough to 1 from the right), 8 < % and

for v > 0 satisfying 8 < 23;%:1’). Recall 0 is in CPC% with a < % < % The

conditions 8 < 2;(7%:"{) and o < % together imply 0 < v <1 —a.

Estimates of higher order spatial derivatives: For c; 441, each derivative
cost is < A\g41. Combining with the C? estimate of 3 441, we have
k k
[VFe2,q11llco S Agr10g+1-

We observe that Ry, Rp, Ry, Ro,3, Ro,4,Ro,;5 and Rp e are localized in Fourier
space near frequency A,y1. Hence each spatial derivative of them costs at most
~ Ag+1. From Lemma 4.2, we know

~ ~ 1
16g—1 — Og—1.ellco S A, " Ag—102_,.
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We also have the estimate from (4.13)
1
IV84-1llco + 1V0g-1.clloo S X187

Therefore one spatial derivative cost of 9q 1 — Qq 1, and T[Hq 1] - T[gq 1,¢) is at
most &~ A;. On the other hand, one spatial derivative cost of Wy41 and T[Wy41]
is at most ~ Ag+1. Hence one spatial derivative cost of Rjs is at most ~ Ag41.
Regarding Rop 1, we compare the estimates from Lemma 5.3

IV2€1(2q(2,5,1))lco S Ag,
IV€1(@(a.5.0)) = Vérinlloo S mihadiy
Thus one spatial derivative of V& (®,(x, s,t))—VE] 4, is at most ~ Tq_léq__%l S Agt1-
The analysis shows that
IV*Reilleo S Agiidara, 0<k < L.

Estimates of advective derivative: First we rewrite
O+ T[Mgs1] -V =0y +T[My,] -V + (T[Mg] = T[Mg,e]) -V +T[Wysa] - V
and
Ot +T0g41] V=0 +T0qc)-V+ (T0g —T[0ge])  V+T[Wgy1] - V.
For Rp:
IV* (0% + T[Mq41] - V)Rp||co
S IVH 0+ T[Mg,e] - V)Rplloo + [V* (T[Mg) = T[My.]) - V) Rp |l co
+[[VE(TWyia] - V) Rplleo
)‘5+%5 Og+1-
In view of the definition of ¢ 441 in (4.2), we observe
IV*(0 + T[Mg1] - V)ez gl co
S IVH8s + T[Mg11] - V)R [l co
S IVF@: + T[Mg4a] - V) Rill o
S IVH0 + T[Mg,] - V)Rgllco + V* (T[My) = T[M.]) - V) Rylleo
+ VR [Wasa] - V)RG | co
< )\k+15§ 10g+1 +Aq+15q%)\q5q+1
S AL626,41.
Lemma 5.7. Let k>0 and 0 < r < 2, we have

D" 77, 1
9% (22) (Ver = Teranlllon S Mty rgsahdl

Lemma 5.8. Let k>0 and 0 <r < 2, we also have

D,\" o
v (m) (m(VED) — m(TErm))lloo S Neprm "Tadadi s
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Proof: Note
m(VEr) = m(Vérin) = (V& — Vrin) /01 9am (1 = 8)VErin + sVEr) ds
The estimate follows from Lemma 5.7.

Combining Lemma 5.4, Lemma 5.5, Lemma 5.7, Lemma 5.8, we have

IV (@ + T[Mg41] - V)Ro,allco + |V* (s + T[Mg41] - V) Ro 2l o
q,€

S IVHO +T[My ] - V)Ro 1 lloo + IVF (T[M,) = T[My.(]) - V) Ro o
+ [VH(T[Wyia] - V) Ro, (O + T[My,e] - V)Ro 2| co
+IVF((T[M,] = T[Mg,e]) - V) Rozllco + [V¥(T[Waia] - V)Ro 2llco
/\S+f5 dg+2-

For Ry, recall

Ry = VA Py, (8 + Tlg-1] - V)Woia]-

Then
10 + T'[0g+1] - V) Rrllco
S0+ T0q,e] - V) Rrllco + [(T[0q] — T10g.e)) - VRr || co
+ | T[Wot1] - VRr||co.
Denote N
Dale _ 9y 40,9, 282 =9, 470,V

For the first term, we apply the commutator

D,g. D,_
(atwwq,ewaT:{ he VAT 1%%1} o Wai

Dt Dt
+ VAP, DB‘;’G ngtlﬂ Wit
Hence applying Lemma 5.2, Lemma 5.6
102+ T8y ] - V) Rellco < | [ B VAT 1P~m1] Bg;’f’wqﬂnca
+ [VA™ P, qu)’i’e EQD;’Q Wtllco

1
S A TN 0F + AL T 0F.
Applying Lemma 4.2, estimate (4.19) and the spatial derivative established earlier

(T104] = T(0q,c]) - VRrllco S |T[05) = T10g,elllcol[V Rz || co

-1
< )\q_‘_1>\ 6(] 1 q+16q+23

ITWoia] - VEr|co S 1 TWasallleo [V Erflco

S 5(15 Ag+10g+2-
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Summarizing we have
(0 + T[0g41] - V)Rrllco S A 6q 1T 15 A +17——1T—1 52
q+1)‘ 6q 1Ag+10g+2 + 5 Ag+10g+2-
The advective derivative of Ry can be handled similarly. Recall
Ry = VAP, [T[Wyii] - VO,1.
@+ T10y 1) ¥) R

S0 +T0qe] - V)RN|lco + [[(T[0g] — T[04.]) - VEN||co
+ [ T[Wyt1] - VRN || co-

D

(8, + T[04.) - V)Ry = zqvi VA Py, | (TWyii] - VO,1)
Do ~
+VATIPL, Bi’ (T[Wyi1] - VOy_1).

The advective derivative of Rp3,..., Ro,6 can be estimated similarly and the

details are omitted. _
To estimate the material derivative of Ry, we first consider the term (T'[04—1] —

T[aq—l,e])Wq+lv
10 + T[My11] - V) (T 1] = Tly-1.)Wes1) lleo
(T2 = Ty 1.)) Warallon
+ 110 + T[My.e] - V)Wyi1(T[0g—1] = T[6g—1.6))[lco
+ ITIM] = TMy ) - 9 (T0y-1] = T0g-1.)) Warallon
+ [(T[My) = T(My.e]) - VWor (T -1) = T(0g—1.Dlen
+ T Wara] - V) (T0y-1] = T0g-1.)) Wasallon
+ (T Wyia] - VIWia(T(0g-1) = Tl0g—1.6]) | co-

S 0+ TMy.] - V)

1
We see from Lemma 5.1 that the cost of (0; + T[Mg.] - V) is A\;6; ;. Combining
with Lemma 4.2 and estimate (4.19) we deduce

(@ +TIM, }~)Uﬂ - [q1$>WﬂNm
S 1@+ Ty - V) (T0y-1] = T-1.) ) oo Wi lleo
S ADZ A, uq 155 2557

(0 + T[Mg,] - V)Wqﬂ(T[gq—l] - T[gq—1,e])||co
S 1@+ T[My,] - V)Wt | co | (T(0g-1] = T0g—1,]) o
S A2 0EN Ay 162,



NON-UNIQUENESS OF ACTIVE SCALAR EQUATIONS 28
Using Lemma 4.2, (4.13) and estimate (4.19),

|(T(M,) = Ty, ) - 9 (T0y-1] = Tl0,-1.) ) Wl
S ITIMq] = TIMy oo |V (Tg-1] = Ty leo [ W loo

< At 5q g1y " Ag— 1§q 25q,

H(T[Mq] - T[Mq,e]) : VWqul(T[gqfl] - T[gqfl,E])”CD
S IT[My] = T[Mg,elllco 1 T[0g—1] = T10g—1,e]llco [ VWil co
< At 52 1Ay A 15q 5 A\q 52,

Applying Lemma 4.2 and estimate (4.19),

|(TWysa] - V) (T0y-1] = T,-1.)) Warrallco
S T Wil loo IV (T0,-1] = T3, Dl o W leo
S 03 A 1A A 162,02,

T Wara] - V)Wosr (T0g-1] = T[0g-1.)lco

S NTWaslloo | T10g-1] = T0g-1.e) o T Wosa oo

S OEA Ay 102 o008
Other terms in Rj; can be estimated analogously.

Hoélder estimates in time: It follows from
OWai1 = Dy, gWap1 —ug - VWqp
that
[Wetillcreo S 5(;%71)‘q+15q%7

and hence by interpolation

1 1 b—lg)—1
Watilloson S (Aqr183-1)¢05 ~ Ag 77727,

The C¢ regularity in time is assured if
1 1
h— — _z
(b= 5P —56<0
ie.
I3 1
%-15 "

(<

when choosing b= 1" and 3 < 2d+1
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6. PROOF OF THEOREM 1.1

Due to the presence of an external forcing in each equation of (3.3), there is
redundancy to find an initial tuple (Py, Mo, Ry, ﬁo) satisfying the system (3.3) and
(4.6)-(4.12) at level 0, such that My # 0. For instance, we can choose Py = 0 and
My # 0 with My = P<),My. We then define Ry and ﬁo such that

V- Ry= V- (T[Mo)Mp),

V- Ry = 8;My + vA" M.
Obviously, such tuple (Py, Mo, Ro, Ry) satisfies the system (3.3) at level ¢ = 0. It
is easy to see that, choosing Ay > 0 large enough and §_; = 1, the estimates (4.6)-
(4.12) at level 0 can be satisfied. Applying the inductive Proposition 4.4 iteratively
we obtain a sequence {(P,, My, Ry, R,} satisfying (3.3) and (4.6)-(4.12). Thanks

to the estimates (4.7), (4.9) and (4.11), there exists a subsequence such that P,

converges to a function P, M, converges to a function M and IA?;q converges to 0 as
q — oo. Note

M =M, + Z(Mq+1 - Mq) = Mo + Z Wot1
q=0 q=0
and Wy are supported on frequencies near Agy1. Hence M # 0. Regarding the
convergence of R, it follows from (3.8) that
V- (Rqul - Rq) == (at + T[gq] ) V) W1 —vA"Wopa — T[Wqul] ’ vgq
+2V. (T[Wq-i-l]Wq-‘rl)
which implies
Rq+1 - Rq == —RT - RD - RN + 2T[Wq+1]Wq+1.

We then obtain from the estimates (5.3), (5.4), (5.5) and Lemma 5.6 that

_ _ 1 _ 1 1 1
||Rq+1 - RqHCO S /\,}ﬁﬂ]lﬁ + )\quF’Ytng + >‘q_+115qz >‘q—15q?72 + 5q 5 5q § )\;6
for B > 0. Therefore there is a subsequence of R, which converges to a vector field
R. The limit tuple (P, M, R,0) is a weak solution of (3.1) with f = V- R. Hence
there are at least two weak solutions to (1.1) with external forcing f = V- R. It

follows from (3.8), (3.9) and the estimates in Proposition 4.4 that f € CPC2*~1.
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