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Abstract
Let ¢ be a prime power. This paper provides a new class of linear codes that arises from
the action of the alternating group on [Fy[x1, ..., x;,] combined with the ideas in Datta and

Johnsen (Des Codes Cryptogr 91(3):747-761, 2023). Compared with Generalized Reed—
Muller codes with analogous parameters, our codes have the same asymptotic relative distance
but a better rate. Our results follow from combinations of Galois theoretical methods with
Weil-type bounds for hypersurfaces.
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1 Introduction

Let g be a prime power, [, be the finite field of order g, and m be a positive integer.
Constructing families of evaluation codes has always attracted a lot of interest due to the
numerous applications to coding theory like error correction, DSS and SDMM [3-5, 7, 8].

Generalized Reed—Muller codes provide an extension of Reed—Solomon codes to the
multivariate ring of polynomials. However, they have good relative distance (distance/length)
but poor rate (dimension/length). Thus, it is interesting to find sub-codes of Generalized
Reed-Muller with the same asymptotic relative distance but a better rate.

Along this view, in [2], Datta and Johnsen study a new class of codes that arises from the
symmetric group. Such classes of codes have interesting parameters and the structural prop-
erties of the symmetric group allow them to derive important properties for the codes, such as
the minimum distance or certain weight distribution properties for the generalized Hamming
weight. Datta—Johnsen codes are essentially constructed by considering evaluations of linear
combinations of elementary symmetric polynomials in a certain number of variables m. The
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minimum distance computation for such codes follows from the special factorization prop-
erties that these polynomials have, which in turn is a consequence of the fact that they are
invariant under the symmetric group. Let A,, be the alternating group. This is an interesting
general fact: whenever a class of multivariate polynomials in F' = Fy[xy, ..., x;] is invari-
ant under a group action, then Galois theory over the fraction field of F' applies and leads
to interesting properties for the factorization of such polynomials. In turn, this allows us to
provide bounds for the number of zeroes of these polynomials, and therefore of certain codes
constructed from these, as we will show in this paper for the case of G = A,,. Apart from
providing a new general framework to construct codes from Galois theory, our paper provides
advantages over Datta—Johnsen codes (which were already a significant improvement over
Reed—Muller codes), since for a fixed ¢ we can construct codes with the same asymptotic
rate and same relative distance but double length and dimension. Therefore, when codes are
compared for a fixed finite field size, our codes have larger distance because we allow for
more evaluation points, and also the message space can be extended (thanks to the fact that we
are requiring polynomials to be invariant under a smaller subgroup). The paper is structured
as follows. In Sect. 2.1, we recap the basic notions from the theory of linear error correcting
codes. In Sect. 2.2, we include results that are needed to study the number of points on affine
varieties. In Sect. 2.3, we introduce the space of linear combinations of elementary symmet-
ric polynomials and provide some properties from [2] that allow us to count the number of
zeroes of polynomials in this space. In Sect. 2.4, we derive some properties of a certain set
of polynomials in Lemma 2.6, that will be useful to determine the message space for our
codes. Section 3 is devoted to providing a bound on the number of zeroes of polynomials
in our message space: this is done by splitting the proof into the two cases prescribed by
Sects. 3.1 and 3.2. Finally, Sect. 4 provides the construction of our codes and comparison
with Datta—Johnsen codes and Reed—Muller codes for analogous parameters.

2 Background
2.1 Linear codes

A code C of length n over the finite field F is a subset of F. The code C is said to be
linear of dimension k if it is a k-dimensional FF,-subspace of IF‘Z The weight of an element of
IFZ is defined to be the number of its non-zero entries. The Hamming distance between two
elements x, y of g is defined to be the weight of x — y. The minimum distance d of a code
C is the minimum of distances between all two distinct elements of C, and by an [n, k, d],
code we mean a linear code of length n, dimension (as a subspace) k and minimum distance
d.

One may ask whether a code is a “good” code compared to other constructions, this is why
it is useful to introduce the notion of relative distance and rate of a code.

Definition 2.1 Let C be a [n, k, d]; code. The relative distance is 6 := d/n and the rate is
defined to be p := k/n.

We can compare linear codes for the same length by comparing their relative distance and
rate. Codes with higher relative distance and/or rate are better than codes with lower ones.
Generalized Reed—Muller codes consist of the evaluation vectors of multivariate polynomials
overlf,. Letlf, [x1, ..., x,] be the polynomial ring with m variables. The tth order Generalized
Reed-Muller code GRy (m, t) is defined as
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GRy(m, 1) :={(f(x) :x € ") | f € Flx1, ..., xn] deg(f) <1} 2.1

m

and it is a [qm, (™), (1 - é)qm] code, see classic literature [6].
q

2.2 Points on varieties

Let F, denote the algebraic closure of the field F,. Let Fy,..., Fy be polynomials in
E;[x1,...,xx] and let V denote the affine subvariety of A™ (E) defined by Fi, ..., Fy.
Counting or estimating the number of F,-rational points x € A™(IF,) of V is an impor-
tant the subject of mathematics and computer science, with many applications. In [1] the
authors showed that the number |V (I, )| of F;-rational points of an [, -absolutely irreducible
hypersurface V of A™ (E) of degree § > 0 is:

VE) — g™ < (68— 18 —2)g™ /% +58313¢m2, 2.2)

For more details see [1, Theorem 5.2]. In the next section, we will use this result to bound
the number of zeros of certain polynomial equations.

2.3 The vector space of elementary symmetric polynomials

In [2] the authors studied the vector space generated by the elementary symmetric polynomials
in m variables. We recall here some useful properties that will be needed in the next sections.
We denote by o, the ith elementary symmetric polynomial in m variables x1, ..., x,, i.e.,

I<ji<-<jism

for 1 <i < m and 0 = 1. The following result is obtained by collecting the results in [2,
Sect. 2].

Proposition 2.2 Let s € I [x1, ..., xy] be given by s = ap + ala,,lq + -+ 4+ ano,) where

ap, ..., an € Fy. Thens is either absolutely irreducible, say of type 1, or s = al_[},n l(ot +xi)
1=

fora,a € Ty, say of type 2.

Remark 2.3 Note that, given a polynomial s that is a linear combination of elementary sym-
metric polynomials, by isolating one variable, say x|, we can write s = x| p1 + p2, where pj
and p, are linear combination of elementary symmetric polynomials in x», ..., x,, (hence
invariant under the action of S,,,_1).

2.4 Galois theory and Ap,-invariant polynomials
Let A,, be the alternating group of m variables, that is the subgroup of S, of all the even

permutations. A,, acts on the set of polynomials Fq [x1, ..., x,] by acting on its variables.
More specifically, if o € Ay, then f(x1, ..., xp) issentto o (f) := f(Xo(1), - -+ Xo(m))
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Definition 2.4 An A, -invariant polynomial f € Fq [x1,...,xy] is a polynomial that is
invariant under the action of A,,, thatis f = o (f) foreveryo € A,,.

Note that, in particular, any symmetric polynomial is A,,-invariant. The following result is
classical and will be used later in the paper. We include the proof for completeness.

Theorem 2.5 Let A,, be the alternating group. Then it does not have a proper subgroup of
index less than m, form > 5.

Proof Assume A,, has a subgroup G of index m’ < m. Then the action of A,, on the cosets
of G gives a homomorphism into S,,. Since m > 5, m!/2 > m’!, so the homomorphism
can’t be injective. Since A,, is simple, the kernel must be all of A,,. In particular, this means
that hG = G for all h € A,,, which is only possible if G = A,,. Thus, there is no proper
subgroup of index less than m. O

Let

U (x) = 1_[ (xi —x;)

I<i<j<m

be the Vandermonde polynomial in m variables. v,, is invariant under every even permutation,
while every odd permutation results in a change of sign. This means that vy, is an A,,-invariant
polynomial that is not symmetric. The following is a well-known property of A,,-invariant
polynomials. We provide a short proof using Galois theory for completeness.

Lemma 26 Letg € Fq [x1, ..., xm]bean A, -invariant polynomial. Then there exist s1, s €
Fylx1, ..., xpu] symmetric polynomials such that:

g =581V + 52,

for vy, being the Vandermonde polynomial in m variables. Furthermore, the representation
is unique.

Proof We know that [Fq(xl, e X)) A Fq(xl, w. . Xm)Sm] = 2 since the index of A,
in S,, is 2, where Fq(xl,...,xm)Am and Fq(x1,...,xm)s'" are the fixed fields of A,,
and S, respectively. Thus, by the fundamental theorem of Galois Theory (and the fact
that every polynomial that is invariant under the symmetric group is an algebraic com-
bination of elementary symmetric polynomials), the field of rational functions invariant

under A, can be written as [Fy (o,}l, ..., 00, ), Where cr,}l, ...,0oM are the elementary

m
symmetric polynomials in m variables and v,, is the Vandermonde polynomial in m vari-

ables. In particular any A,,-invariant polynomial & € Fq [x1, ..., Xp] uniquely decomposes
as follows: h(x) = & + vmﬁ, for pi1, p2, p3, p4 being symmetric polynomials and
gcd(p1, p2) = ged(p3, pa) = 1. This means that

P1P4 + vmp3p2
p2p4 '

h(x) =

Since pj p4 is symmetric and for an odd permutation o we have o (p1 pa+vi, p3p2) = p1pa—
v p3 P2 [because vy, is simply the square root of the discriminant in 7' of ]_[:":l (T — x;)],
we get that popa|p1pa and pa palvy, p3p2. Thus pa|pr and pa|p3, prove that the rational
functions are polynomials (note that p4 { vy, by the definition of the decomposition). O
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Remark 2.7 1t is well known that the set of degree d Schur polynomials in m variables are a
linear basis (over ;) for the space of homogeneous degree d symmetric polynomials in m
variables. This implies that every symmetric polynomial is a sum of homogeneous symmetric
polynomials. Thus, if in the decomposition of Lemma 2.6 the symmetric polynomial s; is
different from 0, then g must have a total degree at least (';) Lets; = p + 51 where p # 0
is the leading degree homogeneous polynomial, then v, p is a homogeneous alternating
polynomial of degree deg(p) + ("21) and it cannot be canceled with any term of s;.

3 Bound for the number of zeros

Letx = (x1,...,x5) € A"(I), for ¢ odd. Consider the following polynomial:
F(x) :=51(x)vpm (x) + 52(x) € F[x], 3.D

for s1(x) and s2(x) being linear combinations of elementary symmetric polynomials and v,
being the Vandermonde polynomial in m variables.

Remark 3.1 Note that s and s; are either linearly dependent or they cannot share any common
components. In fact by Proposition 2.2, s; and s; are either both absolutely irreducible or
both of type 2. Thus if they are both of type 2 and they share one component, they need to
be [, -linearly dependent, i.e. scalar multiples, (simply because sharing a factor ensures that
they share all factors).

We are interested in computing the number of zeros of a polynomial of the form (3.1). More
specifically we want to compute the number |Zp (F)| of the distinguished zeros of F, where a
point (ay, ..., a,) € A™(I,) is said to be distinguished if a; # a; wheneveri # j.Note that
the set of distinguished points of A" (If,), say AT} (If;), has cardinality A} ()| = P(q,m),
where

(q)m! ifm <gq
— m - ’
Plg,m) = {O otherwise.

We now state the main theorem of this paper that will allow us to give a lower bound for the
distance of our codes.

Theorem 3.2 Let F be a polynomial as in Eq. (3.1) and let d := gcd (('g), q— 1). Then for
q > m1% and m > 6 we have

P(g,m
2o = P90 mpig — 1m -1,
q—
In the following, we will distinguish when s; and s, are linearly dependent or not and
treat those two cases separately.

3.1 Linearly independent case

The set of distinguished zeros of F' can be computed as follows. Let Z(f), Zp(f) and
Znp(f) be the set of zeros, distinguished zeros and non-distinguished zeros of a polynomial
f, respectively. Since for every non-distinguished zero z = (z1,...,2,) of F we have
U (z) = 0, the following holds:
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[Zp(F)| =1Z(F)| = |ZNp(F)| = |Z(F)| — | Znp(s2)| = |Z(F)| — (1Z(s2)| — | Zp(s2)]) »
(3.2)

thatis |Zp(F)| = |Z(F)| — |Z(s2)| + |Zp(s2)|.

Lemma3.3 Let m > 6. If s1 and sy are linearly independent, the polynomial F defined by
Eq. (3.1) is absolutely irreducible.

Proof Letg € E [x1, ..., xn]beadivisor of F. We may suppose g is absolutely irreducible.
Since F is not symmetric (or otherwise s; = 0, and s, s» are linearly dependent), then
it cannot split only into symmetric irreducible factors, hence we may assume that g is not
symmetric.

Since F is stabilized by the alternating group A,,, any polynomial o (g), for o € A, is
a factor of F. Let G be the stabilizer of g in A,,. We have two cases:

e G = A,,.Inthis case, g is fixed by A,,. By Lemma 2.6 g can be written as g = rjv,, +12
where r and r, are symmetric polynomials. Thus we have

(r1vm +r2)l = s1vy + 52, (3.3)

for ¢ € Fq [x1,...,xn] Since g and F are A, -invariant, then ¢ is also stabilized by
Ay, and we can write £ = tv,, + t for t1, to symmetric polynomials. Note that r; # 0
since g is not symmetric. Moreover, r» # 0 since g is irreducible. Finally, #, # 0 since
vy 1 F (or otherwise s, = 0, denying the linear independence). In particular since r; # 0
Remark 2.7 implies that deg(g) > ().
The latter forces deg(¢) < m [since deg(F) < ("21) + m] and in turn, #; = 0, by Remark
2.7.
Hence ¢ is symmetric. By the uniqueness of the representation applied to the Eq. (3.3),
we obtain that 1€ = s1 and ¢ = s, which is in contradiction with s1 and s being
linearly independent (from Remark 3.1).

o G < Ay,.

Claim1 Letm > 6. Then degxl,(g) <lforalli € {1,...,m}.

Proof of Claim 1 By Theorem 2.5, G has index at least m. This means that the orbit of g
under the action of A,, has cardinality at least m, by the orbit-stabilizer theorem. Consider
now the degree of F in the variable x;, say deg, (F). We have that deg, (F) < m. If every
variable appears in g, then it must be that deg,, (¢) < 1; in fact, each factor in the product
obtained by acting A,, on g contains all the variables and we have at least m factors. Let g be
without exactly one variable, say i *. Every element in G mustbe in St4,, (i*) ~ A,,_1, where
Sta,, (i*) is the stabilizer of i* in A,,. By applying again Theorem 2.5, we derive that G has
index at least m — 1 in A;,—1 which implies that the index of G in A,, is atleastm(m — 1). Let
1 be the index such that deg,, (g) > 2. Note that deg, (F) > [S24,, (1) : Stg(1)]deg,, (g),
because F is invariant under A, and different representations of the cosets of Stg(1) in
St4,, (1) move g to a different factor of F' with same degree in x. Using the orbit-stabilizer
theorem we derive:

[Am—1l _ (m = D!'Org(1)]
IStg(D] 2 G|
where Org(1) is the orbit of 1 under the action of G. Since the index of G in A,, is at least
m(m — 1), then |G| < This implies that

[Sta,, (1) : Stg(D)] =

’

m!
2m(m—1)"

[Sta, (1) : StG(D)] = (m — D]Org(D)] = m — 1.
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The latter implies deg, (F) > 2m — 2, a contradiction. Finally, let g be without 2 or more
variables, say x; and x;. In this setting, we note that there are at least 2('”; 2) elements in
the orbit of g under A,,. We have at least the even permutations of the following form:
1 @2 j)fori,j e {3,...,m},i # j.Since m > 6 and deg,. (F) < m, we get a
contradiction. ]

Now if we consider the reduction modulo g, we get that:
Sy = —s2  (mod g). 34

Let us now exclude that s = 0 (mod g). First, observe that g # cs; for any ¢ € [, because
otherwise it would be fixed by A,,,. Therefore if g were to divide s», we would have s; reducible
and g = o + x; forsome @ € I, and i € {1, ..., m} by Remark 3.1. Since g cannot divide
vy, this implies that g divides s; and in turn, this forces s and s, to be linearly dependent
by Remark 3.1, a contradiction. Thus, s, # 0 (mod g). Without loss of generality we can
suppose deg, (g) = 1 and deg,.(g) < 1 fori € {2,...,m}. We isolate x; from g in the
quotient ring E] [x1,...,xn]/(g) obtaining x| = Z—; in Fq [x1,...,xm]/(g) (in other words,
there is an natural isomorphism Fq [x1, ..., xm]/(g) — E] [h1/h2, x2, ..., X)), for some
hi,hy € ?q[xz,...,xm] such that degxi(hz) < 1, and degxl_(hl) < 1fori € {2,...,n},
and coprime. By Remark 2.3, we can write s = x1p; + p2 and s = x1r; + ro where
P1, D2, 71, 2 are linear combination of symmetric elementary polynomials in xa, ..., X;.
Therefore, since Fq [x1,...,x,]/(g) can be embedded in Fq (x2, ...x,) thanks to the fact
that the degree of g in x7 is 1, Eq. (3.4) becomes

L : |m|(h haxi) My
—_— —_— — ; Viyp—1 = — —Fr 14 .
PRI ) \LL 1= haxi) | vm—1 PRAREE

By multiplying both sides by 4}’ we get

m
(h1p1 + hapo) (H(hl - hzxi)) U1 = —h5 " hirg — W (3.5)
)

Suppose that &, is not constant. Then, 4, has an irreducible factor, say u. Now, at least
u™~1 divides the RHS above. The LHS, on the other hand, cannot be divisible by u™ 1 for
m > 4 as we now explain. Recall that %, is coprime to /. The factor v,,_1 is squarefree
(so at most one power of u divides it), the product in i is coprime to A, (so no powers of u
can divide it), if &1 p1 + ha p> is divisible by u then p; is divisible by at least w2 (which
is a contradiction because factorizations of linear combinations of elementary symmetric
polynomials are squarefree, as prescribed by Proposition 2.2).

For the case in which A, is constant, it is enough to check the total degree of both sides
of (3.5). In fact, the RHS has total degree at most 2m — 2, while the LHS has total degree at
least (m — 1)(m — 2)/2 4+ m, a contradiction for m > 6.

[m}

Thanks to the previous lemma, we can use Eq. (2.2) to bound Z(F') and Z(s;). We have
that deg(F) < (%) +m < m? (form > 2) and deg(s>) < m, hence

1Z(F)| < ¢" '+ (m® — 1)(m® — 2)¢" 3/ 4 5m>3 g2
and

1Z(s2)| = ¢" " — (m — 1)(m — 2)g" 3% — 5m133gm2,
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Note that we do not need s, irreducible to obtain the correspondent bound since if s> is
reducible we can lower bound the number of zeros of any of its irreducible components, still
obtaining a lower bound for the zeros of s, (and then we can upper bound the degree of its
irreducible component with m, as it appears with negative sign). This implies that for m > 4

1Zp(F)| < m4q™ 3% 4 m2qm =2 4 5m2/3gm=2 L 5 1334m=2 L 7, (0.

In [2] the authors provided a sharp bound for the number of distinguished zeros of a sym-
metric polynomial obtained as a linear combination of elementary symmetric polynomials,
that is

|Zp(s2)| <mP(qg—1,m—1),

which implies that
-1
|Zp(F)| < m*q" =32 4 m2g™=3/2 1 5m26/3gm=2 4 513/3m=2 +m!<q 1),(3.6)
m —

since

(q)m! if m<gq,
j— m -
P(g,m) = {O otherwise.

3.2 Linearly dependent case

Let M := (5) and ged(M, g — 1) = 1. Let A} (F,) be the set of all distinguished points of

IFZI, i.e. points with non-repeated coordinates in ;. We will show in this section that if s

and s are linearly dependent, then

Ap(Fy)l
q—1

|Zp(F)| = +mP(g—1,m—1).

We begin with a few necessary lemmas for the proof of the above claim.

Remark 3.4 Note that x € A’} (IF,) if and only if v, (x) # 0, and v,, is surjective. In fact,
U (Ax) = AMu,, (x) and the map ¢ : F; — IF;; given by t(x) = x is a bijection since we
are assuming gcd(M,q — 1) = 1.

Our next goal is to show that there are two orthogonal partitions of A’ (I,).
Lemma 3.5 Let Py be the partition determined by the pre-images of v,,. For every 7 €
AR (Fy), let B; :={cz:ce FZ}. Then the collection of sets Py := {B; : z € Aj(Fy)} is a
partition of AT, (IF,). In particular, Py and P are orthogonal partitions and |vn_11 M) = 1Pal.
Proof Note that either B, N By, = ¥ or By = B,. In fact, there exists z € By N B, if and
only if z = A;x = A2y, for non-zero elements A| and X,, which implies that x = A, /Ay, or
equivalently, B, = B,. Hence P, is a partition.

Now it remains to show the orthogonality of the two partitions. Let A € E]* andx € v,;l X).
By definition, x € B, € P,. Forevery y = A1x € By with A| € [, we obtain that if

() =2 = M) =1 &= Mr=1 &= M=1 & x=y,

since gcd(M, g — 1) = 1. Thus, each element x € v,;l (1) belongs to a unique set B, € P,
showing that the two partitions are orthogonal and that |v,;1 Q)| = |Pal. O
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Theorem 3.6 Let M := ('g) and gcd(M,q — 1) = 1. Let F be a polynomial of the form
given in Eq. (3.1). If s1 and s> are linearly dependent, we have that

\Zb (F)|<%+mf’(q—1 m—1).

Proof Suppose that s; and s, are dependent. Then, s, = As; for some A € IF‘Z Hence, we
can write F = s1(x)v,,(x) + s2(x) = s1(x)vp(x) + Asi(x) = (vp(x) + M) (s1(x)). We
have from [2] that Zp(s;) < mP(q — 1, m — 1), and so it remains to show a bound for the
distinguished zeroes of v,,(x) 4+ A. Observe that this is the same as finding the largest set
in {Iv,zl(c)l 1c € ]FZ} since v, (x) + A =0 <= v,(x) = —A. By the above lemma,
we know that IU’I(A)I = |P,| for every A € ]Fq* Observe that each B, € P, covers g — 1

A (F, A (F,
| D( 4 \ gilq)l for

distinct points in A7) (F,). So, |P2| = ) . Hence, we have that |v,;1(k)| =

every A € I, thatis v, (x) = A on exactly M

A IF‘
|ZD(Um+)»)|+|ZD(Sl)|—| p&)|

many points. In conclusion, |Zp (F)| <

+m P(q—lm—l) o

The case for gcd(M,q — 1) > 1 (M := ('g)) is more complicated. We cannot use anymore
that the map «(x) = x™ is a bijection. This is why the bound on the number of zeros of
U + A for A # 0 is not sharp anymore. However, by using another argument we were still
able to prove a generalization of the previous bound also for gcd(M, g — 1) > 1, which we

decided to separate from the Theorem 3.6, which is instead sharp.

Theorem 3.7 Let M := (Z‘) andd = gcd(M, g — 1) > 1. Let F be a polynomial of the form
given in Eq. (3.1). If s1 and s> are linearly dependent, we have that

|Zp(F)| < %d—ka(g—l,m— 1. (3.7)

Proof As in Theorem 3.6 it is only needed to show a bound for the distinguished zeroes of

vp(x) +A. Letd € IF*. Observe that there are d solutions in ]F* to the equation AM =1:in

q=1 1 2(¢g—=D (d— 1)(q D
fact, if £ is a primitive element of IF* then the set S = ll Ea g7 a ... ¢ }

1S

the set of the solutions to the latter equation. This means that forany x € v;,! (1), the elements
=1 2e b @=Dg=1 .
E7a x,& .., &€ 4  xarealsoin v,;l(k). Denote by Sy the set {sx : s € S}, and

let By = {)Lx : k € IF;}. As we saw before, each B, covers g — 1 distinct elements and
Sy C By.Letx,y e v,;l(k) such that y ¢ S,. We claim that B, N B, = @. In fact if there
were Ay, Ay € I, such that A,y = A, x, then

A A
Ayy =hex = A’ywvm(y) = Ayvm(x) = )»y = )Lfcw = =~ ¢ Sand )\—yy =x,
y x
which is in contradiction with y ¢ S,.

Finally observe that there are at most ¢ : w distinct points z1, 22, ..., 2t € V,, 1 (A)
such that B;, B.,, ..., B;, are all disjoint; in fact each set contains ¢ — 1 distinct points in
AT (F,) and |Uf=1 B | = t(qg — 1) = |A'}(Fy)|. Since for each of those z;’s there are d
elements in v,;l(}») (corresponding to the elements in S;;), we derive that |v,;1(k)| <td =

Wd . Now we conclude as in the proof of Theorem 3.6. O

@ Springer



G. Micheli et al.

Proof of the main Theorem 3.2 We obtained the following bounds respectively for the linear
independent case and linearly dependent case:

1Zp(F)| < m*q"=3% 4 m2q" =31 4 5m20/3gm=2 | 513/3gm=2 +m!<q - 1]>
m—

and

m —

\Zn(F)| < Ma’—l—m!(q - 1).
qg—1 1

By comparing the different terms of the two equations, that is

P(g,m)

qg—1
4 m— 3/2—|—m2 m— 3/2+5m26/3qm—2+5m13/3qm—2

d=q(q—2)---(g—m+1)d, and

we derive that for g > m!0 and m > 6, we have to take the bound of (3.7). Thus, we obtain
the claim since the RHS of both bounds are increasing functions in m and the bound (3.7) is
asymptotically larger. O

Remark 3.8 1t is out of the scopes of this paper to work out the cases m < 6, or g < m!0

which is a relevant but technical task, which we leave to the interested reader.

4 Construction of codes from Ap,-invariant polynomials
4.1 Construction

In this last section we show how to construct linear codes from A,,-invariant polynomials.
Letm € Nbe large enough such that gcd(m, g — 1) = 1, let o, the ith elementary symmetric
polynomial in m variables and let

m

Y =181 +upso sl_Za, ,"n,sz_Zbam,a,,b €F, vViel0,...,m}
i=0 i=0
“.1)

Let A5 (Fy) be the set of all distinguished points in IFg’. Consider the group action ¢ :
Ay X AD(}F ) — AL (F,) defined by ¢ (0, P) = Py, where if P = (x1,...,X,) then
Py = (Xo(1), - - xg(m)) The points of A’ (IF,) constitute a disjoint union of orbits under
the action ¢, and each orbit has cardlnahty m!/2. Thus, we can define a code by evaluating
the polynomials in ¥,, on a smaller evaluation set, consisting of one point from each of the
A,, orbits mentioned before. Let n = 2(;71), and let Py, ..., P, be a set of representatives,
one from each orbit. Consider the evaluation map ev : X,, — IE‘Z given by

ev(F) == (F(Py), F(Pp), ..., F(Py)).
Then, we define C :=ev(X,,).

Proposition 4.1 Forq > m'%andm > 6, C is alinear code with lengthn = 2( ) dimension
k =2(m+ 1), and distance d > n — ( (’") + 2( ))
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Proof The length of C equals the number of orbits of A7 (IF,) under the action of A,,.
Note that A} (Fy)| = P(g,m), and that we partitioned |A7,(IF,)| using orbits of size ”7“
So, the number of orbits is 2(;11) Hence, n = 2(;2) Now, we show that k = 2(m + 1).
Consider the set § = {0,2, 0,,]1, ..., o} where a,"n is the ith symmetric polynomial in m
variables. In [2] it is shown that the elements in S are linearly independent. Observe that
vy S :={vys : s € S}is a[f;-linearly independent set of m + 1 polynomials. Since we have
Span{S} N Span{v,, S} = 0, then %,, = Span{S} & Span{v,, S}, and this is a vector space of
dimension 2(m + 1). Finally, let Fy,ox € X, be such that |Zp (Fypax)| = maxges,, |Zp(f)I.
Observe that just like A7 (IF;), Zp (Fnax) can be partitioned by orbits of size m!/2, and so the
maximum number of coordinates equal to O that a codeword could have is 2| Z p (Fyqx)|/m!.
Hence by Theorem 3.6,

q

m! qg—1 m—1

m}

Remark 4.2 Even if our result relies on the Hasse—Weil theorem for large values of ¢, using
Sage [9], itis easy to check that our codes maintain the same parameters also for small values
of g, provided that g > m — 1 > 5. The reason is that the bound obtained for the linearly
dependent case does not require any asymptotic assumption and that is the case when the set
of zeros for our family of polynomials has the largest cardinality.

4.2 Asymptotic comparisons with other codes

In this subsection, we investigate the relative distance ¢ and rate pc our code C described
in Proposition 4.1 by comparing it to the closest (in terms of regime of parameters) available
constructions. In particular, our codes and Datta—Johnsen codes achieve better asymptotic
parameters than Generalized Reed—Muller codes.

4.2.1 Datta-Johnsen codes from symmetric polynomials

In [2], the authors constructed a code C’ with length n’ = (gl), dimension k' = m + 1,
and distance d’ = (%) — (4~}). The length and dimension of C are twice the length and

m m—1
dimension of C’, respectively. It can be shown that for fixed m the relative distance of C and

C’ are asymptotically equal as g grows. That is,

. 8¢
lim
q—>0 5C/

=1.

These considerations imply that for a fixed g and the same information rate, our codes have
double the distance.

4.2.2 Generalized Reed-Muller codes
In addition to that, it makes sense to compare our code to the Generalized Reed—Muller code

(2.1) for t = m, where t is the degree of the polynomials and m is the number of variables. In
this case, we observe that while we get asymptotically the same relative distance, our code
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C provides asymptotically a better rate; for example, for ¢ being the next prime power after
10
m'®, pry ~ () /(m'*™) and pc ~m/("),’), and

. pPcC
lim —— = o0
5 Future work

It should be possible to extend the ideas used in this paper and [2] to create codes from
arbitrary subgroups of S, (the symmetric group of m variables). We briefly outline the

strategy. Let x1, x2, ..., X, be variables and let H be a subgroup of size N of the symmetric
group Sy,;. Let K = F,(s1, 52, ..., s,) where s; represents the ith elementary symmetric
polynomial. Let L = F,(x, x2, ..., x;,). Denote L as the set of polynomials in L fixed

by H. By the fundamental theorem of Galois Theory, the degree of the field extension
LY /K is equal to |H| = N. By the definition of degree of a field extension, this means
that 3f1, f2,..., fv € L¥ such that L = fiK + K + --- + fyK. We can construct
linear codes similarly to how we proceed in this paper: let H act on the set A} (IF,;) and
create codewords by evaluating a polynomial in L at a distinct representative of each orbit.
Their length n should be N (,‘111) dimension N (m + 1), and distance is expected to be roughly

n— % Max fey 1 Zp(f).

Another question is whether it is possible to improve the bound of in Theorem 3.7 (the
bound in Theorem 3.6 is instead sharp).

Finally, it would be very interesting to improve the bounds at the end of Sect. 3.1 by using
geometric properties of the varieties arising in the counting argument. In particular, Theorem
3.2 only gives a regime of parameters in which our codes are guaranteed to exist: it would be
very interesting to see if it is possible to relax the conditions on ¢ and m with more advanced
counting techniques.
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