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Abstract

Let q be a prime power. This paper provides a new class of linear codes that arises from

the action of the alternating group on Fq [x1, . . . , xm] combined with the ideas in Datta and

Johnsen (Des Codes Cryptogr 91(3):747–761, 2023). Compared with Generalized Reed–

Muller codes with analogous parameters, our codes have the same asymptotic relative distance

but a better rate. Our results follow from combinations of Galois theoretical methods with

Weil-type bounds for hypersurfaces.

Keywords Reed–Muller codes · Alternating group · Permutations

Mathematics Subject Classification 11T71 · 11T06 · 13B05 · 20B35

1 Introduction

Let q be a prime power, Fq be the finite field of order q , and m be a positive integer.

Constructing families of evaluation codes has always attracted a lot of interest due to the

numerous applications to coding theory like error correction, DSS and SDMM [3–5, 7, 8].

Generalized Reed–Muller codes provide an extension of Reed–Solomon codes to the

multivariate ring of polynomials. However, they have good relative distance (distance/length)

but poor rate (dimension/length). Thus, it is interesting to find sub-codes of Generalized

Reed–Muller with the same asymptotic relative distance but a better rate.

Along this view, in [2], Datta and Johnsen study a new class of codes that arises from the

symmetric group. Such classes of codes have interesting parameters and the structural prop-

erties of the symmetric group allow them to derive important properties for the codes, such as

the minimum distance or certain weight distribution properties for the generalized Hamming

weight. Datta–Johnsen codes are essentially constructed by considering evaluations of linear

combinations of elementary symmetric polynomials in a certain number of variables m. The
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minimum distance computation for such codes follows from the special factorization prop-

erties that these polynomials have, which in turn is a consequence of the fact that they are

invariant under the symmetric group. Let Am be the alternating group. This is an interesting

general fact: whenever a class of multivariate polynomials in F = Fq [x1, . . . , xm] is invari-

ant under a group action, then Galois theory over the fraction field of F applies and leads

to interesting properties for the factorization of such polynomials. In turn, this allows us to

provide bounds for the number of zeroes of these polynomials, and therefore of certain codes

constructed from these, as we will show in this paper for the case of G = Am . Apart from

providing a new general framework to construct codes from Galois theory, our paper provides

advantages over Datta–Johnsen codes (which were already a significant improvement over

Reed–Muller codes), since for a fixed q we can construct codes with the same asymptotic

rate and same relative distance but double length and dimension. Therefore, when codes are

compared for a fixed finite field size, our codes have larger distance because we allow for

more evaluation points, and also the message space can be extended (thanks to the fact that we

are requiring polynomials to be invariant under a smaller subgroup). The paper is structured

as follows. In Sect. 2.1, we recap the basic notions from the theory of linear error correcting

codes. In Sect. 2.2, we include results that are needed to study the number of points on affine

varieties. In Sect. 2.3, we introduce the space of linear combinations of elementary symmet-

ric polynomials and provide some properties from [2] that allow us to count the number of

zeroes of polynomials in this space. In Sect. 2.4, we derive some properties of a certain set

of polynomials in Lemma 2.6, that will be useful to determine the message space for our

codes. Section 3 is devoted to providing a bound on the number of zeroes of polynomials

in our message space: this is done by splitting the proof into the two cases prescribed by

Sects. 3.1 and 3.2. Finally, Sect. 4 provides the construction of our codes and comparison

with Datta–Johnsen codes and Reed–Muller codes for analogous parameters.

2 Background

2.1 Linear codes

A code C of length n over the finite field Fq is a subset of Fn
q . The code C is said to be

linear of dimension k if it is a k-dimensional Fq -subspace of Fn
q . The weight of an element of

Fn
q is defined to be the number of its non-zero entries. The Hamming distance between two

elements x, y of Fn
q is defined to be the weight of x − y. The minimum distance d of a code

C is the minimum of distances between all two distinct elements of C, and by an [n, k, d]q

code we mean a linear code of length n, dimension (as a subspace) k and minimum distance

d .

One may ask whether a code is a “good” code compared to other constructions, this is why

it is useful to introduce the notion of relative distance and rate of a code.

Definition 2.1 Let C be a [n, k, d]q code. The relative distance is δ := d/n and the rate is

defined to be ρ := k/n.

We can compare linear codes for the same length by comparing their relative distance and

rate. Codes with higher relative distance and/or rate are better than codes with lower ones.

Generalized Reed–Muller codes consist of the evaluation vectors of multivariate polynomials

over Fq . Let Fq [x1, . . . , xm]be the polynomial ring with m variables. The t th order Generalized

Reed–Muller code G Rq(m, t) is defined as
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G Rq(m, t) := {( f (x) : x ∈ Fm
q ) | f ∈ Fq [x1, . . . , xm], deg( f ) f t} (2.1)

and it is a

[

qm,
(

m+t
m

)

,
(

1 − t
q

)

qm

]

q

code, see classic literature [6].

2.2 Points on varieties

Let Fq denote the algebraic closure of the field Fq . Let F1, . . . , F� be polynomials in

Fq [x1, . . . , xm] and let V denote the affine subvariety of Am(Fq) defined by F1, . . . , F�.

Counting or estimating the number of Fq -rational points x ∈ Am(Fq) of V is an impor-

tant the subject of mathematics and computer science, with many applications. In [1] the

authors showed that the number |V (Fq)| of Fq -rational points of an Fq -absolutely irreducible

hypersurface V of Am(Fq) of degree δ > 0 is:

||V (Fq)| − qm−1| f (δ − 1)(δ − 2)qm−3/2 + 5δ13/3qm−2. (2.2)

For more details see [1, Theorem 5.2]. In the next section, we will use this result to bound

the number of zeros of certain polynomial equations.

2.3 The vector space of elementary symmetric polynomials

In [2] the authors studied the vector space generated by the elementary symmetric polynomials

in m variables. We recall here some useful properties that will be needed in the next sections.

We denote by σ i
m the i th elementary symmetric polynomial in m variables x1, . . . , xm , i.e.,

σ i
m =

∑

1f j1<···< ji fm

x j1 · · · x ji

for 1 f i f m and σ 0
m = 1. The following result is obtained by collecting the results in [2,

Sect. 2].

Proposition 2.2 Let s ∈ Fq [x1, . . . , xm] be given by s = a0 + a1σ
1
m + · · · + amσm

m where

a0, . . . , am ∈ Fq . Then s is either absolutely irreducible, say of type 1, or s = a
∏m

i=1
(α+xi )

for a, α ∈ Fq , say of type 2.

Remark 2.3 Note that, given a polynomial s that is a linear combination of elementary sym-

metric polynomials, by isolating one variable, say x1, we can write s = x1 p1 + p2, where p1

and p2 are linear combination of elementary symmetric polynomials in x2, . . . , xm (hence

invariant under the action of Sm−1).

2.4 Galois theory and Am-invariant polynomials

Let Am be the alternating group of m variables, that is the subgroup of Sm of all the even

permutations. Am acts on the set of polynomials Fq [x1, . . . , xm] by acting on its variables.

More specifically, if σ ∈ Am , then f (x1, . . . , xm) is sent to σ( f ) := f (xσ(1), . . . , xσ(m))
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Definition 2.4 An Am-invariant polynomial f ∈ Fq [x1, . . . , xm] is a polynomial that is

invariant under the action of Am , that is f = σ( f ) for every σ ∈ Am .

Note that, in particular, any symmetric polynomial is Am-invariant. The following result is

classical and will be used later in the paper. We include the proof for completeness.

Theorem 2.5 Let Am be the alternating group. Then it does not have a proper subgroup of

index less than m, for m g 5.

Proof Assume Am has a subgroup G of index m′ < m. Then the action of Am on the cosets

of G gives a homomorphism into Sm′ . Since m g 5, m!/2 > m′!, so the homomorphism

can’t be injective. Since Am is simple, the kernel must be all of Am . In particular, this means

that hG = G for all h ∈ Am , which is only possible if G = Am . Thus, there is no proper

subgroup of index less than m. ��

Let

vm(x) =
∏

1fi< jfm

(xi − x j )

be the Vandermonde polynomial in m variables. vm is invariant under every even permutation,

while every odd permutation results in a change of sign. This means that vm is an Am-invariant

polynomial that is not symmetric. The following is a well-known property of Am-invariant

polynomials. We provide a short proof using Galois theory for completeness.

Lemma 2.6 Let g ∈ Fq [x1, . . . , xm] be an Am-invariant polynomial. Then there exist s1, s2 ∈

Fq [x1, . . . , xm] symmetric polynomials such that:

g = s1vm + s2,

for vm being the Vandermonde polynomial in m variables. Furthermore, the representation

is unique.

Proof We know that [Fq(x1, . . . , xm)Am : Fq(x1, . . . , xm)Sm ] = 2 since the index of Am

in Sm is 2, where Fq(x1, . . . , xm)Am and Fq(x1, . . . , xm)Sm are the fixed fields of Am

and Sm respectively. Thus, by the fundamental theorem of Galois Theory (and the fact

that every polynomial that is invariant under the symmetric group is an algebraic com-

bination of elementary symmetric polynomials), the field of rational functions invariant

under Am can be written as Fq(σ 1
m, . . . , σ m

m , vm), where σ 1
m, . . . , σ m

m are the elementary

symmetric polynomials in m variables and vm is the Vandermonde polynomial in m vari-

ables. In particular any Am-invariant polynomial h ∈ Fq [x1, . . . , xm] uniquely decomposes

as follows: h(x) =
p1

p2
+ vm

p3

p4
, for p1, p2, p3, p4 being symmetric polynomials and

gcd(p1, p2) = gcd(p3, p4) = 1. This means that

h(x) =
p1 p4 + vm p3 p2

p2 p4
.

Since p2 p4 is symmetric and for an odd permutation σ we have σ(p1 p4+vm p3 p2) = p1 p4−

vm p3 p2 [because vm is simply the square root of the discriminant in T of
∏m

i=1(T − xi )],

we get that p2 p4|p1 p4 and p2 p4|vm p3 p2. Thus p2|p1 and p4|p3, prove that the rational

functions are polynomials (note that p4 � vm by the definition of the decomposition). ��
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Remark 2.7 It is well known that the set of degree d Schur polynomials in m variables are a

linear basis (over Fq ) for the space of homogeneous degree d symmetric polynomials in m

variables. This implies that every symmetric polynomial is a sum of homogeneous symmetric

polynomials. Thus, if in the decomposition of Lemma 2.6 the symmetric polynomial s1 is

different from 0, then g must have a total degree at least
(

m
2

)

. Let s1 = p + s̃1 where p �= 0

is the leading degree homogeneous polynomial, then vm p is a homogeneous alternating

polynomial of degree deg(p) +
(

m
2

)

and it cannot be canceled with any term of s2.

3 Bound for the number of zeros

Let x = (x1, . . . , xm) ∈ Am(Fq), for q odd. Consider the following polynomial:

F(x) := s1(x)vm(x) + s2(x) ∈ Fq [x], (3.1)

for s1(x) and s2(x) being linear combinations of elementary symmetric polynomials and vm

being the Vandermonde polynomial in m variables.

Remark 3.1 Note that s1 and s2 are either linearly dependent or they cannot share any common

components. In fact by Proposition 2.2, s1 and s2 are either both absolutely irreducible or

both of type 2. Thus if they are both of type 2 and they share one component, they need to

be Fq -linearly dependent, i.e. scalar multiples, (simply because sharing a factor ensures that

they share all factors).

We are interested in computing the number of zeros of a polynomial of the form (3.1). More

specifically we want to compute the number |Z D(F)| of the distinguished zeros of F , where a

point (a1, . . . , am) ∈ Am(Fq) is said to be distinguished if ai �= a j whenever i �= j . Note that

the set of distinguished points of Am(Fq), say Am
D(Fq), has cardinality |Am

D(Fq)| = P(q, m),

where

P(q, m) =

{ (q
m

)

m! if m f q,

0 otherwise.

We now state the main theorem of this paper that will allow us to give a lower bound for the

distance of our codes.

Theorem 3.2 Let F be a polynomial as in Eq. (3.1) and let d := gcd

(

(

m
2

)

, q − 1

)

. Then for

q g m10 and m g 6 we have

|Z D(F)| f
P(q, m)

q − 1
d + m P(q − 1, m − 1).

In the following, we will distinguish when s1 and s2 are linearly dependent or not and

treat those two cases separately.

3.1 Linearly independent case

The set of distinguished zeros of F can be computed as follows. Let Z( f ), Z D( f ) and

Z N D( f ) be the set of zeros, distinguished zeros and non-distinguished zeros of a polynomial

f , respectively. Since for every non-distinguished zero z = (z1, . . . , zm) of F we have

vm(z) = 0, the following holds:
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|Z D(F)| = |Z(F)| − |Z N D(F)| = |Z(F)| − |Z N D(s2)| = |Z(F)| − (|Z(s2)| − |Z D(s2)|) ,

(3.2)

that is |Z D(F)| = |Z(F)| − |Z(s2)| + |Z D(s2)|.

Lemma 3.3 Let m g 6. If s1 and s2 are linearly independent, the polynomial F defined by

Eq. (3.1) is absolutely irreducible.

Proof Let g ∈ Fq [x1, . . . , xm] be a divisor of F . We may suppose g is absolutely irreducible.

Since F is not symmetric (or otherwise s1 = 0, and s1, s2 are linearly dependent), then

it cannot split only into symmetric irreducible factors, hence we may assume that g is not

symmetric.

Since F is stabilized by the alternating group Am , any polynomial σ(g), for σ ∈ Am , is

a factor of F . Let G be the stabilizer of g in Am . We have two cases:

• G = Am . In this case, g is fixed by Am . By Lemma 2.6 g can be written as g = r1vm +r2

where r1 and r2 are symmetric polynomials. Thus we have

(r1vm + r2)� = s1vm + s2, (3.3)

for � ∈ Fq [x1, . . . , xm]. Since g and F are Am-invariant, then � is also stabilized by

Am , and we can write � = t1vm + t2 for t1, t2 symmetric polynomials. Note that r1 �= 0

since g is not symmetric. Moreover, r2 �= 0 since g is irreducible. Finally, t2 �= 0 since

vm � F (or otherwise s2 = 0, denying the linear independence). In particular since r1 �= 0

Remark 2.7 implies that deg(g) g
(

m
2

)

.

The latter forces deg(�) f m [since deg(F) f
(

m
2

)

+ m] and in turn, t1 = 0, by Remark

2.7.

Hence � is symmetric. By the uniqueness of the representation applied to the Eq. (3.3),

we obtain that r1� = s1 and r2� = s2, which is in contradiction with s1 and s2 being

linearly independent (from Remark 3.1).

• G < Am .

Claim 1 Let m g 6. Then degxi
(g) f 1 for all i ∈ {1, . . . , m}.

Proof of Claim 1 By Theorem 2.5, G has index at least m. This means that the orbit of g

under the action of Am has cardinality at least m, by the orbit-stabilizer theorem. Consider

now the degree of F in the variable xi , say degxi
(F). We have that degxi

(F) f m. If every

variable appears in g, then it must be that degxi
(g) f 1; in fact, each factor in the product

obtained by acting Am on g contains all the variables and we have at least m factors. Let g be

without exactly one variable, say i∗. Every element in G must be in StAm (i∗) 
 Am−1, where

StAm (i∗) is the stabilizer of i∗ in Am . By applying again Theorem 2.5, we derive that G has

index at least m −1 in Am−1 which implies that the index of G in Am is at least m(m −1). Let

1 be the index such that degx1
(g) g 2. Note that degx1

(F) g [StAm (1) : StG(1)] degx1
(g),

because F is invariant under Am and different representations of the cosets of StG(1) in

StAm (1) move g to a different factor of F with same degree in x1. Using the orbit-stabilizer

theorem we derive:

[

StAm (1) : StG(1)
]

=
|Am−1|

|StG(1)|
=

(m − 1)!

2

|OrG(1)|

|G|
,

where OrG(1) is the orbit of 1 under the action of G. Since the index of G in Am is at least

m(m − 1), then |G| f m!
2m(m−1)

. This implies that

[

StAm (1) : StG(1)
]

g (m − 1)|OrG(1)| g m − 1.
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The latter implies degx1
(F) g 2m − 2, a contradiction. Finally, let g be without 2 or more

variables, say x1 and x2. In this setting, we note that there are at least 2
(

m−2
2

)

elements in

the orbit of g under Am . We have at least the even permutations of the following form:

(1 i)(2 j) for i, j ∈ {3, . . . , m}, i �= j . Since m g 6 and degxi
(F) f m, we get a

contradiction. ��

Now if we consider the reduction modulo g, we get that:

s1vm ≡ −s2 (mod g). (3.4)

Let us now exclude that s2 ≡ 0 (mod g). First, observe that g �= cs2 for any c ∈ Fq because

otherwise it would be fixed by Am . Therefore if g were to divide s2, we would have s2 reducible

and g = α + xi for some α ∈ Fq and i ∈ {1, . . . , m} by Remark 3.1. Since g cannot divide

vm this implies that g divides s1 and in turn, this forces s1 and s2 to be linearly dependent

by Remark 3.1, a contradiction. Thus, s2 �≡ 0 (mod g). Without loss of generality we can

suppose degx1
(g) = 1 and degxi

(g) f 1 for i ∈ {2, . . . , m}. We isolate x1 from g in the

quotient ring Fq [x1, . . . , xm]/(g) obtaining x1 ≡ h1
h2

in Fq [x1, . . . , xm]/(g) (in other words,

there is an natural isomorphism Fq [x1, . . . , xm]/(g) → Fq [h1/h2, x2, . . . , xm]), for some

h1, h2 ∈ Fq [x2, . . . , xm] such that degxi
(h2) f 1, and degxi

(h1) f 1 for i ∈ {2, . . . , n},

and coprime. By Remark 2.3, we can write s1 = x1 p1 + p2 and s2 = x1r1 + r2 where

p1, p2, r1, r2 are linear combination of symmetric elementary polynomials in x2, . . . , xm .

Therefore, since Fq [x1, . . . , xn]/(g) can be embedded in Fq(x2, . . . xn) thanks to the fact

that the degree of g in x1 is 1, Eq. (3.4) becomes

(

h1

h2
p1 + p2

)

(

1

hm−1
2

) (

m
∏

i=2

(h1 − h2xi )

)

vm−1 = −

(

h1

h2
r1 + r2

)

.

By multiplying both sides by hm
2 we get

(h1 p1 + h2 p2)

(

m
∏

i=2

(h1 − h2xi )

)

vm−1 = −hm−1
2 h1r1 − hm

2 r2. (3.5)

Suppose that h2 is not constant. Then, h2 has an irreducible factor, say u. Now, at least

um−1 divides the RHS above. The LHS, on the other hand, cannot be divisible by um−1 for

m g 4 as we now explain. Recall that h2 is coprime to h1. The factor vm−1 is squarefree

(so at most one power of u divides it), the product in i is coprime to h2 (so no powers of u

can divide it), if h1 p1 + h2 p2 is divisible by u then p1 is divisible by at least um−2 (which

is a contradiction because factorizations of linear combinations of elementary symmetric

polynomials are squarefree, as prescribed by Proposition 2.2).

For the case in which h2 is constant, it is enough to check the total degree of both sides

of (3.5). In fact, the RHS has total degree at most 2m − 2, while the LHS has total degree at

least (m − 1)(m − 2)/2 + m, a contradiction for m g 6.

��

Thanks to the previous lemma, we can use Eq. (2.2) to bound Z(F) and Z(s2). We have

that deg(F) f
(

m
2

)

+ m f m2 (for m g 2) and deg(s2) f m, hence

|Z(F)| f qm−1 + (m2 − 1)(m2 − 2)qm−3/2 + 5m26/3qm−2

and

|Z(s2)| g qm−1 − (m − 1)(m − 2)qm−3/2 − 5m13/3qm−2.
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Note that we do not need s2 irreducible to obtain the correspondent bound since if s2 is

reducible we can lower bound the number of zeros of any of its irreducible components, still

obtaining a lower bound for the zeros of s2 (and then we can upper bound the degree of its

irreducible component with m, as it appears with negative sign). This implies that for m g 4

|Z D(F)| f m4qm−3/2 + m2qm−3/2 + 5m26/3qm−2 + 5m13/3qm−2 + Z D(s2).

In [2] the authors provided a sharp bound for the number of distinguished zeros of a sym-

metric polynomial obtained as a linear combination of elementary symmetric polynomials,

that is

|Z D(s2)| f m P(q − 1, m − 1),

which implies that

|Z D(F)| f m4qm−3/2 + m2qm−3/2 + 5m26/3qm−2 + 5m13/3qm−2 + m!

(

q − 1

m − 1

)

,(3.6)

since

P(q, m) =

{ (

q
m

)

m! if m f q,

0 otherwise.

3.2 Linearly dependent case

Let M :=
(

m
2

)

and gcd(M, q − 1) = 1. Let Am
D(Fq) be the set of all distinguished points of

Fm
q , i.e. points with non-repeated coordinates in Fq . We will show in this section that if s1

and s2 are linearly dependent, then

|Z D(F)| f
|Am

D(Fq)|

q − 1
+ m P(q − 1, m − 1).

We begin with a few necessary lemmas for the proof of the above claim.

Remark 3.4 Note that x ∈ Am
D(Fq) if and only if vm(x) �= 0, and vm is surjective. In fact,

vm(λx) = λMvm(x) and the map ι : F∗
q 
→ F∗

q given by ι(x) = x M is a bijection since we

are assuming gcd(M, q − 1) = 1.

Our next goal is to show that there are two orthogonal partitions of Am
D(Fq).

Lemma 3.5 Let P1 be the partition determined by the pre-images of vm . For every z ∈

Am
D(Fq), let Bz := {cz : c ∈ F∗

q}. Then the collection of sets P2 := {Bz : z ∈ Am
D(Fq)} is a

partition of Am
D(Fq). In particular, P1 and P2 are orthogonal partitions and |v−1

m (λ)| = |P2|.

Proof Note that either Bx ∩ By = ∅ or Bx = By . In fact, there exists z ∈ Bx ∩ By if and

only if z = λ1x = λ2 y, for non-zero elements λ1 and λ2, which implies that x = λ2/λ1 y, or

equivalently, Bx = By . Hence P2 is a partition.

Now it remains to show the orthogonality of the two partitions. Let λ ∈ F∗
q and x ∈ v−1

m (λ).

By definition, x ∈ Bx ∈ P2. For every y = λ1x ∈ Bx with λ1 ∈ Fq we obtain that if

vm(y) = λ ⇐⇒ λM
1 vm(x) = λ ⇐⇒ λM

1 λ = λ ⇐⇒ λ1 = 1 ⇐⇒ x = y,

since gcd(M, q − 1) = 1. Thus, each element x ∈ v−1
m (λ) belongs to a unique set Bx ∈ P2,

showing that the two partitions are orthogonal and that |v−1
m (λ)| = |P2|. ��
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Theorem 3.6 Let M :=
(

m
2

)

and gcd(M, q − 1) = 1. Let F be a polynomial of the form

given in Eq. (3.1). If s1 and s2 are linearly dependent, we have that

|Z D(F)| f
P(m, q)

q − 1
+ m P(q − 1, m − 1).

Proof Suppose that s1 and s2 are dependent. Then, s2 = λs1 for some λ ∈ F∗
q . Hence, we

can write F = s1(x)vm(x) + s2(x) = s1(x)vm(x) + λs1(x) = (vm(x) + λ)(s1(x)). We

have from [2] that Z D(s1) f m P(q − 1, m − 1), and so it remains to show a bound for the

distinguished zeroes of vm(x) + λ. Observe that this is the same as finding the largest set

in {|v−1
m (c)| : c ∈ F∗

q} since vm(x) + λ = 0 ⇐⇒ vm(x) = −λ. By the above lemma,

we know that |v−1
m (λ)| = |P2| for every λ ∈ F∗

q . Observe that each Bz ∈ P2 covers q − 1

distinct points in Am
D(Fq). So, |P2| =

|Am
D(Fq )|

q−1
. Hence, we have that |v−1

m (λ)| =
|Am

D(Fq )|

q−1
for

every λ ∈ F∗
q , that is vm(x) = λ on exactly

|Am
D(Fq )|

q−1
many points. In conclusion, |Z D(F)| f

|Z D(vm + λ)| + |Z D(s1)| =
|Am

D(Fq )|

q−1
+ m P(q − 1, m − 1). ��

The case for gcd(M, q − 1) > 1 (M :=
(

m
2

)

) is more complicated. We cannot use anymore

that the map ι(x) = x M is a bijection. This is why the bound on the number of zeros of

vm + λ for λ �= 0 is not sharp anymore. However, by using another argument we were still

able to prove a generalization of the previous bound also for gcd(M, q − 1) > 1, which we

decided to separate from the Theorem 3.6, which is instead sharp.

Theorem 3.7 Let M :=
(

m
2

)

and d := gcd(M, q −1) > 1. Let F be a polynomial of the form

given in Eq. (3.1). If s1 and s2 are linearly dependent, we have that

|Z D(F)| f
P(q, m)

q − 1
d + m P(q − 1, m − 1). (3.7)

Proof As in Theorem 3.6 it is only needed to show a bound for the distinguished zeroes of

vm(x) + λ. Let λ ∈ F∗
q . Observe that there are d solutions in F∗

q to the equation λM = 1; in

fact, if ξ is a primitive element of F∗
q , then the set S =

{

1, ξ
q−1

d , ξ
2(q−1)

d , . . . , ξ
(d−1)(q−1)

d

}

is

the set of the solutions to the latter equation. This means that for any x ∈ v−1
m (λ), the elements

ξ
q−1

d x, ξ
2(q−1)

d x, . . . , ξ
(d−1)(q−1)

d x are also in v−1
m (λ). Denote by Sx the set {sx : s ∈ S}, and

let Bx = {λx : λ ∈ F∗
q}. As we saw before, each Bx covers q − 1 distinct elements and

Sx ⊂ Bx . Let x, y ∈ v−1
m (λ) such that y /∈ Sx . We claim that Bx ∩ By = ∅. In fact if there

were λx , λy ∈ Fq such that λy y = λx x , then

λy y = λx x �⇒ λM
y vm(y) = λM

x vm(x) �⇒ λM
y = λM

x �⇒
λx

λy

∈ S and
λy

λx

y = x,

which is in contradiction with y /∈ Sx .

Finally observe that there are at most t :=
|Am

D(Fq )|

q−1
distinct points z1, z2, . . . , zt ∈ v−1

m (λ)

such that Bz1 , Bz2 , . . . , Bzt are all disjoint; in fact each set contains q − 1 distinct points in

Am
D(Fq) and |

⋃t
i=1 Bzi

| = t(q − 1) = |Am
D(Fq)|. Since for each of those zi ’s there are d

elements in v−1
m (λ) (corresponding to the elements in Szi

), we derive that |v−1
m (λ)| f td =

|Am
D(Fq )|

q−1
d . Now we conclude as in the proof of Theorem 3.6. ��
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Proof of themain Theorem 3.2 We obtained the following bounds respectively for the linear

independent case and linearly dependent case:

|Z D(F)| f m4qm−3/2 + m2qm−3/2 + 5m26/3qm−2 + 5m13/3qm−2 + m!

(

q − 1

m − 1

)

,

and

|Z D(F)| f
P(q, m)

q − 1
d + m!

(

q − 1

m − 1

)

.

By comparing the different terms of the two equations, that is

P(q, m)

q − 1
d = q(q − 2) · · · (q − m + 1)d, and

m4qm−3/2 + m2qm−3/2 + 5m26/3qm−2 + 5m13/3qm−2,

we derive that for q g m10 and m g 6, we have to take the bound of (3.7). Thus, we obtain

the claim since the RHS of both bounds are increasing functions in m and the bound (3.7) is

asymptotically larger. ��

Remark 3.8 It is out of the scopes of this paper to work out the cases m f 6, or q < m10

which is a relevant but technical task, which we leave to the interested reader.

4 Construction of codes from Am-invariant polynomials

4.1 Construction

In this last section we show how to construct linear codes from Am-invariant polynomials.

Let m ∈ N be large enough such that gcd(m, q −1) = 1, let σ i
m the i th elementary symmetric

polynomial in m variables and let


m :=

{

s1 + vms2 : s1 =

m
∑

i=0

aiσ
i
m, s2 =

m
∑

i=0

biσ
i
m, ai , bi ∈ Fq , ∀i ∈ {0, . . . , m}

}

.

(4.1)

Let Am
D(Fq) be the set of all distinguished points in Fm

q . Consider the group action φ :

Am × Am
D(Fq) → Am

D(Fq) defined by φ(σ, P) = Pσ , where if P = (x1, . . . , xm) then

Pσ := (xσ(1), . . . , xσ(m)). The points of Am
D(Fq) constitute a disjoint union of orbits under

the action φ, and each orbit has cardinality m!/2. Thus, we can define a code by evaluating

the polynomials in 
m on a smaller evaluation set, consisting of one point from each of the

Am orbits mentioned before. Let n = 2
(

q
m

)

, and let P1, . . . , Pn be a set of representatives,

one from each orbit. Consider the evaluation map ev : 
m → Fn
q given by

ev(F) := (F(P1), F(P2), . . . , F(Pn)).

Then, we define C := ev(
m).

Proposition 4.1 For q g m10 and m g 6, C is a linear code with length n = 2
(

q
m

)

, dimension

k = 2(m + 1), and distance d g n −
(

2
(q

m)
q−1

+ 2
(

q−1
m−1

)

)

.

123



Codes from Am-invariant polynomials

Proof The length of C equals the number of orbits of Am
D(Fq) under the action of Am .

Note that |Am
D(Fq)| = P(q, m), and that we partitioned |Am

D(Fq)| using orbits of size m!
2

.

So, the number of orbits is 2
(

q
m

)

. Hence, n = 2
(

q
m

)

. Now, we show that k = 2(m + 1).

Consider the set S = {σ 0
m, σ 1

m, . . . , σ m
m } where σ i

m is the i th symmetric polynomial in m

variables. In [2] it is shown that the elements in S are linearly independent. Observe that

vm S := {vms : s ∈ S} is a Fq -linearly independent set of m + 1 polynomials. Since we have

Span{S} ∩ Span{vm S} = 0, then 
m = Span{S} ⊕ Span{vm S}, and this is a vector space of

dimension 2(m +1). Finally, let Fmax ∈ 
m be such that |Z D(Fmax )| = max f ∈
m |Z D( f )|.

Observe that just like Am
D(Fq), Z D(Fmax ) can be partitioned by orbits of size m!/2, and so the

maximum number of coordinates equal to 0 that a codeword could have is 2|Z D(Fmax )|/m!.

Hence by Theorem 3.6,

d = n −
2|Z D(Fmax )|

m!
g n −

(

2

(

q
m

)

q − 1
+ 2

(

q − 1

m − 1

)

)

.

��

Remark 4.2 Even if our result relies on the Hasse–Weil theorem for large values of q , using

Sage [9], it is easy to check that our codes maintain the same parameters also for small values

of q , provided that q g m − 1 g 5. The reason is that the bound obtained for the linearly

dependent case does not require any asymptotic assumption and that is the case when the set

of zeros for our family of polynomials has the largest cardinality.

4.2 Asymptotic comparisons with other codes

In this subsection, we investigate the relative distance δC and rate ρC our code C described

in Proposition 4.1 by comparing it to the closest (in terms of regime of parameters) available

constructions. In particular, our codes and Datta–Johnsen codes achieve better asymptotic

parameters than Generalized Reed–Muller codes.

4.2.1 Datta–Johnsen codes from symmetric polynomials

In [2], the authors constructed a code C ′ with length n′ =
(

q
m

)

, dimension k′ = m + 1,

and distance d ′ =
(

q
m

)

−
(

q−1
m−1

)

. The length and dimension of C are twice the length and

dimension of C ′, respectively. It can be shown that for fixed m the relative distance of C and

C ′ are asymptotically equal as q grows. That is,

lim
q→∞

δC

δC ′
= 1.

These considerations imply that for a fixed q and the same information rate, our codes have

double the distance.

4.2.2 Generalized Reed–Muller codes

In addition to that, it makes sense to compare our code to the Generalized Reed–Muller code

(2.1) for t = m, where t is the degree of the polynomials and m is the number of variables. In

this case, we observe that while we get asymptotically the same relative distance, our code
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C provides asymptotically a better rate; for example, for q being the next prime power after

m10, ρRM ∼
(

2m
m

)

/(m10m) and ρC ∼ m/
(

m10

m

)

, and

lim
m→∞

ρC

ρRM

= ∞.

5 Future work

It should be possible to extend the ideas used in this paper and [2] to create codes from

arbitrary subgroups of Sm (the symmetric group of m variables). We briefly outline the

strategy. Let x1, x2, . . . , xm be variables and let H be a subgroup of size N of the symmetric

group Sm . Let K = Fq(s1, s2, . . . , sm) where si represents the i th elementary symmetric

polynomial. Let L = Fq(x1, x2, . . . , xm). Denote L H as the set of polynomials in L fixed

by H . By the fundamental theorem of Galois Theory, the degree of the field extension

L H /K is equal to |H | = N . By the definition of degree of a field extension, this means

that ∃ f1, f2, . . . , fN ∈ L H such that L H = f1 K + f2 K + · · · + fN K . We can construct

linear codes similarly to how we proceed in this paper: let H act on the set Am
D(Fq) and

create codewords by evaluating a polynomial in L H at a distinct representative of each orbit.

Their length n should be N
(

q
m

)

, dimension N (m + 1), and distance is expected to be roughly

n −
N

m!
max f ∈L H Z D( f ).

Another question is whether it is possible to improve the bound of in Theorem 3.7 (the

bound in Theorem 3.6 is instead sharp).

Finally, it would be very interesting to improve the bounds at the end of Sect. 3.1 by using

geometric properties of the varieties arising in the counting argument. In particular, Theorem

3.2 only gives a regime of parameters in which our codes are guaranteed to exist: it would be

very interesting to see if it is possible to relax the conditions on q and m with more advanced

counting techniques.
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