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Is the effective potential effective for dynamics?
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We critically examine the applicability of the effective potential within dynamical situations and find,
in short, that the answer is negative. An important caveat of the use of an effective potential in dynamical
equations of motion is an explicit violation of energy conservation. An adiabatic effective potential is
introduced in a consistent quasistatic approximation, and its narrow regime of validity is discussed. Two
ubiquitous instances in which even the adiabatic effective potential is not valid in dynamics are studied in
detail: parametric amplification in the case of oscillating mean fields, and spinodal instabilities associated
with spontaneous symmetry breaking. In both cases profuse particle production is directly linked to the
failure of the effective potential to describe the dynamics. We introduce a consistent, renormalized, energy
conserving dynamical framework that is amenable to numerical implementation. Energy conservation
leads to the emergence of asymptotic highly excited, entangled stationary states from the dynamical
evolution. As a corollary, decoherence via dephasing of the density matrix in the adiabatic basis is argued
to lead to an emergent entropy, formally equivalent to the entanglement entropy. The results suggest novel

characterization of asymptotic equilibrium states in terms of order parameter vs energy density.
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I. INTRODUCTION

The effective potential is a very useful concept to study
spontaneous symmetry breaking in quantum field theory as
originally proposed in Refs. [1,2]. It is defined as the
generating functional of the single particle irreducible
Green’s functions at zero four momentum transfer. In
particular, the effective potential informs how radiative
corrections modify the symmetry breaking properties of
the vacuum [3]. While originally the effective potential was
obtained by summing an infinite series of Feynman
diagrams [3], functional methods [4-7] provide a
systematic and simple derivation in a consistent loop
expansion, which has been extended to equilibrium finite
temperature field theory [8,9]. In equilibrium at finite
temperature, the effective potential informs on the quantum
and thermal corrections to the free energy landscape as a
function of the order parameter, and as such it provides a
very useful characterization of phase transitions. The
concept of the effective potential plays a fundamental role
in cosmology,
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in particular in the description of possible cosmological
phase transitions even during the inflationary era [10-14].

An alternative Hamiltonian formulation of the effective
potential was advanced in Refs. [15,16]; it provides a
compelling interpretation of the zero temperature effective
potential as the expectation value of the quantum
Hamiltonian (divided by the volume) in a coherent state, in
which the (bosonic) field associated with symmetry
breaking, namely the order parameter, acquires a space-
time constant expectation value (see also [6,16]). The one-
loop effective potential has also been related to a Gaussian
wave functional [17].

A. Motivation and objectives
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Although the effective potential was introduced and
developed to study static aspects of spontaneous symmetry
breakingand to identify symmetry breakingminimabeyond
the classical tree level, it is, however, often implemented in
dynamical studies of the time evolution of the expectation
value of the scalar field. Since the effective potential is
defined for zero four momentum transfer, namely for a
static and homogeneous field configuration, the rationale
behind its use in a dynamical situation is the assumption of
the validity of some adiabatic approximation. Such
assumption ultimately needs scrutiny and justification.

Our motivation for this study is the ubiquity of the use
of the effective potential in dynamical situations in which
the expectation value of the scalar field evolves in time.
Our objectives are: (i) to critically examine the validity of
using the effective potential in such dynamical setting, (ii)
to assess the validity of an adiabatic approximation that

2470-0010=2024=109(10)=105021(27)
would justify its use, (iii) identify possible scenarios
wherein its use is unjustified, and (iv) to provide an
alternative formulation that overcomes the limitations of its
(mis)use, and to study the consequences of the dynamical
evolution within this framework.

In this article we address these aspects at zero
temperature in Minkowski space-time, obtaining the
energy functional and equations of motion including one-
loop quantum corrections, which allows us to compare to
the one-loop effective potential and exhibit its
shortcomings in the simplest case. This study is a prelude
towards extending the results both to finite temperature,
higher orders, and an expanding cosmology in future work.

B. Brief summary of results

We implement a Hamiltonian approach to obtain the
oneloop effective potential in the static case and extend it
to obtain the energy functional and equations of motion for
the expectation value of a scalar field in the dynamical
case. An adiabatic effective potential is introduced as a test
of whether a quasistatic approximation can be reliably
applied to the dynamical case; it is explicitly shown that it
has a very restricted regime of applicability. Furthermore,
we unambiguously show that using the static effective
potential in dynamical situations leads to a violation of
energy conservation. Two ubiquitous instances are
recognized to lead to a breakdown of the adiabatic
(quasistatic) approximation to the equations of motion:
parametric amplification in the case of oscillating mean
fields, and spinodal decomposition in the case of
spontaneous symmetry breaking. Both phenomena yield
profuse particle production which invalidates an adiabatic
(quasistatic) approximation and renders the static effective
potential an ill-suited description for the dynamics. We
introduce a self-consistent, energy conserving, fully
renormalized framework to study the dynamical evolution
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of expectation values of scalar fields. Energy conservation
leads us to conjecture the emergence of asymptotic
stationary states. These are characterized by a large
occupation number of adiabatic particles in bands, yielding
a highly excited entangled state of correlated particle pairs
produced from resonant transfer of energy from parametric
or spinodal instabilities. These highly excited stationary
states lead us to suggest a novel characterization of
asymptotic equilibrium states in terms of phase diagrams
of asymptotic order parameter as a function of energy
density.

The article is organized as follows: in Sec. II we
summarize the Hamiltonian approach to the one-loop
effective potential in the static case introduced in Refs.
[15,16]) as a roadmap to extend this formulation to the
dynamical case. In Sec. III we extend the Hamiltonian
formulation and introduce the framework to study the

Published by the American Physical Society
dynamical case. We also introduce a systematic adiabatic
expansion and an adiabatic effective potential and analyze
its suitability for describing the dynamics. It is argued that
using the static effective potential leads to a violation of
energy conservation, and that the adiabatic effective
potential has a very restricted range of validity. In Sec. IV
we study two ubiquitous cases that lead to a breakdown of
adiabaticity invalidating the use of the effective potential:
(1) parametric amplification when the scalar field oscillates
near the minimum of the tree level potential, and (ii)
spinodal instabilities in the case of spontaneous symmetry
breaking. In both cases we show that parametric and
spinodal instabilities lead to profuse particle production
which is associated with the breakdown of adiabaticity. In
Sec. V we introduce a self-consistent, fully renormalized,
energy conserving framework to study the dynamical
evolution of the expectation value of a scalar field
amenable to numerical implementation. In this section we
argue that energy conservation in the dynamics leads us to
conjecture the emergence of asymptotic stationary, highly
excited entangled states from the dynamical evolution with
asymptotic values of the order parameter very different
from those obtained from an effective potential. In this
asymptotic regime, decoherence via dephasing leads to an
emergent entropy density, s % Z 81 p N™ k¥’ doobbInd1 p N~
k> 0cobb

N ¢ doobInN ¢ doob _ 37%3Kps.

wherefunction of particle momentum as™ i 0oob is the
particle number distribution as at -> . This entropy
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is formally equivalent to an entanglement entropy.
Furthermore, we also propose the hitherto unexplored
concept of “phase diagrams” of order parameter versus
energy density as characterizations of these asymptotic
states. Conclusions are summarized in Sec. VI.

II. STATICS: THE EFFECTIVE POTENTIAL

In this study we focus on one-loop radiative corrections,
adopting and extending the formulation of the effective
potential of Refs. [15,16] which relies on a Hamiltonian
description as an alternative to the functional methods,
which will be extended to the dynamical case in the next
sections. Let us consider a real scalar field, ¢, in
Minkowski space-time with an action given by

wfSrd00-vio

A%Zd b; 02:1p

where VAPp is the tree level potential. In the interest of
generality, we leave this function unspecified at present but
consider specific scenarios below from which we draw
more general conclusions.

Introducing theL cari‘(z)nical conjugate field momentum
at

operatorand its canonical momentumndx_ P % a4 % ot, and
upon quantization of the fieldbdxp ¢ dxb;dxp 1" xP,

mutation relations, the field Hamiltonian is given bywhere

the operators ¢"dx;t” P;t"dx;t” P obey canonical com-

H % Z daxmt"22p 6V2¢p"R2 b VP b: 02:2p

The Hamiltonian interpretation of the effective potential
advanced in Refs. [15,16] (see also Ref. [6]) identifies the
effective potential as the expectation value of the
Hamiltonian operator in a normalized coherent state j®i in
which the field acquires a space-time independent
expectation value,

® % hOjd 6x;t” Pj®i; hdjn"dx;t” Pjdi % 0; §2:3p

divided by the spatial volume of quantization V, namely,
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1

Veffdpb % _V hQjHjDi: 02:4p

We refer to ¢ as a mean field, and writing ¢"dx;t" P % ¢ b
8°8x;t” b; m"dx;t” b =n"sdx;t” P; 82:5b the constraints (2.3)
imply

h®j6"8x;t” bjdi % 0; h®djr"sdx;t” bjdi % 0; 62:6b
leading to

Veft % VP p V_ Z daxh®j 1

X T"282p 6V25 P2 p 12M208¢db8™2 b jDi; 02:7p

where linear terms in 6 and 1”5 vanish by the constraints
(2.3), and

M28¢dPb = Vooddpb: 02:8p

Assuming that the effective squared mass M28dbb >, up to

quadratic order the Hamiltonian in Eq. (2.7) describes a

free massive field. Hence, we quantize as usual:

8°0x;t°p % thfﬁXk‘pz 1ykFfak” e iwteik b a'k’ eiwe ik

N

'X;

02:9p

T s0x;t°P % —irViAffiXk® ppw2fikffi ak” e-iwceik” x” — atk”
Ciwkte-ik™ -x";

62:10b
with

wkddb % gk2 p M20bffi: 02:11p
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The constraints (2.6) are implemented by requesting that

acjoi ko vk~ 82:12p

N

in other words, the coherent state . In principle, the

constraintsj®i is the vacuum state(2.6) are for the
fluctuations 6

also fulfilled if j®i is an eigenstate of the number operator

atk-ak’ with eigenvalue nk, however the energy is lowest for

the vacuum state withR n* %volumeO. limit with Pk’ =

Taking the infinite

V d3k=982mb3 and using (2.12), we find that the effective
potential (2.4) is given by

VeridpPUVEGPP_ 27 3213P3wkddPpOdA2P):

02:13p A d k
The A in (2.13) originates in the p#ffi in the usual field
quantization [(2.9) and (2.10)] and implies that the
expression (2.13) is the one-loop effective potential. If jOi
is an excited eigenstate with nk # 0, the integrand in the
second term features an extra contribution nxwdpP
thereby rasing the energy.

That the second term in (2.13) is a one-loop contribution
is easily understood from the fact that h®j5"28x;t” bj®i is
the & propagator in the coincidence limit of space-time
coordinates, namely the propagator with the end points
joined. The integral is carried out with an ultraviolet cutoff

A> M0dob yielding the one-loop effective potential (after
setting 1= 1) eff P % VOGP p 16AT42 p M28dP16AT22

V 8

- 0M20¢2bP2In4A22 -1
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64mn vl 2

b dM6428mg2bb2 InM22d b ;
02:14p

where we have introduced a renormalization scale p. The
ultraviolet divergences must be absorbed into
renormalizations of the parameters of the classical
potential. Considering the simple example of the tree level
potential

m202 Aoa 2 2 2
Vapb % Vop2d b4 d=M0dpb % 3hod b mo;

92:15p
introducing the renormalized quantities
2 N 34 - _
mR228pb % _0 Om2  16a° A-32__
3Arto2mozlndpA22 =21 02:16b
ARABER Y Mo - 3290202 IndpA22- 21 ;  82:17P

A A
VorOub % Vo p 167/a2ph mo2 16722 - mn%;4u/\zz— —21;
641

82:18p

and replacing bare by renormalized quantities up to one
loop, the renormalized effective potential becomes

VeffROD; uP % VorOUP b mzr281tbd2 p ArddrPda b

OM642r0Td2PP2 INMp2R20DP

02:19p

The effective potential is independent of the
renormalization scale p which has been introduced to
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render the logarithms dimensionless, therefore it obeys the
renormalization group equation [3]

d

Md__uVerrO;ub % O: 02:20p

A. Fermionic contributions: Yukawa interactions

The Hamiltonian framework for the effective potential
also lends itself straightforwardly to include the
contribution from fermions. Consider for example,
massless Dirac fermions Yukawa coupled to the scalar field
¢ with Lagrangian density

L¢ % W™ 0i=0- Yob: 02:21p
Hamiltonian becomes to leading the Dirac
orderPerforming the shift ¢ gx;t” P %
db8 et P,
02:22p
He ¥ Z d3x'dia” - V b mddbby;
where the effective Dirac fermion mass is
mObP % Yo; 52:23p

and we neglected the interaction term Y& ' as it yields
higher order loop corrections to the effective potential.
Quantization now is straightforward in terms of creation
and annihilation of particles and antiparticles and the usual
Dirac spinor wave functions: positive and negative
frequency solutions of the Dirac equation with a mass
m:Ob.

The state jdi now corresponds to the fermion vacuum and

the scalar boson coherent state, yielding the following

fermionic contribution to the effective potential:

Veettir0PPY-27 wokipdPPO_____2dmzksb;
wakfedPPYgk2pm2rdpbffi:

02:24b

Introducing an upper momentum cutoff A, a calculation
similar to the one for the bosonic case yields the fermionic
contribution to the effective potential,

PHYS. REV. D 109, 105021 (2024)
Vaettibddb % -4___Am4a2 p m2fddb A2 -
maddpbln____4pA22

b 164f0nd2PInm2fud2¢p
02:25p m

42 1672

Renormalization proceeds as in the bosonic case. These
results are in agreement with those of Refs. [6,15,16], and
while these are fairly well known, the main objective of
rederiving them here within the Hamiltonian formulation
is to highlight the following aspects: (i) the effective
potential is a static quantity, (ii) it can be directly obtained
from the Hamiltonian framework as the expectation value
of the quantized Hamiltonian in the particular coherent
state jOi

yielding the expectation values (2.3), and (iii) This analysis
informs on the renormalization aspects associated with the
effective potential and serve as a guide to the
renormalization in the dynamical case studied in the next
sections.

We will not pursue the fermionic case further in this
article, postponing its detailed study to a forthcoming
article. The main and only reason for introducing the case
of Yukawa coupling to fermions is to highlight that the
Hamiltonian formulation of the effective potential
reproduces the well-known results obtained by summation
of Feynman diagrams or functional methods which are best
suited for the static case and is not restricted to the bosonic
case.

Although the effective potential is a static quantity, it is
often used in effective equations of motion for ¢, namely,

¢ 6tP p __dddpVerrdddtbb % 0; 82:26p

or in cosmology including the Hubble-friction term [13].
Underlying this use of the static effective potential in a
dynamical equation of motion is the unspelled (and
unexamined) assumption of quasistatic or adiabatic

evolution, namely that the evolution of $dtb is “slow

enough” that using a static effective potential is warranted.
A main objective of this work is to critically assess this
assumption, identify under which circumstances it is
warranted, analyze the circumstances when it is not, and
provide a consistent framework to study the dynamics.
III. DYNAMICS: AN ADIABATIC EFFECTIVE
POTENTIAL?

When ¢ evolves in time, the dynamics must be studied
by evolving a density matrix in time, for which the
Schwinger-Keldysh or in-in formulation is better suited
[18-22]. We here provide an alternative by extending to the
dynamical case, the Hamiltonian formulation of the
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effective potential up to one loop advanced in Refs. [15,16]
and summarized in the previous section (see also Ref. [6]).
In the dynamical situation the constraints (2.3) are relaxed
allowing the homogeneous expectation values of field and
canonical momentum to depend on time.

~

Therefore, we consider a coherent state and its canonical

conjugate momentumj®i such that ther”
field operator ¢
acquire spatially homogeneous but time dependent

expectation values, namely, h®jp ox;t” PjOi % ¢Otp;

hdjrn"ox;t” Pjdi % ¢'tb; 83:1p

where ¢0tb is a classical, Thereforehomogeneous field,

namely aj®i characterizes a dynamical mean field
spatially translational invariant coherent state (annihilated
by the spatial momentum operator). To describe this
dynamical case, we work in the Heisenberg picture
wherein operators evolve in time but states do not, hence
the coherent statefield equations obtained from the
actionj®i is time independent. The Heisenberg(2.1) are

d2td” -V2" b Voddb % 0; 33:2p

—

2 . . . .
withas — | which are obviously also satisfied as expectation
values in the time independent coherent state j®i, namely,

h®j%02t d™ -V2d” b Voddp“pjdi % 0; §3:3p
and we consider the following initial conditions:

h®jd"6x;” OPjDi % $30P  §3:4p

h®jr"dx;” 0bj®i % ¢'30p:  §3:5p

As in the static case we write the field operators separating
the “classical” expectation values, namely the mean fields,
and the quantum fluctuations, ¢ 8x;t” b%ddtPps dx;t” b;
n"dx;t” b¥%d dtbprsdx;t” P; §3:6pP
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which in accordance with Eq. (3.1) requires vanishing
expectation values of the fluctuations in the coherent state
j®i, namely,
h®j& 6x;t”"Pjdi % 0;

h®jn"s0x;t PjDi % 0:  83:7b

Using Egs. (3.6) and (3.7), the expectation value of the

field Hamiltonian operator (2.2) can be written as h@jH"

jOi % Vd220th p VOPOtPP p hDjHsjDi; 83:8P

with Hs%zd  2pV2 b 2 b; 33:9p

: B (0 VieW)s

N

where the expectation values of the linear terms in 1"s;6

vanish by Eq. (3.7), V is the spatial volume in which the
field is quantized, and we have expanded the potential
motionaround the mean field(3.2) becomes ¢dtb. The
Heisenberg equation of ¢ 8tb b Vodddtbb b 92t 6™ -V28" b

Voodpdtbbs”

Lympn®

b2 b % 0; 83:10p

and similarly with its expectation value in the coherent
state jexplore dynamical aspects in Ref.®i (3.3). A related

approach has also been considered to[23].

A. Quantization

The quadratic terms in 6 in the Hamiltonian (3.9)
describe a free field theory but now with a time dependent
mass term Voodpdtbp. Therefore, in analogy with the static
case, we proceed to quantize the theory by considering the
solutions of the linearized equations of motion, describing
a free field with a time dependent mass V®°8¢atbb, namely,

02t6" -V26" b VoodpdtbpS™ % 0: 03:11p

The field operators 6"dx;t” b;n"s are expanded in Fourier

modes in the quantization volume V,
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phffiffi-Xk K kik” x kt” gkdtbPe-ik x*; 63:12p

5°0x;t P %pV-agdtbebpa

pA Xk K kik x” kt” g kdtPe-ik* x*; 83:13p

nsdx;t" b % pV-ag dtheb a

and the mode functions, gdtP, obey the equation of motion
& Otbpwadtbgdtbs O @it =k V' 95y p g
otbb; 83:14p

with the Wronskian condition dictated by canonical
commutation relations to be

g'otbgdtb — g dtbg (dth % —i: 03:15p

The annihilation and creation operators ai”;atc  are time

of the mode equationsindependent because the mode

functions(3.14), thereby the fluctuation fieldgcth are

solutions equationd dx;t” b is a solution of the linearized

Heisenberg field(3.11). They obey standard canonical
commuta-

tion relations and the condition
ak” jdi % 0; d3:16b
hence ensuring the fulfillment of the conditions (3.7). Just

as in the static case, the conditions (3.7) are also fulfilled if

the statewith eigenvaluej(Di is an eigenstate of the number

operatornk. We have explicitly included paffi in thea's ax

PHYS. REV. D 109, 105021 (2024)
expressions (3.12) and (3.13) to highlight below the

connection with the loop expansion [4,6,9] as in the static
case of the previous section. We can now obtain the energy
density and the expectation value of the Heisenberg field
equation, with h@jHsj®i % _2 Xk %jg kdtbj2 b w20tbjgkdthj2
b O6h2p:

03:17b We obtain up to Od7b (one loop)

E % h®iHV-i % 12¢'25th b VEb3tbb b Edth; §3:18P

where we have introduced the energy density from oneloop
quantum fluctuations

_  __ hzd*%3 « 2 2 k
2

EfdtP %42  02mb Yjg Otbj b w Othjg 8thj:  83:19p

If the state j®nyi, the bracket in the above expression isis
an eigenstate of the number operator with eigenvalue
multiplied by 1 b 2ny, just as in the static case this state

would be of higher energy. The vacuum state with nx% 0
yields the lower fluctuation energy in the static and the

dynamical cases.
Similarly, up to one-loop order [O8AP] the expectation

value of the Heisenberg field equation (3.3) in the coherent

state j@i becomes ¢ dtbpVoddpdtbPp_2VooodddtPbZ
02dmnkb3jgkdthj2’40: §3:20p

h

To obtain both expressions we used the linearized
equations of motion (3.11), the field expansions (3.12) and
(3.13), the constraint (3.16), and the infinite volume limit
Pk >V R d3k=02rmp3.

105021-7



HERRING, CAO, and BOYANOVSKY

contributions: these arise fromThe OO8AP terms in

(3.18)h®andjn"s,j(3.20)Di; hdjared~2jDone-loopj, which

are simply the propagators (or derivatives) closed onto
themselves. Solving the Heisenberg field equations, along
with the constraints (3.7) in a systematic perturbative
expansion in the nonlinearities, will generate higher orders
in the loop expansion. In this article we focus on the
oneloop [O8AP] contribution to the energy density and
equations of motion of the mean field.

The total Hamiltonian does not depend explicitly on

time, hence energy is conserved and in the Heisenberg
picture the state jOi is time independent, therefore the
expectation value of the energy density in the coherent state
jmotion of the mode functions®i is conserved, namely E’

14(3.14)0. Using the equations ofand the form of the

time dependent frequencies (3.14), it is straightforward to
find

E % & 'otbd tb b Vodddtbb p _h2 Voooddpdtbb Z 6
2drmizkb3 jgkdtpj2

% 0; 93:21p

therefore the expectation value of the equation of motion
(3.20) is the statement of conservation of the (expectation
value) of the energy density.

This dynamical conservation law is of paramount

importance; if the amplitude of the modesin time the
fluctuation contribution to the energy densitygidtp grows

grows at the expense of the classical part of the energy,
resulting in a damping of the $dtb amplitude. As it will

begi0tPj is a consequence studied in detail below, growth

of j of instabilities and particle production. Therefore

instabilities in the fluctuations entail dissipative damping
[22] of &dtb. In turn, as discussed in detail below, these
instabilities entail the breakdown of a quasistatic or
adiabatic approximation and imply that using the static
effective potential in the equation of motion of the mean
field is unwarranted.

An important corollary of this analysis is that replacing
the second and third terms in the equation of motion (3.20)
by the field derivative of the static effective potential in the
case when ¢dtb evolves in time clearly violates energy
conservation. This is because energy is conserved only

PHYS. REV. D 109, 105021 (2024)
mode equationswhen the mode functions(3.14) and not of

the formgydtb are the solutions of theeFiuk as used in

the calculation of the static effective potential as is explicit
in the quantization [(2.9) and (2.10)] for the static case.
This observation will become more clear with the analysis
in the next section.

B. Adiabatic approximation

Using the effective potential in the equations of motion
of'the mean field is usually argued to describe the dynamics
in a quasistatic or adiabatic approximation. Here we
introduce the adiabatic expansion that consistently
implements this approximation to understand its regime of
validity. Given the time dependence of the frequencies in
Eq. (3.14), we seek an approximate solution for the mode
functions in terms of a Wentzel-Kramers-Brillouin (WKB)
ansatz [24],

e-iRot Wkdtopdto

gkdth %  p2Widthe; 33:22p

which when inserted into Eq. (3.14) reveals that Wdtp
must

satisfy

Wik2dth % wk2dth — 21 WWrk — 32WW' 2k2k :83:23b

The resulting equation can be solved in an adiabatic

expansion: 2k w2kdtP1 — 1u kk p 3 w'kk 2p :03:24P W

otb % Pl

4 w?
In such an expansion, terms which contain n derivatives of
wk are known as of nth order adiabatic. Inspecting the
resulting equation reveals that it contains exclusively terms
of even adiabatic order.

Using the WKB ansatz and assuming that W\dtp is real,

one can show that

2 1

jgkotbj % 2Wkdoth 03:25p

105021-8
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jg'kOthj2 74 —28tb 1 p 34 WAV 2kk 2;
d3:26p

which can be combined with Eq. (3.17) to give h®jH"

5jDi ¥4 14_ Xk Wkdtb1 p 41 WW' 2kk 2 b —

Wuwk02ktb:

93:27p

We now proceed by invoking the adiabatic expansion, Eq.
(3.24), and expanding this expectation value up to second
order adiabatic. After carrying out these algebraic
manipulations we obtain up to second adiabatic order

h®jH" sj®i % 12_ Xk wk1 p 81 ww 2kk 2p; 63:28p

igkdtbj2 % 2wtrdth 1 b 4Twus 3k - 38 @? w'kk 2b ;

83:29p

where the dots stand for terms of higher adiabatic order.
Following the analysis of the static case, one may
introduce an adiabatic effective potential as

)= Vi) +5;(@l,)

Vocltadnd' 83:30p

With the result (3.28), we can now express this adiabatic
effective potential up to second adiabatic order, obtaining
(h%1)

VéeffadbddP=VOPItPPp_
Z 52dm3kb3ww’ 23k8dtthp:

___ 217 82dmikP3swkdtbp 161

03:31p
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Recalling the definition of the frequencies, wdtb, given by

Eq. (3.14) and (3.31) becomes

effad = -

2 ffi

1Z dsksq

Vs p0dbP VOPOtbPp2 062nP  k pVoodddtbb
b 6420tP&Voooddpdtbbb2Z

02dmn3kb3dk2pVood1pdtbbbs=2: ¢’
03:32p

The identification of this expression with an adiabatic
effective potential warrants discussion. The first term
represents the usual classical potential energy density of
the field configuration. The second term is a zeroth-order
adiabatic correction which encodes the effects of the
quantum fluctuations. Notice this term is identical to the
usual result for the one-loop effective potential (2.13)
found in Sec. II for the static case, but now in terms of the
dynamical expectation value ¢dtp. This is of course
expected because the zeroth-order adiabatic does not
include any terms with time derivatives of ¢dtp. This term
features all the ultraviolet divergences found within the
context of the static effective potential (2.14) and would
underpin using the usual effective potential in the evolution
equation for ¢p&tb as in Eq. (2.26).

However, the third term represents the second order
adiabatic correction which is a consequence of quantum
fluctuations. This term is a distinct consequence of the time
dependence of the expectation value, ¢dtb, and is
completely missed if one assumes that the usual form of
the effective potential extends without qualification to the
scenario of a dynamical expectation value as in Eq. (2.26).

The integral expression for the second adiabatic order
correction can be evaluated in a straightforward manner
provided we assume V®°3¢b > 0:

_ o2 2Z
2 1

dsks

6438Vo00dddtbbp 621b 8k p Vooddpdtbbbs=2

—22 8Vo0ed$athpb2 ; Vooddpdtbb > 0b: 63:33b %

384mn Vooddpatbp

It is noteworthy that this contribution (and the higher
adiabatic orders) is ultraviolet finite, albeit it may feature
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infrared divergences whenever VoodddtPp vanishes,
signalling the breakdown of the adiabatic approximation.

Of course, there are additional, higher adiabatic order
corrections to the effective potential which at and beyond
second adiabatic order all feature time derivatives of ¢dtp
and they are all ultraviolet finite. At present, we restrict
ourselves to a study of the second order adiabatic
correction, which suffices to highlight if and when the
adiabatic approximation breaks down.

C. Equations of motion and the adiabatic
effective potential

In the scenario where the expectation value of the scalar
field is time dependent, h®jd ax;t” Pjdi % dOtb, we are

interested in the dynamics of this classical field. Inserting
Egs. (3.6) and (3.7) into the expectation value of the

Heisenberg equations of motion for ¢ , Eq. (3.2), and

expanding up to 088%p h yields the following equation of
motion for the expectation value:

- 1 “axt
03:34pb
& b Voddb b 2VooodpPh®js &

Pj®i % 0;

which upon using the Fourier expansion for the fluctuation
given by (3.12), and upon setting A= 1, becomes

b b Uododb % 0; 83:35p

where we have defined

1 dk

Uoddb = Voddb b 2_Voooddb Z _____52m3Pp3 jgkdtbje:
03:36p

adThe important question is, does Uo % 00Ud % Vdsetrdads
with

Vaeﬁ"’ﬁcbb given by Eq. (3.30), which up to second adiabatic

order is given by (3.31) and (3.32)?
To investigate the relationship between U° and

dVaeff’d"ﬁd)D:dd), we begin by using the result of the WKB

PHYS. REV. D 109, 105021 (2024)
ansatz, (3.25), and the adiabatic expansion, (3.24), to

obtain U%up to second order adiabatic:

1 dk 1
UoddP % Voddb b 2_VooodpPZ __ _ §2m3p3 2Wk
§3:37p
Ay = /0 1w
dp =v/ 6¢b|o4v o) U
. b
k1,1 37,
n W w w°
ds ws W
xd2 b k 4 « 8 kb : 03:38p

For comparison, using Eq. (3.31), we can obtain

dV3.?®=d¢ to second adiabatic order:

dVaeffadp 1 Z dsk dd Y
Vodob b 4_Voooddb -
8w’
— 02mb3
1k & w'akk Voooo Vooozk 3w %k

xp &0 Vaso =20 =p ; &
33:39p

where we have made use of Eq. (3.14) to calculate the
necessary derivatives of the frequencies, treating ¢ and ¢°
independently. Direct comparison of the expressions for U°
and dV8.;??*=d¢ reveals many common terms. However, in
the second integral expression lies an apparent
discrepancy. Using the definition of the frequencies (3.14),
we see that
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2wk
(o) o ¢ w 03:41p
Wy % Vooo p ——Voo00 ————*V/ooo;
2wk 2wk 2wk Wk
and thus
w K ¢ b W kVoooo— " w’ k 000
000
wak¥%pwskVp w4k Vm 2“’% wﬁ V:

03:42p

Inserting this result into our expression for U°ddP gives

1
Uoddb % Voddb p 4Voooddpb

z
dk 1k & wakk

m 2
Vooo 20

x3pdwV-0382nbPw

bd420° 8
33:43p

Voook - 3w  kk2 p :

Written in this form, we can now manifestly see that U%and
dV%?®P=d¢ do not match. In particular, using Egs. (3.39)
and (3.43),

Uoddb - gvaetidadppddb % ¢ dVooo168pbb2 Z §2drnizkps
2wlskp

% & 968VmoIozvadmbPadab b;  §3:44p

where the dots stand for higher derivatives of ¢dtb and we
assumedaqg VoodpdtPp > 0. Hence, beyond leading

adiabaticddtb does not involve order the equation of
motion for dViP=dd but instead us®p defined by Eq.

(3.36). Obviously only when time derivatives of the

expectation valuead ¢ vanish, in other words, the static

PHYS. REV. D 109, 105021 (2024)
case, UoddPb % dVOP=dd. Therefore, it becomes very clear

that while the adiabatic effective potential improves upon
the (mis)use of the static effective potential in that it
includes derivatives of ¢dtb, it is still not the proper
quantity to use in the equations of motion of ¢dtb. (3.20)
is

As stated above, the equation of motion tantamount to
the statement of the conservation of energy by Eq. (3.21),
consequently neglecting the derivatives of ¢dth by
truncating the adiabatic expansion at some particular order
of derivatives of ¢dtb entails a violation of energy

conservation beyond that order.

A practical question that obviously arises is the
following: if a small violation of energy conservation is
tolerated, what would be the range of validity of the
adiabatic effective potential in a numerical study of the
evolution of ¢dtp with the equation ¢ 8tb p dVdsefidadp %
0; 63:45b

instead of the exact equation (3.35) with U°8¢P defined by
(3.36)?

yields a quantitative criterion to assess the regime ofFor a
given classical potential Vodb, the result (3.44)

validity, at least up to second adiabatic order. Let us
consider first the typical case of

33:46P V3P % 2m

12¢2p
A\da

with m2> 0 for which

Uoddb — dVoettdaadrddb %ddtb8hmrth————
003A\d3Ad20t2Pd=tPm=2mp2b :

83:47p

In the small (dimensionless) amplitude regime

3Ad20tP=m2 K 1 the difference is a priori perturbatively
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small, the potential (3.46) is dominated by the mass term,
seems to be a regime in which both the adiabatic approxi-
and the field oscillates around the minimum ¢ % 0. This

mation and the adiabatic potential are reliable, however as
we show below in the next section, precisely in this regime
there are parametric instabilities resulting in a
nonperturbative exponential growth of the mode functions
and a complete breakdown of adiabaticity.

differenceln the large amplitude regime 3A¢28tb=m2 > 1

the (3.47) seems to be perturbatively small, of

O0Ab; however, in this regime the adiabatic approximation
is no longer reliable for long wavelengths as shown by the
following argument. For long wavelengthsthe second order

adiabatic ratio that enters in the adiabatick’d<<p
=3\pAD?*d=t4b,, and in this large amplitude regime where

V& expansion (3.24) becomes

~ Potp
w @ét PPIAD3 ;

03:48pb

however from the equation of motion at tree level it follows
that ¢ 8t ~Ad>and in this regime we find that

0,955 %pp ~051b; 33:49p

therefore the adiabatic approximation is no longer valid for

long wavelength modes with k2 << 3A¢$28tb. It is important
to highlight that the breakdown of adiabaticity is associated

with long wavelength fluctuations, for k > yooddb the

adiabatic approximation is reliable, and higher order terms
in the adiabatic expansion become further suppressed in
this limit.

This analysis leads us to conclude that the regime of
validity of an adiabatic effective potential is severely
restricted to small amplitudes and short times when the

!'This choice neglects the nonlinearities, but will capture the
main aspects of parametric amplification. This analysis also

PHYS. REV. D 109, 105021 (2024)
parametric instabilities studied in detail in the next section
have not yet led to a large growth of the mode functions.

IV. BREAKDOWN OF ADIABATICITY

The discussion above highlights that, in general, the
equation of motion cannot be simply written as ¢ b
VO.ddb % 0, even in an adiabatic approximation in terms
of the adiabatic effective potential, and also illuminates if
and when the adiabatic expansion breaks down. We
recognize at least two ubiquitous relevant instances: (i)
parametric amplification in the case of oscillating mean
fields, and (ii) spinodal (tachyonic) instabilities in the case
of spontaneous symmetry breaking.

A. Parametric amplification
The adiabatic approximation (3.24) relies on the
assumption that W2kdtb > 0, namely that Wkdtb defined by
Eq. (3.22) is real. This means, for example, that if

resulting mode functionsVood$pdtPp is an oscillatory
function bounded in time, thegkdtbPandin the adiabatic
approxima-(3.24) would also be tion, given by Egs. (3.22)
bounded in time, which precludes the possibility of
resonances and parametric amplification. Consider the

case with tree level potential

vabb % M22 2}‘¢4_=> Vooddpb % m?p 3Adp?; d4:1p b b 4
with m?> 0, and consider that the mean field is oscillating
around the minimum of this tree level potential with!

doth % dd0Pcosdmtb; 04:2b
defining
Tt
mthtp_: 04:3p
2

The mode equations (3.14) become

d2
__28KkOTP p ¥%nk— 20.cosd2thgkdth % 0; d4:4b dt

where we introduced the dimensionless variables

neglects the damping of the amplitude from the backreaction of
the fluctuations, which is discussed in detail below.
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b2b2a;|<%mk:

n 1k

a%3)\tzéizb; Y d4:5p

4m

The Eq. (4.4) is recognized as Mathieu’s equation [25-28].
Floquet's theory [25] shows that solutions are of the form

gkOTP % eicPkdTP; PkOT p 1t % Pkdth; 64:6P

where vy is the characteristic exponent of Floquet solutions.
If viis real the (quasi)periodic solutions are stable, whereas
if vk is complex there is one growing and one (linearly
independent) decaying solution. The growing solution is a
consequence of the parametric amplification instability
associated with resonances, a subject of utmost importance
within the theory of cosmological reheating [29-36]. The
stability of solutions in the nkx -a plane have been
thoroughly studied in the literature [25-28]. Unstable

bands emanate from the resonance values ni % n2" 1
0;1;2... within these bands the characteristic Floquet
exponent vk is complex and the mode functions either grow
or decay exponentially, the growing mode gid'p o ellmvr,

For generic initial conditions, the general solution is a
combination of the growing and decaying solutions. Using

15 ———
2
K 4+
S
10 {— K 4
-~ B
< -
T 2
5 K 3+
2 ==
K 3.-
F—— 2
— K
;2; S ,2+
0 | ’ — T | |
0.0 0.5 1.0 1.5 2.0
a
FIG. 1. Unstable bands for 2. for

the results from Refs. [26-28], we find that these unstable
bands correspond to

K2n;-SK2 SK2n;b; K2> 0; n%0:1;2.. d4:7p

The bands for n % 0, 1 are unphysical because these
correspond to negative values of k%; for n > 2 a power series
expansion inSOa dforlP] kare given for?,; is available, the

first fewn % 2;3;4 in the terms [valid for a
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Appendix and displayed in Fig. «2_ <& =%<k 1.

n % 2;3;4. The range is constrained by K2
>0.

Figure 2 shows the numerical evaluation of the linearly
independent solutions h0dtb;h1dtb with initial conditions
h080b % 0;h0%30P % 1;h180P % 1;h1°60p % 0, respectively,
for the unstable band with n«% 4;a % 1 corresponding to k2
% 1, near the middle of the unstable band. This figure
clearly shows the exponential growth associated with
parametric amplification in the unstable bands. The
Floquet exponents may be obtained analytically near the
band edges by multitime scale analysis [25]; however, the
actual values of these are not relevant for our general
arguments.

For comparison, Fig. 3 displays the solutions in the

stable regions for n % 3;5;a % 1, on either side of the
instability band at n % 4."

The bandwidths AK26nb % Kn. ~ K-y % Coat b , with
coefficients Cnthat become monotonically decreasing with
n (see the Appendix); therefore, for aSOd1p the bands
become narrower, as explicitly shown in Fig. 1.

In terms of the momenta k and the amplitude ¢80P, the

bandwidths become

Ak20nPb % kan; - kan;- % Cn 03kdb220on0=Pt=p4bnp : 04:8P

b m

This expression highlights that the bands are narrower
for weak coupling, large masses, or small amplitudes.
While this result is particular to Mathieu’s equation, we
expect, quite generically, that bandwidths for resonances
will feature qualitatively similar characteristics as
functions of these parameters.

Obviously, the exponential growth with time of the mode

functions gxdtp implies a breakdown of adiabaticity for the
values of momentum k within these unstable bands. This
can be immediately seen from the adiabatic expansion
(3.24). Since the frequencies widtp are oscillatory, each
and
alltermsintheadiabaticexpansion(3.24)areoscillatoryand
bounded in time. Therefore, jgdtPj? and jg'«dtPj? obtained
via the adiabatic approximation [(3.25) and (3.26)]
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2, with(4.4)n, %h408andtb;hq18%1P1, corresponding towithgdtb is a complex linearinitial conditionsg2 % 1, approximately in the

middle of the first physical unstable band for k. A general solution for a mode function combination of h08tb and h18tb satisfying the

condition (3.15).
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FIG. 3. Two stable solutions of Mathieu’s equation (4.4), Fdtb with initial conditionsn % 4. F60P % 1;Fod0p % 0, for n % 3;5 and a % 1,

respectively, on either side of the first physical unstable band at

are bounded in time. Instead, the Floquet solutions are
unboundedintimeformodeswithintheunstablebands.The
unstable Floquet solutions cannot be reliably captured by
an adiabatic approximation, because secular terms
associated with resonances [25] cannot be described by the
adiabatic expansion (3.24).

In the fluctuations contribution to the equation of motion
(3.20), the integral in k % mk sweeps across the unstable
bands within which jg«dtPj? grows exponentially in time.
Consequently, the third term in (3.10) grows in time
receiving contributions from all unstable bands within
which there is exponential growth. We emphasize that this
behavior is not captured by the simple effective potential
nor any adiabatic approximation to it.

The mode equation (4.4) is correct for oscillations of
¢0tp around an harmonic potential, for anharmonic
potentials, the nonlinearity induces higher harmonics in the
dynamical evolution of ¢dtP, in turn higher harmonics
induce new resonances and unstable bands. However,

while the instability chart will be modified by
anharmonicity [22,29,30], the main observation that the
adiabatic  approximation cannot reliably describe
parametric amplification with the concomitant growth of
the mode functions is a generic result of broader
significance. This analysis confirms that even in the small
amplitude regime when the difference (3.47) seems to be
perturbatively small, the adiabatic approximation breaks
down because of parametric amplification and the
adiabatic effective potential is not reliable to describe the
dynamics. This analysis of Mathieu’s equation, valid for
small amplitude, shows that parametric amplification and
exponentially growing modes will continue as long as the
amplitude of oscillations is nonvanishing. Exponential
growth of parametrically amplified modes is effective
unless the amplitude of oscillations vanishes.

The breakdown of adiabaticity discussed in Sec. III C
and by parametric amplification discussed above is
manifest for long wavelengths. For k? >>A$200pP, the
adiabatic ratios & (dtP=w3Jdtb; 6@k Jopt *<lgpg
pb and the width of the unstable bands and the imaginary
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part of the Floquet exponents become smaller; therefore for
large wave vectors the adiabatic approximation is reliable.
This is expected on physical grounds as finite amplitude
oscillations cannot efficiently transfer energy to very short
wavelength modes; in other words, cannot excite high
energy degrees of freedom.

B. Spinodal instabilities

The result (3.32) for the effective potential up to second
adiabatic order exhibits an important caveat in the case of
spontaneous symmetry breaking when the tree level
potential features a maximum implying that Vood$b < 0 in

a region Q < jpOtPj < jdsj, where the actual value of ¢s

depends on the particular form of the potential. This region
is known as the classical spinodal and corresponds to an
unstable region in field space [16,37—-42]. In this region the

effective mass squared M20¢db = yooddb in Eq. (2.8) is

negative and the static effective potential (2.14) and its
renormalized counterpart (2.19) feature an imaginary part.
In Ref. [16] the physical interpretation of this imaginary
part, associated with the spinodal instabilities, was
elucidated: it yields the lifetime of a quantum state whose
wave functional is localized in field space within the
spinodal region [43]. In Refs. [41,42] the dynamics of such
Gaussian wave functional and the growth of correlations
associated with domain formation were studied in detail.

To give a specific example, consider the tree level
(classical) potential

Au
VOob Y% — —?-¢? % w>0;
54:9p 4
within the region
2
0<¢? <t
3= V0%3¢bb < 0; 04:10p

to which we refer as the (classical) spinodal [37-39], the
frequencies wkin Eq. (3.14) are given by wkdtb % gka -

jVooddtbpjffi: 64:11p

For k2 < jVooddtbbj these are purely imaginary describing
the spinodal (tachyonic) instabilities which occur because
the field configuration finds itself near a local maximum of
its potential.

In condensed matter systems these instabilities describe

the early stages of a phase transition characterized by the
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formation of correlated domains, whose typical size,

namely the correlation length §3tb, grows in time [37-39].
A similar behavior emerges in quantum field theory as
shown in Refs. [16,41,42], where the correlation length
grows asfashion as in condensed matter systems with a

noncon-§3tb « ptffi during the early stages, in a similar

served order parameter [37-39]. These instabilities have
also been discussed within the context of inflationary
cosmology [43].

Since the adiabatic approximation (3.24) explicitly
requires that Wdtb, introduced in Eq. (3.22), be real
valued, such instabilities characterize a breakdown of
adiabaticity.

This breakdown is explicit in Eq. (3.32) where both the
zeroth and second adiabatic order (the lowest orders)
become complex because the momentum integrals receive
purely imaginary contributions from the band of unstable
wave vectors in the spinodal region k2 < jVood¢bdtbbj; this
is the origin of the imaginary part of the static effective
potential in this region. The result (3.33) assumed that the
frequencies are purely real, namely that V°8¢atPp never
becomes negative.

Assuming that ¢pdtPp is initially near the maximum of the
potential and rolls slowly down the potential hill, at early
times the mode functions in the band of spinodally unstable
momenta are to leading order in an adiabatic (derivative)
expansion neglecting terms with time derivatives of ¢pdtp

under the assumption of a “slow roll,” are of the form

gkdtP % rkeRot Qkdtobdto p Ske-Rot Qkdtobdto;

QL3P % qjVooddatbbj — kaffi; 34:12b

where the complex coefficients ry, skare determined by the
initial conditions and Wronskian condition (3.15). The
growth of the mode functions g dtb continues until ¢pdtp

reaches the inflection or spinodal point yooddb % 0

corresponding to the end of the classical spinodal region,
beyond

whichThe essential conclusion with regards to spinodal
insta-V8¢badtbb > 0. bilities and the effective potential is
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twofold. (i) If the classical potential features a spinodal
region, then a quasistatic, adiabatic description will fail to
capture the dynamics of the system above the spinodal
point.

(i) Moreover, even outside the spinodal region, a
significant breakdown of adiabaticity can occur as the
spinodal point is approached from below, even when
arbitrarily slowly, because the frequencies widtb vanish at
the spinodal point and become imaginary above it, thus
rendering a quasistatic, adiabatic approach ineffective.

In a numerical integration of the equations of motion, it

is possible to set initial conditions for which ¢atp is well
below the spinodal andspinodal instabilities altogether.
Such a setup must alsoVooddb > 0, thereby avoiding the
avoid possible excursions ofspinodal at which Vooddpdtbp
% 0dbecause in this case thetp near the end of the

adiabatic approximation also breaks down for small
momenta. Even restricting initial conditions to avoid the

region withd Voodwill lead to parametric instabilities as

dis-dP < 0, the oscillations of ¢dtb in the region

voodd thb >

cussed in the previous section. Therefore insisting on using
the static effective potential or even the adiabatic effective
potential is clearly unreliable, leading to a manifest
violation of energy conservation and to completely miss
exponentially growing modes associated with spinodal or
parametric instabilities.

C. Nonadiabatic particle production

As emphasized in the above discussion, the equation of
motion for atb, (3.20) is the statement of the conservation
of the total energy density (3.18) when the mode functions
obey the Eq. (3.14). In the case of instabilities, either
parametric or spinodal, the fluctuation contribution to the
total energy density, E:9tb given by Eq. (3.19), grows at the
expense of the first two, classical terms in the energy
density (3.18). In this subsection we seek to establish a
correspondence between the growth of E:9tb and particle

production.
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1. Parametric instabilities

In the case of parametric instabilities for a convex
function V&b which can always be defined to be positive,
the first two terms in (3.18) are manifestly positive and so
is the fluctuation term E:dtP, because w?dtp > 0. Therefore,
energy conservation implies that the nonadiabatic growth
of the fluctuation term must result in a damping of the
amplitude of ¢dtb. The draining of the classical part of the
energy, namely the first two terms in (3.18), can be
interpreted as the profuse production of adiabatic particles.
This can be understood from the following argument.

In the expansion of the field in terms of the exact mode
functions (3.13), the annihilation and creation operators ax’
;ate are time independent because the mode functions
gdtb obey the Heisenberg field equation (3.11). Following
[24,44-50], we can introduce time dependent operators by
expanding in the basis of the zeroth-order adiabatic particle

states. Introducing the zeroth-order adiabatic modes,

f7kOthP % e-piR2twwiksdtotpPdtfFi-o; 04:13p

we can expand the exact mode functions gidtb as gkdtb %

A" kdtbf"kdth p B™ kOtPf kdtP 84:14p

and define [44,49,50] g'kdtb % —-iwkdtPAA™ kOtbf kdth —

B~ kdtbf kdtpb: 84:15p

The relations (4.14) and (4.15) can be inverted to yield the
Bogoliubov coefficients [49],

A” kOtb % if"kOtbYg kdtb — iwkdtbgkdth  d4:16b

B~ kOtb Y4 —if "kdtPYsg kOtP b iwkdtbgkdtp: 84:17p
It follows from the Wronskian condition (3.15) that jA”

k3tbj2 - jB” kBtPj2 % 1: 54:18b
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The definition (4.14) yields ak” gkdtpb p at-k* gkdtb % ck’
atbf~k0tb p ct-k” dtPf kdtP; 64:19p ak” g'kdtb p at-k* g'kdth
¥ —iwk0tbPdck 0tPfkdtb — c-tk” OtPf kdtPP;

84:20p
where

¢k’ OtPYa” A™ Otbpa-tk” B™ (dtb; che dtb%a’ A” kOtPpa-y
B~ «Otb:

04:21p

The condition (4.18) ensures that ¢ 8tb;c’k” 8tb obey equal
time canonical commutation relations.

Although in principle other definitions of particles are
possible, there are two important and compelling aspects
that distinguish the zeroth adiabatic basis choice over other
possible choices: (i) if there is an asymptotic stationary
state such that the frequencies w*dtP >w*de<p, the creation

and annihilation operators become constant in time
ctgtb;cddescribes asymptotictP - ctgeob;cdeob and the

right-hand side of“out” states with the time
(4.19)
evolution e¥@¥>Pt (ii) The time dependent operators c’

otb;ctk> dtb associated with the zeroth-order adiabatic
modes have special significance: it is straightforward to
show that the quadratic Hamiltonian Hs given by Eq. (3.9)

can be written as

Hs % Xk Awkdtbctk” dtbck” 0t p 12_: 04:22p

-

Therefore defining the instantaneous adiabatic vacuum
state j0,0tbi so that

ckdthj0althi ¥ OV k;t; 04:23p
the Fock states,

dct

PHYS. REV. D 109, 105021 (2024)

jnk” 0tPi Ypk® Ontbbk” l#finc j0a0thi;nk” % 0;1;2...; 04:24b

are instantaneous eigenstates of H°3tpb to which we refer as
adiabatic particles. The number of adiabatic particles at a

given time in the coherent state j®i is given by

N~ k0tp %4 h®jctk” dtbck 6tbjdi % jB™ kdtbj2: §4:25p

This result can also be understood from the relation (4.17)
and the Wronskian condition (3.15) which yield

N~ kOth % 2 w1kdth%jg k0thj2 b wk2dtbjgkdthj2 — 21_
; 04:26b

from which it follows that

V_1 hQjHs6tbjdDi Y% _
2N~ kdtb:

___ h2Zd2dnskb3wkdtb¥1 p
d4:27p

adiabatic order mode function, thenNote that if gkdtp
coincides exactly with the zeroth-orderA™ kdtb % 1;B™ kdtp
%0

and there is no particle production; however, if

th ;ngkkéc’)ttbb, theis a linear combination of both adiabatic

modes f &

Bogoliubov coefficients Ag;Bx # 0. This is important
because the zeroth adiabatic order for gkdtp yields the usual
effective potential as shown explicitly above.

Therefore, we conclude that the failure of the effective
potential to correctly describe the dynamical evolution of

dadiabatic particlesdtpb is explicitly a consequence of the,

The growth of 8k0tP as a consequenceproduction of
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of parametric instabilities leads to profuse particle
production. From the relation (4.17) it is clear that the
exponential

exponential growth in the adiabatic particle number.growth

of gdtb within the instability bands yields an

The relation of the fluctuation component of the energy

from the resultdensity Es8tp and particle production can be
made explicit(4.27), yielding the energy density (3.18)

directly in terms of the adiabatic particle number, namely
(setting h %4 1)

w 3tb%1p 2N &

—— VOopotbp p 127
~kth:

- E¥%12¢28thp —
02driskbs3 k

04:28p

Comparing with the one-loop static effective potential
(2.13), we see that the first term in the integral in (4.28) is
precisely the one-loop contribution to the effective

potential, now with the mean field $dtb depending on time;

therefore we write (4.28) in a more illuminating manner as

E % _21¢p20tP p VertdpotPp b Z _____d2drkP3wkdtPN™
kdtb; 04:29p

with
1 dk

VeffdatbP % VEdStbP b2 7 52r®b3wkdth

04:30p

being the effective potential extrapolated from the static
case (2.13) to the dynamical case, given by Eq. (2.14), and
its renormalized version (2.19) with ¢—>¢dtb. The final
expression for the energy density (4.29) shows explicitly
that, in the presence of particle production, the effective
potential does not yield the correct description of the

dynamics.

PHYS. REV. D 109, 105021 (2024)
The initial condition on the mode functions,
1 —-iw

gkd0P % p2wkd0P-; g'kd0P Y% p2wkkd000PPFH-;04:31P

yields

N~ k80P % O; 04:32b

corresponding to the zeroth-order adiabatic vacuum state.
Parametric amplification leads to profuse particle
production via the exponential growth of mode functions
within the unstable bands with the concomitant growth of
the occupation number of adiabatic particles N~ (dtb.

Particle production from parametric amplification is a
well-known phenomenon studied in detail within the
context of postinflationary reheating [29-36]. However, to
the best of our knowledge, its connection with the
shortcomings of the use of the effective potential to
studying the dynamical evolution of the expectation value
of a scalar field with radiative corrections has not been
previously highlighted.

2. Spinodal instabilities

spinodally unstable modes withthe mode functionslf

j290tPj < jdsj, spinodal instabilities lead to growth ofgidtP
given by Eq.k; < (4.12)jVoodddin the band oftbbj. Because

the w*5tP are negative for these modes, it is not obvious

that the fluctuation contribution to the energy density,

namely
However, the following argument indeed shows thatEqdtp
given by Eq. (3.19), is positive and grows in time.E'ftp §

is positive and grows exponentially: taking the time
derivative of Efdtb and using the mode equations (3.14)

yields (setting f % 1)

105021-18
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E'f0th % 12 dtdVooddotbPbZ 6 2dm3kpbs jgkdthj2;
04:33b

as ¢atb rolls down the potential hill within the spinodal

region,negative value up toVeoddpdtbp increases as a

function of time from aV°°8dsb % 0. Therefore E'f> 0 and

grows exponentially during this regime as a consequence
of the exponential growth of the mode functions.

Since the total energy is conserved, the growth in the
fluctuation contributions is at the expense of diminishing
the classical part, namely the first two terms in (3.18).

Obviously there is no possible definition of adiabatic

modes within this region as the frequencies are purely
imaginary for k2 < jVood¢pdtbbj. Therefore, unlike the
case(4.28)], of parametric instabilities discussed above [see
Eq.

E:0tP cannot be written solely in terms of an occupation
number of adiabatic particles. However, as ¢dtb rolls down
the “hill” towards a stable minimum of the potential
including radiative corrections, the drain of the classical
part of the energy implies that its amplitude damps out. The

mean field eventually will oscillate around this minimum
below the spinodal point where the frequencies become

real wkdth % pk? b VOapatPbffi with VO°ddatbp > 0. This

suggests separating the spinodally unstable modes, for
which the maximum unstable wave vector is given by

Ks % jVood0bj; 04:34p

and for k < Kswe define the interpolating frequencies wkdthp

% gk2 b jVooddotbbjffi; §4:35p

in terms of which we now introduce the mode functions,

_k e-iR twdtobdto

fotb % p2wkdthfh-: 04:36p

Following the steps leading to Egs. (4.14) and (4.15), for k
< Kswe now write

PHYS. REV. D 109, 105021 (2024)
gkoth %4 A kOtPf kdtb p B™ kdtbf kdtb;

04:37b g'«O0tb % —iw0tPAA™ (JtPf ™ dth — B™ «Otbf (Otb;
k <Ks;

04:38p

whereas for k > Ks we use the zeroth-order adiabatic mode
functions f~k6tb given by (4.13) along with the definitions
(4.14) and (4.15).

The advantage of introducing the (interpolating) mode
functions f"kdtb and the definitions (4.37) and (4.38) is that
we expect that asymptotically at long time, when ¢dtp
oscillates below the spinodal, they merge with the
asymptotic adiabatic modes.

In analogy with the previous case, for the spinodally
unstable wave vectors k < Ks we introduce

jB™ kOthj2 =N~ kdtb %
wk20tbjgkdtbj2 — 12_:

2wlkdth%jg kdthj2 b

64:39p

In order to understand particle production within the
spinodal region more quantitatively, let us consider an
initial condition with ¢dtb near the (shallow) maximum of
the potential and slowly evolving towards the bottom, and

set the following initial conditions on the mode functions:

k -1k H—xk p-iwkkd0PfH-; 84:40p

gdob% 2w 60P; g 60p% 2w 80p

which fulfill the Wronskian condition (3.15) and yield

N~ «d0p % 0, describing the vacuum corresponding to

the“upright” harmonic potential with frequentheory with

an

cies wd0b. E:0tb as We can

now write
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|

Zon k2YswkdtPN kO sk~ ktPOOk — Ksb2dkm2 ™ tPOOK — —

Z A
Ecoth % ) k2w, 8thO3K ;. — kb b W, 3tPOdk — Kb 4% b
VA
0 0 Ks 2.
b 15V 8b8tbb — jV 3b3tbbj o k2jgkdtbj 4dkr2
kP b w 8tPN &
where A is an ultraviolet cutoff.
The total energy density (3.18) becomes
1 A
Edp? - ¢ Z 2wy
0 - wo-

04:41p

dk —

% 2 8tb p VO 8tbb p ok %5 kth dKs kb p kdtp 8k KsP4m2 p Zoa k2VswkdtPN™

kOtPOJKs -k~ ktPOIk — KshP2dkm2 kP b w dtPN &

dk
qn?’
b %:Vooddatbb - jVoodddtbbj Zok: kajg

04:42p

athj2 |

number,” and the last terms in Eqs. (4.41) and (4.42) vanish. (4.36) and particle number (4.39) merge smoothly with the

Wh'en ) bSth  begins Although it is not necessary to rewrite the energy density
oscillations around the:

in this form because the set of equations (3.14) and (3.20)
brpken SYMMeUy .o niain all the information, there are three important
glem(l)rrlll(;lm,the Snfr?gzz}iaspects that emerge from Eq. (4.42): (i) although the
po?nt the evolu?ion o efinition of “adiabatic particles” in terms of the mode

’ functions (4.36) yielding the number of “particles” (4.39)

the gkdth results in the. . . .. .
production of particles’S somewhat arbitrary, any alternative definition will
exhibit

by parametric
amplification,

determined by Eq. (4.25)
but now defined in terms of the oscillations around the
stable broken symmetry minimum of the tree level
potential. Therefore the definition of “adiabatic modes”

105021-20

the growth of such particle number as a cor
spinodal instabilities. (i1) An advantage of this
that, after the mean field begins its oscillatior
broken symmetry minimum below the spinod

N o

numberfollows that™ ¥tp -(4.39)N~ kgVboott

with the, namely the definition of the particl
therefore w“dadiabatic particletp -

definition of adiabatic particles within the context of
parametric amplification. Different definitions of “particle”
are possible; an advantage of the definition in terms of the
asymptotic adiabatic mode functions (4.36) is that it merges
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with the adiabatic modes corresponding to oscillations
around stable minima.

This ambiguity notwithstanding, it is clear that spinodal
and parametric instabilities both lead to exponential growth
of the exact mode functions gxdtp which, in turn, leads to
profuse particle production. As discussed above,
oscillations around a broken symmetry minimum also lead
to parametric amplification and exponential growth of the
mode functions, different from the spinodal instability.
Therefore in this scenario, particles are profusely produced
first during the spinodal state, and when the field is
oscillating around the broken symmetry minimum via
parametric instability. While the quantitative expression of
the number of particles produced depends on the precise

definition of the mode functions f (dtb, it is clear that either

the zeroth-order adiabatic (4.13) for parametric or (4.36) for
spinodal instabilities, yield profuse particle production as a
consequence of either instability. (iii) The last term in the
first line in (4.42) features the same ultraviolet divergences
as those found to renormalize the effective potential (2.14)-
(2.18). The last term in (4.42) is finite, and it will be argued
in the next section that all the terms with occupation
numbers are indeed finite. This is certainly the case for the

contribution from N (dtP since only momenta k < Ks
contribute to these.

V. ARENORMALIZED, ENERGY CONSERVING
FRAMEWORK

The analysis presented in the previous sections
unambiguously points out that the effective potential is not
reliable to study the dynamics of the mean field ¢dtb in a
broad range of theories with and without symmetry
breaking as a consequence of the various instabilities
associated with particle production. Instead, up to one loop
(setting h % 1), the dynamics must be studied by
implementing the set of equations

d oth p - — Voddtbb b
21Vo00dpdtbb Z
02dmnskP3jkd bj2%
0;d5:1pgt

where the mode functions are the solutions of the equations

& KOth b wakdtbgkdtb % 0; ¥k ¢ = Kap % b

Voodpatbb;

05:2b
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and fulfill the Wronskian condition (3.15). Complemented

with initial conditions on $dtb;d dtb;gkdtb;g*dtb, this is

a closed set of equations with a conserved energy density

- 12 17 d3k3 k 2
2 k 2

EVa2¢’ 0tPpVOPdtbPp2 02nb %jg’ 0tbj bw Otbjg dtbj :

05:3p

However, as discussed within the context of the static
effective potential both (5.1) and (5.3) feature ultraviolet
divergences that must be absorbed by renormalization of
the bare parameters of the theory. The instabilities
associated with spinodal decomposition or parametric
amplification affect the mode functions for a finite range
of momenta k: spinodal instabilities only affect mode
functions withVooddPbj in the spinodal region. Although
parametrick < jVo980bj, with jVO°80pPj2the maximum value
of j

instabilities affect all values of k for which there are
resonances that lead to parametric amplification, the
bandwidth of the unstable regions becomes smaller for
resonant transfer of energy from thelarger values of k. On

physical grounds, for“zero modek? > V” %to highd$pd0pp

energy modes is inefficient. Furthermore, as analyzed in
detail in Sec. 1V, the adiabatic approximation fails for low
energy, long wavelength modes: those with k <

Kresonant bands for parametric amplification. However,s =
Vo30p for spinodal instabilities and those within in this
limit the mode functionsfor k? > V°°8¢$30bp, the adiabatic

approximation is valid,

€ikt

gk0th o< poKffi-: 05:4p

105021-21



HERRING, CAO, and BOYANOVSKY

The explicit form of the adiabatic effective potential
(3.32) explicitly shows that the zeroth-order adiabatic
contribution contains all the ultraviolet divergences and
the higher order adiabatic terms are all ultraviolet finite.
Furthermore, the analysis leading up to Eqgs. (4.28) and
(4.42) also clearly shows that the “zero point” con-

tributionfinite since neither spinodal nor parametric
instabilities canvioletdivergences, whereasthe
occupationnumberR d3kwidtp in these expressions contains

the ultra-N" kdtP is

excite very high energy modes. As discussed above, in
Sec. III B the zero point contribution is completely
determined by the zeroth adiabatic order of the mode
functions g“dtp. Therefore, we separate this ultraviolet
divergent contribution by adding it into an effective
potential and subtracting it from the fluctuation part by
writing

- 12" eft OtPP p EfRIP;
05:5p
EX2¢d 6tbpV 0
with

V™ ci33tPPLVIG3tbbpZonk2wkdtPOSk-kmp4d___dkm;

05:6p
and
Ak
EfROtP %4 Zo4___m2 kojg'kdtPj2 b w20tbPjgkdtpPj2
-wkdthOJk — kmb d5:7p

is the ultraviolet finite, renormalized fluctuation

contributiontotheenergydensity,wherethelowermomentum

cutoff  km is given by Km  ApjvoogobjffiuK

5:8

withsymmetrybreaking; 67 P
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0 withoutsymmetrybreaking

to account for the spinodal region in the case of symmetry
breaking where the frequencies widtb become purely

imaginary.

V®The integrals ofddpdtPpj we find wdth are

straightforward, for A>>
J
Na A2
V7~ effddb % VAP p 1612 b M2rDP16m2

- OM2rdp2PP2In4A22 -1

6aAmtu2 p
O0M642rOTId2PP2

InjMp2r20bj

- OM2rODPP2FjMZRROmMPPjT=2;  85:9p

with
FYax % 32 T2 2XY5X22P
sign20MRr20¢pPb3=22 1

- xsigndMRrAdPb¥ix b signdMrIDbPP1=2

- In¥%sx p ¥%x2 b signdM2rd¢dpPb1=2; §5:10bp where we

have written Ves0datPb in terms of

M2r3dP Y% VoorddAtPP; 05:11p

to compare to the static result (2.14).

Absorbing  the ultraviolet divergences in a
renormalization of the bare parameters of the tree level
effective potential at the renormalization scale p, and for the
case without symmetry breaking, corresponding to M?d¢b

>0 with km % 0, we identify
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V7 effdpOtPb = VRretfdOthb;ub; 05:12b

where

Vet dbOtP;ub % VRID; ub p-8M64r287d2PP2lnMpR220 P

05:13p

is the renormalized one-loop effective potential, with
VrAd;ub the renormalized tree level potential in terms of
the renormalized parameters.

In the case when the tree level potential admits symmetry
breaking minima and a spinodal region with

MZRamd)p <K05,
corresponding to the lower momentum cut-F in (5.9)

the contribution from the function,

offexcises the spinodal region withk 4 ka2 < jVoodoPbj %

Ks, which of course contributes to the fluctuation part as is

explicit in Eq. (5.7)". Sincecr o P defined by Eq.Ks> M23dp
it follows that the(5.9) is real and effective potential V &

does not feature the pathologies of the usual effective
potential in the spinodal region. It is straightforward to

confirm that taking kyn = 0 for M2d¢bP <0 in F brings back
the imaginary part, arising from the logarithm

when signdM28¢bbb < 0. (2.15), the renorm-

For the case of tree level potential alization proceeds
exactly as in Egs. (2.16)—(2.18) yielding Eq. (2.19) for the
first line of (5.9).

The equation of motion for the mean field (5.1) can be
similarly written as a fully renormalized equation. To
achieve this, again we add and subtract the contribution

from the zero adiabatic order, rewriting (5.1) as ¢ 8tb b

VordpAtPP b Vooor 8pdthp Zon k2082kw—-kdtkbmb4dkm p

PHYS. REV. D 109, 105021 (2024)
Vooor ¢pdtbb Zo® ___4dkrz kajgkdtpj2 —~O82kw—kdtkPmb %

0;

85:14p

from which we recognize that

VordpatbPpVooor - —
dpotbbZ0 k2028kw-kdktbmb4dkm2%4dd bV eftr d;ub;

05:15p

with V™ refigd;ub given by Egs. (5.6) and (5.9) after
absorbing the ultraviolet divergences into renormalization
of the bare parameters at the renormalization scale p. We
can now write the energy density and equation of motion
for the mean field and mode functions (up to one loop) in
a manifestly energy conserving (since we added and
subtracted the ultraviolet divergent contributions) and
fully renormalized form:

- 12
05:16p
E%2¢ 6tbhV &
¢ 8th b dddV™ reftdd;ub b Vooor dddthb

" effR GOtP;uP p
EfROtP;

x 2o 4dkrez kojgkGtbj, ~O852kw—kdtkb™ % 0; 5:17p

§1Otb b wAdthgdtb % 0; @i ! = Ksp % p
Voordpotbb;

85:18p

with V- ResOd;ub is the renormalized effective potential

defined by Eq. (5.6) where the ultraviolet divergences have
been absorbed into a renormalization of the bare parameters
of'the tree level potential at the renormalization scale p, and
VRGpOtPp is the tree level potential in terms of

renormalized parameters. The renormalized fluctuation
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contributions EwdtP, given by Eq. (5.7) and the last term in
(5.17) are ultraviolet finite and account for all of the particle

production processes resulting from spinodal and

parametric instabilities.

Initialization. The set of equations (5.17) and (5.18)
forms a self-consistent, energy conserving closed set of
equations that describe an initial value problem amenable
to numerical implementation, upon appending initial
conditions on the mean field and mode functions. The initial
conditions on the mean field are simple:

$dt % 0P =¢hd0b; ¢'0t % 0b =¢'80P; 05:19p

those of the mode functions are subject to the Wronskian
condition (3.15) and depend on whether the mean field
initially is within the spinodal region or outside it.

(i) V%%3d¢pd0pp > 0: In this case all modes can be
initialized as

k 1 k —-iwkd0P ;
g 00bP % p2wk00bfH-; g 0P % p2wkA0PH-wkdOP % gk2

b VoordddOPbffi: §5:20p

This initial condition implies that the adiabatic number

procedure described above becauseN 80P % 0O, and is
compatible with the renormalization

jg'kd80Pj2 b w2kd0Pjgkd0Pj2 % wkAOP; 85:21p

therefore the renormalized energy density from fluctuations
in Eq. (5.7) is ultraviolet finite initially and the
renormalization of ultraviolet divergences is the same as
during the time evolution, regardless of whether the
(renormalized) tree level potential features symmetry

breaking or not.
(i) VooRddpa0PP < O: In this case the renormalized tree

level potential features symmetry breaking minima and a
spinodal region. If ¢80P is within the spinodal region, a

suitable set of initial conditions is

PHYS. REV. D 109, 105021 (2024)

05:22b
gkd0b % <:
p2wiwasopffipffi
for k2 > jVoord$pd0Pbj;

g'k00b % 8< for k2 < jVoordd0bbj

=i2wiak0o0ppffi
for k2> V%P ¢ 0 ;
for k2 < jVoordp0PP]

PiTwkdop 05:23p

8 p2wio0

: p2wksopffi j RO O bbj

with w*8tP % pk2 b jVRp30Pbjffi. These initial conditions

imply that the interpolating and adiabatic particle numbers

N~ 80P % O;N(5.7)" *60p %vanishes identically forO.
Furthermore, at k > kt % Om, yieldingthe integrand in Eq.

an ultraviolet finite renormalized energy density of
fluctuations at all times, including at t % 0. Therefore, this
set of initial conditions is explicitly compatible with the
renormalization procedure, because the ultraviolet
divergences at the initial time are renormalized in the same
manner as the ultraviolet divergences at any other time
during the time evolution.

Although different initial conditions for the mode
functions subject to the Wronskian conditions (3.15) may
be chosen, the compatibility with the renormalization
procedure described in the previous section must be
carefully assessed for alternative initial conditions. The set
above is fully compatible with the renormalization
procedure, thereby guaranteeing that there are no new
ultraviolet divergences associated with the initial value
problem [51] and that the renormalization framework is
consistent all throughout the time evolution, namely the
same counterterms remove the ultraviolet divergences at
the initial and at any later time.

The set of renormalized Eqs. (5.17) and (5.18) along
with the initial conditions (5.19)—(5.23) thus describes
completely a self-consistent initial value problem which is
manifestly energy conserving and fully consistent with the
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renormalization prescription at all times that is amenable
to straightforward numerical implementation.

A. Consequences of energy conservation: Asymptotic
stationary fixed points?

Energy conservation entails that instabilities must
eventually shut off since exponential growth of
fluctuations cannot continue indefinitely. Particle
production via instabilities combined with energy
conservation leads us to the conjecture of emerging
asymptotic highly excited stationary states as fixed points
of the dynamical evolution described by the closed set of
equations (5.16)—(5.18). Both spinodal and parametric
instabilities must shut off asymptotically as a consequence
of energy conservation, implying that ¢dtb is below the
spinodal and must approach a constant because any
oscillatory behavior results in parametric instabilities,
however small the amplitude of the oscillation. Therefore
asymptotically ¢dth —>ddeob with ¢pdeob a constant so
that V°8¢pdeobb > 0. Therefore, it follows that wcdthp
—>wideeb and the mode functions
g dtb approach the asymptotic solution,

1

gkoth - p————bPYsake-iwkdeobt p Bkeiwkdeopt:  §5:24P

2wk6<><> i

The relations (4.16) and (4.17) yield in this asymptotic limit

A~ (Oth Saxelvs; B~ (otb 9BkeiVB; 05:25b

with ya;s constant phases, and from (4.21) it also follows
that

ckdth = ckdoob; ctkdtb = ctkdoob; 05:26b

hence the annihilation and creation operators of the
instantaneous zero adiabatic order Fock states become
constant. To understand clearly the underpinnings of this
conjecture let us consider separately the cases without and
with spontaneous symmetry breaking.

(1) Without symmetry breaking. Let us focus on the case

of the simple tree level potential (4.1) (with renormalized
parameters) as a paradigmatic example, and an initial
condition on ¢d0b;p 80P allowing for large amplitude

oscillations around the minimum of the tree level potential
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at ¢ % 0. With M28¢Pb > 0 and km % 0, the contributionr r

from the function F in (5.9) vanishes and V™ ¢ % Verr, the
one-loop effective potential [see Eq. (5.12)].

The total energy density is conserved and the mode
functions obey the Eq. (5.18), although for large amplitudes
the analysis based on Mathieu’s equation is no longer valid;
we still expect resonances leading to instability bands
within which the mode functions gedtP grow as a
consequence of parametric instabilities. The fluctuation
contribution to the energy density, the last term in Eq. (5.16)
for km % 0 [no spontaneous symmetry breaking, see Eq.
(5.5)], describes the production of adiabatic particles and is
positive definite. Therefore, as a consequence of
conservation of energy the growth of the fluctuations
associated with particle production must result in a drain of
energy from the first two terms in (5.16), thereby resulting
in damping of the amplitude of ¢dtb. As the amplitude
diminishes, the width of the unstable bands diminishes and
parametric amplification becomes less efficient but
continues until the amplitude vanishes, this is the case for
small oscillations as shown by the analysis of Mathieu’s
equation. Hence, we conjecture that this behavior leads to
an asymptotic fixed point of Egs. (5.17) and (5.18) with ¢
% 0;" % 0. As the amplitude ¢dtb diminishes, the analysis
based on Mathieu’s equation becomes more reliable. As the
width of the unstable bands diminishes as a consequence of
a diminishing amplitude, the mode functions approach
linear combinations of adiabatic mode functions and the
Bogoliubov coefficients (4.16) and (4.17) become slowly
varying functions of time asymptotically becoming
constants. In this asymptotic long time limit w*6ddtbb

> w*doob % pk2 b m2®ffi [for the tree level potential (4.1)]

and it follows from Eqs. (4.14) and (4.15) that jg'xdtbj2 b
w20tPjgkdtPj2t->lowkdoob¥s1 p 2N~ kdoob; §5:27P

where we have used Eqgs. (4.18) and (4.26). This
assumption leads to the following asymptotic form of the
energy density (5.16) (setting h % 1):

E % Vetfdpdoobb p Z _____ 52dmzkP3wkdocPN™ kdoob:
45:28p

The occupation numbers N (Jeop are large for the range of

k corresponding to the unstable bands.
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This result is expected as a corollary of the main
conjecture: dissipative damping from particle production
results in the relaxation of the mean field towards
stationary value ¢deob. Furthermore, in the asymptotic
long time limit

05:29p

. . -
jekdtbj2t> @ 00D kBoop b;

where rapidly oscillating termscx 2wy (cobt

dephasing and have been neglected.

average out by

The asymptotic value ¢deb is the solution of the

equation of motion with ¢ % & % 0, namely,

d__ddVefix SbGoob;ub b Vooor 3bF=obbZ62dekbs
IN wuddooPb % 0:

05:30p

In the case without symmetry breaking, there is the
obvious solution ¢pdeob % 0. The relaxation of the mean
field leads to an asymptotic stationary state, with all the
energy of the nonequilibrium initial state transferred to a
highly excited state described by a distribution function

Nthe unstable resonant bands where adiabatic particles are
kdoob. This distribution function is large in k space within

produced via parametric amplification with larger
amplitudes and bandwidths for smaller k. Notice that the
asymptotic state must truly be stationary; any small
amplitude oscillation will result in parametric
amplification and particle production with the
concomitant damping of the mean field.

(i) With symmetry breaking. Many of the features of
the dynamical evolution described above also apply in the
case where the (effective) potential allows for symmetry
breaking minima away frominstabilities and the
concomitant particle production.¢ % 0, with the addition
of spinodal

Let us consider first the case wherein the initial values
of the mean field ¢'80pP;dd0P lead to oscillations around

one of the broken symmetry minima, possibly with
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excursions into the spinodal region but not over the hump
of the potential at its maximum. As the mean field samples
the spinodal region in its evolution, the spinodal
instabilities lead to the growth of the modes gidtb with k <
K® thus draining energy from the first two terms in Eq.
(5.16) and damping the amplitude of ©®dtb. As the
amplitude diminishes, the oscillations no longer probe the
spinodal region but while the mean field oscillates around
the broken symmetry minimum, there are still parametric
instabilities that lead to the growth of gdtp. Particle
production fromddtpbdstops oscil-cob, with these
instabilities will continue until the lating at the stable

minimum at

dfollows that doob % 0;p' Mdoo,b %030 Because the

minima are stable itPP > 0, and the oscillation frequen-22

cies around these minima w*de<b % pk b M d¢pdeobbffi

are real. In the asymptotic long time limit, jg'xdtbj2 p
w20tPjgkdtPj2t> lewkdoob¥s1 p 2N~ kdoob; §5:31P

therefore

EROtPt>leo Z 3 2dm3kP3wkdooPN™ kdeob b Zokm k2wk

(00)4_Jr2dk;

85:32p

the last term cancels exactly the contribution from the
function F in Eq. (5.9), yielding

E % Vettdpdoobb p 72 §2dmzkP3wkdocPN™ k§oob:
05:33p
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In this case the asymptotic adiabatic particle number

Nspinodally unstable band k0P will also have a large
population within thek < Ks, along with the parametric

amplified bands.
In the long time limit, the relation (5.29) holds, where
contributions from fast oscillating terms average out, and

cancels the contribution from the functionthe term
1=2wideeb in (5.29) when input into Eq.F to dV~
reff(5.17)=dd

yielding the asymptotic solution form of the equation of
motion (5.17),

—  dddVefix 3bdoob; b pooor 3bF=obb Z52drekbs
IN wed3 =P % 0
v

95:34p

which coincides with (5.30) for the case without symmetry
breaking. However, in the case with symmetry breaking,
ddeob % 0 is not a self-consistent solution because Voo*d0p
< 0 and the mode functions would grow exponentially
preventing a stationary solution, which is possible only
when Voodddeobb > 0. Equation (5.34) clearly displays

onedooP of the main results: the asymptotic equilibrium

value

is not a minimum of the effective potential, but includes a
substantial contribution from particle production.

A similar analysis holds in the case of large initial
amplitude ¢80b. Consider an initial condition wherein the
mean field is released from high up in the potential
allowing it to roll down the hill and up through the
spinodal, over the hump at the maximum and over to the
other side, rolling down through the spinodal on the other
side and up again the potential. Every excursion of the
mean field through the spinodal results in a burst of
particle production from spinodal instabilities thereby
draining energy from the mean field, which eventually will
undergo small oscillations around either one of the
minima. During the oscillation around the minima
parametric amplification also leads to particle production
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until the mean field settles at this minimum with ¢ % ¢ %
0 and the g«dtP bound in time. The asymptotic solutions
(5.33) and (5.34) also describe this case with large initial
amplitudes sampling the broken symmetry minima during
the evolution until settling down in one of them. The only
difference with the small(er) amplitude case described
above is in the total energy density and the asymptotic

value of N” kdo<b which reflects the different energy

densities.
This analysis leads us to suggest a new kind of phase

diagram: the asymptotic equilibrium order parameter
$doob versus energy density as a characterization of the
broken symmetry phases with high energy density.

The results (5.33) and (5.34) taken together have a
simple and clear physical interpretation: in absence of

particle production N (deob % 0 V k, the equilibrium states
correspond to

d =R
__Veftdpdoob;ub % 0; E % Veffddpdoobb; §5:35p do

namely the minimum of the effective potential which
includes radiative and renormalization corrections; in fact
this was the rationale for the static effective potential in
the first place. However, under the constraint of conserved
energy density, the actual asymptotic state must account
for the energy transfer from the mean field that has relaxed
to equilibrium, to excited states (fluctuations) which are

described by the adiabatic particle numbers N kdoob # 0.

The asymptotic expectation value is no longer the
minimum of the effective potential but is modified by
particle production, which in turn depends on the energy
density.

Of course the conjectures on the asymptotic dynamics
and emerging stationary states must be confirmed by a
thorough numerical analysis, which is clearly beyond the
scope of this article.

B. Asymptotic excited states: Highly entangled two-mode
squeezed states

As argued above, the asymptotic stationary state is
characterized by a distribution function of produced

adiabatic particles, N doob. As the evolution of the mean

field and quantum fluctuations is described by an initial
value problem, we can consider the initial state, determined
by the initial conditions (5.19), (5.20), (5.22), and (5.23) as
the “in” state with vanishing occupation number, and the
asymptotic stationary state as the “out” state. In the
transition from the “in” to the “out” state, the mean field
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relaxes to a minimum of the effective potential and the
energy density, originally stored in the mean field, is
transferred to excited states (fluctuations), in the form of
particle production. At long time, as the mean field relaxes
to the asymptotic equilibrium value ¢de=b solution of the
equation (5.34) [similar to (5.30)], the oscillation
frequencies are real and evolve in time slowly as the
amplitude of the mean field relaxes to equilibrium,
therefore the zero order adiabatic definition of particles
described by Eqgs. (4.16)—(4.25) reliably describes particles
in the “out” state, as discussed in Sec. IV C.

The Bogoliubov transformation (4.21) is implemented by
a unitary transformation, which is obtained as follows.
First write

A~ kOtb % coshdOkdtbbe:isopk 5tbp6-« 5tbb;

B” kOtb % sinhdOkdtbbe2isopk 5tb-6-« 3tbp 05:36b

a"k % akez6-«ath; @ -tk ¥4 a-tke-26-atp 05:37p

Cc"kOtP % ckdtPe-uopkstb; ¢”-+kOtP Y ct-kOtPeaop stb; 85:38P

where we have used that A~ (0tb;B™ (dtb are functions
solely of k2. In terms of these definitions and canonically
transformed operators, the Bogoliubov transformation
(4.21) becomes c"k* 8th % a"k coshdOkdthp p a™+-k’
sinhd9kdtbb: 85:39p

This transformation is implemented by the following
unitary operator:

S¥00tb %4 Mk expfOkdtbYa™-k*a™k — a"kt”a -1k’ g;

S-1%:00tb % St/590tb % S¥:—-00tp; 85:40p

yielding
S¥290tbPa”k* S-1%280tb % c”k Otb; 85:41p

which can be confirmed by expanding the exponentials,
using the identity
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exYe-x% Y b 15X;Y b _1 X, %6XY b
2!

05:42b

and the canonical commutation relations.
An important identity yields the following factorization
of the exponential [52]:

S¥%9 ¥ N expf-Indcoshddbbgexpf-tanhddba™ "k a™ k" g

x expf—ZlnécoshéﬁkbbaN*k* a’k’g

x expftanhd%pa™-"a"’ g; 05:43p

whereThe inverse Bogoliubov transformation is given

by =9 5tb. a™ % ¢ coshddp - ¢ Tk

sinhd%p a '« % c "k coshd®p - c°¢

sinhd9b: 65:44p

The unitary operator that implements it is

TVOVNK expf-Oklac™ i ™k —¢c™+-k* ¢+ g; T-1/40% TV -0;

05:45pb
so that

TVOC K T-160 ¥ a™k

TOC™+°T-140 % a™+-«
Dk 05:46pb
The factorized form of T%9 is

T¥:9 ¥ Ny expf-Indcoshddbbgexpftanhddbc™ k¢~ ok g

X expf—21nécosh66kDPcN*k” '8

x expf-tanhd9bc™-* ™ g; 05:47p

with the instantaneous (zeroth-order) adiabatic vacuum
state j0,0tbi defined such that
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ckdtPj0adthi % 0 V k;t: 05:48p

vacuum stateThe operatorj0adTthi’s0to the coherent
stateallows us to relate the adiabaticj®i (annihilated

by~1a6T). Premultiplying’0 % 1 yields (5.48) by T/0 and
inserting

T %

8TYs0ck T-1%40p3T149j0adtbib % 0; 35:49b |
ffl{z2< ffl}

from which the relation between vacua follows, namely,

jOi % T%0j0a0tbi: 85:50p
Therefore, we find ©
j®i % Mic > thcoshGOkP-13eisn
tanhd9kPbnicjnk’;n-k* ™ O i
Y
d5:51p
where the adiabatic particle-pair states
jnke k pctk” Prnicfi-Opct-k Pknffic Oai; nk’ %

0;1;2...:05:52b 6
;n=i% o n7l n!j

In quantum optics these correlated states are known as
two-mode squeezed states [52], where as discussed in Sec.
IV C the Fock states,

oct

jnk 3tbi Ypk” AntbPk” Hincj0adthi; 85:53p

are instantaneous eigenstates of the Hamiltonian (4.22)

with eigenvalue hw*dtPdn*dtb p 1=(5.52)2b. are
eigenstates of

We note that the Fock pair states the
pair number operator

PHYS. REV. D 109, 105021 (2024)

oo

N"K % mXe %omk” jmk” ;m-k” ihmi” ;m-k*j;  65:54p
namely, n" jni”;n-"i % N’ jnc ;n-i; nic Y4 0;1;2...: §5:55b

Several checks are in order: h@Qjdi % N coshlzéﬁkb

nXkeo408 2 9xbpP "k tanh 6
1 1
% Mk’ cosh 29 -
p ;

=1
29 0 kb1 tanh &

05:56p

h®jctpcp’j@iYacosh____ 12889pbnr x
npdtanh289pPbns

% sinh209pb % jB” pj2 % N™ p: 05:57p

Therefore, in terms of the asymptotic adiabatic “out”
particle states, the coherent state ji is a strongly correlated,
entangled state of back-to-back pairs of particles with

occupation numbers N ¢ populated in bands: for k < K; for

spinodally produced particles and the unstable bands for the
particles produced by parametric amplification.

C. Decoherence and entropy

For large energy density, the occupation numbers in the
bands of instability are expected to be large with a
continuum distribution in each band as the energy is
transferred from the mean field to the excitations described
by the adiabatic particle states. This transfer of energy from
a single mode, the mean field, to a continuum of states in
the wvarious bands, each with finite bandwidth in
momentum, intuitively suggests the emergence of entropy.
However, the density matrix,

p" % jOih@j; 95:58p
describes a pure state and is time independent in the
Heisenberg picture. In the basis of the asymptotic “out”
adiabatic particle states, it is given by

oo oo
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p" % Mk Mp~ X mXpCmp”ap_) PCni 8k Pjnk”;n-k* ihmp”
;M=p” j; nk-%0 - %0
05:59p

where

Cn 0k” b % Oeientanhd83Pibbni; 95:60p

Py cosh 9k

and the angles 6P ;9x correspond to the asymptotic values
with ¢pdeob.
The diagonal elements of the density matrix are given

by the probabilities of finding a back-to-back pair of ny’
adiabatic particles, namely,

Pnk%ankak_) Djz% nkn: 05:61b

31 b Nfoo lpi

Remarkably, this form of the diagonal matrix elements is
similar to that of a thermal density matrix in the basis of
(free) Fock quanta, but with N |~ d==b replaced by the

Bose
Einstein distribution function.

Os0tP
associated with an observable related to the fluctuation

Consider a Heisenberg picture operator

operator & , which by dint of the expansion (4.19) at long

time is associated with the asymptotic “out” adiabatic
particle states. Asymptotically when the mean field has
relaxed to its equilibrium value ¢deob the Hamiltonian
HsO0tP given by (4.22) becomes time independent,
therefore the time evolution of the Heisenberg picture

operator Os0tb is given by

060tpb % eiHsat-topOs0toPe-iHsst-tob; 05:62b

where tois a late time at which the mean field has relaxed

to equilibrium, and t > to. The expectation value of Os in
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the density matrix (5.58) is given by h®jOsdtbjdi %

TrOsdtobp”dth; 65:63P

where the time dependent density matrix in the Schrodinger
picture is

p"0tobXjDih®j: 05:64p

given by p”dtblie-iHsst-topp” dtoPeiHsdt-top;

“« ”

Since the zeroth-order adiabatic “out” states are

instantaneous) eigenstates of Hs it follows that p”"dtp % Mk
( ) eig P

Mp"Cme 6p~ f: f’: PCni 8k™ bjnk ;n—k"i

=0 m,=0 n
X hmp”;M-p” je-iWnmdt-tob; 05:65pb
where
Wh;m % 20nkwkdeeb — mpwpdoeobb: 05:66b

The off-diagonal matrix elements in the adiabatic “out”
basis are a manifestation of coherence, and unitary time
evolution.

At long time t > to, the off diagonal terms with ng# mp;k
# p oscillate very rapidly, the continuum of modes within
each band fall out of phase leading to rapid dephasing and
averaging out. In fact, taking a long time average of the
expectation value (5.63),

— 1ZotTrO 8t bp~dtbdt ! TrO 6t Pp” dp; §5:67b
50 508 Tt T>oo

where p“%% is diagonal in the Fock “out” basis of correlated

—entangled—pairs, namely,

P99 24 M XkPnecjnic ;na ihni ;n-c j; 85:68P n-
%0

with the probabilities (5.61). The diagonal density matrix
p"9% describes a mixed state. The main ingredient in this
analysis is that the “out” adiabatic particle states are
(instantaneous) eigenstates of Hs and that each band has a
continuum of modes each evolving in time with different
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frequency, leading to dephasing and decoherence in the
long time limit.

This argument, based on decoherence by dephasing at
long time yielding a density matrix diagonal in the “energy”
basis underpins the eigenstate thermalization hypothesis
[53-55] and is at the heart of the arguments on
thermalization in closed quantum systems, a subject of
much current theoretical and experimental interest.

The entropy associated with this mixed state can be
calculated simply by establishing contact between the
density matrix p%%" and that of quantum statistical
mechanics in equilibrium described by a fiducial
Hamiltonian,

H™ % XEn"; 35:69p

K

with n  the pair number operator (5.54) with eigenvalues

nK’ % 0;1;2..., and the fiducial (dimensionless) energy

Ex % —InYtanh209b; 85:70b
which suggestively yields the distribution function
N~k §oob Y erl-1: 05:71p

This fiducial Hamiltonian (5.69) is diagonal in the
correlated basis of particle-antiparticle pairs, it should not
be confused with the Hamiltonian Hs of Eq. (4.22), they act
on different Hilbert spaces and feature different
eigenvalues. The main purpose of the fiducial Hamiltonian

H is to identify

pe — Yiew % -H" = e-F; 05:72p
; ZTre

yA

with F the fiducial (dimensionless) free energy, and the
partition function

2 The entropy can also be calculated with the analogy F % U -

S, with U % TrHp % as in statistical mechanics.
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Y Y.
2% Zi; 2 " Vsl-e” Y51-tanh,00kb;

05:73p

thereby establishing a direct relation to a problem in
quantum statistical mechanics.

~

Since H is diagonal in the basis of the pair Fock states,

so is p"9P and obviously the matrix elements of (5.72) in
the pair basis are identical to those of (5.68), with the

identification of the pair probability (5.61) as

Y e-fe ONffkdood bbbbpe K 0
b

P Zc  %OLp N koo 5:74

The von Neumann entropy associated with this mixed
state is

S % —Trp%P Inp%P: 85:75p
The eigenvalues of p® are the probability for each state

pairs of momenta K

of n¢ -k” b, namely, Pnc therefore

the von Neumann entropy is given by

oo

S % _X Xk Pnk‘lnpnk‘: 6576p

K n°%0

A straightforward calculation yields the entropy density,? s
%Z81p Nk doobblnd1 p N~ k* deobb

~N" i 8eoPPINN" K~ BeobddskP :35:77P

2

Remarkably the entropy features the same form as in a
quantum free thermal Bose gas but with the equilibrium
distribution functions replaced by the asymptotic
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distribution functions of the produced “out” adiabatic
particles.

Although the similarity with quantum statistical
mechanics in thermal equilibrium is striking, we emphasize
that the distribution functions are nonthermal and localized
in bands in momentum.

This entropy is a direct corollary of the conjecture on the
emergence of an asymptotic stationary state with a large
population of adiabatic “out” particles. These are the
eigenstates of the evolution Hamiltonian for the
fluctuations, which asymptotically becomes time
independent. Decoherence by dephasing in the basis of
energy eigenstates is one of the main arguments towards the
description of microcanonical quantum  statistical
mechanics, and as mentioned above the cornerstone of the
eigenstate thermalization hypothesis, which describes
thermalization in closed quantum systems.

The diagonal form of the density matrix (5.68) also
emerges from tracing over one member of the correlated
pair states in the full density matrix (5.65), therefore
formally the entropy (5.76) 1is equivalent to the
entanglement entropy. Although in the cases studied above
we focused on neutral scalar fields, if instead the fields
feature a charge quantum number, and the pair states are of
particle and antiparticle, tracing over either of them would
yield an entanglement entropy similar to (5.76).

VI. CONCLUSION AND FURTHER QUESTIONS

The effective potential is a very useful concept to
understand the equilibrium phase structure of a theory, in
particular spontaneous symmetry breaking, including
quantum and thermal corrections. Although it is defined to
describe static phenomena, it is often used to study the
dynamical evolution of the expectation value of a field.
Motivated by its ubiquitous use in phenomenological
approaches to dynamical evolution, including in
cosmology, our objectives in this article are to critically
examine whether using the effective potential to study the
dynamics of a coherent mean field, or expectation value, is
warranted, and to provide a consistent framework to study
its evolution when it is not. We implemented a Hamiltonian
formulation to obtain the energy functional up to one loop
which yields the static effective potential and extended it to
obtain the equation of motion for the expectation value of a
scalar field in the dynamical case. This formulation is
manifestly energy conserving and renormalizable. We
introduced an adiabatic approximation to establish if a
quasistatic evolution warrants the use of the static effective
potential in the equations of motion and found that doing so
implies an explicit violation of energy conservation.
Furthermore, the regime of validity of such an adiabatic
approximation is severely restricted. Breakdown of
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adiabaticity is recognized in two ubiquitous instances of
fundamental and phenomenological relevance: parametric
amplification associated with instabilities from resonant
excitations by oscillating mean fields and spinodal
decomposition, instabilities stemming from the growth of
correlations during phase transitions in the case of
spontaneous symmetry breaking.

The breakdown of adiabaticity is directly linked to the
production of adiabatic particles, which we show to
describe the asymptotic “out” state at long time. A
selfconsistent, energy conserving and renormalizable
framework that is amenable to numerical implementation
is introduced. Energy conservation implies the emergence
of asymptotic stationary states described by highly excited
entangled adiabatic particle states. Their distribution
functions are localized in momentum space in regions of
spinodal or parametric instabilities. In the case when the
tree level potential admits broken symmetry minima, the
asymptotic value of the order parameter is not the minima
of the effective potential, but receives corrections from the
excited states, and the energy density transferred to these
via particle production. This led us to conjecture on the
characterization of phases in terms of novel phase
diagrams of asymptotic expectation values of the scalar
field, namely the order parameter, versus energy density.

Although we considered simple examples of tree level
potentials to anchor the discussions, the results are of far
broader significance. Parametric and spinodal instabilities
are ubiquitous in theories without and with symmetry
breaking, and generally call into question the applicability
of the effective potential to study the dynamics of coherent
mean fields.

The asymptotic stationary states are fixed points of the
dynamics corresponding to equilibria compatible with the
constraint of fixed energy (energy conservation). These
novel equilibria are nonuniversal as they depend on
couplings, parameters and initial conditions on ¢;¢" and
mode functions that determine the energy density. In the
case of tree level potentials featuring broken symmetry
minima, the asymptotic equilibrium values of the mean
field are very different from that obtained from the
effective potential, a consequence of profuse particle
production. The distribution functions of adiabatic
particles are nonthermal and nonuniversal, peaked at
bands corresponding to spinodally and/or parametrically
produced particles, since at this level (one loop) of
approximation there are no collision terms that would
redistribute energy and momenta away from the instability
bands. A direct corollary of the emergence of an
asymptotic state is decoherence by dephasing of the
Schrodinger picture density matrix in the basis of the
asymptotic “out” adiabatic particle states, and the
concomitant emergence of entropy; surprisingly, the form
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of the entropy is similar to that of a free quantum Bose gas
but in terms of the distribution function of the produced
particles.

Our study has been restricted to the one-loop
approximation to compare with the familiar one-loop
effective potential and exhibit its shortcomings to describe
the dynamics in the simplest and clearest example. Our
main results are of broader significance and transcend the
particular approximation: (i) the effective potential is ill
suited to study dynamics, (ii) there is a substantial transfer
of energy of the mean field to excitations; these are
described in terms of asymptotic “out” states based on the
zeroth adiabatic modes, (iii) an asymptotic stationary state
must emerge at long time as a consequence of energy
conserving dynamics when parametric and or spinodal
instabilities occur, (iv) the asymptotic equilibrium value of
the mean field is not described correctly by the effective
potential but also receives corrections from the excited
states. This is an unambiguous consequence of energy
conserving dynamics, and (v) a corollary of the asymptotic
stationary state is that there emerges an entropy from
decoherence and dephasing of the Schrddinger picture
density matrix. These are all results that do not depend on
the level of approximation, but stem fundamentally from
energy conserving dynamics associated with particle
production from the evolution of the mean field.

These results justify the study of its extension beyond
one loop within a manifestly renormalizable and energy
conserving framework both to confirm the main
conclusions and also to reveal quantitative characteristics
of the approach to the asymptotic state. A possible avenue
would be to include backreaction self-consistently, for
example, within a Hartree-type approximation [22,42]
which, however, would not include collisions. An
alternative would be to implement the effective action
approach advocated in the seminal work of Ref. [56].

Nonequilibrium fixed points (or nearly fixed points of
the dynamics) have been identified in previous studies
within a different framework [57] including collisional
processes, and more recently the dynamics of condensates
have been included in Boltzmann equations [58]. These
approaches
couldprovideanalternativeconfirmationoftheemergenceof
an asymptotic stationarystateand ofa coarsegrained entropy
intheasymptoticregimeasaconsequenceofdecoherencevia
dephasing in a closed quantum system with energy
conserving and unitary dynamics [59], and can shed light
on the question if such entropy becomes the thermal
entropy.

While our study has been carried out in Minkowski
spacetime, we expect that the results also have broad impact
in cosmology: in the equations of motion for a scalar (or
pseudoscalar field), during the time when the Hubble
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expansion rate H is much larger than the mass, damping
from cosmological expansion may justify the use of a static
effective potential within this time window. However, when
H becomes much smaller than the mass, oscillations ensue
with the concomitant particle production and parametric
amplification. We highlighted that the breakdown of
adiabaticity is primarily associated with long wavelength
excitations; hence, it is important to assess the contribution
from super-Hubble modes to the fluctuation contributions
to the equations of motion, even during the time window
when Hubble friction dominates. Cosmological particle
production arising from the energy transfer from mean
fields to fluctuations has important consequences in
cosmology, as the full energy momentum tensor would
feature two components, a “cold” component from the
coherent mean field, and a “hotter” component from the
particles produced from either spinodal or parametric
instabilities. This possibility warrants further study of the
processes described in this work applied to cosmology and
on which we will report in future work. Furthermore,
extending the treatment to gauge theories will require a
clear understanding of gauge invariance in the dynamics
and renormalization aspects; these are also topics beyond
the scope of this article and the subject of future work.
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APPENDIX: INSTABILITY
BANDS «2,,6%p FOR EQ. (4.4)

From the results in Refs. [26—28], we obtain the
following power series expansion in a for the band edges

Kk%n;, valid in the range O <%< 2; the range of validity may

be extended by including higher orders in the expansion
[26,28]:

K22~ % 3 - 20— 12 p 1382450a* - 796262402890°

b a?
K22. 1 3 2a P
b¥~ -7 p51202- 1382476304 p
1002401796262400as p

2% 8-2apo2—a3p 1304 p5as-1961as k3;-1664

20480 16384 23592960

105021-33



HERRING, CAO, and BOYANOVSKY

2% 8-2aba’paih13a0*-5a°-1961a° k3;p 16 64
20480 16384 23592960

2% 15-2a b a?-317a*p 10049afp «4;- 30 864000

2721600000

K24;p ¥ 15 — 20 p 3002 p 86400043304 -
27216000005701ae b:

0AlP
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