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We critically examine the applicability of the effective potential within dynamical situations and find, 

in short, that the answer is negative. An important caveat of the use of an effective potential in dynamical 

equations of motion is an explicit violation of energy conservation. An adiabatic effective potential is 

introduced in a consistent quasistatic approximation, and its narrow regime of validity is discussed. Two 

ubiquitous instances in which even the adiabatic effective potential is not valid in dynamics are studied in 

detail: parametric amplification in the case of oscillating mean fields, and spinodal instabilities associated 

with spontaneous symmetry breaking. In both cases profuse particle production is directly linked to the 

failure of the effective potential to describe the dynamics. We introduce a consistent, renormalized, energy 

conserving dynamical framework that is amenable to numerical implementation. Energy conservation 

leads to the emergence of asymptotic highly excited, entangled stationary states from the dynamical 

evolution. As a corollary, decoherence via dephasing of the density matrix in the adiabatic basis is argued 

to lead to an emergent entropy, formally equivalent to the entanglement entropy. The results suggest novel 

characterization of asymptotic equilibrium states in terms of order parameter vs energy density. 
DOI: 10.1103/PhysRevD.109.105021 

I. INTRODUCTION 

The effective potential is a very useful concept to study 

spontaneous symmetry breaking in quantum field theory as 

originally proposed in Refs. [1,2]. It is defined as the 

generating functional of the single particle irreducible 

Green’s functions at zero four momentum transfer. In 

particular, the effective potential informs how radiative 

corrections modify the symmetry breaking properties of 

the vacuum [3]. While originally the effective potential was 

obtained by summing an infinite series of Feynman 

diagrams [3], functional methods [4–7] provide a 

systematic and simple derivation in a consistent loop 

expansion, which has been extended to equilibrium finite 

temperature field theory [8,9]. In equilibrium at finite 

temperature, the effective potential informs on the quantum 

and thermal corrections to the free energy landscape as a 

function of the order parameter, and as such it provides a 

very useful characterization of phase transitions. The 

concept of the effective potential plays a fundamental role 

in cosmology, 
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in particular in the description of possible cosmological 

phase transitions even during the inflationary era [10–14]. 

An alternative Hamiltonian formulation of the effective 

potential was advanced in Refs. [15,16]; it provides a 

compelling interpretation of the zero temperature effective 

potential as the expectation value of the quantum 

Hamiltonian (divided by the volume) in a coherent state, in 

which the (bosonic) field associated with symmetry 

breaking, namely the order parameter, acquires a space-

time constant expectation value (see also [6,16]). The one-

loop effective potential has also been related to a Gaussian 

wave functional [17]. 

A. Motivation and objectives 
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Although the effective potential was introduced and 

developed to study static aspects of spontaneous symmetry 

breakingand to identify symmetry breakingminimabeyond 

the classical tree level, it is, however, often implemented in 

dynamical studies of the time evolution of the expectation 

value of the scalar field. Since the effective potential is 

defined for zero four momentum transfer, namely for a 

static and homogeneous field configuration, the rationale 

behind its use in a dynamical situation is the assumption of 

the validity of some adiabatic approximation. Such 

assumption ultimately needs scrutiny and justification. 

Our motivation for this study is the ubiquity of the use 

of the effective potential in dynamical situations in which 

the expectation value of the scalar field evolves in time. 

Our objectives are: (i) to critically examine the validity of 

using the effective potential in such dynamical setting, (ii) 

to assess the validity of an adiabatic approximation that 

would justify its use, (iii) identify possible scenarios 

wherein its use is unjustified, and (iv) to provide an 

alternative formulation that overcomes the limitations of its 

(mis)use, and to study the consequences of the dynamical 

evolution within this framework. 

In this article we address these aspects at zero 

temperature in Minkowski space-time, obtaining the 

energy functional and equations of motion including one-

loop quantum corrections, which allows us to compare to 

the one-loop effective potential and exhibit its 

shortcomings in the simplest case. This study is a prelude 

towards extending the results both to finite temperature, 

higher orders, and an expanding cosmology in future work. 

B. Brief summary of results 

We implement a Hamiltonian approach to obtain the 

oneloop effective potential in the static case and extend it 

to obtain the energy functional and equations of motion for 

the expectation value of a scalar field in the dynamical 

case. An adiabatic effective potential is introduced as a test 

of whether a quasistatic approximation can be reliably 

applied to the dynamical case; it is explicitly shown that it 

has a very restricted regime of applicability. Furthermore, 

we unambiguously show that using the static effective 

potential in dynamical situations leads to a violation of 

energy conservation. Two ubiquitous instances are 

recognized to lead to a breakdown of the adiabatic 

(quasistatic) approximation to the equations of motion: 

parametric amplification in the case of oscillating mean 

fields, and spinodal decomposition in the case of 

spontaneous symmetry breaking. Both phenomena yield 

profuse particle production which invalidates an adiabatic 

(quasistatic) approximation and renders the static effective 

potential an ill-suited description for the dynamics. We 

introduce a self-consistent, energy conserving, fully 

renormalized framework to study the dynamical evolution 

of expectation values of scalar fields. Energy conservation 

leads us to conjecture the emergence of asymptotic 

stationary states. These are characterized by a large 

occupation number of adiabatic particles in bands, yielding 

a highly excited entangled state of correlated particle pairs 

produced from resonant transfer of energy from parametric 

or spinodal instabilities. These highly excited stationary 

states lead us to suggest a novel characterization of 

asymptotic equilibrium states in terms of phase diagrams 

of asymptotic order parameter as a function of energy 

density. 

The article is organized as follows: in Sec. II we 

summarize the Hamiltonian approach to the one-loop 

effective potential in the static case introduced in Refs. 

[15,16]) as a roadmap to extend this formulation to the 

dynamical case. In Sec. III we extend the Hamiltonian 

formulation and introduce the framework to study the 

dynamical case. We also introduce a systematic adiabatic 

expansion and an adiabatic effective potential and analyze 

its suitability for describing the dynamics. It is argued that 

using the static effective potential leads to a violation of 

energy conservation, and that the adiabatic effective 

potential has a very restricted range of validity. In Sec. IV 

we study two ubiquitous cases that lead to a breakdown of 

adiabaticity invalidating the use of the effective potential: 

(i) parametric amplification when the scalar field oscillates 

near the minimum of the tree level potential, and (ii) 

spinodal instabilities in the case of spontaneous symmetry 

breaking. In both cases we show that parametric and 

spinodal instabilities lead to profuse particle production 

which is associated with the breakdown of adiabaticity. In 

Sec. V we introduce a self-consistent, fully renormalized, 

energy conserving framework to study the dynamical 

evolution of the expectation value of a scalar field 

amenable to numerical implementation. In this section we 

argue that energy conservation in the dynamics leads us to 

conjecture the emergence of asymptotic stationary, highly 

excited entangled states from the dynamical evolution with 

asymptotic values of the order parameter very different 

from those obtained from an effective potential. In this 

asymptotic regime, decoherence via dephasing leads to an 

emergent entropy density, s ¼ Z ð1 þ N˜ k⃗ ð∞ÞÞlnð1 þ N˜ 

k⃗ ð∞ÞÞ 

−N˜ 
k⃗ ð∞ÞlnN˜ 

k⃗ ð∞Þ ð2
d

π3kÞ3 ; 

wherefunction of particle momentum as
N˜ 

k⃗ ð∞Þ is the 

particle number distribution as at →∞. This entropy 

2470-0010=2024=109(10)=105021(27) Published by the American Physical Society 
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is formally equivalent to an entanglement entropy. 

Furthermore, we also propose the hitherto unexplored 

concept of “phase diagrams” of order parameter versus 

energy density as characterizations of these asymptotic 

states. Conclusions are summarized in Sec. VI. 

II. STATICS: THE EFFECTIVE POTENTIAL 

In this study we focus on one-loop radiative corrections, 

adopting and extending the formulation of the effective 

potential of Refs. [15,16] which relies on a Hamiltonian 

description as an alternative to the functional methods, 

which will be extended to the dynamical case in the next 

sections. Let us consider a real scalar field, ϕ, in 

Minkowski space-time with an action given by 

 A ¼ Z d Þ; ð2:1Þ 

where VðϕÞ is the tree level potential. In the interest of 

generality, we leave this function unspecified at present but 

consider specific scenarios below from which we draw 

more general conclusions. 

Introducing the canonical conjugate field momentum 

operatorand its canonical momentumπðx⃗ Þ ¼ ∂ϕ ¼ ∂t, and 

upon quantization of the fieldϕðxÞ →ϕˆðxÞ;πðxÞ →πˆðxÞ, 

mutation relations, the field Hamiltonian is given bywhere 

the operators ϕˆðx;t⃗ Þ;πˆðx;t⃗ Þ obey canonical com- 

 H ¼ Z d3xπˆ22 þ ð∇2ϕˆÞ2 þ VðϕˆÞ: ð2:2Þ 

The Hamiltonian interpretation of the effective potential 

advanced in Refs. [15,16] (see also Ref. [6]) identifies the 

effective potential as the expectation value of the 

Hamiltonian operator in a normalized coherent state jΦi in 

which the field acquires a space-time independent 

expectation value, 

φ ¼ hΦjϕˆðx;t⃗ ÞjΦi; hΦjπˆðx;t⃗ ÞjΦi ¼ 0; ð2:3Þ 

divided by the spatial volume of quantization V, namely, 

1 

 VeffðφÞ ¼ V hΦjHjΦi: ð2:4Þ 

We refer to φ as a mean field, and writing ϕˆðx;t⃗ Þ ¼ φ þ 

δˆðx;t⃗ Þ; πˆðx;t⃗ Þ ≡πˆδðx;t⃗ Þ; ð2:5Þ the constraints (2.3) 

imply 

hΦjδˆðx;t⃗ ÞjΦi ¼ 0; hΦjπˆδðx;t⃗ ÞjΦi ¼ 0; ð2:6Þ 

leading to 

Veff ¼ VðφÞ þ V  Z d3xhΦj 1 

 × πˆ2δ2 þ ð∇2δˆÞ2 þ 12M2ðφÞδˆ2 þ jΦi; ð2:7Þ 

where linear terms in δˆ 
and πˆδ vanish by the constraints 

(2.3), and 

 M2ðφÞ ≡ V00ðφÞ: ð2:8Þ 

Assuming that the effective squared mass M2ðφÞ ≥ 0, up to 

quadratic order the Hamiltonian in Eq. (2.7) describes a 

free massive field. Hence, we quantize as usual: 

δˆðx;t⃗Þ ¼ rVℏ
ffiXk⃗p21ωkffi ak⃗ e−iωkteik⃗ ·x⃗ þ a†k⃗ eiωkte−ik⃗ 

·x⃗ ; 

ð2:9Þ 

πˆδðx;t⃗Þ ¼ −irVℏffiXk⃗ ppω2ffikffi ak⃗ e−iωkteik⃗ ·x⃗ − a†k⃗ 

eiωkte−ik⃗ ·x⃗ ; 

ð2:10Þ 

with 

 ωkðφÞ ¼ qk2 þ M2ðφÞffi: ð2:11Þ 

   ϕ 
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The constraints (2.6) are implemented by requesting that 

 ak⃗ jΦi ¼ 0; ∀ k;⃗ ð2:12Þ 

in other words, the coherent state
ˆ
. In principle, the 

constraintsjΦi is the vacuum state(2.6) are for the 

fluctuations δ 

also fulfilled if jΦi is an eigenstate of the number operator 

a†k⃗ ak⃗ with eigenvalue nk, however the energy is lowest for 

the vacuum state withR nk ¼volume0. limit with Pk⃗ → 

Taking the infinite 

V d3k=ð2πÞ3 and using (2.12), we find that the effective 

potential (2.4) is given by 

VeffðφÞ¼VðφÞþ 2Z ð2π3Þ3ωkðφÞþOðℏ2Þþ: 

ð2:13Þ ℏ d k 

The ℏ in (2.13) originates in the pℏffi in the usual field 

quantization [(2.9) and (2.10)] and implies that the 

expression (2.13) is the one-loop effective potential. If jΦi 

is an excited eigenstate with nk ≠ 0, the integrand in the 

second term features an extra contribution nkωkðφÞ 

thereby rasing the energy. 

That the second term in (2.13) is a one-loop contribution 

is easily understood from the fact that hΦjδˆ2ðx;t⃗ ÞjΦi is 

the δ propagator in the coincidence limit of space-time 

coordinates, namely the propagator with the end points 

joined. The integral is carried out with an ultraviolet cutoff 

Λ≫ MðφÞ yielding the one-loop effective potential (after 

setting ℏ≡ 1) eff φÞ ¼ VðφÞ þ 16Λπ42 þ M2ðφÞ16Λπ22 

 V ð 

 − ðM2ðφ2ÞÞ2 ln4Λ22 − 1  

 64π μ 2 

 þ ðM642ðπφ2ÞÞ2 lnMμ22ðφÞ ;

 ð2:14Þ 

where we have introduced a renormalization scale μ. The 

ultraviolet divergences must be absorbed into 

renormalizations of the parameters of the classical 

potential. Considering the simple example of the tree level 

potential 

 m20 2 λ0 4 2 2 2 

VðφÞ ¼ V0 þ 2 φ þ 4 φ ⇒M ðφÞ ¼ 3λ0φ þ m0; 

ð2:15Þ 

introducing the renormalized quantities 

mR22ðμÞ ¼ m  Λ2−32

3λπ02m02ln4μΛ22 −21  ð2:16Þ 

 λR4ðμÞ ¼ λ40 − 329λπ202 ln4μΛ22− 21 ; ð2:17Þ 

 Λ Λ 

V0RðμÞ ¼ V0 þ 16π42 þ m02 16π22 − m4 ln4μΛ22 − 21 ; 

ð2:18Þ 

and replacing bare by renormalized quantities up to one 

loop, the renormalized effective potential becomes 

VeffRðφ;μÞ ¼ V0RðμÞ þ m2R2ðμÞφ2 þ λR4ðμÞφ4 þ 

ðM642Rðπφ2ÞÞ2 lnMμ2R2ðφÞ : 

ð2:19Þ 

The effective potential is independent of the 

renormalization scale μ which has been introduced to 
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render the logarithms dimensionless, therefore it obeys the 

renormalization group equation [3] 

d 

 μd μVeffRðφ;μÞ ¼ 0: ð2:20Þ 

A. Fermionic contributions: Yukawa interactions 

The Hamiltonian framework for the effective potential 

also lends itself straightforwardly to include the 

contribution from fermions. Consider for example, 

massless Dirac fermions Yukawa coupled to the scalar field 

ϕ with Lagrangian density 

Lf ¼ ψ¯ði=∂− YϕÞψ: ð2:21Þ 

Hamiltonian becomes to leading 

orderPerforming the shift ϕˆðx;t⃗ Þ ¼ 

φ þ δˆðx;t⃗ Þ, 

the Dirac 

Hf ¼ Z d3xψ†ðiα⃗ · ∇ þ mfðφÞÞψ; 

where the effective Dirac fermion mass is 

ð2:22Þ 

mfðφÞ ¼ Yφ; 
ð2:23Þ 

and we neglected the interaction term Yδψˆ †ψ as it yields 

higher order loop corrections to the effective potential. 

Quantization now is straightforward in terms of creation 

and annihilation of particles and antiparticles and the usual 

Dirac spinor wave functions: positive and negative 

frequency solutions of the Dirac equation with a mass 

mfðφÞ. 

The state jΦi now corresponds to the fermion vacuum and 

the scalar boson coherent state, yielding the following 

fermionic contribution to the effective potential: 

VðefffÞðφÞ¼−2Z ωðkfÞðφÞð 2dπ3k3Þ; 

ωðkfÞðφÞ¼qk2þm2fðφÞffi: 

ð2:24Þ 

Introducing an upper momentum cutoff Λ, a calculation 

similar to the one for the bosonic case yields the fermionic 

contribution to the effective potential, 

VðefffÞðφÞ ¼ −4 Λπ42 þ m2fðφÞ Λ2 − 

mf4ðφÞln 4μΛ22   

þ 164fðπφ2Þlnm2fμð2φÞ  :

 ð2:25Þ m 

Renormalization proceeds as in the bosonic case. These 

results are in agreement with those of Refs. [6,15,16], and 

while these are fairly well known, the main objective of 

rederiving them here within the Hamiltonian formulation 

is to highlight the following aspects: (i) the effective 

potential is a static quantity, (ii) it can be directly obtained 

from the Hamiltonian framework as the expectation value 

of the quantized Hamiltonian in the particular coherent 

state jΦi 

yielding the expectation values (2.3), and (iii) This analysis 

informs on the renormalization aspects associated with the 

effective potential and serve as a guide to the 

renormalization in the dynamical case studied in the next 

sections. 

We will not pursue the fermionic case further in this 

article, postponing its detailed study to a forthcoming 

article. The main and only reason for introducing the case 

of Yukawa coupling to fermions is to highlight that the 

Hamiltonian formulation of the effective potential 

reproduces the well-known results obtained by summation 

of Feynman diagrams or functional methods which are best 

suited for the static case and is not restricted to the bosonic 

case. 

Although the effective potential is a static quantity, it is 

often used in effective equations of motion for φ, namely, 

 φ̈ ðtÞ þ ddφVeffðφðtÞÞ ¼ 0; ð2:26Þ 

or in cosmology including the Hubble-friction term [13]. 

Underlying this use of the static effective potential in a 

dynamical equation of motion is the unspelled (and 

unexamined) assumption of quasistatic or adiabatic 

evolution, namely that the evolution of φðtÞ is “slow 

enough” that using a static effective potential is warranted. 

A main objective of this work is to critically assess this 

assumption, identify under which circumstances it is 

warranted, analyze the circumstances when it is not, and 

provide a consistent framework to study the dynamics. 

III. DYNAMICS: AN ADIABATIC EFFECTIVE 

POTENTIAL? 

When φ evolves in time, the dynamics must be studied 

by evolving a density matrix in time, for which the 

Schwinger-Keldysh or in-in formulation is better suited 

[18–22]. We here provide an alternative by extending to the 

dynamical case, the Hamiltonian formulation of the 
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effective potential up to one loop advanced in Refs. [15,16] 

and summarized in the previous section (see also Ref. [6]). 

In the dynamical situation the constraints (2.3) are relaxed 

allowing the homogeneous expectation values of field and 

canonical momentum to depend on time. 

Therefore, we consider a coherent state
ˆ 

and its canonical 

conjugate momentumjΦi such that theπˆ 

field operator ϕ 

acquire spatially homogeneous but time dependent 

expectation values, namely, hΦjϕˆðx;t⃗ ÞjΦi ¼ φðtÞ; 

hΦjπˆðx;t⃗ ÞjΦi ¼ φ˙ðtÞ; ð3:1Þ 

where φðtÞ is a classical. Thereforehomogeneous field, 

namely ajΦi characterizes a dynamical mean field 

spatially translational invariant coherent state (annihilated 

by the spatial momentum operator). To describe this 

dynamical case, we work in the Heisenberg picture 

wherein operators evolve in time but states do not, hence 

the coherent statefield equations obtained from the 

actionjΦi is time independent. The Heisenberg(2.1) are 

 ∂2t ϕˆ −∇2ϕˆ þ V0ðϕˆÞ ¼ 0; ð3:2Þ 

with , which are obviously also satisfied as expectation 

values in the time independent coherent state jΦi, namely, 

hΦj½∂2t ϕˆ −∇2ϕˆ þ V0ðϕˆÞjΦi ¼ 0; ð3:3Þ 

and we consider the following initial conditions: 

hΦjϕˆðx;⃗ 0ÞjΦi ¼ φð0Þ ð3:4Þ 

hΦjπˆðx;⃗ 0ÞjΦi ¼ φ˙ð0Þ: ð3:5Þ 

As in the static case we write the field operators separating 

the “classical” expectation values, namely the mean fields, 

and the quantum fluctuations, ϕˆðx;t⃗ Þ¼φðtÞþδˆðx;t⃗ Þ; 

πˆðx;t⃗ Þ¼φ˙ðtÞþπˆδðx;t⃗ Þ; ð3:6Þ 

which in accordance with Eq. (3.1) requires vanishing 

expectation values of the fluctuations in the coherent state 

jΦi, namely, 

 hΦjδˆðx;t⃗ÞjΦi ¼ 0; hΦjπˆδðx;t⃗ÞjΦi ¼ 0: ð3:7Þ 

Using Eqs. (3.6) and (3.7), the expectation value of the 

field Hamiltonian operator (2.2) can be written as hΦjHˆ 

jΦi ¼ Vφ˙22ðtÞ þ VðφðtÞÞ  þ hΦjHδjΦi; ð3:8Þ 

with Hδ ¼ Z d  2 þ ∇2 þ 2 þ ; ð3:9Þ 

 ̂  2 2

where the expectation values of the linear terms in πˆδ;δˆ 

vanish by Eq. (3.7), V is the spatial volume in which the 

field is quantized, and we have expanded the potential 

motionaround the mean field(3.2) becomes φðtÞ. The 

Heisenberg equation of φ̈ ðtÞ þ V0ðφðtÞÞ þ ∂2t δˆ −∇2δˆ þ 

V00ðφðtÞÞδˆ 

 þ  þ  ¼ 0; ð3:10Þ 

and similarly with its expectation value in the coherent 

state jexplore dynamical aspects in Ref.Φi (3.3). A related 

approach has also been considered to[23]. 

A. Quantization 

The quadratic terms in δˆ 
in the Hamiltonian (3.9) 

describe a free field theory but now with a time dependent 

mass term V00ðφðtÞÞ. Therefore, in analogy with the static 

case, we proceed to quantize the theory by considering the 

solutions of the linearized equations of motion, describing 

a free field with a time dependent mass V00ðφðtÞÞ, namely, 

 ∂2t δˆ −∇2δˆ þ V00ðφðtÞÞδˆ ¼ 0: ð3:11Þ 

The field operators δˆðx;t⃗ Þ;πˆδ are expanded in Fourier 

modes in the quantization volume V, 
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pℏffiffi Xk  k⃗ k ik⃗ ·x⃗ k†⃗ gkðtÞe−ik⃗ ·x⃗ ; ð3:12Þ 

δˆðx;t⃗ Þ ¼ pV ⃗ a g ðtÞe þ a 

pℏffiffi Xk  k⃗ k ik⃗ ·x⃗ k†⃗ g˙kðtÞe−ik⃗ ·x⃗ ; ð3:13Þ 

πˆδðx;t⃗ Þ ¼ pV ⃗ a g˙ ðtÞe þ a 

and the mode functions, gkðtÞ, obey the equation of motion 

g̈ kðtÞþω2kðtÞgkðtÞ¼  ð Þ ½ þ ð 

ðtÞÞ; ð3:14Þ 

with the Wronskian condition dictated by canonical 

commutation relations to be 

 g˙kðtÞgkðtÞ − gkðtÞg˙kðtÞ ¼ −i: ð3:15Þ 

The annihilation and creation operators ak⃗ ;a†k⃗ are time 

of the mode equationsindependent because the mode 

functions(3.14), thereby the fluctuation fieldgkðtÞ are 

solutions equationδˆðx;t⃗ Þ is a solution of the linearized 

Heisenberg field(3.11). They obey standard canonical 

commuta- 

tion relations and the condition 

 ak⃗ jΦi ¼ 0; ð3:16Þ 

hence ensuring the fulfillment of the conditions (3.7). Just 

as in the static case, the conditions (3.7) are also fulfilled if 

the statewith eigenvaluejΦi is an eigenstate of the number 

operatornk. We have explicitly included pℏffi in thea†k⃗ ak⃗ 

expressions (3.12) and (3.13) to highlight below the 

connection with the loop expansion [4,6,9] as in the static 

case of the previous section. We can now obtain the energy 

density and the expectation value of the Heisenberg field 

equation, with hΦjHδjΦi ¼ 2 Xk ½jg˙kðtÞj2 þ ω2ðtÞjgkðtÞj2 

þ Oðℏ2Þ: 

ℏ 

⃗ 

ð3:17Þ We obtain up to OðℏÞ (one loop) 

 E ¼ hΦjHVˆ jΦi ¼ 12φ˙2ðtÞ þ VðφðtÞÞ þ EfðtÞ; ð3:18Þ 

where we have introduced the energy density from oneloop 

quantum fluctuations 

ℏ Z d3k3 k 2 2 k

 2 

 EfðtÞ ¼ 2 ð2πÞ ½jg˙ ðtÞj þ ω ðtÞjg ðtÞj : ð3:19Þ 

If the state jΦnki, the bracket in the above expression isis 

an eigenstate of the number operator with eigenvalue 

multiplied by 1 þ 2nk, just as in the static case this state 

would be of higher energy. The vacuum state with nk ¼ 0 

yields the lower fluctuation energy in the static and the 

dynamical cases. 

Similarly, up to one-loop order [OðℏÞ] the expectation 

value of the Heisenberg field equation (3.3) in the coherent 

state jΦi becomes φ̈ ðtÞþV0ðφðtÞÞþ 2V000ðφðtÞÞZ 

ð2dπ3kÞ3jgkðtÞj2¼0: ð3:20Þ 

ℏ 

To obtain both expressions we used the linearized 

equations of motion (3.11), the field expansions (3.12) and 

(3.13), the constraint (3.16), and the infinite volume limit 

Pk⃗ →V R d3k=ð2πÞ3. 
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contributions: these arise fromThe OðℏÞ terms in 

(3.18)hΦandjπˆδ2j(3.20)Φi;hΦjareδˆ2jΦone-loopi, which 

are simply the propagators (or derivatives) closed onto 

themselves. Solving the Heisenberg field equations, along 

with the constraints (3.7) in a systematic perturbative 

expansion in the nonlinearities, will generate higher orders 

in the loop expansion. In this article we focus on the 

oneloop [OðℏÞ] contribution to the energy density and 

equations of motion of the mean field. 

The total Hamiltonian does not depend explicitly on 

time, hence energy is conserved and in the Heisenberg 

picture the state jΦi is time independent, therefore the 

expectation value of the energy density in the coherent state 

jmotion of the mode functionsΦi is conserved, namely E˙ 

¼(3.14)0. Using the equations ofand the form of the 

time dependent frequencies (3.14), it is straightforward to 

find 

E˙ ¼ φ˙ðtÞφ̈ ðtÞ þ V0ðφðtÞÞ þ ℏ2 V000ðφðtÞÞ Z ð

2dπ3kÞ3 jgkðtÞj2  

 ¼ 0; ð3:21Þ 

therefore the expectation value of the equation of motion 

(3.20) is the statement of conservation of the (expectation 

value) of the energy density. 

This dynamical conservation law is of paramount 

importance; if the amplitude of the modesin time the 

fluctuation contribution to the energy densitygkðtÞ grows 

grows at the expense of the classical part of the energy, 

resulting in a damping of the φðtÞ amplitude. As it will 

begkðtÞj is a consequence studied in detail below, growth 

of j of instabilities and particle production. Therefore 

instabilities in the fluctuations entail dissipative damping 

[22] of φðtÞ. In turn, as discussed in detail below, these 

instabilities entail the breakdown of a quasistatic or 

adiabatic approximation and imply that using the static 

effective potential in the equation of motion of the mean 

field is unwarranted. 

An important corollary of this analysis is that replacing 

the second and third terms in the equation of motion (3.20) 

by the field derivative of the static effective potential in the 

case when φðtÞ evolves in time clearly violates energy 

conservation. This is because energy is conserved only 

mode equationswhen the mode functions(3.14) and not of 

the formgkðtÞ are the solutions of thee∓iωkt as used in 

the calculation of the static effective potential as is explicit 

in the quantization [(2.9) and (2.10)] for the static case. 

This observation will become more clear with the analysis 

in the next section. 

B. Adiabatic approximation 

Using the effective potential in the equations of motion 

of the mean field is usually argued to describe the dynamics 

in a quasistatic or adiabatic approximation. Here we 

introduce the adiabatic expansion that consistently 

implements this approximation to understand its regime of 

validity. Given the time dependence of the frequencies in 

Eq. (3.14), we seek an approximate solution for the mode 

functions in terms of a Wentzel-Kramers-Brillouin (WKB) 

ansatz [24], 

e−iR0t Wkðt0Þdt0 

 gkðtÞ ¼ p2WkðtÞffi ; ð3:22Þ 

which when inserted into Eq. (3.14) reveals that WkðtÞ 
must 

satisfy 

 Wk2ðtÞ ¼ ωk2ðtÞ − 21 WẄ kk − 32WW˙ 2k2k : ð3:23Þ 

The resulting equation can be solved in an adiabatic 

expansion: 2k ω2kðtÞ1 − 1ω ̈kk þ 3 ω˙kk 2 þ  : ð3:24Þ W 

ðtÞ ¼ 

In such an expansion, terms which contain n derivatives of 

ωk are known as of nth order adiabatic. Inspecting the 

resulting equation reveals that it contains exclusively terms 

of even adiabatic order. 

Using the WKB ansatz and assuming that WkðtÞ is real, 

one can show that 

 2 1 

 jgkðtÞj ¼ 2WkðtÞ ð3:25Þ 

W 
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 jg˙kðtÞj2 ¼ k2ðtÞ 1 þ 14 WW˙ 2kk 2 ;

 ð3:26Þ 

which can be combined with Eq. (3.17) to give hΦjHˆ 

δjΦi ¼ 14  Xk WkðtÞ1 þ 41 WW˙ 2kk 2  þ 

Wωkð2ktÞ: 

ð3:27Þ 

We now proceed by invoking the adiabatic expansion, Eq. 

(3.24), and expanding this expectation value up to second 

order adiabatic. After carrying out these algebraic 

manipulations we obtain up to second adiabatic order 

hΦjHˆ δjΦi ¼ 12  Xk ωk1 þ 81 ωω˙2kk 2 þ ; ð3:28Þ 

jgkðtÞj2 ¼ 2ω1kðtÞ 1 þ 41ωω̈ 3kk − 3  ω˙kk 2 þ  ;

 ð3:29Þ 

where the dots stand for terms of higher adiabatic order. 

Following the analysis of the static case, one may 

introduce an adiabatic effective potential as 

 VðeffadÞð : ð3:30Þ 

With the result (3.28), we can now express this adiabatic 

effective potential up to second adiabatic order, obtaining 

(ℏ ¼ 1) 

VðeffadÞðφÞ≡VðφðtÞÞþ 21Z ð2dπ3kÞ3ωkðtÞþ161 

Z ð2dπ3kÞ3ωω˙ 2k3kððttÞÞ: 

ð3:31Þ 

Recalling the definition of the frequencies, ωkðtÞ, given by 

Eq. (3.14) and (3.31) becomes 

effad ≡  1Z d3k3q 

2 ffi 

Vð ÞðφÞ VðφðtÞÞþ2 ð2πÞ k þV00ðφðtÞÞ 

þ 642ðtÞðV000ðφðtÞÞÞ2Z 

ð2dπ3kÞ3ðk2þV00ð1φðtÞÞÞ5=2: φ˙ 

ð3:32Þ 

The identification of this expression with an adiabatic 

effective potential warrants discussion. The first term 

represents the usual classical potential energy density of 

the field configuration. The second term is a zeroth-order 

adiabatic correction which encodes the effects of the 

quantum fluctuations. Notice this term is identical to the 

usual result for the one-loop effective potential (2.13) 

found in Sec. II for the static case, but now in terms of the 

dynamical expectation value φðtÞ. This is of course 

expected because the zeroth-order adiabatic does not 

include any terms with time derivatives of φðtÞ. This term 

features all the ultraviolet divergences found within the 

context of the static effective potential (2.14) and would 

underpin using the usual effective potential in the evolution 

equation for φðtÞ as in Eq. (2.26). 

However, the third term represents the second order 

adiabatic correction which is a consequence of quantum 

fluctuations. This term is a distinct consequence of the time 

dependence of the expectation value, φðtÞ, and is 

completely missed if one assumes that the usual form of 

the effective potential extends without qualification to the 

scenario of a dynamical expectation value as in Eq. (2.26). 

The integral expression for the second adiabatic order 

correction can be evaluated in a straightforward manner 

provided we assume V00ðφÞ > 0: 

φ˙2 2 Z  d3k3

 2 1 

64ðV000ðφðtÞÞÞ ð2πÞ ðk þ V00ðφðtÞÞÞ5=2 

φ˙2 2 ðV000ðφðtÞÞÞ2 ; ðV00ðφðtÞÞ > 0Þ: ð3:33Þ ¼ 

384π V00ðφðtÞÞ 

It is noteworthy that this contribution (and the higher 

adiabatic orders) is ultraviolet finite, albeit it may feature 
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infrared divergences whenever V00ðφðtÞÞ vanishes, 

signalling the breakdown of the adiabatic approximation. 

Of course, there are additional, higher adiabatic order 

corrections to the effective potential which at and beyond 

second adiabatic order all feature time derivatives of φðtÞ 
and they are all ultraviolet finite. At present, we restrict 

ourselves to a study of the second order adiabatic 

correction, which suffices to highlight if and when the 

adiabatic approximation breaks down. 

C. Equations of motion and the adiabatic 

effective potential 

In the scenario where the expectation value of the scalar 

field is time dependent, hΦjϕˆðx;t⃗ ÞjΦi ¼ φðtÞ, we are 

interested in the dynamics of this classical field. Inserting 

Eqs. (3.6) and (3.7) into the expectation value of the 

Heisenberg equations of motion for ϕˆ
, Eq. (3.2), and 

expanding up to Oðδ2Þ ∝ℏ yields the following equation of 

motion for the expectation value: 

 1 ˆ2 x;t⃗ ÞjΦi ¼ 0;

 ð3:34Þ 

φ̈ þ V0ðφÞ þ 2V000ðφÞhΦjδ ð 

which upon using the Fourier expansion for the fluctuation 

given by (3.12), and upon setting ℏ≡ 1, becomes 

 φ̈ þ U0ðφÞ ¼ 0; ð3:35Þ 

where we have defined 

 1 d k 

U0ðφÞ ≡ V0ðφÞ þ 2 V000ðφÞ Z ð2π3Þ3 jgkðtÞj2:

 ð3:36Þ 

adThe important question is, does U0 ¼ ∂∂Uϕ ¼ ∂V∂ðeffϕadÞ 

with 

Vð
eff 

ÞðφÞ given by Eq. (3.30), which up to second adiabatic 

order is given by (3.31) and (3.32)? 

To investigate the relationship between U0, and 

dVð
eff

adÞðφÞ=dφ, we begin by using the result of the WKB 

ansatz, (3.25), and the adiabatic expansion, (3.24), to 

obtain U0 up to second order adiabatic: 

 1 d k 1 

U0ðφÞ ¼ V0ðφÞ þ 2 V000ðφÞ Z ð2π3Þ3 2Wk

 ð3:37Þ 

 U

 Þ 

 d 3 ω̈ 
4 ω2   

 ×ð2 Þ k 4 k 8 k þ  : ð3:38Þ 

For comparison, using Eq. (3.31), we can obtain 

dVð
eff

adÞ=dφ to second adiabatic order: 

dVðeffadÞ 1 Z d3k dφ ¼ 

þ 4 V000ðφÞV0ðφÞ 

 ð2πÞ3 

 1k φ˙ ω˙4kk V0000 V0002k 3ω˙2kk   

×þ 4 ω V000 − 2ω −þ  ; ω 

ð3:39Þ 

where we have made use of Eq. (3.14) to calculate the 

necessary derivatives of the frequencies, treating φ and φ˙ 

independently. Direct comparison of the expressions for U0 

and dVð
eff

adÞ=dφ reveals many common terms. However, in 

the second integral expression lies an apparent 

discrepancy. Using the definition of the frequencies (3.14), 

we see that 

φ˙ 
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 ω4k ¼ 2ω5k Vþ ω 4k V  V :

 ð3:42Þ 

Inserting this result into our expression for U0ðφÞ gives 

1 

U0ðφÞ ¼ V0ðφÞ þ 4V000ðφÞ 

 d3k  1k φ˙ ω˙4kk V0000

 V000  

×3 þ 4 ω V − ð2πÞ ω 

 þ φ ̈ V000k − 3ω˙ kk2 þ  :

 ð3:43Þ 

Written in this form, we can now manifestly see that U0 and 

dVð
eff

adÞ=dφ do not match. In particular, using Eqs. (3.39) 

and (3.43), 

U0ðφÞ − dVðeffdadφÞðφÞ ¼ φ̈ ðV00016ðφÞÞ2 Z ð2dπ3kÞ3 

2ω15k þ  

 ¼ φ̈ 96ðVπ0002Vðφ00ÞÞðφ2Þ þ ; ð3:44Þ 

where the dots stand for higher derivatives of φðtÞ and we 

assumedad V00ðφðtÞÞ > 0. Hence, beyond leading 

adiabaticφðtÞ does not involve order the equation of 

motion for dVð
eff 

Þ=dφ but instead U0ðφÞ defined by Eq. 

(3.36). Obviously only when time derivatives of the 

expectation valuead φ vanish, in other words, the static 

case, U0ðφÞ ¼ dVð Þ=dφ. Therefore, it becomes very clear 

that while the adiabatic effective potential improves upon 

the (mis)use of the static effective potential in that it 

includes derivatives of φðtÞ, it is still not the proper 

quantity to use in the equations of motion of φðtÞ. (3.20) 

is 

As stated above, the equation of motion tantamount to 

the statement of the conservation of energy by Eq. (3.21), 

consequently neglecting the derivatives of φðtÞ by 

truncating the adiabatic expansion at some particular order 

of derivatives of φðtÞ entails a violation of energy 

conservation beyond that order. 

A practical question that obviously arises is the 

following: if a small violation of energy conservation is 

tolerated, what would be the range of validity of the 

adiabatic effective potential in a numerical study of the 

evolution of φðtÞ with the equation φ̈ ðtÞ þ dVdðeffφadÞ ¼ 

0; ð3:45Þ 

instead of the exact equation (3.35) with U0ðφÞ defined by 

(3.36)? 

yields a quantitative criterion to assess the regime ofFor a 

given classical potential VðφÞ, the result (3.44) 

validity, at least up to second adiabatic order. Let us 

consider first the typical case of 

1 2φ2 þ 

4λφ4 ð3:46Þ VðφÞ ¼ 2m 

with m2 > 0 for which 

U0ðφÞ − dVðeffdadφÞðφÞ ¼ φ̈ ðtÞ8λπ2 1 þ 

ðð3λφ3λφ2ðt2Þð=tÞm=2mÞ2Þ : 

ð3:47Þ 

In the small (dimensionless) amplitude regime 

3λφ2ðtÞ=m2 ≪ 1 the difference is a priori perturbatively 

ω˙k ¼ V000; 

2ωk 

ð3:40Þ 

 φ̈ φ˙2 φ˙ ω˙ 

 ω̈ k ¼ V000 þ V0000 − k V000; 

 2ωk 2ωk 2ωk ωk 

and thus 

 ω̈ k φ̈ 
φ˙ ω˙ k V0000 − φ˙ ω˙ k 000 

000 

ð3:41Þ 
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small, the potential (3.46) is dominated by the mass term, 

seems to be a regime in which both the adiabatic approxi-

and the field oscillates around the minimum φ ¼ 0. This 

mation and the adiabatic potential are reliable, however as 

we show below in the next section, precisely in this regime 

there are parametric instabilities resulting in a 

nonperturbative exponential growth of the mode functions 

and a complete breakdown of adiabaticity. 

differenceIn the large amplitude regime 3λφ2ðtÞ=m2 ≫ 1 

the (3.47) seems to be perturbatively small, of 

OðλÞ; however, in this regime the adiabatic approximation 

is no longer reliable for long wavelengths as shown by the 

following argument. For long wavelengthsthe second order 

adiabatic ratio that enters in the adiabatick2φ≪Þ 

≈3λφλφ24ð=t4Þ,, and in this large amplitude regime where 

Vð expansion (3.24) becomes 

 ω̈ kððttÞÞ ̈ ; ð3:48Þ 

however from the equation of motion at tree level it follows 

that φ̈ ðtÞ ≈λφ3 and in this regime we find that 

 ω̈ kððttÞÞ ≃Oð1Þ; ð3:49Þ 

therefore the adiabatic approximation is no longer valid for 

long wavelength modes with k2 ≪ 3λφ2ðtÞ. It is important 

to highlight that the breakdown of adiabaticity is associated 

with long wavelength fluctuations, for k ≫ V00ðφÞ the 

adiabatic approximation is reliable, and higher order terms 

in the adiabatic expansion become further suppressed in 

this limit. 

This analysis leads us to conclude that the regime of 

validity of an adiabatic effective potential is severely 

restricted to small amplitudes and short times when the 

 
1 This choice neglects the nonlinearities, but will capture the 

main aspects of parametric amplification. This analysis also 

parametric instabilities studied in detail in the next section 

have not yet led to a large growth of the mode functions. 

IV. BREAKDOWN OF ADIABATICITY 

The discussion above highlights that, in general, the 

equation of motion cannot be simply written as φ̈ þ 

V0
effðφÞ ¼ 0, even in an adiabatic approximation in terms 

of the adiabatic effective potential, and also illuminates if 

and when the adiabatic expansion breaks down. We 

recognize at least two ubiquitous relevant instances: (i) 

parametric amplification in the case of oscillating mean 

fields, and (ii) spinodal (tachyonic) instabilities in the case 

of spontaneous symmetry breaking. 

A. Parametric amplification 

The adiabatic approximation (3.24) relies on the 

assumption that W2kðtÞ > 0, namely that WkðtÞ defined by 

Eq. (3.22) is real. This means, for example, that if 

resulting mode functionsV00ðφðtÞÞ is an oscillatory 

function bounded in time, thegkðtÞandin the adiabatic 

approxima-(3.24) would also be tion, given by Eqs. (3.22) 

bounded in time, which precludes the possibility of 

resonances and parametric amplification. Consider the 

case with tree level potential 

VðφÞ ¼ m22 2 λφ4 ⇒ V00ðφÞ ¼ m2 þ 3λφ2; ð4:1Þ φ þ 4 

with m2 > 0, and consider that the mean field is oscillating 

around the minimum of this tree level potential with1 

 φðtÞ ¼ φð0ÞcosðmtÞ; ð4:2Þ 

defining 

π 

 mt ¼ τ þ : ð4:3Þ 

2 

The mode equations (3.14) become 

d2 

2 gkðτÞ þ ½ηk − 2αcosð2τÞgkðτÞ ¼ 0; ð4:4Þ dτ 

where we introduced the dimensionless variables 

neglects the damping of the amplitude from the backreaction of 
the fluctuations, which is discussed in detail below. 
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α ¼ 3λφ2ð0
2Þ; ¼ þ 2 þ 2α; κ ¼ mk :  ð4:5Þ 

η 1 κ 

4m 

The Eq. (4.4) is recognized as Mathieu’s equation [25–28]. 

Floquet’s theory [25] shows that solutions are of the form 

gkðτÞ ¼ eiνkτPkðτÞ; Pkðτ þ πÞ ¼ PkðτÞ; ð4:6Þ 

where νk is the characteristic exponent of Floquet solutions. 

If νk is real the (quasi)periodic solutions are stable, whereas 

if νk is complex there is one growing and one (linearly 

independent) decaying solution. The growing solution is a 

consequence of the parametric amplification instability 

associated with resonances, a subject of utmost importance 

within the theory of cosmological reheating [29–36]. The 

stability of solutions in the ηk −α plane have been 

thoroughly studied in the literature [25–28]. Unstable 

bands emanate from the resonance values ηk ¼ n2;n ¼ 

0;1;2… within these bands the characteristic Floquet 

exponent νk is complex and the mode functions either grow 

or decay exponentially, the growing mode gkð
τÞ ∝ ejImνkjτ. 

For generic initial conditions, the general solution is a 

combination of the growing and decaying solutions. Using 

the results from Refs. [26–28], we find that these unstable 

bands correspond to 

κ2
n;−≤κ2 ≤κ2

n;þ; κ2 > 0; n ¼ 0;1;2…: ð4:7Þ 

The bands for n ¼ 0, 1 are unphysical because these 

correspond to negative values of κ2; for n ≥ 2 a power series 

expansion in≲Oα ðfor1Þ] κare given for2
n; is available, the 

first fewn ¼ 2;3;4 in the terms [valid for α 

Appendix and displayed in Fig. 1. 

n ¼ 2;3;4. The range is constrained by κ2 

> 0. 

Figure 2 shows the numerical evaluation of the linearly 

independent solutions h0ðτÞ;h1ðτÞ with initial conditions 

h0ð0Þ ¼ 0;h00ð0Þ ¼ 1;h1ð0Þ ¼ 1;h10ð0Þ ¼ 0, respectively, 

for the unstable band with ηk ¼ 4;α ¼ 1 corresponding to κ2 

¼ 1, near the middle of the unstable band. This figure 

clearly shows the exponential growth associated with 

parametric amplification in the unstable bands. The 

Floquet exponents may be obtained analytically near the 

band edges by multitime scale analysis [25]; however, the 

actual values of these are not relevant for our general 

arguments. 

For comparison, Fig. 3 displays the solutions in the 

stable regions for η ¼ 3;5;α ¼ 1, on either side of the 

instability band at η ¼ 4.n 

The bandwidths Δκ2ðnÞ ¼  þ ¼ Cnα þ , with 

coefficients Cn that become monotonically decreasing with 

n (see the Appendix); therefore, for α≲Oð1Þ the bands 

become narrower, as explicitly shown in Fig. 1. 

In terms of the momenta k and the amplitude φð0Þ, the 

bandwidths become 

Δk2ðnÞ ¼ k2n; − k2n;− ¼ Cn ð3λφ22ððn0−Þ1=Þ4Þn þ : ð4:8Þ 

þ m 

This expression highlights that the bands are narrower 

for weak coupling, large masses, or small amplitudes. 

While this result is particular to Mathieu’s equation, we 

expect, quite generically, that bandwidths for resonances 

will feature qualitatively similar characteristics as 

functions of these parameters. 

Obviously, the exponential growth with time of the mode 

functions gkðtÞ implies a breakdown of adiabaticity for the 

values of momentum k within these unstable bands. This 

can be immediately seen from the adiabatic expansion 

(3.24). Since the frequencies ωkðtÞ are oscillatory, each 

and 

alltermsintheadiabaticexpansion(3.24)areoscillatoryand 

bounded in time. Therefore, jgkðtÞj2 and jg˙kðtÞj2 obtained 

via the adiabatic approximation [(3.25) and (3.26)] 
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are bounded in time. Instead, the Floquet solutions are 

unboundedintimeformodeswithintheunstablebands.The 

unstable Floquet solutions cannot be reliably captured by 

an adiabatic approximation, because secular terms 

associated with resonances [25] cannot be described by the 

adiabatic expansion (3.24). 

In the fluctuations contribution to the equation of motion 

(3.20), the integral in k ¼ mκ sweeps across the unstable 

bands within which jgkðtÞj2 grows exponentially in time. 

Consequently, the third term in (3.10) grows in time 

receiving contributions from all unstable bands within 

which there is exponential growth. We emphasize that this 

behavior is not captured by the simple effective potential 

nor any adiabatic approximation to it. 

The mode equation (4.4) is correct for oscillations of 

φðtÞ around an harmonic potential, for anharmonic 

potentials, the nonlinearity induces higher harmonics in the 

dynamical evolution of φðtÞ, in turn higher harmonics 

induce new resonances and unstable bands. However, 

while the instability chart will be modified by 

anharmonicity [22,29,30], the main observation that the 

adiabatic approximation cannot reliably describe 

parametric amplification with the concomitant growth of 

the mode functions is a generic result of broader 

significance. This analysis confirms that even in the small 

amplitude regime when the difference (3.47) seems to be 

perturbatively small, the adiabatic approximation breaks 

down because of parametric amplification and the 

adiabatic effective potential is not reliable to describe the 

dynamics. This analysis of Mathieu’s equation, valid for 

small amplitude, shows that parametric amplification and 

exponentially growing modes will continue as long as the 

amplitude of oscillations is nonvanishing. Exponential 

growth of parametrically amplified modes is effective 

unless the amplitude of oscillations vanishes. 

The breakdown of adiabaticity discussed in Sec. III C 

and by parametric amplification discussed above is 

manifest for long wavelengths. For k2 ≫λφ2ð0Þ, the 

adiabatic ratios ω̈ kðtÞ=ω3
kðtÞ; ð  ð Þ ð 

ÞÞ and the width of the unstable bands and the imaginary 

 

FIG.h0ð0Þ ¼2.1;hTwo00ð0Þ ¼linearly0;h1ð0Þ ¼independent0;h10ð0Þ ¼solutions1, for the unstable band forof Mathieu’s equationn ¼ 

2, with(4.4)η, ¼h40ðandτÞ;hα1ð¼τÞ1, corresponding towithgkðτÞ is a complex linearinitial conditionsκ2 ¼ 1, approximately in the 

middle of the first physical unstable band for κ. A general solution for a mode function combination of h0ðτÞ and h1ðτÞ satisfying the 

condition (3.15). 

 

FIG. 3. Two stable solutions of Mathieu’s equation (4.4), FðτÞ with initial conditionsη ¼ 4. Fð0Þ ¼ 1;F0ð0Þ ¼ 0, for η ¼ 3;5 and α ¼ 1, 

respectively, on either side of the first physical unstable band at 
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part of the Floquet exponents become smaller; therefore for 

large wave vectors the adiabatic approximation is reliable. 

This is expected on physical grounds as finite amplitude 

oscillations cannot efficiently transfer energy to very short 

wavelength modes; in other words, cannot excite high 

energy degrees of freedom. 

B. Spinodal instabilities 

The result (3.32) for the effective potential up to second 

adiabatic order exhibits an important caveat in the case of 

spontaneous symmetry breaking when the tree level 

potential features a maximum implying that V00ðφÞ < 0 in 

a region 0 ≤ jφðtÞj ≤ jφsj, where the actual value of φs 

depends on the particular form of the potential. This region 

is known as the classical spinodal and corresponds to an 

unstable region in field space [16,37–42]. In this region the 

effective mass squared M2ðφÞ ≡ V00ðφÞ in Eq. (2.8) is 

negative and the static effective potential (2.14) and its 

renormalized counterpart (2.19) feature an imaginary part. 

In Ref. [16] the physical interpretation of this imaginary 

part, associated with the spinodal instabilities, was 

elucidated: it yields the lifetime of a quantum state whose 

wave functional is localized in field space within the 

spinodal region [43]. In Refs. [41,42] the dynamics of such 

Gaussian wave functional and the growth of correlations 

associated with domain formation were studied in detail. 

To give a specific example, consider the tree level 

(classical) potential 

λ μ 

 VðφÞ ¼  2 −ϕ2 2; μ2 > 0;

 ð4:9Þ 

within the region 

 ⇒ V00ðφÞ < 0; ð4:10Þ 

to which we refer as the (classical) spinodal [37–39], the 

frequencies ωk in Eq. (3.14) are given by ωkðtÞ ¼ qk2 − 

jV00ðφðtÞÞjffi: ð4:11Þ 

For k2 < jV00ðφðtÞÞj these are purely imaginary describing 

the spinodal (tachyonic) instabilities which occur because 

the field configuration finds itself near a local maximum of 

its potential. 

In condensed matter systems these instabilities describe 

the early stages of a phase transition characterized by the 

formation of correlated domains, whose typical size, 

namely the correlation length ξðtÞ, grows in time [37–39]. 

A similar behavior emerges in quantum field theory as 

shown in Refs. [16,41,42], where the correlation length 

grows asfashion as in condensed matter systems with a 

noncon-ξðtÞ ∝ ptffi during the early stages, in a similar 

served order parameter [37–39]. These instabilities have 

also been discussed within the context of inflationary 

cosmology [43]. 

Since the adiabatic approximation (3.24) explicitly 

requires that WkðtÞ, introduced in Eq. (3.22), be real 

valued, such instabilities characterize a breakdown of 

adiabaticity. 

This breakdown is explicit in Eq. (3.32) where both the 

zeroth and second adiabatic order (the lowest orders) 

become complex because the momentum integrals receive 

purely imaginary contributions from the band of unstable 

wave vectors in the spinodal region k2 < jV00ðφðtÞÞj; this 

is the origin of the imaginary part of the static effective 

potential in this region. The result (3.33) assumed that the 

frequencies are purely real, namely that V00ðφðtÞÞ never 

becomes negative. 

Assuming that φðtÞ is initially near the maximum of the 

potential and rolls slowly down the potential hill, at early 

times the mode functions in the band of spinodally unstable 

momenta are to leading order in an adiabatic (derivative) 

expansion neglecting terms with time derivatives of φðtÞ 

under the assumption of a “slow roll,” are of the form 

gkðtÞ ¼ rkeR0t Ωkðt0Þdt0 þ ske−R0t Ωkðt0Þdt0 ; 

 ΩkðtÞ ¼ qjV00ðφðtÞÞj − k2ffi; ð4:12Þ 

where the complex coefficients rk, sk are determined by the 

initial conditions and Wronskian condition (3.15). The 

growth of the mode functions gkðtÞ continues until φðtÞ 

reaches the inflection or spinodal point V00ðφÞ ¼ 0 

corresponding to the end of the classical spinodal region, 

beyond 

whichThe essential conclusion with regards to spinodal 

insta-V00ðφðtÞÞ > 0. bilities and the effective potential is 
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twofold. (i) If the classical potential features a spinodal 

region, then a quasistatic, adiabatic description will fail to 

capture the dynamics of the system above the spinodal 

point. 

(ii) Moreover, even outside the spinodal region, a 

significant breakdown of adiabaticity can occur as the 

spinodal point is approached from below, even when 

arbitrarily slowly, because the frequencies ωkðtÞ vanish at 

the spinodal point and become imaginary above it, thus 

rendering a quasistatic, adiabatic approach ineffective. 

In a numerical integration of the equations of motion, it 

is possible to set initial conditions for which φðtÞ is well 

below the spinodal andspinodal instabilities altogether. 

Such a setup must alsoV00ðφÞ > 0, thereby avoiding the 

avoid possible excursions ofspinodal at which V00ðφðtÞÞ 

¼ φ0ðbecause in this case thetÞ near the end of the 

adiabatic approximation also breaks down for small 

momenta. Even restricting initial conditions to avoid the 

region withð V00ðwill lead to parametric instabilities as 

dis-φÞ ≤ 0, the oscillations of φðtÞ in the region 

V00ðφ tÞÞ > 0 

cussed in the previous section. Therefore insisting on using 

the static effective potential or even the adiabatic effective 

potential is clearly unreliable, leading to a manifest 

violation of energy conservation and to completely miss 

exponentially growing modes associated with spinodal or 

parametric instabilities. 

C. Nonadiabatic particle production 

As emphasized in the above discussion, the equation of 

motion for φðtÞ, (3.20) is the statement of the conservation 

of the total energy density (3.18) when the mode functions 

obey the Eq. (3.14). In the case of instabilities, either 

parametric or spinodal, the fluctuation contribution to the 

total energy density, EfðtÞ given by Eq. (3.19), grows at the 

expense of the first two, classical terms in the energy 

density (3.18). In this subsection we seek to establish a 

correspondence between the growth of EfðtÞ and particle 

production. 

1. Parametric instabilities 

In the case of parametric instabilities for a convex 

function VðφÞ which can always be defined to be positive, 

the first two terms in (3.18) are manifestly positive and so 

is the fluctuation term EfðtÞ, because ω2
kðtÞ > 0. Therefore, 

energy conservation implies that the nonadiabatic growth 

of the fluctuation term must result in a damping of the 

amplitude of φðtÞ. The draining of the classical part of the 

energy, namely the first two terms in (3.18), can be 

interpreted as the profuse production of adiabatic particles. 

This can be understood from the following argument. 

In the expansion of the field in terms of the exact mode 

functions (3.13), the annihilation and creation operators ak⃗ 

;a†k⃗ are time independent because the mode functions 

gkðtÞ obey the Heisenberg field equation (3.11). Following 

[24,44–50], we can introduce time dependent operators by 

expanding in the basis of the zeroth-order adiabatic particle 

states. Introducing the zeroth-order adiabatic modes, 

 f˜kðtÞ ¼ e−piR2tωωkkððt0tÞÞdtffi 0 ; ð4:13Þ 

we can expand the exact mode functions gkðtÞ as gkðtÞ ¼ 

A˜ kðtÞf˜kðtÞ þ B˜ kðtÞf˜kðtÞ ð4:14Þ 

and define [44,49,50] g˙kðtÞ ¼ −iωkðtÞ½A˜ kðtÞf˜kðtÞ − 

B˜ kðtÞf˜kðtÞ: ð4:15Þ 

The relations (4.14) and (4.15) can be inverted to yield the 

Bogoliubov coefficients [49], 

 A˜ kðtÞ ¼ if˜kðtÞ½g˙kðtÞ − iωkðtÞgkðtÞ ð4:16Þ 

 B˜ kðtÞ ¼ −if˜kðtÞ½g˙kðtÞ þ iωkðtÞgkðtÞ: ð4:17Þ 

It follows from the Wronskian condition (3.15) that jA˜ 

kðtÞj2 − jB˜ kðtÞj2 ¼ 1: ð4:18Þ 
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The definition (4.14) yields ak⃗ gkðtÞ þ a†−k⃗ gkðtÞ ¼ ck⃗ 

ðtÞf˜kðtÞ þ c†−k⃗ ðtÞf˜kðtÞ; ð4:19Þ ak⃗ g˙kðtÞ þ a†−k⃗ g˙kðtÞ 

¼ −iωkðtÞðck⃗ ðtÞf˜kðtÞ − c−†k⃗ ðtÞf˜kðtÞÞ; 

ð4:20Þ 

where 

ck⃗ ðtÞ¼ak⃗ A˜ kðtÞþa−†k⃗ B˜ kðtÞ; c†k⃗ ðtÞ¼a†k⃗ A˜ kðtÞþa−k⃗ 

B˜ kðtÞ: 

ð4:21Þ 

The condition (4.18) ensures that ck⃗ ðtÞ;c†k⃗ ðtÞ obey equal 

time canonical commutation relations. 

Although in principle other definitions of particles are 

possible, there are two important and compelling aspects 

that distinguish the zeroth adiabatic basis choice over other 

possible choices: (i) if there is an asymptotic stationary 

state such that the frequencies ωkðtÞ →ωkð∞Þ, the creation 

and annihilation operators become constant in time 

c†ðtÞ;cðdescribes asymptotictÞ → c†ð∞Þ;cð∞Þ and the 

right-hand side of“out” states with the time 

(4.19) 

evolution e∓iωkð∞Þt. (ii) The time dependent operators ck⃗ 

ðtÞ;c†k⃗ ðtÞ associated with the zeroth-order adiabatic 

modes have special significance: it is straightforward to 

show that the quadratic Hamiltonian Hδ given by Eq. (3.9) 

can be written as 

 Hδ ¼ Xk ℏωkðtÞc†k⃗ ðtÞck⃗ ðtÞ þ 12  : ð4:22Þ 

⃗ 

Therefore defining the instantaneous adiabatic vacuum 

state j0aðtÞi so that 

 ckðtÞj0aðtÞi ¼ 0∀ k;t; ð4:23Þ 

the Fock states, 

ðc† 

 jnk⃗ ðtÞi ¼pk⃗ ðntÞÞk⃗ !ffink⃗ j0aðtÞi;nk⃗ ¼ 0;1;2…; ð4:24Þ 

are instantaneous eigenstates of HδðtÞ to which we refer as 

adiabatic particles. The number of adiabatic particles at a 

given time in the coherent state jΦi is given by 

 N˜ kðtÞ ¼ hΦjc†k⃗ ðtÞck⃗ ðtÞjΦi ¼ jB˜ kðtÞj2: ð4:25Þ 

This result can also be understood from the relation (4.17) 

and the Wronskian condition (3.15) which yield 

N˜ kðtÞ ¼ 2 ω1kðtÞ½jg˙kðtÞj2 þ ωk2ðtÞjgkðtÞj2 − 21

; ð4:26Þ 

from which it follows that 

V 1 hΦjHδðtÞjΦi ¼ ℏ2 Z ð2dπ3kÞ3ωkðtÞ½1 þ 

2N˜ kðtÞ: ð4:27Þ 

adiabatic order mode function, thenNote that if gkðtÞ 

coincides exactly with the zeroth-orderA˜ kðtÞ ¼ 1;B˜ kðtÞ 

¼ 0 

and there is no particle production; however, if
˜

k 

tÞ;gf˜kkððttÞÞ, theis a linear combination of both adiabatic 

modes f ð 

Bogoliubov coefficients Ak;Bk ≠ 0. This is important 

because the zeroth adiabatic order for gkðtÞ yields the usual 

effective potential as shown explicitly above. 

Therefore, we conclude that the failure of the effective 

potential to correctly describe the dynamical evolution of 

φadiabatic particlesðtÞ is explicitly a consequence of the. 

The growth of gkðtÞ as a consequenceproduction of 
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of parametric instabilities leads to profuse particle 

production. From the relation (4.17) it is clear that the 

exponential 

exponential growth in the adiabatic particle number.growth 

of gkðtÞ within the instability bands yields an 

The relation of the fluctuation component of the energy 

from the resultdensity EfðtÞ and particle production can be 

made explicit(4.27), yielding the energy density (3.18) 

directly in terms of the adiabatic particle number, namely 

(setting ℏ ¼ 1) 

ω ðtÞ½1 þ 2N ð 

E ¼ 12φ˙2ðtÞ þ VðφðtÞÞ þ 12 Z 

ð2dπ3kÞ3 k ˜ k tÞ: 

ð4:28Þ 

Comparing with the one-loop static effective potential 

(2.13), we see that the first term in the integral in (4.28) is 

precisely the one-loop contribution to the effective 

potential, now with the mean field φðtÞ depending on time; 

therefore we write (4.28) in a more illuminating manner as 

E ¼  21φ˙2ðtÞ þ VeffðφðtÞÞ þ Z  ð2dπ3kÞ3ωkðtÞN˜ 

kðtÞ; ð4:29Þ 

with 

 1 d k 

VeffðφðtÞÞ ¼ VðφðtÞÞ þ 2  Z ð2π3Þ3ωkðtÞ

 ð4:30Þ 

being the effective potential extrapolated from the static 

case (2.13) to the dynamical case, given by Eq. (2.14), and 

its renormalized version (2.19) with φ→φðtÞ. The final 

expression for the energy density (4.29) shows explicitly 

that, in the presence of particle production, the effective 

potential does not yield the correct description of the 

dynamics. 

The initial condition on the mode functions, 

 1 −iω 

 gkð0Þ ¼ p2ωkð0Þffi ; g˙kð0Þ ¼ p2ωkkðð00ÞÞffi ;ð4:31Þ 

yields 

 N˜ kð0Þ ¼ 0; ð4:32Þ 

corresponding to the zeroth-order adiabatic vacuum state. 

Parametric amplification leads to profuse particle 

production via the exponential growth of mode functions 

within the unstable bands with the concomitant growth of 

the occupation number of adiabatic particles N˜ kðtÞ. 

Particle production from parametric amplification is a 

well-known phenomenon studied in detail within the 

context of postinflationary reheating [29–36]. However, to 

the best of our knowledge, its connection with the 

shortcomings of the use of the effective potential to 

studying the dynamical evolution of the expectation value 

of a scalar field with radiative corrections has not been 

previously highlighted. 

2. Spinodal instabilities 

spinodally unstable modes withthe mode functionsIf 

j2φðtÞj < jφsj, spinodal instabilities lead to growth ofgkðtÞ 

given by Eq.k2 < (4.12)jV00ðφðin the band oftÞÞj. Because 

the ωkðtÞ are negative for these modes, it is not obvious 

that the fluctuation contribution to the energy density, 

namely 

However, the following argument indeed shows thatEfðtÞ 

given by Eq. (3.19), is positive and grows in time.E˙f tÞ ð 

is positive and grows exponentially: taking the time 

derivative of EfðtÞ and using the mode equations (3.14) 

yields (setting ℏ ¼ 1) 
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 E˙fðtÞ ¼ 12 dtd V00ðφðtÞÞZ ð 2dπ3kÞ3 jgkðtÞj2;

 ð4:33Þ 

as φðtÞ rolls down the potential hill within the spinodal 

region,negative value up toV00ðφðtÞÞ increases as a 

function of time from aV00ðφsÞ ¼ 0. Therefore E˙f > 0 and 

grows exponentially during this regime as a consequence 

of the exponential growth of the mode functions. 

Since the total energy is conserved, the growth in the 

fluctuation contributions is at the expense of diminishing 

the classical part, namely the first two terms in (3.18). 

Obviously there is no possible definition of adiabatic 

modes within this region as the frequencies are purely 

imaginary for k2 < jV00ðφðtÞÞj. Therefore, unlike the 

case(4.28)], of parametric instabilities discussed above [see 

Eq. 

EfðtÞ cannot be written solely in terms of an occupation 

number of adiabatic particles. However, as φðtÞ rolls down 

the “hill” towards a stable minimum of the potential 

including radiative corrections, the drain of the classical 

part of the energy implies that its amplitude damps out. The 

mean field eventually will oscillate around this minimum 

below the spinodal point where the frequencies become 

real ωkðtÞ ¼ pk2 þ V00ðφðtÞÞffi with V00ðφðtÞÞ > 0. This 

suggests separating the spinodally unstable modes, for 

which the maximum unstable wave vector is given by 

 Ks ¼ jV00ð0Þj; ð4:34Þ 

and for k ≤ Ks we define the interpolating frequencies ϖkðtÞ 

¼ qk2 þ jV00ðφðtÞÞjffi; ð4:35Þ 

in terms of which we now introduce the mode functions, 

 k e−iR t ϖkðt0Þdt0 

 f ðtÞ ¼ p2ϖkðtÞffi : ð4:36Þ 

Following the steps leading to Eqs. (4.14) and (4.15), for k 

≤ Ks we now write 

gkðtÞ ¼ A¯ kðtÞf¯kðtÞ þ B¯ kðtÞf¯kðtÞ;

 ð4:37Þ g˙kðtÞ ¼ −iϖkðtÞ½A¯ kðtÞf¯kðtÞ − B¯ kðtÞf¯kðtÞ;

 k ≤ Ks; 

ð4:38Þ 

whereas for k > Ks we use the zeroth-order adiabatic mode 

functions f˜kðtÞ given by (4.13) along with the definitions 

(4.14) and (4.15). 

The advantage of introducing the (interpolating) mode 

functions f¯kðtÞ and the definitions (4.37) and (4.38) is that 

we expect that asymptotically at long time, when φðtÞ 

oscillates below the spinodal, they merge with the 

asymptotic adiabatic modes. 

In analogy with the previous case, for the spinodally 

unstable wave vectors k < Ks we introduce 

jB¯ kðtÞj2 ≡N¯ kðtÞ ¼ 2ϖ1kðtÞ½jg˙kðtÞj2 þ 

ϖk2ðtÞjgkðtÞj2 − 12 : 

ð4:39Þ 

In order to understand particle production within the 

spinodal region more quantitatively, let us consider an 

initial condition with φðtÞ near the (shallow) maximum of 

the potential and slowly evolving towards the bottom, and 

set the following initial conditions on the mode functions: 

 k p 1k ffi k p−iϖkkð0Þffi ; ð4:40Þ 

 g ð0Þ ¼ 2ϖ ð0Þ; g˙ ð0Þ ¼ 2ϖ ð0Þ 

which fulfill the Wronskian condition (3.15) and yield 

N¯ kð0Þ ¼ 0, describing the vacuum corresponding to 

the“upright” harmonic potential with frequentheory with 

an 

cies ϖð0Þ. EfðtÞ as We can 

now write 
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þ ½V ðφðtÞÞ − jV ðφðtÞÞj 0 k2jgkðtÞj 4dkπ2 

Z0Λ k2½ϖkðtÞN kð s k ˜ k tÞΘðk − KsÞ2dkπ2 ¯ tÞΘðK − 

kÞ þ ω ðtÞN ð 

ð4:41Þ 

where Λ is an ultraviolet cutoff. 

The total energy density (3.18) becomes 

 1 Λ 

 Eφ˙2  φ Z 2 ϖ 

Θ − ω Θ − dk 

¼ 2 ðtÞ þ Vð ðtÞÞ þ 0 k ½ kðtÞ ðKs kÞ þ kðtÞ ðk KsÞ4π2 þ Z0Λ k2½ϖkðtÞN¯ 

kðtÞΘðKs − k ˜ k tÞΘðk − KsÞ2dkπ2 kÞ þ ω ðtÞN ð 

þ ½V00ðφðtÞÞ − jV00ðφðtÞÞj Z0Ks k2jg 

ðtÞj2 

number,” and the last terms in Eqs. (4.41) and (4.42) vanish. 

When φðtÞ begins 

oscillations around the 

broken symmetry 

minimum, namely 

beyond the spinodal 

point, the evolution of 

the gkðtÞ results in the 

production of particles 

by parametric 

amplification, 

determined by Eq. (4.25) 

but now defined in terms of the oscillations around the 

stable broken symmetry minimum of the tree level 

potential. Therefore the definition of “adiabatic modes” 

(4.36) and particle number (4.39) merge smoothly with the 

definition of adiabatic particles within the context of 

parametric amplification. Different definitions of “particle” 
are possible; an advantage of the definition in terms of the 

asymptotic adiabatic mode functions (4.36) is that it merges 

Although it is not necessary to rewrite the energy density 

in this form because the set of equations (3.14) and (3.20) 

contain all the information, there are three important 

aspects that emerge from Eq. (4.42): (i) although the 

definition of “adiabatic particles” in terms of the mode 

functions (4.36) yielding the number of “particles” (4.39) 

is somewhat arbitrary, any alternative definition will 

exhibit 

the growth of such particle number as a consequence of 

spinodal instabilities. (ii) An advantage of this definition is 

that, after the mean field begins its oscillations around the 

broken symmetry minimum below the spinodal point, it 

N ð 

numberfollows that¯ k tÞ →(4.39)N˜ kðVtÞ00thus coincides 

with the, namely the definition of the particleðφðtÞÞ > 0, 

therefore ϖ“ðadiabatic particletÞ →ωkðtÞ, and 
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with the adiabatic modes corresponding to oscillations 

around stable minima. 

This ambiguity notwithstanding, it is clear that spinodal 

and parametric instabilities both lead to exponential growth 

of the exact mode functions gkðtÞ which, in turn, leads to 

profuse particle production. As discussed above, 

oscillations around a broken symmetry minimum also lead 

to parametric amplification and exponential growth of the 

mode functions, different from the spinodal instability. 

Therefore in this scenario, particles are profusely produced 

first during the spinodal state, and when the field is 

oscillating around the broken symmetry minimum via 

parametric instability. While the quantitative expression of 

the number of particles produced depends on the precise 

definition of the mode functions f˜kðtÞ, it is clear that either 

the zeroth-order adiabatic (4.13) for parametric or (4.36) for 

spinodal instabilities, yield profuse particle production as a 

consequence of either instability. (iii) The last term in the 

first line in (4.42) features the same ultraviolet divergences 

as those found to renormalize the effective potential (2.14)– 
(2.18). The last term in (4.42) is finite, and it will be argued 

in the next section that all the terms with occupation 

numbers are indeed finite. This is certainly the case for the 

contribution from N¯ 
kðtÞ since only momenta k ≤ Ks 

contribute to these. 

V. A RENORMALIZED, ENERGY CONSERVING 

FRAMEWORK 

The analysis presented in the previous sections 

unambiguously points out that the effective potential is not 

reliable to study the dynamics of the mean field φðtÞ in a 

broad range of theories with and without symmetry 

breaking as a consequence of the various instabilities 

associated with particle production. Instead, up to one loop 

(setting ℏ ¼ 1), the dynamics must be studied by 

implementing the set of equations 

φ̈ ðtÞ þ V0ðφðtÞÞ þ 

21V000ðφðtÞÞ Z 

ð2dπ3kÞ3 j kð Þj2 ¼ 

0; ð5:1Þ g t 

where the mode functions are the solutions of the equations 

g̈ kðtÞ þ ω2kðtÞgkðtÞ ¼ 0; ð Þ ½ þ 

V00ðφðtÞÞ; 

ð5:2Þ 

and fulfill the Wronskian condition (3.15). Complemented 

with initial conditions on φðtÞ;φ˙ðtÞ;gkðtÞ;g˙kðtÞ, this is 

a closed set of equations with a conserved energy density 

1 2 1Z d3k3 k 2

 2 k 2 

E¼2φ˙ ðtÞþVðφðtÞÞþ2 ð2πÞ ½jg˙ ðtÞj þω ðtÞjg ðtÞj : 

ð5:3Þ 

However, as discussed within the context of the static 

effective potential both (5.1) and (5.3) feature ultraviolet 

divergences that must be absorbed by renormalization of 

the bare parameters of the theory. The instabilities 

associated with spinodal decomposition or parametric 

amplification affect the mode functions for a finite range 

of momenta k: spinodal instabilities only affect mode 

functions withV00ðφÞj in the spinodal region. Although 

parametric
k ≤ jV00ð0Þj, with jV00ð0Þj2the maximum value 

of j 

instabilities affect all values of k for which there are 

resonances that lead to parametric amplification, the 

bandwidth of the unstable regions becomes smaller for 

resonant transfer of energy from thelarger values of k. On 

physical grounds, for“zero modek2 ≫ V” 00to highðφð0ÞÞ 

energy modes is inefficient. Furthermore, as analyzed in 

detail in Sec. IV, the adiabatic approximation fails for low 

energy, long wavelength modes: those with k < 

Kresonant bands for parametric amplification. However,s ≃ 

V00ð0Þ for spinodal instabilities and those within in this 

limit the mode functionsfor k2 ≫ V00ðφð0ÞÞ, the adiabatic 

approximation is valid; 

eikt 

 gkðtÞ ∝ p2kffi : ð5:4Þ 



HERRING, CAO, and BOYANOVSKY PHYS. REV. D 109, 105021 (2024) 

105021-22 

The explicit form of the adiabatic effective potential 

(3.32) explicitly shows that the zeroth-order adiabatic 

contribution contains all the ultraviolet divergences and 

the higher order adiabatic terms are all ultraviolet finite. 

Furthermore, the analysis leading up to Eqs. (4.28) and 

(4.42) also clearly shows that the “zero point” con- 

tributionfinite since neither spinodal nor parametric 

instabilities canvioletdivergences, whereasthe 

occupationnumberR d3kωkðtÞ in these expressions contains 

the ultra-N˜ kðtÞ is 

excite very high energy modes. As discussed above, in 

Sec. III B the zero point contribution is completely 

determined by the zeroth adiabatic order of the mode 

functions gkðtÞ. Therefore, we separate this ultraviolet 

divergent contribution by adding it into an effective 

potential and subtracting it from the fluctuation part by 

writing 

 1 2 ¯ eff φðtÞÞ þ EfRðtÞ;

 ð5:5Þ 

 E ¼ 2φ˙ ðtÞ þ V ð 

with 

V¯ effðφðtÞÞ¼VðφðtÞÞþZ0Λk2ωkðtÞΘðk−kmÞ4 dkπ2;

 ð5:6Þ 

and 

Λ dk 

EfRðtÞ ¼ Z0 4 π2 k2jg˙kðtÞj2 þ ω2ðtÞjgkðtÞj2 

 −ωkðtÞΘðk − kmÞ ð5:7Þ 

is the ultraviolet finite, renormalized fluctuation 

contributiontotheenergydensity,wherethelowermomentum

cutoff km is given by 
km ¼pjV00ð0Þjffi¼Ks 

withsymmetrybreaking; ð
5:8Þ 

 0 withoutsymmetrybreaking 

to account for the spinodal region in the case of symmetry 

breaking where the frequencies ωkðtÞ become purely 

imaginary. 

V00The integrals ofðφðtÞÞj we find ωkðtÞ are 

straightforward, for Λ≫ 

j 

 Λ4 Λ2 

V¯ effðφÞ ¼ VðφÞ þ 16π2 þ M2RðφÞ16π2 

 − ðM2Rðφ2ÞÞ2 ln4Λ22 − 1  

64π μ 2 þ 

ðM642Rðπφ2ÞÞ2 

lnjMμ2R2ðφÞj  

 − ðM2RðφÞÞ2FjM2RkðmφÞj1=2 ; ð5:9Þ 

with 

F½x ¼ 32 π2 2x½x22þ 

sign2ðMR2ðφÞÞ3=22 1 

− xsignðMRðφÞÞ½x þ signðMRðφÞÞ1=2 

− ln½x þ ½x2 þ signðM2RðφÞÞ1=2; ð5:10Þ where we 

have written VeffðφðtÞÞ in terms of 

 M2RðφÞ ¼ V00RðφðtÞÞ; ð5:11Þ 

to compare to the static result (2.14). 

Absorbing the ultraviolet divergences in a 

renormalization of the bare parameters of the tree level 

effective potential at the renormalization scale μ, and for the 

case without symmetry breaking, corresponding to M2ðφÞ 

> 0 with km ¼ 0, we identify 
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 V¯ effðφðtÞÞ ≡ VReffðφðtÞ;μÞ; ð5:12Þ 

where 

VeffR ðφðtÞ;μÞ ¼ VRðφ;μÞ þ ðM64R2ðπφ2ÞÞ2 lnMμR22ðφÞ

  

ð5:13Þ 

is the renormalized one-loop effective potential, with 

VRðφ;μÞ the renormalized tree level potential in terms of 

the renormalized parameters. 

In the case when the tree level potential admits symmetry 

breaking minima and a spinodal region with 

M2RðmφÞ <K0s, the contribution from the function, 

corresponding to the lower momentum cut-F in (5.9) 

offexcises the spinodal region withk ¼ k2 < jV00ð0Þj ¼ 

Ks, which of course contributes to the fluctuation part as is 

explicit in Eq. (5.7)¯. Sinceeff φÞ defined by Eq.Ks > M2ðφÞ 

it follows that the(5.9) is real and effective potential V ð 

does not feature the pathologies of the usual effective 

potential in the spinodal region. It is straightforward to 

confirm that taking km → 0 for M2ðφÞ < 0 in F brings back 

the imaginary part, arising from the logarithm 

when signðM2ðφÞÞ < 0. (2.15), the renorm- 

For the case of tree level potential alization proceeds 

exactly as in Eqs. (2.16)–(2.18) yielding Eq. (2.19) for the 

first line of (5.9). 

The equation of motion for the mean field (5.1) can be 

similarly written as a fully renormalized equation. To 

achieve this, again we add and subtract the contribution 

from the zero adiabatic order, rewriting (5.1) as φ̈ ðtÞ þ 

V0RðφðtÞÞ þ V000R ðφðtÞÞ Z0Λ k2Θð2kω−kðtkÞmÞ4dkπ2 þ 

V000R ðφðtÞÞ Z0Λ 4dkπ2 k2jgkðtÞj2 −Θð2kω−kðtkÞmÞ  ¼ 

0; 

ð5:14Þ 

from which we recognize that 

V0RðφðtÞÞþV000R 

ðφðtÞÞZ0Λk2Θ2ðkω−kðktÞmÞ4dkπ2¼ddφV¯ effR ðφ;μÞ; 

ð5:15Þ 

with V¯ Reffðφ;μÞ given by Eqs. (5.6) and (5.9) after 

absorbing the ultraviolet divergences into renormalization 

of the bare parameters at the renormalization scale μ. We 

can now write the energy density and equation of motion 

for the mean field and mode functions (up to one loop) in 

a manifestly energy conserving (since we added and 

subtracted the ultraviolet divergent contributions) and 

fully renormalized form: 

 1 2 ¯ effR φðtÞ;μÞ þ 

EfRðtÞ; ð5:16Þ 

 E ¼ 2φ˙ ðtÞ þ V ð 

φ̈ ðtÞ þ ddφV¯ Reffðφ;μÞ þ V000R ðφðtÞÞ 

 × Z0Λ 4dkπ2 k2jgkðtÞj2 −Θð2kω−kðtkÞmÞ  ¼ 0; ð5:17Þ 

g̈ kðtÞ þ ω2kðtÞgkðtÞ ¼ 0; ð Þ ½ þ 

V00RðφðtÞÞ; 

ð5:18Þ 

with 
V¯ R

effðφ;μÞ is the renormalized effective potential 

defined by Eq. (5.6) where the ultraviolet divergences have 

been absorbed into a renormalization of the bare parameters 

of the tree level potential at the renormalization scale μ, and 

VRðφðtÞÞ is the tree level potential in terms of 

renormalized parameters. The renormalized fluctuation 
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contributions EfRðtÞ, given by Eq. (5.7) and the last term in 

(5.17) are ultraviolet finite and account for all of the particle 

production processes resulting from spinodal and 

parametric instabilities. 

Initialization. The set of equations (5.17) and (5.18) 

forms a self-consistent, energy conserving closed set of 

equations that describe an initial value problem amenable 

to numerical implementation, upon appending initial 

conditions on the mean field and mode functions. The initial 

conditions on the mean field are simple: 

 φðt ¼ 0Þ ≡φð0Þ; φ˙ðt ¼ 0Þ ≡φ˙ð0Þ; ð5:19Þ 

those of the mode functions are subject to the Wronskian 

condition (3.15) and depend on whether the mean field 

initially is within the spinodal region or outside it. 

(i) V00
Rðφð0ÞÞ > 0: In this case all modes can be 

initialized as 

 k 1 k −iωkð0Þ ; 

g ð0Þ ¼ p2ωkð0Þffi ; g˙ ð0Þ ¼ p2ωkð0Þffi ωkð0Þ ¼ qk2 

þ V00Rðφð0ÞÞffi: ð5:20Þ 

This initial condition implies that the adiabatic number 

procedure described above becauseN˜ 
kð0Þ ¼ 0, and is 

compatible with the renormalization 

 jg˙kð0Þj2 þ ω2kð0Þjgkð0Þj2 ¼ ωkð0Þ; ð5:21Þ 

therefore the renormalized energy density from fluctuations 

in Eq. (5.7) is ultraviolet finite initially and the 

renormalization of ultraviolet divergences is the same as 

during the time evolution, regardless of whether the 

(renormalized) tree level potential features symmetry 

breaking or not. 

(ii) V00Rðφð0ÞÞ < 0: In this case the renormalized tree 

level potential features symmetry breaking minima and a 

spinodal region. If φð0Þ is within the spinodal region, a 

suitable set of initial conditions is 

 8 p2ϖ1 0 for k2 ≤ jV00Rðφð0ÞÞj 

 : p2ωkð0Þffi j Rð ð ÞÞj 

with ϖkðtÞ ¼ pk2 þ jV00Rðφð0ÞÞjffi. These initial conditions 

imply that the interpolating and adiabatic particle numbers 

N¯ kð0Þ ¼ 0;N(5.7)˜ kð0Þ ¼vanishes identically for0. 

Furthermore, at k > kt ¼ 0m, yieldingthe integrand in Eq. 

an ultraviolet finite renormalized energy density of 

fluctuations at all times, including at t ¼ 0. Therefore, this 

set of initial conditions is explicitly compatible with the 

renormalization procedure, because the ultraviolet 

divergences at the initial time are renormalized in the same 

manner as the ultraviolet divergences at any other time 

during the time evolution. 

Although different initial conditions for the mode 

functions subject to the Wronskian conditions (3.15) may 

be chosen, the compatibility with the renormalization 

procedure described in the previous section must be 

carefully assessed for alternative initial conditions. The set 

above is fully compatible with the renormalization 

procedure, thereby guaranteeing that there are no new 

ultraviolet divergences associated with the initial value 

problem [51] and that the renormalization framework is 

consistent all throughout the time evolution, namely the 

same counterterms remove the ultraviolet divergences at 

the initial and at any later time. 

The set of renormalized Eqs. (5.17) and (5.18) along 

with the initial conditions (5.19)–(5.23) thus describes 

completely a self-consistent initial value problem which is 

manifestly energy conserving and fully consistent with the 

gkð0Þ ¼ <: 

p2ω1kkðð0ÞffiÞffi 

for k2 > jV00Rðφð0ÞÞj; 

ð5:22Þ 

g˙kð0Þ ¼ 8< 

−i2ωkðk0ð0ÞÞffi 

p−iϖϖkð0Þ 

for k2 ≤ jV00Rðφð0ÞÞj 

for k2 > V00 φ 0 ; ð5:23Þ 
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renormalization prescription at all times that is amenable 

to straightforward numerical implementation. 

A. Consequences of energy conservation: Asymptotic 

stationary fixed points? 

Energy conservation entails that instabilities must 

eventually shut off since exponential growth of 

fluctuations cannot continue indefinitely. Particle 

production via instabilities combined with energy 

conservation leads us to the conjecture of emerging 

asymptotic highly excited stationary states as fixed points 

of the dynamical evolution described by the closed set of 

equations (5.16)–(5.18). Both spinodal and parametric 

instabilities must shut off asymptotically as a consequence 

of energy conservation, implying that φðtÞ is below the 

spinodal and must approach a constant because any 

oscillatory behavior results in parametric instabilities, 

however small the amplitude of the oscillation. Therefore 

asymptotically φðtÞ →φð∞Þ with φð∞Þ a constant so 

that V00ðφð∞ÞÞ > 0. Therefore, it follows that ωkðtÞ 
→ωkð∞Þ and the mode functions 

gkðtÞ approach the asymptotic solution, 

1 

 gkðtÞ → p Þ½αke−iωkð∞Þt þ βkeiωkð∞Þt: ð5:24Þ 

2ωkð∞ ffi 

The relations (4.16) and (4.17) yield in this asymptotic limit 

 A˜ kðtÞ →αkeiγA; B˜ kðtÞ →βkeiγB; ð5:25Þ 

with γA;B constant phases, and from (4.21) it also follows 

that 

 ckðtÞ → ckð∞Þ; c†kðtÞ → c†kð∞Þ; ð5:26Þ 

hence the annihilation and creation operators of the 

instantaneous zero adiabatic order Fock states become 

constant. To understand clearly the underpinnings of this 

conjecture let us consider separately the cases without and 

with spontaneous symmetry breaking. 

(i) Without symmetry breaking. Let us focus on the case 

of the simple tree level potential (4.1) (with renormalized 

parameters) as a paradigmatic example, and an initial 

condition on φð0Þ;φ˙ð0Þ allowing for large amplitude 

oscillations around the minimum of the tree level potential 

at φ ¼ 0. With M2ðφÞ > 0 and km ¼ 0, the contributionR R 

from the function F in (5.9) vanishes and V¯ eff ¼ Veff, the 

one-loop effective potential [see Eq. (5.12)]. 

The total energy density is conserved and the mode 

functions obey the Eq. (5.18), although for large amplitudes 

the analysis based on Mathieu’s equation is no longer valid; 

we still expect resonances leading to instability bands 

within which the mode functions gkðtÞ grow as a 

consequence of parametric instabilities. The fluctuation 

contribution to the energy density, the last term in Eq. (5.16) 

for km ¼ 0 [no spontaneous symmetry breaking, see Eq. 

(5.5)], describes the production of adiabatic particles and is 

positive definite. Therefore, as a consequence of 

conservation of energy the growth of the fluctuations 

associated with particle production must result in a drain of 

energy from the first two terms in (5.16), thereby resulting 

in damping of the amplitude of φðtÞ. As the amplitude 

diminishes, the width of the unstable bands diminishes and 

parametric amplification becomes less efficient but 

continues until the amplitude vanishes, this is the case for 

small oscillations as shown by the analysis of Mathieu’s 

equation. Hence, we conjecture that this behavior leads to 

an asymptotic fixed point of Eqs. (5.17) and (5.18) with φ̈ 

¼ 0;φ˙ ¼ 0. As the amplitude φðtÞ diminishes, the analysis 

based on Mathieu’s equation becomes more reliable. As the 

width of the unstable bands diminishes as a consequence of 

a diminishing amplitude, the mode functions approach 

linear combinations of adiabatic mode functions and the 

Bogoliubov coefficients (4.16) and (4.17) become slowly 

varying functions of time asymptotically becoming 

constants. In this asymptotic long time limit ωkðφðtÞÞ 

→ωkð∞Þ ¼ pk2 þ m2Rffi [for the tree level potential (4.1)] 

and it follows from Eqs. (4.14) and (4.15) that jg˙kðtÞj2 þ 

ω2ðtÞjgkðtÞj2t→!∞ωkð∞Þ½1 þ 2N˜ kð∞Þ; ð5:27Þ 

where we have used Eqs. (4.18) and (4.26). This 

assumption leads to the following asymptotic form of the 

energy density (5.16) (setting ℏ ¼ 1): 

E ¼ Veffðφð∞ÞÞ þ Z ð2dπ3kÞ3ωkð∞ÞN˜ kð∞Þ:

 ð5:28Þ 

The occupation numbers N˜ 
kð∞Þ are large for the range of 

k corresponding to the unstable bands. 
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This result is expected as a corollary of the main 

conjecture: dissipative damping from particle production 

results in the relaxation of the mean field towards 

stationary value φð∞Þ. Furthermore, in the asymptotic 

long time limit 

 jgkðtÞj2t→ ∞2 kð∞Þ Þ;

 ð5:29Þ 

where rapidly oscillating terms Þt average out by 

dephasing and have been neglected. 

The asymptotic value φð∞Þ is the solution of the 

equation of motion with φ̈ ¼ φ˙ ¼ 0, namely, 

d dφVeffR ðφð∞Þ;μÞ þ V000R ðφð∞ÞÞ Z ð2dπ3kÞ3 

2N˜ωkkðð∞∞ÞÞ ¼ 0: 

ð5:30Þ 

In the case without symmetry breaking, there is the 

obvious solution φð∞Þ ¼ 0. The relaxation of the mean 

field leads to an asymptotic stationary state, with all the 

energy of the nonequilibrium initial state transferred to a 

highly excited state described by a distribution function 

Nthe unstable resonant bands where adiabatic particles are
˜ 

kð∞Þ. This distribution function is large in k space within 

produced via parametric amplification with larger 

amplitudes and bandwidths for smaller k. Notice that the 

asymptotic state must truly be stationary; any small 

amplitude oscillation will result in parametric 

amplification and particle production with the 

concomitant damping of the mean field. 

(ii) With symmetry breaking. Many of the features of 

the dynamical evolution described above also apply in the 

case where the (effective) potential allows for symmetry 

breaking minima away frominstabilities and the 

concomitant particle production.φ ¼ 0, with the addition 

of spinodal 

Let us consider first the case wherein the initial values 

of the mean field φ˙ð0Þ;φð0Þ lead to oscillations around 

one of the broken symmetry minima, possibly with 

excursions into the spinodal region but not over the hump 

of the potential at its maximum. As the mean field samples 

the spinodal region in its evolution, the spinodal 

instabilities lead to the growth of the modes gkðtÞ with k < 

Ks thus draining energy from the first two terms in Eq. 

(5.16) and damping the amplitude of φðtÞ. As the 

amplitude diminishes, the oscillations no longer probe the 

spinodal region but while the mean field oscillates around 

the broken symmetry minimum, there are still parametric 

instabilities that lead to the growth of gkðtÞ. Particle 

production fromφðtφÞðstops oscil-∞Þ, with these 

instabilities will continue until the lating at the stable 

minimum at 

φfollows thaẗ ð∞Þ ¼ 0;φ˙Mð∞2Þ ¼ðφð∞0. Because the 

minima are stable itÞÞ > 0, and the oscillation frequen-2 2 

cies around these minima ωkð∞Þ ¼ pk þ M ðφð∞ÞÞffi 

are real. In the asymptotic long time limit, jg˙kðtÞj2 þ 

ω2ðtÞjgkðtÞj2t→!∞ωkð∞Þ½1 þ 2N˜ kð∞Þ; ð5:31Þ 

therefore 

EfRðtÞt→!∞ Z ð 2dπ3kÞ3ωkð∞ÞN˜ kð∞Þ þ Z0km k2ωk

 dk ; 

ð5:32Þ 

the last term cancels exactly the contribution from the 

function F in Eq. (5.9), yielding 

E ¼ Veffðφð∞ÞÞ þ Z ð2dπ3kÞ3ωkð∞ÞN˜ kð∞Þ:

 ð5:33Þ 
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In this case the asymptotic adiabatic particle number 

Nspinodally unstable band
˜ 

kð∞Þ will also have a large 

population within thek < Ks, along with the parametric 

amplified bands. 

In the long time limit, the relation (5.29) holds, where 

contributions from fast oscillating terms average out, and 

cancels the contribution from the functionthe term 

1=2ωkð∞Þ in (5.29) when input into Eq.F to dV¯ 

Reff(5.17)=dφ 

yielding the asymptotic solution form of the equation of 

motion (5.17), 

ddφVeffR ðφð∞Þ;μÞ þ000R ðφð∞ÞÞ Z ð2dπ3kÞ3 

2N˜ωkkðð∞∞ÞÞ ¼ 0; 

V 

ð5:34Þ 

which coincides with (5.30) for the case without symmetry 

breaking. However, in the case with symmetry breaking, 

φð∞Þ ¼ 0 is not a self-consistent solution because V00Rð0Þ 

< 0 and the mode functions would grow exponentially 

preventing a stationary solution, which is possible only 

when V00ðφð∞ÞÞ > 0. Equation (5.34) clearly displays 

oneφð∞Þ of the main results: the asymptotic equilibrium 

value 

is not a minimum of the effective potential, but includes a 

substantial contribution from particle production. 

A similar analysis holds in the case of large initial 

amplitude φð0Þ. Consider an initial condition wherein the 

mean field is released from high up in the potential 

allowing it to roll down the hill and up through the 

spinodal, over the hump at the maximum and over to the 

other side, rolling down through the spinodal on the other 

side and up again the potential. Every excursion of the 

mean field through the spinodal results in a burst of 

particle production from spinodal instabilities thereby 

draining energy from the mean field, which eventually will 

undergo small oscillations around either one of the 

minima. During the oscillation around the minima 

parametric amplification also leads to particle production 

until the mean field settles at this minimum with φ˙ ¼ φ̈ ¼ 

0 and the gkðtÞ bound in time. The asymptotic solutions 

(5.33) and (5.34) also describe this case with large initial 

amplitudes sampling the broken symmetry minima during 

the evolution until settling down in one of them. The only 

difference with the small(er) amplitude case described 

above is in the total energy density and the asymptotic 

value of 
N˜ 

kð∞Þ which reflects the different energy 

densities. 

This analysis leads us to suggest a new kind of phase 

diagram: the asymptotic equilibrium order parameter 

φð∞Þ versus energy density as a characterization of the 

broken symmetry phases with high energy density. 

The results (5.33) and (5.34) taken together have a 

simple and clear physical interpretation: in absence of 

particle production N˜ 
kð∞Þ ¼ 0 ∀ k, the equilibrium states 

correspond to 

 d R 

Veffðφð∞Þ;μÞ ¼ 0; E ¼ Veffðφð∞ÞÞ; ð5:35Þ dφ 

namely the minimum of the effective potential which 

includes radiative and renormalization corrections; in fact 

this was the rationale for the static effective potential in 

the first place. However, under the constraint of conserved 

energy density, the actual asymptotic state must account 

for the energy transfer from the mean field that has relaxed 

to equilibrium, to excited states (fluctuations) which are 

described by the adiabatic particle numbers N˜ 
kð∞Þ ≠ 0. 

The asymptotic expectation value is no longer the 

minimum of the effective potential but is modified by 

particle production, which in turn depends on the energy 

density. 

Of course the conjectures on the asymptotic dynamics 

and emerging stationary states must be confirmed by a 

thorough numerical analysis, which is clearly beyond the 

scope of this article. 

B. Asymptotic excited states: Highly entangled two-mode 

squeezed states 

As argued above, the asymptotic stationary state is 

characterized by a distribution function of produced 

adiabatic particles, N˜ 
kð∞Þ. As the evolution of the mean 

field and quantum fluctuations is described by an initial 

value problem, we can consider the initial state, determined 

by the initial conditions (5.19), (5.20), (5.22), and (5.23) as 

the “in” state with vanishing occupation number, and the 

asymptotic stationary state as the “out” state. In the 

transition from the “in” to the “out” state, the mean field 
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relaxes to a minimum of the effective potential and the 

energy density, originally stored in the mean field, is 

transferred to excited states (fluctuations), in the form of 

particle production. At long time, as the mean field relaxes 

to the asymptotic equilibrium value φð∞Þ solution of the 

equation (5.34) [similar to (5.30)], the oscillation 

frequencies are real and evolve in time slowly as the 

amplitude of the mean field relaxes to equilibrium, 

therefore the zero order adiabatic definition of particles 

described by Eqs. (4.16)–(4.25) reliably describes particles 

in the “out” state, as discussed in Sec. IV C. 

The Bogoliubov transformation (4.21) is implemented by 

a unitary transformation, which is obtained as follows. 

First write 

A˜ kðtÞ ¼ coshðϑkðtÞÞe2iðθþk ðtÞþθ−k ðtÞÞ; 

 B˜ kðtÞ ¼ sinhðϑkðtÞÞe2iðθþk ðtÞ−θ−k ðtÞÞ ð5:36Þ 

a˜k ¼ ake2iθ−k ðtÞ; a˜−†k ¼ a−†ke−2iθ−k ðtÞ ð5:37Þ 

c˜kðtÞ ¼ ckðtÞe−2iθþk ðtÞ; c˜−†kðtÞ ¼ c†−kðtÞe2iθþk ðtÞ; ð5:38Þ 

where we have used that A˜ kðtÞ;B˜ kðtÞ are functions 

solely of k2. In terms of these definitions and canonically 

transformed operators, the Bogoliubov transformation 

(4.21) becomes c˜k⃗ ðtÞ ¼ a˜k⃗ coshðϑkðtÞÞ þ a˜†−k⃗ 

sinhðϑkðtÞÞ: ð5:39Þ 

This transformation is implemented by the following 

unitary operator: 

S½ϑðtÞ ¼ Πk⃗ expfϑkðtÞ½a˜−k⃗ a˜k⃗ − a˜k†⃗ a˜−†k⃗ g; 

 S−1½ϑðtÞ ¼ S†½ϑðtÞ ¼ S½−ϑðtÞ; ð5:40Þ 

yielding 

 S½ϑðtÞa˜k⃗ S−1½ϑðtÞ ¼ c˜k⃗ ðtÞ; ð5:41Þ 

which can be confirmed by expanding the exponentials, 

using the identity 

 eXYe−X ¼ Y þ ½X;Y þ 1 ½X;½X;Y þ  ð5:42Þ 

2! 

and the canonical commutation relations. 

An important identity yields the following factorization 

of the exponential [52]: 

S½ϑ ¼ Πk⃗ expf−lnðcoshðϑkÞÞgexpf−tanhðϑkÞa˜†k⃗ a˜†
−k⃗ g 

× expf−2lnðcoshðϑkÞÞa˜†k⃗ a˜k⃗ g 

 × expftanhðϑkÞa˜−k⃗ a˜k⃗ g; ð5:43Þ 

whereThe inverse Bogoliubov transformation is given 

byϑk ≡ϑkðtÞ. a˜k⃗ ¼ c˜k⃗ coshðϑkÞ − c˜†
−k⃗ 

sinhðϑkÞ a˜†k⃗ ¼ c˜†
−k⃗ coshðϑkÞ − c˜k⃗ 

sinhðϑkÞ: ð5:44Þ 

− 

The unitary operator that implements it is 

T½ϑ¼Πk⃗ expf−ϑk½c˜k⃗ c˜−k⃗ −c˜†−k⃗ c˜†k⃗ g;T−1½ϑ¼T½−ϑ; 

ð5:45Þ 

so that   

 T½ϑc˜k⃗ T−1½ϑ ¼ a˜k⃗ 

T½ϑc˜† ⃗ T−1½ϑ ¼ a˜†−k⃗ 

: −k ð5:46Þ 

The factorized form of T½ϑ is 

T½ϑ ¼ Πk⃗ expf−lnðcoshðϑkÞÞgexpftanhðϑkÞc˜†k⃗ c˜†
−k⃗ g 

× expf−2lnðcoshðϑkÞÞc˜†k⃗ c˜k⃗ g 

 × expf−tanhðϑkÞc˜−k⃗ c˜k⃗ g; ð5:47Þ 

with the instantaneous (zeroth-order) adiabatic vacuum 

state j0aðtÞi defined such that 
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 ckðtÞj0aðtÞi ¼ 0 ∀ k;t: ð5:48Þ 

vacuum stateThe operatorj0aðTtÞi½ϑto the coherent 

stateallows us to relate the adiabaticjΦi (annihilated 

by−
1 aθkT). Premultiplying½θ ¼ 1 yields (5.48) by T½θ and 

inserting 

T ½ 

ðT½ϑck⃗ T−1½θÞðT½ϑj0aðtÞiÞ ¼ 0; ð5:49Þ | 

ffl{zak⃗ ffl} 

from which the relation between vacua follows, namely, 

 jΦi ¼ T½ϑj0aðtÞi: ð5:50Þ 

Therefore, we find 

jΦi ¼ Πk⃗ ½coshðϑkÞ−1ðeiθþk 

tanhðϑkÞÞnk⃗ jnk⃗ ;n−k⃗ i; 

⃗ ¼ 

ð5:51Þ 

where the adiabatic particle-pair states 

jnk⃗ k pc†k⃗ Þknk⃗ffi ðpc†−k⃗ Þknffik⃗ 0ai; nk⃗ ¼ 

0;1;2…: ð5:52Þ ð 

 ;n−⃗ i ¼ n⃗ ! n⃗ ! j 

In quantum optics these correlated states are known as 

two-mode squeezed states [52], where as discussed in Sec. 

IV C the Fock states, 

ðc† 

 jnk⃗ ðtÞi ¼pk⃗ ðntÞÞk⃗ !ffink⃗ j0aðtÞi; ð5:53Þ 

are instantaneous eigenstates of the Hamiltonian (4.22) 

with eigenvalue ℏωkðtÞðnkðtÞ þ 1=(5.52)2Þ. are 

eigenstates of 

We note that the Fock pair states the 

pair number operator 

∞ 

 ηˆk⃗ ¼ mXk⃗ ¼0mk⃗ jmk⃗ ;m−k⃗ ihmk⃗ ;m−k⃗ j; ð5:54Þ 

namely, ηˆk⃗ jnk⃗ ;n−k⃗ i ¼ nk⃗ jnk⃗ ;n−k⃗ i; nk⃗ ¼ 0;1;2…: ð5:55Þ 

Several checks are in order: hΦjΦi ¼ Πk⃗ cosh
1

2ðϑkÞ 

nXk∞¼0ð 2 ϑkÞÞn
k tanh ð 

 ¼ Πk⃗ cosh  ð kÞ1 tanh ð

 Þ ; ð5:56Þ 

hΦjc†p⃗ cp⃗ jΦi ¼ cosh 12ðϑpÞ n  ¼ 

npðtanh2ðϑpÞÞnp 

 ¼ sinh2ðϑpÞ ¼ jB˜ pj2 ¼ N˜ p: ð5:57Þ 

Therefore, in terms of the asymptotic adiabatic “out” 

particle states, the coherent state jΦi is a strongly correlated, 

entangled state of back-to-back pairs of particles with 

occupation numbers N˜ 
k populated in bands: for k ≤ Ks for 

spinodally produced particles and the unstable bands for the 

particles produced by parametric amplification. 

C. Decoherence and entropy 

For large energy density, the occupation numbers in the 

bands of instability are expected to be large with a 

continuum distribution in each band as the energy is 

transferred from the mean field to the excitations described 

by the adiabatic particle states. This transfer of energy from 

a single mode, the mean field, to a continuum of states in 

the various bands, each with finite bandwidth in 

momentum, intuitively suggests the emergence of entropy. 

However, the density matrix, 

 ρˆ ¼ jΦihΦj; ð5:58Þ 

describes a pure state and is time independent in the 

Heisenberg picture. In the basis of the asymptotic “out” 
adiabatic particle states, it is given by 

∞ ∞ 



HERRING, CAO, and BOYANOVSKY PHYS. REV. D 109, 105021 (2024) 

105021-30 

ρˆ ¼ Πk⃗ Πp⃗ X mXp Cmp⃗ ðp⃗ ÞCnk⃗ ðk⃗ Þjnk⃗ ;n−k⃗ ihmp⃗ 

;m−p⃗ j; nk⃗ ¼0 ⃗ ¼0 

ð5:59Þ 

where 

 Cn ðk⃗ Þ ¼ ðeiθþk tanhððϑÞkÞÞnk⃗ ; ð5:60Þ 

 k⃗ cosh ϑk 

and the angles θþ
k ;ϑk correspond to the asymptotic values 

with φð∞Þ. 

The diagonal elements of the density matrix are given 

by the probabilities of finding a back-to-back pair of nk⃗ 

adiabatic particles, namely, 

N ∞ ⃗ 

 Pnk ¼ jCnk ðk⃗ Þj2 ¼ ð fkðkð ÞÞÞÞnk n : ð5:61Þ 

 ⃗ ⃗ ð1 þ Nf ∞ 1þ k⃗ 

Remarkably, this form of the diagonal matrix elements is 

similar to that of a thermal density matrix in the basis of 

(free) Fock quanta, but with N˜ 
k⃗ ð∞Þ replaced by the 

Bose 

Einstein distribution function. 

Consider a Heisenberg picture operator OδðtÞ 

associated with an observable related to the fluctuation 

operator δˆ
, which by dint of the expansion (4.19) at long 

time is associated with the asymptotic “out” adiabatic 

particle states. Asymptotically when the mean field has 

relaxed to its equilibrium value φð∞Þ the Hamiltonian 

HδðtÞ given by (4.22) becomes time independent, 

therefore the time evolution of the Heisenberg picture 

operator OδðtÞ is given by 

 OδðtÞ ¼ eiHδðt−t0ÞOδðt0Þe−iHδðt−t0Þ; ð5:62Þ 

where t0 is a late time at which the mean field has relaxed 

to equilibrium, and t ≫ t0. The expectation value of Oδ in 

the density matrix (5.58) is given by hΦjOδðtÞjΦi ¼ 

TrOδðt0ÞρˆðtÞ; ð5:63Þ 

where the time dependent density matrix in the Schrödinger 

picture is given by ρˆðtÞ¼e−iHδðt−t0Þρˆðt0ÞeiHδðt−t0Þ; 

ρˆðt0Þ¼jΦihΦj: ð5:64Þ 

Since the zeroth-order adiabatic “out” states are 

(instantaneous) eigenstates of Hδ it follows that ρˆðtÞ ¼ Πk⃗ 

Πp⃗Cmp⃗ ðp⃗ ÞCnk⃗ ðk⃗ Þjnk⃗ ;n−k⃗ i 

 n⃗ ⃗ 

 × hmp⃗ ;m−p⃗ je−iWn;mðt−t0Þ; ð5:65Þ 

where 

 Wn;m ¼ 2ðnkωkð∞Þ − mpωpð∞ÞÞ: ð5:66Þ 

The off-diagonal matrix elements in the adiabatic “out” 
basis are a manifestation of coherence, and unitary time 

evolution. 

At long time t ≫ t0, the off diagonal terms with nk ≠ mp;k 

≠ p oscillate very rapidly, the continuum of modes within 

each band fall out of phase leading to rapid dephasing and 

averaging out. In fact, taking a long time average of the 

expectation value (5.63), 

1 Z 0T TrO ðt ÞρˆðtÞdt ! TrO ðt Þρˆ dÞ; ð5:67Þ 

δ 0 δ 0 ð T t T→∞ 

where ρˆðdÞ is diagonal in the Fock “out” basis of correlated 

—entangled—pairs, namely, 

∞ 

ρˆðdÞ ¼ Πk⃗ Xk Pnk⃗ jnk⃗ ;n−k⃗ ihnk⃗ ;n−k⃗ j; ð5:68Þ n⃗ 

¼0 

with the probabilities (5.61). The diagonal density matrix 

ρˆðdÞ describes a mixed state. The main ingredient in this 

analysis is that the “out” adiabatic particle states are 

(instantaneous) eigenstates of Hδ and that each band has a 

continuum of modes each evolving in time with different 
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frequency, leading to dephasing and decoherence in the 

long time limit. 

This argument, based on decoherence by dephasing at 

long time yielding a density matrix diagonal in the “energy” 
basis underpins the eigenstate thermalization hypothesis 

[53–55] and is at the heart of the arguments on 

thermalization in closed quantum systems, a subject of 

much current theoretical and experimental interest. 

The entropy associated with this mixed state can be 

calculated simply by establishing contact between the 

density matrix ρðdÞ and that of quantum statistical 

mechanics in equilibrium described by a fiducial 

Hamiltonian, 

 Hˆ ¼ XEkηˆk⃗ ; ð5:69Þ 

k⃗ 

with ηˆ
k⃗ the pair number operator (5.54) with eigenvalues 

nk⃗ ¼ 0;1;2…, and the fiducial (dimensionless) energy 

 Ek ¼ −ln½tanh2ðϑkÞ; ð5:70Þ 

which suggestively yields the distribution function 

 N˜ k⃗ ð∞Þ ¼ eEk1− 1: ð5:71Þ 

This fiducial Hamiltonian (5.69) is diagonal in the 

correlated basis of particle-antiparticle pairs, it should not 

be confused with the Hamiltonian Hδ of Eq. (4.22), they act 

on different Hilbert spaces and feature different 

eigenvalues. The main purpose of the fiducial Hamiltonian 

Hˆ 
is to identify 

 ρˆð
d

Þ ¼ e−Hˆ ¼ −Hˆ ≡ e−F; ð5:72Þ 

 ; Z Tre 

Z 

with F the fiducial (dimensionless) free energy, and the 

partition function 

 1 1 

 
2 The entropy can also be calculated with the analogy F ¼ U − 

S, with U ¼ TrHρˆðdÞ as in statistical mechanics. 

 Z ¼Πk⃗ Zk⃗ ; Zk⃗ 
¼½1−e−Ek

¼½1−tanh2ðϑkÞ; ð5:73Þ 

thereby establishing a direct relation to a problem in 

quantum statistical mechanics. 

Since Hˆ 
is diagonal in the basis of the pair Fock states, 

so is ρˆðdÞ, and obviously the matrix elements of (5.72) in 

the pair basis are identical to those of (5.68), with the 

identification of the pair probability (5.61) as 

 ¼ e−Eknk⃗ ðNffkð∞ð ÞÞÞÞnk⃗ k ð

 Þ 

 Pnk⃗ Zk⃗ ¼ ð1 þ N 
k ∞ 1þn⃗ : 5:74 

The von Neumann entropy associated with this mixed 

state is 

 S ¼ −TrρðdÞ lnρðdÞ: ð5:75Þ 

The eigenvalues of ρðdÞ are the probability for each state 

of nk⃗ 
pairs of momenta 

ðk⃗ ;−k⃗ Þ, namely, Pnk⃗ therefore 

the von Neumann entropy is given by 

∞ 

 S ¼ −X Xk Pnk⃗ lnPnk⃗ : ð5:76Þ 

 k⃗ n⃗ ¼0 

A straightforward calculation yields the entropy density,2 s 

¼ Z ð1 þ N˜ k⃗ ð∞ÞÞlnð1 þ N˜ k⃗ ð∞ÞÞ 

 −N˜ k⃗ ð∞ÞÞlnN˜ k⃗ ð∞Þðd3kÞ :ð5:77Þ 

2 

Remarkably the entropy features the same form as in a 

quantum free thermal Bose gas but with the equilibrium 

distribution functions replaced by the asymptotic 
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distribution functions of the produced “out” adiabatic 

particles. 

Although the similarity with quantum statistical 

mechanics in thermal equilibrium is striking, we emphasize 

that the distribution functions are nonthermal and localized 

in bands in momentum. 

This entropy is a direct corollary of the conjecture on the 

emergence of an asymptotic stationary state with a large 

population of adiabatic “out” particles. These are the 

eigenstates of the evolution Hamiltonian for the 

fluctuations, which asymptotically becomes time 

independent. Decoherence by dephasing in the basis of 

energy eigenstates is one of the main arguments towards the 

description of microcanonical quantum statistical 

mechanics, and as mentioned above the cornerstone of the 

eigenstate thermalization hypothesis, which describes 

thermalization in closed quantum systems. 

The diagonal form of the density matrix (5.68) also 

emerges from tracing over one member of the correlated 

pair states in the full density matrix (5.65), therefore 

formally the entropy (5.76) is equivalent to the 

entanglement entropy. Although in the cases studied above 

we focused on neutral scalar fields, if instead the fields 

feature a charge quantum number, and the pair states are of 

particle and antiparticle, tracing over either of them would 

yield an entanglement entropy similar to (5.76). 

VI. CONCLUSION AND FURTHER QUESTIONS 

The effective potential is a very useful concept to 

understand the equilibrium phase structure of a theory, in 

particular spontaneous symmetry breaking, including 

quantum and thermal corrections. Although it is defined to 

describe static phenomena, it is often used to study the 

dynamical evolution of the expectation value of a field. 

Motivated by its ubiquitous use in phenomenological 

approaches to dynamical evolution, including in 

cosmology, our objectives in this article are to critically 

examine whether using the effective potential to study the 

dynamics of a coherent mean field, or expectation value, is 

warranted, and to provide a consistent framework to study 

its evolution when it is not. We implemented a Hamiltonian 

formulation to obtain the energy functional up to one loop 

which yields the static effective potential and extended it to 

obtain the equation of motion for the expectation value of a 

scalar field in the dynamical case. This formulation is 

manifestly energy conserving and renormalizable. We 

introduced an adiabatic approximation to establish if a 

quasistatic evolution warrants the use of the static effective 

potential in the equations of motion and found that doing so 

implies an explicit violation of energy conservation. 

Furthermore, the regime of validity of such an adiabatic 

approximation is severely restricted. Breakdown of 

adiabaticity is recognized in two ubiquitous instances of 

fundamental and phenomenological relevance: parametric 

amplification associated with instabilities from resonant 

excitations by oscillating mean fields and spinodal 

decomposition, instabilities stemming from the growth of 

correlations during phase transitions in the case of 

spontaneous symmetry breaking. 

The breakdown of adiabaticity is directly linked to the 

production of adiabatic particles, which we show to 

describe the asymptotic “out” state at long time. A 

selfconsistent, energy conserving and renormalizable 

framework that is amenable to numerical implementation 

is introduced. Energy conservation implies the emergence 

of asymptotic stationary states described by highly excited 

entangled adiabatic particle states. Their distribution 

functions are localized in momentum space in regions of 

spinodal or parametric instabilities. In the case when the 

tree level potential admits broken symmetry minima, the 

asymptotic value of the order parameter is not the minima 

of the effective potential, but receives corrections from the 

excited states, and the energy density transferred to these 

via particle production. This led us to conjecture on the 

characterization of phases in terms of novel phase 

diagrams of asymptotic expectation values of the scalar 

field, namely the order parameter, versus energy density. 

Although we considered simple examples of tree level 

potentials to anchor the discussions, the results are of far 

broader significance. Parametric and spinodal instabilities 

are ubiquitous in theories without and with symmetry 

breaking, and generally call into question the applicability 

of the effective potential to study the dynamics of coherent 

mean fields. 

The asymptotic stationary states are fixed points of the 

dynamics corresponding to equilibria compatible with the 

constraint of fixed energy (energy conservation). These 

novel equilibria are nonuniversal as they depend on 

couplings, parameters and initial conditions on φ;φ˙ and 

mode functions that determine the energy density. In the 

case of tree level potentials featuring broken symmetry 

minima, the asymptotic equilibrium values of the mean 

field are very different from that obtained from the 

effective potential, a consequence of profuse particle 

production. The distribution functions of adiabatic 

particles are nonthermal and nonuniversal, peaked at 

bands corresponding to spinodally and/or parametrically 

produced particles, since at this level (one loop) of 

approximation there are no collision terms that would 

redistribute energy and momenta away from the instability 

bands. A direct corollary of the emergence of an 

asymptotic state is decoherence by dephasing of the 

Schrödinger picture density matrix in the basis of the 

asymptotic “out” adiabatic particle states, and the 

concomitant emergence of entropy; surprisingly, the form 
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of the entropy is similar to that of a free quantum Bose gas 

but in terms of the distribution function of the produced 

particles. 

Our study has been restricted to the one-loop 

approximation to compare with the familiar one-loop 

effective potential and exhibit its shortcomings to describe 

the dynamics in the simplest and clearest example. Our 

main results are of broader significance and transcend the 

particular approximation: (i) the effective potential is ill 

suited to study dynamics, (ii) there is a substantial transfer 

of energy of the mean field to excitations; these are 

described in terms of asymptotic “out” states based on the 

zeroth adiabatic modes, (iii) an asymptotic stationary state 

must emerge at long time as a consequence of energy 

conserving dynamics when parametric and or spinodal 

instabilities occur, (iv) the asymptotic equilibrium value of 

the mean field is not described correctly by the effective 

potential but also receives corrections from the excited 

states. This is an unambiguous consequence of energy 

conserving dynamics, and (v) a corollary of the asymptotic 

stationary state is that there emerges an entropy from 

decoherence and dephasing of the Schrödinger picture 

density matrix. These are all results that do not depend on 

the level of approximation, but stem fundamentally from 

energy conserving dynamics associated with particle 

production from the evolution of the mean field. 

These results justify the study of its extension beyond 

one loop within a manifestly renormalizable and energy 

conserving framework both to confirm the main 

conclusions and also to reveal quantitative characteristics 

of the approach to the asymptotic state. A possible avenue 

would be to include backreaction self-consistently, for 

example, within a Hartree-type approximation [22,42] 

which, however, would not include collisions. An 

alternative would be to implement the effective action 

approach advocated in the seminal work of Ref. [56]. 

Nonequilibrium fixed points (or nearly fixed points of 

the dynamics) have been identified in previous studies 

within a different framework [57] including collisional 

processes, and more recently the dynamics of condensates 

have been included in Boltzmann equations [58]. These 

approaches 

couldprovideanalternativeconfirmationoftheemergenceof 

an asymptotic stationarystateand ofa coarsegrained entropy 

intheasymptoticregimeasaconsequenceofdecoherencevia 

dephasing in a closed quantum system with energy 

conserving and unitary dynamics [59], and can shed light 

on the question if such entropy becomes the thermal 

entropy. 

While our study has been carried out in Minkowski 

spacetime, we expect that the results also have broad impact 

in cosmology: in the equations of motion for a scalar (or 

pseudoscalar field), during the time when the Hubble 

expansion rate H is much larger than the mass, damping 

from cosmological expansion may justify the use of a static 

effective potential within this time window. However, when 

H becomes much smaller than the mass, oscillations ensue 

with the concomitant particle production and parametric 

amplification. We highlighted that the breakdown of 

adiabaticity is primarily associated with long wavelength 

excitations; hence, it is important to assess the contribution 

from super-Hubble modes to the fluctuation contributions 

to the equations of motion, even during the time window 

when Hubble friction dominates. Cosmological particle 

production arising from the energy transfer from mean 

fields to fluctuations has important consequences in 

cosmology, as the full energy momentum tensor would 

feature two components, a “cold” component from the 

coherent mean field, and a “hotter” component from the 

particles produced from either spinodal or parametric 

instabilities. This possibility warrants further study of the 

processes described in this work applied to cosmology and 

on which we will report in future work. Furthermore, 

extending the treatment to gauge theories will require a 

clear understanding of gauge invariance in the dynamics 

and renormalization aspects; these are also topics beyond 

the scope of this article and the subject of future work. 
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APPENDIX: INSTABILITY 

BANDS κ2
n;ð

αÞ FOR EQ. (4.4) 

From the results in Refs. [26–28], we obtain the 

following power series expansion in α for the band edges 

κ2
n;, valid in the range 0 ≤α≲ 2; the range of validity may 

be extended by including higher orders in the expansion 

[26,28]: 

κ2
2;− ¼ 3 − 2α− 12 þ 138245α4 − 79626240289α6 

þ  α2 

κ22;þ ¼ 3 − 2α þ 512α2 − 13824763α4 þ 

100240179626240α6 þ  

2 ¼ 8 − 2α þ α2 −α3 þ 13α4 þ 5α5 − 1961α6  κ3;− 16 64 

20480 16384 23592960 
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2 ¼ 8 − 2α þ α2 þ α3 þ 13α4 − 5α5 − 1961α6  κ3;þ 16 64 

20480 16384 23592960 

2 ¼ 15 − 2α þ α2 − 317α4 þ 10049α6 þ  κ4;− 30 864000 

2721600000 

κ24;þ ¼ 15 − 2α þ 30α2 þ 864000433α4 − 

27216000005701α6 þ : 
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