
Improved Condensers for Chor-Goldreich Sources
Jesse Goodman

Department of Computer Science
The University of Texas at Austin

Austin, TX, USA
jpmgoodman@utexas.edu

Xin Li
Department of Computer Science

Johns Hopkins University
Baltimore, MD

lixints@cs.jhu.edu

David Zuckerman
Department of Computer Science
The University of Texas at Austin

Austin, TX, USA
diz@cs.utexas.edu

Abstract—One of the earliest models of weak randomness
is the Chor-Goldreich (CG) source. A (t, n, k)-CG source is a
sequence of random variables X = (X1, . . . ,Xt) ∼ ({0, 1}n)t,
where each Xi has min-entropy k conditioned on any fixing
of X1, . . . ,Xi−1. Chor and Goldreich proved that there is no
deterministic way to extract randomness from such a source.
Nevertheless, Doron, Moshkovitz, Oh, and Zuckerman showed
that there is a deterministic way to condense a CG source into a
string with small entropy gap. They gave applications of such a
condenser to simulating randomized algorithms with small error
and to certain cryptographic tasks. They studied the case where
the block length n and entropy rate k/n are both constant.

We study the much more general setting where the block length
can be arbitrarily large, and the entropy rate can be arbitrarily
small. We construct the first explicit condenser for CG sources
in this setting, and it can be instantiated in a number of different
ways. When the entropy rate of the CG source is constant, our
condenser requires just a constant number of blocks t to produce
an output with entropy rate 0.9, say. In the low entropy regime,
using t = poly(n) blocks, our condenser can achieve output
entropy rate 0.9 even if each block has just 1 bit of min-entropy.
Moreover, these condensers have exponentially small error.

Finally, we provide strong existential and impossibility results.
For our existential result, we show that a random function is a
seedless condenser (with surprisingly strong parameters) for any
small family of sources. As a corollary, we get new existential
results for seeded condensers and condensers for CG sources.
For our impossibility result, we show the latter result is nearly
tight, by giving a simple proof that the output of any condenser
for CG sources must inherit the entropy gap of (one block of)
its input.

Index Terms—pseudorandomness, extractors, condensers,
Chor-Goldreich sources, explicit constructions, existential results,
impossibility results

I. INTRODUCTION

Randomness is extremely useful in computing, yet it is
difficult or expensive to obtain high-quality randomness. It is
therefore important to understand what can be done with low-
quality, or weak, random sources. Researchers have studied
models of weak random sources for decades. One of the
earliest models is the Chor-Goldreich (CG) source [1], which
generalized the related Santha-Vazirani source [2].

Definition 1. The min-entropy of a random variable X is
given by H∞(X) = minx∈support(X) log2(

1
Pr[X=x]). We say X

J.G. is supported by a Simons Investigator Award (#409864, David Zuck-
erman). X.L. is supported by NSF CAREER Award CCF-1845349 and NSF
Award CCF-2127575. D.Z. is supported by NSF Grant CCF-2312573 and a
Simons Investigator Award (#409864).

is an (n, k) source if X is over {0, 1}n and has min-entropy
H∞(X) ≥ k.

Definition 2. A random variable X = (X1, . . . ,Xt) ∼
({0, 1}n)t is called a (t, n, k)-CG source if for all i ∈ [t] and
all (x1, . . . , xi−1) ∈ ({0, 1}n)i−1, it holds that H∞(Xi|X1 =
x1, . . . ,Xi−1 = xi−1) ≥ k. Each Xi is called a block.

We would like to make use of a CG source knowing only the
parameters t, n, and k. That is, our algorithms should work for
all (t, n, k)-CG sources; an adversary can pick a (t, n, k)-CG
source after seeing our algorithm.

The most natural way to use a weak source is to convert
it into high quality randomness. However, generalizing the
argument by Santha and Vazirani, Chor and Goldreich showed
that it is impossible to deterministically extract even one
nearly-uniform bit from a CG source (if k ≤ n − 1). It was
therefore accepted by the community that one needed to add
more randomness, either in the form of a random seed or a
second CG source, to do anything useful.

That changed recently when Doron, Moshkovitz, Oh, and
Zuckerman [3] showed how to deterministically condense a
CG source. Specifically, they showed how to efficiently output
a string Z ∼ {0, 1}m with small entropy gap, defined as g :=
m−H∞(Z). (Strictly speaking, their condenser only outputs
a string that is close in variation distance to a distribution with
small entropy gap.)

Distributions with small entropy gap are useful in certain
applications. They can be used to simulate algorithms with
small error probability. They are also useful for unpredictabil-
ity applications in cryptography. For example, they can be used
as the input for a one-way function, and as the key to generate
message authentication codes. Note that seeded extractors are
not so useful in these applications, since cycling over seeds is
not realistic in a cryptographic setting. For more on the utility
of small entropy gap, see the work of Doron et al. [3].

Thus, CG sources are intermediate in the following sense.
A very general source, such as an (n, k)-source (which is
a CG source with t = 1), does not admit any deterministic
condensing. Other, less general sources such as affine sources
admit deterministic extraction. CG sources are one of the
few models where we can do something extremely useful
deterministically, even though we can’t extract a single random
bit.

Doron et al. construct their deterministic condenser by using

1513

2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/24/$31.00 ©2024 IEEE
DOI 10.1109/FOCS61266.2024.00096

20
24

 IE
EE

 6
5t

h
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

79
-8

-3
31

5-
16

74
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

61
26

6.
20

24
.0

00
96

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

the CG source to take a random walk on a lossless expander.
They show that for any constant block length n, constant
entropy rate k/n, and constant error ε, they can output a string
that contains a constant fraction of the original entropy, and
has a constant entropy gap.

In this paper, we study whether their results can be gener-
alized to the case of a small number t of long blocks, as well
as to subconstant entropy rate. This is natural and important
for a few reasons. First, small t allows for much more general
sources; indeed, t = 1 gives the most general model of an
(n, k)-source. It is interesting to find the most general model
of a weak source where we can condense deterministically,
and CG sources with few blocks seem like a natural candidate.
Second, such CG sources often appear as intermediate objects
in extractor constructions, where they are often called block
sources. Third, long blocks seem even more likely to model
natural defective random sources. It allows for more short-
range correlations, and if there aren’t too many long-range
correlations then it should be a CG source with long blocks.

It appears hard to generalize the techniques of [3] to
work for long blocks. This is because known constructions
of lossless expanders are not good enough. First, to obtain
results for any entropy rate, Doron et al. had to use a two-
level construction, where one level relied on a brute force
construction of a small lossless expander. For long block
lengths this is infeasible.

Second, for longer blocks, one could try higher degree
lossless expanders, such as those by Guruswami, Umans,
and Vadhan [4]. However, the price of their extremely good
lossless expansion is that the entropy gap becomes too large.

We study deterministic condensers for CG sources with few
large blocks, and obtain improved results. Before describing
our constructions, we briefly mention that we show the entropy
gap g′ in the output of any condenser for CG sources must
always be at least the entropy gap g = n− k of the last block
Xt of the CG source. Thus, our goal is to ideally achieve
g′ = O(g), while preserving almost all of the entropy.

A. Our results

Explicit constructions: For our main theorem, we construct
the first explicit condenser for Chor-Goldreich sources that
can be instantiated with any block length n, any min-entropy
k, and any error ε. We present the general version of our
condenser below, and then proceed to highlight two interesting
instantiations.

Theorem 1 (Explicit condensers for CG sources). For any
α > 0, there is a constant C ≥ 1 such that the following holds.
For all t, n ∈ N and δ, ε > 0, there is an explicit condenser
Cond : ({0, 1}n)t → {0, 1}m for (t, n, k = δn = n − g)-
CG sources with output length m = k′ + g′, output entropy
k′ ≥ (1− α)kt, output gap g′ ≤ C · (1/δ)C · (g + log(1/ε)),
and error ε.

Thus, our explicit condenser is able to preserve 99% of
the min-entropy, while achieving a gap that is only poly(1/δ)
times larger than the gap g of a single block. Moreover, there

is no restriction on how the input parameters can be set, and
we highlight two interesting settings below.

We first consider the case where the entropy rate δ is
constant, as in [3]. Here, we obtain qualitatively similar results,
but ours works for arbitrarily large blocks (instead of constant-
sized blocks) and has exponentially small error. Moreover, we
only need the number of blocks t to be a large enough constant
to output entropy rate 0.9.

Corollary 1. For any constant δ > 0, there exists a constant
C > 0 such that the following holds. For any t, n ∈ N, there
exists an explicit condenser Cond : ({0, 1}n)t → {0, 1}k′+g′

for (t, n, k := δn)-CG sources, which has output entropy k′ ≥
0.99kt, output gap g′ ≤ Cn, and error ε = 2−n.

Next, we dramatically improve the entropy requirement
from k = 0.01n to just k = 1, while the entropy gap grows
by just a polynomial factor. As a result, we only need a
polynomial number of blocks t to output entropy rate 0.9.

Corollary 2. There exists a universal constant C > 0 such
that the following holds. For any t, n ∈ N, there exists
an explicit condenser Cond : ({0, 1}n)t → {0, 1}k′+g′

for (t, n, k := 1)-CG sources, which has output entropy
k′ ≥ 0.99kt, output gap g′ ≤ nC , and error ε = 2−n.

In fact, looking at Theorem 1, our condenser can even
handle CG sources that have min-entropy k ≪ 1, while
achieving error ε ≪ 2−n. However, it is worth pointing out
that this result is only useful when the stated output gap g′ is
less than tg, since this is the original entropy gap in the input
CG source.

Overall, as we mentioned, our condensers work for smaller
entropy rates and larger blocks than those in [3]. Moreover,
our condensers achieve exponentially small error, while the
constructions in [3] have constant error. Nevertheless, their
condenser does have some advantages over ours. First, their
condenser works in an online manner, and ours doesn’t.
Second, they analyzed their condenser for almost-CG sources,
and we haven’t. That said, our condensers do extend to at least
one notion of “almost,” as we describe next.

Remark 1 (Explicit condensers for almost CG sources). Our
explicit condensers can also be extended to certain notions of
almost CG sources, such as suffix-friendly almost CG sources,
as defined in [3]. This is because such sources can be reduced
to standard block sources, simply by grouping together blocks.
While such a reduction will produce uneven block lengths
(unlike standard CG sources), our constructions can easily
be adapted to handle this more general setting.

Existential results: We complement our explicit construc-
tions with strong existential results. For our main existential
result, we show that a random function is a seedless condenser
(with surprisingly strong parameters) for any small family
of sources. Throughout, we use capital letters to denote
exponential versions of lower-case letters.1

1For example, L := 2ℓ,K := 2k , and so on.

1514

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Theorem 2 (Existential results for any small family). There
exist universal constants C, c > 0 such that the following
holds. Let X be a family of (n, k)-sources. For any ℓ ∈ [0, k]
and g > 0 such that m := k − ℓ + g is an integer, and any
ε ∈ (0, 1], the following holds. If |X | ≤ 2cεKψ , where

ψ = max

{
g − 1

⌊L⌋
log(1/ε)− C,

g − 1

⌊L⌋
log(C2gg/ε)

C2g

g

}
,

then there exists a condenser Cond : {0, 1}n → {0, 1}m for
X with loss ℓ, gap g, and error ε.

The above can be viewed as a condenser version of the
classic result that there exist good seedless extractors for any
small family of sources. In fact, it strictly generalizes it.2 Over-
all, this result shows that condensers can handle much larger
families of sources than extractors, while outputting much
more of the original min-entropy. In particular, the classical
existential result for extractors only works for families of size
2Ω(ε2K), and requires the extractor to lose ℓ = 2 log(1/ε)
bits of min-entropy. The above result shows that condensers
can handle families of size up to 2Ω(gεK), provided the gap
is of the form g = O(1

L log(1/ε)). This means that allowing
just g = 1 bit of gap can significantly increase the size of
the family that can be handled, while decreasing the loss
to ℓ = log log(1/ε) + O(1). Furthermore, the loss can be
decreased all the way to ℓ = 0, at the price of a slightly
larger gap g = O(log(1/ε)).3

As an immediate corollary, we get improved existential
results for seeded condensers.

Corollary 3 (Existential results for seeded condensers). There
is a universal constant C ≥ 1 such that the following holds.
There exists a seeded condenser sCond : {0, 1}n ×{0, 1}d →
{0, 1}m for (n, k)-sources with output length m = k+d−ℓ+g,
error ε, loss ℓ, and gap

g ≤ 1

⌊L⌋
log(1/ε) + C,

provided that d ≥ log(n−kε) + C.

We note that we can improve the seed length requirement
to d ≥ log(n−kεg), if one is willing to increase the gap to g =
2

⌊L⌋ log(1/ε)+C.4 Previously, a work of Aviv and Ta-Shma [5]
established similar existential bounds for seeded condensers,

2This is because the extractor case corresponds to the case where the error
is ε/2 and the gap is g = ε/2, as this implies an error of ε and a gap of 0.

3In fact, note that this gap can be reduced to g = 1 log(1/ε) + O(1) if
we only wish to handle families of size 2Ω(εK).

4Moreover, Theorem 2 can be used to give a more general version of the
above result, which recovers known existential results for seeded extractors,
but we only present the above version for simplicity.

but in the lossless regime ℓ = 0 their result required entropy
gap g = O(log(1/ε)ε), while we only require g = O(log(1/ε)).5

For our last existential result, we show the existence of good
condensers for Chor-Goldreich sources. Since the number of
such sources is very large, we cannot apply Theorem 2 to
obtain this result. Instead, we show that one can iteratively
condense CG sources using seeded condensers (in the spirit
of [6], but with a correlated seed). Then, we plug in the seeded
condensers from Corollary 3 to obtain the following, which we
take some time to digest immediately after.

Corollary 4 (Existential results for CG sources). There is a
constant C ≥ 1 such that the following hold.

• Two blocks: There exists a condenser Cond :
({0, 1}n)2 → {0, 1}m for (2, n, k = n − g)-CG sources
with output length m = 2k − ℓ+ g, error ε, loss ℓ, and
gap

g′ ≤ g +
1

⌊L⌋
(g + log(1/ε)) + C,

provided that k ≥ log(g/ε) + C.
• More than two blocks: There exists a condenser Cond :

({0, 1}n)t → {0, 1}m for (t, n, k = n − g)-CG sources
with output length m = kt+ g′, error ε, loss ℓ = 0, and
gap

g′ ≤ g + 2C(log∗ t)2 · (g + log(1/ε) + C log∗ t),

provided that k ≥ log(g/ε) + C.
On the other hand, if m = kt − ℓ + g′ and the loss is
ℓ = 2(log∗ t)2, then one can obtain gap

g′ ≤ g + C · 2− log∗ t · (g + log(1/ε)) + C log∗ t,

provided that k ≥ log(g/ε) + 2 log∗ t+ C.

Thus, it is possible to condense Chor-Goldreich sources,
even when there are just t = 2 blocks with logarithmic min-
entropy. In the multi-block setting t > 2, we obtain a full
tradeoff between the loss ℓ and gap g′ (Section VI-C), but
only highlight the extreme regimes above, for simplicity. In
particular, the above shows that in the lossless regime ℓ = 0,
one can condense from multi-block CG sources with a modest
multiplicative blow-up of 2O((log∗ t)2) in the gap (where log∗

denotes the iterated logarithm). On the other hand, if one is
willing to lose a little more min-entropy, this blow-up can be
improved to an additive O(log∗ t). Moreover, we note that at
the expense of a significantly greater loss in min-entropy, it is
possible to blow-up the gap by an additive constant (with no
dependence on t), and refer the reader to Section VI-C2 for
more.

5It is worth noting that they focused on strong seeded condensers, while
we focus on standard seeded condensers, since our result is just a corollary of
our existential seedless condensers (Theorem 2), for which there is no notion
of “strong.” However, it should be relatively straightforward to extend our
result to obtain strong seeded condensers, using standard tricks.

1515

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Impossibility results: Finally, we show a lower bound,
which says that the gap in the CG source must propagate to
the output.

Theorem 3 (Impossibility results for CG sources). Fix any
0 ≤ g ≤ m ≤ n ∈ N and ε ∈ [0, 1). For every function Cond :
({0, 1}n)t → {0, 1}m, there exists a (t, n, n−g)-CG source X
such that Cond(X) is ε-far from every (m,m−g+cε)-source,
where cε := log(1

1−ε).
6

This impossibility result is a strengthening of the fact that
is impossible to condense general (n, k)-sources, and was
independently obtained by Chattopadhyay, Gurumukhani, and
Ringach [7].7

a) Organization: The rest of this paper is organized
as follows. We start with an overview of our techniques in
Section II. Then, after some preliminaries in Section III, we
provide a collection of (mostly new) tools and tricks around
block sources in Section IV, which we’ll use throughout the
paper. In Section V, we provide our main explicit condenser
for Chor-Goldreich sources, and prove Theorem 1. Following
this, we provide our existential results in Section VI and our
impossibility results in Section VII. Finally, we conclude with
some open problems in Section VIII.

II. OVERVIEW OF OUR TECHNIQUES

To begin, we give an informal overview of the techniques
used in our constructions and proofs.

A. Explicit constructions

As discussed in the introduction, it seems difficult to extend
the techniques of Doron et al. [3] to obtain a condenser that
can handle CG sources with long blocks. This is because their
construction involves the use of excellent lossless expanders,
which we don’t know how to explicitly construct. They get
around this problem by considering constant block length n,
which allows them to obtain the lossless expanders via a brute-
force search. But since we want to work with a larger block
length, this is no longer possible. Thus, we need a new idea.

High-level plan: Our idea is to return to a classical
paradigm in the construction of seedless extractors for in-
dependent sources, and show that it can be adapted to get
seedless condensers for Chor-Goldreich sources. Intuitively,
this makes sense given that CG sources are a natural general-
ization of independent sources, and condensers are a natural
generalization of extractors.

The well-known paradigm that we use involves taking a
single independent source, expanding it into a table where one
row is uniform (or has high entropy), and gradually collapsing
that table (with the help of the other independent sources) until
all that remains is that one good row. Our goal is to extend this

6We remark that cε is an unavoidable term, since sources with 0 min-
entropy are still ε-close to min-entropy cε.

7Beyond this impossibility result, there is little overlap between our two
works, which will both appear at FOCS 2024. This is because we focus on
explicit condensers for CG sources, whereas [7] focuses on existential and
impossibility results for almost CG sources, and other more general models.

paradigm so that it still works even if the sources are not truly
independent sources, but blocks coming from a CG source.

In order to make this happen, the core tool that we use is a
simple observation, which says that every seeded condenser
(and thus seeded extractor) still works even if its seed is
“CG-correlated” with the source. In more detail, suppose
that a seeded condenser was expecting to receive an (n, k)-
source X and independent seed Y ∼ {0, 1}d as input, but
instead received an (n, k)-source X and a correlated seed
Y ∼ {0, 1}d, which is only guaranteed have min-entropy d−g
on each fixing of X. The core tool we use says that the error
of the seeded condenser blows up from ε → ε2g , while its
output gap g′ blows up from g′ → g′+g. This key observation
has appeared a few times in prior work, with slightly weaker
parameters [8] or in a slightly different context [9]. We record
it as Lemma 8.

By combining the paradigm for extracting from independent
sources with the above tool, we now have a very high-level
plan for condensing CG sources with long blocks. However,
several challenges arise along the way, since the known tools
for collapsing the table (non-malleable extractors / mergers)
cannot be ported over in a black-box manner. Instead, we must
construct our own non-malleable condensers (for CG sources)
from scratch, and we do so via a simple composition of seeded
extractors. With this high-level plan in mind, we proceed with
a more detailed description of our condenser.

A detailed description of our condenser: Given a CG source
(or block source)8 X = (X1, . . . ,Xt), we work backwards
starting with Xt, and try to extract (almost) all of the entropy
out of X while preserving a small entropy gap. To get the
condenser, we first convert the block Xt into a somewhere
high-entropy source, which is a table with some number of
rows such that at least one row has high entropy rate. If the
entropy rate of Xt is relatively large (e.g., any constant), we
can use well-known somewhere condensers [10], [11], which
produce a small (constant) number of rows with exponentially
small error.

Our next step is to use the other blocks to reduce the number
of rows in this table, while preserving almost all of the entropy.
If the blocks were independent, prior work shows that we
could eventually reduce the table to a single row that is close
to uniform (which gives an extractor). However, when we only
have a block source, for technical reasons we’ll soon explain,
this is no longer possible and eventually we get one row with
large entropy and small entropy gap. This gives a condenser.

a) The non-malleable condenser: The key ingredient in
achieving this is a new merger (or non-malleable condenser,
similar to those defined in [12], [13]), that we design to merge
two rows in the table while using a few additional blocks.
Our final condenser is obtained by repeatedly applying this
merger, until the number of rows in the table reduces to one.
To illustrate our ideas, let’s consider the simplified case of
merging two rows in the table (say Y1,Y2), where at least

8Recall that a block source is a generalization of a CG source in that the
blocks need not have the same length.

1516

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

one row is uniform (but we don’t know which one). Our basic
merger works as follows. First take two other blocks (say
X1,X2), and take two slices: Z1 from Y1 and Z2 from Y2.
We use a standard seeded extractor sExt which works even
when the seed only has entropy rate 0.9 [4], and compute
W1 = sExt(X2,Z1),W2 = sExt(X2,Z2). In this step we
make sure that the sizes of these random variables satisfy

|W1| ≫ |W2| ≫ |Z2| ≫ |Z1|.

Next we apply the seeded extractor again and compute S1 =
sExt(X1,W1) and S2 = sExt(X1,W2), where |S1| = |S2|.
Finally, we output V = S1 ⊕ S2, where ⊕ denotes bit-wise
XOR.

b) The analysis: For the analysis, let us first consider the
case where all the blocks are independent. We have two cases.
If Y1 is the uniform row, then Z1 is uniform and therefore W1

is uniform (ignoring the error of the extractor). Since |W1| ≫
|W2| ≫ |Z2|, we can fix Z2 and W2, and conditioned on
this fixing, (with high probability) W1 still has entropy rate
say > 0.9. Notice at this point, X1 is still independent of
W1. Now we can further fix S2 = sExt(X1,W2), which is a
deterministic function of X1 since W2 is fixed. Conditioned
on this fixing, X1 still has good entropy as long as the size
of S2 is not too large. Hence, S1 = sExt(X1,W1) is close to
uniform and so is V = S1 ⊕ S2.

In the other case, Y2 is the uniform row, and thus Z2 is
uniform.9 Now we first fix Z1 and W1. Notice that since
|Z2| ≫ |Z1|, conditioned on this fixing Z2 still has entropy
rate > 0.9. Furthermore when Z1 is fixed, W1 is a determin-
istic function of X2. Thus conditioned on the further fixing of
W1, X2 and Z2 are still independent while X2 still has good
entropy as long as the size of W1 is not too large. Therefore
W2 = sExt(X2,Z2) is close to uniform even conditioned on
W1. Now, we can further fix S1 = sExt(X1,W1), which is a
deterministic function of X1 since W1 is fixed. Conditioned
on this fixing, X1 is still independent of W2 and still has
good entropy as long as the size of S1 is not too large.
Hence, S2 = sExt(X1,W2) is close to uniform and so is
V = S1 ⊕ S2.

c) Extending the analysis to correlated blocks: Now
let us see what happens if the blocks are not independent,
but rather form a block source. We will again use the core
observation that for any seeded extractor, if the seed and the
source form a block source, then the output of the extractor
becomes a source that suffers roughly the same entropy gap
as the seed.

With this property in hand, our previous analysis can go
through with a few modifications. Most importantly, some of
the random variables in {W1,W2,S1,S2,V} will no longer
be uniform, since the entropy gap of the seed will be inherited
in the output when we apply a seeded extractor. In addition,
we need to set the errors in the extractors appropriately so that

9Note that we are only analyzing the case where at least one of Y1,Y2

are uniform, since this is true for some pair of consecutive rows in the table,
and we don’t care what happens when we merge other pairs of consecutive
rows.

the blow up factor 2g in the error can be absorbed. Finally,
in the analysis, when we fix certain random variables (e.g.,
Z1,Z2,W1,W2), this may affect other blocks besides the
block from which the random variable is produced, because
now the blocks are no longer independent. However, as long
as we keep the sizes of the random variables relatively small
compared to the entropy in each block, after conditioning the
blocks still have enough entropy left and thus they are still
(close to) a block source.

d) Tracking the gap: Notice that if initially the “good”
row in Y1,Y2 has some entropy gap g′, then the final entropy
gap g′′ of our basic merger will be a constant factor larger than
g′, due to our conditioning argument and the requirement that
the seed used in the extractor has entropy rate > 0.9. Therefore
when we repeatedly apply the basic merger, the entropy gap
will increase by a constant factor at each step. As a result,
the final entropy gap will become larger than g, the entropy
gap of each block in the CG source. To see this, consider the
case where k = δn for some constant δ > 0 and we start with
a somewhere high-entropy condenser as in [10], [11]. If we
boost the entropy rate to say 0.99, then the initial entropy gap
of the good row will be poly(δ)g, since the length of each
row in the table is poly(δ)n. However, the table itself also
has poly(1/δ) rows, so by the above analysis, we eventually
get an entropy gap of C log(poly(1/δ)) poly(δ)g = poly(1/δ)g,
since each time we use the non-malleable condenser, we halve
the number of rows in the table, but blow up the gap by a
constant factor C. Thus if δ was originally a constant, the
final entropy gap is poly(1/δ)g = O(g). Note that this is as
expected since our impossibility result shows that an entropy
gap of g is necessary.

This also results in another modification we must make in
our constructions. Specifically, when the entropy gap becomes
large in the process of repeated merging, in order to obtain a
seed for the extractor with entropy rate > 0.9, it is no longer
enough to just use the entropy from one block. Rather, at this
point we need to use the concatenation of several blocks as
the source in the seeded extractor to get sufficient entropy. In
doing so, we need a slightly larger seed length over time, but
this does not drastically change any of the parameters. In fact,
since the seed length must grow anyway, we can (for free)
force the error of each merging step to be half the error of the
prior step, resulting in a geometric series of errors. As a result,
the overall error of the condenser is simply the error of the
first (somewhere-condensing) step, which is just 2− poly(δ)n if
we start with a (t, n, δn)-CG source.

e) Pre- and post-processing: Finally, we have just two
loose ends that we need to tie up. First, the discussion above
assumed that we started with a (t, n, δn)-CG source for some
constant δ > 0, so that we could apply the somewhere-
condensers of [10], [11] to create the initial table. How-
ever, what if we want to condense from CG sources with
sub-constant δ? As it turns out (and is well-known), these
somewhere-condensers can actually handle an input source
of min-entropy δn = n0.99, and thus the construction can
still be applied even if we start off with a CG-source with

1517

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

δn = n0.99. More importantly, if we start off with a (t, n, δn)-
CG source with δn ≪ n0.99, we can always turn it into
a (t/b, nb, δnb)-CG source with δnb ≥ (nb)0.99, via a pre-
processing step, where we simply group the blocks into “super-
blocks” containing sufficiently many blocks b each. This will
slightly impact the parameters of our condenser, but not
enough to be noticeable (when compared to the impact of
the other steps).

Second, the discussion above gave a detailed overview of
how we can condense the CG source into a string Z with high
entropy rate, but what if this was done using a relatively small
number of blocks in the CG source, and most of the entropy
in the CG source still remains (i.e., in the unused blocks X⋆)?
To deal with this, we append a simple post-processing step to
our condenser. As it turns out, since we already have obtained
a (perhaps short) string with high entropy rate, it is relatively
easy to condense the rest of the min-entropy out of the CG
source. Indeed, since the entropy rate is so high, we can use
our core tool that a seeded extractor can handle CG-correlated
seeds, and suffer very little loss. Thus, a first attempt to get
the rest of the min-entropy out may involve calling a seeded
extractor with X⋆ as the source and Z as the seed. However,
it may be the case that X⋆ is extremely long compared to
Z, which would make this approach fail. Instead, the right
approach is to use classic block-source extraction framework
of Nisan and Zuckerman [6], or rather a slight generalization
that works for condensers and a CG-correlated seed. With this
approach, we can successfully condense the rest of the min-
entropy out of X⋆, even if Z is very tiny in comparison.

B. Existential results
Next, we briefly discuss the ideas that go into our existential

results. As a reminder, our main result shows that there exist
great seedless condensers for any small enough family X
of sources. As a corollary (i.e., by picking the appropriate
family X), we immediately get our existential results for
seeded condensers. Then, by plugging these seeded condensers
into the (slight generalization of the) block-source extraction
framework described in the paragraph above, we immediately
get our existential results for CG sources. Thus, all that
remains is to show that there exist great seedless condensers
for any small family of sources.

In order to show the above, we show that a random function
f : {0, 1}n → {0, 1}m is, with high probability, a great
seedless condenser for a single source X ∼ {0, 1}n (and apply
a union bound over all X ∈ X). As it turns out, if one wishes
to get good parameters, this is quite nontrivial to show.

The overall approach is as follows. First, we recall that
a random variable f(X) ∼ {0, 1}m is ε-close (in statistical
distance) to min-entropy k′ iff for every S ⊆ {0, 1}m, it holds
that

Pr[f(X) ∈ S] ≤ |S| · 2−k
′
+ ε.

Thus, it is tempting to fix a set S, show that the above is true
with high probability over f , and then union bound over all
S ⊆ {0, 1}m. However, there are simply too many sets S for
this to yield good parameters.

As a second approach, one may recall a classical lemma (in,
e.g., [4, Lemma 6.2]), which says that if you want to ensure
that f(X) is ε-close to min-entropy k′, it is enough to show
that there exists no small set S ⊆ {0, 1}m of size ≤ ε2k

′
such

that
Pr[f(X) ∈ S] ≥ ε.

This is much better, since we have greatly reduced the number
of sets S ⊆ {0, 1}m that we ultimately need to union bound
over. However, we can still do even better.

The key realization (which is inspired by existence proofs
for lossless condensers) is that we can specify S ⊆ {0, 1}m
by instead specifying its preimage f−1(S). Thus, instead
of counting sets from {0, 1}m (for the union bound), we
can count sets from support(X). This is much better when
support(X) ≪ 2m, which happens when we are targetting a
regime where the gap of the condenser will need to exceed the
loss (e.g., the lossless regime) and X is flat.10 But what if X is
not flat? When talking about seeded extractors, one can often
assume that X is flat for free. But this is not true for seedless
extractors (for an explanation why, see Section VI-A).

In order to deal with an (n, k)-source X that may not
be flat, we break its support into two parts X1, X2. We
pick some threshold T and let X1 contain the heaviest T
elements in support(X), while X2 contains the rest. Then,
instead of analyzing the performance of f on the entirety
of X, we analyze it on the subdistributions of X over X1

and X2 (and make sure that the images of X1 and X2 do
not interact too much). If we pick the threshold T correctly,
then the subdistribution on X1 will look roughly flat, while
the subdistribution on X2 has much higher entropy than X.
This is exactly what we want, because the former allows us to
safely count tests via their preimages in X1, while the latter
allows us to safely count tests by picking them from {0, 1}m
(since f will be nowhere close to the lossless regime for the
subdistribution on X2, as it has much higher min-entropy than
X). All that remains is to ensure that the images of X1 and
X2 do not interact too much, which follows without too much
additional trouble.

C. Impossibility results

Finally, our impossibility result for condensing CG sources
is a simple extension and generalization of the well-known
impossibility result for extracting from CG sources [1], which
uses backwards induction on the blocks. Indeed, the latter can
be viewed as a special case of the former.

III. PRELIMINARIES

Before we dive into our main proofs, we collect some
preliminaries that will be used throughout the paper.

a) Notation: We adopt the convention that capital letters
denote the exponential version of lower-case letters. For exam-
ple, N := 2n, D := 2d, and so on. Given a string x ∈ {0, 1}n,
we let xi denote the value it holds at its ith index, and for a set
S ⊆ [n] we let xS denote (xi)i∈S (concatenated in increasing

10As a reminder, a flat source is uniform over its support.

1518

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

order of i). We also use x<i as shorthand for x[1,i−1], and we
define x≤i, x>i, and x≥i similarly. All logs are base 2, unless
otherwise noted. In particular, we write log() := log2() and
ln() := loge().

A. Probability

We use bold letters, such as X, to refer to random variables
(which we often call sources). We let Un denote the uniform
random variable over {0, 1}n, and more generally say that a
random variable X is flat if it is uniform over its support.
Furthermore, if support(X) ⊆ V , we say that X is supported
on V and denote this by X ∼ V . Finally, for any two
random variables X,Y defined over the same space, and
y ∈ support(Y), we let (X | Y = y) denote a random variable
that hits x with probability Pr[X = x | Y = y].

Statistical distance: Next, we introduce a standard way to
measure the distance between two random variables.

Definition 3 (Statistical distance). The statistical distance
between random variables X,Y ∼ V is defined

|X−Y| := max
S⊆V

Pr[X ∈ S]− Pr[Y ∈ S]

=
1

2

∑
v∈V

|Pr[X = v]− Pr[Y = v]|.

We say that X,Y are ε-close and write X ≈ε Y iff |X−Y| ≤
ε. If X,Y are 0-close then we write X ≡ Y. If X,Y are not
ε-close, we say they are ε-far and write X ̸≈ε Y.

Statistical distance is a metric, which means that it satisfies
the triangle inequality.

Fact 1 (Triangle inequality). For any random variables
X,Y,Z ∼ V ,

|X− Z| ≤ |X−Y|+ |Y − Z|.

Throughout this paper, we will often want to bound the
statistical distance between random variables. A classic tool
for this is the following.

Fact 2 (Data-processing inequality). For any random vari-
ables X,Y ∼ V and function f : V →W ,

|X−Y| ≥ |f(X)− f(Y)|.

Another tool that is useful for bounding statistical distance
is the coupling lemma:

Lemma 1 (Coupling lemma). For any two random variables
X,Y ∼ V , the following holds. For every pair of jointly
distributed random variables (X′,Y′) with X′ ≡ X and
Y′ ≡ Y, it holds that

|X−Y| ≤ Pr[X′ ̸= Y′].

Moreover, there exists a pair of jointly distributed random
variables (X⋆,Y⋆) with X⋆ ≡ X and Y⋆ ≡ Y such that

|X−Y| = Pr[X⋆ ̸= Y⋆].

Convex combinations: We will also frequently use the
notion of convex combinations. We say X is a convex com-
bination of distributions from Y if there exist probabilities
{pi} summing to 1 and distributions Yi ∈ Y such that
X =

∑
i piYi, meaning that X samples from Y with

probability pi. The following fact will be quite useful.

Fact 3. Let X ∼ V and A ∼ W be (arbitrarily correlated)
random variables, and let X be a family of random variables
over V . Suppose that Pra∼A[X /∈ X | A = a] ≤ ε. Then X
is ε-close to a convex combination of random variables from
X .

Proof. For every fixed a such that (X | A = a) ∈ X , define
Ya := (X | A = a). For all other a, define Ya to be
an arbitrary member of X . Consider the convex combination
Y⋆ :=

∑
a Pr[A = a]·Ya. Clearly, it is a convex combination

of distributions from X . It is also straightforward to verify
Y⋆ ≈ε X.

Concentration bounds: Finally, we will use the following
version of the multiplicative Chernoff bound, which works
even if we only know an upper bound on the expectation of
the random variable of interest.

Theorem 4 (Chernoff bound). Let X1, . . . ,Xn be a sequence
of independent random variables, where each Xi ∼ {0, pi} for
some pi ∈ [0, 1], and let X :=

∑
iXi denote their sum. Then

for any δ > 0 and µ ≥ E[X],

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
.

B. Entropy

In extractor theory, the standard way to measure the ran-
domness content of a source is via its min-entropy.

Definition 4 (Min-entropy). The min-entropy of a random
variable X ∼ {0, 1}n is defined

H∞(X) := min
x∈support(X)

log

(
1

Pr[X = x]

)
,

while its min-entropy gap is defined as n−H∞(X).11

It is often the case that a random variable X ∼ {0, 1}n
does not exactly have high min-entropy, but is (statistically)
close to a random variable that does. In many applications,
this is just as good as X having high min-entropy itself, and
as a result, this notion has earned its own name: smooth min-
entropy. In order to formally introduce this definition, we first
let Bε(X) denote the set of random variables Y ∼ {0, 1}n
that are ε-close to X in statistical distance. Then, we define
smooth min-entropy as follows.

Definition 5 (Smooth min-entropy). The ε-smooth min-
entropy of a random variable X ∼ {0, 1}n is defined as

Hε
∞(X) := sup

Y∈Bε(X)

H∞(Y) = max
Y∈Bε(X)

H∞(Y).

11For convenience, from here on out, whenever we say “entropy” we really
mean “min-entropy.”

1519

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Looking at this definition, a few remarks are in order. First,
we note that we were able to replace the supremum with a
maximum due to standard tools from analysis.12 (In doing
so, we know there always exists some distribution Y ≈ε X
such that H∞(Y) = Hε

∞(X).) Next, in order to highlight that
smooth min-entropy is a weaker notion than standard min-
entropy (and thus easier to obtain), we point out that there are
other well-studied notions of entropy that imply much better
guarantees on the former than the latter.13 Finally, we mention
two strange artifacts of the above definition, which distinguish
it from other notions of entropy: First, note that a constant
random variable has ε-smooth min-entropy cε := log(1

1−ε),
which is > 0 for ε > 0. Second, notice that when ε is
large, the smooth min-entropy of X can actually depend on
the ambient space on which X was defined! While this may
seem concerning at first, one may find comfort in thinking of
smooth min-entropy simply as convenient shorthand for the
expression in Definition 5, instead of as a true “entropy.”

Next, we record a very useful characterization of smooth
min-entropy, which will be used throughout. This has appeared
a few times in prior work, albeit in slightly different forms
(see, e.g., [15, Lemma 2.2] or [4, Lemma 6.2]).

Lemma 2 (A characterization of smooth min-entropy). For
any X ∼ {0, 1}n and k ≤ n,

Hε
∞(X) ≥ k ⇐⇒ ∀S : Pr[X ∈ S] ≤ |S| · 2−k + ε.

Proof. (=⇒) Let X′ ∼ {0, 1}n be a source of min-entropy
at least k such that X′ ≈ε X. Then for any S,

Pr[X ∈ S] ≤ Pr[X′ ∈ S] + ε ≤ |S| · 2−k + ε.

(⇐=) Let Heavy be the set of elements that X assigns
probability > 2−k, and let Light := {0, 1}n \ Heavy. Notice
that since n ≥ k, we have Pr[X ∈ Heavy]− 2−k · |Heavy| ≤
2−k · |Light| − Pr[X ∈ Light]. In other words, there is a way
to shift the excess weight that X assigns to Heavy onto Light
without going over probability 2−k on any of these elements.
Let X′ ∼ {0, 1}n denote this new source, and note H∞(X′) =
k. By our construction of X′ and the hypothesis, we have

|X−X′| = max
S

|Pr[X ∈ S]− Pr[X′ ∈ S]|

= Pr[X ∈ Heavy]− Pr[X′ ∈ Heavy]

≤ |Heavy| · 2−k + ε− |Heavy| · 2−k

≤ ε,

as desired.

12In particular, one can argue that Bε(X) is closed and bounded, and by
the Heine-Borel theorem for finite-dimensional normed vector spaces, it is
also compact. Then, since the min-entropy function H∞() is continuous,
H∞(Bε(X)) is also compact (and therefore closed and bounded). It follows
that supH∞(Bε(X)) ∈ H∞(Bε(X)), allowing us to replace sup with
max.

13Consider the Rényi entropy of a random variable, defined H2(X) :=

log
(

1∑
x Pr[X=x]2

)
. Comparing this to min-entropy, we have H∞(X) ≥

1
2
H2(X), but if we compare this to smooth min-entropy, it is known that

Hε
∞(X) ≥ H2(X)− log(1/ε) [14, Lemma 4.2]. A similar connection was

used in [3] in order to use the ℓq norm as a proxy for smooth min-entropy.

In fact, notice that the proof of the lemma above actually
proved the following stronger result.

Lemma 3 (A characterization of smooth min-entropy).
For any X ∼ {0, 1}n, 0 ≤ k ≤ n, and ε ∈
[0, 1], the following holds. If we define Heavy :={
x ∈ {0, 1}n : Pr[X = x] > 2−k

}
, then we have the equiv-

alence

Hε
∞(X) ≥ k ⇐⇒ Pr[X ∈ Heavy] ≤ |Heavy| · 2−k + ε.

Finally, we record one technical lemma that will be useful
later on.

Claim 1. Consider any random variables A,A′ ∼ A and
B,B′ ∼ B such that (A,B) ≈ε (A′,B′). Then

Pr
a∼A

[Hγ
∞(B | A = a) < k]

≤ Pr
a∼A′

[Hγ/2
∞ (B′ | A′ = a) < k] + 4ε/γ + ε.

Proof. Let BAD := {a : Hγ
∞(B | A = a) < k}, let BAD′ :=

{a : H
γ/2
∞ (B′ | A′ = a) < k}, and define S := BAD \ BAD′.

Note that

Pr
a∼A

[Hγ
∞(B | A = a) < k]

= Pr
a∼A

[a ∈ BAD]

≤ Pr
a∼A

[a ∈ S] + Pr
a∼A

[a ∈ BAD′]

≤ Pr
a∼A

[a ∈ S] + Pr
a∼A′

[a ∈ BAD′] + ε

= Pr
a∼A

[a ∈ S] + Pr
a∼A′

[Hγ/2
∞ (B′ | A′ = a) < k] + ε,

and thus all that remains is to bound Pra∼A[a ∈ S]. Towards
this end, notice that for every a ∈ S, it holds that Hγ

∞(B |
A = a) < k and H

γ/2
∞ (B′ | A′ = a) ≥ k. In other words,

(B′ | A′ = a) is (γ/2)-close to the family X of sources with
min-entropy at least k, yet (B | A = a) has distance > γ
from this same family. By the triangle inequality, this means
(B | A = a) has distance > γ/2 from (B′ | A′ = a).

Now, define p := Pr[A ∈ S], and partition S into subsets
X1, X2 such that Pr[A = a] ≥ Pr[A′ = a] for all a ∈ X1,
and Pr[A = a] < Pr[A′ = a] for all a ∈ X2. Since X2, X2

is a partition, it must hold that either Pr[A ∈ X1] ≥ p/2 or
Pr[A ∈ X2] ≥ p/2. Suppose the former is true, and recall
that for all a ∈ X1 ⊆ S, it holds that (B | A = a) ̸≈γ/2 (B′ |
A′ = a). By definition of statistical distance, this means that
for every a ∈ X1 there is a set Qa such that Pr[(B | A =

1520

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

a) ∈ Qa]− Pr[(B′ | A′ = a) ∈ Qa] ≥ γ/2. Thus

|(A,B)− (A′,B′)|

≥
∑

a∈X1,b∈Qa

(Pr[(A,B) = (a, b)]

− Pr[(A′,B′) = (a, b)])

=
∑

a∈X1,b∈Qa

(Pr[A = a] · Pr[B = b | A = a]

− Pr[A′ = a] · Pr[B′ = b | A′ = a])

≥
∑

a∈X1,b∈Qa

Pr[A = a] · (Pr[B = b | A = a]

− Pr[B′ = b | A′ = a])

=
∑
a∈X1

Pr[A = a]
∑
b∈Qa

(Pr[B = b | A = a]

− Pr[B′ = b | A′ = a])

≥ γ

2

∑
a∈X1

Pr[A = a] ≥ pγ/4.

Consider now the case that Pr[A ∈ X2] ≥ p2, and recall that
for all a ∈ X2 ⊆ S it holds that (B | A = a) ̸≈γ/2 (B′ |
A′ = a). By definition of statistical distance, for every a ∈ X2

there is a set Qa such that Pr[(B′ | A′ = a) ∈ Qa]−Pr[(B |
A = a) ∈ Qa] ≥ γ/2. By definition of X2, we know that
Pr[A′ = a] > Pr[A = a] for all a ∈ X2, which implies that
Pr[A′ ∈ X2] ≥ p/2. Thus

|(A,B)− (A′,B′)|

≥
∑

a∈X2,b∈Qa

(Pr[(A′,B′) = (a, b)]

− Pr[(A,B) = (a, b)])

=
∑

a∈X2,b∈Qa

(Pr[A′ = a] · Pr[B′ = b | A′ = a]

− Pr[A = a] · Pr[B = b | A = a])

≥
∑
a∈X2

Pr[A′ = a]
∑
b∈Qa

(Pr[B′ = b | A′ = a]

− Pr[B = b | A = a])

≥ γ

2

∑
a∈X2

Pr[A′ = a] ≥ pγ/4.

Thus we see that no matter what, |(A,B)−(A′,B′)| ≥ pγ/4.
And since this statistical distance is at most ε by the hy-
pothesis, we get that p ≤ 4ε/γ. Since p was defined to be
Pra∼A[a ∈ S], the result follows.

C. Condensers

At last, we are ready to present a formal definition for the
main objects of study in this paper.

Definition 6 (Condenser). Let X be a family of (n, k)-sources.
A function Cond : {0, 1}n → {0, 1}m is called a condenser
for X with error ε, loss ℓ ∈ [0, k], and gap g, if m = k−ℓ+g
and for every X ∈ X ,

Hε
∞(Cond(X)) ≥ k − ℓ.

We call k′ := k − ℓ the output entropy of the condenser.

Note that after specifying the family X and the error ε of
the condenser, there are many equivalent ways to describe the
remaining parameters. In particular, one may choose to specify
its loss and gap, or its output entropy and gap, or its loss and
output length, and so on (and the other parameters can be
inferred).14 Our choice will often depend on whichever feels
the most appropriate in context. One important note, however,
is that the output entropy simply describes a lower bound on
the actual (smooth) min-entropy of the output, while the output
gap describes an upper bound on the actual gap. Indeed, the
parameters of the condenser should not change as you plug in
different sources from X !

Now, while the above definition seems to describe “deter-
ministic” or “seedless” condensers, it is easy to see that it also
captures seeded condensers, simply by setting X to consist
of all sources of the form (X,Y), where X is an (n, k)-
source and Y is an independent (d, d)-source. Still, it is helpful
to introduce a separate (perhaps redundant) definition, which
makes it easier to refer to their parameters.

Definition 7 (Seeded condenser). A function sCond : {0, 1}n×
{0, 1}d → {0, 1}m is an (n, k) × (d, d) →ε (m, k′)
seeded condenser if for any (n, k)-source X, it holds that
Hε

∞(sCond(X,Ud)) ≥ k′.

Next, note that condensers (as put forth in Definition 6)
strictly generalize extractors, which correspond to the case
where g = 0. As a result, the same is true of seeded condensers
and seeded extractors. Still, it will be handy to record a
separate definition of these objects, for ease of reference.

Definition 8 (Seeded extractor). A function sExt : {0, 1}n ×
{0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for any
(n, k)-source X, it holds that sExt(X,Ud) ≈ε Um.

Note that such a seeded extractor is automatically a (n, k)×
(d, d) →ε (m,m)-seeded condenser.

Finally, we record a useful “trick,” which can be thought
of as a trivial condenser. In the world of extractors, it is well-
known that you can shorten the output length “for free,” simply
by taking a prefix (i.e., this operation won’t harm the other
parameters of the extractor). In the world of condensers, this
may harm the overall output entropy rate k′/m, but it cannot
harm the absolute gap.

Fact 4. If X ∼ {0, 1}n has min-entropy gap ≤ g, its prefix
X[p] of length p has min-entropy gap ≤ g.

Proof. Let x be the most likely element hit by X[p], and sup-
pose it is hit with probability 2−ℓ. Conditioned on X[p] = x,
there is some element y ∈ {0, 1}n−p hit by X[p+1,n] with
probability at least 2−(n−p). This means X hits (x, y) with
probability at least 2−ℓ−(n−p). Since X has min-entropy gap
≤ g, this means that p− ℓ ≤ g, and the result follows.

14When there is a notion of “gap” in the input, we often refer to the gap
of the condenser as the “output gap” to avoid confusion.

1521

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

IV. BASICS OF BLOCK SOURCES

In this section, we’ll introduce some definitions, facts, and
tools related to CG sources and block sources. Many of
the tools we develop here are new, and they find good use
throughout the rest of the paper.

A. Definitions

First, recall that an (n, k)-source is simply a random vari-
able X ∼ {0, 1}n with min-entropy at least k. Chor-Goldreich
sources generalize (n, k)-sources in the following way:

Definition 9 (CG sources). A source X ∼ ({0, 1}n)t is called
a (t, n, k)-Chor-Goldreich source if

H∞(Xi | X<i = x) ≥ k

for all i ∈ [t] and x ∈ ({0, 1}n)i−1.

Note that a (1, n, k)-Chor-Goldreich source is exactly an
(n, k)-source. A (t, 1, k)-Chor-Goldreich source, on the other
hand, is known as a Santha-Vazirani source [2]. Next, the
following allows us to assume that every Chor-Goldreich
source has some nice structure.

Fact 5. If X ∼ ({0, 1}n)t is a (t, n, k)-Chor-Goldreich
source, then it is a convex combination of (t, n, k)-Chor-
Goldreich sources X′ ∼ ({0, 1}n)t such that for any i ∈ [t]
and x ∈ ({0, 1}n)i−1,

(Xi | X<i = x)

is a flat (n, k)-source.

Proof. It is well-known that any (n, k)-source (with k an
integer) is a convex combination of flat (n, k)-sources [16,
Lemma 6.10]. Iteratively apply this to blocks X1, . . . ,Xt,
using the fact that under any conditioning on X<i, the block
Xi is still an (n, k)-source (by definition of Chor-Goldreich
source).

In our constructions, we’ll often need to work with a
generalization of CG sources, where the block lengths are
uneven. These are called block sources.

Definition 10 (Block sources). A source X = (X1, . . . ,Xt) is
called an ((n1, k1), (n2, k2), . . . , (nt, kt))-block source if each
Xi is over ni bits, and

H∞(Xi | X<i = x) ≥ ki

for all i ∈ [t] and x ∈ {0, 1}n1 × {0, 1}n2 × · · · × {0, 1}ni−1 .

Note that a (t, n, k)-CG source is just a block source with
n1 = · · · = nt = n and k1 = · · · = kt = k.

To streamline our proofs, it will be convenient to take
this generalization two steps further. We use the following
definition, which generalizes block sources by only requiring
each block Xi to be close to having a min-entropy guarantee,
and only requiring this closeness to hold for most fixings of
the prefix X<i.

Definition 11 (Almost block sources). A source X =
(X1, . . . ,Xt) is called an ((η1, γ1), . . . , (ηt, γt))-almost

((n1, k1), . . . , (nt, kt))-block source if each Xi is over ni bits,
and for every i ∈ [t] it holds that

Pr
x∼X<i

[(Xi | X<i = x) is γi-close to an (ni, ki)-source]

≥ 1− ηi.

This notion is a generalization of the first type of almost
block sources studied in [3, Definition 1.3] (which correspond
to the special case where γ1 = · · · = γt = γ and η1 = · · · =
ηt = 0), and a specialization of the third type of almost block
sources studied in [3, Definition 8.3] (with λ = 0).

B. Almost block sources are close to block sources

As it turns out, it is not too difficult to show that an almost
block source is close to a true block source.

Lemma 4. If X = (X1, . . . ,Xt) is an ((η1, γ1), . . . , (ηt, γt))-
almost ((n1, k1), . . . , (nt, kt))-block source, then X is ε-
close to an ((n1, k1), . . . , (nt, kt))-block source X⋆, where
ε =

∑
i∈[t](ηi + γi).

The key tool is the following, which can be viewed as a
tightness result for a key lemma (on amplifying statistical
distance) of Chattopadhyay, Goodman, and Zuckerman [17,
Lemma 1, ECCC version]. More formally, it can be viewed
as a “local-to-global” closeness result for sequences of cor-
related random variables. It also generalizes the classic fact
that a sequence of independent random variables, each close
to uniform, is itself (relatively) close to uniform (e.g., [18,
Proposition 2.11]).

Lemma 5. Let X ∼ V1 × · · · × Vt and Y ∼ V1 × · · · × Vt
each be a sequence of (not necessarily independent) ran-
dom variables. Suppose that for every i ∈ [t] and v ∈
support(X<i) ∩ support(Y<i),

|(Xi | X<i = v)− (Yi | Y<i = v)| ≤ εi.

Then
|X−Y| ≤

∑
i∈[t]

εi.

We first prove the key tool above.

Proof. We proceed via a coupling argument. Namely, we will
define jointly distributed random variables X′,Y′ ∼ V1×· · ·×
Vt such that X′ ≡ X,Y′ ≡ Y, and so that it is easy to get
a good upper bound on Pr[X′ ̸= Y′]. The result will then
follow by the first part of the coupling lemma (Lemma 1).

In order to actually construct X′,Y′, we will use the second
part of the coupling lemma (Lemma 1). In more detail, we
define these random variables iteratively (from i = 1, 2, . . . , t),
as follows. For every i ∈ {1, 2, . . . , t}, we will define a new
pair of jointly distributed random variables (X′

i,Y
′
i) such that

for every (u, v) ∈ support(X′
<i,Y

′
<i), all of the following

bullet points hold:
•
(
X′
i | (X′

<i,Y
′
<i) = (u, v)

)
≡ (Xi | X<i = u).

•
(
Y′
i | (X′

<i,Y
′
<i) = (u, v)

)
≡ (Yi | Y<i = v).

• Pr[X′
i ̸= Y′

i | (X′
<i,Y

′
<i) = (u, v)]

1522

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

= |(Xi | X<i = u)− (Yi | Y<i = v)|.

We now show (via induction on i) that such (X′
i,Y

′
i) exist,

and that X′
≤i ≡ X≤i and Y′

≤i ≡ Y≤i.
When i = 1, we know that such random variables (X′

1,Y
′
1)

exist via the second part of the coupling lemma (Lemma 1).15

Furthermore, the bullet points tell us that X′
≤1 ≡ X≤1 and

Y′
≤1 ≡ Y≤1.
When i > 1, we assume (via the induction hypothesis)

that X′
<i ≡ X<i and Y′

<i ≡ Y<i. As a result, (u, v) ∈
support(X′

<i,Y
′
<i) implies that both u ∈ support(X<i) and

v ∈ support(Y<i), and so (Xi | X<i = u) and (Yi | Y<i =
v) are well-defined. Thus, the second part of the coupling
lemma (Lemma 1) once again tells us that there exist random
variables (X′

i,Y
′
i) satisfying all three bullets. Furthermore,

we assert that X′
≤i ≡ X≤i and Y′

≤i ≡ Y≤i. To see why the
former holds, note that for all x ∈ support(X′

≤i),

Pr[X′
≤i = x] = Pr[X′

<i = x<i] · Pr[X′
i = xi | X′

<i = x<i]

= Pr[X<i = x<i] · Pr[X′
i = xi | X′

<i = x<i],

since the induction hypothesis tells us that X′
<i ≡ X<i. Then,

by the law of total probability, Pr[X′
i = xi | X′

<i = x<i] is
exactly ∑
y∈support(Y′

<i|X′
<i=x<i)

Pr[X′
i = xi ∧Y′

<i = y | X′
<i = x<i]

=
∑

y∈support(Y′
<i|X′

<i=x<i)

Pr[Y′
<i = y | X′

<i = x<i]

· Pr[X′
i = xi | X<i′ = x<i,Y

′
<i = y]

= Pr[Xi = xi | X<i = x<i]

·
∑

y∈support(Y′
<i|X′

<i=x<i)

Pr[Y′
<i = y | X′

<i = x<i]

= Pr[Xi = xi | X<i = x<i],

where the penultimate equality follows from the first bullet
above. Thus

Pr[X′
≤i = x] = Pr[X<i = x<i] · Pr[X′

i = xi | X′
<i = x<i]

= Pr[X<i = x<i] · Pr[Xi = xi | X<i = x<i]

= Pr[X≤i = x].

As a result, we have that X′
≤i ≡ X≤i, and an identical

argument shows that Y′
≤i ≡ Y≤i.

Finally, we now have joint random variables X′,Y′ such
that X′ ≡ X and Y′ ≡ Y. Thus, by the first part of the
coupling lemma (Lemma 1), we know that

|X−Y| ≤ Pr[X′ ̸= Y′],

15Formally, note that when i = 1, the phrase “for every (u, v) ∈
support(X′

<i,Y
′
<i)” is removed, and there is no conditioning.

and so all that remains it to upper bound this probability. To
do so, note that

Pr[X′ ̸= Y′]

=
∑
i∈[t]

Pr[X′
i ̸= Y′

i ∧X′
<i = Y′

<i]

=
∑
i∈[t]

∑
(v,v)∈support(X′

<i,Y
′
<i)

Pr[(X′
<i,Y

′
<i) = (v, v)]

· Pr[X′
i ̸= Y′

i | (X′
<i,Y

′
<i) = (v, v)]

=
∑
i∈[t]

∑
(v,v)∈support(X′

<i,Y
′
<i)

Pr[(X′
<i,Y

′
<i) = (v, v)]

· |(Xi | X<i = v)− (Yi | Y<i = v)|

≤
∑
i∈[t]

εi ·
∑

(v,v)∈support(X′
<i,Y

′
<i)

Pr[(X′
<i,Y

′
<i) = (v, v)]

≤
∑
i∈[t]

εi,

where the last equality follows from the third bullet point
above, and the penultimate inequality follows from the lemma
hypothesis, since

(v, v) ∈ support(X′
<i,Y

′
<i)

=⇒ v ∈ support(X′
<i) ∩ support(Y′

<i)

=⇒ v ∈ support(X<i) ∩ support(Y<i).

Thus
|X−Y| ≤ Pr[X′ ̸= Y′] ≤

∑
i∈[t]

εi,

as desired.

With this tool in hand, it is now easy to show that almost
block sources are close to true block sources.

Proof of Lemma 4. Let X = (X1, . . . ,Xt) be an
((η1, γ1), . . . , (ηt, γt))-almost ((n1, k1), . . . , (nt, kt))-block
source. We first show how to “zero out” the ηi terms, and
then the γi terms.

a) Zeroing out the ηi terms in X: We start by defining,
for every i ∈ [t], the set

Goodi :=
{
x ∈ support(X<i) : (Xi | X<i = x)

is γi-close to an (ni, ki)-source
}
.

Then, we define a source X′ = (X′
1, . . . ,X

′
t) such that for

every i ∈ {1, 2, . . . , t} and x ∈ support(X′
<i),

(X′
i | X′

<i = x) ≡

{
(Xi | X<i = x) if x ∈ Goodi,

Uni otherwise.

It is immediate that X′ is an ((0, γ1), . . . , (0, γt))-almost
((n1, k1), . . . , (nt, kt))-block source.

Furthermore, observe that for any x ∈ {0, 1}n1 × · · · ×
{0, 1}nt with x<i ∈ Goodi for all i ∈ [t],

Pr[X′ = x] = Pr[X = x].

1523

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Thus, for any set S ⊆ {0, 1}n1 × · · · × {0, 1}nt , we have that

Pr[X ∈ S]

≤ Pr [X ∈ S ∧X<i ∈ Goodi,∀i ∈ [t]]

+ Pr [∃i ∈ [t] : X<i /∈ Goodi]

≤ Pr [X′ ∈ S ∧X′
<i ∈ Goodi,∀i ∈ [t]]

+
∑
i∈[t]

Pr[X<i /∈ Goodi]

≤ Pr[X′ ∈ S] +
∑
i∈[t]

ηi.

In other words, X′ is
(∑

i∈[t] ηi

)
-close to X.

b) Zeroing out the γi terms in X′: Since X′ is
an ((0, γ1), . . . , (0, γt))-almost ((n1, k1), . . . , (nt, kt))-block
source, we know that for every i ∈ [t] and x ∈ support(X′

<i),
it holds that

(
X′
i | X′

<i = x
)

is γi-close to an (ni, ki)-source,
which we will call Z(x)

i . Using this, we define a new source
X⋆ = (X⋆

1, . . . ,X
⋆
t) such that for every i ∈ {1, 2, . . . , t} and

x ∈ support(X⋆
<i),

(X⋆
i | X⋆

<i = x) ≡

{
Z

(x)
i if x ∈ support(X′

<i),

Uni
otherwise.

It is immediate that X⋆ is an ((0, 0), . . . , (0, 0))-almost
((n1, k1), . . . , (nt, kt))-block source; or in other words, an
((n1, k1), . . . , (nt, kt))-block source.

Furthermore, observe that for any i ∈ [t] and x ∈
support(X′

<i) ∩ support(X⋆
<i),

|(X′
i | X′

<i = x)− (X⋆
i | X⋆

<i = x)| ≤ γi.

As a result, Lemma 5 immediately tells us that X⋆ is(∑
i∈[t] γi

)
-close to X′.

c) Wrapping up: By a standard application of the tri-
angle inequality, we get that X⋆ is ε-close to X, where
ε =

∑
i∈[t](ηi + γi). Since X⋆ is an ((n1, k1), . . . , (nt, kt))-

block source, this completes the proof.

C. Keeping a block source fresh while fixing correlated ran-
domness

In extractor theory, the situation often arises that you have
a collection of independent random variables X1, . . . ,Xt, and
additional random variables X′

1, . . . ,X
′
t where each X′

i is a
deterministic function Xi. The latter variables often get in
the way of the analysis, and the goal is usually to condition
(“fix”) them to constant values, while keeping the entropy and
independence in X1, . . . ,Xt. The classic tool used for this is
the chain rule for min-entropy.

Lemma 6 (Min-entropy chain rule [19]). For any random
variables X ∼ X and Y ∼ Y ,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log(|Y |)− log(1/ε)]

≥ 1− ε.

Indeed, as long as the entropy in each Xi is larger than
the length (support size) of each X′

i, the above lemma

can be used to fix X′
1, . . . ,X

′
t without losing the inde-

pendence of X1, . . . ,Xt or too much entropy. But what if
X1, . . . ,Xt,X

′
1, . . . ,X

′
t have correlations among them? As

we will see, this situation will frequently arise in our analysis
of CG sources. In this section, we establish a formal way to
deal with this. We prove the following, which shows how to
keep a block source “fresh” (looking like a block source) while
fixing a series of correlated random variables.

Lemma 7. Let X = (X1,X2, . . . ,Xt) be an
((n1, k1), (n2, k2), . . . , (nt, kt))-block source, and let
X′ = (X′

1,X
′
2, . . . ,X

′
t) be another sequence of (possibly

correlated) random variables satisfying the following.

• X′
i is supported on a set of size at most 2n

′
i , for every

i ∈ [τ].
• The random variables

(
Xi | X<i = x,X′

≥i = x′
)

and
(X′

<i | X<i = x,X′
≥i = x′) are independent, for

every i ∈ [t], x ∈ {0, 1}n1 × · · · × {0, 1}ni−1 , x′ ∈
{0, 1}n′

i × · · · × {0, 1}n′
t .

Then

Pr
x′∼X′

[
(X | X′ = x′) is not t

√
ε-close to

an ((n1, ℓ1), (n2, ℓ2), . . . , (nt, ℓt))-block source
]

≤ t
√
ε,

where each ℓi := ki −
∑
j≥i n

′
j − log(1/ε).

When we construct our condenser, it is crucial that the
entropy loss on Xi only comes from X′

j , j ≥ i.

Proof. Pick any index i ∈ [t], and define ℓi := ki−
∑
j≥i n

′
j−

log(1/ε). Note that for every fixed x, (Xi | X<i = x) has
min-entropy at least ki (since it is a block source), and thus
the min-entropy chain rule (Lemma 6) tells us that

Pr
x′∼X′

≥i

[H∞(Xi | X<i = x,X′
≥i = x′) < ℓi] ≤ ε.

By the independence guaranteed in the second bullet of the
lemma, we know that for any fixed x, x⋆, the distributions
(Xi | X<i = x,X′ = x⋆) and

(
Xi | X<i = x,X′

≥i = x⋆≥i
)

are identical. Thus we know that

Pr
x⋆∼X′

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≤ ε

for every fixed x. As a result, we have that

Pr
x⋆∼X′

x∼X<i

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≤ ε.

Using an averaging argument, this gives

Pr
x⋆∼X′

[
Pr

x∼X<i

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≥
√
ε

]
≤

√
ε,

1524

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

and a union bound tells us

Pr
x⋆∼X′

[
∃i ∈ [t] :

Pr
x∼X<i

[H∞(Xi | X<i = x,X′ = x⋆) < ℓi] ≥
√
ε

]
≤ t

√
ε,

In other words, we get that X becomes an
√
ε-

almost ((n1, ℓ1), (n2, ℓ2), . . . , (nt, ℓt))-block source except
with probability at most t

√
ε over fixing X′ = x⋆. Applying

Lemma 4 completes the proof.

D. Seeded condensers automatically work for two-block
sources

A core tool we use is the fact that seeded condensers can
be used on block sources, while suffering just a small loss
in parameters. This observation has been made in prior work,
with slightly weaker parameters [8, Lemma 28], or using a
slightly different language [9, Proof of Theorem 4.4].

Lemma 8. Let sCond : {0, 1}n × {0, 1}d → {0, 1}m
be a seeded (n, k) →ε (m, k′) condenser. Then for
any ((n, k), (d, d − g))-block source (X,Y), it holds that
H2gε

∞ (sCond(X,Y)) ≥ k′ − g.

In other words, the output loses g bits of entropy, and the
error blows up by a factor of 2g .

Proof. Let (X,Y) ∼ {0, 1}n × {0, 1}d be an ((n, k), (d, d−
g)) block source, and let Y∗ ∼ {0, 1}d be an independent
uniform random variable. Notice that for any fixed x, S we
have

Pr[sCond(x, (Y | X = x)) ∈ S] ≤ 2g·Pr[sCond(x,Y∗) ∈ S],

since if we define Sx := {y : sCond(x, y) ∈ S} then
Pr[sCond(x,Y∗) ∈ S] = 2−d|Sx| and Pr[sCond(x, (Y | X =
x)) ∈ S] ≤ 2−(d−g)|Sx|. Thus we have

Pr[sCond(X,Y) ∈ S]

=
∑
x

Pr[X = x] · Pr[sCond(x, (Y | X = x)) ∈ S]

≤ 2g
∑
x

Pr[X = x] · Pr[sCond(x,Y∗) ∈ S]

= 2g Pr[sCond(X,Y∗) ∈ S].

Since sCond is a seeded (n, k) →ε (m, k′) condenser, the
above expression is at most

≤ 2g · (|S| · 2−k
′
+ ε)

= |S| · 2−k
′+g + 2gε.

The result now follows by the standard characterization of
smooth min-entropy (Lemma 2).

E. Iterative condensing of multi-block sources

Finally, the following generalizes well-known block-
source extraction and condensing results, such as
in [3], [6]. For example, if instantiated with an
((n1, k1), . . . , (nt−1, kt−1), (nt, nt))-block-source and
seeded condensers with gap 0 (i.e., seeded extractors), then
you get well-known results about extracting from block
sources with a small seed (which is constant for constant
error). We will use this framework in both our explicit and
existential constructions, in order to handle sources with a
very large number of blocks.

Lemma 9. Consider a sequence of functions
sCond1, sCond2, . . . , sCondt−1, where each sCondi :
{0, 1}ni × {0, 1}mi+1 → {0, 1}mi is a seeded
(ni, ki) →εi (mi,mi − gi) condenser. Furthermore,
consider any pair of nonnegative real numbers (nt, kt) such
that mt = nt, and define gt := nt − kt and εt := 0.

Now, define a function Cond′ : {0, 1}n1 × {0, 1}n2 ×
· · · × {0, 1}nt → {0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mt as
Cond′(x1, x2, . . . , xt) := (y1, y2, . . . , yt), where yt := xt, and
for all other i ∈ [t− 1],

yi := sCondi(xi, yi+1).

Then the function Cond : {0, 1}n1×{0, 1}n2×· · ·×{0, 1}nt →
{0, 1}m1 defined as Cond(x1, x2, . . . , xt) := y1 is a condenser
for ((n1, k1), (n2, k2), . . . , (nt, kt))-block sources with output
gap g :=

∑
i∈[t] gi and error ε :=

∑
i∈[t] εi · 2

∑
j∈(i,t] gj .

Proof. Let X = (X1,X2, . . . ,Xt) be an arbitrary
((n1, k1), (n2, k2), . . . , (nt, kt))-block source, and define Y =
(Y1,Y2, . . . ,Yt) := Cond′(X1,X2, . . . ,Xt) as in the lemma
statement. We will prove a stronger claim than in the lemma,
and show that for every a ∈ [t] and x ∈ support(X<a),

(Ya | X<a = x) is ε′a-close to an (ma,ma − g′a)-source,

where ε′a :=
∑
i∈[a,t] εi · 2

∑
j∈(i,t] gj , and g′a :=

∑
i∈[a,t] gi.

16

The proof will proceed via backwards induction on a. We
start by noting the claim is easy when a = t. Indeed, recall that
Yt := Xt, and that X is an ((n1, k1), (n2, k2), . . . , (nt, kt))-
block source. This means that for every fixing of X<t, it holds
that Xt (and thus Yt) is an (nt, kt)-source. In other words,
every (Yt | X<t = x) is ε′t-close to an (mt,mt − g′t)-source,
since ε′t = 0 and (mt,mt − g′t) = (nt, kt).

Next, consider any 1 ≤ a < t and x ∈ support(X<a),
and assume the claim holds for a + 1. Recall that Ya :=
sConda(Xa,Ya+1), and thus

(Ya | X<a = x) = (sConda(Xa,Ya+1) | X<a = x).

Now, since X is a block source, we know that (Xa | X<a =
x) is an (na, ka)-source. Furthermore, the induction hypoth-
esis tells us that for every x′ ∈ support(Xa | X<a = x),

16We also note that when a = 1, the expression (Ya | X<a = x) should
be interpreted as just Y1.

1525

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

it holds that (Ya+1 | X<a = x,X′
a = x′) is ε′a+1-close to an

(ma+1,ma+1 − g′a+1)-source. This means that the source

((Xa,Ya+1) | X<a = x)

is an
(
(0, 0), (0, ε′a+1)

)
-almost(

(na, ka), (ma+1,ma+1 − g′a+1)
)
-block source. And

by Lemma 4, this means it is ε′a+1-close to some
(
(
(na, ka), (ma+1,ma+1 − g′a+1)

)
-block source (X⋆

a,Y
⋆
a+1).

Thus, by a standard application of the data-processing
inequality (Fact 2), we have that

(Ya | X<a = x) = (sConda(Xa,Ya+1) | X<a = x)

≈ε′a+1
sConda(X

⋆
a,Y

⋆
a+1).

Now, using the fact that seeded condensers automatically work
for block sources (Lemma 8), we get that sConda(X⋆

a,Y
⋆
a+1)

is
(
2g

′
a+1εa

)
-close to some (ma,ma − ga − g′a+1)-source.

Thus, the triangle inequality tells us (Ya | X<a = x) is(
ε′a+1 + 2g

′
a+1εa

)
-close to an (ma,ma − ga − g′a+1)-source.

And by definition,

ε′a+1 + 2g
′
a+1εa

=

 ∑
i∈[a+1,t]

εi · 2
∑

j∈(i,t] gj

+
(
2
∑

j∈[a+1,t] gjεa

)
=
∑
i∈[a,t]

εi · 2
∑

j∈(i,t] gj

= ε′a,

and

ga + g′a+1 = ga +
∑

i∈[a+1,t]

gi =
∑
i∈[a,t]

gi = g′a.

Thus, we get that (Ya | X<a = x) is ε′a-close to an (ma,ma−
g′a)-source, as desired.

To conclude, we now know that for all a ∈ [t] and x ∈
support(X<a),

(Ya | X<a = x) is ε′-close to an (ma,ma − g′)-source,

where ε′ =
∑
i∈[a,t] εi · 2

∑
j∈(i,t] gj and g′a =

∑
i∈[a,t] gi. This

completes the proof, since the lemma statement corresponds
to the special case where a = 1.

V. EXPLICIT CONSTRUCTIONS

We are now ready to build our condenser for Chor-Goldreich
sources, and ultimately prove Theorem 1.

A. Somewhere-condensers from non-malleable condensers

Our condenser will be built by expanding the last block
of the CG source into a somewhere-random source, and
iteratively purifying it until we are left with just a single row
that has high entropy. To make things formal, we’ll need some
definitions.

Definition 12 (Somewhere-ℓ-sources). A source Y ∼
({0, 1}m)D is called a somewhere-ℓ-source if there exists
some i ∈ [D] such that Yi has min-entropy at least ℓ.

Definition 13 (Somewhere-condensers for CG sources). A
function sCond : ({0, 1}n)t → ({0, 1}w)D is a somewhere-
ℓ-condenser for (t, n, k)-CG sources with error ε if for any
(t, n, k)-CG source X ∼ ({0, 1}n)t, sCond(X) is ε-close to
a convex combination of somewhere-ℓ-sources.

Definition 14 (Non-malleable condensers for block sources).
A function nmCond : {0, 1}n × {0, 1}n × {0, 1}w × [2] →
{0, 1}m is a non-malleable condenser (with advice) for
((n, k), (n, k), (w, ℓ))-block sources with error ε and output
entropy r if the following holds. For any X,Y ∼ {0, 1}n
and Z1,Z2 ∼ {0, 1}w such that at least one of the sequences
(X,Y,Z1) and (X,Y,Z2) is an ((n, k), (n, k), (w, ℓ))-block
source,

nmCond(X,Y,Z1, 1)⊕ nmCond(X,Y,Z2, 2)

is ε-close to an (m, r)-source.

In our first key lemma, we show how a non-malleable
condenser can be used to improve the quality of a somewhere-
condenser. We prove the following, which we will eventually
apply iteratively.

Lemma 10 (Purifying a somewhere-condenser). Suppose you
have the following objects.

• sCond : ({0, 1}n)t → ({0, 1}w)2d a somewhere-ℓ-
condenser for (t, n, k)-CG sources with error ε1.

• nmCond : {0, 1}nb×{0, 1}nb×{0, 1}w× [2] → {0, 1}m
a non-malleable condenser (with advice) for ((nb, kb −
d − log(1/ε2)), (nb, kb − d − log(1/ε2)), (w, ℓ))-block
sources, which has error ε2 and output entropy r.

Consider the function sCond⋆ : ({0, 1}n)b × ({0, 1}n)b ×
({0, 1}n)t → ({0, 1}m)2

d−1

whose ith output is

sCond⋆i (X,Y, Z)

:= nmCond(X,Y, sCond(Z)2i−1, 1)

⊕ nmCond(X,Y, sCond(Z)2i, 2).

Then, sCond⋆ is a somewhere-r-condenser for (2b + t, n, k)-
CG sources with error ε = ε1 + 4

√
ε2 + ε2.

The core technical claim we use is the following.

Claim 2. Let X,Y ∼ {0, 1}n and Z := (Z1, . . . ,ZD) ∼
({0, 1}w)D be random variables such that:

• (X,Y) is an ((n, k), (n, k))-block source.
• ∀x, y ∈ {0, 1}n, (Z | X = x,Y = y) is ε1-close to a

convex combination of somewhere-ℓ-sources.

Then (X,Y,Z) is (ε1+4
√
ε2)-close to a convex combination

of sources of the form (X′,Y′,Z′), where:

• ∃i ∈ [D] s.t. (X′,Y′,Z′
i) is an ((n, k − d −

log(1/ε2)), (n, k − d− log(1/ε2)), (w, ℓ))-block source.

Proof. By the lemma hypothesis, we know that for every
fixed x, y, (Z | X = x,Y = y) is ε1-close to a convex
combination of somewhere-ℓ-sources. This means that for

1526

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

every fixed x, y, there is some convex combination of the form
Rx,y :=

∑
i∈[D] p

x,y
i ·Rx,y,i such that

(x, y, (Z | X = x,Y = y)) ≈ε1 (x, y,Rx,y), (1)

where we may assume that each Rx,y,i ∼ ({0, 1}w)D is not
only a somewhere-ℓ-source, but in fact has its entropy in its
ith row. That is, Rx,y,i

i ∼ {0, 1}w has min-entropy at least
ℓ. Moreover, since Equation (1) is true for all fixed x, y, it
follows that

(X,Y,Z) ≈ε1 (X,Y,RX,Y).

We henceforth focus on (X,Y,RX,Y). Towards this end,
recall that RX,Y is a convex combination of the form RX,Y =∑
i∈[D] p

X,Y
i · RX,Y,i, where for every fixed x, y it holds

that Rx,y,i ∼ {0, 1}w has min-entropy at least ℓ. Notice
that because of this structure, we can equivalently sample
(X,Y,RX,Y) as follows. First, define a new random variable
A ∼ [D] that depends on X,Y in the following way: for every
fixed x, y, define

Pr[A = i | X = x,Y = y] := px,yi .

Then, for every fixed x, y define a new random variable
Tx,y ∼ ({0, 1}w)D independent of X,Y17 such that

(Tx,y | A = i) ≡ Rx,y,i.

This means that the random variable (Tx,y | A = i) ∼
({0, 1}w)D has entropy at least ℓ in its ith row: in other words,
(Tx,y

i | A = i) ∼ {0, 1}w has entropy at least ℓ for all fixed
x, y, i. Given these definitions, it is straightforward to verify
that

(X,Y,RX,Y) ≡ (X,Y,TX,Y).

This is useful, because the latter three random variables are de-
fined in the same space as another random variable A ∼ [D],
which has the property that (TX,Y

i | A = i) ∼ {0, 1}w has
min-entropy at least ℓ for all i. Moreover, recall that (X,Y) is
an ((n, k), (n, k))-block source. Thus we can apply our lemma
on fixing randomness against block sources (Lemma 7) to get

Pr
i∼A

[
(X,Y | A = i) is not 2

√
ε2-close to

an ((n, k′), (n, k′))-block source
]

≤ 2
√
ε2,

where k′ = k − d− log(1/ε2). Thus we get that upon fixing
A = i, both of the following hold (except with probability at
most 2

√
ε2):

• (X,Y | A = i) is 2
√
ε2-close to an ((n, k′), (n, k′))-

block source, and
• (TX,Y

i | A = i) ∼ {0, 1}w has min-entropy at least ℓ. In
fact, for all fixed x, y, it remains true that (TX,Y

i | A =
i,X = x,Y = y) ∼ {0, 1}w has min-entropy at least ℓ.

17By this, we mean Tx,y is independent of X,Y. Later, we will use
TX,Y , which is of course not independent of X,Y. However, the indepen-
dence assumption tells us that (TX,Y | X = x,Y = y) ≡ (Tx,y | X =
x,Y = y) ≡ Tx,y .

Applying a standard fact about convex combinations (Fact 3),
we therefore get that (X,Y,TX,Y) ∼ {0, 1}n × {0, 1}n ×
({0, 1}w)D is 2

√
ε2-close to a convex combination of dis-

tributions of the form (X⋆,Y⋆,Z⋆) ∼ {0, 1}n × {0, 1}n ×
({0, 1}w)D satisfying:

• (X⋆,Y⋆) ∼ {0, 1}n × {0, 1}n is 2
√
ε2-close to an

((n, k′), (n, k′))-block source, and
• Z⋆ ∼ ({0, 1}w)D admits some i ∈ [D] such that
H∞(Z⋆i | X⋆ = x,Y⋆ = y) ≥ ℓ for all x, y.

Finally, let (X⋆⋆,Y⋆⋆) be the ((n, k′), (n, k′))-block source
that (X⋆,Y⋆) is 2

√
ε2-close to, and define a new random

variable Z⋆⋆ as follows:

(Z⋆⋆ | X⋆⋆ = x,Y⋆⋆ = y)

≡

{
(Z⋆ | X⋆ = x,Y⋆ = y) if (x, y) ∈ support(X⋆,Y⋆),

U otherwise.

It is straightforward to verify the following about
(X⋆⋆,Y⋆⋆,Z⋆⋆) ∼ {0, 1}n × {0, 1}n × ({0, 1}w)D.

• (X⋆⋆,Y⋆⋆) is an ((n, k′), (n, k′))-block source.
• There exists some i ∈ [D] such that
H∞(Z⋆⋆i | X⋆⋆ = x,Y⋆⋆ = y) ≥ ℓ for all x, y.

• (X⋆⋆,Y⋆⋆,Z⋆⋆) ≈2
√
ε2 (X⋆,Y⋆,Z⋆⋆).

Note that the first two conditions in fact imply that there
exists some i ∈ [D] such that (X⋆⋆,Y⋆⋆,Z⋆⋆i) is an
((n, k′), (n, k′), (w, ℓ))-block source, where recall that k′ =
k−d−log(1/ε2). Thus (X⋆⋆,Y⋆⋆,Z⋆⋆) has the exact structure
we were originally looking for. To summarize, recall that
(X,Y,Z) ≈ε1 (X,Y,RX,Y) ≡ (X,Y,TX,Y), and the
latter is 2

√
ε2-close to a convex combination of distributions

(X⋆,Y⋆,Z⋆) of the form specified above, and each of these
is 2

√
ε2-close to a distribution (X⋆⋆,Y⋆⋆,Z⋆⋆) of the desired

structure. Applying the triangle inequality (Fact 1), we imme-
diately get that (X,Y,Z) is (ε1 + 4

√
ε2)-close to a convex

combination of distributions (X⋆⋆,Y⋆⋆,Z⋆⋆) of the desired
form.

Given the above claim, it is now straightforward to show that
a non-malleable condenser can be used to purify a somewhere-
condenser.

Proof of Lemma 10. Let B ∼ ({0, 1}n)2b+t be a (2b +
t, n, k)-CG source. Observe that we can parse it as
an ((nb, kb), (nb, kb), (nt, kt))-block source (X,Y,Z) ∼
({0, 1}n)b× ({0, 1}n)b× ({0, 1}n)t, with the additional prop-
erty that for every fixed x, y, (Z | X = x,Y = y) is a (t, n, k)-
CG source. The goal is to show sCond⋆(X,Y,Z) is ε-close
to a somewhere-r-source A ∼ ({0, 1}m)2

d−1

. Recalling the
definition of sCond⋆, this means we must show that the

1527

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

random variable

T := (nmCond(X,Y, sCond1(Z), 1)

⊕ nmCond(X,Y, sCond2(Z), 2),

nmCond(X,Y, sCond3(Z), 1)

⊕ nmCond(X,Y, sCond4(Z), 2),

...
nmCond(X,Y, sCondD−1(Z), 1)

⊕ nmCond(X,Y, sCondD(Z), 2))

is ε-close to a convex combination of somewhere-r-sources.
Towards this end, define for each i ∈ [D] a random
variable Wi := sCondi(Z) ∼ {0, 1}w, and let W :=
(W1,W2, . . . ,WD). We can rewrite T as

T := (nmCond(X,Y,W1, 1)

⊕ nmCond(X,Y,W2, 2),

nmCond(X,Y,W3, 1)

⊕ nmCond(X,Y,W4, 2),

...
nmCond(X,Y,WD−1, 1)

⊕ nmCond(X,Y,WD, 2))

Now, recall that Z is a (t, n, k)-CG source, even conditioned
on any fixing of X = x,Y = y. Furthermore, recall that
sCond is a somewhere-ℓ-condenser for (t, n, k)-CG sources
with error ε1. We can therefore say the following about the
random variables X,Y,W:

• (X,Y) is an ((nb, kb), (nb, kb))-block source.
• ∀x, y ∈ {0, 1}nb, (W | X = x,Y = y) is ε1-close to a

convex combination of somewhere-ℓ-sources.

Applying our core technical claim (Claim 2), we know that
(X,Y,W) is (ε1 + 4

√
ε2)-close to a convex combination of

sources of the form (X′,Y′,W′) where:

• ∃i ∈ [D] such that (X′,Y′,W′
i) is an ((nb, kb − d −

log(1/ε2)),(nb, kb−d− log(1/ε2)), (w, ℓ))-block source.

By a straightforward application of the data-processing
inequality (Fact 2), this means that T is (ε1 + 4

√
ε2)-close

to a convex combination of distributions of the form

T′ = (nmCond(X′,Y′,W′
1, 1)

⊕ nmCond(X′,Y′,W′
2, 2),

nmCond(X′,Y′,W′
3, 1)

⊕ nmCond(X′,Y′,W′
4, 2),

...
nmCond(X′,Y′,W′

D−1, 1)

⊕ nmCond(X′,Y′,W′
D, 2)),

where (X′,Y′,W′) have the guarantee that there
exists some i ∈ [D] such that (X′,Y′,W′

i) is an

((nb, kb− d− log(1/ε2)), (nb, kb− d− log(1/ε2)), (w, ℓ))-
block source. Call this the “good” index i. Now, for all
i ∈ [D/2], define

R′
i := nmCond(X′,Y′,W′

2i−1)⊕ nmCond(X′,Y′,W′
2i))

so that we may write

T′ = (R′
1,R

′
2, . . . ,R

′
D/2).

If i⋆ denotes the “good” index, then the definition of non-
malleable condensers (Definition 14) tells us that R′

i⋆ is ε2-
close to an (m, r)-source R′′

i⋆ ∼ {0, 1}m. Furthermore, we
can define a random variable R′′

−i⋆ ∼ ({0, 1}m)D/2−1 such
that for every fixed r ∈ {0, 1}m,

(R′′
−i⋆ | R′′

i⋆ = r)

≡

{
(R′

−i⋆ | R′
i⋆ = r) if r ∈ support(R′

i⋆),

U otherwise.

Then, if we define T′′ := (R′′
i⋆ ,R

′′
−i⋆) ∼ ({0, 1}m)D/2, it

is straightforward to verify that T′′ ≈ε2 T′, and moreover
T′′
i⋆ is an (m, r)-source. In other words, T′′ is a somewhere-

r-source, and thus T′ is ε2-close to a somewhere-r-source.
Recall that at the beginning, we showed that T is (ε1+4

√
ε2)-

close to a convex combination of such sources T′, and we now
know that each such source T′ is ε2-close to a somewhere-
r-source T′′. As a result, it immediately follows that T is
(ε1+4

√
ε2+ε2)-close to a convex combination of somewhere-

r-sources, as desired.

B. Non-malleable condensers from seeded extractors

While it is known how to explicitly construct somewhere-
condensers, it is not known how to construct non-malleable
condensers for block sources. In this section, we show how
to use basic seeded extractors to construct them. Later, we’ll
instantiate the recipe below in order to obtain our non-
malleable condensers.

Lemma 11 (Non-malleable condensers from seeded extrac-
tors). Suppose you have the following objects.

• sExt1 : {0, 1}n × {0, 1}p1 → {0, 1}d1 a (k0, ε1)-seeded
extractor.

• sExt′1 : {0, 1}n × {0, 1}d1 → {0, 1}m a (k0, ε
′
1)-seeded

extractor.
• sExt2 : {0, 1}n × {0, 1}p2 → {0, 1}d2 a (k0, ε2)-seeded

extractor.
• sExt′2 : {0, 1}n × {0, 1}d2 → {0, 1}m a (k0, ε

′
2)-seeded

extractor.
Consider the function nmCond : {0, 1}n×{0, 1}n×{0, 1}w×
[2] → {0, 1}m defined as

nmCond(X,Y, Z, b) := sExt′b(X, sExtb(Y, Z[pb]))

Then nmCond is a non-malleable condenser (with advice) for
((n, k), (n, k), (w,w − g))-block sources with output entropy
m − (g + 2d1 + p2 + log(1/ε1) + log(1/ε2)) and error
2g+p2+3ε

1/4
1 + 2g+4ε

1/4
2 , as long as:

• k ≥ k0 +m+ 2d1 + d2 + p2 + log(1/ε1) + log(1/ε2)

1528

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

• ε1 = ε′1 and ε′2 = ε2 · 2−2d1

Proof. Consider any X,Y ∼ {0, 1}n and Z1,Z2 ∼
{0, 1}w such that either (X,Y,Z1) or (X,Y,Z2) is an
((n, k), (n, k), (w,w− g))-block source. Unwrapping the def-
inition of nmCond, the goal is to show that

sExt′1(X, sExt1(Y,Z
1
[p1]

))⊕ sExt′2(X, sExt2(Y,Z
2
[p2]

))

is ε-close to an (m, r)-source. We must show this to be true in
two cases: the case where (X,Y,Z1) is the block source, and
the case where (X,Y,Z2) is the block source. We proceed
with each case separately. But for both cases, it will be useful
to define the following auxiliary random variables:

Z1 := Z1
[p1]

Z2 := Z2
[p2]

W1 := sExt1(Y,Z
1) W2 := sExt2(Y,Z

2)

S1 := sExt′1(X,W1) S2 := sExt′2(X,W2)

With this notation, the goal is simply to show that S1 ⊕S2 is
ε-close to an (m, r)-source. Let’s get started.

a) Case 1.: In this case, we assume that (X,Y,Z1) is
the block source. In order to show that S1 ⊕ S2 is ε-close
an (m, r)-source, the idea is to find a sequence of fixings
that will force S2 to become a constant, but under which S1

can be shown to have high min-entropy. In order to fix S2,
we will actually fix the entire sequence of random variables
(S2,W2,Z

2), and argue that the sequence (X,Y,Z1) main-
tains its structure.

To make things more formal, let’s start by better under-
standing the structure of (X,Y,Z1). Recall that in this case,
we assumed that (X,Y,Z1) is an ((n, k), (n, k), (w,w− g))-
block source. This means that for every fixing of X,Y, Z1

still has min-entropy at least w−g. And if Z1 has min-entropy
at least w−g, it is not hard to show that its prefix Z1 = Z1

[p1]

of length p1 has entropy at least p1 − g (Fact 4). This tells us
that (X,Y,Z1) is a ((n, k), (n, k), (p1, p1−g))-block source.

Next, let’s better understand the structure of (S2,W2,Z
2),

and how it relates to (X,Y,Z1). Towards this end, first note
that S2,W2 and Z2 are supported on sets of size 2m, 2d2 and
2p2 , respectively. Then, observe the following independence
relationships between (X,Y,Z1) and (S2,W2,Z

2):

• Upon fixing X,Y,Z2, the random variables S2,W2

become a constant. As a result, we know that (Z1 | X =
x,Y = y,Z2 = z2) and (S2,W2 | X = x,Y = y,Z2 =
z2) are independent, ∀x, y, z2.

• Upon fixing X,W2,Z
2, the random variable S2 becomes

a constant. As a result, we know that (Y | X = x,W2 =
w2,Z

2 = z2) and (S2 | X = x,W2 = w2,Z
2 = z2) are

independent, ∀x,w2, z2.

Because of these independence relationships between
(X,Y,Z1) and (S2,W2,Z

2), it turns out that we can safely
fix the latter sequence without severely affecting the structure
of the former. In particular, by combining the above obser-
vations with our lemma on fixing randomness against block

sources (Lemma 7), we immediately get the following, for any
γ > 0.

Pr
(s2,w2,z2)∼(S2,W2,Z2)

[
(2)

(X,Y,Z1 | S2 = s2,W2 = w2,Z
2 = z2)

is not 3
√
γ-close to an

((n, k′), (n, k′), (p1, ℓ
′))-block source

]
≤ 3

√
γ,

where k′ = k − (m + d2 + p2 + log(1/γ)) and ℓ′ =
p1 − (g + p2 + log(1/γ)). The reason why this bound will
be useful is because it says that with high probability over
fixing S2,W2,Z

2, it follows that (X,Y,Z1) is still a block
source, and of course S2 is also a constant. Thus, if we can
just show that S1 = sExt′1(X, sExt1(Y,Z

1)) has high entropy
whenever (X,Y,Z1) is a block source, we will be done, since
we just needed S1 ⊕ S2 to have high entropy, and this is true
if S1 has high entropy and S2 is constant.

More formally, consider an arbitrary
((n, k′), (n, k′), (p1, ℓ

′))-block source (A,B,C). Let’s
analyze what sExt′1(A, sExt1(B,C)) looks like. By definition
of block source, we know that for every a, it holds that
(B,C | A = a) is an ((n, k′), (p1, ℓ

′))-block source.
Furthermore, recall that sExt1 : {0, 1}n×{0, 1}p1 → {0, 1}d1
is a (k0, ε1)-seeded extractor, and thus it is trivially a
seeded (n, k0) →ε1 (d1, d1) condenser. Since every seeded
condenser also works for block sources (Lemma 8), it
follows that sExt1(B,C | A = a) is (2p1−ℓ

′
ε1)-close

to a source Qa ∼ {0, 1}d1 with min-entropy at least
d1 − (p1 − ℓ′), provided that k′ ≥ k0. Since it holds that
(a, sExt1(B,C | A = a)) ≈2p1−ℓ′ε1

(a,Qa) for every fixed
a, it follows that the random variables (A, sExt1(B,C)) and
(A,QA) enjoy the same statistical distance bound. And by a
straightforward application of the data-processing inequality
(Fact 2), it also follows that

sExt′1(A, sExt1(B,C)) ≈2p1−ℓ′ε1
sExt′1(A,QA).

Moreover, observe that (A,QA) is in fact a ((n, k′), (d1, d1−
(p1 − ℓ′)))-block source. Repeating an identical analysis to
what was done above, we can thus conclude that

sExt′1(A,QA) ≈2p1−ℓ′ε′1
R⋆,

where R⋆ ∼ {0, 1}m is some source with min-entropy at least
m− (p1 − ℓ′), provided that k′ ≥ k0.

To summarize, we get that for any ((n, k′), (n, k′), (p1, ℓ
′))-

block source (A,B,C),

sExt′1(A, sExt1(B,C)) ≈2p1−ℓ′ (ε1+ε′1)
R⋆,

where R⋆ is some source with min-entropy at least m− (p1−
ℓ′), provided that k′ ≥ k0. Moreover, it is straightforward to

1529

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

see that if (A,B,C) is actually only ξ-close to a block source
(A⋆,B⋆,C⋆) of the above type, then the data-processing
inequality (Fact 2) tells us that sExt′1(A, sExt1(B,C)) is ξ-
close to sExt′1(A

⋆, sExt1(B
⋆,C⋆)), which we showed above

to be 2p1−ℓ
′
(ε1 + ε′1)-close to R⋆.

Thus, we get that for any (A,B,C) that is ξ-close to an
((n, k′), (n, k′), (p1, ℓ

′))-block source,

sExt′1(A, sExt1(B,C)) ≈2p1−ℓ′ (ε1+ε′1)+ξ
R⋆,

where R⋆ is an (m,m− (p1− ℓ′))-source, provided that k′ ≥
k0.

Put differently, if sExt′1(A, sExt1(B,C)) is not (2p1−ℓ
′
(ε1+

ε′1) + ξ)-close to any such source R⋆, then we know that
(A,B,C) is not ξ-close to an ((n, k′), (n, k′), (p1, ℓ

′))-block
source. Thus, if we define g′ := p1−ℓ′, ξ′ := 2p1−ℓ

′
(ε1+ε

′
1)+

ξ, and ξ = 3
√
γ, we can combine the above with Equation (2)

to obtain

Pr
(s2,w2,z2)∼(S2,W2,Z2)

[
(S1 ⊕ S2 | S2 = s2,W2 = w2,Z

2 = z2)

is not ξ′-close to an (m,m− g′)-source
]

= Pr
(s2,w2,z2)

[
(S1 ⊕ s2 | S2 = s2,W2 = w2,Z

2 = z2)

is not ξ′-close to an (m,m− g′)-source
]

= Pr
(s2,w2,z2)

[
(S1 | S2 = s2,W2 = w2,Z

2 = z2)

is not ξ′-close to an (m,m− g′)-source
]

= Pr
(s2,w2,z2)

[
(
sExt′1(X, sExt1(Y,Z

1)
)
| S2 = s2,W2 = w2,Z

2 = z2)

is not ξ′-close to an (m,m− g′)-source
]

≤ Pr
(s2,w2,z2)

[
(X,Y,Z1 | S2 = s2,W2 = w2,Z

2 = z2)

is not ξ-close to an

((n, k′), (n, k′), (p1, ℓ
′))-block source

]
≤ ξ.

To summarize, we’ve shown that there exists a random variable
V := (S2,W2,Z

2) such that

Pr
v∼V

[
(S1 ⊕ S2 | V = v) is not ξ′-close to

an (m,m− g′)-source
]
≤ ξ.

By a standard fact about convex combinations (Fact 3), it
immediately follows that S1 ⊕ S2 is ξ-close to a convex
combination of sources that are ξ′-close to an (m,m − g′)-
source. As such, it holds that S1 ⊕ S2 is (ξ + ξ′)-close to a

convex combination of (m,m − g′)-sources. Since a convex
combination of (m,m− g′)-sources is, itself, an (m,m− g′)-
source, we conclude that S1 ⊕ S2 is (ξ + ξ′)-close to an
(m,m− g′)-source. Finally, recall that

ξ + ξ′ = 6
√
γ + 2p1−ℓ

′
(ε1 + ε′1)

= 6
√
γ + 2g+p2+log(1/γ)(ε1 + ε′1),

for any γ > 0. If we set ε1 = ε′1 and γ = (2ε1)
1/2, this is at

most 2g+p2+3ε
1/4
1 . Furthermore, recall that

g′ = p1 − ℓ′

= g + p2 + log(1/γ)

≤ g + p2 + log(1/ε1)

Recall that to make everything work, we needed k′ ≥ k0, and
plugging in our definition of k′ from before, this requirement
becomes (no worse than)

k ≥ k0 +m+ d2 + p2 + log(1/γ)

= k0 +m+ d2 + p2 + log(1/ε1).

Thus, we get that the output of the non-malleable condenser is
2g+p2+3ε

1/4
1 -close to an (m,m−(g+p2+log(1/ε1)))-source,

as long as k ≥ k0 +m+ d2 + p2 + log(1/ε1) and ε1 = ε′1.
b) Case 2.: We now proceed to the second case, where

we assume that (X,Y,Z2) is the block source. In order to
show that S1 ⊕ S2 is ε-close to an (m, r)-source, we now
seek a sequence of fixings that will force S1 to be constant,
but under which S2 can be shown to have high min-entropy.

To start, recall that (X,Y,Z2) is an ((n, k), (n, k), (w,w−
g))-block source. Using an identical argument to the one
appearing at the beginning of the previous case, we know
this implies that (X,Y,Z2) is an ((n, k), (n, k), (p2, p2−g))-
block source. Next, we’d like to argue that (X,W2) is close
to a block source (X′,W′

2). For technical reasons that we
will soon see, we actually need a slightly more involved
result. In particular, we need to show there is a sequence
(X′,W′

2,S
′
1,W

′
1) such that:

• (X′,W′
2,S

′
1,W

′
1) is close to (X,W2,S1,W1),

• (X′,W′
2) is a block source, and

• S′
1 is constant upon any fixing of X′,W′

1.
We start by constructing (X′,W′

2). To do so, first recall
that (X,Y,Z2) is a ((n, k), (n, k), (p2, p2−g))-block source.
This means that for every fixed x, (Y,Z2 | X = x)
is an ((n, k), (p2, p2 − g))-block source. Now, recall that
sExt : {0, 1}n × {0, 1}p2 → {0, 1}d2 is a (k0, ε2)-seeded
extractor, and is therefore also a seeded (n, k0) →ε2 (d2, d2)
condenser. Since every seeded condenser also works for block
sources (Lemma 8), it follows that sExt2(Y,Z

2 | X = x)
is 2gε2-close to a source Qx ∼ {0, 1}d2 with min-entropy at
least d2 − g, provided that k ≥ k0. Since it holds that

(x, sExt2(Y,Z
2 | X = x)) ≈2gε2 (x,Qx)

for every fixed x, it follows that (X,W2) =
(X, sExt2(Y,Z

2)) ≈2gε2 (X,QX). Moreover, observe

1530

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

that (X,QX) is an ((n, k), (d2, d2 − g))-block source. We
define (X′,W′

2) = (X,QX).
Next, let us proceed with constructing S′

1,W
′
1. This is not

too difficult. First, we define W′
1 by asserting that for every

fixed x,w2,

(W′
1 | X′ = x,W′

2 = w2)

≡

{
(W1 | X = x,W2 = w2) if (x,w2) ∈ support(X,W2)

U otherwise.

Then, we define S′
1 := sExt′1(X

′,W′
1). This trivially sat-

isfies the condition that S′
1 is constant upon any fixing of

X′,W′
1. Moreover, recall from above that (X′,W′

2) is an
((n, k), (d2, d2 − g))-block source. Thus all that remains is to
show that (X′,W′

2,S
′
1,W

′
1) is close to (X,W2,S1,W1). To

see why this is true, first observe that by construction, it holds
that for any (x,w2) ∈ support(X,W2),

((X′,W′
2,S

′
1,W

′
1) | X′ = x,W′

2 = w2)

≡ ((X,W2,S1,W1 | X = x,W2 = w2)) .

Combining this with the fact that (X′,W′
2) is 2gε2-close to

(X,W2) by construction, it is straightforward to verify that

(X′,W′
2,S

′
1,W

′
1) ≈2gε2 (X,W2,S1,W1).

Thus, we have successfully constructed a sequence
(X′,W′

2,S
′
1,W

′
1) with all of the properties originally

desired. Now, let’s see how to use it.
Recall that we originally wanted to show that S1⊕S2 is ε-

close to an (m, r)-source, and planned to do so by performing
some fixings that force S1 to be constant. The fixings that we
will perform are exactly on the random variables (S1,W1).
To analyze the probability that S1⊕S2 is ε-close to an (m, r)-
source under these fixings, we will use the above-constructed
sequence for help. In more detail, let ξ and g′ be parameters
that we will set later. Then, note that

Pr
(s1,w1)∼(S1,W1)

[
(S1 ⊕ S2 | S1 = s1,W1 = w1)

is not ξ-close to an (m,m− g′)-source
]

= Pr
(s1,w1)∼(S1,W1)

[
(s1 ⊕ S2 | S1 = s1,W1 = w1)

is not ξ-close to an (m,m− g′)-source
]

= Pr
(s1,w1)∼(S1,W1)

[
(S2 | S1 = s1,W1 = w1)

is not ξ-close to an (m,m− g′)-source
]

= Pr
(s1,w1)∼(S1,W1)

[(
sExt′2(X,W2) | S1 = s1,W1 = w1

)
is not ξ-close to an (m,m− g′)-source

]
.

Now, since we know that (S1,W1,X,W2) is 2gε2-close to
(S′

1,W
′
1,X

′,W′
2), we can apply Claim 1 to upper bound the

above by

Pr
(s1,w1)∼(S′

1,W
′
1)

[
(sExt′2(X

′,W′
2) | S′

1 = s1,W
′
1 = w1) (3)

is not ξ/2-close to an (m,m− g′)-source
]

+ 4 · 2gε2/ξ + 2gε2.

In order to continue bounding this probability, we can now ap-
ply our fixing lemma (Lemma 7) as follows. First, note that we
are dealing with random variables (X′,W′

2) and (S′
1,W

′
1),

where (X′,W′
2) is an ((n, k), (d2, d2− g))-block source, and

S′
1,W

′
1 are supported on sets of size 2m and 2d1 , respectively.

Furthermore, note that (W′
2 | X′ = x,W′

1 = w1) and
(S′

1 | X′ = x,W′
1 = w1) are independent, for all fixed x,w1.

Indeed, this is simply because we constructed S′
1 to be constant

upon any fixing of X′,W′
1. Plugging these observations into

Lemma 7, we immediately get that

Pr
(s1,w1)∼(S′

1,W
′
1)

[
(X′,W′

2 | S′
1 = s1,W

′
1 = w1)

is not 2
√
ν-close to

an ((n, k′′), (d2, ℓ
′′))-block source

]
≤ 2

√
ν,

where k′′ = k − (m + d1 + log(1/ν)) and ℓ′′ = d2 −
(g + d1 + log(1/ν)). Now, consider any ((n, k′′), (d2, ℓ

′′))-
block source (A,B), and think about what happens when
you plug it into sExt′2 : {0, 1}n × {0, 1}d2 → {0, 1}m,
which also works as a seeded (n, k0) →ε′2

(m,m) condenser.
Since every seeded condenser also works for block sources
(Lemma 8), it follows that sExt′2(A,B) is (2d2−ℓ

′′ · ε′2)-close
to a source with min-entropy at least m− (d2 − ℓ′′), provided
that k′′ ≥ k0. Moreover, as we saw before, if (A,B) is η-close
to an ((n, k′′), (d2, ℓ

′′))-block source, then sExt′2(A,B) is still
guaranteed to be (2d2−ℓ

′′ · ε′2+ η)-close to a source with min-
entropy at least m− (d2− ℓ′′). Put differently, if sExt′2(A,B)
were not this close to such a high entropy source, then we
know that (A,B) is also not η-close to an ((n, k′′), (d2, ℓ

′′))-
block source.

By the discussion above, we know that if we set ξ/2 :=
(2d2−ℓ

′′
ε′2+ η) and η = 2

√
ν and g′ = d2− ℓ′′, we can upper

bound Equation (3) by

2
√
ν + 4 · 2gε2/ξ + 2gε2 ≤ 2

√
ν + 5 · 2gε2/ξ.

In summary, we get that

Pr
(s1,w1)∼(S1,W1)

[
(S1 ⊕ S2 | S1 = s1,W1 = w1)

is not ξ-close to an (m,m− g′)-source
]

≤ 2
√
ν + 5 · 2gε2/ξ.

By a standard fact about convex combinations (Fact 3), it
immediately follows that S1 ⊕ S2 is (2

√
ν + 5 · 2gε2/ξ)-

close to a convex combination of sources that are ξ-close

1531

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

to an (m,m − g′)-source. As such, it holds that S1 ⊕ S2

is (2
√
ν + 5 · 2gε2/ξ + ξ)-close to a convex combination

of (m,m − g′)-sources. And since a convex combination of
(m,m − g′)-sources is, itself, an (m,m − g′)-source, we
conclude that S1 ⊕ S2 is (2

√
ν + 5 · 2gε2/ξ + ξ)-close to

an (m,m− g′)-source. Finally, recall that

2
√
ν + 5 · 2gε2/ξ + ξ

= 6
√
ν +

5 · 2gε2
2d2−ℓ′′ε′2 + 4

√
ν
+ 2d2−ℓ

′′
ε′2

= 6
√
ν +

5 · 2gε2
2g+d1+log(1/ν)ε′2 + 4

√
ν
+ 2g+d1+log(1/ν)ε′2,

where ν > 0 can be taken as anything. Taking it to be ν :=√
ε′2 allows us to upper bound the above by

≤ 6(ε′2)
1/4 +

6ε2

2d1
√
ε′2

+ 2g+d1
√
ε′2.

Then, taking ε′2 = ε2 · 2−2d1 allows us to upper bound the
above by ≤ 2g+4 · ε1/42 .

Furthermore, recall that

g′ = d2 − ℓ′′

= g + d1 + log(1/ν)

= g + 2d1 + log(1/ε2)/2.

Recall that to make everything work, we needed k′′ ≥ k0, and
plugging in our definition of k′′ from before, this requirement
becomes

k ≥ k0 +m+ d1 + log(1/ν)

= k0 +m+ 2d1 + log(1/ε2)/2.

Thus, we get that the output of the non-malleable condenser
is 2g+4ε

1/4
2 -close to an (m,m − (g + 2d1 + log(1/ε2)/2))-

source, as long as k ≥ k0 + m + 2d1 + log(1/ε2)/2 and
ε′2 = ε2 · 2−2d1 .

C. The main explicit condenser

Using the tools developed above, we can now construct our
main explicit condenser for CG sources.

Theorem 5 (The main explicit condenser for CG sources
- Theorem 1, restated). For any α > 0, there exists a
constant C ≥ 1 such that the following holds. For all
t, n ∈ N and δ, ε > 0, there exists an explicit condenser
Cond : ({0, 1}n)t → {0, 1}k′+g′ for (t, n, k = δn = n − g)-
CG sources which has output entropy k′ ≥ (1− α)kt, output
gap g′ ≤ C · (1/δ)C · (g + log(1/ε)), and error ε.

The proof proceeds via three steps. First, in Section V-C1,
we explicitly construct a non-malleable condenser for CG
sources (using our framework from Section V-B). Then, in
Section V-C2, we present the main part of our condenser,
which uses our new non-malleable condenser in the “purifi-
cation” framework from Section V-A in order to condense
CG sources to rate 0.99. Finally, in Section V-C3, we show
how to get the remaining entropy out of the source, while

maintaining a very small gap, by showing that the classical
iterative condensing framework of Nisan and Zuckerman [6]
can be extended to handle a correlated seed.

1) Building a non-malleable condenser: We proceed to
build our non-malleable condenser for CG sources. We prove
the following.

Theorem 6 (Explicit non-malleable condensers). For every
constant α > 0, there exist constants C ≥ 1 and γ > 0 such
that the following holds. There exists an explicit non-malleable
condenser (with advice) nmCond : {0, 1}n × {0, 1}n ×
{0, 1}d × [2] → {0, 1}m for ((n, k), (n, k), (d, (1 − γ)d))-
block sources with error ε, output length m = ⌊(12 − α)k −
C log(n/ε)−d⌋, and output gap g′ ≤ C log(n/ε)+d, provided
that d ≥ C log(n/ε).

Our construction will follow by simply plugging in known
seeded extractors into our recipe from Section V-B. We will
use the following classical extractors of Guruswami, Umans,
and Vadhan.

Theorem 7 (Explicit seeded extractors [4]). For every con-
stant α > 0, there is a constant C > 0 such that the
following holds. There exists an explicit (k, ε)-seeded extractor
sExt : {0, 1}n × {0, 1}d → {0, 1}m with output length
m ≥ (1− α)k, as long as d ≥ C log(n/ε).

With this tool in hand, we are ready to construct our non-
malleable condensers.

Proof of Theorem 6. We simply plug Theorem 7 into
Lemma 11, and pick parameters appropriately.

In more detail, we need to find extractors
• sExt1 : {0, 1}n × {0, 1}p1 → {0, 1}d1 a (k0, ε1)-seeded

extractor,
• sExt′1 : {0, 1}n × {0, 1}d1 → {0, 1}m a (k0, ε

′
1)-seeded

extractor,
• sExt2 : {0, 1}n × {0, 1}p2 → {0, 1}d2 a (k0, ε2)-seeded

extractor,
• sExt′2 : {0, 1}n × {0, 1}d2 → {0, 1}m a (k0, ε

′
2)-seeded

extractor,
with parameters p1, d1, p2, d2, d1,m, d2, k0, ε1, ε′1, ε2, ε

′
2 that

result in the non-malleable condensers we claim (using
Lemma 11). To make this easy, we start by focusing on
achieving error ε. In order to do so, we define g := γd (for
some constant γ to be fixed later), and note that Lemma 11
says that we can just pick ε1 such that 2g+p2+3ε

1/4
1 ≤ ε/2

and 2g+4ε
1/4
2 ≤ ε/2. Moreover, it always requires that we

have ε1 = ε′1 and ε′2 = ε2 · 2−2d1 . Thus we pick errors
ε1 = ε42−4(g+p2+4), ε′1 = ε1, ε2 = ε4 · 2−(g+5)4, and
ε′2 = ε−2d1

2 . This satisfies the error requirement.
Now, in order to explicitly construct these extractors, we

invoke Theorem 7 so that we can handle the smallest possible
seed length. Thus, we pick

• p2 = C log(n/ε2) = 4C · (log(n/ε) + g + 5) =
O(log(n/ε) + g),

• p1 = C log(n/ε1) = 4C · (log(n/ε) + g + p2 + 4) =
O(log(n/ε) + g),

1532

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

• d1 = C log(n/ε′1) = 4C · (log(n/ε) + g + p2 + 4) =
O(log(n/ε) + g),

• d2 = C log(n/ε′2) = 4C · (log(n/ε) + g + 5 + d1/2) =
O(log(n/ε) + g).

To make this work, Lemma 11 also says that we need k0 ≤
k−(m+2d1+d2+p2+log(1/ε1)+log(1/ε2)), and recall that
the right hand side is at least k−m−O(log(n/ε)+ g). Thus
we pick k0 to be this value, and all that remains is to check
that we didn’t ask one of the extractors to output more bits
than (1−α)k0. For this, we simply need that m ≤ (1−α)k0 =
(1−α)(k−m−O(log(n/ε)+g)), or rather that m ≤ (1/2−
α)k − O(log(n/ε) + g). Furthermore, recall that p1, p2 are
prefixes of d, so we need d ≥ p1, p2 = O(log(n/ε)+g). Now
that all the conditions are satisfied, we get from Lemma 11
that the entropy gap is O(g + log(n/ε)). To conclude, recall
that g = γd, and set γ to a sufficiently small constant.

2) Condensing to rate 0.99: Now that we have our non-
malleable condensers, we are ready to construct the core
component of our main explicit condenser for CG sources.
In this section, we prove the following.

Lemma 12 (Condensing to rate 0.99). For any constants
α,C0 > 0, there exist constants C1, C2, C3 ≥ C0 such
that the following holds. There exists an explicit condenser
Cond : ({0, 1}n)t → {0, 1}m for (t, n, δn)-CG sources
with output length m ∈ [0.05δnτ⋆, δnτ⋆], output entropy
k′ ≥ (1− α)m, and error ε, provided

t ≥ τ⋆ := C1 ·
(
(1/δ)C2 + (1/δ)C3 log(1/ε)/n

)
.

As discussed, the key idea is to instantiate our purification
framework from Section V-A with a baseline somewhere-
condenser and a non-malleable condenser. For our non-
malleable condenser, we’ll use the new one constructed above.
For the baseline somewhere-condenser, we’ll use a classical
construction due to Barak, Kindler, Shaltiel, Sudakov, and
Wigderson [10] and Raz [11] (see also [15, Theorem 3.2]).

Theorem 8 (Explicit somewhere-condensers [10], [11]). For
every constant β > 0, there exist constants C1, C2, C3 ≥ 1
such that the following holds. For any δ = δ(n) > 0, there
exists an explicit somewhere-k′-condenser sCond : {0, 1}n →
({0, 1}m)D for (n, δn)-sources with output length m =

⌊δC1n⌋, output entropy k′ ≥ (1 − β)m, error ε = 2−δ
C2n,

and D = ⌈(1/δ)C3⌉ rows.

We are now ready to condense CG sources to rate 0.99, and
prove the core lemma of this paper.

Proof of Lemma 12. Let X ∼ ({0, 1}n)t be a (t, n, k := δn)-
CG source. The idea is to expand the last block of X
into a somewhere-random (SR) source (using Theorem 8),
and then proceed in iterations. In each iteration, we will
halve the number of rows in the SR source, using our non-
malleable condenser (Theorem 6) and our purification lemma
(Lemma 10).

At a high level, in order for this to work, the row length of
the SR source must line up with the seed length requirement

of the non-malleable condenser, and the entropy rate of the
(good row of the) SR source must line up with the seed
(entropy) rate requirement of the non-malleable condenser
(which is roughly 0.99). Furthermore, after we have halved
the number of rows in the SR source with one application of
the purification lemma, we need to make sure that the new
SR source has a row length and row entropy rate that is good
enough for another application of the purification lemma. To
make sure this happens, the output entropy rate of the first
non-malleable condenser calls must be at least 0.99. But since
the output gap of the non-malleable condenser is always a
constant factor larger than the gap of its seed (see Theorem 6),
we must make sure that its output length is also a constant
factor larger than the length of its seed. And to make this
happen, we must make sure that each of the two input sources
to the non-malleable condenser has enough min-entropy. This
is possible by concatenating several blocks of the CG source
into a single “super-block.” Finally, we will continue to iterate
until there is just a single row left in the SR source.

Thus, the game plan is as follows. First, we fix an arbitrary
constant α > 0, which will represent the allowed missing
entropy rate in the final output of the condenser. Then, we let
ε > 0 denote another parameter, which will represent the target
final error of the condenser.18 We also set up intermediate
error values ε0, ε1, ε2, . . ., which will represent the allowed
error in each iteration of the procedure outlined above. We
make sure that these are in a decaying geometric series, so
that they will sum up to our overall target error ε. Finally,
we determine the number of blocks that must be concatenated
at each iteration (before passing them into the non-malleable
condenser to collapse the SR source) in order satisfy all the
requirements mentioned above. At the end, we sum up the
total number of blocks we needed to fully collapse the SR
source, and define τ to be exactly this value, in order to finish
the proof.

More formally now, fix a parameter β > 0 to either α (from
the current lemma statement) or γ (from Theorem 6, when
its first parameter is fixed to 0.01) - whichever is smaller.19

Then, let b0 ∈ N be a “block parameter” that we will fix
later, and let sCond0 : {0, 1}nb0 → ({0, 1}m0)D be an explicit
somewhere-k′0-condenser for (nb0, δnb0)-sources with output
length m0 = ⌊δC1nb0⌋, output entropy k′0 ≥ (1 − β)m0,
error ε0 = 2−δ

C2nb0 , and D = ⌈(1/δ)C3⌉2 rows, where ⌈x⌉2
denotes the rounding of x up to the closest power of 2. Such
an explicit somewhere-condenser exists due to Theorem 8.20

Next, suppose there exists a sequence of explicit functions
nmCond1, nmCond2, . . . , nmCondd, where each nmCondi
is an explicit non-malleable condenser (with advice) for
((nbi, κi), (nbi, κi), (mi−1, k

′
i−1))-block sources with error

18Note that ε can depend on all other parameters arbitrarily, and thus need
not be a constant.

19Furthermore, if both α, γ > 1/2, set β := 1/2.
20Theorem 8 technically doesn’t guarantee that the number of rows will be

a power of 2, but we can easily make this happen by appending the appropriate
number of dummy rows (each set to the all zeroes string) to the output of the
somewhere-condenser.

1533

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

εi, output length mi = ⌊0.49κi − C4 log(nbi/εi) − mi−1⌋,
and output entropy k′i ≥ mi−C4 log(nbi/εi)−mi−1, where:

• κi := kbi − d− log(1/εi),
• C4 is the constant C from Theorem 6 (when the first

constant in that theorem is set to 0.01), and
• all other parameters (appearing above) not yet set will be

set later.
If such a sequence of explicit functions

nmCond1, . . . , nmCondd actually exists, our purification
lemma (Lemma 10) immediately tells us that we can use
them (along with sCond0) to iteratively create a sequence of
explicit somewhere-condensers sCond1, . . . , sCondd, where
sCondd is in fact an explicit condenser for (τ, n, k)-CG
sources with error

ε0 +
d∑
i=1

(4
√
εi + εi),

output length md, output entropy k′d, and τ = b0+2
∑d
i=1 bi.

Thus, all that remains is to set the error parameters
ε0, ε1, . . . , εd and block parameters b0, b1, . . . , bd so that (1)
the explicit non-malleable condensers (described above) actu-
ally exist, (2) the overall error is at most ε, and (3) the output
length m := md is in the range md ∈ [δnτ/4, δnτ], (4) the
output entropy k′ := kd satisfies k′d ≥ (1−β)md, and (5) the
threshold value τ matches its value in the lemma statement.

Let’s start by satisfying the error requirement, listed as item
(2) above. Towards this end, recall that we actually already set
ε0 := 2−δ

C2nb0 above, so we can only control the parameter
ε0 via the unset parameter b0. On the other hand, we have
not yet set the other error parameters. We do so now, and
set εi := (ε

10·2i)
2 for every i ∈ [d], making the overall

error of the condenser at most ε0 + ε/2. Thus, in order to
ensure that the overall error is at most ε, we just need that
ε0 = 2−δ

C2nb0 ≤ ε/2, or rather that b0 ≥ log(2/ε)
δC2n

. Thus,
the only unset parameters remaining are the block parameters
b0, b1, . . . , bd, and as long as we ultimately set b0 so that it
satisfies the above inequality, then the error requirement will
be satisfied.

We now turn towards satisfying requirement (1) from
above, which states that the explicit non-malleable condensers
nmCond1, . . . , nmCondd actually exist. In order for this to
happen, we just need to make sure that each non-malleable
condenser is given a long enough seed, and that this seed has a
high enough entropy rate (as dictated by Theorem 6). Towards
this end, notice that for each i ∈ [d], the non-malleable
condenser nmCondi defined above is given an (mi−1, k

′
i−1)-

source as a seed, where

m0 = ⌊δC1nb0⌋, (4)
k′0 = (1− β)m0, (5)

and for every i ∈ [2, d],

mi−1 = ⌊0.49κi−1 − C4 log(nbi−1/εi−1)−mi−2⌋ , (6)
k′i−1 ≥ mi−1 − C4 log(nbi−1/εi−1)−mi−2, (7)

where recall that we defined

κi−1 := kbi−1 − d− log(1/εi−1)

= kbi−1 − log⌈(1/δ)C3⌉2 − log(1/εi−1)

≥ kbi−1 − C3 log(1/δ)− 1− log(1/εi−1).

Now, Theorem 6 tells us that in order for the non-malleable
condensers to exist, we just need the following:

• Sufficient seed length: mi−1 ≥ C4 log(nbi/εi) for all
i ∈ [d].

• Sufficient seed entropy: k′i−1 ≥ (1 − β)mi−1 for all
i ∈ [d].

Notice that when i = 1, the sufficient seed entropy condition
is already satisfied. And when i > 1, the sufficient seed
entropy condition becomes mi−1 ≥ C4

β log(nbi−1/εi−1) +
1
βmi−2, due to the known lower bound on k′i−1 given earlier.
Thus, we just need to set block parameters so that the
following are satisfied:

m0 ≥ C4 log(nb1/ε1),

mi−1 ≥ C4 log(nbi/εi) + C4 log(nbi−1/εi−1)/β +mi−2/β,

for all i ∈ [2, d]. In order to make sure the above inequalities
are satisfied, let us make them easier to digest. To do so, recall
that we previously set the intermediate error parameters so that
1 ≥ ε1 ≥ · · · ≥ εd, and we will later set block parameters so
that 2 ≤ b1 ≤ · · · ≤ bd.21 Next, note that mi−2 ≤ kbi−2 for all
i ≥ 2. Using these observations, it is straightforward to plug
in the actual values for mi−1 (from Equations (4) and (6)) so
that the conditions above (that we need to satisfy) are satisfied
if both of the following hold:

δC1nb0 ≥ 2C4 log(nb1/ε1),

kbi−1 ≥ 3C3 log(1/δ) +
18C4

β
log(

nbi
εi

) +
6

β
kbi−2,

for all i ∈ [2, d]. Now, recall that we previously defined the
error parameters as εi = (ε

10·2i)
2, for all i ∈ [d]. Thus we

have ε1 ≥ (ε/20)2, and since we previously defined d =
log⌈(1/δ)C3⌉, we get εi ≥ (εδC3/20)2 for all i ∈ [2, d]. Thus
the two conditions above are satisfied if both of the following
hold:

δC1nb0 ≥ 24C4 log(nb1/ε),

kbi−1 ≥ 39C3C4

β
log(1/δ) +

216C4

β
log(nbi/ε) +

6

β
kbi−2,

for all i ∈ [2, d]. We can rewrite these in terms of block
requirements as follows (recalling that k = δn):

b0 ≥ 24C4

δC1n
log(nb1/ε),

bi−1 ≥ 39C3C4

βδn
log(1/δ) +

216C4

βδn
log(nbi/ε) +

6

β
bi−2,

21This will allow us to use convenient estimates, such as log(bi−1) ≥ 1

and log(
bibi−1

εiεi−1
) ≤ 2 log(bi/εi) for all i ≥ 2.

1534

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

for all i ∈ [2, d]. Now, if we define the constant C5 :=
256C1C2C3C4/β, then the above conditions are satisfied if
both

b0 ≥ C5 log(nb1/ε)/(δ
C5n), (8)

bi−1 ≥ C5 log(nbi/ε)/(δ
C5n) + C5bi−2, (9)

for all i ∈ [2, d]. Furthermore, recall that in order for
the overall condenser to have error ε, we needed b0 ≥
log(2/ε)/(δC2n), and this is indeed implied by the first con-
dition above. Thus, we have arrived at sufficient conditions on
the block parameters b0, . . . , bd for the explicit non-malleable
condensers nmCond1, . . . , nmCondd to actually exist, and for
the overall error of the final condenser to be at most ε. In fact,
using an almost identical argument to the one given above, it
is also straightforward to show that the overall output length
md is in the range md ∈ [0.4kbd, 0.49kbd], and the overall
output entropy is k′d ≥ (1− β)md, as long as

bd ≥ C6 log(nbd/ε)/(δ
C6n) + C6bd−1 (10)

for some constant C6 ≥ 1.22 Thus, we now wish to set block
parameters so they satisfy Equations (8) to (10).

Towards this end, we let A ∈ N be a sufficiently large
constant, and set block parameters as follows:

b0 :=

⌈
log(1/ε)

δAn

⌉
,

bi := A · bi−1, for all i ∈ [d− 1],

bd :=
⌈
AC3 log(1/δ)+1

⌉
· b0

It is straightforward to verify that for all sufficiently large
A (as a function of the constants C5, C6), all of Equations (8)
to (10) hold. Moreover, we make sure to pick A ≥ C0.

All that remains is to check the total number of blocks used,
and to ensure that the overall output length md is sufficiently
large. Towards this end, the total number of blocks used is

τ := b0 + 2
d∑
i=1

bi

≤ 8A ·
(
(1/δ)C3 logA + (1/δ)C3 logA+A log(1/ε)/n

)
=: τ⋆,

while the overall output length is in the range md ∈
[0.4kbd, 0.49kbd], which means

md ≥ 0.4kbd

≥ 0.2Ak ·
(
(1/δ)C3 logA + (1/δ)C3 logA+A log(1/ε)/n

)
≥ 0.025kτ⋆.

Of course, the fact that md ≤ 0.49kbd also implies that
md ≤ kτ⋆ (since we set τ⋆ ≫ bd above). Thus, to conclude,
as long as our CG-source originally started off with

t ≥ τ⋆ := 8A ·
(
(1/δ)C3 logA + (1/δ)C3 logA+A log(1/ε)/n

)
22Recall that we actually originally requested that md ≥ kτ/4, instead of

m ≥ 0.4kbd. However, we will soon show that this follows from our setting
of τ .

blocks, we can obtain md ∈ [0.01kτ⋆, kτ⋆] output bits that
are ε-close to min-entropy k′d ≥ (1− β)md.

3) Condensing the rest of the entropy out: In this final step,
we show how to get the rest of the entropy out of the CG
source, while maintaining the gap, via iterative condensing.
We prove the following, which will later be combined with our
core lemma (Lemma 12) in order to yield our main theorem
(Theorem 5).

Lemma 13 (Condensing the rest of the entropy out). For every
constant α > 0, there is a constant C > 0 such that there
exists an explicit condenser Cond : {0, 1}n1×· · ·×{0, 1}nt →
{0, 1}m for ((n1, k1), . . . , (nt, kt))-block sources with output
length m ≥ (1 − α)k1, output gap g′ = g := nt − kt, and
error ε, provided

ki+1 ≥ C(log(ni/ε) + (t− i) + g)

for all i ∈ [t− 1].

Proof. We simply plug the GUV extractor (Theorem 7) into
our iterative condensing framework (Lemma 9), recalling that
an extractor is simply a condenser with output gap 0.

In more detail, if we define mt := nt, then by The-
orem 7, the following holds. There exists a sequence of
explicit functions sCond1, sCond2, . . . , sCondt−1, where each
sCondi : {0, 1}ni × {0, 1}mi+1 → {0, 1}mi is a seeded
(ni, ki) →εi (mi,mi) condenser with output length mi ≥
(1− α)ki, as long as

(1− α)ki+1 ≥ CGUV log(ni/εi)

for every i ∈ [t − 1] (where CGUV is a constant depending
only on α).23 Since we may assume that α < 1/2,24 this
requirement is satisfied when ki+1 ≥ C log(ni/εi), where we
have used C := 2CGUV. And if we set εi := ε · 2−g−(t−i) for
all i ∈ [t− 1], then the requirement is satisfied when

ki+1 ≥ C(log(ni/ε) + (t− i) + g)

for all i ∈ [t − 1]. Now, by our iterative condensing
framework (Lemma 9), this sequence of explicit functions
sCond1, sCond2, . . . , sCondt−1 can be composed to create an
explicit condenser for ((n1, k1), . . . , (nt, kt))-block sources
with output length m1 ≥ (1 − α)k1, output gap g′ :=∑
i∈[t−1](mi −mi) + g = g, and error∑

i∈[t−1]

εi · 2g = ε
∑

i∈[t−1]

2−(t−i) ≤ ε,

as desired.

While the above lemma is quite general, the following
corollary will be more useful for our purposes.

Corollary 5 (Condensing a geometric block source with
a high-rate final block). For any constants α0 > 0 and

23Note that when i = t− 1, the requirement is actually mi+1 = ni+1 ≥
CGUV log(ni/εi), which is weaker than what is written.

24This is because the lemma statement only claims a lower bound on the
output length m.

1535

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

C0 ≥ 1, there exist constants β > 0 and C ≥ 1 such
that the following holds. There exists an explicit condenser
for ((n1, k1), . . . , (nt, kt))-block sources with output length
m ≥ (1− α0)k1, output gap g′ = g := nt − kt, and error ε,
provided that all of the following hold:

• k1 ≥ 4k2 ≥ 42k3 ≥ · · · ≥ 4t−1kt.
• n1 ≤ (C0n2)

2 ≤ (C0n3)
22 ≤ · · · ≤ (C0nt)

2t−1

.
• kt ≥ (1− β)nt.
• nt ≥ C log(1/ε) + C.

Proof. Let C⋆ be the second constant from Lemma 13, when
the first constant is set to α. It suffices to show

ki+1 ≥ C⋆(log(ni/ε) + (t− i) + g)

for all i ∈ [t − 1]. This is straightforward via a backward
induction on i (using the bullet points).

Putting everything together: At last, with all of our ingre-
dients in place, we are ready to prove our main theorem.

Proof of Theorem 5. Recall that we wish to construct an
explicit condenser Cond : ({0, 1}n)t → {0, 1}k′+g′ for
(t, n, k = δn = n− g)-CG sources, which has output entropy
k′ ≥ (1− α)kt, output gap g′ ≤ (1/δ)C · (g + log(1/ε)), and
error ε. Towards this end, let X = (X1, . . . ,Xt) be a (t, n, k)-
CG source. The main idea is to use Lemma 12 to condense
the last few blocks in X to a block with rate 0.99, and then
to use this high-rate block to get the rest of the entropy out
of the source, using Corollary 5.

More formally, set the constants α0, C0 in Corollary 5
to α/2 and 100/α (respectively), and let β⋆, C⋆ denote the
constants β,C (in that theorem) that come out. Then, set the
constants α,C0 in Lemma 12 to β⋆ and 2C⋆ (respectively),
and let C1, C2, C3 be the constants that come out (correspond-
ing to the same-named constants in that lemma statement).
Finally, define a size parameter s as

s :=
⌈
C1 ·

(
(1/δ)C2 + (1/δ)C3 log(2/ε)/n

)⌉
,

and let w be the largest integer such that s ·
∑w
i=1⌈4/α⌉w−i ≤

t. Note that if w < 2, then the claimed gap in the theorem
statement is trivial, in that it can be achieved simply by
applying the identity function.

Now, henceforth assuming that w ≥ 2, define (for every
i ∈ [w])

si :=

{
s · ⌈4/α⌉w−i if i > 1,

t− s ·
∑w
i=2⌈4/α⌉w−i if i = 1.

Note that s1 ∈ [s · ⌈4/α⌉w−1, s · ⌈4/α⌉w+1], and define a new
source Y = (Y1, . . . ,Yw), where Y1 consists of the first s1
blocks of X, Y2 consists of the next s2 blocks of X, and
so on. Note that Y is an ((ns1, ks1), . . . , (nsw, ksw))-block
source.

Now, by Lemma 12, there exists an explicit function
Cond1 such that Z := Cond1(Yw) is (ε/2)-close to a
source with length mw ∈ [0.025δns, δns] and min-entropy
k′w ≥ (1 − β⋆)mw, and moreover, this is true for ev-
ery fixing of the random variables Y1, . . . ,Yw−1. Thus,

Y⋆ := (Y1, . . . ,Yw−1,Z) is a ((0, 0), . . . , (0, 0), (0, ε/2))-
almost ((ns1, ks1), . . . , (nsw−1, ksw−1), (mw, (1−β⋆)mw))-
block source. Thus, by Lemma 4, Y⋆ is (ε/2)-close to an
((ns1, ks1), . . . , (nsw−1, ksw−1), (mw, (1 − β⋆)mw))-block
source, Y⋆⋆. Now, it is straightforward to verify (given our
setting of parameters) that Y⋆⋆ satisfies the requirements of
Corollary 5, and thus there is an explicit function Cond2
such that Cond2(Y

⋆⋆) is ε/2-close to a source of length
m ≥ (1 − α/2)ks1 and gap g′ ≤ β⋆mw, and thus the data-
processing inequality tells us that Cond2(Y⋆) is ε-close to a
source of length m ≥ (1 − α/2)ks1 and gap g′ ≤ β⋆mw.
Furthermore, note that by our setting of si, we have m ≥
(1− α)kt, and gap

g′ ≤ mw ≤ δns ≤ δn ·2C1

(
(1/δ)C2 + (1/δ)C3 log(2/ε)/n

)
,

which is at most

C · (1/δ)C · (n+ log(1/ε)) (11)

for some constant C ≥ 1. Finally, we may assume that the
original gap was g > β⋆n, since otherwise we could easily ob-
tain an output gap of the form g′ ≤ C ·(1/δ)C ·(g+log(1/ε)),
simply by replacing Cond1 with the identity function. Thus,
we can upper bound Equation (11) by

C

β⋆
· (1/δ)C · (g + log(1/ε)),

which is again at most C ′ ·(1/δ)C′ ·(g+log(1/ε)) for a slightly
larger constant C ′, as desired.

VI. EXISTENTIAL RESULTS

In this section, we present and prove all our existential
results. We start by showing that a random function is a good
seedless condenser for any small family (Theorem 2). Then,
we instantiate this result to get improved parameters for non-
explicit seeded condensers (Corollary 3). Finally, we plug the
latter existential result into the iterative condensing framework
in to get our existential results for CG and block sources
(Corollary 4).

A. A random function is a seedless condenser (for any small
family)

In order to show that a random function is a good seedless
condenser for any small family, we show that a random
function is (with high probability) a good condenser for a
single source. We prove the following, which can be viewed as
the condenser version of the classic observation that a random
function is a good extractor [16, Proposition 6.12]. (In fact,
we will see that it generalizes it.)

Theorem 9 (A random function is a condenser for a single
source). There exist universal constants C, c > 0 such that the
following holds. Let X be an arbitrary (n, k)-source. For any
ℓ ∈ [0, k] and g > 0 such that m := k−ℓ+g is an integer, and
any ε ∈ (0, 1], the following holds. If f : {0, 1}n → {0, 1}m
is a uniformly random function, then

Pr
f
[Hε

∞(f(X)) < k − ℓ] < C · 2−cεKψ,

1536

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

where

ψ := max

{
g − 1

⌊L⌋
log(1/ε)− C,

g − 1

⌊L⌋
log(C2gg/ε) · C2

g

g

}
.

Note that ψ evaluates to the first argument when the gap
exceeds a sufficiently large constant, and the second argument
for all other g > 0 (where 2g becomes a constant). In all
applications, one should set the gap g so that ψ = Ω(g) or
ψ = 1.

Before we continue, we take a moment to make some
remarks about the above theorem. First, we emphasize that
it works for any (n, k)-source, not just flat ones. This is
crucial to showing the existence of good seedless condensers
for small families, since (unlike in the seeded setting) you
cannot assume such families only contain flat sources.25 We
also note that the above strictly generalizes the classic result
that a random function is a good extractor (i.e., condenser
with g = 0) with probability 1 − 2−Ω(ε2K). This is because
we can instantiate our theorem with gap g = ε/2 and error
ε/2, since a source with gap g is g-close to a source with gap
0. Moreover, our generalization reveals that the well-known
required loss of ℓ = 2 log(1/ε) for extractors generalizes to
roughly ℓ = 2 log(1/g), meaning that the loss is primarily due
to the gap, not the error. Furthermore, the success probability
generalizes to 1− 2−Ω(gεK). Overall, this means that even if
you are in the regime g < 1 (which is close to the extractor
regime of g = ε/2), you can benefit by applying the condenser
result instead of the extractor result.

Next, we record the following corollary, which is immediate
via the probabilistic method.26

Corollary 6 (A random function is a condenser for any small
family). There exist universal constants C, c > 0 such that the
following holds. Let X be a family of (n, k)-sources. For any
ℓ ∈ [0, k] and g > 0 such that m := k − ℓ + g is an integer,
and any ε ∈ (0, 1], the following holds. If

|X | ≤ c · 2cεKψ,

where ψ is as defined in Theorem 9, then there exists a
condenser Cond : {0, 1}n → {0, 1}m for X with loss ℓ, gap
g, and error ε.

We now proceed to prove Theorem 9. First, we prove it
in the extractor (small gap) regime, via Theorem 10. Then,
we prove it in the much more challenging condenser (large
gap) regime, via Theorem 11. Combined, these two theorems
immediately yield Theorem 9. We briefly note that from

25This is because such existential results proceed by counting the number
of sources in the family X , and arguing that there are not too many. And while
it is true that every (n, k)-source is a convex combination of flat sources, it
is not true that it is a convex combination of flat sources in that family, which
is the collection whose size was actually estimated. The family X ′ of flat
sources that arises by decomposing each X ∈ X into a convex combination
of flat sources may have size much larger |X |.

26In particular, apply Theorem 9 to each X ∈ X and use a union bound.

here onwards, we often simplify notation and use [N] to
represent {0, 1}n, and [M] to represent {0, 1}m. Furthermore,
we always use µ to represent the density of a set S, not the
mean of a random variable (though they will often coincide).
The set to which µ corresponds will always be clear from
context.

1) The extractor regime: small gap, large loss: We start
by proving our existential result for the extractor (small gap)
regime.

Theorem 10 (Theorem 9, Part I). Let X be an arbitrary
(n, k)-source. For any ℓ ∈ [0, k] and g > 0 such that
m := k − ℓ + g is an integer, and any ε ∈ (0, 1], the
following holds. If f : {0, 1}n → {0, 1}m is a uniformly
random function, then

Pr
f
[Hε

∞ (f(X)) < k − ℓ] < 2−
εK
2 (g− 1

L
3G
g log(2Gg

ε)).

Note that this result is most useful in the extractor regime,
i.e., when the gap is a constant or even in the range
g ∈ (0, 1]. (Recall that the exact extractor regime is when
g = ε/2.) In this regime, the above bound is of the form
2−

εK
2 (g−O(1

L
1
g log(g/ε))). Now, in order to prove Theorem 10,

we use the following proposition, which is just a restatement
of (one direction of) Lemma 2.

Proposition 1 (Necessary condition for condensing failure).
For any fixed function f : {0, 1}n → {0, 1}m, any (n, k)-
source X, and any k′ ∈ [0,m], ε > 0, and g := m− k′,

Hε
∞(f(X)) < k′

=⇒ ∃S ⊆ [M] of density µ := |S|/M such that

Pr[f(X) ∈ S] > µG+ ε.

In particular, we’ll use the following corollary.

Corollary 7. If Hε
∞(f(X)) < k′, then for any threshold value

τ ∈ [M], one of the following must hold:
• ∃S ⊆ [M] of size |S| < τ and density µ := |S|/M such

that Pr[f(X) ∈ S] > µG+ ε.
• ∃S ⊆ [M] of size |S| = τ and density µ := |S|/M such

that Pr[f(X) ∈ S] > µG.

Proof. By Proposition 1, there exists some set S ⊆ [M] of
density µ such that Pr[f(X) ∈ S] > µG + ε. If |S| < τ ,
then the first bullet holds. If |S| ≥ τ , then let S⋆ denote
the τ elements in S hit by f(X) with the highest probability
(breaking ties arbitrarily), and let µ⋆ denote the density of S⋆.
Then

Pr[f(X) ∈ S⋆] ≥ |S⋆|
|S|

· Pr[f(X) ∈ S]

=
µ⋆

µ
Pr[f(X) ∈ S]

> µ⋆(G+ ε/µ)

≥ µ⋆G,

and the second bullet holds, as desired.

1537

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Now, the idea is to eventually pick some threshold τ so
that for a random function, both bullets happen with low (and
close to the same) probability. We start with the first bullet.

Claim 3. Let f : {0, 1}n → {0, 1}m be a uniformly random
function, let X be an (n, k)-source, and let S ⊆ [M] be a set
of density µ := |S|/M . Then for any ε > 0 and G ≥ 0,

Pr
f

[
Pr
X

[f(X) ∈ S] ≥ µG+ ε
]
≤ G−εK .

Proof. We may assume that µ > 0, since the claim trivially
holds if µ = 0 (as this implies S is empty).

Now, for each x ∈ {0, 1}n, define the random variable

Zx := 1[f(x) ∈ S] · Pr[X = x] ·K.

Note that its randomness comes from f , and it is supported
on the interval [0, 1], since H∞(X) ≥ k. Furthermore, if we
define Z :=

∑
x Zx, it is easy to verify that Z = PrX[f(X) ∈

S] ·K, and we also have E[Z] = K|S|/M = µK. Combining
these observations with the Chernoff bound (Theorem 4), we
have

Pr
f

[
Pr
X
[f(X) ∈ S] ≥ µG+ ε

]
= Pr

f

[
Pr
X
[f(X) ∈ S] ·K ≥ µGK + εK

]
= Pr [Z ≥ E[Z] ·G+ εK]

= Pr [Z ≥ (G+ ε/µ)E[Z]]

≤
(

eG−1+ε/µ

(G+ ε/µ)G+ε/µ

)µK
(12)

= exp (−εK ((1 + α)(lnG+ ln(1 + 1/α)− 1) + α/G))

for α := µG/ε.27 Finally, using routine calculus, it is straight-
forward to verify that the function

ϕ(α, g) := (1 + α)(lnG+ ln(1 + 1/α)− 1) + α/G

is ≥ g ln 2 for all g ≥ 0, α > 0. The result follows.

Next, we bound the probability that bullet two in Corollary 7
occurs for a uniformly random function. Using the same
parameters and objects as defined in Claim 3, we have the
following.

Claim 4.

Pr
f

[
Pr
X

[f(X) ∈ S] > µG
]
≤ exp

(
−µGK(lnG−1+1/G)

)
.

Proof. The claim is immediate via the proof of Claim 3 up to
Equation (12), setting ε = 0.

Using the above claims, we can show that the necessary
conditions for condensing failure (Corollary 7) happen with
low probability, allowing us to prove that a random function
is a good condenser (Theorem 10).

Proof of Theorem 10. Let k′ := k − ℓ, g := m − k′, and
suppose that Hε

∞(f(X)) < k′. By Corollary 7, we know that

27Here and henceforth, we may assume that ε > 0, since the claim trivially
holds if ε = 0.

for any threshold value τ ∈ [M] (to be set momentarily), one
of the following must hold:

• ∃S ⊆ [M] of size |S| < τ and density µ := |S|/M such
that Pr[f(X) ∈ S] > µG+ ε.

• ∃S ⊆ [M] of size |S| = τ and density µ := |S|/M such
that Pr[f(X) ∈ S] > µG.

By combining this with Claim 3 and Claim 4, we get the
following.

Pr
f
[Hε

∞(f(X)) < k′]

≤ Pr
f
[∃S ⊆ [M], |S| < τ : Pr[f(X) ∈ S] > µG+ ε]

+ Pr
f
[∃S ⊆ [M], |S| = τ : Pr[f(X) ∈ S] > µG]

≤
(
M

< τ

)
2−gεK +

(
M

τ

)
exp (−τL(lnG− 1 + 1/G)) .

Now, consider the quantity ϕ := (lnG − 1 + 1/G) log e. If
gεK ′/ϕ < 1, then we set τ := ⌈gεK ′/ϕ⌉. Otherwise, we set
τ := ⌊gεK ′/ϕ⌋. Notice that in the first case, the probability
that produced the first term in the above sum would have
actually realized to 0. And in the second case, observe that
gεK ≥ τLϕ. Thus the above expression can be bounded by

≤
(
M

≤ τ

)
2−τLϕ ≤ 2−τL(ϕ−

1
L log(eM/τ))

≤ 2−
gεK
2ϕ (ϕ− 1

L log(2eGϕ
gε)). (13)

Finally, it is straightforward to verify that

2

g ln 2
≤ g

ϕ
≤ 2G

g ln 2
,

and using this observation, we can upper bound Equation (13)
by

2−
εK
2 (g− 1

L
1
g

2G
ln 2) log(

g·eG ln 2
ε)

as desired.

2) The condenser regime: large gap, small loss: Next,
we turn to prove our existential result for the much more
challenging condenser regime.

Theorem 11 (Theorem 9, Part II). Let X be an arbitrary
(n, k)-source. For any ℓ ∈ [0, k] and g > 0 such that m :=
k−ℓ+g is an integer, and any ε ∈ (0, 1], the following holds.
If f : {0, 1}n → {0, 1}m is a uniformly random function, then

Pr
f
[Hε

∞(f(X)) < k − ℓ] ≤ 4 · 2−
εK
6 (g− 1

⌊L⌋ log(1/ε)−16).

As in the previous section, we consider several conditions
which are necessary for condenser failure, and show that
each happens with small probability. Similar to before, these
conditions have to do with whether certain sets S ⊆ [M] are
assigned too much probability. This time, however, we’re in a
regime where we want to be able to handle very small loss,
by paying some price in the gap, and thus the output length.
As a result, it will be too expensive to check tests S ⊆ [M]
by choosing them from the set [M], which may now be very

1538

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

large. Instead, we’ll have to implicitly specify them using their
preimages.

The above plan would work well if X had a small support
size, which would be the case if X were flat. However, we
don’t want to make any such assumption, and therefore need
a new idea. Our idea is to split the support of X into two sets:
one which is small (and therefore easy to choose sets from),
and one which is big (but is guaranteed to have better “local”
entropy). Then, we ultimately check whether f(X) fails the
appropriate tests S ⊆ [M] by specifying them through their
preimages in these sets.

We now proceed to present the formal conditions we’re
looking for that indicate condenser failure.

Proposition 2 (Necessary conditions for condensing failure).
Let f : {0, 1}n → {0, 1}m be a fixed function, and let X be an
(n, k)-source whose support is partitioned into sets X1, X2.
Fix any ℓ ∈ [0, k] and ε > 0, and define k′ := k − ℓ and
g := m − k′. If Hε

∞(f(X)) < k′, there must exist some set
S ⊆ [M] of density µ such that at least one of the following
holds:

1) X1 has bad smooth min-entropy:
• Pr[f(X) ∈ S ∧X ∈ X1] > µG+ ε/3.

2) X2 has bad smooth min-entropy:
• Pr[f(X) ∈ S ∧X ∈ X2] > µG/L+ ε/3.

3) X1, X2 have bad “joint” smooth min-entropy:
Both of the following hold:

• Pr[f(X) = v ∧X ∈ X1] >
L−1
L · 1

K′ for all v ∈ S.
• Pr[f(X) ∈ S ∧X ∈ X2] > ε/3.

Proof. By definition of smooth min-entropy, we know that
if Hε

∞(f(X)) < k′, then there is some set S ⊆ {0, 1}m of
density µ such that Pr[f(X) ∈ S] > µG+ε, by Proposition 1.
Partition S into sets S1, S2 such that S1 contains all elements
v ∈ {0, 1}m satisfying

Pr[f(X) = v ∧X ∈ X1] >
L− 1

L
· 1

K ′ .

Suppose that neither the first nor third case in the proposition
hold. Then

Pr[f(X) ∈ S1]

= Pr[f(X) ∈ S1 ∧X ∈ X1] + Pr[f(X) ∈ S1 ∧X ∈ X2]

≤ |S1|
M

G+ ε/3 + ε/3

=
|S1|
M

G+ 2ε/3.

Furthermore, if the second case also does not hold, then

Pr[f(X) ∈ S2]

= Pr[f(X) ∈ S2 ∧X ∈ X1] + Pr[f(X) ∈ S2 ∧X ∈ X2]

≤ L− 1

L
· |S2|
K ′ +

|S2|
M

G/L+ ε/3

=
|S2|
M

G+ ε/3.

But this implies that Pr[f(X) ∈ S] ≤ µG + ε, contradicting
our original assumption.

We now show that each of these three events happens with
low probability, starting with the second one.

Case 2: The subdistribution on X2 has bad smooth min-
entropy: We prove the following, which bounds the probability
that the second bullet in Proposition 2 can occur.

Lemma 14 (A random function condenses the subdistribution
on X2). Let X ∼ {0, 1}n be a source, and let X ⊆
support(X) be a set with maxx∈X Pr[X = x] ≤ 1/K. For any
ℓ ∈ [0, k] and g ≥ 0 such that m := k−ℓ+g is an integer, and
any ε ∈ (0, 1], the following holds. If f : {0, 1}n → {0, 1}m
is a uniformly random function, then

Pr
f

[
∃S ⊆ [M] : Pr

X
[f(X) ∈ S and X ∈ X] > µG+ ε

]
≤ 2−

εK
2 (g− 1

L log(2eG/ε)−log e).

Just as in the proof of Theorem 10, we will upper bound the
above probability by splitting the event in two, as prescribed
by Corollary 7. To help us with this, we need subdistribution
versions of Claim 3 and Claim 4, which we prove next.

Claim 5 (Claim 3, subdistribution version). Let f : {0, 1}n →
{0, 1}m be a uniformly random function, let X ∼ {0, 1}n
be a source, and let X ⊆ support(X) be a set with
maxx∈X Pr[X = x] ≤ 1/K. Then for any set S ⊆ [M] of
density µ := |S|/M , and any ε > 0 and G ≥ 0,

Pr
f

[
Pr
X

[f(X) ∈ S and X ∈ X] > µG+ ε
]
≤ G−εK .

Proof. We may assume that µ > 0, since the claim trivially
holds if µ = 0 (as this implies S is empty).

Now, for each x ∈ X , define the random variable

Zx := 1[f(x) ∈ S] · Pr[X = x] ·K.

Note that its randomness comes from f , and it is supported
on the interval [0, 1], since maxx∈X ≤ 1/K. Furthermore,
if we define Z :=

∑
x∈X Zx, it is easy to verify that

Z = PrX[f(X) ∈ S and X ∈ X] · K and E[Z] =
(K|S|/M) Pr[X ∈ X] = µK Pr[X ∈ X] ≤ µK. Using these
observations, we have

Pr
f

[
Pr
X
[f(X) ∈ S and X ∈ X] ≥ µG+ ε

]
= Pr

f

[
Pr
X
[f(X) ∈ S and X ∈ X] ·K ≥ µGK + εK

]
= Pr

f
[Z ≥ (G+ ε/µ)µK]

≤
(

eG−1+ε/µ

(G+ ε/µ)G+ε/µ

)µK
, (14)

where the last inequality follows from the fact that the
Chernoff bound (Theorem 4) can be used with just an upper
bound µK on the expectation E[Z]. The remainder of the
proof is now identical to the proof of Claim 3, following
Equation (12).

1539

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Next, using the same parameters and objects as described
in the claim above, we prove the following.

Claim 6 (Claim 4, subdistribution version).

Pr
f

[
Pr
X
[f(X) ∈ S and X ∈ X] > µG

]
≤ exp (−µGK(lnG− 1 + 1/G)) .

Proof. The claim is immediate via the proof of Claim 5 up to
Equation (14), setting ε = 0.

With these claims in hand, it is now easy to prove
Lemma 14.

Proof of Lemma 14. Just as in the proof to Theorem 10 (sub-
stituting in Claim 5 for Claim 3 and Claim 6 for Claim 4), we
have

Pr
f

[
∃S ⊆ [M] : Pr

X
[f(X) ∈ S and X ∈ X] > µG+ ε

]
≤ 2−

gεK
2ϕ (ϕ− 1

L log(2eGϕ
gε)), (15)

where ϕ := (lnG − 1 + 1/G) log e. It is straightforward to
verify that for all g ≥ 0, we have

g − log e ≤ ϕ ≤ g.

Using this observation, we can upper bound Equation (15) by

2−
εK
2 (g− 1

L log(2eG
ε)−log e)

as desired.

Case 1: The subdistribution on X1 has bad smooth min-
entropy: Next, we upper bound the probability that the first
bullet in Proposition 2 can occur.

Lemma 15 (A random function condenses the subdistribution
on X1). Let X be an (n, k)-source, and let X ⊆ support(X)
be an arbitrary set. For any ℓ ∈ [0, k] and g ≥ 0 such
that m := k − ℓ + g is an integer, and any ε ∈ (0, 1], the
following holds. If f : {0, 1}n → {0, 1}m is a uniformly
random function, then

Pr
f
[∃S ⊆ [M] : Pr[f(X) ∈ S and X ∈ X] > µG+ ε]

≤ 2−
εK
2 (g− 1

L log(
|X|
εK)−5.886).

As before, we will upper bound this event by splitting it in
two. This time, however, we will not ultimately specify the sets
S by picking them from [M]. Instead, we will specify them
implicitly, via their preimages. To do this, it will be useful to
define a notion of “superlevel sets.” Given an (n, k)-source X
and element v ∈ {0, 1}n, we let SLv denote its superlevel set,
defined as follows:

SLv := {x ∈ {0, 1}n : Pr[X = x] ≥ Pr[X = v]}.

Given this definition, we are ready to prove the preimage
versions of the key claims we have been using.

Claim 7 (Claim 3, preimage version). Let X be an (n, k)-
source. For any ℓ ∈ [0, k] and g ≥ 0 such that m := k− ℓ+ g

is an integer, any ε ∈ (0, 1], and any S ⊆ {0, 1}n with µ :=
|S|/M , the following holds. If f : {0, 1}n → {0, 1}m is a
uniformly random function, then

Pr
f

[
|f(S)| = |S| and

Pr
X

[∃v ∈ S : f(X) = f(v) and X ∈ SLv] > µG+ ε
]

≤
(eµ
ε

)εK
.

Proof. Let f : {0, 1}n → {0, 1}m be a uniformly random
function. For a fixed function h : S → {0, 1}m, let fh :
{0, 1}n → {0, 1}m be a function such that fh(x) = h(x) for
all x ∈ S, and fh(x) is an independent, uniformly random
value from {0, 1}m for all other x. By the law of total
probability, there exists a worst-case fixing h⋆ that is injective
on S such that

Pr
f

[
|f(S)| = |S| and

Pr
X

[∃v ∈ S : f(X) = f(v) and X ∈ SLv] > µG+ ε
]

≤ Pr
fh⋆

[
Pr
X
[∃v ∈ S : fh⋆(X) = fh⋆(v) and X ∈ SLv]

> µG+ ε
]
.

For ease of notation, we will henceforth use f ′ to denote fh⋆ .
Now, for all v ∈ S and x ∈ SLv \ S, define the random

variable

Zx,v := 1[f ′(x) = f ′(v)] · Pr[X = x] ·K.

Then, for all x ∈ (∪v∈SSLv) \ S, define

Zx :=
∑

v∈S:x∈SLv

Zx,v,

and finally let Z :=
∑
x∈(∪v∈SSLv)\S Zx. Let us now make

some observations about these random variables.
First, note that the randomness in these random variables

comes exclusively from f ′, and each random variable Zx is
supported on [0, 1], since H∞(X) ≥ k and since 1[f ′(x) =
f ′(v)] can only equal 1 for at most one value v ∈ S (since f ′

is injective on S). Furthermore, observe that

Z =
∑

v∈S,x∈SLv\S

Zx,v

= K · Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv \ S].

Looking back at the probability we must analyze, it would
be much more convenient if the expression above had the

1540

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

condition X ∈ SLv instead of X ∈ SLv \ S. Luckily, it is
easy to verify that

Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv]

=Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv \ S]

+ Pr
X
[X ∈ S]

=
1

K
· Z+ Pr

X
[X ∈ S]

≤ 1

K
(Z+ |S|)

≤ 1

K
(Z+ µGK),

where the penultimate inequality is because X has min-entropy
at least k, and the final inequality is because G ≥M/K. Next,
we can upper bound the expected value of Z as follows:

E[Z] =
∑

v∈S,x∈SLv\S

E[Zx,v]

=
K

M

∑
v∈S,x∈SLv\S

Pr[X = x]

=
K

M

∑
v∈S

Pr[X ∈ SLv \ S]

≤ K

M
· |S|

= µK.

Finally, since each Zx is independent, and Z =
∑
x Zx, we are

ready to apply a Chernoff bound to upper bound our desired
probability. In particular, we have

Pr
f ′

[
Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv] > µG+ ε

]
= Pr

f ′

[
Pr
X
[∃v ∈ S : f ′(X) = f ′(v) and X ∈ SLv] ·K

> µGK + εK
]

≤ Pr
f ′

[Z+ µGK > µGK + εK]

= Pr
f ′

[Z > (ε/µ)µK] .

Since we showed above that µK ≥ E[Z], the Chernoff bound
(Theorem 4) tells us that the above is

≤
(

eδ

(1 + δ)1+δ

)µK
≤
(

e

1 + δ

)(1+δ)µK

for δ := ε/µ−1.28 Plugging this value of δ into the expression
above yields

≤ (eµ/ε)
εK

,

as desired.

Next, using the same parameters as in the claim above (with
k′ := k − ℓ), we prove the following.

28Note that we may assume δ > 0, since otherwise µ/ε ≥ 1 and the bound
in the claim trivially holds.

Claim 8 (Claim 4, preimage version).

Pr
f

[
|f(S)| = |S|, and for all v ∈ S,

Pr
X
[f(X) = f(v) and X ∈ SLv] > 1/K ′

]
≤
(
4e

G

)µGK
.

Proof. As in the proof of Claim 7, it suffices to show the
claimed upper bound on the quantity

Pr
f ′

[
∀v ∈ S : Pr

X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′

]
,

(16)

where f ′ is some function that is injective (and fixed to
constants) on S, and uniformly random on all other inputs.
Now, let us once again proceed with defining random variables
so that we can upper bound this quantity via a Chernoff bound.
We must be a little more careful this time.

Towards this end, for all v ∈ S and x ∈ SLv \ S, we once
again want to define a random variable Zx,v . But this time,
we base the definition on just how likely x is to be hit. In
particular, let X⋆ denote the 2K most probable elements in
support(X), breaking ties arbitrarily. Then, define

Zx,v :=

{
1[f ′(x) = f ′(v)] if x ∈ X⋆,

1[f ′(x) = f ′(v)] · Pr[X = x] · 2K otherwise.

Now, as before, for all x ∈ (∪v∈SSLv) \ S, define

Zx :=
∑

v∈S:x∈SLv

Zx,v,

and let Z :=
∑
x∈(∪v∈SSLv)\S Zx. Let us now make some

observations about these random variables.
First, the randomness in these random variables comes

exclusively from f ′. Next, we claim that each random variable
Zx is supported on [0, 1]. To see why, observe that only one
term Zx,v in the sum that defines Zx can be nonzero, since f ′

is injective on S. Then, note that such a nonzero term Zx,v is
always in the range [0, 1]: for the first definition of Zx,v , this is
clear. For the second definition, simply note that all elements
x ∈ support(X) that are not among the 2K most probable
must be hit with probability < 1/(2K), because otherwise
the sum of Pr[X = x] over all elements x will exceed 1 - a
contradiction.

Next, observe that

E[Z] =
∑

v∈S,x∈(SLv\S)∩X⋆

E[Zx,v] +
∑

v∈S,x∈(SLv\S)\X⋆

E[Zx,v]

≤ |S||X⋆|/M + 2K|S|/M
= 4µK.

Finally, for our last step before applying the Chernoff bound,
we must relate Z to the event in Equation (16). Towards this
end, fix some v ∈ S and suppose the following inequality

1541

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

holds (note that the equality always holds, by the injectivity
of f ′ on S):

Pr
X
[f ′(X) = f ′(v) and X ∈ SLv]

= Pr
X
[f ′(X) = f ′(v) and X ∈ SLv \ S] + Pr

X
[X = v]

> 1/K ′.

Then, since X has min-entropy ≥ k, and 1/K ′ = L/K, f ′

must send at least L + 1 elements from SLv to f ′(v). We
consider two cases. First, if at least L of these elements occur
in X⋆, then there must be at least L elements that f ′ maps
from (SLv \ S) ∩X⋆ to f ′(v). As such, we have∑

x∈SLv\S

Zx,v ≥
∑

x∈(SLv\S)∩X⋆

Zx,v ≥ L = K · 1/K ′.

On the other hand, if less than L of these elements occur in
X⋆, then there must be at least 2 elements that f ′ maps from
(SLv \S)\X⋆ to f ′(v). In this case, by definition of SLv , we
have that∑

x∈SLv\S

Zx,v

=
∑

x∈(SLv\S)∩X⋆

Zx,v +
∑

x∈(SLv\S)\X⋆

Zx,v

≥ K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ S) ∩X⋆]

+ 2K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ S) \X⋆]

= K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) ∩X⋆]

+ 2K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) \X⋆]

≥ K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) ∩X⋆]

+K · Pr[f ′(X) = f ′(v) and X ∈ (SLv \ {v}) \X⋆]

+K · Pr[f ′(X) = f ′(v) and X = v]

= K · Pr[f ′(X) = f ′(v) and X ∈ SLv]

> K · 1

K ′ .

Combining these two cases, we get that

Pr
X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′

=⇒
∑

x∈SLv\S

Zx,v ≥ K · 1/K ′,

and moreover,

Pr
X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′ for all v ∈ S

=⇒ Z =
∑
v∈S

∑
x∈SLv\S

Zx,v ≥ K|S|/K ′.

With all of these observations in hand, we are finally
ready to apply a Chernoff bound to upper bound our desired
probability. Towards this end, we have

Pr
f ′

[
∀v ∈ S : Pr

X
[f ′(X) = f ′(v) and X ∈ SLv] > 1/K ′

]
≤ Pr

f ′
[Z ≥ K|S|/K ′]

= Pr
f ′
[Z ≥ (4µK)(G/4)].

Since we showed that 4µK ≥ E[Z], the Chernoff bound
(Theorem 4) tells us that the above is

≤
(

eδ

(1 + δ)1+δ

)4µK

≤
(

e

1 + δ

)(1+δ)4µK

for δ := G/4−1.29 Plugging this value of δ into the expression
above yields

(4e/G)µGK ,

as desired.

Using these claims, it is easy to prove Lemma 15.

Proof of Lemma 15. Fix a function f : {0, 1}n → {0, 1}m,
and suppose there is a set S ⊆ [M] with density µ :=
|S|/M such that Pr[f(X) ∈ S and X ∈ X] > µG + ε.
We may assume each v ∈ S has a preimage in X , since
otherwise we could remove v from S, while keeping the
probability guarantee. For the same reason, we may assume
that Pr[f(X) = v and X ∈ X] > 1/K ′ for each v ∈ S.

Now, let τ ∈ [M] be a threshold we will set later. Observe
that one of the following must hold:

• ∃S ⊆ [M] with size < τ and density µ := |S|/M such
that Pr[f(X) ∈ S and X ∈ X] > µG+ ε.

• ∃S ⊆ [M] with size τ and density µ := τ/M such that
Pr[f(X) = v and X ∈ X] > 1/K ′, ∀v ∈ S.

Indeed, this follows immediately from the discussion above,
since if the original set S had size < τ , then the first bullet
holds, and if it had size ≥ τ , then any subset of S of size τ
satisfies the second bullet.

Next, regardless of which bullet holds, we let S ⊆ [M]
denote the set referred to in that bullet, and define a new set
S⋆ ⊆ X as follows. First, for each v ∈ S, let v⋆ denote the
element in f−1(v)∩X that receives the least probability under
X. Then, define the set S⋆ := {v⋆ : v ∈ S}, and observe the
following:

• If S originally referred to the first bullet above, then all
of the following hold:

– S⋆ ⊆ X and |S⋆| < τ .
– |f(S⋆)| = |S⋆|.
– PrX[∃v⋆ ∈ S⋆ : f(X) = f(v⋆) and X ∈ SLv⋆] =

PrX[f(X) ∈ S and X ∈ X] > µG+ ε.

• If S originally referred to the second bullet above, then
all of the following must hold:

– S⋆ ⊆ X and |S⋆| = τ .
– |f(S⋆)| = |S⋆|.
– PrX[f(X) = f(v⋆) and X ∈ SLv⋆] = PrX[f(X) =
f(v⋆) and X ∈ X] > 1/K ′,∀v⋆ ∈ S⋆.

29Note that we may assume δ > 0, since otherwise 4/G ≥ 1 and the
bound in the claim trivially holds.

1542

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

By combining these observations with Claim 7 and Claim 8,
we get the following.

Pr
f
[∃S ⊆ [M] : Pr[f(X) ∈ S and X ∈ X] > µG+ ε]

≤ Pr
f

[
∃S ⊆ X, |S| < τ : |f(S)| = |S| and

Pr
X
[∃v ∈ S : f(X) = f(v) and X ∈ SLv]

> µG+ ε

]
+ Pr

f

[
∃S ⊆ X, |S| = τ : |f(S)| = |S| and

Pr
X
[f(X) = f(v) and X ∈ SLv] > 1/K ′,∀v ∈ S

]
≤
(
|X|
< τ

)(eτ
εM

)εK
+

(
|X|
τ

)(
4e

G

)τL
.

Finally, we check if εK/L < 1. If this holds, we set
τ = ⌈εK/L⌉ ≤ 2εK/L, and observe that the probability that
produced the term

(|X|
<τ

) (
eτ
εM

)εK
would have actually been 0.

If εK/L ≥ 1, we set τ = ⌊εK/L⌋ ≥ (εK/L)/2, and observe
that

(
eτ
εM

)εK ≤
(
e
G

)τL
. In either case, we can upper bound

the above sum by

≤
(
|X|
≤ τ

)(
4e

G

)τL
≤ 2−τL(g−

1
L log(2eL

ε · |X|
K)−log(4e))

≤ 2−
εK
2 (g− 1

L log(
|X|
εK)−5.886),

as desired.

Case 3: The subdistributions on X1,X2 have bad joint
smooth min-entropy: Finally, we upper bound the probability
that the third bullet in Proposition 2 can occur.

Lemma 16 (A random function jointly condenses the sub-
distributions on X1, X2). Let X be an (n, k)-source. For any
ℓ ∈ [0, k] and g ≥ 0 such that m := k − ℓ + g = k′ + g is
an integer, and any ε ∈ (0, 1] the following holds. Suppose
the support of X is partitioned into sets X1, X2, where X1

contains the min{⌈4KL⌉, N} highest probability elements,
and X2 the rest. If f : {0, 1}n → {0, 1}m is a uniformly
random function, then

Pr
f

[
∃S ⊆ [M] :

Pr
X
[f(X) = v ∧X ∈ X1] >

L− 1

L
· 1

K ′ ∀v ∈ S and

Pr
X
[f(X) ∈ S ∧X ∈ X2] > ε

]
≤ 2 · 2−

εK
2 (g− 1

⌊L⌋ log(1/ε)−11).

Proof. We start by claiming that we can assume L ≥ 2, since
otherwise the result is easy to prove. To see why, suppose that
L < 2 (and thus ⌊L⌋ = 1). In order for the bad event (in the
probability expression above) to hold, the random function f

must map > ε weight from X2 into the set f(X1). But here,
the size of X1 is at most ⌈4KL⌉ < ⌈8K⌉, and thus the size of
f(X1) is also < ⌈8K⌉. Since f acts independently on X1, X2

(as they are disjoint), we get that the bad event above holds
with probability at most

Pr
f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
,

where f is a uniformly random function, and S⋆ is an
(adversarially) fixed set of size < ⌈8K⌉. Now, by definition of
X2, each x ∈ X2 is hit by X with probability at most 1/(4K).
Thus, applying Claim 5 (setting parameters appropriately), we
get

Pr
f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
≤ 2−2εK(g−log(36/ε))

= 2−2εK(g− 1
⌊L⌋ log(36/ε)),

as desired. Thus, we can henceforth assume that L ≥ 2.
Now, let E denote the (bad) event in the lemma statement,

and let τ ∈ [M] be a threshold value that we will set later.
Since f acts independently on X1, X2 (as they are disjoint),
observe that

Pr
f
[E]

≤ Pr
f

[
∃S ⊆ [M], |S| = τ :

Pr
X
[f(X) = v ∧X ∈ X1] >

L− 1

L
· 1

K ′ ,∀v ∈ S

]
+ Pr

f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
,

where S⋆ ⊆ [M] is an arbitrary fixed set of size τ − 1.30 By
Claim 5 (setting parameters appropriately), and the fact that
each x ∈ X2 is hit by X with probability at most 1/(4KL),
we have

Pr
f

[
Pr
X
[f(X) ∈ S⋆ ∧X ∈ X2] > ε

]
≤ 2−2εKL log(εM

2τ).

Finally, consider any fixed set S ⊆ [M] of size τ . Then,
by Claim 8 (used in a similar manner as in the proof to
Lemma 15), we have that

Pr
f

[
∃S ⊆ [M], |S| = τ :

Pr
X
[f(X) = v ∧X ∈ X1] >

L− 1

L
· 1

K ′ ,∀v ∈ S

]

≤
(
|X1|
τ

)(
4eL

G(L− 1)

)τ(L−1)

≤
(
e⌈4KL⌉

τ

)τ
·
(
8e

G

)τ(L−1)

≤ 2−τL(
L−1
L (g−log(8e))− 1

L log(8eKL/τ)).

30Notice that the second term realizes to 0 if τ = 1.

1543

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

And thus, we have

Pr
f
[E] ≤ 2−2εKL log(εM

2τ)

+ 2−τL(
L−1
L (g−log(8e))− 1

L log(8eKL/τ)).

Finally, setting τ := ⌈ε(L−1)/LK ′⌉ yields

Pr
f
[E] ≤ 2 · 2− εK

2 (g− 1
L log(1/ε)−11),

as desired.

Putting everything together: By combining the necessary
conditions for condensing failure (Proposition 2) with the
fact that each such condition happens with low probability
(Lemmas 14 to 16), we are finally able to prove that a random
function is a good condenser (Theorem 11).

Proof of Theorem 11. Before we start, we note that we may
assume ℓ ≤ g/4. This is because if ℓ > g/4, then combining
Proposition 1 and Lemma 14 (observing that log(G)/L ≤
log(4ℓ)/L ≤ 2) yields the result.

Now that we may assume ℓ ≤ g/4, the result is almost
immediate, via the sketch above. In particular, we first set
k′ := k − ℓ, and let X1 denote the heaviest min{⌈4KL⌉, N}
elements in support(X), and X2 the rest. Then, by Lemma 15,
we know that the first condition in Proposition 2 holds with
probability at most

2−
εK
6 (g− 1

L log(
3⌈4KL⌉

εK)−5.886)

≤ 2−
εK
6 (g− 1

L log(1
ε)−16).

Next, define G̃ = G/L, ε̃ = ε/3, K̃ = 4KL, and L̃ =
K̃G̃/M = 4L. Since each x ∈ X2 is hit with probability at
most 1/(4KL) = 1/K̃, Lemma 14 tells us that the second
condition in Proposition 2 holds with probability at most

2−
ε̃K̃
2 (g̃− 1

L̃
log(2eG̃/ε̃)−log e)

≤ 2−
4εKL

6 (g−ℓ− 1
4L log(6eG/ε)−log e)

≤ 2−
4εKL

6 (3g/4− 1
4L log(6eG/ε)−log e)

(since we assumed ℓ ≤ g/4)

≤ 2−
εKL

6 (2g− 1
L log(6e/ε)−4 log e)

≤ 2−
εKL

6 (2g− 1
L log(1/ε)−10).

Finally, by Lemma 16, the third condition in Proposition 2
holds with probability at most

2 · 2−
εK
6 (g− 1

⌊L⌋ log(3/ε)−11)

≤ 2 · 2−
εK
6 (g− 1

⌊L⌋ log(1/ε)−13).

Thus, by a simple union bound, one of the conditions in
Proposition 2 holds with probability at most

4 · 2−
εK
6 (g− 1

⌊L⌋ log(1/ε)−16).

By the statement of Proposition 2, the result follows.

B. A random function is a seeded condenser

Using our main existential result from the previous section,
it is now straightforward to obtain our existential results for
seeded condensers.

Theorem 12 (A random function is a seeded condenser).
There exists a universal constant C ≥ 1 such that for any
ℓ ∈ [0, k + d] and g ≥ 0 such that m := k + d − ℓ + g
is an integer, and any ε ∈ (0, 1], the following holds. If
d ≥ log

(
n−k
ε

)
+C and g ≥ 1

⌊L⌋ log
(
1
ε

)
+C, then there exists

a seeded condenser sCond : {0, 1}n × {0, 1}d → {0, 1}m for
(n, k)-sources with loss ℓ, gap g, error ε, and seed length d.

Proof. This is an immediate corollary of our main existential
result (Theorem 9), by considering the family X of sources
of the form (X,Y), where X is an (n, k)-source and Y ∼
{0, 1}d is a uniform independent seed.

We remark that a more general theorem can be established
(that allows for gap g ∈ [0, C] and recovers known existential
results for seeded extractors), but we only record the one above
for simplicity.

C. Existential condensers for block sources

In this section, we show our existential results for Chor-
Goldreich sources, and ultimately prove Corollary 4 from
the introduction. As a reminder, we cannot simply invoke
our black box result on the existence of seedless condensers
for any small family (Corollary 6), because the family of
CG sources is not small. Indeed, a rough estimate would
indicate that the number of (t, n, k)-CG sources is roughly(
N
K

)K0+K1+···+Kt−1

≈ 2gK
t

. However, since each such
source contain kt bits of min-entropy, applying Corollary 6
would only work if we allowed the gap blow-up by a factor of
at least 1/ε. Here, we aim to do much better, and in fact prove
such results for the more general setting of block sources.

1) Two blocks (via seeded condensers): We start by show-
ing existential results for condensing block sources that con-
tain only two blocks. As a reminder, we let gi := ni − ki
denote the entropy gap in the ith block of the input block
source.

Theorem 13 (Existential results for block sources with two
blocks). There is a universal constant C ≥ 1 such that the
following holds. There exists a (non-explicit) condenser Cond :
{0, 1}n1 × {0, 1}n2 → {0, 1}m for ((n1, k1), (n2, k2))-block
sources with output length m = k1 + k2 − ℓ+ g, error ε, loss
ℓ, and gap

g ≤ g2 +
1

⌊L⌋
(g2 + log(1/ε)) + C,

provided that k2 ≥ log(g1/ε) + C.

Proof. This is an immediate corollary of our existential result
for seeded condensers (Theorem 12), combined with fact that
seeded condensers work for CG-correlated seeds (Lemma 8).

1544

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Before we move on to the multi-block setting, a few remarks
are in order. First, note that the first bullet in Corollary 4 is an
immediate corollary of the above, since CG sources are less
general than block sources. Next, we note that when there are
not too many blocks (say, t = O(1), and they all have similar
lengths), the above result will give the best parameters. This is
because one may simply group together the first t− 1 blocks
into a single block, and this will only add about log(t) onto
the min-entropy requirement, which is not bad when t is small.
Finally, we mention that using this idea and the above result,
one may recover the parameters of the explicit condensers in
[3] (for constant-sized blocks), by brute-force searching for an
excellent block-source condenser (using the above existential
result), which condenses to rate 0.99. Then, one can apply the
explicit instantiation of the iterative condensing framework,
instantiated with the GUV extractor (as in Section V-C3).

2) More than two blocks (via iterative condensing): We
now turn to prove our existential result for the multi-block
setting. As above, we do so by combining our existential
seeded condensers with the fact that such condensers can
handle correlated seeds. This time, however, we’ll need to
iterate, and apply a sequence of several condensers. We present
our main existential result for the multi-block setting below,
and remind the reader that we always use gi := ni − ki to
denote the entropy gap in the ith block.

Theorem 14 (Existential results for block sources with
many blocks). There is a universal constant C ≥ 1 such
that the following holds. There exists a (non-explicit) con-
denser Cond : {0, 1}n1 × · · · × {0, 1}nt → {0, 1}m for
((n1, k1), . . . , (nt, kt =: nt − g))-block sources with output
length m = (

∑
i∈[t] ki)− ℓ+ g′, error ε, loss ℓ, and gap

g′ ≤ g + exp

(
6⌈ 4t2

ℓ+1⌉
⌊L 1

2t ⌋

)
·

(
6⌈ 4t2

ℓ+1⌉
⌊L 1

2t ⌋

)
· (gt + log(1/ε) + Ct)

+ Ct,

provided that ki+1 ≥ log(gi/ε) + ℓ/t+ C for all i ∈ [t− 1].

While the above theorem is quite general and can work for
nearly any block source, the parameters may be a bit difficult
to digest. Soon, we will show exactly what this theorem can
yield for the less general (and more standard) setting of CG
sources (in Corollary 8, Corollary 9, and Corollary 10). But
first, we present its proof, which relies on the following lemma
(allowing for a more careful fine-tuning of parameters).

Lemma 17 (Existential results for block sources with many
blocks). There is a universal constant C ≥ 1 such that
for any (not necessarily constant) parameters ℓ ≥ 0 and
τ ≥ 1, the following holds. There exists a (non-explicit)
condenser Cond : {0, 1}n1 × · · · × {0, 1}nt → {0, 1}m
for ((n1, k1), . . . , (nt, kt))-block sources with output length
m = (

∑
i∈[t] ki)−ℓ⋆+g⋆, error ε, loss ℓ⋆ ≤ ℓt+⌊(t−2)/τ⌋t,

and gap

g⋆ ≤ gt + e
6τ
⌊L⌋ · 6τ

⌊L⌋
· (gt + log(1/ε) + Ct) + Ct

provided that ki+1 ≥ log(gi/ε) + ℓ + ⌊ t−(i+1)
τ ⌋ + C for all

i ∈ [t− 1].

Given this lemma, it is straightforward to prove our main
existential result for block sources with many blocks (Theo-
rem 14). Indeed, it just involves picking the best settings of
the parameters ℓ, τ .

Proof of Theorem 14. Let ℓ0 := ℓ/(2t), τ0 := ⌈ 4t2

ℓ+1⌉, and set
these as the first two parameters in Lemma 17.

At last, we are ready to prove our core lemma. We do so,
below.

Proof of Lemma 17. Let sCond1, sCond2, . . . , sCondt−1 be a
sequence of functions, where each sCondi : {0, 1}ni ×
{0, 1}mi+1 → {0, 1}mi is a seeded (ni, ki) →εi (mi,mi−g′i)
condenser. Then, define mt := nt and

mi := ki +mi+1 − ℓi + g′i

for every i ∈ [t−1], where ℓi is some parameter to be set later.
Our existential result for seeded condensers (Theorem 12) says
that such condensers must exist, provided that each mi is a
positive integer and both of the following hold, for every i ∈
[t− 1] (where C > 0 is a universal constant):

• Seed length requirement: mi+1 ≥ log (gi/εi) + C.
• Output gap requirement: g′i ≥ 1

⌊Li⌋ log(1/εi) + C.
Moreover, our iterative condensing framework (Lemma 9)
says that given such seeded condensers, there exists a con-
denser Cond : {0, 1}n1 × · · · × {0, 1}nt → {0, 1}m1 for
((n1, k1), . . . , (nt, kt))-block sources with output length m1,
output gap g′ = gt+

∑
i∈[t−1] g

′
i, and error ε′ =

∑
i∈[t−1] εi ·

2gt+
∑

j∈(i,t−1] g
′
j . Thus, our goal is to set parameters εi, ℓi, g′i

for every i ∈ [t− 1] such that each seeded condenser sCondi
exists, and so that the final condenser Cond achieves the
parameters claimed in the theorem statement.

We start by introducing some intermediate parameters,
which will help keep our calculations tidy. In particular, we
define ℓt := 0, and for every i ∈ [t− 1], we define

k≥i :=
∑
j∈[i,t]

kj ,

ℓ≥i :=
∑
j∈[i,t]

ℓj ,

g′≥i := gt +
∑

j∈[i,t−1]

g′j .

Using these definitions, it is easy to verify that each output
length parameter mi, i ∈ [t] takes the form

mi = k≥i − ℓ≥i + g′≥i.

Thus, the final condenser Cond will have output length
m1 = k≥1 − ℓ≥1 + g′≥1, output gap g′ = g′≥1, and error
ε′ =

∑
i∈[t−1] εi ·2

g′≥i+1 . With these observations in hand, we
are ready to start setting parameters.

To start, we focus on setting the error parameters εi. We
would like to set them so that the overall error ε′ is at most

1545

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

some target error ε. Looking at the expression for ε′ above, this
can be done by setting εi to a geometric series. In particular,
for every i ∈ [t− 1], we define

εi := ε · 2−(t−i) · 2−g
′
≥i+1 .

In doing so, it is straightforward to verify that the overall error
ε′ is at most ε, as desired.

Next, before we set each ℓi, g′i, let’s see how the setting of
εi affected the seed length and output length requirements of
the seeded condensers. First, plugging in our value of εi (and
using our observation about the form of each mi), our seed
length requirement becomes the following, for every i ∈ [t−1]:

k≥i+1 − ℓ≥i+1 ≥ log(gi/ε) + (t− i) + C.

In fact, by incrementing the universal constant C by 1, it
suffices to satisfy the following, for every i ∈ [t− 1]:

ki+1 − ℓi+1 ≥ log(gi/ε) + C. (17)

Let’s see how our output gap requirement changed. Plugging
in our εi, it becomes, for every i ∈ [t− 1]:

g′i ≥
1

⌊Li⌋
(log(1/ε) + t− i+ g′≥i+1) + C.

Moreover, if we add g′≥i+1 to both sides, the output gap
requirement becomes:

g′≥i ≥
1

⌊Li⌋
(log(1/ε) + t− i) + (1 +

1

⌊Li⌋
)g′≥i+1 + C.

(18)

Finally, recall that each mi = k≥i − ℓ≥i + g′≥i must be a
positive integer.

Now, let’s turn to setting the loss parameters ℓi. We would
like to set them so that the overall loss is not too high,
but also so that the output gap requirement (which depends
on 1/Li) stays low. Looking ahead, the final gap g′≥1 will
depend roughly on the sum of the terms 1/Li, and thus we
set the loss parameters so {1/Li} forms a geometric series. We
give ourselves some freedom over the shape of this geometric
series, using the parameters ℓ ≥ 0 and τ ≥ 1 from the theorem
statement. Then, for every i ∈ [t− 1] we define

ℓi := ℓ+

⌊
t− (i+ 1)

τ

⌋
.

τ should be thought of as a controller for how much additional
loss (between [0, 1]) should be experienced by each successive
seeded condenser. Notice that all τ > t−2 yield an additional
loss of zero.

Given this setting of loss parameters, observe that the total
loss of the final condenser will be

ℓ⋆ = ℓ≥1 =
∑

i∈[t−1]

(
ℓ+

⌊
t− (i+ 1)

τ

⌋)
≤ ℓt+

⌊
t− 2

τ

⌋
t,

as desired. Furthermore, observe that our seed length require-
ment (Equation (17)) is satisfied if

ki+1 ≥ log(gi/ε) + ℓ+

⌊
t− (i+ 1)

τ

⌋
+ C

for every i ∈ [t− 1], as provided in the theorem statement.
Thus, all that remains is to set the gap parameters g′i for

all i ∈ [t− 1]. Towards this end, we pick the smallest values
satisfying Equation (18), and so that each mi = k≥i−ℓ≥i+g′≥i
is a positive integer. By rounding up, notice that the latter
requirement can always be satisfied as long as the former
requirement is satisfied with the universal constant C in-
cremented by 1, and so we can safely ignore it. Thus, we
henceforth focus on picking the smallest values g′i satisfying
Equation (18). That is, we define each g′i, i ∈ [t− 1] so that

g′≥i =
1

⌊Li⌋
(log(1/ε) + t− i) + (1 +

1

⌊Li⌋
)g′≥i+1 + C

Then, we observe the following inequality.

g′≥i ≤
1

⌊Li⌋
(log(1/ε) + t− 1) + (1 +

1

⌊Li⌋
)(g′≥i+1 + C)

Finally, we just need to upper bound g⋆ ≤ g′≥1. Recalling
that g′≥t = gt, we solve the recurrence above.

g′≥1 ≤

−1 +
∏

i∈[t−1]

(1 +
1

⌊Li⌋
)

 (log(1/ε) + t− 1)

+

 ∏
i∈[t−1]

(1 +
1

⌊Li⌋
)

 (gt + C(t− 1))

≤
(
e
∑

i∈[t−1]
1

⌊Li⌋ − 1
)
(log(1/ε) + t)

+
(
e
∑

i∈[t−1]
1

⌊Li⌋
)
(gt + Ct)

≤
(
e
∑

i∈[t−1]
1

⌊Li⌋ − 1
)
log(1/ε)

+
(
e
∑

i∈[t−1]
1

⌊Li⌋
)
(gt + C ′t),

where the last step set C ′ := C + 1. Now, plugging in
our parameter setting ℓi := ℓ + ⌊ t−(i+1)

τ ⌋ (and recalling the
convention Li = 2ℓi), we can bound the term in the exponent
as follows. ∑

i∈[t−1]

1

⌊Li⌋
≤ 1

⌊L⌋
∑

i∈[t−1]

1

2⌊
t−(i+1)

τ ⌋

≤ 2

⌊L⌋
∑

i∈[t−1]

2
i+1−t

τ

≤ 4

⌊L⌋
∑

i∈[t−1]

2−
i
τ

=
4

⌊L⌋
· 1− 2−(t−1)/τ

21/τ − 1

≤ 4

⌊L⌋
· τ

ln 2

≤ 6τ

⌊L⌋
.

Plugging this expression back into our bound for g′≥1, we get

g′≥1 ≤ (e6τ/⌊L⌋ − 1) log(1/ε) + e6τ/⌊L⌋(gt + C ′t).

1546

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

Now, since ex − 1 ≤ exx for all x ≥ 0, we get

g⋆ ≤ g′≥1 ≤ gt + e6τ/⌊L⌋ · 6τ

⌊L⌋
(log(1/ε) + gt + C ′t) + C ′t,

as desired. This completes the proof.

Corollaries for Chor-Goldreich sources: Now that we have
proven our existential result for multi-block sources, we are
ready to see what parameters it yields in the more well-
behaved CG-source setting. We present our main existential
result for multi-block CG sources, and note that log∗() denotes
the extremely slow-growing iterated logarithm function.

Corollary 8 (Existential results for CG sources with many
blocks). There is a universal constant C ≥ 1 such that the
following holds. There exists a (non-explicit) condenser Cond :
({0, 1}n)t → {0, 1}m for (t, n, k =: n− g)-CG sources with
output length m = kt− ℓ+ g′, error ε, loss ℓ, and gap

g′ ≤ g+exp

6⌈ 4(log∗ t)2

ℓ+1 ⌉

⌊L
1

2 log∗ t ⌋

 ·

6⌈ 4(log∗ t)2

ℓ+1 ⌉

⌊L
1

2 log∗ t ⌋


· (g + log(1/ε) + C log∗ t)

+ C log∗ t

provided that k ≥ log(g/ε) + ℓ/ log∗ t+ C.

Before we present its proof, we take some time to digest its
parameters. In particular, we list two immediate corollaries,
which are presented as bullet two in Corollary 4. In the first
corollary, we show what happens to the gap if one asks for a
lossless condenser for CG sources. In the second, we show that
if one is willing to lose a very small amount of min-entropy,
the gap can be very well maintained.

Corollary 9 (Existential results for CG sources with many
blocks - lossless regime). There is a universal constant C ≥ 1
such that the following holds. There exists a (non-explicit)
condenser Cond : ({0, 1}n)t → {0, 1}m for (t, n, k =: n−g)-
CG sources with output length m = kt+g′, error ε, loss ℓ = 0,
and gap

g′ ≤ g + exp(C(log∗ t)2) · (g + log(1/ε) + C log∗ t),

provided that k ≥ log(g/ε) + C.

Corollary 10 (Existential results for CG sources with many
blocks - small gap regime). There is a universal constant C ≥
1 such that the following holds. There exists a (non-explicit)
condenser Cond : ({0, 1}n)t → {0, 1}m for (t, n, k =: n−g)-
CG sources with output length m = kt− ℓ+ g′, error ε, loss
ℓ ≤ 2(log∗ t)2, and gap

g′ ≤ g + C · 2− log∗ t · (g + log(1/ε)) + C log∗ t,

provided that k ≥ log(g/ε) + 2 log∗ t+ C.

With these results in hand, we turn to prove Corollary 8.

Proof of Corollary 8. Let t′ ∈ N and b1, . . . , bt′ ∈ N be
parameters that we will set later, so that

∑
i bi = t. Then,

define n1, . . . , nt′ and k1, . . . , kt′ such that ni := nbi and

ki := kbi. Notice that any (t, n, k)-CG source is automatically
an ((n1, k1), . . . , (nt, kt))-block source, simply by grouping
the blocks into buckets.

The goal is to find the smallest number of buckets t′ that we
can divide the CG source into, while maintaining a relatively
modest entropy requirement. In particular, recall that in order
to get the strong upper bound on the final gap g′ provided in
Theorem 14, the min-entropy of the block source must satisfy

ki+1 ≥ log(gi/ε) + ℓ/t′ + C

for all i ∈ [t′ − 1], where gi := ni − ki. Using our block
parameters b1, . . . , bt′ and the relations described above, this
min-entropy requirement becomes

kbi+1 ≥ log(gbi/ε) + ℓ/t′ + C, (19)

for all i ∈ [t′ − 1].
Now, define the parameter t′ and block parameters

b1, . . . , bt′ such that the following hold:31

• bt′ := 2,
• bi ≤ 2bi+1 for every i ∈ [t′ − 1],
• bt′ ≤ bt′−1 ≤ · · · ≤ b1,
• b1 + · · ·+ bt′ = t,
• t′ ∈ N is the smallest integer for which there exist
b1, . . . , bt′ satisfying the above constraints.

Notice that for such parameters, the min-entropy requirement
(given in Equation (19)) is satisfied if

kbi+1 ≥ log(g/ε) + bi+1 + ℓ/t′ + C,

or rather

bi+1(k − 1) ≥ log(g/ε) + ℓ/t′ + C

for every i ∈ [t′ − 1]. But observe that if we simply require

k ≥ log(g/ε) + ℓ/t′ + C,

then all of these conditions must hold, as the above implies
that (k − 1) ≥ k/2 (when k ≥ 2), and we know from our
constraints that bi+1 ≥ 2.

Thus for any (t, n, k)-CG source and parameters b1, . . . , bt′
satisfying the above constraints, we know that we can con-
dense (with an output gap as promised in Theorem 14) as long
as k ≥ log(g/ε) + ℓ/t′ +C. All that remains is to check how
big t′ can be, and in particular provide an upper bound on it.
Towards this end, looking at the constraints on our parameters
bi and the minimality of t′, it is straightforward to verify that
t′ cannot exceed the iterated logarithm of t. In other words,
t′ ≤ log∗ t, as desired.

To conclude this section, we note that one may wish for
an existential result for CG sources with many blocks, where
the output gap has no dependence on the number of blocks
t. It is straightforward to combine the above ideas to obtain
such a result, albeit with significantly more loss. In particular,
one can instantiate the iterative condensing framework with

31Note that we may assume that we started off with t > 2 blocks, for
otherwise this result holds via Theorem 13.

1547

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

optimal seeded extractors, instead of seeded condensers, so
that the output gap is exactly equal to the input gap g, but
the loss becomes roughly O((log∗ t)(log∗ t+ g + log(1/ε))),
and more importantly the required starting min-entropy (per
block) becomes roughly k ≥ log(n/ε) + 0.99n. This required
starting min-entropy can then be reduced to k ≥ C log(n/ε)
(for some constant C) by adding in (at the beginning) a single
call to an optimal seeded condenser with seed length that has
dependence 1 log(1/ε) on the error. This will not significantly
affect the overall loss, and the final gap will be of the form
g +O(1).

VII. IMPOSSIBILITY RESULTS

We conclude the technical portion of the paper with simple,
but useful, impossibility results.

A. An impossibility result for condensing general sources

First, we show a condenser version of the classic extractor
impossibility result.

Theorem 15 (There do not exist condensers for general
sources). Fix any function f : {0, 1}n → {0, 1}m and gap
g such that 0 ≤ g ≤ n. Then for any 0 ≤ ε < 1 there exists a
source X ∼ {0, 1}n with min-entropy gap g such that

Hε
∞(f(X)) ≤ min{n,m} −min{m, g}+ log

(
1

1− ε

)
.

The term cε := log(1
1−ε) is merely an artifact of the

definition of smooth min-entropy (see Section III-B).

Proof. Let g′ := min{m, g}. By definition of probability,
there must be a prefix σ ∈ {0, 1}g′ such that Pr[f(Un)[g′] =

σ] ≥ 2−g
′
. Thus there is a set X ⊆ {0, 1}n of density exactly

2−g
′

such that f(X)[g′] = {σ}. Let S = f(X) be the image
of this set, and note it has size |S| ≤ 2min{n,m}−g′ , since S
is the image of a set of size 2n−g

′
, and since S is a subset of

{0, 1}m where all prefixes of length g′ are the same (leaving at
most m−g′ coordinates unfixed). Now, by the characterization
of smooth min-entropy (Lemma 2),

1 = Pr[f(X) ∈ S]

≤ |S| · 2−H
ε
∞(f(X)) + ε

= 2min{n,m}−g′−Hε
∞(f(X)) + ε.

Solving for Hε
∞(f(X)) completes the proof.

B. An impossibility result for condensing block sources

Finally, we extend the above argument to show that it is
impossible to condense a CG source without the gap of one
of the input blocks showing up in the output.

Theorem 16 (Condensers for CG sources must maintain the
gap). Fix any function f : ({0, 1}n)t → {0, 1}m and gap g
such that 0 ≤ g ≤ n. Then for any 0 ≤ ε < 1 there exists a
(t, n, n− g)-CG source X ∼ ({0, 1}n)t such that

Hε
∞(f(X)) ≤ m− g + log

(
1

1− ε

)
.

Proof. By induction. By the proof above, we know that for any
function f : {0, 1}n → {0, 1}m there is a set X ⊆ {0, 1}n of
size 2n−g

′
such that the g′-prefix of the set f(X) is a constant

σ. Consider now a function f : ({0, 1}n)t → {0, 1}m and all
of its restrictions fα := f(α, ·). By induction, for each α there
is a (t−1, n, n− g′)-CG source Xα such that the g′-prefix of
f(α,Xα) is a constant σ. By averaging, this constant σ must
be the same for some 2−g

′
fraction of α’s. Let A be uniform

over these, and consider the (t, n, n − g′) source (A,XA).
By construction, the prefix of f is constantly σ on (A,XA).
Moreover, if we define S as the image of this source, we know
it has size at most 2m−g′ , since its g′-prefix is fixed. We also
know that it has size at most 2t(n−g

′), given the entropy of
(A,XA). Thus

1 = Pr[f(A,XA) ∈ S]

≤ |S| · 2−H
ε
∞(f(A,XA)) + ε

≤ 2min{m−g′,t(n−g′)}−Hε
∞(f(A,XA)) + ε.

Solving for Hε
∞(f(A,XA)) completes the proof.

VIII. OPEN PROBLEMS

The most attractive open problem is to get better explicit
seeded condensers. If one could explicitly construct such
condensers with seed length that has dependence 1 log(1/ε)
on the error (and a reasonably small output gap), then it
would become trivial to condense CG sources with even better
parameters than in this paper. Indeed, all of the work behind
our CG source condensers goes into creating a single block
of entropy rate 0.99, and any good enough seeded condenser
(i.e., with the above parameters) can do this in a single step.32

Even if such seeded condensers remain out of reach, other
natural questions remain about condensing CG sources. For
example, while we were able to construct explicit condensers
for CG sources with very low entropy, we could only do so
while blowing up the gap by a polynomial factor.33 It would
be great to see if one could explicitly condense CG sources
whose blocks have min-entropy (say) n0.99, while keeping the
gap blow-up to just a constant factor. This would seem to
require completely new techniques.

Finally, it would be interesting to study other natural classes
of sources for which we cannot deterministically extract,
but can deterministically condense, and try to construct the
corresponding explicit condensers. Chor-Goldreich sources are
just one family in this new category of sources, and we hope
that the study of other such families will lead to a long line
of fruitful research.

32As a reminder, see Lemma 8 for how the parameters of a seeded
condenser translate to its performance on CG sources. It is worth noting
that for this application, we would also be more than happy with a seeded
condenser that is quite lossy.

33This blow-up is due to the number of rows produced by the somewhere-
condensers used in our constructions.

1548

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Chor and O. Goldreich, “Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity,” SIAM Journal
on Computing, vol. 17, no. 2, pp. 230–261, 1988, preliminary version
in FOCS 1985.

[2] M. Santha and U. V. Vazirani, “Generating quasi-random sequences from
semi-random sources,” Journal of computer and system sciences, vol. 33,
no. 1, pp. 75–87, 1986, preliminary version in FOCS 1984.

[3] D. Doron, D. Moshkovitz, J. Oh, and D. Zuckerman, “Almost Chor-
Goldreich sources and adversarial random walks,” in Proceedings of the
55th Annual ACM Symposium on Theory of Computing, 2023, pp. 1–9.

[4] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced expanders and
randomness extractors from Parvaresh–Vardy codes,” Journal of the
ACM (JACM), vol. 56, no. 4, pp. 1–34, 2009, preliminary version in
CCC 2007.

[5] N. Aviv and A. Ta-Shma, “On the entropy loss and gap of condensers,”
ACM Transactions on Computation Theory (TOCT), vol. 11, no. 3, pp.
1–14, 2019.

[6] N. Nisan and D. Zuckerman, “Randomness is linear in space,” Journal
of Computer and System Sciences, vol. 52, no. 1, pp. 43–52, 1996,
preliminary version in STOC 1993.

[7] E. Chattopadhyay, M. Gurumukhani, and N. Ringach, “On the existence
of seedless condensers: Exploring the terrain,” in 64th Annual Sympo-
sium on Foundations of Computer Science (FOCS 2024, to appear).
IEEE, 2024.

[8] A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma, “Two-source
condensers with low error and small entropy gap via entropy-resilient
functions,” in 23rd International Conference on Randomization and
Computation (RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

[9] M. Ball, O. Goldreich, and T. Malkin, “Randomness extraction from
somewhat dependent sources,” in 13th Innovations in Theoretical Com-
puter Science Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2022.

[10] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson,
“Simulating independence: New constructions of condensers, Ramsey
graphs, dispersers, and extractors,” Journal of the ACM (JACM), vol. 57,
no. 4, pp. 1–52, 2010, preliminary version in STOC 2005.

[11] R. Raz, “Extractors with weak random seeds,” in 37th Annual ACM
Symposium on Theory of Computing (STOC 2005), 2005, pp. 11–20.

[12] X. Li, “Design extractors, non-malleable condensers and privacy
amplification,” in Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, H. J. Karloff and T. Pitassi, Eds. ACM, 2012, pp. 837–854.
[Online]. Available: https://doi.org/10.1145/2213977.2214052

[13] ——, “Non-malleable condensers for arbitrary min-entropy, and
almost optimal protocols for privacy amplification,” in Theory of
Cryptography - 12th Theory of Cryptography Conference, TCC
2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, ser.
Lecture Notes in Computer Science, Y. Dodis and J. B. Nielsen,
Eds., vol. 9014. Springer, 2015, pp. 502–531. [Online]. Available:
https://doi.org/10.1007/978-3-662-46494-6 21

[14] R. Renner and S. Wolf, “Smooth Rényi entropy and applications,”
in International Symposium onInformation Theory, 2004. ISIT 2004.
Proceedings. IEEE, 2004, p. 233.

[15] D. Zuckerman, “Linear degree extractors and the inapproximability of
max clique and chromatic number,” Theory of Computing, vol. 3, pp.
103–128, 2007, preliminary version in STOC 2006.

[16] S. Vadhan, “Pseudorandomness,” Foundations and Trends® in Theoret-
ical Computer Science, vol. 7, no. 1–3, pp. 1–336, 2012.

[17] E. Chattopadhyay, J. Goodman, and D. Zuckerman, “The space
complexity of sampling,” in 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022), ser. LIPIcs, vol. 215. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 40:1–40:23.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ITCS.2022.40

[18] A. Rao, “Extractors for a constant number of polynomially small min-
entropy independent sources,” SIAM Journal on Computing, vol. 39,
no. 1, pp. 168–194, 2009, preliminary version in STOC 2006.

[19] U. Maurer and S. Wolf, “Privacy amplification secure against ac-
tive adversaries,” in 17th Annual International Cryptology Conference
(CRYPTO 1997). Springer, 1997, pp. 307–321.

1549

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 03,2025 at 14:58:26 UTC from IEEE Xplore. Restrictions apply.

