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Abstract The fluxes of dissolved organic carbon (DOC) through tidal marsh‐influenced estuaries remain
poorly quantified and have been identified as a missing component in carbon‐cycle models. The extreme
variability inherent to these ecosystems of the land‐ocean interface challenge our ability to capture DOC‐
concentration dynamics and to calculate accurate DOC fluxes. In situ discrete and continuous measurements
provide high‐quality estimates of DOC concentration, but these strategies are constrained spatially and
temporally and can be costly to operate. Here, field measurements and high‐spatial‐resolution remote sensing
were used to train and validate a predictive model of DOC‐concentration distributions in the Plum Island
Estuary (PIE), a mesotidal saltmarsh‐influenced estuary in Massachusetts. A large set of field measurements
collected between 2017 and 2023 was used to develop and validate an empirical algorithm to retrieve DOC
concentration with a ±15% uncertainty from Sentinel‐2 imagery. Implementation on 141 useable images
produced a 6‐year time series (2017–2023) of DOC distributions along the thalweg. Analysis of the time series
helped identify river discharge, tidal water level (WL), and a marsh enhanced vegetation index 2 as predictors of
DOC distribution in the estuary, and facilitated the training and validation of a simple model estimating the
distribution. This simple model was able to predict DOC along the PIE thalweg within ±16% of the in situ
measurements. Implementation for three years (2020–2022) illustrated how this type of remote‐sensing‐
informed models can be coupled with the outputs hydrodynamic models to calculate DOC fluxes in tidal marsh‐
influenced estuaries and estimate DOC export to the coastal ocean.

Plain Language Summary The lateral transfer of DOC from tidal saltmarsh estuaries to the coastal
ocean is not well represented in carbon‐cycle models. These estuaries are influenced by terrestrial processes,
riverine and marsh inputs, and tidal fluctuations that combine to create complex dynamics of DOC
concentration and complicate the quantification of DOC fluxes used to compute carbon budgets. Here, we used
a combination of field measurements and high‐spatial‐resolution satellite imagery to develop and test a model
predicting DOC concentrations along a tidal saltmarsh estuary in Massachusetts from three environmental
variables (i.e., tidal WL, river discharge, and a satellite‐derived index of saltmarsh‐biomass). A test using an
independent data set revealed this simple model can estimate DOC concentrations within ±16% of the values
measured in the laboratory. A simulation conducted for a continuous period of 3 years (15‐min time step)
showed that the model produced realistic DOC distributions and captured DOC dynamics adequately in the
estuary. The model outputs can easily be coupled with hydrodynamic models to quantify the lateral transfer of
DOC from tidal saltmarsh estuaries to the coastal ocean and inform carbon‐cycle models.

1. Introduction
The lateral export of dissolved organic carbon (DOC) links watershed and saltmarsh carbon dynamics to the
metabolic balance and health of the coastal ocean (Bauer et al., 2013; Najjar et al., 2018). Saltmarshes cover a
significant fraction of the global land‐ocean interface –including 12,775 km2 in the USA, mostly along the Gulf
and East coasts (CEC, 2016)– and efficiently sequester organic carbon belowground, accounting for an estimated
1/3 of the total ocean carbon burial (Duarte et al., 2005; McLeod et al., 2011; Nahlik & Fennessy, 2016). These
saltmarshes are physically and biogeochemically connected to estuaries and to the continental shelf through
material exchange driven by tides, storms, and other estuarine processes (Chalmers et al., 1985; Macreadie
et al., 2013). Importantly, estuarine dynamics drive the lateral export of DOC from the watershed and marsh to the
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continental shelf, where it can fuel heterotrophy, provide secondary nutrients for primary production, affect the
light field, act as a vector of contaminants, and influence the metabolic balance of the coastal ecosystem
(Bianchi, 2011; Gattuso et al., 1998; Smith & Hollibaugh, 1993). This lateral export also has the net effect of
decreasing carbon burial rates in saltmarshes, as most of the DOC exported to the coastal ocean is eventually
mineralized (Fichot & Benner, 2014; Hedges et al., 1997). Globally, estuaries and saltmarshes play a dispro-
portionately large role exchanging carbon with the coastal ocean (Herrmann et al., 2015; Najjar et al., 2018).

Despite their documented significance, fluxes of DOC through tidal marsh‐influenced estuaries remain poorly
quantified, leaving a critical gap in our understanding of regional and global carbon models (Benway et al., 2016;
Najjar et al., 2018). The highly dynamic and heterogenous nature of these nearshore systems and the occurrence
of multiple organic‐carbon sources complicate quantitative assessments (Najjar et al., 2018). Estuaries also
mineralize or flocculate variable fractions of DOC before export to the continental shelf, adding further
complexity (Bianchi et al., 2004; Moran et al., 1999; Najjar et al., 2018; Yan et al., 2020). Differences in the
geography and hydrology of estuaries and saltmarshes also make it challenging to generalize results across
systems. Furthermore, this lateral conduit of DOC can be subject to long‐term change as climate perturbations and
human activities impact saltmarshes (Macreadie et al., 2013; Morris et al., 2013). Quantifying the lateral export of
DOC and assessing its sensitivity to environmental change requires strategies that can adequately capture the
hydrodynamic complexity and extreme DOC variability inherent to these systems. High‐quality field observa-
tions of DOC concentration are labor‐intensive and are generally too constrained in space and time to facilitate
realistic DOC flux assessments. In situ fluorescence sensors can provide DOC estimates at suitable temporal
resolutions (e.g., minutes to hours) but these remain spatially constrained (Menendez et al., 2022).

High‐spatial‐resolution remote sensing (HSRRS) offers new opportunities to complement these strategies by
providing spatially explicit retrievals of DOC concentration over multiple years, although challenges remain
(Fichot et al., 2023). Medium‐resolution ocean‐color remote sensing (e.g., MODIS, MERIS, VIIRS) with quasi‐
daily coverage have been used to study DOC dynamics on the nearshore continental shelf and in very large
estuaries (Cao et al., 2018; Fichot et al., 2014; Mannino et al., 2008; Matsuoka et al., 2017). In a few cases, DOC
retrievals have been coupled with physical models to calculate cross‐shelf DOC fluxes (Joshi et al., 2017;
Mannino et al., 2016; Signorini et al., 2019). However, the spatial sampling of medium‐resolution sensors (250–
1,000 m) is generally too coarse for application in most marsh‐influenced estuaries. Over the past decade, HSRRS
has become increasingly popular for studying nearshore and inland water quality (Brewin et al., 2023) and has
recently been used to assess the drivers of DOC dynamics and other water constituents (e.g., total suspended
solids (TSS)) in tidal marsh‐influenced estuaries (Cao & Tzortziou, 2021; Zhang et al., 2020). However, the
sporadic temporal coverage of these sensors (5 days at best) continues to limit the applicability of HSRRS im-
agery for calculating accurate DOC fluxes in these systems (Fichot et al., 2023).

Here, we leveraged >5 years (2017–2023) of HSRRS data from the Sentinel‐2A/B Multispectral Instrument
(MSI) tandem to elucidate the drivers of DOC dynamics in the Plum Island Estuary—a mesotidal marsh‐
influenced estuary in Massachusetts—and to develop a simple but reliable predictive model of DOC concen-
tration along the estuary thalweg. A large data set of in situ measurements of DOC concentration, CDOM ab-
sorption coefficient, and remote‐sensing reflectance collected from 2017 to 2023 was used to develop and validate
a local DOC algorithm applicable to the Sentinel‐2A/B MSI sensors. The uncertainty of DOC concentration
retrieved from Sentinel‐2 MSI was determined using simultaneous in situ match‐up measurements, and the al-
gorithm was implemented on all clear‐sky Sentinel‐2A/B scenes collected between January 2017 and July 2023.
The DOC concentrations remotely sensed along the estuary thalweg were used to develop and validate the
predictive thalweg‐DOC model using river discharge, water level, and a saltmarsh biomass index as predictors,
and the model was validated using in situ DOC measurements. This thalweg‐DOC model can be implemented and
coupled with the outputs of hydrodynamic models to calculate DOC fluxes within and out of tidal saltmarsh
estuaries (Fagherazzi et al., 2014; Zhang et al., 2019). This study demonstrates the potential of HSRRS data to
augment existing strategies and facilitate the calculation of DOC fluxes in tidal saltmarsh estuaries.

2. Study Site
The temperate PIE in Massachusetts was the site selected for this study (Figure 1). The PIE is a bar‐built,
mesotidal estuary that extends over about 40 km2 and harbors the largest intertidal marsh in the northeastern USA.
Two‐third of the PIE area is occupied by an intertidal saltmarsh dominated by high marsh vegetated with Spartina
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Figure 1. Study area. (a) Location of the Plum Island Estuary (PIE) in the Northeastern United States of America. (b) The PIE
and surrounding areas showing the extent of the marsh and the drainage basins of the Parker and Ipswich rivers. The
Merrimack River flows north of the estuary and has limited interaction with PIE through Plumbush Creek. (c) Close‐up view
of the PIE at low tide when the water level (WL) was 1.53 m below mean sea level (Sentinel‐2 image from 19th July 2018).
The red outline shows the water extent at low tide and highlights the intertidal flats. The white line shows the downstream‐
running estuary thalweg, over which remotely sensed dissolved organic carbon (DOC) were retrieved and analyzed, along
with the corresponding initial and final distances (see Figure 13). (d) Close‐up view of the PIE at high tide, when the WL was
1.37 m above mean sea level (Sentinel‐2 image from 27th September 2019). The blue outline shows the water extent at high
tide. The red stars show the stations used in the analysis of the modeled DOC (see Figure 16). The maps were generated using
the ArcGIS Pro® software (Esri, n.d.).
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patens and Distichilis spicata (Forbrich et al., 2018). The PIE drains into the Gulf of Maine and is fed by two main
rivers (Parker River and Ipswich River) and includes multiple tidal creeks (e.g., Rowley River). Limited water
exchange with the Merrimack River occurs to the north of the estuary via the Plumbush creek (Zhao et al., 2010).
The 609‐km2 PIE watershed includes forests, agricultural lands, swamps, and built‐up areas. With a mean semi‐
diurnal tidal range of 3 m (Fagherazzi et al., 2014), the PIE is a well‐mixed, and optically and hydrodynamically
complex estuary with strong variability in salinity associated with seasons and tidal cycles (Vallino & Hop-
kinson, 1998; Zhao et al., 2010). The PIE region is part of the Boston Metropolitan Statistical area and hosts the
Plum Island Ecosystems Long Term Ecological Research (PIE‐LTER) site (https://pie‐lter.ecosystems.mbl.edu/
welcome‐plum‐island‐ecosystems‐lter).

3. Materials and Methods
3.1. Sampling Overview

Field samples were collected between 2017 and 2023—primarily in the spring, summer, and fall—in the PIE and
in other locations in the Massachusetts Bay region of the Gulf of Maine (Figure 2). Field measurements were
collected in diverse environments from narrow river channels and saltmarsh creeks to semi‐enclosed bays and the
continental shelf. Samples covered a wide range of estuarine and coastal conditions (Salinity 0.15–32.39) from
low‐turbidity and moderate‐DOC shelf waters to high‐turbidity and high‐DOC brackish and fresh waters located
nearshore and inland (Table 1). Although they were all collected near the surface (∼0.5 m), the samples are
expected to be representative of the water column (for DOM at least) because the PIE is characterized by a well‐
mixed circulation resulting from a combination of relatively large tides, shallow depth and moderate riverine

Figure 2. Location where field measurements and samples were collected between 2017 and 2023 and used for analyses, the
training and validation of the algorithms, and the validation of the thalweg‐DOC model. (a) Locations associated with the
training data set collected mostly at the Plum Island Estuary (PIE), but also in Great Bay, Boston Harbor, Massachusetts Bay,
and the Gulf of Maine between 2017 and 2023. (b) Locations associated with the validation data set collected strictly near the
thalweg of the PIE between 2020 and 2023 coincidently to different Sentinel‐2 overpasses. The maps shown here were
generated using the ArcGIS Pro® software.
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inputs (Vallino & Hopkinson, 1998; Zhao et al., 2010). Turbidity and chlorophyll‐a concentration also varied
substantially in the data set, driven by different particle sourcing in these complex estuarine and coastal
environments.

3.2. In Situ Measurements and Laboratory Analyses

3.2.1. Indicators From Water‐Quality Sonde

Site coordinates and in situ water quality indicators were collected at the surface (∼0.5 m deep) using either a
Yellow Springs Instruments (YSI) ProDSS for samples from 2017 through 2021, an EXO3 sonde for samples
collected in 2022, and an EXO2 for samples collected in 2023. Each sonde was outfitted with a handheld device,
an onboard GPS, a depth sensor, and sensors measuring: (a) salinity and temperature [°C], (b) turbidity [FNU],
and (c) chlorophyll‐a fluorescence (fChl‐a) [RFU]. At the beginning of each field day, the depth sensor was
calibrated to account for daily differences in barometric pressure, humidity, and temperature. All other sensors
were calibrated in the laboratory approximately every 3 months according to manufacturer's recommendations. At
each location, data was collected at a rate of 1 Hz for 60–90 s. Measurement data from all stations were manually
inspected and processed using a MATLAB® (MathWorks, 2021) script to remove outliers and produce average
values for each parameter at each station (Fichot et al., 2022; Harringmeyer et al., 2024).

3.2.2. Above‐Water Remote‐Sensing Reflectance (PSR‐1100f Hyperspectral Rrs(λ))

Remote sensing reflectance (Rrs) was measured at field stations using a Spectral Evolution Portable Spectral
Radiometer (PSR‐1100f) and following the above‐water approach described in Harringmeyer et al. (2024).
Briefly, calibrated radiance was measured from three targets: (a) A highly reflective Spectralon® Lambertian
panel (Lpanel), (b) the sky at 135° from the solar principal plane 40° from zenith (Lsky), and (c) the water 135° from
the solar principal plane 40° from nadir (Lwater+sky). Radiance was measured with 3‐nm spectral sampling and
interpolated to 1‐nm intervals from 395 to 710 nm. Remote sensing reflectance was then calculated as in
Equation 1:

Rrs(λ) =
Lwater+sky(λ) − ρ ∗ Lsky(λ)

π ∗ Lpanel(λ)/Rpanel(λ)
(1)

where Rpanel was the manufacturer‐provided reflectivity of the reference panel (>99%), λ was the measurement
wavelength, and ρ was the fraction of skylight reflected at the air‐water interface. The reflected fraction of
incident skylight was estimated using lookup tables created by Zhang et al. (2017) based on the viewing geometry,
solar zenith angle, and field‐measured wind speed and assuming no cloud cover and an aerosol optical thickness
of 0.06 at 550 nm, a reasonable average value for this area (Cronin‐Golomb et al., 2022).

Each target radiance spectrum was measured multiple times (4–6 times), outliers were removed, and the median
spectrum from each target was used to calculate Rrs(λ) as in Harringmeyer et al. (2024). Care was taken during
measurement to avoid reflection or shading from the boat, and measurements were collected over as short a
duration as possible to minimize the influence of changing sky and wind conditions. A Savitzky‐Golay filter
(frame size 13, polynomial order 4) was applied to smooth the Rrs spectra (Vandermeulen et al., 2017).

Table 1
Range, Mean, and Median Values of All In Situ and Laboratory Measurements Used in the Dissolved Organic Carbon Algorithm Development and Validation, and in
the Thalweg‐DOC Model Development and Cross‐Validation

Salinity
Temperature

[°C]
DOC

[μmol L−1]
Turbidity

[FNU]
fChl‐

a [RFU]
ag(250)
[m−1]

ag(340)
[m−1]

ag(412)
[m−1]

ag(490)
[m−1]

Kd(340)
[m−1]

Kd(412)
[m−1]

Kd(490)
[m−1]

n 167 168 175 140 40 175 175 175 175 164 164 164

Range 0.15–
32.39

5.91–26.55 79.7–888.3 0.10–9.61 0.25–2.12 3.79–
99.50

0.62–
32.52

0.18–
10.46

0.04–3.53 0.80–
41.37

0.32–
14.83

0.16–5.83

Mean 27.96 15.99 233.8 2.13 1.01 19.27 5.33 1.67 0.53 6.78 2.57 1.09

Median 30.15 15.18 173.3 1.71 0.98 11.67 2.96 0.93 0.29 4.27 1.77 0.77
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3.2.3. In‐Water Remote‐Sensing Reflectance (C‐OPS Multispectral Rrs(λ))

Rrs was also measured following an in‐water approach using a Biospherical® Compact Optical Profiler System
(C‐OPS). The C‐OPS profiler measured downwelling plane irradiance, Ed(z), and upwelling radiance, Lu(z), at a
given depth z, simultaneously with downwelling above‐water radiance measured by the surface reference sensor.
Each C‐OPS sensor measured radiance or irradiance at a rate of 15 Hz at 18 wavelengths between 305 nm (ul-
traviolet‐B) and 710 nm (near‐infrared). At each station, the C‐OPS profiler was brought to the surface at least 5 m
away on the sunward side of the boat, and the in‐water radiometry was collected during freefall over several casts.
Profiles of Ed(z) and Lu(z) were created at each station by combining at least three casts and filtering for outliers,
measurements impacted by bottom reflectance, and measurements where profiler tilt was >5°. A self‐shading
correction (Gordon & Ding, 1992; Zibordi et al., 2015) was applied to Lu(z) using total absorption coefficient
spectra estimated from the diffuse attenuation coefficient spectra measured with the C‐OPS at the corresponding
wavelength and stations (see Section 3.2.5 below). The Lu(z) and Ed(z) at 13 narrow bands from 412 to 710 nm
were extrapolated to the water‐air interface using a quadratic fit, and an empirical relationship was applied to
correct for reflection across the water air interface to calculate Rrs (Antoine et al., 2013; Hooker et al., 2013) as in
Equation 2:

Rrs(λ) =
L0+

u (λ)

E0+
d (λ)

(2)

Downwelling irradiance from the above‐water reference sensor was used to correct for changes in illumination
conditions during profile collection, as recommended in Zibordi et al. (2012).

3.2.4. Calculation of Sentinel‐2‐Equivalent Remote‐Sensing Reflectances

In situ Rrs(λ) measured using the above‐water (PSR‐1100f) and in‐water (C‐OPS) approaches described above
were used to calculate Rrs(λ) matching the Sentinel‐2 MSI bands for algorithm development and validation.
Briefly, the Sentinel‐2 equivalent Rrs(λ) were then calculated from the in situ Rrs(λ) spectra using Equation 3:

Rrs(λC) =
∑λ2

λ1
Rrs (λi) RSR C(λi)

∑λ2
λ1

RSR C(λi)
(3)

where Rrs(λC) was the Sentinel‐2 MSI‐equivalent Rrs(λ) for any Sentinel‐2 band C (ranging from λ1 to λ2), Rrs(λi)
is the hyperspectral (1‐nm resolution) in situ remote‐sensing reflectance spectrum, and RSR_C(λi) is the relative
spectral response of the Sentinel‐2 band C obtained from the Copernicus website (ESA, 2023). The in situ Rrs(λ)
spectra measured using the above‐water approach (PSR‐1100f, 1‐nm spectral resolution) were suitable for
calculating broadband Sentinel‐2‐equivalent Rrs(λC) . However, the majority of in situ Rrs(λ) measurements were
collected using the multispectral in‐water approach (C‐OPS), which has different and narrower bands than the
Sentinel‐2 MSI. The multispectral C‐OPS Rrs(λ) spectra were therefore interpolated to a 1‐nm resolution between
395 and 800 nm. This spectral interpolation was informed by a comparative analysis of the in‐water and above‐
water Rrs(λ) at stations where both measurements were available (n = 57). This comparative analysis helped
develop a spline interpolation that reproduced hyperspectral Rrs(λ) measurements between C‐OPS bands better
than a linear interpolation. This interpolation of the C‐OPS Rrs(λ) is described in more detail in the Supporting
Information (Figures S1–S2 in Supporting Information S3, and Text S1 in Supporting Information S1).

3.2.5. Diffuse Attenuation Coefficient Spectra

The C‐OPS in‐water Ed(z) profiles were also used to calculate the diffuse attenuation of downwelling plane
irradiance (Kd) at 18 wavelengths from 305 to 710 nm as described in Cronin‐Golomb et al. (2022). For each
profile, the slope of a linear fit between ln(Ed(z)) and depth was used to calculate Kd at each wavelength.
Measurements outside of a manually selected depth range were filtered out to minimize the influence of noise near
the surface or bottom.
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3.2.6. CDOM Absorption Coefficient Spectra

Filtered (glass‐fiber filters (GFF), nominal pore size 0.7 μm) water samples were equilibrated to room temper-
ature and analyzed for CDOM absorbance on a Perkin‐Elmer Lambda 650 UV/Visible dual‐beam spectropho-
tometer. Spectra were measured at 1‐nm intervals from 250 to 800 nm against a reference blank of Milli‐Q water
(Millipore Milli‐Q Direct 16) and using acid‐washed and dried 10‐cm pathlength cylindrical quartz cells. Spectra
were then fit using an exponential curve over the 500–700 nm range. The intercept term was used to determine a
scalar offset that was subtracted from the entire spectrum, and offset‐corrected absorbances were the converted to
Napierian CDOM absorption coefficients, ag(λ), reported in [m−1] (Fichot & Benner, 2011; Zhu et al., 2020).

3.2.7. DOC Concentration

Samples were analyzed for DOC concentration using high‐temperature combustion with a Shimadzu TOC‐L
Total Organic Carbon analyzer following established methods (Fichot & Benner, 2011). Briefly, for each sam-
ple, 12–16 mL of filtered water was aliquoted into 24 mL pre‐combusted (450°C for 6 hr) vials, acidified to
pH ≈ 2.5 and kept in the dark until analysis, generally within a couple of weeks from collection. Duplicates of
each sample were run against a pre‐measured standard sample to assess instrument drift and calibrated against a
glucosamine hydrochloride (Alfa Aesar) standard curve and measured in non‐purgeable organic carbon (NPOC)
units before being converted to μmol L−1 measurements using a MATLAB script. Duplicates measurements were
averaged for final DOC concentrations.

3.2.8. Algal and Non‐Algal Particle Absorption Coefficient Spectra

Water samples for measuring algal and non‐algal absorption coefficient were collected using a 4‐L Van Dorn
sampler, and the entire sample was immediately transferred to a 4‐L amber polyethylene bottle and stored at 4°C
until filtration. Samples were gently inverted to resuspend particles, and filtered through a 25‐mm diameter GFF
(nominal pore size 0.7 μm). Filters and particles were flash‐frozen in liquid nitrogen, and stored immediately at
−80°C until laboratory analysis. Protocols for measuring algal and non‐algal particle absorption coefficient
spectra were adapted from standard methodologies (Neeley & Mannino, 2018; Stramski et al., 2015) and are
described in detail in Harringmeyer et al. (2024). Briefly, particle absorption coefficient (ap) was measured at 1‐
nm intervals from 250 to 800 nm with a Perkin‐Elmer Lambda 650 UV/Visible dual‐beam spectrophotometer
using the inside‐sphere method (Stramski et al., 2015) and a 15‐cm diameter integrating sphere (Stramski
et al., 2015). Filters were then soaked in methanol for 15 min to remove algal pigments, rinsed with Milli‐Q water,
and remeasured to determine the non‐algal particle absorption coefficient (ad). The absorption coefficient of algal
particles (phytoplankton) was calculated by difference: aph = ap–ad.

3.3. Thalweg‐DOC Model

3.3.1. Approach Overview

The thalweg‐DOC model development integrated in situ measurements, HSRRS data, and environmental
monitoring data (Figure 3). First, the in situ Rrs(λ), CDOM absorption coefficient, and DOC concentration
measured between 2017 and 2023 were divided into training and validation subsets and used to develop and
validate a local remote‐sensing DOC‐algorithm. The validated DOC‐algorithm was then implemented on 6
different clear‐sky and atmospherically corrected Sentinel‐2 images for which coincident (±1.5 hr), collocated in
situ measurements of Rrs(λ), CDOM, and DOC were available. This match‐up analysis facilitated validation of the
Sentinel‐2 DOC retrievals. Second, the DOC‐algorithm was applied to a library of 141 clear‐sky and atmo-
spherically corrected Sentinel‐2 images collected during various conditions. The remotely sensed DOC con-
centrations were extracted along the estuary thalweg for each Sentinel‐2 image to create 141 representative
transects of DOC concentration. Here, data were only extracted along the thalweg because it is the deepest part of
the estuary and the least likely to be influenced by bottom reflectance at low tide, and because the PIE is a well‐
mixed mesotidal estuary (Hopkinson et al., 2018), leading to low heterogeneity across the deeper part of the
channel. Third, the remotely sensed DOC transects were used to develop and validate the thalweg‐DOC model in
which the DOC transects were predicted from environmental monitoring data (Table S1) including river
discharge, WL, and a remotely sensed marsh enhanced vegetation index 2 (EVI2). Finally, the thalweg‐DOC
model was implemented between 2017 and 2023, and validated against in situ measurements of DOC concen-
tration collected within 200 m of the PIE thalweg.
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3.3.2. DOC Algorithm Development and Validation

Simultaneous in situ measurements of Rrs(λ), CDOM absorption coefficient, and DOC concentrations were used
to develop and validate a two‐step, local DOC algorithm applicable to Sentinel‐2 imagery. In the first step, the
algorithm estimates the absorption coefficient of CDOM at 250 nm, ag(250), from the Rrs(490)/Rrs(665) band
ratio using a double exponential fit. In the second step, the algorithm retrieves DOC concentration from ag(250)
using a quadratic fit. The data set used was divided into independent training and validation subsets, allocating
88% of the stations for training and the remaining 12% for validation. The 88‐% training subset encompassed most

Figure 3. Flowchart summarizing the overall methodology used to develop and validate the thalweg‐DOC model at the Plum
Island Estuary (PIE). In situ measurements of Rrs(λ), CDOM absorption coefficient, and dissolved organic carbon (DOC)
concentration were collected and used to develop and independently validate (leave‐one‐out validation, and end‐to‐end
validation on Sentinel‐2 imagery) a remote‐sensing algorithm to retrieve DOC concentration in the PIE. The algorithm used
the Rrs(490)/Rrs(665) band ratio as a predictor in a double exponential model of ag(250), followed by a second‐order
polynomial equation to estimate DOC from ag(250). The algorithm was then implemented on the Sentinel‐2 imagery record
(>100 clear‐sky and glint‐free images between 2017 and 2023) to retrieve full transects of DOC concentration along the
thalweg of the PIE (see Figure 1c). A multiple linear regression model to predict the DOC transects from 3 predictors (river
discharge, water level relative to mean sea level, the 2‐band enhanced vegetation index (enhanced vegetation index 2)
averaged over the PIE marsh area) was then developed, validated using a Monte Carlo cross validation, and implemented for
a 15‐min time‐step for three entire years spanning 1 January 2020 until 31 December 2022. Finally, the thalweg‐DOC model
was validated using an independent set of in situ measurements of DOC concentration collected within 200 m of the thalweg
from 2017 to 2023.
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of the in situ data because it was used to derive the fitting coefficients of the double exponential and quadratic fits
used in the two sequential steps of the algorithm, and it was used in a leave‐one‐out validation to assess the
robustness of the approach. The 12‐% validation subset was used to test the performance of the final algorithm
when implemented on an independent data set, and was specifically selected to correspond to the data collected
during the 6 coincident Sentinel‐2 overpasses used for validating the Sentinel‐2 DOC retrievals (see
Section 3.3.3).

3.3.3. Validation of Sentinel‐2 DOC Retrieval

The accuracies of the satellite‐derived Rrs(λ), ag(250), and DOC were determined using a match‐up analysis
between in situ and satellite data. Co‐located and simultaneous (within ±1.5 hr) in situ measurements were
collected during 6 different clear‐sky Sentinel‐2 overpasses (1 October 2020, 9 October 2020, 14 October 2021, 6
October 2022, 19 October 2022, and 19 May 2023). The Sentinel‐2 images were downloaded from the CNES
PEPS website (https://peps.cnes.fr) (CNES, n.d.) and were atmospherically corrected using the ACOLITE
software with the Dark‐Spectrum Fitting method (Vanhellemont, 2019; OD Nature, n.d.) to produce maps of
Rrs(λ) at the Sentinel‐2 bands centered at 443, 490, 560, 665, and 705 nm. The DOC‐algorithm was then
implemented on the Sentinel‐2 Rrs(λ) to retrieve maps of ag(250) and DOC concentrations. The satellite‐derived
Rrs(λ), ag(250) and DOC concentration were then compared to their matched‐up in situ equivalents, and the
satellite retrieval accuracy was assessed using the residual mean square error (RMSE), the mean absolute percent
error (MAPE), and the coefficient of determination of the linear fit.

3.3.4. Compilation of Environmental Monitoring Variables

Three environmental monitoring variables were used as predictors of DOC concentration in the thalweg‐DOC
model: (a) The Parker River discharge, (b) the WL relative to mean‐sea‐level in the Plum Island Sound, and
(c) the EVI2 vegetation index over the PIE marsh. The Parker River discharge data for the time period of interest
(4 July 2017–4 September 2023) was obtained from the USGS site 01101000 in Byfield, MA, where discharge
was measured every 15 min (https://waterdata.usgs.gov/nwis/uv?site_no=01101000) (USGS, n.d.). Water level
(mean sea level datum) at a 15‐min interval was obtained from the NOAA Tide Predictions database for the Plum
Island South station 8441241 (https://tidesandcurrents.noaa.gov/stationhome.html?id=8441241) (NOAA, n.d.).
The derivative of WL data was used to estimate the rate of WL change at a 15‐min interval. Finally, the Enhanced
Vegetation Index (EVI)‐2 was calculated as in Equation 4 (Jiang et al., 2008) and averaged over the extent of the
PIE marsh area as a proxy for marsh vegetation phenology:

EVI2 =
2.5 ∗ (NIR − Red)

NIR + 2.4 ∗ Red + 1
(4)

where NIR refers to the surface reflectance at the Sentinel‐2 near‐infrared band centered at 842 nm, and Red refers
to the surface reflectance at the Sentinel‐2 red band centered at 665 nm. The extent of the PIE marsh area (brown
area in Figure 1) was obtained from the National Wetland Inventory (USGS, 2023). The EVI2 was then inter-
polated to a 15‐min interval using a spline function as in Bolton et al. (2020).

3.3.5. DOC Mapping Using the Sentinel‐2 Archive, and Extractions of DOC Along the Thalweg

The tandem of Sentinel‐2A/B sensors have a combined revisit time of 5 days, together providing >400 images
collected over the PIE during the study period (4 July 2017–4 September 2023). However, sun glint during the
summer months, cloud cover, and/or challenging atmospheric conditions (e.g., wildfire smoke) considerably
limited the number of useable images (ESA, 2015). Overall, a total of 141 clear‐sky and Sentinel‐2 images with
minimal sun glint were considered useable for the analysis and were downloaded from the CNES PEPS website
(https://peps.cnes.fr) (CNES, n.d.). Atmospherically corrected Sentinel‐2 Rrs(λ) images (Vanhellemont, 2019)
were used to generate thematic maps of DOC concentrations in the PIE. DOC concentrations were retrieved over
areas of the estuary where bottom reflectance was considered negligible, and the shallow areas influenced by
bottom reflectance were masked. The remotely sensed DOC concentrations along the ∼17‐km‐long estuary
thalweg transect (shown Figure 1c) were then extracted from each of the 141 Sentinel‐2 scenes. These are referred
to as “thalweg‐DOC transects” in this manuscript. All DOC maps shown in this manuscript were generated using
the Generic Mapping Tools software (Wessel et al., 2019; GMT, n.d.).
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3.3.6. Thalweg‐DOC Model Development and Validation

The thalweg‐DOC model was developed to estimate the thalweg‐DOC concentration transects from three simple
environmental predictors: (a) Parker River discharge, (b) WL, and (c) EVI2. In order to simplify the modeling and
avoid overfitting, each thalweg‐DOC transect was first approximated using a 2‐parameter exponential fit, as
shown in Equation 5:

DOCthalweg = α ∗ exp (β ∗ Dthalweg) (5)

where DOCthalweg refers to the DOC concentrations along the thalweg [μmol L−1], Dthalweg is the distance along
the thalweg [km], and α and β are the coefficients derived from the non‐linear fit. A multiple linear regression
(MLR) was then used to predict α and β from the three environmental predictors, as summarized in Equations 6–7:

α = a + b ∗ Q + c ∗ WL + d ∗ EVI2 (6)

β = e + f ∗ Q + g ∗ WL + h ∗ EVI2 (7)

where Q is the Parker River discharge [ft3 s−1], WL is the WL relative to mean sea level [m], EVI2 is the average
EVI2 calculated for the PIE marsh area, and a, b, c, d, and e, f, g, h are the regression coefficients of the MLR
corresponding to α and β, respectively. The values corresponding to these coefficients are provided in Table 2.

Monte Carlo cross validation procedure was used to assess the ability of the MLR model to retrieve the DOC
concentrations transects accurately. For this procedure, the data set of 141 Sentinel‐2 derived thalweg‐DOC
transects was divided into a training subset (n = 132) and a validation subset (n = 9), allowing the MLR pa-
rameters determined using the training subset to be independently tested with the validation subset. Specifically,
the performance of the MLR models was assessed by calculating the R2, RMSE, MAPE between the remotely
sensed thalweg DOC concentrations and those derived from the thalweg‐DOC model. An initial validation subset
was manually selected to provide a representative range and combination of environmental conditions (e.g., high
and low tide, ebb and flood tide, high and low river discharge, and low and high EVI values), and was used to
illustrate the performance assessment in the figures of this manuscript. However, this process was repeated an
additional 30 times, each time using a different and random combination of 132 transects for training and 9
transects for validation. The overall performance and combined statistics from the 31 cross‐validations were
compiled and are reported. The final thalweg‐DOC model was trained using all 141 transects.

To evaluate its performance during extreme conditions of WL and discharge, the thalweg‐DOC model was also
trained using 129 transects and independently tested on the 12 most “extreme” transects of this data set (e.g.,
transects associated with the 3 highest and lowest river discharges, and the 3 highest and lowest water levels of the
observation period), and the same performance metrics (e.g., R2, RMSE, MAPE) were compared. Finally, the
final thalweg‐DOC model was implemented using extreme values of river discharge and WL that were beyond the
range of those used to train the model (river discharge from 170 to 210 ft3 s−1 by increments of 10 ft3 s−1, and WL
ranging from −1.8 to −2.2 m and 1.8–2.2 m by increments of 0.1 m) to assess if the modeled DOC concentrations
remained realistic and conformed to expectations.

3.3.7. Thalweg‐DOC Model End‐To‐End Validation

The performance of the thalweg DOC model was also tested by comparing predicted DOC concentrations to in
situ DOC concentrations measured at all stations located within 200 m of the thalweg visited during the 2017–

Table 2
Coefficients of Thalweg‐DOC Model Developed in This Study (Equations 6 and 7)

Intercept Intercept std deviation Q Q std deviation WL WL std deviation EVI2 EVI2 std deviation

α a b c d

601.202 10.808 1.782 0.104 −112.803 3.244 −657.636 36.510

β e f g h

−0.119 0.002 −9.157 × 10−7 1.360 × 10−5 0.005 6.167 × 10−4 0.139 0.006

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008059

TUZCU KOKAL ET AL. 10 of 27

 21698961, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008059 by M
bl W

hoi Library, W
iley O

nline Library on [03/06/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2023 sampling period (n = 75). This validation data set was entirely independent from the thalweg‐DOC model
development considering these were stations where no Rrs(λ) were available and were therefore not used in the
algorithm development and validation. Most of this validation data was collected in 2018 and 2022.

3.3.8. Thalweg‐DOC Model Implementation for the 2020–2022 Time Period

The final thalweg DOC model was implemented at a 15‐min interval over a 3‐year period from 1 December 2020
to 31 December 2022, to showcase the inputs and outputs of the models and their relationships over multiple
years. The time series were generated for each predictor: discharge, WL, and EVI2. The DOC concentrations
were modeled at three distinct locations along the thalweg transect (Figure 1d): upstream (Stn1), mid‐estuary
(Stn2), and downstream (Stn3).

4. Results and Discussion
4.1. The PIE: A CDOM‐Dominated System

The PIE was characterized by a large gradient of DOC concentrations across the freshwater‐marine continuum,
and by low‐to‐moderately turbid waters with moderate plankton biomass (Figures S3–S4 in Supporting Infor-
mation S3 and Table 1). The data collected for this study spanned a salinity range of 0–32 (median of 22) and a
corresponding DOC‐concentration range of 90–900 μmol L−1, with the two variables being strongly inversely
correlated (Figure S3a in Supporting Information S3; R = −0.82), as is typically observed in estuaries (Del
Vecchio & Blough, 2004; Fichot & Benner, 2012; Juhls et al., 2019). The turbidity ranged from <0.5 to 10 FNU,
corresponding to a TSS concentration range of about 1–20 mg L−1 (Figure S4 in Supporting Information S3), with
a median of 3 FNU (TSS ∼5–6 mg L−1). The chlorophyll‐a fluorescence was also moderate (typically <2 RFU),
corresponding roughly to chlorophyll‐a concentrations <8–10 μg L−1. As indicated by the positive relationships
between DOC and chlorophyll‐a fluorescence (Figure S3b in Supporting Information S3; R = 0.52) or turbidity
(Figure S3c in Supporting Information S3; R = 0.70), suspended particle concentration was generally higher in
the upper reaches of the estuary, consistent with rivers and saltmarshes contributing sediments and nutrients to
narrow channels (Fagherazzi et al., 2014; Harringmeyer et al., 2024; Hopkinson et al., 2018). Overall, suspended
particle concentrations in this system were low relative to the wide range of DOC concentrations.

The optical properties of the PIE waters were dominated by variability in the CDOM absorption coefficient,
which represented a strong proxy for DOC concentration in these waters. DOC concentration was strongly and
positively correlated with the CDOM absorption coefficient across the full range of observed DOC concentrations
(Figure S3d in Supporting Information S3). This indicated CDOM is an excellent optical proxy for DOC con-
centration in the PIE, consistent with similar observations in other estuarine systems (Cao et al., 2018; Fichot &
Benner, 2011; Mannino et al., 2008). Very strong relationships between the CDOM absorption coefficient, ag(λ),
and the diffuse attenuation coefficient Kd(λ) at λ = 340, 412 and 490 nm (R2 = 0.99, 0.97, and 0.90, respectively)
also demonstrated that CDOM is the dominant driver of vertical light attenuation in this system (Figures S5a–S5c
in Supporting Information S3). A comparison of the absorption coefficient of CDOM, non‐algal particles, ad(λ),
and algal particles, aph(λ), further showed that CDOM dominated the total absorption coefficient of the water in
the UV and blue spectral range (Figures S5d–S5f in Supporting Information S3). The slopes of the linear re-
gressions of Kd(λ) on ag(λ) were 1.21, 1.31 and 1.58 at λ = 340, 412 and 490 nm, respectively, further confirming
CDOM is the main contributor to Kd(λ).

4.2. Development and Validation of DOC Algorithm for Sentinel‐2 MSI

The optical dominance of CDOM in the PIE facilitated the development of a simple but robust band‐ratio al-
gorithm to retrieve ag(λ) from remote‐sensing reflectance (Figure S6 in Supporting Information S3 and Figure 4).
A cursory assessment first revealed that increasing DOC concentrations led to a decrease of Rrs(λ) in the blue
region relative to the red, a pattern evident from both the C‐OPS (Figure S6a in Supporting Information S3) and
the PSR‐1100f (Figure S6b in Supporting Information S3) measurements and in line with the expected effect of
increasing CDOM absorption on reflectance (Fichot et al., 2023). The observation of an exponential relationship
between ag(250) and Rrs(490)/Rrs(665), as used in previous studies (Keith et al., 2016; Mabit et al., 2022), allowed
for the quantification of this effect (Figure 4a). Specifically, a double exponential regression of ag(250) on
Rrs(490)/Rrs(665) yielded an R2 value of 0.96, and a corresponding leave‐one‐out validation indicated this al-
gorithm predicted ag(250) within ±20.3% (RMSE of 4.41 m−1) of the laboratory measurement (Figure 4b).
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Figure 4. Development and validation of the two steps making up the dissolved organic carbon (DOC) algorithm.
(a) Relationship between Rrs(490)/Rrs(665) and ag(250) in the training data set and corresponding double‐exponential fit and
regression coefficients used to predict ag(250) from Rrs(490)/Rrs(665) in the algorithm. (b) Relationship between ag(250) and
DOC concentration in the training data set, and corresponding quadratic fit and regression coefficients used to predict DOC
from ag(250) in the algorithm. (c) Leave‐one‐out validation of ag(250) estimated from Rrs(490)/Rrs(665) using the double‐
exponential fit approach applied to the training data set. (d) Leave‐one‐out validation of the DOC concentration estimated
from ag(250) using the quadratic fit approach applied to the training data set. (e) Independent validation of ag(250) estimated
from Rrs(490)/Rrs(665) using the double‐exponential fit approach applied to the validation data set. (f) Independent
validation of the DOC concentration estimated from ag(250) using the quadratic fit approach applied to the validation data
set. The number of observations (n), the coefficient of determination (R2) of regressions, the mean absolute percent error
(MAPE), and the root mean square error (RMSE) are presented in the panels. The in situ data set was separated into two sets:
training (comprising 88% of the total data set) and validation (comprising 12% of the total data set). The training data is
shown with gray points, while the validation data is depicted with blue points.
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Additional test using the in situ validation data set confirmed a similar level of uncertainty (MAPE of±20.3% and
RMSE of 2.65 m−1) when the algorithm was implemented on that independent data set (Figure 4c).

The absorption coefficient of CDOM proved a very robust proxy of DOC concentration in the PIE, facilitating its
indirect estimation from remote sensing (Figure 4 and Figure S7 in Supporting Information S3). A strong but
slightly curvilinear relationship between DOC concentration and ag(λ) was observed across the 250–450 nm
spectral range (Figure S7 in Supporting Information S3). This relationship was strongest for ag(250) and slightly
weaker for ag(450). Therefore, ag(250) was selected as the predicted variable in the band‐ratio algorithm. A
quadratic fit of DOC on ag(250) achieved an R2 of 0.98 (Figure 4b) and a corresponding leave‐one‐out validation
indicated DOC concentration could be estimated from ag(250) within ±5.5% (RMSE of 23.3 μmol L−1) of the
laboratory measurement (Figure 4d). Additional validation using the in situ validation data set confirmed a similar
level of uncertainty (MAPE of ±7.7%; RMSE of 19.7 m−1) when the model was implemented on that independent
data set (Figure 4f). The spectral slope coefficient between 275 and 295 nm, S275–295, has previously been used as
an additional predictor to improve estimates of DOC concentration from ag(λ) in several estuaries and coastal
water bodies (Araújo & Bélanger, 2022; Cao et al., 2018; Fichot & Benner, 2011). However, the use of this
additional parameter had only very minor effects on the predictability of DOC in this system, and was not
warranted. Its use would unnecessarily increase the complexity of the approach and likely introduce additional
uncertainty in DOC retrievals considering S275‐295 would also have to be retrieved accurately from remote sensing
(Cao et al., 2018; Fichot et al., 2014).

4.3. End‐To‐End Validation of Sentinel‐2 Retrievals

Validation of the Sentinel‐2 Rrs(λ) against matched‐up in situ measurements revealed reasonably accurate at-
mospheric correction in the visible range and resulting Rrs(490)/Rrs(665) retrievals (Figures 5 and 6). After a
thorough tuning of parameters to optimize performance, the set of 21 matched‐up Rrs(λ) spectra revealed the
atmospheric correction produced Rrs(λ) with comparable spectral shapes and magnitudes as the in situ mea-
surements (Figure 5 and Figure S8 in Supporting Information S3). A comparison in the visible region (λ = 443,

Figure 5. Comparison of Rrs(λ) spectra derived from Sentinel‐2 and from in situ measurements collected with the above‐
water approach (PSR‐1100f) for a representative set of six matched‐up stations (selected among a total of n = 21; complete
set shown in Figure S9 in Supporting Information S3). The in situ hyperspectral Rrs(λ) measured with the PSR‐1100f are
depicted by continuous dark‐blue lines. The Sentinel‐2 multispectral Rrs(λ) in the visible range (derived using ACOLITE)
are represented by discrete light‐blue crosses, with the vertical line showing the center of the Sentinel‐2 wavebands (443,
490, 560, 665, and 705 nm) and the light‐blue horizontal lines corresponding to the width of the band.
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490, 560, 665, 705 nm) showed good correlation (R = 0.84) and reasonable uncertainty (MAPE ± 45%) in the
Sentinel‐2 Rrs(λ) relative to their in situ equivalent, but also revealed a systematic bias toward overestimation by
Sentinel‐2 (Figure 6). The most prominent mode of error was a significant offset in the overall magnitude of the
spectrum, but in most cases the spectral shape of the Sentinel‐2 Rrs(λ) was relatively well preserved in the red and
blue regions. Here, the use of Rrs(490)/Rrs(665) as a single predictor was therefore advantageous because a band
ratio was less sensitive to offsets. The time difference between Sentinel‐2 overpasses and in situ measurements
could have contributed to the observed differences. A narrow window of ±1.5 hr from the overpass was used to
ensure there were multiple match‐up available for each Sentinel‐2 scene. However, even a 1.5‐hr difference can
lead to significant differences in optical conditions in a mesotidal system like the PIE. This is accentuated up-
stream, where the salinity gradient can occur over a short distance, and during mid‐tide when conditions are

Figure 6. Accuracy assessment of Rrs(λ), ag(250), and dissolved organic carbon (DOC) retrieved from Sentinel‐2 imagery
and matched up with corresponding in situ measurements collected along the Plum Island Estuary thalweg. (a) Sentinel‐2
(Estimated) versus in situ (Measured) Rrs(λ) for five Sentinel‐2 wavebands in the visible range (443, 490, 560, 665, and
705 nm). (b) Sentinel‐2 (Estimated) versus in situ (Measured) Rrs(490)/Rrs(665) band ratio. (c) Sentinel‐2 (Estimated) versus
in situ (Measured) CDOM absorption coefficient at 250 nm, ag(250). (d) Sentinel‐2 (Estimated) versus in situ (Measured)
DOC concentration. Sentinel‐2‐derived DOC concentrations were biased overestimating the field measurements. In order to
maximize accuracy of the DOC retrievals, a linear regression of the Measured DOC on the Estimated DOC was performed,
and the fit was used in a post‐processing step to remove the bias. The linear fit is shown here as a dashed dark blue line. The
coefficient of determination (R2), the correlation coefficient (R), the Mean Absolute Percentage Error (MAPE), the Root
Mean Square Error (RMSE) are shown in all panels here as measures of performance.
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changing rapidly. The tidal conditions for each match‐up are summarized in the (Figure S9 in Supporting
Information S3).

Validation of the remotely sensed ag(250) and DOC showed the algorithm effectively captured the range and
variability of the in situ measurements, but also revealed a systematic and significant bias in the retrievals that
warranted a post‐processing correction (Figures 6c, 6d and 7). The Sentinel‐2 ag(250) and DOC correlated well
(R = 0.87) with the corresponding in situ measurements, and approximated them within ±25 and ±19%,
respectively. However, a systematic underestimation by 20%–25% of both products was also evident and was
partly caused by the residual bias in Rrs(490)/Rrs(665). A linear regression of the in situ (Measured) DOC on the
Sentinel‐2 (Estimated) DOC (Figure 6d) proved an effective approach to rectify this systematic underestimation,
and led to improved and unbiased DOC retrievals that were within <15% of the in situ measurements (Figure 7a).
This level of accuracy was comparable to that attained in previous remote sensing studies of estuarine DOC (Cao
& Tzortziou, 2021; ChunHock et al., 2020; Signorini et al., 2019). This linear fit (y = 1.239 × x−4.057) was
therefore used as a post‐processing step in the algorithm to avoid the propagation of this systematic bias, and was
applied to all Sentinel‐2 images. This final DOC algorithm produced realistic DOC maps for the PIE (Figure 7b).
These maps showed high DOC concentrations upstream that decreased progressively toward the ocean, and were
within the range expected in this system (Raymond & Hopkinson, 2003; Uhlenhopp et al., 1995). This end‐to‐end
validation provided confidence in the quality of the Sentinel‐2 retrievals before implementation on the Sentinel‐2
image archive.

4.4. Implementation of the DOC Algorithm on the Sentinel‐2 Archive

The assembled archive of Sentinel‐2 images generated a time series that was representative of most environ-
mental conditions encountered in the PIE (Figure 8). A total of 141 useable scenes were gathered over a period of
>6 years, meaning a useable Sentinel‐2 scene was available every 16 days on average. This archive was able to
capture representative ranges of the Parker River discharge (0–200 ft3 s−1; Figure 8a), marsh EVI2 (0.1–0.4;
Figure 8b), and tidal stage characterized by WL (range of −1.7 to 1.7 m; Figure 8c) and rate of WL change (range
of −0.8 to 0.8 m hr−1; Figure 8d). Importantly, the time series was long enough to encompass many combinations

Figure 7. Validation of post‐processed Sentinel‐2 dissolved organic carbon (DOC) retrievals, along with corresponding DOC
maps and match‐up locations along the thalweg of the Plum Island Estuary (PIE). (a) Sentinel‐2 (Estimated) versus in situ
(Measured) DOC concentrations. The coefficient of determination (R2), the correlation coefficient (R), the Mean Absolute
Percentage Error (MAPE), the Root Mean Square Error (RMSE) are shown as measures of performance. (b) DOC
concentration maps of the PIE derived using the local algorithm (after post‐processing) for the six match‐up dates: 1 October
2020, 9 October 2020, 14 October 2021, 6 October 2022, 19 October 2022, and 19 May 2023. The locations of the matched‐
up measurements are shown as gray points. The thalweg of the estuary is shown in the Sentinel‐2 image acquired on 1
October 2020.
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of these environmental conditions, which operate on different time scales (e.g., days/weeks for discharge, weeks/
months for EVI2, and hours for tidal stage). The archive also covered all seasons, although more scenes were
typically available in the spring and fall compared to other seasons (Figure S10 in Supporting Information S3). In
particular, fewer scenes were available in early summer (e.g., very few in June) due to sun glint contamination
(Fell, 2022; Harmel et al., 2018), and several scenes were partially impacted by sea ice in winter (January/
February typically). Unfortunately, the impacts of large storms, which are often associated with enhanced DOC
fluxes and cycling (Avery et al., 2004; Bianchi et al., 2013; Osburn et al., 2019; Yan et al., 2020), were not well
represented in this archive because such episodic events are difficult to capture with the current revisit times of
HSRRS satellites and heavy cloud cover is typically associated with these weather events.

Implementation of the algorithm on the Sentinel‐2 archive generated a collection of realistic DOC‐concentration
maps suitable for the analysis of DOC dynamics in the PIE (Figure 9 and Catalog in Supporting Information S2).
Nine representative scenes (Figure 9) captured the range in DOC distributions, demonstrating that variability in

Figure 8. Overview of the hydrological, marsh biomass indicator, and tidal conditions corresponding to the Sentinel‐2 image
archive used to develop the Plum Island Estuary (PIE) thalweg‐DOC model. (a) Parker River discharge measured at the
USGS Byfield station in Massachusetts, and corresponding Sentinel‐2 scenes used in the thalweg‐DOC model. (b) Sentinel‐2
Enhanced vegetation index (enhanced vegetation index 2) averaged over the saltmarsh area of the PIE (see Figure 1b) and
interpolated using a spline function and corresponding Sentinel‐2 images used in the thalweg‐DOC model. (c) Parker River
discharge measured at the USGS Byfield station in Massachusetts versus water level (WL) (relative to mean sea level) at the
Plum Island Sound, corresponding to the Sentinel‐2 images used in the thalweg‐DOC model. (d) Rate of WL change versus
WL (relative to mean sea level) at the Plum Island Sound, corresponding to the Sentinel‐2 images used in the thalweg‐DOC
model. Red points represent the Sentinel‐2 images used in the validation of the thalweg‐DOC model (see Figures 9 and 12).
Gray points represent all other Sentinel‐2 images used to develop the thalweg‐DOC model.
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Figure 9.
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remotely sensed DOC followed expected patterns of higher concentration upstream, at low tide, and during
elevated river discharge. The highest concentrations were observed when these conditions overlapped. A com-
parison of two scenes collected only three days apart (15 March 2020 and 18 March 2020) clearly illustrated the
effects of tidal stage on DOC concentrations. In that instance, high DOC waters (250–300 μmol L−1) observed at
low tide (WL = −1.60 m) on 15 March were evidently diluted by lower‐DOC (∼100 μmol L−1) marine waters on
March 18th, when WL was higher (WL = −0.37 m) and the tide was ebbing. Although the archive was not able to
represent the effects of specific episodic events, it captured a wide range of extreme conditions. For instance, an
extremely low DOC gradient along the estuary (100–200 μmol L−1) was captured on 9 September 2022, during a
combination of peak high tide and extremely low discharge associated with a regional drought (Catalog in
Supporting Information S2). In a contrasted example, an extremely steep DOC gradient along the estuary (200–
1,000 μmol L−1) was observed on 25 April 2019, during low‐tide conditions and following a major snowmelt
event in Massachusetts (Catalog in Supporting Information S2). This representative collection of Sentinel‐2 DOC
maps was sufficiently large and of sufficient quality to investigate the interplay of drivers on the complex DOC
dynamics of this tidal marsh‐influenced estuary.

4.5. Drivers of DOC Variability in the PIE

River discharge and WL both had a major influence on the DOC concentrations of this tidal estuary (Figure 10 and
Figure S11 in Supporting Information S3), in line with similar observations made in the largest marsh system of
Chesapeake Bay (Cao & Tzortziou, 2021). The remotely sensed DOC concentrations along the PIE thalweg
increased with river discharge (R2 = 0.28), particularly as discharge increased from low to moderately high
(Figures 10a and 10d). High river discharge can contribute to higher estuarine DOC concentrations in multiple
ways. First, high discharge is often associated with high DOC concentration in temperate and high‐latitude rivers
(Cai et al., 2015; Pérez‐Rodríguez & Biester, 2022; Zarnetske et al., 2018). This relationship often exists in these
systems because discharge typically peaks in the spring (driven by snowmelt and higher rainfall) flushing top‐
soils enriched with fresh organic matter from the fall litter decomposition (Raymond & Saiers, 2010), and this
spring flushing is typically followed by a summer period of decreased discharge draining already flushed‐out
soils. Second, higher river discharge increases the fraction of relatively high‐DOC freshwater within the estu-
ary, displacing saline, low‐DOC seawater. Finally, higher discharge can decrease freshwater residence time in the
estuary, reducing the extent of DOC mineralization occurring in the estuary. The Sentinel‐2 DOC concentrations
were also strongly (R2 = 0.35) and inversely related to the WL, confirming this factor is a dominant driver of DOC
variability in the PIE (Figures 10b and 10e). Tidally driven oscillations of DOC are generally observed in tidal
estuaries (Clark et al., 2018; Menendez et al., 2022; Schiebel et al., 2018), and result primarily from the dilution of
terrigenous inputs by relatively low‐DOC coastal waters when the tide rises. No relationship was observed be-
tween DOC concentrations and the rate of WL change.

A weak negative relationship between marsh EVI2 and DOC concentrations was also observed, although the
relationship was complex (Figures 10c and 10f). Higher DOC concentrations were observed during periods of
relatively low and rapidly changing EVI2 (0.15–0.2), which generally corresponded to periods of marsh vege-
tation growth in the spring or senescence in the fall. DOC concentrations were generally lower during periods of
high EVI2 (0.3–0.4), which generally corresponded to periods of peak marsh biomass during summer. This
observation differs from previous reports that DOC concentrations in wetland‐estuarine systems are consistently
higher during periods of high biomass in summer and early fall (Cao & Tzortziou, 2021; Tzortziou et al., 2008).
This difference is likely caused by a much greater influence of riverine inputs in the PIE, which skews peak DOC
concentration earlier in the spring when the DOC flux from the rivers is highest. This difference might also arise
because the PIE is largely dominated by high marsh, which only gets significantly flooded around spring tides
(Forbrich et al., 2018; Hopkinson et al., 2018), and possibly receives fewer marsh inputs than systems dominated
by low marsh. Nonetheless, the EVI2 likely remains indicative of marsh inputs from the fall senescence period

Figure 9. Representative maps of dissolved organic carbon (DOC) concentrations from Sentinel‐2 imagery. These specific maps were chosen to showcase DOC
concentrations during contrasted environmental conditions. The nine maps correspond to the following dates: 27 February 2018, 4 December 2018, 26 March 2019, 15
March 2020, 18 March 2020, 23 March 2021, 18 March 2022, 8 November 2022, and 20 November 2022. The average marsh enhanced vegetation index 2, the Parker
River discharge (Q), the water level (WL), and the rate of WL change (WLC) corresponding to each Sentinel‐2 scene is provided in the bottom‐left corner of each image.
These Sentinel‐2 scenes were used for the independent validation of the thalweg‐DOC model. A detailed presentation of all 141 scenes and corresponding DOC maps
and environmental conditions are provided in a Catalog in Supporting Information S2.
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(Logozzo et al., 2021; Qi et al., 2017; Schiebel et al., 2018; Shelton et al., 2022), when riverine DOC inputs tend to
be low in this system (Cronin‐Golomb et al., 2022). Here, the marsh EVI2 generally represents an indicator of
marsh‐input seasonality and was found to have additional predictive ability of DOC concentration in this system.

4.6. Development, Validation, and Implementation of the Thalweg‐DOC Model

The Sentinel‐2 archive and the analysis of DOC variability informed the development of a simple model capable
of predicting the DOC‐concentration transect along the PIE thalweg from a few environmental monitoring
variables. The individual Sentinel‐2 DOC transects decreased exponentially with distance along the thalweg and
varied primarily in magnitude and steepness. Despite their adherence to the overall pattern, they often contained
subtle variations that were likely the result of interferences/errors. In order to avoid the overparameterization of a
model attempting to reproduce this inherent noise, the remotely sensed DOC transects were first fitted using an
exponential fit (see Equation 5) that captured the primary features of the transects (Figure 11). This simple 2‐
parameter (α, β) fit was able to reproduce the magnitude and steepness of the transects while smoothing out
potential noise (Figures 11a and 11b). The distribution of exponential‐fit R2 (median of 0.9) corresponding to the
141 scenes indicated that the approach worked well for the vast majority of the transects, with the exception of a
few noisy transects (Figure 11c). This simplification facilitated the parameterization of a simple MLR model
(thalweg‐DOC model) in which the parameters α and β were predicted from the Parker River discharge [ft3 s−1],

Figure 10. Dependencies of the remotely sensed thalweg dissolved organic carbon (DOC) concentrations on environmental
conditions (a–c) DOC‐concentration transects derived from Sentinel‐2 along the Plum Island Estuary thalweg averaged over
three sequential increments (low, medium, high) of Parker River discharge [ft3 s−1], water level (WL) [m], and marsh
enhanced vegetation index 2 (EVI2). The remotely sensed DOC concentrations corresponding to the Parker River discharge,
WL, and marsh EVI2 are shown in red (left column), blue (medium column), and green (right column) tones, respectively.
The low/medium/high levels for the Parker River discharge corresponds to the (0–51.67)/(51.67–103.33)/(103.33–155.00)
ft3 s−1 ranges, respectively. The low/medium/high levels for the WL corresponds to (−1.60–−0.55)/(−0.55–0.50)/(0.50–
1.56) m ranges, respectively. The low/medium/high levels for the EVI2 corresponds to (0.10–0.21)/(0.21–0.31)/(0.31–0.41)
ranges, respectively. Corresponding transects with their respective standard deviations are presented Figure S11 in
Supporting Information S3. (d–f) Relationships between DOC concentration averaged over the thalweg and the
corresponding Parker River discharge, WL, and marsh EVI2 for the n = 141 Sentinel‐2 scenes of the archive. Each point
corresponds to a different scene in the archive. Linear regression fitted line with corresponding coefficient of determination
(R2) are shown.
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WL [m], and marsh EVI2 (Figure S12 in Supporting Information S3). Here, these three variables were used as
predictors in the model because they are confirmed drivers of DOC variability in this system (see Section 4.5), and
because of their significant predictive capability. In contrast, the rate of WL change was not included as a pre-
dictor because it did not have significant predictive capability in this data set. In a first validation step, a total of
132 scenes were used to develop the model, and nine scenes were manually selected for an independent
validation.

Validation of the thalweg‐DOC model using the nine selected validation scenes showed the model reproduced the
estuary‐wide thalweg DOC distribution reasonably well when implemented on a novel set of images and for a
wide range of environmental conditions (Figure 12). The validation scenes (shown in Figure 9) were chosen to
cover a representative range of environmental conditions (red points in Figure 8), and supplied a set of remotely
sensed DOC transects with very different characteristics (Figure 12a). The modeled DOC transects approximated
the shape and magnitude of the exponential fits relatively well, and reproduced the main features of the remotely
sensed DOC transects (Figure 12a). A direct comparison of the modeled and remotely sensed DOC returned a
median R2 value of 0.88, a median RMSE of 39 μmol L−1, and a median MAPE of 19.5%, indicating good
agreement for these nine transects selected to represent different combinations of environmental conditions. The
Monte Carlo cross validation (Figure 12b), which repeated this procedure another 30 times with random per-
mutations of 132 training and 9 validation transects, returned a median R2 value of 0.88 (range: 0.84–0.92), a
median RMSE of 40 μmol L−1 (range: 34–46 μmol L−1) and a median MAPE of 23.5% (range: 18%–30%). This
validation provided confidence in the ability of the thalweg‐DOC model to reproduce the main features of DOC
transects at the PIE under most environmental conditions.

Specific analyses also showed the thalweg‐DOC model is expected to perform reasonably well during extreme
conditions, such as those associated with storms (Figures S13 and S14 in Supporting Information S3). A cross‐
validation of the model trained using 129 transects and validated using 12 independent transects with the most
extreme water levels and river discharges in our data set (3 highest and 3 lowest water levels, 3 highest and 3
lowest river discharges) returned a median R2 value of 0.88 (range: 0.80–0.98), a median RMSE of 30 μmol L−1

(range: 20.5–72.3 μmol L−1) and a median MAPE of 17.2% (range: 8.7%–44.3%), showing the model still
performed relatively well for these extreme conditions (Figure S13 in Supporting Information S3). Furthermore,
an implementation using various combinations of river discharge and WL values beyond the range of our data set
showed that the final thalweg‐DOC model produced reasonable DOC estimates that followed expectations for
these extreme conditions (Figure S14 in Supporting Information S3). For instance, the model generated higher
DOC concentrations for very high river discharge, in line with the frequent observation that the concentrations
and fluxes of DOC across estuaries are considerably enhanced during large storms (Bianchi et al., 2013;
Hounshell et al., 2019; Medeiros, 2022; Yan et al., 2020). Although these analyses provide some level of con-
fidence about the thalweg‐DOC model's performance during extreme conditions, a more thorough and reliable
assessment would require the collection of in situ measurements during the entire duration of these large storms
(e.g., Nor'easters, Tropical Storms). The acquisition of such validation data sets from boats can be logistically
challenging, but it can now be facilitated by the use of tethered in situ water quality sondes equipped with DOM
fluorescence sensors, which can now provide increasingly accurate estimates of DOC concentration continuously
in these estuarine systems (Menendez et al., 2022; Weiser et al., 2024).

Figure 11. Exponential fitting of remotely sensed thalweg dissolved organic carbon (DOC) transects. (a–b) Two representative examples of the exponential fitting
process. The blue lines shows the DOC transects retrieved from Sentinel‐2, and the black lines represents the corresponding exponential fits (c) Boxplot showing the
distribution of R2 corresponding to the exponential fits of the 141 remotely sensed DOC transects used in the model development.
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Figure 12. Performance assessment of the thalweg‐DOC model using the Sentinel‐2 scenes selected for model validation. (a) Comparison of dissolved organic carbon
(DOC) concentrations derived from the thalweg‐DOC model (dashed red line), the corresponding exponential fitted curve (black line), and Sentinel‐2 (dashed blue line)
along the Plum Island Estuary thalweg transect for an example set of nine independent Sentinel‐2 scenes selected for model validation. In this case, the nine independent
scenes are the ones presented in Figures 8 and 9. (b) Boxplots of accuracy assessment metrics—R2, RMSE, MAPE–derived from the comparison of modeled and
Sentinel‐2 derived DOC transects. The metrics shown here are summaries of the 31 cross‐validations.
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Most importantly, the final thalweg‐DOC model was able to reproduce the measured in situ DOC concentrations
along the thalweg within ±16% (Figure 13). A set of 75 in situ DOC measurements (unused in the algorithm and
model development) collected along the entire thalweg between 2017 and 2023 provided a valuable independent
data set to conduct an end‐to‐end validation of the model's performance. The sample locations were homoge-
neously distributed across the estuary (Figure 13a), and this validation data set covered a measured DOC con-
centration range of about 100–600 μmol L−1, which was representative for this system. It also encompassed data
from different years and seasons although it was heavily represented by 2018 and 2022. The model was able to
reproduce about 80% (R2 = 0.79) of the variability in the in situ DOC, and estimates were on average within
±47 μmol L−1 or ±15.9% of the measured values, as indicated by the RMSE and MAPE (Figure 13b). The
estimates were also uniformly distributed around the 1‐to‐1 line, indicating no major bias in the estimates.
Although further assessment is needed to test the performance of the model during episodic or extreme events,
this end‐to‐end validation provided great confidence in the reliability of thalweg‐DOC model made for predicting
point DOC concentration under most environmental conditions.

Implementation of the thalweg‐DOC model for a continuous period of three years (1 January 2020–31 December
2022; 15‐min time step) provided a realistic representation of DOC dynamics in this tidal estuary (Figure 14).
Implementing the model over multiple years demonstrated the effects of the tidal, seasonal, and interannual
variability in the drivers on the DOC concentrations (Figure 14a). For instance, the Parker River hydrograph
showed considerable interannual variability across these 3 years. The variability in modeled DOC concentrations
was investigated for three stations distributed along the thalweg: Upstream (Stn1), Middle of estuary (Stn2), and
Near mouth (Stn3). As expected, the average and range of modeled DOC were greatest at Stn1 (223–
762 μmol L−1), which was directly influenced by the Parker River, and decreased progressively toward Stn2
(151–448 μmol L−1) and Stn3 (89–220 μmol L−1). At each station, the model adequately reproduced the diurnal
oscillations in DOC concentration resulting from tidal forcing, as well as the enhanced range of variability
typically associated with spring tides (Menendez et al., 2022; Nascimento et al., 2021). The modeled DOC
concentration also clearly increased during periods of enhanced discharge, again following expectations (Zar-
netske et al., 2018). Finally, the effects of the EVI2 seasonality were most evident in the fall, when DOC con-
centrations rose steadily as the EVI2 decreases.

5. Concluding Remarks
This study demonstrated that HSRRS can facilitate the accurate monitoring of DOC concentrations in tidal marsh‐
influenced estuaries, and provide critical data to inform and validate simple models of DOC dynamics in these
hydrodynamically and biogeochemically complex systems. The Sentinel‐2A/B tandem and its 5‐day revisit time
supplied a high‐quality, clear‐sky snapshot of DOC concentrations in the PIE every 16 days on average. Over a
period of 6 years (2017–2023) this acquisition frequency was sufficient to capture a set of DOC spatial distri-
butions representative of most environmental conditions encountered in this system (e.g., tidal stage, river
discharge, marsh biomass). This collection helped identify the primary drivers of DOC variability and facilitated
the training of a simple statistical model capable of predicting accurate DOC distributions along the estuary from
three environmental variables. Although the proposed model is expected to provide reasonable DOC estimates
during conditions beyond those used to train the model, the actual model's performance during extreme events
such as large storms (e.g., Nor'easters, Hurricanes) remains unknown, and requires further assessments using field
measurements. The general approach presented here can be applied to other tidal marsh‐influenced estuaries,
although algorithms and model parameters would probably need to be tuned and validated for specific systems or
regions. Other environmental variables such as soil type and organic carbon content, terrain steepness, saltmarsh
type and surface area, and climate are all factors that could potentially influence DOC concentrations across
different marsh‐influenced estuaries. Expanding this study to other estuarine systems across a latitudinal gradient
would help assess the predictive capabilities of these other environmental variables and potentially help develop
more broadly applicable models. This kind of simple DOC models can be coupled with the outputs of hydro-
dynamic models and facilitate the calculation of realistic DOC fluxes in these dynamic systems, and their
implementation on large scales could help fill an important gap in regional and global carbon cycle models.
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Figure 13. Validation of the thalweg‐DOC model using in situ measurements of dissolved organic carbon (DOC)
concentration collected within 200 m of the thalweg during the 2017–2023 time period. (a) Map showing the exact
geographic locations of the samples used in this thalweg‐DOC model validation, along the thalweg. (b) DOC concentrations
estimated (Estimated DOC) using the thalweg‐DOC model (Parker River Discharge, Marsh enhanced vegetation index 2,
Water Level as predictors), versus DOC concentration measured in the laboratory (Measured DOC) on samples collected
within 200 m of the thalweg.
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Data Availability Statement
The Sentinel‐2 images are available at the CNES PEPS website (https://peps.cnes.fr) (CNES, n.d.) (Dataset). The
relative spectral responses of the Sentinel‐2 MSI are available from the Copernicus website (https://sentinels.
copernicus.eu/web/sentinel/user‐guides/sentinel‐2‐msi/document‐library/‐/asset_publisher/Wk0TKajiISaR/
content/sentinel‐2a‐spectral‐response) (ESA, 2023) (Dataset). The Parker River discharge data is available at
USGS website (https://waterdata.usgs.gov/nwis/uv?site_no=01101000) (USGS, n.d.) (Dataset). Water level data
is available at NOAA website (https://tidesandcurrents.noaa.gov/stationhome.html?id=8441241) NOAA. (n.d.)
(Dataset). The extent of the PIE marsh area is available at the National Wetland Inventory (USGS, 2023)
(Dataset). The version 20221114.0 of the ACOLITE available at Institute of Natural Sciences website (https://
odnature.naturalsciences.be/remsem/software‐and‐data/acolite) (Vanhellemont, 2019; OD Nature, n.d.) (Soft-
ware). Maps were created using ArcGIS® PRO (commercial) (Esri, n.d.) (Software) and the Generic Mapping
Tools available at(https://www.generic‐mapping‐tools.org) (Wessel et al., 2019; GMT, n.d.) (Software). Mat-
LAB® (MathWorks, 2021) and ArcGIS® PRO (Esri, n.d.) softwares were used under licenses obtained by Boston
University and Istanbul Technical University (Software). Field measurements of DOC concentration, CDOM
absorption coefficient, and spectral remote‐sensing reflectance along with the corresponding coordinates, dates
and times of collection are available in an excel spreadsheet available at the following Zenodo repository (https://
doi.org/10.5281/zenodo.13769438) (Dataset).

Figure 14. Implementation of the thalweg‐DOC model for 2020–2022 at three locations along the thalweg transect. (a) Time
series (15‐min time step) of the three predictors used to model dissolved organic carbon (DOC) concentrations along the
Plum Island Estuary (PIE) thalweg: Saltmarsh enhanced vegetation index 2 (EVI2) (green line), Parker River discharge (blue
line), and water level (WL) (black line). Close‐up views of the time series during October 2021 (gray shaded area) are shown
on the right. (b) Time series (15‐min time step) of the DOC concentration predicted from the Saltmarsh EVI2, Parker River
discharge, and WL (multiple linear regression model) at three different locations along the thalweg: Stn1 located upstream
and at the mouth of the Parker River (red line), at approximately 2.4 km from the beginning of the thalweg. Stn2 located in the
middle of the Plum Island Sound (orange line), at approximately 7 km. Stn3 located near the mouth of the PIE (yellow line),
at approximately 13 km.
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