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Abstract

Climate change threatens the resource adequacy of future power systems.
Existing research and practice lack frameworks for identifying decar-
bonization pathways that are robust to climate-related uncertainty. We
create such an analytical framework, then use it to assess the robustness
of alternative pathways to achieving 60% emissions reductions from 2022
levels by 2040 for the Western U.S. power system. Our framework inte-
grates power system planning and resource adequacy models with 100
climate realizations from a large climate ensemble. Climate realizations
drive electricity demand; thermal plant availability; and wind, solar, and
hydropower generation. Among five initial decarbonization pathways, all
exhibit modest to significant resource adequacy failures under climate
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2 RDM decarbonization

realizations in 2040, but certain pathways experience significantly less
resource adequacy failures at little additional cost relative to other path-
ways. By identifying and planning for an extreme climate realization that
drives the largest resource adequacy failures across our pathways, we
produce a new decarbonization pathway that has no resource adequacy
failures under any climate realizations. This new pathway is roughly 5%
more expensive than other pathways due to greater capacity investment,
and shifts investment from wind to solar and natural gas generators.
Our analysis suggests modest increases in investment costs can add
significant robustness against climate change in decarbonizing power sys-
tems. Our framework can help power system planners adapt to climate
change by stress testing future plans to potential climate realizations,
and offers a unique bridge between energy system and climate modelling.

Keywords: robust decision-making, climate adaptation, capacity expansion,
single model initial condition large ensemble, power system decarbonization

1 Introduction

Rapidly transitioning to a decarbonized electric power sector is crucial to
aggressively mitigate climate change and meet emissions reductions targets
[1, 2]. In the United States, the Inflation Reduction Act (IRA) is poised to
accelerate low-carbon investments in the power sector, which could approach
370 billion USD by 2033 [3, 4]. Which power sector decarbonization pathway
will be taken remains uncertain, where a pathway is defined by where, when,
and what decarbonization investments occur [5-11]. As they decarbonize, bulk
(or transmission-scale) power systems will be increasingly affected by climate
change [12]. Increasing ambient air temperatures will increase peak and total
electricity demand [13-15] and reduce available capacity from thermal and
solar generators [13, 16-18]. Wind, solar, and precipitation changes will also
affect wind, solar, and hydropower generation potential [13, 19-21]. These
effects could compound to undermine resource adequacy (RA), or a system’s
ability to continually balance electricity supply and demand [22-24]. Under-
standing the vulnerability of decarbonizing power systems to potential future
climate realizations is critical for achieving reliable, affordable, and clean power
systems - the focus of our study [9, 25].

To account for decarbonization- and climate-related uncertainty in invest-
ment decisions, prior literature optimizes capacity investment decisions given
different decarbonization pathways and future climate scenarios [5, 9, 26-32].
This literature uses sensitivity or scenario analysis to incorporate climate-
related uncertainty within deterministic modeling frameworks. For instance,
Fonseca et al. [5] sample 3 of 20 global climate models (GCMs) to include
as scenarios in a deterministic long-term power system planning model. In
other words, this literature aims to improve investment decisions by improv-
ing predictions of future weather within standard modeling frameworks -
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a ”predict-then-act” approach to climate adaptation. But climate change
poses deep uncertainty [33], which undermines the value of ”predict-then-act”
approaches [34], particularly for power system planning models that must
significantly simplify uncertainty to remain computationally tractable. Deep
uncertainty is characterized by uncertainty in how a system works and its
boundaries, which leads to significant uncertainty in the probability distribu-
tions of scenarios and consequences [34]. In the context of climate change, deep
uncertainty arises from disagreement around which future C O emissions path-
way the globe will follow (i.e., emissions scenario uncertainty); global climatic
changes resulting from those pathways (i.e., climate sensitivity and structural
uncertainty); and local meteorological changes resulting from global climatic
changes (i.e., parametric uncertainty) [35-37]. In the near-term (prior to 2050),
inter-annual (or internal) climate variability, which is driven by the dynamics
of the climate system and sensitive to initial conditions [38—41], is the primary
source of climate-related uncertainty [40, 42]. Under deep uncertainty, meth-
ods focused on identifying robust strategies or alternatives are better suited to
informing decisions than ”predict-then-act” methods [34]. Such decision sup-
port is urgently needed by power system planners and regulators, who are
tasked with ensuring resource adequacy across a wide range of potential future
climate realizations, which combine secular trends and inter-annual climate
variability [41]. Recent rolling outages in California and Texas [43, 44] and
resource adequacy warnings elsewhere in the United States [45] underscore this
urgency.

In response to these needs, we construct a new analytical framework for
planning decarbonizing power systems under deep climate uncertainty by
drawing on a concept from the decision science literature: robust decision
making (RDM) [34, 46]. RDM has been used to inform climate adaptation
strategies, e.g. in water resources management [47-53]. It has also been used in
the power sector, e.g. to evaluate policy strategies for European power systems
against shocks [54]. But our framework is the first to apply RDM to planning
decarbonizing power systems under deep climate uncertainty. By integrating
power system planning and operational models with potential climate realiza-
tions from a single model initial-condition large ensemble (SMILE) [55, 56], our
framework generates alternative decarbonization pathways; characterizes the
vulnerability of and trade-offs between those pathways under potential climate
realizations; and uses generated insights to identify new alternative decar-
bonization pathways that are robust to climate-related uncertainty (Figure 1).
SMILESs have limited prior use in power systems research [57, 58] even though
they are designed to sample inter-annual variability and provide many real-
izations of future climate, encoding multiple extreme events and a range of
possible meteorological projections [59, 60].

We use our framework to answer: how can we design decarbonizing power
systems to be robust against deep climate uncertainty? We conduct our study
for the U.S. Western Interconnect, which we divide into five subregions per
Western Electricity Coordinating Council’s resource adequacy assessments

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

4 RDM decarbonization

(Figure E.1, [61]). We use 100 members from the Community Earth System
Model 2 (CESM2) Large Ensemble (LENS2) through 2040, which was driven
by the SSP3-7.0 emissions scenario and reaches 1.65°C of global warming by
2040 relative to pre-industrial [62]. For each ensemble member, we obtain sur-
face air temperatures, relative humidity, surface solar radiation, 10m wind
speeds, and total runoff at daily and 1° spatial resolution (approx. 100 km by
100 km) through 2040 across our study region. While this resolution is lower
than what is preferred for power system modeling, higher resolution climate
datasets often do not sample as large of a range of internal climate variability
as LENS2, particularly in the time-span of interest to us (through 2040) and
when focused on extreme events. In selecting LENS2, we also emphasize inter-
nal variability over climate response uncertainty. For each ensemble member,
we translate meteorological variables to spatially-explicit timeseries of elec-
tricity demand; maximum potential wind, solar, and hydropower generation;
and thermal generator deratings and forced outage rates. To analyze the vul-
nerability and trade-offs of alternative decarbonization pathways, we generate
five decarbonization pathways by running a capacity expansion (or long-term
planning) model of the Western Interconnect using power system variables
from five sampled ensemble members. Our decarbonization pathways reduce
interconnect-wide power system CQOsy emissions by 60% from 2022 levels by
2040. For each decarbonization pathway, we approximate its regional resource
adequacy in 2040 under each of the 100 ensemble members using economic
dispatch and surplus available capacity models. From this large set of alter-
native future systems and climate realizations, we examine vulnerabilities and
trade-offs of these decarbonization pathways across potential climate realiza-
tions. Finally, we identify a future climate realization that generates the largest
resource adequacy failures across decarbonization pathways in 2040, then use
that climate realization to generate a new decarbonization pathway robust to
all 100 ensemble members.
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Fig. 1: (a) Map of our Western Interconnect study region, which is divided
into 5 sub-regions (differentiated by color). Blocks at edges of interconnect
correspond to LENS2 grid cells. CAMX stands for California and Mexico and
NWPP stands for Northwest Power Pool. (b) Our analytical framework inte-
grates 100 ensemble members (or climate realizations) from the LENS2 dataset
with power system capacity expansion, economic dispatch, and surplus avail-
able capacity (SAC) models. For each region, this framework yields 500 annual
timeseries of daily energy not served and surplus available capacity in 2040,
or 1 annual timeseries of daily values (or ”daily timeseries”) for each climate
realization, decarbonization pathway, and metric. Not shown is identification
of an extreme 2040 climate realization, which is then fed back into the capac-
ity expansion model to generate a new decarbonization pathway.

2 Methods

2.1 Robust Decision-making Framework

We use robust decision-making (RDM) to quantify the robustness of alterna-
tive decarbonization pathways in the Western Interconnect power system to
potential future climate realizations. We first conduct exploratory modeling
to generate five decarbonization pathways for the Western Interconnect using
a capacity expansion (or long-term planning) model (Section 2.2). We then
stress test each decarbonization pathway to all 100 LENS2 ensemble mem-
bers (Section 2.4). For each pathway and ensemble member, we approximate
resource adequacy by quantifying daily Surplus Available Capacity (SAC) and
Energy Not Served (ENS) in 2040 (Section 2.3). Finally, we identify the cli-
mate ensemble member that drives the largest combined energy not served
(ENS) across decarbonization pathways in California (our largest load region)
in 2040; rerun our planning model using that ensemble member; and quan-
tify our resource adequacy metrics for that pathway against all 100 climate
ensemble members.

The “XLRM” framework is a common starting point for RDM that frames
the decision space available to stakeholders [34]. X indicates uncertainties out-
side decisionmaker control; L indicates policy levers, or near-term actions,
available to decisionmakers; M indicates performance measures that can be
used to compare future scenarios; and R indicates relationships between uncer-
tainties (X) and levers (L) and how those relationships affect performance
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6 RDM decarbonization

X: Future climate realizations

L: Power system decarbonization pathways
(composed of where, when, what type, and
how much investment in generating and trans-
mission occurs)

R: Response of power system assets to climate
change (including hydropower, thermal gener-

M: Daily and annual resource adequacy; Total
fixed plus variable system costs; Annual sys-

ators, wind power, solar power, and electricity | tem CO2 emissions
demand); capacity expansion model; resource
adequacy models

Table 1: Our analysis represented within the XLRM framework

measures (M). Table 1 provides an XLRM framework for our analysis specif-
ically and for power system adaptation to climate change analyses more
generally.

2.2 Capacity Expansion Model and Decarbonization
Pathways

To generate alternative decarbonization pathways, we use a capacity expansion
(or long-term planning) model. We run the capacity expansion model (CEM)
in two year increments from 2023 to 2040, capturing coincident, spatially-
resolved meteorology and hydrology for each year (Section 2.4). The CEM
is a deterministic linear program that minimizes fixed plus variable costs by
deciding investment in wind plants, solar plants, and natural gas combined
cycle (NGCC) plants with or without carbon capture and sequestration (CCS),
and inter-regional transmission. These investment decisions differentiate our
”decarbonization pathways”. The CEM also optimizes operation of existing
and new generators, and optimizes inter-regional transmission flows using the
simplified transport method, which constrains inter-regional transmission flows
to a fixed power rating rather than modeling AC or DC power flow. The first
CEM run is initialized with the existing Western U.S. generator fleet and
inter-regional transmission capacity (SI.E). All generator capacity investment
decisions occur at the LENS2 grid cell level, i.e. on a 100 by 100 km grid across
our study region, while transmission investments occur at inter-regional levels.
We constrain thermal plant investments to grid cells that already contain large
thermal units. Given the immature state of CCS technology, we allow the
CEM to invest in NGCC or coal with CCS beginning in 2031. To capture
ongoing retirements of coal-fired power plants, we retire coal units with average
capacity factors of less than 0.3 after each CEM run [63]. While we recognize
the important role of grid-scale storage in decarbonizing power systems, our
climate data is only available at daily resolution (Section 2.4). As such, we
cannot model intra-day storage.

The CEM includes numerous system- and generator-level constraints.
At the system level, the CEM balances regional supply (generation plus
imports minus exports) and demand each day. We do not account for inter-
changes with Canada and Mexico. The CEM requires derated capacity to
exceed peak demand, where derated capacity accounts for wind and solar
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generation potential; a fixed 5% forced outage rate for wind and solar gener-
ators; temperature-dependent FORs for thermal and hydropower plants; and
weather-driven deratings of combustion turbine, combined cycle, and coal-fired
plants. At the generator level, wind and solar generation is limited by daily,
spatially-specific wind and solar capacity factors (Section 2.4); hydropower
generation is constrained by subregional monthly total generation; and gener-
ation from combustion turbine, combined cycle, and coal-fired plants is limited
by daily, spatially-specific meteorology.

With the CEM, we generate five decarbonization pathways that each reduce
interconnect-wide CQOy emissions by 60% from 2022 levels by 2040. To cre-
ate these five pathways, we use meteorological timeseries from five sampled
LENS2 members. These ensemble members are sampled to capture a range of
warming and relative humidity changes within the LENS2 ensemble (Table 2).
Specifically, we quantify warming level based on the difference between his-
toric (1985-2015) and mid-century (2035-2065) mean surface temperature and
relative humidity [64]. Warming and relative humidity levels vary from 1.5 °C
to 2.75 °C and 0.1 to -1.79, respectively, across sampled ensemble members
(Figure B.1). We present results for each of these pathways by labeling them
from 1 to 5 (Table 2). In using five sampled ensemble members, our purpose
is to create heterogeneous decarbonization pathways that could all reach a
given decarbonization target, then assess the pathways’ vulnerabilities, trade-
offs, and robustness. We do not create a pathway for each ensemble member
because creating pathways that span all climate- and decarbonization-related
uncertainty is not computationally tractable. Rather, researchers and practi-
tioners explore a subset of this uncertainty in analyses and long-term plans.
With respect to climate-related uncertainty, sampling algorithms are typically
used to identify a few weeks of one weather year for inclusion in planning
models. While these algorithms aim to capture periods that could threaten
system resource adequacy, they capture a limited range of potential climate
conditions, particularly when considering not just multiple weather years but
also multiple climate realizations. We therefore demonstrate our framework in
a similar context as is used in practice, i.e. on pathways that consider a sub-
set of relevant uncertainty. The CEM is programmed in the General Algebraic
Modeling System (GAMS) [65] and solved using CPLEX [66].

LENS2

Index Member ID AT (°C) ARH
1 r10i1191p1f2 2.50 -1.17
2 r5i1231p1fl 2.59 -1.79
3 r12i1301p1f2 1.70 0.10
4 r10i1181plfl 2.03 -0.22
5 r9i1301p1fl 2.13 -0.80

Table 2: Difference in temperature (T) and relative humidity (RH) between
mid-century (2035-2065) and historic (1985-2015) of the five LENS2 ensemble
members used to generate decarbonization pathways. Index indicates the 1-5
label for each pathway that we use when presenting our results.
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8 RDM decarbonization

2.3 Decarbonization Pathways and Resource Adequacy
under Potential Climate Realizations

From our CEM, we obtain five decarbonization pathways, each planned for one
of five sampled ensemble members. To understand the vulnerability of each
decarbonization pathway to other potential ensemble members, we approxi-
mate the resource adequacy of each decarbonization pathway against all 100
ensemble members (or climate realizations) from LENS2. Because LENS2 pro-
vides daily values, we are unable to quantify resource adequacy (RA) of the
Western Interconnect at an hourly basis using a standard probabilistic RA
model. Instead, we approximate resource adequacy by quantifying daily Sur-
plus Available Capacity (SAC) and Energy Not Served (ENS). While LENS2’s
daily resolution is a limitation of our study, LENS2 (and large ensembles gen-
erally) provide unique insights into extremes of varying timescales, from daily
extremes like extreme heat to longer extremes like droughts [55, 67].

To calculate daily ENS, we run an economic dispatch model (EDM) for
each decarbonization pathway output by our capacity expansion model in 2040.
The EDM minimizes the sum of operating, CO2 emission, inter-regional trans-
mission, and ENS costs by optimizing generation, inter-regional transmission,
and ENS decision variables. CO5 emission costs include a decarbonization-
pathway-specific CO5 price necessary to achieve the relevant CO5 emissions
cap in that year. We determine this COs price by iteratively increasing it
until total CO45 emissions comply with the cap. We include this price instead
of a cap to avoid infeasibility in the EDM in climate realizations that pre-
clude meeting the COy cap. The EDM includes several constraints from the
CEM, including balancing supply and demand within each of our five sub-
regions while accounting for transmission inflows and outflows; constraining
regional monthly hydropower generation to an energy budget; constraining
wind and solar generation to spatially- and temporally-differentiated capacity
factors; and constraining fossil-based thermal plant generation based on capac-
ity deratings. Since we cannot probabilistically sample generator outages like
hourly resource adequacy models, the EDM instead derates generators’ capac-
ities based on temperature-dependent or fixed forced outage rates (FORs). We
run the EDM for a 1-year optimization horizon. Inputs to the EDM include
a decarbonization pathway and variables driven by the given climate ensem-
ble member (i.e., daily electricity demand, monthly hydroelectric generation,
daily solar and wind capacity factors, and daily thermal plant forced outage
rates and derates). See SL.F for the full EDM formulation and key parame-
ters. The EDM is programmed in Python (3.10.6), the optimization problem
is formulated with Pyomo (6.4.2) [68] and solved using GLPK 5.0 [69].

From the EDM output, we directly obtain daily ENS and calculate SAC for
each region. SAC equals daily available non-hydropower capacity, hydropower
generation, and transmission imports minus demand and transmission exports
for each region. In this way, SAC indicates excess supply available in a region
to satisfy unexpected increases in demand. The lower the SAC, the greater the
risk of a supply shortfall, suggesting lower resource adequacy. Prior research
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has used a net load metric as a proxy for resource adequacy [57, 70]. Our
SAC extends the net load metric by capturing not just daily wind and solar
generation potential, but also accounts for optimized hydroelectric dispatch;
temperature dependent outages in thermal and hydroelectric power plants;
capacity deratings in fossil-based thermal power plants; and electricity flows
between regions. See SI.G for more details on SAC calculation.

2.4 LENS2 Climate Data and Conversion to Power
System Variables

In the near-term (prior to 2050), internal variability (versus model or emissions
scenario uncertainty) is the primary source of climate-related uncertainty [40,
42]. To capture the role of internal variability in driving potential climates
through 2040, we use the CESM2 Large Ensemble (LENS2) [62]. This dataset is
a single model initial-condition large ensemble (SMILE) following the SSP3-7.0
emissions trajectory. We treat this global emissions trajectory as independent
of our system’s emissions trajectory, as internal variability - not emissions
uncertainty - is the primary source of uncertainty over our study period.

The LENS2 dataset consists of 100 ensemble members which are split into
2 groups each consisting of 50 realizations, where each group is driven by one
forcing condition. Each of the 50 realizations in the two groups are initiated
from different initial conditions sampled to reflect micro and macro pertur-
bations in the pre-industrial control simulation. Unless noted otherwise, all
the variables with a specified frequency represent an average over the inher-
ent time periods, e.g. daily temperature is daily averaged temperatures and
monthly runoffs are monthly averaged runoffs. We obtain daily surface tem-
perature, 10m wind speed, surface downwelling solar flux, surface atmospheric
pressure, surface relative humidity, and monthly total runoff from 1980-2050
for each ensemble member. We obtain these variables at the highest spatial
resolution possible, at a 100 km by 100 km grid. While this spatial and tem-
poral resolution is lower than what is preferred for power system modeling,
higher resolution climate datasets (e.g., from statistical or dynamical down-
scaling) often do not sample as large of a range of internal climate variability
as LENS2 [64, 71, 72|, particularly in the time-span of interest to us (through
2040) and when focusing on extreme events. On the other hand, this approach
does not sample climate response uncertainty, i.e., how different climate mod-
els portray the future response to greenhouse gas forcing. We discuss the value
of using a large ensemble like LENS2 and how it can assist creation of higher
resolution products in our Discussion. More information on LENS2 and our
used variables are in SI.B.

We apply a mean bias correction to LENS2 surface temperatures using
surface temperatures from the ERAS reanalysis data [73, 74]. To bias cor-
rect runoff for forecasting hydroelectric generation, we use a mean bias scaling
method for each of the constituent drought regions [ref B.4]. More details on
the bias correction methods are in SI.B.2. Other studies using large ensem-
bles for quantifying climate impacts have also used such mean bias correction
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10 RDM decarbonization

methods [42]. We do not use more sophisticated bias correction methods like
quantile mapping (QM) as it fits the distribution of projections to observations
(historical climate), which may lead to loss of changes in internal variability
in the projections. We do not find a strong bias in solar radiation, so we did
not bias correct it. Though we identify biases in 10 m wind speeds relative to
ERA5, wind power capacity factors derived from bias corrected wind speeds
are much lower compared to other observational datasets. As a result, we use
the native LENS2 wind speed data in our analysis.

We use different models to derive power system variables from LENS2
data. We calculate daily solar and wind capacity factors for each LENS2 grid
cell using deterministic equations (SI.B.3). We calculate monthly hydroelectric
generation using a linear regression model using total runoff as the predictor
variable. We obtain the model for each drought region in the Western US [75]
by training observed hydroelectric generation [76] trained against ERAS5 total
runoff. We then forecast hydroelectric generation using bias corrected total
runoff from the LENS2 data (SI.B.4). We calculate demand for each of our five
subregions using a piecewise linear regression model using daily temperature as
the predictor variable. The regression model is trained using observed demand
data and ERA5 surface temperatures, so ignores technological or population
changes (SI.C). We calculate temperature-dependent forced outage rates for
thermal power plants using plant-type-specific relationships [77] (SI.D). We
also calculate capacity deratings of fossil-based thermal power plants for each
LENS2 grid cell using plant-type-specific relationships between deratings and
air temperatures, relative humidity, and/or air pressure (SI.D).

3 Results

3.1 Capacity Investments across Decarbonization
Pathways

We first examine the five decarbonization pathways output by our capacity
expansion model. In creating these pathways using five sampled LENS2 ensem-
ble members rather than creating 100 pathways using each of the 100 LENS2
ensemble members, we demonstrate the value of our framework in analyzing
a limited number of alternatives generated by computationally complex plan-
ning models, similar to how alternatives are incorporated in system planning in
practice. Each pathway is defined by its ”"fleet” of energy generator types. Our
pathways decarbonize primarily through investment in wind and solar capac-
ity, but exhibit different levels of investment (Figure 2). Interconnect-wide
solar and wind capacity increase from roughly 40 and 30 GW in 2022, respec-
tively, to up to 129 and 46 GW in 2040, respectively, across pathways. Between
pathways, wind and solar capacities in 2040 range from 34 to 46 GW and
from 103 to 129 GW, respectively. Small amounts (less than 4 GW) of NGCC
with carbon capture and sequestration (CCS) are also deployed in four decar-
bonization pathways. Heterogeneity in solar and natural gas capacity largely
drives differences in total installed capacity between pathways, which ranges
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from 252 to 280 GW. Solar capacity investment largely occurs in three regions
- California, Desert Southwest, and Central - with high quality solar resources,
while wind investment largely occurs in the Northwest, which has high qual-
ity wind resources (Figure A.1). No investment in interregional transmission
beyond existing capacity occurs. Growth in wind, solar, and NGCC capacity
displace other capacity, including coal-fired capacity, and replace lost capacity
from the retirement of the Diablo Canyon nuclear generating station, which is
located in California. Generation by plant type follows similar trends as capac-
ity investments. Across pathways, wind, solar, natural gas, and hydropower
account for roughly 7-13%, 31-37%, 23-27%, and 20-24% of annual generation,
respectively, in 2040.
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Fig. 2: (a) Installed capacity and (b) electricity generation by generator type
across Western Interconnect in 2040 for each of our five decarbonization path-
ways (Table 2). CC stands for natural gas combined cycle, CCCCS for CC with
carbon capture and sequestration, and PV for photovoltaic. Other includes
biomass, geothermal, landfill gas, and fossil and non-fossil waste plants.

3.2 Resource Adequacy of Decarbonization Pathways
under Future Climate Realizations

For each decarbonization pathway, we use LENS2 to quantify daily electricity
supply and demand under 100 potential climate realizations in any given year.
Using daily supply and demand, we approximate resource adequacy through
two metrics: daily surplus available capacity (SAC) and daily energy not served
(ENS), both quantified in units of electricity. SAC indicates excess electricity
supply available in a region to satisfy unexpected increases in demand, while
ENS equals the difference between electricity demand and supply. A nega-
tive daily SAC value indicates ENS occurs, while larger positive SAC values
indicate greater redundancy against supply shortfalls. ENS is rare in power sys-
tems, as it results in voluntary or involuntary load shedding. Involuntary load
shedding occurs during rolling blackouts. Given daily SAC and ENS for each
of our five decarbonization pathways under each of our 100 ensemble mem-
bers, we then calculate the annual minimum SAC (“minimum SAC”), which
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indicates the fleet’s largest susceptibility to supply shortfalls in a given year,
and total annual ENS (“total ENS”), which indicates the fleet’s total supply
shortfall in a given year.

Figures 3 and A.2 show these two metrics for the regions in the West-
ern Interconnect in 2040. Depending on the region, resource adequacy failures
occur in most or all decarbonization pathways under many climate realizations,
as indicated by negative SAC values and positive total ENS values. Pathways
exhibit significant differences in resource adequacy under future climate real-
izations. For instance, in California in 2040, one decarbonization pathway (5,
or the pathway generated using the r9i1301 climate ensemble member) has
a maxiumum of 286 GWh of total yearly ENS, whereas the other pathways
have maximum total yearly ENS of 0-100 GWh, respectively. The pathway
with the least ENS and greatest SAC - r10i1191 (or 1 in figure 5)- achieves
more installed capacity in 2040 (280 GW) relative to other pathways (251 -
262 GW), particularly through greater investment in solar PV and natural
gas combined cycle (Figure 2). Across decarbonization pathways, certain cli-
mate realizations incur significantly greater ENS than others (as indicated by
vertical red stripes). For instance, of the total ENS across all 2040 California
pathways and all 100 climate realizations, none of that ENS occurs in 79%
of climate realizations, while 50% of that ENS occurs in just 3% of climate
realizations. Maximum ENS values are driven by days with low hydropower,
coinciding low wind and solar generation, and high electricity demand (Figures
A.4 - A.8), indicating an important role of compounding extremes in driving
resource adequacy failures [22, 78].
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Fig. 3: Minimum annual SAC values for each subregion in 2040 (see Fig. 1 587
for map of regions). Each panel corresponds to a realization of the “Surplus 588
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3.3 Carbon Dioxide Emissions and Costs of
Decarbonization Pathways under Climate
Realizations

Future climate variability will affect not only the resource adequacy of future
fleets, but also their COy emissions and operational costs through changes
in electricity demand; available wind, solar, and hydropower potential; and
generation from dispatchable (largely fossil) plants (Figure 4). Across our
decarbonization pathways, climate realizations could result in COs emissions
higher or lower than the COs cap by up to 28% and 27%, respectively. As
with resource adequacy (Figure 3), CO4 emissions from some decarbonization
pathways are less vulnerable to climate variability than others. For instance,
one pathway (2, or generated using the r5i1231 climate ensemble member) fails
to meet the CO5 emissions cap in 70% of climate realizations, while another
pathway (1) only fails to meet the emissions cap in 20% of realizations. Oper-
ational costs also vary across climate realizations in each pathway, from $127
to $146 billion. No single meteorological variable drives the observed variabil-
ity in emissions and costs (Figure A.9). Rather, high emissions generally occur
in climate realizations with low wind, solar, and hydropower generation and

high demand.
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Fig. 4: Same structure as Figure 3, but each color bar shows interconnect-
wide COy emissions as a fraction of the target COy emissions cap (left) or
interconnect-wide operational costs (right) in 2040.
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3.4 Trade-offs between Resource Adequacy and Costs

Power system planners must balance competing objectives of minimizing sys-
tem costs while meeting resource adequacy targets. Figure 5 compares each
decarbonization pathway’s total costs against the sum of annual minimum
SAC over the five sub-regions (Figure 3) across 2040 climate realizations. Total
costs include fixed investment costs, which vary between decarbonization path-
ways but not climate realizations, and operational costs (Figure 4), which vary
between decarbonization pathways and climate realizations. Cumulative total
costs from 2023 to 2040 range from $223-246 billion across pathways and cli-
mate variability. Although pathways are differentiated by their mean costs
across realizations, variability in operational costs induced by climate variabil-
ity introduces overlap in total cost ranges between pathways. Despite overlaps
between total costs, pathways can exhibit significant differences in resource
adequacy outcomes. For instance, one pathway (1, or the first pathway from
the right in Figure 5) only exhibits a small resource adequacy failure (or a total
regional minimum annual SAC value of -0.2 GWh) under one climate real-
ization, and has a positive mean SAC value across ensemble members. Other
pathways (e.g., the three pathways at left in Figure 5) have larger resource
adequacy failures (of up to -40 GWh SAC) under certain ensemble mem-
bers, and negative mean SAC values across ensemble members (of up to -10
GWh). Selecting the first pathway rather than other pathways would eliminate
resource adequacy failures at a median total cost difference of -1 to 3%.

3.5 Identifying an Alternative Decarbonization Pathway
Robust to Future Climate Realizations

Our prior results indicate a subset of potential climate realizations drive signifi-
cant risk of resource adequacy failures across decarbonization pathways (Figure
3). We identify the ensemble member that drives the largest resource adequacy
failures (quantified as the sum of minimum annual SACs) across decarboniza-
tion pathways in California (our largest load region) in 2040, namely r19i1231
(or pathway 6) , then rerun our capacity expansion model using that ensemble
member’s meteorology. This ensemble member was not captured in our initial
sampling procedure, in which we selected five ensemble members that spanned
the warming at mid-century represented by the ensembles in the CESM2-LE
dataset (Figure B.1). Rather, r19i1231 features a compound extreme event in
2040 of low hydropower and wind generation potential and high air tempera-
tures, the latter of which drive elevated electricity demand and low available
thermal capacity (Figure A.11). Capturing unexpected extreme climate real-
izations, such as r19i1231, is a key motivator for our framework, as identifying
extremes a priori is difficult given complex interactions within power systems.

Our new decarbonization pathway generated with the r19i1231 climate
ensemble member invests in more solar and NGCC capacity and in less wind
capacity than other pathways (Figure 6a). Overall, capacity investment is 2 to
30 GW greater in the new pathway than other pathways. Figure 6b compares
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Fig. 5: Sum of minimum annual SAC values for our five subregions in
2040 versus cumulative (2023-2040) total (fixed plus operating) costs for each
decarbonization pathway. Minimum annual SAC values equal the sum of non-
synchronous subregional minimum SAC values. Each decarbonization pathway
is depicted with a cross; the dot at the center of each cross indicates the mean
total SAC and mean total cost for that decarbonization pathway across all
100 climate ensemble members; the horizontal arm of each cross ranges from
the minimum to maximum total cost for that decarbonization pathway across
all 100 climate ensemble members; and the vertical arm of each cross ranges
from the minimum to maximum total SACs for that decarbonization pathway
across all 100 climate ensemble members. For context, total non-synchronous
peak demand across the five subregions equals roughly 200 GWh (although
peak demand varies across climate realizations). A negative minimum annual
SAC value indicates one or more subregions in that pathway experiences a
supply shortfall under at least one future climate realization.

the resource adequacy of the decarbonization pathway generated with this
new ensemble member versus our original decarbonization pathways. Our new
pathway exhibits significantly higher minimum SAC values, indicating less
vulnerability to resource adequacy failures. In fact, the new pathway does not
experience any resource adequacy failures across any climate realizations in
2040 in any region (i.e., no ENS or negative SAC values), and has a minimum
annual SAC of 0-3 GWh in California across climate realizations. The newly
generated pathway also meets COs emission caps in all but three potential
climate realizations (Figure 6c¢). Figure 6d compares the trade-off between
resource adequacy and system costs for the new versus prior pathways. The
new pathway has significantly better resource adequacy than prior pathways,
but at greater total costs. Specifically, the new pathway incurs, on average,
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roughly $10 billion greater total costs between 2023 and 2040 compared to the
next costliest pathway.
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Fig. 6: (a) Difference in installed capacity by generator type across Western
Interconnect in 2040 between the decarbonization pathway generated using
the r19i1231 ensemble member (pathway ”6”) and each of the other decar-
bonization pathways. CC stands for natural gas combined cycle, CCCCS for
CC with carbon capture and sequestration, and PV for photovoltaic. (b) Same
structure as Figure 3, but includes the decarbonization pathway generated
using the r19i1231 ensemble member (pathway ”6”) and only includes the two
largest subregions by demand for conciseness. (c¢) Same structure as left panel
of Figure 4, but includes the decarbonization pathway generated using the
r19i1231 ensemble member (pathway ”6”) (bolded at top). (d) Same struc-
ture as Figure 5, but includes the decarbonization pathway generated using
the r19i1231 ensemble member (shown as cross centered on square instead of
circle).

4 Discussion

Existing research and system planning practices lack decision support frame-
works for identifying investment alternatives that are robust to climate-related
uncertainty. We construct such an analytical framework by integrating plan-
ning and operational power system models with a large climate ensemble, then
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use our framework to identify the vulnerabilities, trade-offs, and robustness
of alternative decarbonization pathways for the Western U.S. power system
in 2040. We began our analysis with five alternative pathways to 60% decar-
bonization of the power system. All of these pathways exhibited modest to
significant resource adequacy failures under potential climate realizations. But
by choosing one pathway over others, significantly better resource adequacy
outcomes can be achieved at little additional cost. Even this more robust
pathway, though, suffered resource adequacy losses under future climate real-
izations. By identifying a particularly problematic future climate realization
for future resource adequacy and using it to create another alternative decar-
bonization pathway, we identified a pathway robust to, or that experienced
no resource adequacy failures under, all examined future climate realizations.
This robustness is achieved through an increase of roughly $10 billion (or 5%)
in total costs, posing a trade-off to decision-makers.

Our analysis quantifies the resource adequacy of alternative decarboniza-
tion pathways against a wide range of near-term climate variability. Capturing
this range of climate variability was possible through the use of the LENS2
dataset, but came at the cost of climate data with poor spatial and tempo-
ral resolution. Energy system modeling needs and available climate dataset
characteristics are often misaligned [25], and conducting detailed downscaling
of all LENS2 ensemble members is computationally prohibitive. However, our
analytical framework can guide high resolution downscaling of large climate
ensembles like LENS2 for energy system applications, a key need for energy
system modelers. Specifically, our framework can identify ensemble members,
periods of interest, and/or climate conditions that pose the greatest threat
to alternative future power systems. Threatening conditions are themselves a
function of investment decisions in power systems, so identifying those con-
ditions for a broad range of alternatives, as our framework enables, is crucial
to fully characterize vulnerabilities and robustness. In our case, one ensem-
ble member (r19i1231) resulted in resource adequacy failures across nearly all
studied decarbonization targets due to the compounding effects of low wind
and hydropower generation potential and high air temperatures. Identified
members, periods, or climate conditions of concern can be selectively down-
scaled and fed back into planning or resource adequacy modeling, maximizing
the value of high resolution downscaled data. This process requires bottom-up
trans-disciplinary collaboration between energy system and climate modellers
[25].

In using climate data with poor temporal (daily) resolution, our analysis
suffers from two shortfalls. First, we are unable to capture the diurnal pattern
of solar power in which it does not generate power at night, potentially bias-
ing our investment decisions and resource adequacy analyses in favor of solar
power. Second, because we do not resolve periods within the day, we are unable
to include intra-day electricity storage in our planning or resource adequacy
modeling. Intra-day storage, particularly utility-scale lithium-ion facilities, is a



RDM decarbonization 19

rapidly growing source of grid capacity and flexibility, particularly in Califor-
nia [79, 80]. This flexibility and capacity could provide valuable when adapting
to climate change and increasing intensity and frequency of extreme weather
events. While our LENS2 climate dataset is unable to capture this value,
implementation of our framework per the above guidelines would enable stake-
holders to capture the value of storage for climate adaptation. Daily resolution
could also explain the lack of investment in interregional transmission capac-
ity, since short-term (sub-daily) peaks in wind and solar generation drive value
for expanded inter-regional transmission. Prior research on decarbonization
scenarios for the Western United States using high resolution historic weather
data finds significant transmission expansion in cost-optimal futures [8, 81].

Additional opportunities for extending our research exist. We do not con-
sider changes in demand due to adoption of new technologies, e.g. heat pumps
to electrify space heating or space cooling in response to increasing tempera-
tures. In winter peaking regions like the Northwest, electrified heating through
heat pumps can lead to higher demand in the winter months, introducing
interactions between decarbonization and climate change that could affect
our SAC calculations. In the Northwest and other regions with historically
low space cooling penetrations, adoption of space cooling could also interact
with increasing extreme heat to exacerbate summer peak demands. Incorpo-
rating the effect of such demand-side changes in our models will allow us to
make accurate assessment of future fleets’ robustness [9]. Future research could
also extend our framework to incorporate additional robustness concepts. For
instance, in practice utilities design future systems that meet certain resource
adequacy thresholds, e.g. the 1-in-10 standard, which could be captured using
a satisficing metric. While we focus on the year 2040 when assessing resource
adequacy of alternative systems against potential climate realizations, future
research could also consider the temporal evolution of system outcomes under
climate change. Doing so could illuminate trade-offs in the near- to long-term
of decarbonization pathways to climate change. Our framework could also be
extended to planning of other power systems in the United States and glob-
ally, which will also grapple with climate-change-driven impacts on demand
and supply [82]. Specific insights, though, will vary given region-specific con-
texts that will moderate impacts of climate change, e.g. regions will vary in
their reliance on hydropower and need for space heating and/or cooling.

Our framework provides a practical way for real-world system planners and
utilities to better account for climate-related uncertainty, whether planning
for individual or multiple regions in the Western United States or elsewhere.
Regulators could also require system planners to use our framework dur-
ing Integrated Resource Plan (IRP) proceedings to understand trade-offs
between improved resource adequacy and greater consumer costs. Many sys-
tem planners use third-party software, e.g. PLEXOS, to make long-term plans.
Modifying the underlying mathematical formulation of such software is chal-
lenging for end users. Instead, our framework requires changes to model inputs
and additional processing of model results, a more feasible undertaking. The
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key element of our analytical approach is to stress test alternative investment
plans (or decarbonization pathways) against potential climate realizations to
identify system vulnerabilities and challenging climate conditions, then feed
identified challenging conditions back into decisionmaking. Energy system
planners will use planning processes that diverge from our methods in sev-
eral ways. Despite these differences, planners can adopt the key element of our
analysis into their planning processes to better deal with climate-related uncer-
tainty by following these guidelines. First, planners should identify a range of
climate realizations of interest, ideally in collaboration with climate scientists.
These realizations will likely have higher resolution than our LENS2 climate
dataset, requiring planners to sample periods to include in their planning
model given computational constraints. Planners can adapt their sampling
procedures or adopt new procedures designed for future climate data [83]. In
either case, sampled time periods will not capture the full range of weather
conditions that could affect future power systems. Stress testing alternative
decarbonization pathways to the full range of weather, the key element of our
framework, can therefore generate crucial insights into system vulnerability
when sampling time periods for planning. Second, planners should analyze
alternative decarbonization pathways that stem not from climate variability,
but instead from other sources of uncertainty that they typically focus on, e.g.
policy, emissions reduction target, or technology availability. With our frame-
work, planners can understand vulnerabilities of these alternative pathways to
future climate change. Third, planners can feed identified vulnerabilities and
meteorological drivers of those vulnerabilities back into their planning pro-
cess, e.g. as additional sampled periods, to identify more robust investment
strategies. Finally, our framework can illuminate investment pathways robust
to climate change, but investment strategies should be coupled with adaptive
planning [34] to ensure continued robustness under climate uncertainty. By
following these guidelines, our framework can help stakeholders identify future
power systems that are robust to climate change and that simultaneously
advance reliable, affordable, and clean objectives.
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