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Abstract. Advancements in open-source pre-trained backbones make it
relatively easy to fine-tune a model for new tasks. However, this lowered
entry barrier poses potential risks, e.g., bad actors developing models for
harmful applications. A question arises: Is possible to develop a pre-trained

model that is di!cult to fine-tune for certain downstream tasks? To begin
studying this, we focus on few-shot classification (FSC). Specifically, we
investigate methods to make FSC more challenging for a set of restricted
classes while maintaining the performance of other classes. We propose to
meta-learn over the pre-trained backbone in a manner that renders it a
“poor initialization”. Our proposed Learning to Obstruct (LTO) algorithm
successfully obstructs four FSC methods across three datasets, including
ImageNet and CIFAR100 for image classification, as well as CelebA for
attribute classification.

1 Introduction

Open-sourced and pre-trained models have helped to make tremendous progress
in computer vision and machine learning research [6]. These open-source models
improve the reproducibility of research and allow for fair comparisons across the
models [48]. With the accessible pre-trained model such as image classifiers [19,
21, 42] trained on ImageNet [7], much research spurred out of these backbones
building on top of them, e.g., detection [30, 41], segmentation [18, 32], and many
other applications based on transfer learning [22, 26]. However, as computer vision
and fine-tuning methods improve, open-sourced model weights may become a
double-edged sword. With the ability to quickly fine-tune a model to a new task
with few training samples, the entry barrier to developing a working computer
vision system on a new task is greatly lowered; this includes bad actors developing
potentially harmful applications, e.g., the ability to quickly train models on human
subjects which may raise privacy concerns [35, 61]. In this work, we ask the
following question:

Is possible to develop a pre-trained model that is di!cult to fine-tune for

certain downstream tasks?

If we succeed, the pre-trained models can be released to support scientific research
while addressing safety concerns. To begin this endeavor, we focus on the task
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Fig. 1: Learning to Obstruct (LTO) few-shot learning paradigm. Without

LTO : after the adaptation of few-shot learner F , the model can classify classes from R
and R→ correctly. With LTO : By modifying the pre-trained model parameters ωp via
our proposed method A before the adaptation of F , the model fails to generalize to
restricted class set R while maintaining its performance in other class set R→.

of few-shot classification (FSC). We investigate whether it is possible to have
a pre-trained model that FSC performs poorly on a set of restricted classes
while remaining competitive on the remaining classes. We selected FSC to
study as it is a well-established area with proper benchmark and fine-tuning
procedures [9, 14, 20, 46, 47, 60, 63] using pre-trained ImageNet backbones, e.g.,
ResNet [19], and more recently on large-scale language and vision backbone, e.g.,
CLIP [38].

To achieve this goal, we propose Learning To Obstruct (LTO), a MAML [10]-
like algorithm, that learns a poor initilization w.r.t. an FSC algorithm for the
set of restricted classes. We evaluate the proposed LTO algorithm by conducting
experiments on two few-shot classification setups: (a) the classic N-way-K-shot
setting using ProtoNet [46] and MetaOptNet [28]; (b) the more recent language-
vision few-shot learning setting using CoOp [63] and Tip-Adapter [60]. On
ImageNet [7] and CIFAR100 [27], we show that LTO successfully obstructs the
learning of FSC methods, achieving lowered accuracy on restricted classes and
maintained competition accuracy on other classes. Lastly, we also experimented
with applying LTO for attribute learning on the CelebA dataset [31].
Our contributions are as follows:

– We propose the task of learning to obstruct FSC from learning in restricted
classes.

– We present LTO, a meta-learning algorithm, that learns poor backbone
initialization for obstructing FSC methods.

– We conduct extensive experiments validating the e!ectiveness of LTO on four
di!erent FSC algorithms on ImageNet, CIFAR100, and CelebA datasets.

2 Related Work

Few-shot learning. Learning from limited labeled data is a crucial task in
computer vision, which is known as few-shot learning (FSL) [9]. The mainstream
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of FSL can be categorized into three main branches: metric-based [16, 34, 37,
46, 52, 59], optimization-based [10, 12, 23, 39, 40], and augmentation-based
methods [4, 17, 43, 54]. In this work, we focus on few-shot image classification [2,
3, 24, 49, 55, 58], i.e., FSL but for image classification.

With the availability of pre-trained backbones, FSC methods now use pre-
trained weights for initialization [36]. The choice of pre-trained weights varies
between the methods. For example, a common choice is pre-training on large-
scale image classification tasks [7, 19]. More recently, the use of large-scale
language and vision backbones have also been explored. For example, CLIP [38]
and DeCLIP [29] have demonstrated remarkable capabilities in learning zero-
shot transferable features across diverse datasets and domains. Building on
top of these pre-trained backbones, CoOp [63], CLIP-Adapter [14], and Tip-
Adapter [60] show that the model performance can be further improved by
prompt optimization [63], fine-tuning the introduced light-layer “Adapter” [14]
or even training-free adaptation [60]. Without any restriction on the learnable
classes, one can easily apply these few-shot methods on pre-trained backbones,
even for classes with potential harm.

Machine unlearning. In machine unlearning, a model is trained to forget
specific class(es) of data while retaining the memory of the rest without re-
training from scratch. This concept is encapsulated in a data-forgetting algorithm
proposed by Cao and Yang [1]. For example, Golatkar et al. [15] trained two
separate networks: the core model and a mixed-linear model for unlearning
purposes. Tarun et al. [51] introduced an error-maximization-based method to
learn a noise matrix for the class to be forgotten. Recently, with the pre-trained
language and vision backbone, machine unlearning is also used for de-biasing
by forgetting certain attributes of the images. Wang et al. [53] removed the
dimensions of CLIP embeddings that are highly correlated with the target
attributes. Foster et al. [11] propose SSD, i.e. selective synaptic dampening, a
swift and e!ective retrain-free method for machine unlearning, utilizing a two-
step process to identify and diminish crucial parameters without the need for
long-term storage of training data. We note that the proposed task of obstructing
FSC is not machine unlearning. In machine unlearning, the goal is the “removal
of” certain classes, whereas our goal is the “prevention of learning” certain classes.

Data poisoning attacks. As the proposed LTO can be viewed as “ruining”
the backbone for the restricted classes, another potential way to accomplish that is
through data poisoning attacks. Specifically, data poisoning attacks make changes
to the training data to corrupt models’ test-time behavior [5, 25, 44, 45, 56]. In
the context of few-shot learning, Oldewage et al. [33] poisoned the support data
in meta-testing, and achieved misclassification for the query prediction. However,
this poisoning approach falls short of o!ering genuine protection for specific
restricted classes. Individuals could still collect a few clean images for FSC. In
contrast to these approaches, our proposed method obstructs the pre-trained
backbone against the restricted classes.
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3 Preliminaries

As our proposed learning to obstruct can be thought of as learning an initialization
for few-shot classification, we provide a brief review of how to learn a good
initialization, specifically on MAML [10], followed by the background of few-shot
classification [3, 20, 52].

Learning a good initialization. At a high level, MAML is an algorithm
that aims to learn a “good initialization” for a model being trained on a new
task using gradient-based methods. MAML assumes a distribution of tasks P (T )
where each task T (t) = (S(t), Q(t)) → P (T ) is comprised of a support set S and
a query set Q.

The task of learning a good initialization is then formulated as the following
optimization problem:

ωω = arg min
ε

ET (t)↑P (T )

[
LM

(
U(ω, S(t)), Q(t)

)]
, (1)

where LM denotes a loss for the task in MAML, and U denotes a learner function
that updates the model parameter ω ↑ Rd, e.g., MAML chooses U to be a
single gradient update. Intuitively, L is evaluating the quality of ω when used as
initialization to the learner U . That is, MAML is searching for a good initialization
such that after applying the learner U the model performs well.

To solve the optimization problem in Eq. (1), MAML uses gradient descent
and approximates the gradient only using first-order terms. In summary, the
optimization problem in Eq. (1) can be decomposed into two parts: (a) a learner
function U that modifies the model parameters, and (b) an outer optimization
that minimizes L usually solved using gradient descent for deep nets. This general
framework serves as the basis for our proposed LTO algorithm.

Few-shot classification (FSC). The goal of few-shot classification is to
train a model such that it generalizes well to novel tasks T (T+1:T+M) → P (T )
given a dataset of training tasks T (1:T ) → P (T ). For few-shot classification, the
support set S = {(xs,ys)} and query set Q = {(xq,yq)} contains input images
x with the corresponding groundtruth y in the class space Y(t) of each task.
Typically, the task follows a N -way-K-shot setup, i.e., each support set S contains
N classes and K examples per class.

For most FSC methods [46, 49, 52], a prediction ŷq given xq is made using
a predictor F̂ , i.e., ŷq = F̂ (xq, ω, S(t)), where the prediction depends on the
examples in the support set S(t). Note, ŷq is a vector of the predicted probability
of each class. To train this model, FSC methods train the model using all the
training tasks T (1:T ) = {T (1), . . . , T (T )}, i.e.,

LF (ω, T (1:T )) =
∑

Q(t)↓T (1:T )

∑

(xq,yq)↓Q(t)

ε(yq, ŷq) (2)

with ε denoting the cross-entropy loss on a single sample. Optimizing Eq. (2)
gives rise to a learner function

F (ω, T (1:T )) = arg min
ε

LF (ω, T (1:T )), (3)
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which outputs the optimal model parameters ω̃ given the set of training tasks
T (1:T ). In summary, a FSC algorithm F = (F̂ , F ) is composed of a F̂ yielding
the prediction for each query sample and F learner function that updates the
model parameters towards the solution that minimizes the loss Eq. (2).

For FSC method F using deep-nets, the model parameter ω = [ϑ,ϖ] ↑ Rd is fur-
ther decomposed into two parts: ϑ for the parameters of the backbone gϑ and ϖ for
the parameters of the classifier fϖ used for constructing the prediction function F̂ .
The choice of gϑ and fϖ depends on the FSC method. For example, ProtoNet [46]
chooses a classifier fϖ to be the normalized distance of an input query’s feature
to the prototypes, i.e., F̂ (xq, [ϑ, ϖ], S)[k] = exp(↔d(gω(xq),rk))∑

k→ exp(↔d(gω(xq),r→
k))

where d corre-
sponds to a distance function with prototypes rk = 1

Sk

∑
(xs,ys)↓S gϑ(xs) defined

as the average of samples in the support set with the label k denoted as Sk.
Next, to further improve model performance, instead of training ϑ from scratch,

recent works [2, 3, 20] introduce pre-trained backbones ϑp as the initialization to
ϑ when the training a few-shot classifier.

Language and vision based FSC. CLIP [38] is a powerful foundation
model that encodes rich language and vision information. It serves as a strong
pre-trained backbone ϑp for few-shot or even zero-shot learning. CLIP consists
of a text encoder and a visual encoder, i.e., ϑp = [ϑp

text, ϑ
p
img]. To build a few-

shot classifier [14, 50, 60, 62, 63] over classes Y with CLIP, the predictor F̂ is
defined as follows: F̂ (xq, [ϑ,ϖ], S)[k] =

exp(v↭
kvxq )∑

k→ exp(v
↭
k→↑Yvxq )

, where vx = g[ϑimg,ϖ](x)

and vk = g[ϑtext,ϖ](k) corresponds to image and class features extracted from the
encoders g. We note that there are “implicit” dependencies on the support set
S, as the encoders g are fine-tuned on S in this language and vision-based FSC
methods.

4 Approach

In this paper, our goal is to obstruct the learning of specific classes in a restricted
class set R, when utilizing few-shot classification (FSC) methods. At the same
time, we aim to ensure that the model’s performance in the other class set
R↗ remains una!ected. We consider the scenario where the FSC algorithms
F = (F̂ , F ) using a pre-trained backbone and are known to the obstructor. To
achieve this, we introduce the Learning To Obstruct (LTO) algorithm A that
modifies in the pre-trained backbone’s parameters ϑp

to create a poor initialization

A(ϑp). When the FSC algorithm is applied to A(ϑp), the model will perform
poorly on restricted classes but not the other classes.

4.1 Learning to obstruct

Problem formulation. As the name suggests, LTO is formulated as a learning
problem. In this learning problem, we are given a distribution of tasks P (T ) for
which we can sample tasks T (t) containing the support and query set (S(t), Q(t)),
and a set of restricted classes R. We further define the set of “other classes” as
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R↗ = {k ↑ Y : k /↑ R}, where Y =
⋃

t Y(t) denotes the set of all possible classes
across all tasks.

For our algorithm, we further split the data into two parts,

D(t)
obs

= (S(t)
obs

, Q(t)
obs

) and D(t)
fsc

= (S(t)
fsc

, Q(t)
fsc

). (4)

The D(t)
obs

split is for evaluating the quality of the obstruction, and D(t)
fsc

is to be
used for training by the FSC learner function F . Using these splits, we formulate
the Learning To Obstruct (LTO) algorithm A as an optimization problem:

min
ϑ

ET (t)

[
LR→

(
[ϑ̃, ϖ̃], D(t)

obs

)
↓ LR

(
[ϑ̃, ϖ̃], D(t)

obs

)]
s.t. ϑ̃, ϖ̃ = F ([ϑ,ϖ], D(t)

fsc
).(5)

The objective in Eq. (5) consists of two terms LR→ and LR which corresponds to
the few-shot learning loss LF in Eq. (2) but evaluated only on other classes R↗

and restricted classes R respectively for the query set. Formally,

LR([ϑ̃, ϖ̃], D(t)
obs) = LF

(
[ϑ̃, ϖ̃], (S(t)

obs
, {(xq,yq) ↑ Q(t) ↔ yq ↑ R})

)

and vice versa for R↗. Intuitively Eq. (5), inspired by MAML, aims to learn a poor
initialization of model weights for classes in R, we first let ϑ explore the landscape

Algorithm 1 Learning to Obstruct (Our method)
Input: pre-trained backbone: ωp, task distribution: P (T ),

epoch: I, learning rate: ε, restricted classes: R, FSC loss:
LF , few-shot learner: F .

Output: Obstructive backbone: ω
1: Intialize ω = ωp, and ϑ following the FSC method.
2: for i = 1 to I do

3: Sample batch B : {T (t)}|B|
t=1 → P (T ),

where T (t) = (D(t)
fsc

,D(t)
obs

)
4: for t = 1, . . . , |B| do

5: ω̃, ϑ̃ = F ([ω,ϑ],D(t)
fsc

)

6: ϖω(t) = ↑ω

[
LR→

(
[ω̃, ϑ̃],D(t)

obs

)
↓ LR

(
[ω̃, ϑ̃],D(t)

obs

)]

7: end for

8: ω ↔ ω ↓ ε
∑|B|

t=1 ϖω(t)

9: end for

10: return ω

using the FSC’s learner
F , then we collect the
gradients by maximiz-
ing LR and at the
same time minimize
LR→ .

Optimization. To
solve the optimization
problem in Eq. (5),
we use a gradient-
based method. We il-
lustrate the overall al-
gorithm in Alg. 1 us-
ing mini-batch gra-
dient descent. Given
a randomly sampled
batch of tasks B, the
FSC learner F updates the model parameters based on D(t)

fsc
separately for each

task to produce updated parameters ϑ̃ and ϖ̃. To backpropagate through, the
learner defined in Eq. (3), we approximate the arg min with unrolled gradients.

Next, based on whether the example is of a class belonging to R, we compute
LR and LR→ over D(t)

obs
with updated parameters ϑ̃ and ϖ̃. We then compute

the gradient ϱϑ(t) with bacpropgation on LR→ ↓ LR w.r.t. ϑ. After collecting
all the ϱϑ(t) within one batch, we update ϑ with the aggregated gradient. This
training procedure allows the model parameters to be steered to an unfavored
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spot conditioned on R while maintaining or even enhancing its performance of
generalizing to unrestricted classes after applying a downstream few-shot learner.

From classification to multi-label classification. Beyond the classifica-
tion formulation, LTO can also be formulated to obstruct attribute learning. We
treat attribute learning as a multi-label classification problem, i.e., each input x is
labeled with a vector label k ↑ N|A|, where A denotes the set of all attributes. For
each attribute a ↑ A, an algorithm F builds a designated predictor and introduces
additional parameters ϖa to build a model with parameters ω = [ϑ,ϖ1:|A|].

In attribute learning, LTO aims to obstruct a set of restricted attributes
R ↗ A. The algorithm follows Alg. 1, except we change the objective in Eq. (5)
to the following:

LR([ϑ̃, ϖ̃1:|A|], D
(t)
obs) =

∑

a↓R
LF

(
[ϑ̃, ϖ̃a], D(t)

obs

)
, (6)

and vice versa for LR→ .

4.2 Additional Details

Gradient computation for ϑ. Implementation-wise, to collect all ϱϑ(t) for
each task T (t) within one batch with the same initial parameters, we restore [ϑ,ϖ]
to the values at the beginning of each epoch. That is, after collecting all ϱϑ(t)s
and updating [ϑ,ϖ] at the end of the epoch, we cache the updated parameters
for future restoration.

Resampling prompts and texts for CLIP-based FSC. In CLIP-baed
FSC, a prompt set P contains text templates to guide the output of the text
encoder. Each prompt p ↑ P usually takes the form of “a photo of {k}” in image
classification, where k ↑ Y is a class label. The classifiers in CLIP-based FSC are
usually built on the text features of P and Y . That is, for each class label k ↑ Y ,
the class feature

vk = g[ϑtext,ϖ](k) = Aggp↓Pg[ϑtext](p(k)), (7)

where Agg(·) is an aggregaion function.
Due to the limitation of GPU memory, we do not compute the gradients

of text features generated from all prompts P and all classes Y. Instead, for
every few steps, we use an unbiased estimate by re-sampling a subset of prompts
P ↗ ↗ P and classes Y ↗ ↗ Y. For each k ↑ Y ↗, its correspondent vk is defined as
Aggp↓P→g[ϑtext](p(k)), and only the gradients from these tensors {vk | k ↑ Y ↗} are
backpropagated.

5 Experiments

We first describe how we construct the restricted class set followed by the
dataset preparation in our experiments. Dataset-specific details are described
subsequently.

Selection of restricted classes R. To resemble real-world scenarios, choose
the set of restricted classes including individual classes that are related to each
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92% → 66% 84% → 81% 91% → 89%

device bird dog
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52% → 50%
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Fig. 2: Selection of R on image classi-

fication. The objective of LTO on image
classification is to minimize the top-1 Acc.
on R while maintaining the top-1 Acc.
on R→. In this example, R = Ydevice while
R→ = Ybird

⋃
Ydog. LTO decreases the top-

1 Acc. on R from 92% to 66%, while the
drops on R→ are no more than 3%.

92% → 66% 84% → 81% 91% → 89%

device bird dog

RDA

R′

R DF

Deval

Y

R′

→Acc. w/o LTO      Acc. w/ LTO →AUROC w/o LTO        AUROC w/ LTO

R

R′

beard?

hat?

glasses?

77% → 63%

52% → 50%

88% → 88%

Fig. 3: Selection of R on attribute

learning. The objective of LTO on at-
tribute learning is to minimize the AU-
ROC on R while maintaining the perfor-
mance on R→. In this example, R = {bald}
while R→ = {hat, glasses}. LTO decreases
the AUROC on R from 77% to 63%, while
the drops on R→ are no more than 2%.

other. Specifically, we divide Y into N ↗ superclasses {Y1, · · · , YN →}, where each
Yn consists of k with similar semantics following existing work [8, 27]. Once
superclass Yn is picked then all subsuming classes k ↑ Yi are categorized into
R while the remaining classes are put into R↗. Fig. 2 provides an illustration
where we extract 4 superclasses for image classification. Similarly, in Fig. 3, we
illustrate how the restricted classes are chosen for attribute learning.

Training and evaluation data split. To show the obstruction e!ect of
LTO, we use FSC algorithm F with backbone parameters initialized as A(ϑp). To
avoid data/class information leakage in the experiment setup, carefully consider
three disjoint dataset splits {DA, DF, Deval} each corresponds to data used by
LTO, by FSC in meta-training, and the evaluation set for meta-testing. We note
that DA is used for sampling Dfsc and Dobs in Eq. (4), i.e., DA =

⋃|B|
t=1 T (t) =

⋃|B|
t=1(D

(t)
fsc

⋃
D(t)

obs).
Baselines. We compare LTO to two baselines:

– OnlyR aims to “ruin” the backbone by directly maximizing the loss for the
restricted set R, i.e.,

max
ϑ

ET (t)

[
LR

(
[ϑ,ϖ], T (t)

)]
. (8)

– NoF chooses to minimize LR→ ↓ LR without the consideration of the FSC
algorithm F. This is equivalent to removing the computation of ϑ̃ in LTO, i.e.,

min
ϑ

ET (t)

[
LR→

(
[ϑ,ϖ], T (t)

)
↓ LR

(
[ϑ, ϖ], T (t)

)]
. (9)

For both baselines, for each FSC method, we use the same amount of data and
hyperparameters as in LTO for all superclasses.

5.1 Obstruct Classical Few-shot Classification

We perform experiments by choosing F to be classical FSC methods, including,
ProtoNet [46] and MetaOptNet [28]. We demonstrate that by incorporating our
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LTO algorithm A, the performance of F(A(ϑp)) in the restricted class set R
declines significantly while the performance in R↗ is mostly maintained.

Experiment setup. Following the setting of Hu et al. [20], we choose
a pre-trained ResNet18 [19] as ϑp. For R selection on ImageNet, we choose
to group classes based on the superclasses provided by Engstrom et al. [8].

92% → 66% 84% → 81%91% → 89%

device bird dog

R

R′

DA

R′

R DF

Deval

Y

R′

→Acc. w/o LTO      Acc. w/ LTO →AUROC w/o LTO        AUROC w/ LTO

R

R′

beard?

hat?

glasses?

77% → 63%

52% → 50%

88% → 88%

Fig. 4: Data split for LTO on

classical FSC. For LTO on clas-
sical FSC, we split the dataset
into three disjoint sets DA, DF,
and Deval. The set DA is for LTO;
the set DF is for training F after
LTO; Deval is for evaluation.

In total, there are 10 superclasses and each su-
perclass subsumes 38 of the original ImageNet
classes. For each experiment, we select one out of
ten superclasses as R. We use the split of the first
superclass (id = 0) as the validation task for tun-
ing hyperparameters. We report the result for the
rest of the superclasses from id = 1 to 9. Addi-
tional details of the superclass are provided in the
appendix. For data split, we visualize it in Fig. 4.
Since we are evaluating the performance of F in
novel classes, both R and R↗ in Deval should not
show up in DF. Thus, We further split R↗, with
70% classes for DF and 30% for Deval.

Training details. For all of the experiments,
we ran 200 steps of obstructive learning with a
batch size of 20. Within each obstructive step,
we ran 20 gradient steps for the FSC learner F .

Evaluation metric. We assess the quality of obstruction by measuring
the gap in top-1 classification accuracy with and without LTO. We denote the
decrease in top-1 Acc. of FSC when using LTO for the restricted class R and the
other classes R↗ as ςR and ςR→ respectively.

For comparison, we propose the evaluation metric DropRatio@φ denoted as
ϱ@φ = ϱR

ϱR→
, which corresponds to the ratio of the accuracy drop of the restricted

classes over the other classes. We select the model when the accuracy drop on
the other classes ςR→ is closest to φ%. The higher the drop ratio, the better the
obstruction.

Fig. 5: Accuracy (%) of classical few-

shot learning on ImageNet. Gaps be-
tween di!erent line types show the e!ect of
LTO. Gaps between di!erent colors show
the e!ect on R and R→.

Results. In Fig. 5, we visualize the
average accuracy vs. the obstructive
learning steps on all nine superclasses
of ImageNet with and without LTO
on the selected classical FSC meth-
ods. The gap between the solid and
dashed lines illustrates the accuracy
drop due to LTO, while the blue and
orange lines highlight the restricted
and other classes respectively. As can
be observed, the gaps are consistently
observed across all the plots. For
MetaOptNet, we do not observe 2%

drop in R↗ within 200 steps, hence we selected the model of the last step.
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Table 1: DropRatio of LTO on classi-

cal few-shot learning. We report ϖ@2 on
ImageNet over 9 selected superclasses. All
experiments are 5-way classification.

F R 1-shot 5-shot
OnlyR NoF Ours OnlyR NoF Ours

P
ro

to
N

et
[2

0,
46

]

1 1.07 2.21 7.85 0.93 0.96 1.69

2 1.22 3.38 3.93 1.15 2.31 2.63

3 1.05 2.15 3.21 0.94 1.98 0.05
4 1.09 6.91 6.60 1.36 2.78 2.79

5 1.37 2.54 1.89 1.25 1.39 3.19
6 1.05 4.82 6.62 1.33 2.59 2.90

7 1.05 2.96 4.30 1.08 2.33 4.51

8 1.00 4.62 2.59 0.84 0.89 3.16

9 1.03 4.28 2.80 1.02 2.82 0.69

Avg. 1.10 3.77 4.42 1.10 2.00 2.40

M
et

aO
pt

N
et

[2
0,

28
]

1 2.35 12.06 8.71 2.64 16.45 14.08
2 2.21 7.14 6.41 2.02 6.99 11.32

3 2.08 3.53 5.22 1.74 5.31 7.84

4 2.52 12.05 9.42 2.39 14.10 14.98

5 1.56 4.94 6.84 1.53 7.34 10.07

6 1.57 14.54 15.11 2.06 13.38 22.44

7 1.60 8.88 9.61 1.91 9.77 13.94

8 2.27 13.53 17.01 1.51 12.87 21.57

9 1.37 1.16 1.34 1.63 4.79 4.34

Avg. 1.95 8.65 8.85 1.94 10.11 13.40

Next, we report the proposed evalu-
ation metric of DropRatio with φ = 2,
i.e., ϱ@2 when obstructed using the
baselines and our LTO for comparison.
Intuitively, this corresponds to the ra-
tio between the gap (between orange
and blue lines) in accuracy at the ver-
tical line shown in Fig. 5. Results are
shown in Tab. 1. Higher the DropRa-

tio indicates stronger obstruction on
the FSC method. For the column of
LTO highlighted in pink, we observe
that on average ϱ@2 is much larger
than 1 under all settings, which means
that our method can obstruct R e!ec-
tively without ruining the accuracy in
R↗. Overall, our method worsens the
model’s performance in the restricted
classes while maintaining the accuracy
of other classes.

5.2 Obstruct CLIP-based Few-shot Classification.

We perform experiments using CLIP-based few-shot algorithms, including CoOp [63],
TipAdapter [60], and a simple baseline method, named Cross-Entropy Fine-
Tune(CE), which optimizes the CLIP’s parameters by minimizing cross-entropy
loss. We demonstrate that LTO can also obstruct foundation models with rich
knowledge of both language and vision.

Experiment setup. We select CLIP-ResNet50 [38] as the pre-trained back-
bone. We use ImageNet [7] and CIFAR100 [27] to evaluate the performance of
our LTO on clip-based image classification. For restricted classes R selection on
CIFAR100, we follow the superclass groups provided by Krizhevsky et al. [27].
The 100 classes in CIFAR100 are categorized into 20 superclasses, each containing
five classes. For each experiment, we select one of the 20 superclasses as R while
the rest as R↗. The first superclass (id = 0) is reserved as the validation task for
hyperparameter tuning. For R selection on ImageNet is the same as in Sec. 5.1.

Unlike classical FSC methods, CLIP-based FSC methods [60, 63] focus on
learning for one single task, i.e., the |Y|-way K-shot support set with the entire
testing split as the query set. Hence, DA, DF, and Deval all have access to every
classes in R and R↗. Additionally, since few-shot learning is motivated by the
scarcity of high-quality labeled data, a!ecting both LTO and FSC for evaluation,
we set DA to have the same few-shot setting as DF. Specifically, for both ImageNet
and CIFAR100, we sample a |Y|-way 5-shot set from the training split as DA and
another |Y|-way 5-shot set as DF. For each batch task T (t), we sample a |Y|-way
1-shot set from DA as D(t)

fsc and a |Y|-way 4-shot set as D(t)
obs.
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Table 2: DropRatio of Clip-based LTO

on CIFAR100 and ImageNet. We report
ϖ@2 on CIFAR100 and ImageNet over 9
selected superclasses. Note, superclasses are
not the same across datasets.

F R CIFAR100 ImageNet
OnlyR NoF Ours OnlyR NoF Ours

C
E

1 3.68 17.66 14.55 2.79 4.82 9.93

2 0.69 9.87 15.22 2.09 0.88 4.84

3 1.71 3.88 9.96 1.08 1.18 6.89

4 0.35 2.71 15.99 2.01 1.11 9.15

5 1.66 4.09 4.56 1.20 0.96 2.72

6 0.31 13.26 18.00 7.64 6.06 15.86

7 0.84 3.05 15.64 5.89 2.77 8.84

8 0.60 1.09 10.82 0.97 0.78 6.59

9 3.45 3.52 3.17 1.53 2.30 4.02

Avg. 1.48 6.57 11.99 2.80 2.32 7.65

C
oO

p
[6

3]

1 6.56 8.44 5.91 1.15 2.23 6.15

2 0.56 3.49 3.03 1.02 2.47 8.49

3 0.83 6.56 8.96 1.51 4.54 3.29
4 0.73 7.95 6.99 0.57 2.97 5.55

5 1.21 3.89 1.58 1.30 2.70 1.93
6 0.31 5.94 6.80 0.84 1.91 5.02

7 1.82 5.78 11.40 1.13 2.84 3.91

8 1.35 4.85 12.02 1.08 1.44 3.01

9 2.83 8.44 3.87 2.14 3.47 3.95

Avg. 1.80 6.15 6.73 1.19 2.73 4.58

T
ip

-A
da

pt
er

[6
0]

1 3.68 9.57 15.09 1.37 2.78 5.92

2 0.85 3.41 17.12 2.04 3.26 4.89

3 1.93 10.21 6.39 1.76 2.83 5.59

4 0.62 1.07 7.48 1.76 4.00 7.49

5 4.63 3.04 6.78 1.27 2.25 3.25

6 3.45 3.66 8.64 4.74 3.99 8.57

7 0.92 4.47 11.17 3.10 2.36 7.41

8 1.28 0.82 6.39 1.81 1.88 4.97

9 1.35 3.65 12.39 1.62 1.41 4.64

Avg. 2.08 4.43 10.16 2.16 2.75 5.86

Training details. For CoOp [63]
and TipAdapter [60], we follow their
training hyperparameters when used
for evaluating LTO. Additional train-
ing details are in the appendix.

Results. We report on combina-
tions of LTO methods and few-shot
algorithms F. Each A(ϑp) under the
same adaptation algorithm F for eval-
uation. All F are trained with 5-shot
data. In Tab. 2, we report ϱ@2 on CI-
FAR100 and ImageNet over the first 9
superclasses. On both datasets, intro-
ducing F for an intermediate ϑ̃ gener-
ally brings a consistent improvement
on ϱ@2. This suggests LTO is e!ective
at obstructing the restricted classes
without hurting other classes. Overall,
on ImageNet we can obstruct the per-
formance of CE in R by 7.65%, CoOp
by 4.58%, and Tip-Adapter by 5.86%.

Data e!ciency. It is intuitive
that after applying LTO, if more data
is available to the FSC T , then can
overcome the obstruction. In Tab. 3,
we test out this scenario by applying
more data in the FSC methods for eval-
uation, denoted as F↗, instead of using the same amount of data for both F and
F↗. We study the performance on superclass id = 1. We note that DA is still a
5-shot set. A data multiplier of value mdata↘ denotes that the training data of
F↗ is (5mdata)-shot. We observe that for CE and CoOp [63], it is impactful for
them to use more training data, yet it cannot fully overcome the obstruction.
In the case for Tip-Adapter [60], the di!erence between using FSC with 20-shot
and 5-shot is 2.24% on ϱ@2. We can conclude that the F↗ for evaluation must
leverage a lot more data than that F in LTO had used to recover the degraded
accuracy. Even then, only a partial of that performance is recovered.

Time E!ciency. Next, we study whether training longer in the FCS meth-
ods can overcome the obstruction caused by LTO. In Tab. 4, we report the ϱ@2
when FSG uses more training epochs. An epoch multiplier of value mepoch↘
denotes that the training epoch of FSG is m times the one it originally was. We
observe that although increasing the training epoch decreases ϱ@2, the gap is
not fully recoverable. Especially for Tip-Adapter [60], by training for 4↘ longer
for, the improvement is a 2.76% on ϱ@2. However, in the case of CoOp [63], it
is impactful for them to use more training epochs. It is shown that the F↗ for
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Table 3: Data e!ciency.

We report the ϖ@2 of our
LTO on ImageNet obstruct-
ing superclass id=1 when
|DF| is mdata, i.e. the data
multiplier, times of |DA|.
TA: Tip-Adapter [60]. CO:
CoOp [63].

F mdata

1↗ 2↗ 3↗ 4↗

CE 9.93 6.34 2.76 2.82
CO 6.15 2.46 2.26 2.32
TA 5.92 3.09 3.06 3.76

Table 4: Time e!ciency.

We report the ϖ@2 of our
LTO on ImageNet obstruct-
ing superclass id=1 when
the training epoch of FCS
methods is mtime, i.e. the
epoch multiplier, times of its
original.

F mtime

1↗ 2↗ 3↗ 4↗

CE 9.93 3.06 4.66 3.64
CO 6.15 4.66 2.52 1.99
TA 5.92 2.68 3.41 3.16

Table 5: Cross-(F,F→).
We report the ϖ@2 of
our LTO on ImageNet ob-
structing superclass id=1
when the FSC methods
F and F→ can mismatch.
TA: Tip-Adapter [60], CO:
CoOp [63].

F F→

CE CO TA Avg.

CE 9.93 4.71 7.33 7.32
CO 4.79 6.15 4.34 5.09
TA 4.16 7.75 5.92 5.94

evaluation must have access to a lot more computation resources than what F
had used to overcome some of the degraded performance.

Mismatched FSC. All previous experiments assume, we use the same FSG
method in our LTO and during evaluation. We now experiment with a mismatch
in FSG, i.e., we use F in LTO and another FSC method F↗ for evaluation.
In Tab. 5, we report the ϱ@2 on di!erent combinations of (F,F↗). We observe
that the drop ratio is indi!erent to which F was used during the obstruction.
When the LTO uses Tip-adapter, the di!erence of ϱ@2 between F↗ = CE and
F↗ = Tip-adapter is only 1.76% while F↗ = CoOp is actually more vulnerable
and gain 1.83% on ϱ@2.

5.3 Obstruct CLIP-based Attribute Learning

Experiment setup. We select CLIP-ResNet50 [38] as the pre-trained backbone.
We conduct experiments on the CelebA [31] which contains 40 annotated at-
tributes annotated for face images. We follow the setup by Gannamaneni et al.
[13] and select 12 appearance attributes out of 40, including “EyeClasses”, “Wear-
ing_Hat”, “Bald”, etc. In each experiment, 1 out of the 12 selected appearance
attributes is selected to be the restricted classR, while the rest 11 attributes
belong to R↗. We use the first attribute (id = 0) as the validation task for
tuning hyperparameters. We report the result for the rest of the attributes from
id = 1 → 11. To evaluate the performance of attribute learning we use AUROC
(Area Under the Receiver Operating Characteristic curve) as the main metric.

FSC method. We extend the CE learner from Sec. 5.2 to conduct attribute
learning. Following the naive prompt settings [13], for each attribute a ↑ A, we
build a binary classifier. The classifier consists of two features, a positive and
a negative prompt. The classifier makes a prediction â by determining which
feature has a higher product with the visual feature of input image vx.

Results. In Tab. 6, we report the ϱ@2 of LTO with F = CE on CelebA
attribute learning. We observe consistent drops of AUROC on all attributes, while
some attributes are more vulnerable than others to LTO. Specifically, for ours,
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Fig. 6: Confusion matrix on CelebA attribute learning. Each cell Maa→ = ϱa
→

a /ϱaa
where ϱij denotes the decrease of AUROC in attribute i when LTO obstruct R = {j}
for all i, j ↘ A. Ideally, all non-diagonal values should be as small (blue) as possible.

Table 6: CLIP-based LTO on CelebA

attribute learning. We report the ϖ@5
for each selected attributes.

R OnlyR NoF Ours R OnlyR NoF Ours

1 5.56 2.96 4.04 7 1.69 2.48 2.38
2 1.01 3.58 5.20 8 0.77 0.48 1.62

3 0.79 0.54 1.11 9 7.26 4.13 10.01

4 0.29 0.57 9.48 10 0.87 0.72 0.08
5 0.75 0.96 1.96 11 7.67 1.07 4.94
6 5.40 10.38 31.64 Avg. 3.56 3.10 8.04

attribute “Pale_Skin”(id= 6) is the
easiest to obstruct with ϱ@2 =
31.64% while attribute ‘Gray_Hair”(id=
10) is the hardest to obstruct with
ϱ@2% = 0.08. In comparison to the
baselines, ours also achieves the most
significant ϱ@2 on most attributes.
Overall, our LTO can decrease the av-
erage of AUROC by ϱ@2 = 8.04%.

Confusion among attributes. We define the confusion matrix M ↑
R|A|↘|A| as follows, each cell Maa→ is the ratio ςa→

a /ςa
a where ςi

j denotes the
decrease of AUROC in attribute i when LTO obstruct R = {j} for all i, j ↑ A.
If Maa→ < 1, then the performance drop on attribute a↗ is smaller than the
performance drop on attribute a, which is a success case for our LTO. On the
other hand, if Maa→ > 1, then the performance drop on attribute a↗ is larger than
the performance drop on attribute a, which is considered a failure of obstruction.
This visualization also shows whether two attributes a and a↗ are related during
obstruction, i.e., did LTO obstruct a while unintentionally also obstructing a↗?

In Fig. 6, we visualize the confusion matrices of OnlyR, NoF , and ours on the
12 selected attributes. Ideally, any non-diagonal Maa→ , where a ≃= a↗, should be as
small (blue) as possible. Visually speaking, our LTO method outperforms the two
baselines. LTO successfully lowers the performance of restricted attributes during
obstruction learning. We also observed that certain attribute pairs with a strong
correlation in the confusion matrix of our LTO. For example, it is hard to obstruct
“Blond_hair” without obstructing “Brown_hair”, which is understandable since
the colors are similar. There are also high correlation between (“Gray_Hair”,
“Bald”) or (“No_beard”, “Young”).

Additional comparison with unlearning for obstruction. While ma-
chine unlearning is not designed for obstruction, the unlearning algorithms can be
used to modify a pre-trained model. In this section, we benchmark against machine
unlearning and show that LTO is not just unlearning the classes, but also making

them more di!cult to learn back. We choose SSD [11], a state-of-the-art machine
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unlearning algorithm on CIFAR100 for comparison. The experiment setup follows
the setting in Sec. 5.2. We apply SSD on the pre-trained CLIP-RN50 weights

Table 7: DropRatio of unlearning

method SSD [11] versus our LTO

on CIFAR100. We report ϖ@2 on
CIFAR100 over 9 selected superclasses.
Each method is trained on DA under
two few-shot settings, i.e. 5-shot and
20-shot, but evaluated on 5-shot F.

F R 5-shot DA 20-shot DA

SSD Ours SSD Ours

C
E

1 0.67 14.55 2.22 21.87

2 1.28 15.22 7.62 34.41

3 1.17 9.96 0.36 15.23

4 1.31 15.99 1.69 12.25

5 1.23 4.56 1.23 15.29

6 1.01 18.00 7.57 24.34

7 1.03 15.64 1.14 18.62

8 0.64 10.82 2.76 18.14

9 1.42 3.17 2.23 20.28

Avg. 1.09 11.99 2.98 20.04

C
oO

p
[6

3]

1 0.74 5.91 3.72 21.25

2 1.23 3.03 6.68 16.81

3 1.18 8.96 3.16 9.33

4 1.30 6.99 7.60 14.28

5 1.31 1.58 1.33 11.57

6 1.11 6.80 10.03 20.00

7 0.88 11.40 2.62 11.81

8 0.68 12.02 3.12 26.32

9 1.35 3.87 2.89 16.77

Avg. 1.17 6.73 4.57 16.46

T
ip

-A
da

pt
er

[6
0]

1 0.69 15.09 3.30 11.62

2 1.09 17.12 4.57 9.31

3 1.17 6.39 3.38 9.30

4 1.27 7.48 4.00 6.67

5 1.31 6.78 1.32 9.82

6 1.11 8.64 7.63 14.89

7 0.85 11.17 1.83 12.89

8 0.76 6.39 3.18 14.17

9 1.34 12.39 2.73 7.58

Avg. 1.07 10.16 3.55 10.69

by setting the forget set to be the set of
restricted classes R, while the retain set
is set to R↗. Note that we are considering,
i.e., if DA is 5-shot then forget and retrain
set are also 5-shot.

With the pre-trained model unlearned,
we then apply few-shot algorithms F ↑
{CE, CoOp, TipAdapter} with 100-way 5-
shot to learn over both R and R↗. We
report the drop ratio ϱ@2 as in Tab. 2.
As shown in Tab. 7, the results on the
first 9 superclasses in CIFAR100 show the
averages ϱ@2 of SSD are 1.09/1.17/1.07
for each F while ours are 11.99/6.73/10.16.
We observe that SSD is not able to unlearn
the forget set while maintaining the perfor-
mance on the retain set; We suspect that
this is because SSD is not designed for the
few-shot setting. Hence, we then increase
DA for both methods to 20-shot to study
how the size of the training set a!ects their
performance. Although SSD benefits from
utilizing more training data, 20-shot SSD
is still not comparable to 5-shot ours on
most superclasses. Moreover, 20-shot LTO
outperforms 20-shot SSD significantly un-
der all scenarios.

6 Conclusion

We propose LTO that learns a poor initial-

ization of the backbone to obstruct FSC
on restricted classes. Empirically, LTO suc-
cessfully obstructs four FSC methods over
image classification and attribute classifi-
cation tasks. Please note that we study the
obstruction of FSC with a more significant
objective in mind. We aim to ensure the
safer release of open-source models. By developing pre-trained models that are
di"cult to fine-tune for certain downstream tasks, we can potentially prevent
the misuse of released models on known harmful applications, while maintaining
the open-source culture of the computer vision community. We believe that LTO
on FSC represents a promising step towards this goal.
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