
 | Molecular and Cellular Biology | Research Article

Short-range C-signaling restricts cheating behavior during 

Myxococcus xanthus development

Y. Hoang,1,2 Joshua Franklin,2 Yann S. Dufour,2 Lee Kroos1,2

AUTHOR AFFILIATIONS See affiliation list on p. 14.

ABSTRACT Myxococcus xanthus uses short-range C-signaling to coordinate multicellular 
mound formation with sporulation during fruiting body development. A csgA mutant 
deficient in C-signaling can cheat on wild type (WT) in mixtures and form spores 
disproportionately, but our understanding of cheating behavior is incomplete. We 
subjected mixtures of WT and csgA cells at different ratios to co-development and used 
confocal microscopy and image analysis to quantify the arrangement and morphology 
of cells. At a ratio of one WT to four csgA cells (1:4), mounds failed to form. At 1:2, only 
a few mounds and spores formed. At 1:1, mounds formed with a similar number and 
arrangement of WT and csgA rods early in development, but later the number of csgA 
spores near the bottom of these nascent fruiting bodies (NFBs) exceeded that of WT. 
This cheating after mound formation involved csgA forming spores at a greater rate, 
while WT disappeared at a greater rate, either lysing or exiting NFBs. At 2:1 and 4:1, 
csgA rods were more abundant than expected throughout the biofilm both before and 
during mound formation, and cheating continued after mound formation. We conclude 
that C-signaling restricts cheating behavior by requiring sufficient WT cells in mixtures. 
Excess cheaters may interfere with positive feedback loops that depend on the cellular 
arrangement to enhance C-signaling during mound building. Since long-range signaling 
could not likewise communicate the cellular arrangement, we propose that C-signaling 
was favored evolutionarily and that other short-range signaling mechanisms provided 
selective advantages in bacterial biofilm and multicellular animal development.

IMPORTANCE Bacteria communicate using both long- and short-range signals. 
Signaling affects community composition, structure, and function. Adherent commun­
ities called biofilms impact medicine, agriculture, industry, and the environment. To 
facilitate the manipulation of biofilms for societal benefits, a better understanding of 
short-range signaling is necessary. We investigated the susceptibility of short-range 
C-signaling to cheating during Myxococcus xanthus biofilm development. A mutant 
deficient in C-signaling fails to form mounds containing spores (i.e., fruiting bodies) but 
cheats on C-signaling by wild type in starved cell mixtures and forms spores dispropor­
tionately. We found that cheating requires sufficient wild-type cells in the initial mix 
and can occur both before mound formation and later during the sporulation stage of 
development. By restricting cheating behavior, short-range C-signaling may have been 
favored evolutionarily rather than long-range diffusible signaling. Cheating restrictions 
imposed by short-range signaling may have likewise driven the evolution of multicellu­
larity broadly.

KEYWORDS cheating, extracellular signaling, Myxococcus xanthus, bacterial develop­
ment, spores, biofilms, fruiting body, short-range signaling, multicellular development, 
evolution
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M icrobiomes often contain bacteria that adhere to biotic and abiotic surfaces, 
forming biofilms that affect ecosystems and human health in diverse and 

important ways (1–3). Within biofilms, bacteria communicate using both long- and 
short-range signaling mechanisms (4). Long-range signaling involves the release of 
diffusible signal molecules from cells and does not require cell–cell contacts (5). 
Short-range signaling typically depends on cell-surface-associated protein assemblies 
that mediate direct cell–cell contact (6). Both long- and short-range signaling shape 
the composition, spatial structure, ecology, and evolution of biofilms (7–9). A better 
understanding of the mechanisms and functions of signaling interactions within biofilms 
will facilitate their manipulation for societal benefits (3, 10) and provide insights into the 
evolution of multicellularity (11, 12).

Signaling often promotes cooperation between individuals but exposes the 
community to exploitation by cheaters, which reduce or eliminate the production of 
the signal molecule but gain a fitness advantage by responding to the signal molecule 
produced by cooperators (13). Cheating is pervasive in microbial communities, and 
its consequences can be profound (e.g., community collapse), so cooperators evolve 
to combat cheating (8, 9, 14, 15). Efforts to manipulate battles between cooperators 
and cheaters for therapeutic, agricultural, industrial, and environmental applications are 
gaining traction (10, 16–22).

In this study, we used a biofilm formed by Myxococcus xanthus as a model to 
investigate cheating on short-range C-signaling. M. xanthus adheres to the bottom of a 
container and forms a biofilm submerged under a thin layer of liquid (23). In the absence 
of nutrients, the cells coordinate their movements to build dome-shaped mounds, which 
mature into fruiting bodies as some of the rod-shaped cells differentiate into round 
spores. Other rods lyse or remain outside fruiting bodies as peripheral rods (24, 25). 
During the developmental process, C-signaling coordinates mound formation with spore 
differentiation (26–28). A csgA mutant deficient in C-signaling fails to build mounds or 
form spores (29–31). Upon co-development with an equal number of wild-type cells, 
csgA mutants have been reported to form an approximately equal number of spores 
as the WT (29, 32) or ~100-fold (33) to ~380-fold (34) more spores than the WT. An 
equal number of spores indicates rescue of csgA development by WT C-signaling. A 
greater number of csgA than WT spores indicates developmental cheating by csgA on WT 
C-signaling. Clearly, csgA mutants respond to WT C-signaling, but our understanding of 
the requirements for rescue and cheating behavior is incomplete.

Neither are the C-signal production and reception mechanisms completely under­
stood (reviewed in reference 35). In one model, starving cells secrete a protease (36, 37) 
that cleaves CsgA to a 17-kDa fragment (p17) at the surface of producer cells (38, 39), 
and responders detect p17 with an unidentified cell-surface receptor. In another model, 
starving cells synthesize intact 25 kDa CsgA with cardiolipin phospholipase enzymatic 
activity that releases diacylglycerols from the inner membrane (40), but how these signal 
molecules exit producer cells and how responders perceive them are unknown. The two 
models are not mutually exclusive (i.e., CsgA might be bifunctional).

Although gaps remain in our molecular understanding of C-signaling, knowledge 
continues to grow about the cellular requirements for efficient C-signaling. Early work 
indicated that C-signaling requires cells to be in close proximity, possibly in contact 
(38), and that cell motility and alignment increase C-signaling (41–43). Recently, tracking 
of csgA mutant cells mixed with a 10,000-fold excess of WT cells revealed complete 
rescue of csgA participation in mound formation, despite differences from WT in motility 
behavior (primarily, faster speeds of csgA rods compensated for their weaker bias in 
the persistent duration of movement toward nascent mounds) (44). C-signaling also 
affects the expression of many genes during development (32), apparently by activating 
the transcription factor FruA posttranslationally (45, 46), although the mechanism is 
unknown. We recently used confocal microscopy and cell segmentation to visualize and 
quantify C-signal-dependent gene expression of cells within 5–10 μm of the bottom of 
NFBs (47), which mature to a height of ~50 μm. We found that expression in transitioning 
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cells (TCs) (i.e., cells intermediate in morphology between rods and spores) and spores 
later in development correlated with earlier cell density, alignment of neighboring rods, 
and tangential orientation of rods, suggesting that the arrangement of cells within NFBs 
affects the efficiency of C-signaling, which regulates the spatiotemporal patterns of gene 
expression and cellular differentiation.

To investigate the cheating behavior of a csgA mutant deficient in C-signaling, we 
mixed the mutant with WT cells proficient at C-signaling. We induced mixtures at 
different ratios to co-develop and used our new methods of visualizing and quantifying 
the arrangement and morphology of cells near the bottom of the biofilm. Our results 
show that cheating by csgA on WT C-signaling requires sufficient WT cells in the initial 
mixture and can occur both before and after the mound-building stage of development. 
By restricting cheating behavior to specific initial cell ratios, short-range C-signaling may 
have provided a selective advantage evolutionarily. We discuss how cheating restrictions 
imposed by short-range signaling may have likewise led to their prevalence in biofilm 
and animal development.

RESULTS

Wild type and a csgA mutant co-develop well when mixed 1:1 but not when 

mixed 1:2

To visualize WT and csgA mutant cells during co-development, we engineered strains 
to produce different fluorescent proteins under the control of a vanillate-inducible 
promoter. In control experiments, we mixed each strain with its unlabeled parent at a 
ratio of 1:5 to allow visualization of individual labeled cells and added vanillate at the 
beginning of starvation. As expected (47), the WT mixture formed mounds by 24 h 
poststarvation (PS) and many fluorescent spores were observed at 42 h in images of 
optical sections acquired near the bottom of the same NFB using confocal laser scanning 
microscopy (Fig. S1). In contrast and as expected (29–31), the csgA mutant mixture failed 
to form NFBs (Fig. S1).

To allow visualization of individual-labeled cells in co-development experiments, we 
mixed each labeled strain 1:1 with its unlabeled parent, then mixed the WT and csgA 
mutant cells over a range of ratios, and added vanillate at the beginning of starvation. 
Mixtures of WT and csgA at 1:4 failed to form mounds (Fig. 1; Fig. S2 and S3). At 1:2, a few 
mounds formed by 24 h PS (Fig. 1; Fig. S3) and persisted until 42 h (Fig. 1), but very few 
spores formed (Fig. 1; Fig. S2). Strikingly, at ≥1:1 (i.e., equal or excess WT cells), mounds 
formed by 24 h (Fig. 1; Fig. S3), and TCs and numerous spores formed by 36 h (Fig. 
1; Fig. S2). At 2:1 and 4:1, red fluorescent csgA spores appeared to be more numerous 
than expected at 36 and 42 h, suggestive of csgA cheating. We also observed a few red 
fluorescent TCs and spores at 30 h in those mixtures (Fig. S2), but not green fluorescent 
ones, suggesting that csgA was ahead of WT in development. The mixtures at 72 and 
96 h looked similar to the 42 h mixtures (data not shown). As a control experiment, we 
grew strains in the presence of vanillate, made mixtures at ≥1:2 as described above, and 
immediately counted labeled cells using confocal microscopy. The observed ratios of WT 
to csgA cells were similar to the expected ratios (Fig. S4). We conclude that development 
requires sufficient WT cells in the initial mix, and our qualitative observations suggest 
that at ≥2:1, csgA spores form disproportionately as NFBs mature.

Mixtures initially at ≥1:1 form NFBs with normal cell density, alignment, and 

orientation

Radial patterns of cell density, alignment of neighboring rods, and tangential orientation 
of rods in NFBs early during WT development correlate with C-signal-dependent gene 
expression and spore proportion later as NFBs mature (47). For comparison with WT, we 
quantified the arrangement and morphology of labeled cells in the co-developed 
mixtures of WT and csgA initially at ≥1:2, which formed mounds (Fig. 1; Fig. S3). Compu­
tational analysis of z-stacks of optical sections collected from near the bottom of NFBs to 
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FIG 1 Co-development of wild type (WT) and csgA mutant cells at different ratios. WT and csgA cells were mixed at ratios indicated on the left. Half of the WT 

cells were the labeled strain YH7 (green fluorescence), and half were the unlabeled strain DK1622. Likewise, half of the csgA cells were the labeled strain YH11 

(red fluorescence), and half were the unlabeled strain MRR33. Vanillate (0.5 mM) was added, and the mixtures were starved under submerged culture conditions. 

Confocal images of the same field of view were acquired near the bottom (i.e., the first optical section above the bottom of the well in which cells could be clearly 

visualized, so ~0.25 to 0.5 μm above the bottom of the well) of the biofilm or a mound at the indicated times poststarvation (PS). Images show the green and red 

channels merged and are representative of five biological replicates. Bar, 20 μm.
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5 μm up (i.e., several cell layers since rods, TCs, and spores are ~0.3–0.6 μm in width) (47) 
led to three-dimensional segmentation of cells in image stacks and classification of 
individual cells as rods, TCs, or spores. Because we modified the computational analysis 
to improve cell detection and segmentation in the new confocal images, we also re-
analyzed the WT z-stacks collected previously (47). Mixtures initially at ≥1:1 formed NFBs 
with high cell density within 20 μm of the radial center by 30 h PS and lower cell density 
later (Fig. 2A), consistent with WT alone (Fig. S5A). At 1:2, the mounds exhibited a larger 
radius of high cell density, which did not decrease by 42 h (Fig. 2A), suggesting that less 
cell lysis occurred, as observed previously for csgA mutants alone (48–50).

For all the mixtures, most of the cells were rods at 24 and 30 h PS (Fig. S6), and the 
rods were most aligned with each other near the radial center (Fig. 2B), consistent with 
WT alone (Fig. S5B). Most of the cells remained rods in the mounds formed by the 1:2 
mixture, but in the NFBs formed by mixtures initially at ≥1:1, most of the cells became 
spores located within ~20 μm of the radial center by 36 h (Fig. S6), consistent with WT 
aIone (Fig. S7A). The mixtures initially at ≥1:1 resembled WT alone in terms of the 
tangential orientation of rods, which was greatest at ~20 to 40 μm from the radial center 
of NFBs at 24 and 30 h (Fig. 2C; Fig. S5C).

Altogether, the results indicate that mixtures initially at ≥1:1 form NFBs with normal 
radial patterns of rod density, alignment, and orientation early, and a normal radial 
pattern of spores at the normal time.

Cheating can occur both early and later in development

We compared the radial patterns of WT and csgA mutant cells in the co-developed 
mixtures. Strikingly, csgA was more abundant than expected in NFBs formed at 24 and 
30 h PS by mixtures initially at ≥2:1 (Fig. 3A). In these early NFBs, most of the cells were 
rods (Fig. S6). Yet, despite a twofold or even a fourfold excess of WT rods initially (Fig. S4), 
the csgA cell density was similar to that of WT across the radii of these NFBs (Fig. 3A), 
indicative of csgA cheating on WT C-signaling early in development. The csgA cell density 
was also similar to that of WT in early NFBs formed by the 1:1 mixture, indicative of 
efficient rescue of csgA mound formation by WT C-signaling but not cheating by csgA. 
Likewise, the initial twofold excess of csgA rods in the 1:2 mixture appeared to persist in 
early NFBs, suggesting at least partial rescue of mound formation. The radial patterns of 
WT and csgA rods did not differ significantly in terms of neighbor alignment and 
tangential orientation in the co-developed mixtures (Fig. S8).

In the maturing NFBs at 36 and 42 h PS, most of the cells had become spores for the 
mixtures initially at ≥1:1 (Fig. S6). For the 1:1 and 2:1 mixtures, the csgA cell density 
exceeded that of WT near the center, supportive of cheating during sporulation, since 
the csgA cell density was similar to that of WT at earlier times (Fig. 3A). For the 4:1 
mixture, the csgA cell density was similar to that of WT at 36 h and slightly greater than 
that of WT near the center at 42 h. Our observations indicated that for mixtures initially 
at ≥1:1, many csgA rods became spores, but owing to the presence of some rods and TCs, 
further analysis was necessary to determine whether cheating occurred during the 
sporulation stage of development.

To compare the radial patterns of WT and csgA mutant rods, TCs, and spores in the co-
developed mixtures, we calculated the proportion of each cell class. The proportions at 
24 and 30 h PS show that csgA rods were more abundant than expected (based on the 
initial ratio of the two strains) in early NFBs formed by mixtures initially at ≥2:1, especially 
closer to the center (Fig. 3B). We conclude that cheating occurs before and/or during 
mound formation in those mixtures. The proportion of TCs was low at all times for all the 
co-developed mixtures (Fig. S9), as observed for WT alone (47) (Fig. S7B); however, the 
proportion of TCs was slightly greater for WT alone at 30 h (Fig. S7B) than the mixtures 
(Fig. S9), suggesting that csgA delays WT development slightly in the mixtures. In the 
maturing NFBs formed by mixtures initially at ≥1:1, the proportions of csgA TCs and 
spores exceeded or equaled those of WT at 36 and 42 h (Fig. 3B; Fig. S9). We conclude 
that cheating occurs during sporulation in mixtures initially at ≥1:1.
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FIG 2 Radial patterns of cell density, neighbor alignment, and tangential orientation in co-developed mixtures at different times poststarvation. In the 

experiment described in the Fig. 1 legend, z-stacks of optical sections were collected from near the bottom of the same nascent fruiting body (NFB) to 5 μm 

up for each of the five biological replicates, and segmented cells were classified as rods, transitioning cells, or spores. The combined results for both WT green- 

and csgA red-labeled cells are shown. Line, median. Shaded region, 90% credible interval. (A) Combined density of all cell classes from the center (0 μm) to 

the edge (60 μm) of NFBs. The cartoon at the right depicts an early NFB (gray circle) with decreasing rod density ~30–60 μm from the radial center (arrow, 

radius). (B) Neighbor alignment of rods radially in NFBs over time. Alignment is the weighted average of the cosine of the angle of a rod to each of its neighbors 

(using a Gaussian kernel with sigma = 2.5 μm) (1, perfect alignment; 0, orthogonal). Cartoon, early NFB with maximal neighbor alignment near the radial 

(Continued on next page)
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To quantify cheating in the co-developed mixtures irrespective of the radial patterns, 
we compared the observed ratios of csgA to WT (csgA/WT) rods, TCs, and spores with the 
initial ratios. In Fig. 4A, the major cell class observed at each time point is shown in bold 
color and the minor cell classes in pale colors, and dashed lines show the initial ratios. In 
agreement with our conclusion from the radial patterns, the csgA/WT ratio of rods 
exceeded the initial ratio in NFBs formed by the 2:1 and 4:1 mixtures at 24 and 30 h PS (P 
< 10−4), showing the extent of cheating before and/or during mound formation. The 
observed ratios of TCs and spores further exceeded the initial ratio at 36 and 42 h for 
those mixtures (P < 10−4), showing that cheating continued during the sporulation stage 
of development. For the 1:1 mixture, cheating occurred only during the sporulation stage 
of development (P < 10−4), also in agreement with our conclusion from the radial 
patterns. Interestingly, the csgA/WT ratio of TCs and spores was about fourfold greater 
than the initial ratio for all three mixtures in which cheating occurred. For the 1:2 mixture, 
the observed ratios of rods were less than the initial ratio (P < 10−4), showing that C-
signaling by WT failed to fully rescue participation of csgA in mound formation.

Cheating after mound formation involves the csgA mutant forming spores at 

a greater rate than WT

To quantify cheating in the co-developed mixtures during the spore-forming stage of 
development after 24 h PS, we calculated the rates of csgA and WT “disappearance” and 
sporulation during 6-h intervals between time points. To limit the number of unknown 
parameters in the rate equations, we grouped the numbers of rods and TCs together 
since either could “disappear” due to lysis, motile rods could “disappear” by exiting NFBs, 
and TCs could “disappear” by completing the transition to spores. As a result, the change 
in spore and rod/TC numbers were monotonic over time (Fig. S10), allowing us to 
estimate the rates of change for each time interval. For mixtures initially at ≥1:1, the rate 
of csgA sporulation exceeded that of WT on average during the 30- to 36-h and 36- to 42-
h intervals designated 33 and 39 h, respectively (Fig. 4B) (P = 0.039). Conversely, the rate 
of WT “disappearance” exceeded that of csgA on average during the 33- and 39-h 
intervals for mixtures initially at ≥1:1 (P = 0.013). Since the greater “disappearance” of WT 
is not due to TCs becoming spores, it must be due to lysis of TCs or rods, or rods exiting 
NFBs. We conclude that cheating after mound formation involves csgA forming spores at 
a greater rate than WT, which “disappears” at a greater rate by lysing or exiting NFBs.

Cheating can occur before mound formation due to greater survival of the 

csgA mutant

The cheating we observed in early NFBs formed by mixtures initially at ≥2:1 could involve 
differential survival and/or movement of csgA and WT. Greater survival of csgA could 
result in cheating throughout the biofilm, whereas greater movement of csgA into 
mounds and/or WT out of mounds could result in the opposite of cheating outside of 
mounds (i.e., csgA/WT < initial ratio). To compare the composition of the early NFBs to 
their surroundings, we acquired z-stacks of confocal images from near the bottom to 
5 μm up at 24 and 30 h PS. We also imaged the biofilm at 18 h prior to the formation of 
most mounds (Fig. S11). We mixed each labeled strain with its unlabeled parent at 1:3 for 
the 18- and 24h time points or 1:1 for the 30-h time point, then mixed the WT and csgA 
cells at different ratios for co-development in the presence of vanillate. The 1:3 propor­
tion of labeled cells in the mixtures did not alter co-development at different ratios at 
24 h (see below), but was necessary at 18 h to facilitate cell segmentation and classifica-
tion because of the higher cell density, based on preliminary experiments. The 1:1 
proportion of labeled cells in the mixtures was used for the 30-h time point in order to 
visualize more labeled cells outside of NFBs, where cell numbers decline (see below).

Fig 2 (Continued)

center and ~20–40 μm from the center. (C) Tangential orientation of rods radially in NFBs over time. Orientation is the cosine of the angle of a rod with the 

circumference of the NFB (1, tangent to the circumference; 0, orthogonal). Cartoon, early NFB with maximum tangential orientation ~20–40 μm from the center.
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FIG 3 Radial patterns of wild type (WT) and csgA mutant cells in co-developed mixtures at different times poststarvation. In the experiment described in the 

Fig. 1 and 2 legends, segmented cells from z-stacks were classified as rods, transitioning cells, or spores. The results for WT green- and csgA red-labeled cells are 

(Continued on next page)
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Importantly, for the mixtures initially at ≥2:1, we observed similar ratios of csgA/WT 
indicative of cheating within 24-h NFBs, proximal to the same NFBs (i.e., one field of view 
outside) and distal from any NFB (Fig. 5). These results are consistent with greater survival 
of csgA than WT throughout the biofilm, rather than greater movement of csgA into 
mounds and/or WT out of mounds. We also found ratios of csgA/WT indicative of a 
similar level of cheating within the 18h biofilm distal from any NFB (before the vast 
majority of mounds formed) (P < 10−4), showing that greater survival of csgA occurred 
before mound formation in mixtures initially at ≥2:1. By 30 h PS, the ratios of csgA/WT 
had increased slightly on average within NFBs formed by the 2:1 and 4:1 mixtures (P = 
0.037 and 0.021, respectively) and proximal to NFBs formed by the 2:1 mixture (P = 
0.040). However, a positive or negative trend for the csgA/WT ratios at the proximal and 
distal locations could not be determined with enough confidence. Hence, differential 
survival and/or movement may slightly increase the csgA/WT ratios within NFBs by 30 h. 
We note that the total number of cells in all classes declines from 18 to 30 h at the 
proximal and distal locations for the mixtures initially at ≥1:1, but the cell number within 
NFBs remains similar (Fig. S12). However, between 30 and 36 h, the cell number within 
NFBs declines, especially for WT (Fig. S10), due to lysis of TCs or rods, or rods exiting NFBs, 
as mentioned above. For the mixture initially at 1:1, the csgA/WT ratios were similar at 
different times and locations (Fig. 5). For the mixture initially at 1:2, at 30 h, the csgA/WT 
ratio was less within NFBs than at the proximal and distal locations (P < 10−2), consistent 
with our observation that C-signaling by WT failed to fully rescue participation of csgA in 
mound formation (Fig. 4A). Changing the proportion of labeled to unlabeled cells in the 
mixtures (i.e., 1:1 vs. 1:3) did not alter mound formation by 24 h (Fig. S3) or the csgA/WT 
ratio at 24 or 30 h (Fig. 4A and 5) for the different initial ratios of WT to csgA.

We conclude that cheating occurs before mound formation due to greater survival of 
csgA than WT within 18-h biofilms formed by the mixtures initially at ≥2:1 (Fig. 5). As 
these mixtures formed mounds by 24 h PS, the overall levels of cheating remained similar 
within the early NFBs and outside them, but the csgA proportion rose near the radial 
center of NFBs (Fig. 3B), suggesting greater persistence of csgA rods there. By 30 h, 
cheating had increased slightly on average within NFBs (Fig. 5), but cell numbers had 
declined considerably outside NFBs (Fig. S12), likely contributing to greater uncertainty 
in the cheating levels. Nevertheless, the high proportion of csgA rods persisted near the 
radial center of NFBs, and later a high proportion of csgA spores formed there (Fig. 3B). 
Although NFBs formed by the mixtures initially at 1:1 did not exhibit cheating by 30 h, a 
high proportion of csgA spores had formed near the radial center by 36 h, accounting for 
the cheating we observed late in development (Fig. 3B and 4A).

DISCUSSION

We discovered that mixtures of WT and csgA mutant cells at ratios ranging from 1:4 to 
4:1 exhibit dramatically different developmental phenotypes in submerged culture. At 
1:4, development failed completely. At 1:2, a few mounds formed, but neither WT nor 
csgA made many spores, indicating that C-signaling by the WT minority was insufficient 
to support normal development of the population. In contrast, when WT comprised half 
or more of the population, mounds formed normally, and cheating occurred. Interest­
ingly, at 1:1, C-signaling by WT efficiently rescued csgA participation in mound building, 
but cheating did not occur until later, during the sporulation stage of development. 
Strikingly, at 2:1 or 4:1, csgA cheated on C-signaling by the WT majority both before 
and after mound formation. Greater survival of csgA than WT accounted for cheating 
prior to mound building. Cheating during the sporulation stage involved csgA forming 

Fig 3 (Continued)

shown separately. (A) Combined density of all cell classes from the center (0 μm) to the edge (60 μm) of nascent fruiting bodies (NFBs). (B) Proportion of WT and 

csgA mutant rods and spores (relative to the combined total number of cells in all classes for both strains) radially in NFBs over time. Line, median. Shaded region, 

90% credible interval.
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spores at a greater rate, while WT disappeared at a greater rate. These new insights into 
cheating behavior pose important questions for future research. Since cheating by csgA 
required equal or excess WT in the initial mixture, we conclude that short-range C-
signaling severely restricts cheating behavior, which likely favored its evolution rather 

FIG 4 Ratios of csgA to wild type (csgA/WT) cell classes and rates of disappearance and sporulation in co-developed mixtures over time. In the experiment 

described in Fig. 1 and 2 legends, segmented cells from z-stacks were classified as rods, spores, or transitioning cells (transitioning). Cells within 60 μm of the 

radial center of nascent fruiting bodies were analyzed. (A) Ratios of csgA/WT cell classes at indicated times poststarvation (PS). Bold color, major cell class. Pale 

color, minor cell class. Dashed line, initial ratio. (B) Rates of csgA and WT disappearance and sporulation during 6-h intervals PS. Time, interval halfway point. Dot, 

median. Line, 90% credible interval.
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than long-range diffusible signaling. We propose that cheating restrictions imposed by 
short-range signaling may have likewise proved advantageous during the evolution of 
bacterial biofilm and multicellular animal development.

Short-range C-signaling restricts cheating behavior

Excess csgA mutant cells in mixtures with WT interfered with development. The mixtures 
initially at 1:2 and 1:4 showed a progressive and dramatic decrease in mound forma­
tion compared with the mixtures at ≥1:1 (Fig. S3), suggesting that csgA rods require 
frequent C-signaling from WT rods to participate in mound building. The inability of 
csgA rods to produce C-signal presumably impairs two positive feedback loops necessary 
for mound formation. One loop involves the movement of rods into alignment for 
enhanced C-signaling (41–43). The other loop involves C-signal-dependent transcription 
of the act operon (51), whose products control C-signal production (52). These positive 
feedback loops depend on the cellular arrangement to enhance C-signaling during 
mound building. Long-range diffusible signaling could not likewise communicate the 
cellular arrangement. Rather, it simply communicates the cell density, which presumably 
is insufficient to build dome-shaped multicellular mounds that become spore-filled 
fruiting bodies. In the few mounds that formed at 1:2, very few rods became spores 
(Fig. 3B; Fig. S10), consistent with previous observations supporting that spore formation 
requires efficient C-signaling (26–28, 47).

Developmental interference by excess csgA mutant cells would limit the invasion 
of WT populations subject to selection for development. Indeed, a mixture of WT and 
csgA cells at 99:1 exhibited cheating by csgA during an initial cycle of co-development 
and co-growth, but csgA persisted as the minority with little change in the population 
dynamics during four subsequent cycles (53). Albeit short in duration, this experimental 

FIG 5 Ratios of csgA to wildtype (csgA/WT) cells at different times and locations early in development. WT and csgA cells were mixed at ratios indicated at the 

top. The mixtures contained the strains described in the Fig. 1 legend, but each labeled strain was premixed 1:3 (18- and 24-h time points) or 1:1 (30-h time 

point) with its unlabeled parent. Vanillate (0.5 mM) was added, and the mixtures were starved under submerged culture conditions. z-stacks were collected as 

described in the Fig. 2 legend as follows: distal from any mound (and prior to the formation of most) at 18 h (designated “biofilm”) or at three locations (within a 

nascent fruiting body [designated “NFB”], “proximal” to the same NFB [one field of view outside], and “distal” from any NFB) at 24 and 30 h. Segmented cells from 

z-stacks of at least five biological replicates were classified as rods, transitioning cells, or spores. Ratios are for totals of all cell classes and were indistinguishable 

from ratios for only rods, the major cell class. Dot, median. Line, 90% credible interval. Dashed line, initial ratio.
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evolution study supports the notion that cheating restriction imposed by short-range 
C-signaling likely favored its evolution. In contrast, long-range diffusible signaling, such 
as secreted “public goods,” are highly susceptible to cheating (13, 15, 54). The restriction 
of csgA cheating to populations with equal or excess WT is reminiscent of the nega­
tively frequency-dependent fitness of two developmental cheaters that evolved from 
WT clones passaged in liquid culture (14, 55, 56). Further exploration of the frequency-
dependent fitness of evolved and defined (e.g., an asgB mutant defective in diffusible 
A-signaling) (56) cheaters co-developed with WT may shed light on the evolutionary 
implications of different cheating mechanisms. We speculate that a population-level 
restriction on cheating behavior strongly favored short-range C-signaling evolutionarily 
rather than long-range diffusible signaling.

Interestingly, WT can evolve further restrictions on cheating behavior by a csgA 
mutant. WT rapidly evolved cheater suppression and selfish policing during 20 cycles of 
co-development with csgA at 1:1 (34). Even in the absence of csgA, WT clones that had 
evolved as motile colonies on nutrient agar and differed from the ancestral WT by no 
more than 20 mutations frequently also evolved resistance to developmental cheating 
by csgA (57). The mechanisms of enhanced cheater resistance remain to be elucidated.

Based on our results, we propose that restrictions on cheating behavior were 
driving forces in the evolution of multicellularity and explain the prevalence of short-
range signaling in bacterial biofilm and animal development. Cheating during animal 
development can cause tumor formation and lead to metastatic cancer (13, 58). 
Defects in short-range signaling mechanisms, such as those involving growth factors 
(59, 60), Hedgehog (61), Wnt (62), and Notch (63), are often associated with carcino­
genesis, suggesting that restrictions on cheating behavior by these mechanisms may 
have selected their use and explain their prevalence in animal development. Short-
range signaling is likewise prevalent in bacterial biofilm development (6–8). Numerous 
examples of kin selection mediated by cell–cell contact-dependent mechanisms restrict 
cheating in biofilms (6, 8, 9), including in M. xanthus (64–67). The extracellular matrix and 
environmental forces also restrict cheating by spatially structuring biofilms, thus limiting 
cell dispersal and diffusion of public goods and signals with potential longer range (8, 9).

Cheating before mound formation involves greater survival of the csgA 
mutant in mixtures with excess wild-type cells

Excess WT cells in mixtures initially at ≥2:1 allowed cheating by csgA before mound 
formation owing to greater survival of csgA than WT by 18 h PS (Fig. 5). Greater survival 
of unmixed developing csgA rods compared with WT has been reported previously 
(46, 48–50), suggesting a partial defect in developmental lysis of csgA. The mechanism 
of developmental lysis is unknown (49, 68). Interestingly, we did not observe greater 
survival of csgA than WT at 18 h in the mixture initially at 1:2, and csgA barely outnum­
bered WT in the mixture initially at 1:1 (Fig. 5). Taken together, these observations 
suggest that an initial excess of WT promotes greater csgA survival in mixtures, but equal 
or less WT inhibits csgA survival (Fig. 5). Perhaps, components of living and/or lysed WT 
cells exert different concentration-dependent effects on csgA, whose stringent response 
to starvation differs from that of WT (69). Further elucidating differences between csgA 
and WT in the stringent response, lysis, and signaling will be important for deeper 
understanding of csgA cheating behavior in mixtures prior to mound formation and 
likely later in development as well.

Cheating during mound formation generates spatial differentiation within NFBs. We 
observed a high proportion of csgA rods at 24 and 30 h PS near the radial center of 
NFBs formed by mixtures initially at ≥2:1, and a high proportion of csgA spores there 
later for mixtures initially at ≥1:1 (Fig. 3B). Presumably, this pattern forms via differential 
survival and/or movement. We favor differential survival as the explanation for the high 
proportion of csgA spores near the radial center of 36-h NFBs formed by mixtures initially 
at 1:1, since we did not observe a high proportion of csgA rods there earlier. However, 
our results do not exclude the possibility of differential movement of csgA and WT rods 
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between 30 and 36 h. Neither do our results exclude differential movement of csgA 
and WT rods as the explanation for the high proportion of csgA near the radial center 
of 24-h NFBs formed by mixtures initially at ≥2:1. Our confocal microscopy method is 
currently incompatible with tracking of individual cells within NFBs (see below), but 
our comparison of the overall level of cheating within 24-h NFBs to proximal and distal 
locations outside revealed little or no difference (Fig. 5). Moreover, the cheating levels 
were similar to those in the 18-h biofilms, so a similar ability of csgA and WT rods to 
move into mounds and persistence there could account for the similar level of cheating 
within and outside of NFBs. In agreement, the accumulation rates of csgA and WT 
within mounds were indistinguishable in cell tracking experiments (44, 70). The detailed 
motility behavior of csgA and WT rods differed, but spatial differentiation within the 
mounds was not reported. The cell tracking method used a small fraction of labeled 
trackable cells (≤0.04%) and frequent (every 30 s for ~5 h), brief (600 ms) imaging. In 
contrast, our method is currently incompatible with tracking since we have used 17%–
50% labeled cells and infrequent, lengthy imaging (4 z-stacks, ~2.5 min each, 3–6 h apart) 
(47). It may be possible to use a cell tracking method (44, 70), and the insights about 
cheating behavior revealed by our study to determine the contributions of differential 
survival and movement to spatial differentiation within NFBs formed by mixtures of csgA 
and WT.

Cheating after mound formation involves more efficient sporulation of the 

csgA mutant in mixtures with equal or excess wild-type cells

When WT comprised half or more of the population, cheating occurred during the 
sporulation stage of development (Fig. 3 and 4A) and involved csgA forming spores at 
a greater rate, while WT disappeared at a greater rate (Fig. 4B; Fig. S10). Why does csgA 
form spores more efficiently than WT? There are many possible reasons. The altered 
stringent response of csgA (69) may enhance its protein synthesis capacity (relative to 
WT), improving its sporulation efficiency. The csgA mutant lacks cardiolipin phospholi­
pase activity (40) and fails to synthesize lipid bodies or undergo cell shortening (71), 
so its lipid and membrane metabolism differ from WT, as does its developmental gene 
expression (35, 46, 72). C-signaling from WT may trigger efficient sporulation of csgA 
without completely restoring normal metabolism and/or gene expression, perhaps akin 
to chemically induced sporulation of M. xanthus (73, 74). This deserves further investi­
gation. Importantly, our data show that csgA cheating occurs early in the sporulation 
stage, primarily between 30 and 36 h (Fig. 3 and 4; Fig. S10), much earlier than tested 
in previous studies (33, 34, 53, 56, 57). Our results imply that csgA rods are poised to 
efficiently transition to spores upon sensing WT C-signaling in NFBs.

Why does WT disappear from NFBs at a greater rate than csgA? Under our conditions 
of submerged culture development, unmixed WT cells appear to lyse more rapidly than 
unmixed csgA cells at 18–48 h PS (46), so it is possible that differential lysis contributes to 
the greater disappearance of WT than csgA during the spore-forming stage of develop­
ment (Fig. 3 and 4; Fig. S10). We cannot confidently rule out the possibility that WT rods 
preferentially exit NFBs after 30 h. There was no evidence of preferential WT exiting to 
proximal or distal locations at 30 h, but the uncertainty was great (Fig. 5) likely due to low 
cell numbers, which decline further by 36 h near the edge of NFBs (Fig. 1, 2A and 3A) and 
in samples of the entire biofilm (46).

In summary, we conclude that short-range C-signaling restricts cheating in mixtures 
with a WT minority, cheating occurs only during the spore-forming stage in mixtures 
with equal WT and csgA cells, and cheating occurs during both the mound- and 
spore-forming stages in mixtures with a WT majority.
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MATERIALS AND METHODS

Bacterial strains and plasmids

Table S1 lists the strains, plasmids, and primers used in this study. The construction of M. 
xanthus strain YH11 is described in the Supplemental Material.

Growth and development

M. xanthus was grown and submerged culture development was performed as described 
in the Supplemental Material.

Microscopy

Images were acquired with laser scanning confocal microscopes and fluorescence from 
tdTomato and mNeonGreen was examined as described in the Supplemental Material.

Image analyses

Cell segmentation, cellular morphology classification, and estimation of the proportions 
of cell classes across time points and along the radii of NFBs were performed as 
described previously (47) with the following modifications to improve the sensitivity 
of cell detection. Otsu’s method as implemented in MATLAB was used on the center 
quarter of each image to determine the optimal threshold value to binarize the entire 
images after calculating the Hessian matrix, instead of using the 99th percentile. Because 
the new threshold slightly increased the apparent cell volume after segmentation, the 
Gaussian mixture model used to classify cells into morphological types was refitted 
following the original protocol. To estimate cell density in the stack of images, the 
number of labeled cells per 1,000 μm3 was doubled to account for unlabeled cells in the 
mixture, or quadrupled for the 18- and 24-h time points in Fig. S12. Plots were generated 
in the R statistical environment using the ggplot (75) and tidybayes (76) packages.
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