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Anomalous scaling of branching tidal
networks in global coastal wetlands and
mudflats
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Branching networks are key elements in natural landscapes and have attracted
sustained research interest across the geosciences and numerous intersecting
fields. The prevailing consensus has long held that branching networks are
optimized and exhibit fractal properties adhering to power-law scaling rela-
tionships. However, tidal networks in coastal wetlands and mudflats exhibit
scaling properties that defy conventional power-law descriptions, presenting a
longstanding enigma. Here we show that the observed atypical scaling
represents a universal deviation from an ideal fractal branching network
capable of fully occupying the available space. Using satellite imagery of tidal
networks from diverse global locations, we identified an inherent “laziness” in
this deviation—where the increased ease of channel formation paradoxically
decreases the space-filling efficiency of the network. We developed a theore-
tical model that reproduces the ideal fractal branching network and the lazi-
ness phenomenon. The model suggests that branching networks can emerge
under a localized competition principle without adhering to conventionally
assumed optimization-driven processes. These results reveal the dual nature
of branching networks, where “laziness” complements the well-known opti-
mization process. This property provides more flexible strategies for con-
trolling tidal network morphogenesis, with implications for coastal
management, wetland restoration, and studies in fluvial and planetary systems.

Tidal networks, characterized by repeating bifurcations and a tree-like
structure (Fig. 1), serve as the arteries for the dynamic circulation of
matter and energy within tidal flats and wetlands worldwide1,2. These
networks are integral to the functioning of ecosystems that provide
invaluable ecosystem services, including carbon storage, habitat pro-
vision, and coastal defense3,4. Understanding the structure and

allometry of tidal networks is essential to unraveling the ecology of
these environments5, and hence to facilitating effective restoration
and conservation in the face of environmental change6,7.

Branching networks with recursive structures are not unique to
tidal areas; they represent a universal pattern observed across various
natural systems, fromdendritic rivers that carve through landscapes to
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the intricate nerves and blood vessels that sustain human life8,9. These
networks are strongly reminiscent of fractals10, patterns that arewidely
recognized as nature’s optimized strategy for filling space and dis-
tributing resources11. Researchers have long applied power-law scaling
relationships to describe the order and universality within branching
networks12–15. A prime example in fluvial studies is Hack’s law16, which
relates the length of the main (longest) channel of a given river net-
work (Lm) to its drainage area (Ad) using a power function: Lm / Ah

d .
The exponent h is typically 0.6 across diverse basin sizes and geo-
graphic contexts17–20. Power-law functions are appropriate for
describing relationships that remain the same from local to global

levels, which is also called scale invariance21. The prevailing conceptual
models of branching networks, including those based on a random
topology22,23 and principles of optimization24,25, are considered cred-
ible because they replicate this scale invariance.

However, tidal networks do not exhibit the scale invariance that
forms the basis for understanding branching networks1. These channel
networks defy conventional simplifications using power-law functions,
particularly in the relationshipbetween Lm andAd (i.e., Hack’s law)

1 and
in the probability distribution of the unchanneled length (Lu)

26,27—a
metric representing the flow distance across a marsh before a channel
is reached. Researchers have generally linked this observeddivergence

Fig. 1 | Branching tidal networks worldwide. a Overview of the collected tidal
networks covering 21 sites worldwide, encompassing a diverse range of biomor-
phodynamic conditions, i.e., from micro- to macrotidal ranges and from bare to
vegetated flats. b–v Remote sensing data of branching tidal networks. The ran-
domly colored patches with white borderlines represent the extracted tidal net-
works, while the thingray lines indicate the channel skeletons. Panels (j), (n), and (r)

are derived from digital elevation model data, and the remaining panels are
extracted from satellite imagery. The map in panel (j) contains public sector
information licensed under the Open Government Licence v3.0. https://www.
nationalarchives.gov.uk/doc/open-government-licence/version/3/. The detailed
information for these regions can be found in Supplementary Tab. 1.
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to the complex interactions among ocean dynamics (e.g., tides, waves
and sea level rise)28–30, sediment transport31–33, and biotic processes
(e.g., vegetation colonization)34–38. As a result, extensive studies have
investigated these factors2,6,39, identifying variousmechanisms that can
affect tidal network morphology, such as the role of vegetation in
disturbing flow and stabilizing the sediment bed40, and the nonlinear
responses of hydrodynamics and coastal ecosystems to sea level rise41.
However, beyond these case-specific mechanisms, an alternative pos-
sibility remains unexplored: that the anomalous behavior of tidal
networks might represent a more holistic, fundamental principle not
captured by existing theoretical models.

In this study, we explored this hypothesis by investigating the
ideal branching network that should result from such a general prin-
ciple. First, by analyzing the common features of tidal networks col-
lected worldwide (Fig. 1), we derived that the ideal branching network
is a space-filling fractal, although its specific shape remains unde-
termined.We then formulated a simple theoreticalmodel, generalized
from themorphodynamics of tidal networks, suggesting that channels
occupying larger drainage areas are more likely to extend. The model
produced a regular space-filling fractal pattern, supporting our
hypothesis regarding the ideal branching network geometry. A com-
parison between themodeled and field networks revealed an inherent
“laziness”, where tidal networks in settings more conducive to channel
formation exhibit more pronounced deviations from the ideal space-
filling branching fractal. This result explains the commonly observed
anomalous scaling behavior in tidal networks. Furthermore, the iden-
tification of “laziness” opens up the possibility for controlling the
morphogenesis of tidal networks by strategically manipulating envir-
onmental factors. Our model also potentially provides an alternative
theoretical explanation for the emergence of branching networks in
nature.

Results
Conceptualization of the ideal branching network
We begin our analysis by investigating the scaling properties of real
tidal networks, leveraging an extensive dataset including more than
300 networks from 21 sites worldwide (Fig. 1). We geometrically deli-
neated every watershed by assigning each point within the drainage
platform to its nearest channel (Fig. 2a). The distance from each point
to its corresponding channel approximately represents the unchan-
neled length (Lu)

34. To assess the scaling of Lm to Ad (i.e., Hack’s law),
we decomposed each network level by level, resulting in a collectionof
subnetworks (with branches) and terminal channels (without bran-
ches) spanningmultiple scales (Fig. 2a). Byfitting the exponenth of the
scaling law Lm / Ah

d , weobserved significant variations across sites and
scales (Fig. 2b). Moreover, the exceedance probability distributions of
unchanneled length P Lu ≥ lu

� �
of all collected tidal networks (Fig. 2c-d)

exhibited a cluster of curves that defy conventional empirical models
based on a power-law or exponential fits26,27,42,43. Here Lu denotes the
set of unchanneled lengths extracted from a tidal network (Fig. 2a),
and lu represents a specific value of the unchanneled length.

Our objective is to identify the common factors among these
various patterns and deduce the characteristics of an ideal branching
network. To achieve this objective, we introduced the total channel
length (ΣL) of a network as a comparative metric. Notably, ΣL= Lm in
the case of an unbranched terminal channel (where only one channel
exists) and ΣL> Lm in a subnetworkwith branches.We then isolated the
data for unbranched terminal channels, resulting in three sets of
length–area scaling relationships as shown in Fig. 2e (refer to Supple-
mentary Fig. 1 for the scaling exponents for each site). For all collected
data (Fig. 2f), subnetworks with branches show that ΣL scales linearly
with Ad , denoted as ΣL / Ad (in blue); while Lm scales with Ad , with the
exponent fluctuating around 0.6 (in red). The unbranched terminal
channels indicate intermediate scaling exponent values (in green). This
transition suggests that thewidely-observed deviation fromHack’s law

(e.g., Fig. 2b) reflect a compromise between Lm / Ah
d and ΣL / Ad ,

constrained by the inability of real networks to branch infinitely. Note
that in each network of Fig. 2b, subnetworks and terminal channels are
separated, creating a scale break similar to that in Fig. 2e.

We then derived the exceedance probability of unchanneled
length P Lu ≥ lu

� �
for the ideal branching network. As

P
L / Ad indi-

cates that each channel segment occupies an equal proportion of the
drainage area, a straightforward scenario that fulfills this criterion is a
straight channel bisecting a rectangular basin (Fig. 2g). Under this
scenario, we can directly derive that P Lu ≥ lu

� �
= 1� 2Ddlu, where

Dd =ΣL=Ad is the drainage density. By introducing the dimensionless
parameter L*u = 2LuDd , we obtain:

P L*u ≥ l
*
u

� �
= 1� l*u ð1Þ

To verify this ideal form, we nondimensionalized the geometric
unchanneled lengths of all collected tidal networks and integrated
their exceedance probability distributions within a linear coordinate
system (Fig. 2g). After these operations, the curves exhibit denser
clustering than their dimensional counterparts (Fig. 2c, d). In addition,
these curves closely align to the right of the black dashed line repre-
senting Eq. (1). This result suggests that the ideal branching network
may represent a limiting condition that real-world networks strive
toward but cannot fully achieve.

Intriguingly, ΣL / Ad also presents a fascinating scenario where
one-dimensional lines exhibit the same dimensionality as a two-
dimensional plane. This phenomenon readily evokes associations with
space-filling fractals10. Such fractals can fill the space they occupy
completely, as their fractal dimension equals the topological dimen-
sion of the space, such as the Peano curve44. Given this relevance, we
hypothesized that the ideal branching network might be a standard
space-filling fractal network, even though its exact geometry remains
undetermined.

Deviation from an ideal branching network
The above analysis motivated us to characterize the network mor-
phology based on the deviation from the hypothetical space-filling
model (i.e., the ideal branching network), instead of conventional
power-lawdescriptions. Tomeasure this deviation,wedefinedametric
named “space-filling deviation index”:

Di =
Z 1

0
P L*u ≥ l

*
u

� �
dl*u � 0:5 ð2Þ

The graphical representation of this index is the area enclosed
between a probability curve in Fig. 2g and the black dashed line that
denotes the hypothetical baseline case (i.e., Eq. 1). A value of 0 indicate
nodeviation aswe can see by substituting Eq. (1) into Eq. (2). A largerDi

value indicates greater deviation.
We then examined themorphological variability in tidal networks

through a diagram of the drainage density Dd versus the index Di

(Fig. 3a). Here, Dd is a measure of the progress in network growth,
whileDi denotes the degree to which branching structures occupy the
drainage platform. Note that by definition, a larger Di value indicates
reduced effectiveness in filling the drainage platform space.

The data points exhibit a diverse distribution, with Dd spanning
approximately from 0.01 to 0.1 m�1 and Di ranging between 0.05 and
0.35 (Fig. 3a). While the pattern seems random with no clear trend, it
unveils several counterintuitive findings. Some networks develop a
dense distribution of channels (large Dd) yet deviating markedly from
the ideal space-filling condition (large Di). Conversely, some achieve
higher spatial occupation (small Di) despite much sparser channel
dissection (small Dd). This contrast underscores the significant varia-
bility among these networks in their efficiency at utilizing the avail-
able space.
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To explore the dynamics behind this variability, we examined
three networks that span the entire distribution (Fig. 3d-f and the black
boxes in Fig. 3a). In these three examples, networks with larger Di

values exhibit small branches and fewer sinuous extensions. Inspired
by this observation, we introduced two normalized parameters,
namely, N*

b and σs, to quantify the number of branches and the sinu-
osity of the network. These two parameters are represented by the
sizes and colors of the bubbles, respectively, in Fig. 3a. We found that
Di did not exhibit a clear correlation with σs (Fig. 3b, Spearman’s rank
correlation coefficient ρ � 0, with a p value > 0.05). In contrast, Di

significantly increased with N*
b (Fig. 3c, ρ � 0:7, with a p value < 0.05).

This result suggests system-level “laziness”—where increased ease of
new channel formation (i.e., more channel branches) paradoxically
leads to decreased effectiveness in occupying the available space (i.e.,
larger Di value).

Constructing the ideal branching network
Basedon thepositive correlationbetween channel length anddrainage
area (Fig. 2b), we proposed a simple rule: channel edges, including
channel heads and side banks, fed by larger drainage areas have a
higher probability of longitudinal extension or lateral tributary devel-
opment.Wedeveloped a theoreticalmodel to implement this rule. The
model operates on a two-dimensional lattice, where each cell can
occur in one of three states: platform, channel, or edge between the
platform and channel (Fig. 4a). In each iteration step, the model
computes the erosion potential (E) of each edge cell, which increases
monotonically with drainage area. Subsequently, the model randomly
transforms an edge cell to a channel cell with probability pi = Ei=ΣEi,
where the subscript i denotes the edge cell index. This selection pro-
cedure represents competition among all edge cells within a
catchment.

Fig. 2 | Scaling relationships of tidal networks that defy conventional simpli-
fication through simple empirical fits. a Data processing workflow in this study,
from image data to the distribution of the unchanneled length (Lu), followed by
level-by-level decomposition of the drainage basin, which results in an array of
subnetworks and terminal channels. The randomly colored patches with white
borderlines represent the extracted subnetworks. b Discontinuity in the scaling
relationships between the main channel length (Lm) and drainage area (Ad).
c, d Divergence of the exceedance probability distributions of the geometric
unchanneled length, P Lu ≥ lu

� �
, represented in log-log and semi-log coordinates.

e Three sets of length–area relationships resulting from isolating the data for

unbranched terminal channels, including ΣL versusAd (in blue) and Lm versusAd (in
red) for all subnetworks and Lm versus Ad (in green) for all terminal channels
(ΣL= Lm in this case). f Violin plots summarizing the variability in the three sets of
length–area scaling exponents for all collected tidal networks. g Exceedance
probability distributions of the nondimensional geometric unchanneled length L*u
for all collected tidal networks. The blue-to-white color code denotes the spatial
density of these curves. The dashed line denotes the linear function
P L*u ≥ l

*
u

� �
= 1� l*u, which is derived based on a simple scenario of a straight channel

bisecting a rectangular basin.
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The erosion potential is calculated as

E / Ad exp �Aact

Ad

� �
ð3Þ

where Aact is the activation drainage area above which erosion is sig-
nificant. Aact is conceptually similar to the energy barrier that must be
overcome for a chemical reaction to proceed at an appreciable rate, as
expressed in the Arrhenius equation45. Within the present context, an
edge cell with drainage area Ad <Aact exhibits a substantially reduced
potential for transformation into a channel. Correspondingly, a high
Aact value skews the competition by amplifying the advantage of edge
cells occupying larger drainage areas, as shown in the graphical
representation of Eq. (3) (Fig. 4b). Equation (3) follows a well-
established formula for assessing sediment erosion by flow46. While
the drainage area is directly employed as erosion power in Eq. (3), the
underlying rationale is that a larger drainage area suppliesmorewater,
thereby enhancing flow erosion and promoting channel formation47.

We assessed the model using different basin shapes and initial
conditions (Supplementary Fig. 2). Here, we describe scenarios run

with a classic square lattice initialized by a channel cell at the bottom-
left corner (e.g., Fig. 4a). As shown in Fig. 4c, d, branching networks
spontaneously developed in all the simulations (see also Supplemen-
tary Movie 1). A larger Aact value yields increased proximity to the
hypothesized ideal space-filling state characterized by a reduced
deviation index Di. Pursuing this observation, we explored the limit
state of the model by adopting Aact ! 1, which restricts channel
extension to the edge cells that occupy the largest drainage area.
Strikingly, this limiting scenario produced a regular network (Fig. 4e
and Supplementary Movie 2), which is identical to the space-filling
fractal tree mathematically constructed based on a recursive scheme
(Supplementary Fig. 3)48. This consistency directly elucidates the exact
shape of the ideal branching network we hypothesized above, and
shows how it can emerge from a localized competition principle. We
denoted the ideal branching network as Tsquare.

Laziness in the morphogenesis of branching networks
As shown in Fig. 4c, d, the modeled networks exhibit less efficient
spatial occupation (i.e., large Di), when channel extension activation
requires less effort (i.e., smaller drainage area Aact). This variation

Fig. 3 | Deviation of tidal networks from the theoretical space-filling model.
aDiagram of the drainage density Dd versus the space-filling deviation index Di for
different tidal networks worldwide. The size of the circle denotes the normalized
number of branches N*

b, and the color of the circle denotes the sinuosity σs .
b, c Variability in Di in relation to N*

b and σs . The solid line in (c) denote the linear

regression results visualizing the trend. d–f Examples of networks corresponding
to Dd–Di data pairs transitioning from the bottom-left to top-right corners in the
diagram in (a). The three networks are indicated by the black squares in (a). The
color scales in (d–f) represent the spatial patterns of the geometric unchanneled
length Lu.
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mirrors our observations regarding laziness in real-world tidal net-
works (Fig. 3c). The model explains this laziness as competitive
dynamics: a reduction in Aact , while facilitating channel formation,
causes an increase in the frequency of inefficient extension events at
occupying the available space. Notably, inefficient channel formations
manifest as small branches in both the simulated networks (Fig. 4c)
and real-world networks (Fig. 3f).

However, the above explanation relies heavily on the parameter
Aact , which cannot be directly measured in natural systems. Thus, the
following uncertainty remains: does the laziness observed in natural
systemsoriginate from the same competitivedynamics assumed in the
model? To investigate this issue,we introduced themetricAtip, defined
as the drainage area feeding each end tip of the branching network
(illustrated in Fig. 5a). The rationale behind this parameter is that the
evolution of tidal networks with well-developed branching structures
is generally slow49. This suggests that the drainage area occupied by
each channel tip should be close to the threshold required for its
extension. Since the drainage density and basin size of real-world
networks vary, we normalized Atip to create a dimensionless metric
A*
tip =AtipD

2
d . A higherA*

tip value indicates that, relative to thebasin size,
a larger drainage area is needed to generate sufficient erosive force for
channel formation. Therefore, A*

tip parallels Aact by representing the
difficulty of channel formation.However,A*

tip canbedirectlymeasured
from imagery data (Fig. 5a, b), allowing a more empirical approach to
examine the proposed competitive dynamics.

We used the median value of A*
tip to measure the overall difficulty

of channel formation within a given drainage platform (Fig. 5a, b). We
then compared the laziness between the natural and modeled net-
works through a diagram of Di versus the median of A*

tip (Fig. 5c). We
analyzed a comprehensive suite of 6000 simulations with parameter

Aact ranging from 0 to exp 9ð Þ (� 8103) m2. The modeled networks
exhibited a linear decreasing trend in Di with A*

tip, as shown by the
colored scatter points in Fig. 5c. The field data acquired from sites
worldwide (the gray dots in Fig. 5c), while indicating higher variance,
largely overlapped with the modeled scenarios. Furthermore, the
analytical solutions derived from Tsquare yielded A*

tip =4=9 and
Di � 0:037. These values closely conform with the extremities of both
themodeled andnatural networks, as indicatedby the two intersecting
pink dashed lines in Fig. 5c.

We further considered the dashed box in Fig. 5c to describe the
pattern of the real-world networks (Fig. 5d). Vegetated flats (green
circles) notably agreed with the model predictions, in contrast to the
more scattered distribution of the bare-flat data (brown circles).
Additionally, the bare-flat data generally appeared to be located in the
upper-right portion relative to the vegetated flat data. This suggests
that calculating A*

tip solely based on geometric distance could over-
estimate the actual drainage area feeding the channel tip in bare flats.
These discrepancies can be attributed to the higher overall bed ele-
vation and the mature, stable developmental phase of vegetated flats,
which leads to a stronger concentration of flow within the
channels1,34,50.

Therefore, we performed a linear regression exclusively for the
vegetated flats, yielding a linearly decreasing trend, specifically,Di = �
0:8617 ×A*

tip +0:4445 (R2 = 70%). This result supports that the “lazi-
ness” observed in natural systems and themodel is rooted in the same
competitive dynamics. However, it is also worth noting that Atip is not
the only factor influencing the spatial occupation of real-world tidal
networks. Other factors, such as channel meandering and bed sedi-
ment heterogeneity, could reduce the space-filling efficiency, resulting
in a larger deviation index Di than anticipated. Therefore, the data

Fig. 4 | Branching networks based on the competition principle. a Sketch of the
model lattice. Each cell can exhibit one of three states: platform, channel, or edge
between the platform and channel. b Variability in the erosion potential E calcu-
lated with different activation drainage areas Aact (Eq. 3). Here, E is normalized by
the erosion potential calculated as Ad = 200 m2, which allows clear comparison

between these curves. c, d Modeled network growth within a 1200m× 1200m lat-
tice using small and large Aact values. e Network growth modeled by restricting
channel extension toward the edge cells that occupy the largest drainage area
(equivalent toAact ! 1).
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points derived from the idealized theoretical model tend to fall below
the fitted line for data from real-world networks as shown in Fig. 5c.

Discussion
The competition principle proposed in this study incorporates a
deterministic increase in erosion potential with drainage area, and a
random selection procedure. This configuration resonates with the
two ingredients of nature’s design—necessity and chance51. By elim-
inating randomness in morphological evolution, the model physically
produces a regular space-filling tree (Tsquare), which is identical to the
synthetic fractal generated mathematically48. This consistency indi-
cates a clear delineation of the respective roles of necessity and chance
in branching morphogenesis: necessity establishes the underlying
fractality and order, while chance introduces variability and diversity,
leading to a myriad of possible outcomes that share consistent sta-
tistical properties.

Tsquare serves as a baseline for analyzing tidal network morphol-
ogy by enabling the identification of characteristic thresholds through
analytical solutions (e.g., Di � 0:037). Furthermore, the model
revealed a systematic deviation from Tsquare with decreasing difficulty
in channel formation. These findings lay the groundwork for a uni-
versal framework to assess the effects of various dynamics on tidal
networkmorphology. For instance, recent studies have shown that the
presence of vegetation leads to more efficient drainage patterns34,36;
notably, our model supports this observation, as vegetation amplifies
the erosion resistance, thereby increasing the difficulty of channel
formation. On the other hand, we also observed that a single factor,
whether the tidal range or vegetation coverage, does not exclusively
dictate the space-filling efficiency of the network (Fig. 5d). This

complexity indicates the need for a more integrated approach in
future studies to address the multifaceted dynamics that shape net-
work morphology.

Our model also suggests a potential paradigm shift in capturing
the morphogenesis of branching networks. Established theories con-
ventionally view branchingmorphogenesis as a goal-oriented process,
actively evolving toward states that enhance efficiency, minimize
energy dissipation, or optimize other thermodynamic properties24,52,53.
Our model proposes an alternative explanation by presenting a pas-
sive, shortsighted evolutionary process. The model does not pursue
any optimized state; instead, it evolves following a straightforward,
localized competition principle. This principle does not force the
channels to branch, but branching occurs spontaneously as channels
expand to occupy space. This behavior highlights the simplicity and
elegance with which nature organizes itself without any deliberate
guiding hand.

This interpretation complements rather than contradicts the
prevailing understanding of branching networks. It emphasizes the
dual nature in the growth of branching networks, where the observed
“laziness” acts as a counterpoint to the well-recognized optimization
properties. Indeed, several studies have argued that natural systems
are not perfectly optimized in terms of defined state variables54, such
as entropy53, energy dissipation55, and the index Di constructed in this
study. Here, tidal networks offer an ideal empirical subject for
exploring this imperfection, owing to their pronouncedmorphological
diversity (e.g., Fig. 1). This diversity enables us to identify another key
facet of branchingmorphogenesis in contrast to optimization, namely,
the laziness phenomenon. This laziness reconciles the divergence and
deviation from power-law scaling relationships (e.g., Hack’s law and

Fig. 5 | Illustration of the laziness of branching morphogenesis utilizing the
drainage areas of channel tips. a An example from Saeftinghe, Netherlands,
depicting the spatial distribution of drainage areas at all channel tips across a
drainage platform (i.e.,Atip). The colored blocks denote the catchment of each tidal
network, with the gray lines representing channel lines. Thewhite patcheswith thin
gray borders indicate the drainage areas of the channel tips. b Frequency dis-
tribution of A*

tip ( =AtipD
2
d) calculated from the Saeftinghe drainage platform, with

the median value of A*
tip also noted. c Variation in the space-filling deviation index

Di with the median of A*
tip. The gray points denote the field data collected in this

study. The small, gradient-colored dots indicate the results of more than 6000
model simulationswith varyingAact values substituted into Eq. (3). The pink dashed
lines delineate the characteristic thresholds derived fromTsquare.dDetailed view of
the dashed box in the diagram of (c). The light gray squares correspond to the
model results (consistent with the gradient-colored dots in (c)). The circles of
varying sizes and colors denote the field data, detailed with mean tidal range and
vegetation coverage information. The green line indicates the linear regression of
thefielddata fromvegetatedflats,with a transparent band showing95%confidence
intervals.
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the probability distribution of the unchanneled length illustrated in
Fig. 2), bridging the gap in optimization theories.

The results of this study contribute to the conservation and
restoration efforts of coastal wetlands—a pressing issue that has
received widespread attention56. Our morphometric analysis intro-
duces innovative metrics with theoretical benchmarks for quantify-
ing the drainage conditions in coastal wetlands (e.g., Di and A*

tip).
These metrics could provide researchers and wetland managers with
tools to evaluate the functional capacity of wetlands to sustain bio-
diversity and ecosystem services, such as flood mitigation and water
filtration. In addition, the inherent laziness of tidal networks suggests
effective ways to adjust the drainage patterns of constructed wet-
lands in a nature-driven manner57. For example, network efficiency
could be enhanced through targeted interventions, such as planting
specific types of vegetation38 and controlling tidal forces58. Rather
than serving as a definitive guideline, these findings represent a
fundamental step towards more refined design and management of
coastal wetlands. Further research is needed to explore the effects of
tidal network drainage patterns on key ecological processes,
including species distribution, habitat connectivity, and nutrient
cycling. This will be critical for applying the “laziness” concept across
diverse coastal wetland ecosystems and integrating it into practical
management.

The impact of this study could extend beyond tidal channels, as it
introduces a fundamental approach for controlling the space-filling
procedure of branching networks. In our theoretical model, the con-
cept of “drainage area” that drives the competition could be general-
ized to represent other critical resources for network growth across
various contexts, such as sunlight for plant growth59, chemical gra-
dients or mechanical tension for lung branching60, and high voltage
potential for electrical breakdowns61. Exploring this competitive
mechanism in different disciplines could open up various potential
applications, including the optimization of agricultural irrigation
systems62, biomimetic designs in engineering63, astrophysical studies
of planetary surface morphology and erosion processes64, and
enhancement in search algorithms and data mining techniques within
complex databases65.

Methods
Extracting tidal networks from satellite imagery
WeemployedArcMap software tomanually trace the axial lines of tidal
networksworldwide fromGoogle Earth satellite imagery. The digitized
data resulting from this effort were integrated with preexisting data-
sets to constitute the dataset of this study1,26,42. The visibility of tidal
networks in satellite imagery is often obscured by vegetation, clouds,
and floodwaters. Therefore, in our selection criteria, we prioritized
regions with distinctly visible tidal networks, exemplified by regions
such as Mokpo in South Korea and the Drowned Land of Saeftinghe in
the Netherlands. Despite these constraints, the collected morpholo-
gical data herein are the most extensive to date. In addition, the
selected regions encompass diverse tidal dynamics and vegetation
cover conditions (Table S1), facilitating the derivation of general pat-
terns beyond case-specific mechanisms.

We used MATLAB to process the extracted tidal networks. The
segmentation of the tidal network, as shown in Fig. 2a, follows the
classicHackmethod16: the longest channel reaching the networkoutlet
is designated the main channel of order 1, and all tributaries joining an
order-n channel are assigned order n+ 1. This level-by-level hier-
archical ordering process is shown in Supplementary Fig. 4. For
instance, by excluding the main (i.e., the longest) channel of order 1,
one can identify all subnetworks of order 2. The subsequent steps
involved calculating themain channel length (Lm), total channel length
(ΣL), and associated drainage area (Ad) of these decomposed subnet-
works, thus allowing power-law fitting of the length–area scaling
relationships.

We delineated the drainage area of each subnetwork by geome-
trically assigning each point on the drainage platform to its nearest
channel, which differs from the common downslope direction
approach employed for terrestrial river networks. This difference
occurs because the drainage platforms of tidal networks are generally
shallow and flat. In such cases, water typically flows into the nearest
channel to minimize the frictional energy loss26. This delineation
technique has been validated in previous morphometric studies34,42,43.
In practice,wediscretized thedrainageplatform into small square cells
and assigned each cell to the channel line closest to the center of the
cell at a straight-line distance (Supplementary Fig. 5). This process also
aimed to determine the geometric unchanneled length (lu). We
adopted different sizes of discrete cells based on the size of the drai-
nage platform to ensure amagnitude of approximately 106 cells, which
usually satisfies the accuracy requirements.

To compute the smallest distances between the centers of the
cells and the channel lines, the calculation of all distances and sub-
sequent selection of the minimum value comprises a time-consuming
process. Here, we employed the K-nearest neighbors algorithm
embedded in MATLAB to efficiently determine these distances66.

Metrics derived from the network morphology
Here, we explain the calculation of the metrics that represent the
branching morphology of tidal networks. We directly calculated the
drainage density (Dd =ΣL=Ad) and the space-filling deviation index
(Di =

R1
0 PðL*U ≥ l*uÞdl*u � 0:5) based on their definitions. The power-law

scaling exponents of the channel lengths (ΣL and Lm) versus the drai-
nage area (Ad) were derived through regression analysis utilizing the
nonlinear least squares method, supported by the Curve Fitting
Toolbox in MATLAB.

The sinuosity of a curvilinear channel can generally be quantified
by the L=LE ratio67, where L is the curvilinear channel length and LE is
the straight-line distance between the start and end points. Here, we
extended this definition and proposed the following equation for the
average sinuosity of the channel network:

σs =
ΣL
ΣLE

ð4Þ

where ΣL is the total channel length and ΣLE is the sum of the straight-
line distances of all the channels ordered by Hack’s method
(Supplementary Fig. 6).

The number of branches (Nb) was determined by counting the
number of the end tips of the channel network. The drainage area
adjoining each end tip (Atip) was computed using the same technique
as the watershed delineation described above (Fig. 5a). These two
metrics were normalized to facilitate comparison between channel
networks of different sizes and drainage densities. To achieve this
normalization, we introduced a scaling factor α to adjust the drainage
density to 1. The key is that if the total length of the channel network is
scaled by a factor of α, the corresponding drainage area is scaled by a
factor of α2. Therefore, the factor can be determined as follows:

Dd =
αΣL
α2Ad

= 1 ð5Þ

Solving this equation yields α =ΣL=Ad , which is exactly the drai-
nage density Dd . Consequently, we defined the normalized tip area as
A*
tip =D

2
dAtip and the normalized number of branches as

N*
b =Nb=ðD2

dAdÞ, which denotes the number of branches per unit area.

Algorithms of the theoretical model
In this section, we provide a detailed description of the theoretical
model established in this research. Model coding and simulation were
conducted using MATLAB. The competition principle, two-
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dimensional lattice, cell attributes (i.e., channel, platform and edge),
and iteration process of the model have been described in the main
text and are not repeated here.

The functional form of the erosion potential (Eq. 3) originated
from the well-established sediment erosion model, which takes the
following form46:

E* =
φs

T *
B

D*1:5θ exp � 8

θ=θc

� �0:7
" #

ð6Þ

where E* is the sediment erosion rate, φs is the ratio of the dry bulk
density to the grain density of the sediment, T *

B is the nondimensional
bursting period, D* is the nondimensional particle diameter, θ is the
Shields parameter, and θc is the critical Shields parameter. Equation (3)
simplifies the complex empirical parameters in Eq. (6), while retaining
the basic form of the product of the linear and exponential terms.

Here, we describe the algorithm for computing the drainage area
that contributes to each edge cell in each iteration step in the model
simulation process. Tidal networks develop in intertidal zones, where
tidal movements are typically restricted to shallow water depths. This
results in a flow field dominated by friction1, which allows the
approximation of the flow paths across the drainage platform by
straight lines (Supplementary Fig. 7a)34. We assumed that each straight
flow line starts from a platform cell and directly extends to its nearest
channel cell. Thus, these flow lines cross the edge cells and enter the
channel cells from different angles. These angles can be categorized
into eight main directions, namely, north, south, west, east, northeast,
northwest, southeast, and southwest. Each direction corresponds to
one of the eight neighboring cells surrounding a channel cell. We
assessed the number of platform cells that contributed to each edge
cell by counting the number of flow lines passing through each edge
cell (Supplementary Fig. 7b). Subsequently, we sequentially calculated
the drainage areas of the edge cells, the erosion potentials of the edge
cells, and the probabilities that the edge cells are transformed into
channel cells. The computation of the smallest distances between the
flat and channel cells also entailed the K-nearest neighbors algorithm
embedded in MATLAB66.

Scaling properties of Tsquare
In this section, we explain the derivation of various scaling properties of
Tsquare, which serves as the baseline network in our model and is
mathematically equivalent to a regular space-filling fractal tree48. The
iterative algorithm of Tsquare can be understood as a recursive self-
replicating procedure. For simplicity, we defined T square as an infinite
sequence of trees, i.e., T 1, T2, T3, � � �

� 	
. T 1 denotes a channel segment

linking the bottom-left corner and the center of a 1 × 1 square (Supple-
mentary Fig. 3a). To generate T2, we first created four symmetric copies
of T 1 by mirroring it horizontally, vertically and diagonally in sequence.
Then,we extended the channel segment to the bottom-left corner of the
newly formed 2×2 square. With the use of the same procedure, we
generated T3 from T2, etc. Thus, the main channel length Lm, total
channel length ΣL and drainage area Ad of Ti were derived as follows:

Lm =

ffiffiffi
2

p

2
2i � 1

� � ð7Þ

ΣL=

ffiffiffi
2

p

6
4i � 1

� � ð8Þ

Ad =4
i�1 ð9Þ

Adopting i ! 1, we can derive Lm / 2i, ΣL / 4i and Ad / 4i. This
derivation demonstrates the scaling relationships of Lm / A0:5

d and
ΣL / Ad for Tsquare. In addition, when i ! 1, the drainage density is

Dd =ΣL=Ad =2
ffiffiffi
2

p
=3, and the drainage area Atip adjacent to each

channel tip is 1=2 as shown in Supplementary Fig. 3b. Thus, the nor-
malized metric is as follows: A*

tip =AtipD
2
d =4=9.

To determine the unchanneled length lu, we decomposed the
drainage basin into 1 × 1 square units. As shown in Supplementary
Fig. 3a, these units can be categorized into two types: Unit A, in which
the channel line links the center and corner; and Unit B, in which the
channel line runs diagonally. The exceedance probability distributions
of lu for these two units can be derived as follows:

PA LU ≥ lu
� �

=

ffiffi
2

p
2 � lu

� �2
+
1
2
� π

2
l2u, lu ≤

1
2ffiffi

2
p
2 � lu

� �2
+
1
2
� π

2
l2u +2l

2
u arccos

1
2lu

�
ffiffiffiffiffiffiffiffiffiffiffiffi
l2u � 1

4

q
, 1
2 <lu ≤

ffiffi
2

p
2

8>><
>>:

ð10Þ

PB LU ≥ lu
� �

= 1�
ffiffiffi
2

p
lu

� �2 ð11Þ

Regarding Ti, the values of Units A and B are 4i=6+ 1=3 and
4i�1=3� 1=3, respectively. For i ! 1, these quantities converge to
stable proportions, at 2=3 for Unit A and 1=3 for Unit B. Therefore, the
exceedance probability of lu over the entire drainage basin is
2PA=3 +PB=3 (Supplementary Fig. 3d). The associated space-filling
deviation index Tsquare is Di � 0:037 based on Eq. (2).

Data availability
The data that support the findings of this study arepublicly available in
Figshare at https://doi.org/10.6084/m9.figshare.25750173.

Code availability
The codes used to implement the theoretical model and generate the
figures in this study are publicly available in Code Ocean at https://doi.
org/10.24433/CO.4656631.v1.
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