

1 **The ecohydrology of coastal ghost forests**

3 Sergio Fagherazzi¹, Giovanna Nordio¹, Jacopo Boaga², Giorgio Cassiani², Holly A. Michael³,

4 Dannielle Pratt³, Tyler C. Messerschmidt⁴, Matthew L. Kirwan⁴, Stephanie Stotts⁵

6 ¹Department of Earth and Environment, Boston University, Boston, MA, USA

7 ²Department of Geosciences, University of Padova, Padova, Italy

8 ³Department of Civil, Construction, and Environmental Engineering, University of Delaware,
9 Newark, DE, USA

10 ⁵Virginia Institute of Marine Science, Gloucester Point, VA, USA

11 ⁶School of Agricultural and Natural Sciences, University of Maryland Eastern Shore, Princess
12 Anne, MD, USA

16 **Abstract**

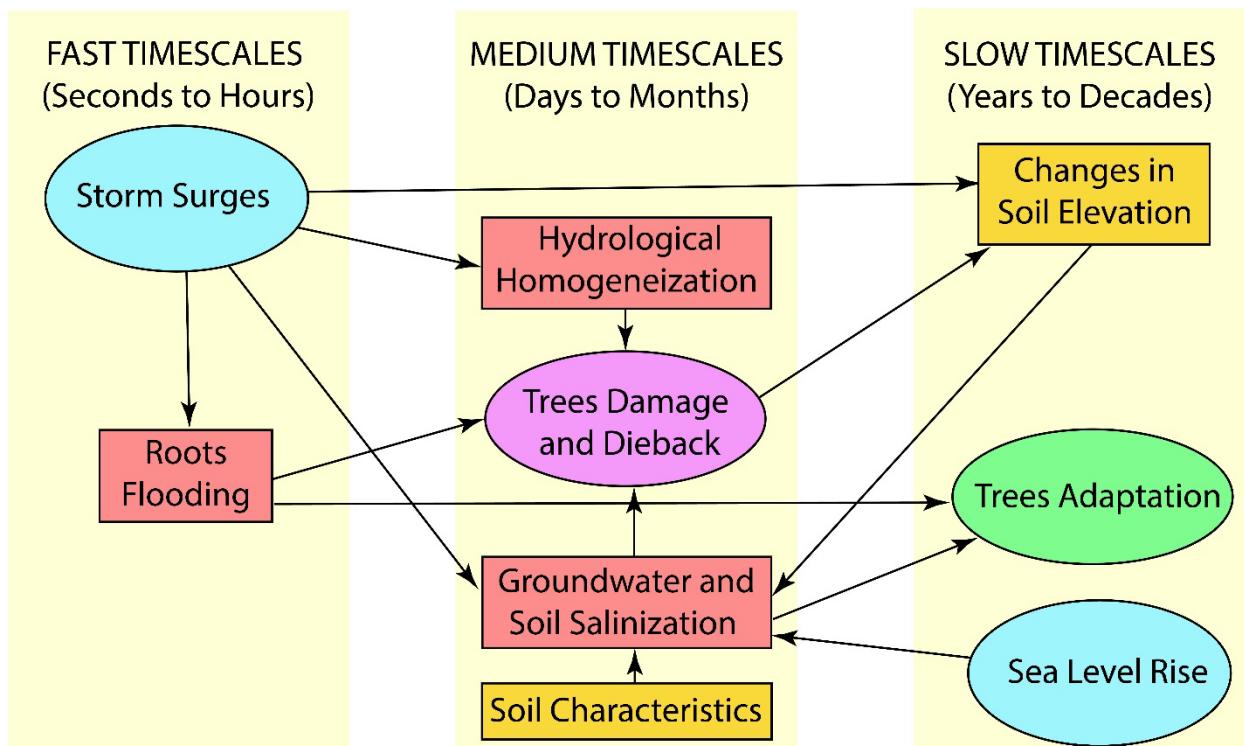
17 Sea level rise and storm surges affect coastal forests along low-lying shorelines. Salinization and
18 flooding kill trees and favor the encroachment of salt-tolerant marsh vegetation. The hydrology
19 of this ecological transition is complex and requires a multidisciplinary approach. Sea level rise
20 (press) and storms (pulses) act on different timescales, affecting the forest vegetation in different
21 ways. Salinization can occur both by vertical infiltration during flooding or from the aquifer
22 driven by tides and sea level rise. Here we detail the ecohydrological processes acting in the
23 critical zone of retreating coastal forests. An increase in sea level has a three-pronged effect on
24 flooding and salinization: it raises the maximum elevation of storm surges, shifts the freshwater-
25 saltwater interface inland, and elevates the water table, leading to surface flooding from below.

26 Trees can modify their root systems and local soil hydrology to better withstand salinization.
27 Hydrological stress from intermittent storm surges inhibits tree growth, as evidenced by tree-ring
28 analysis. Tree rings also reveal a lag between the time when tree growth significantly slows and
29 when the tree ultimately dies. Tree dieback reduces transpiration, retaining more water in the soil
30 and creating conditions more favorable for flooding. Sedimentation from storm waters combined
31 to organic matter decomposition can change the landscape, affecting flooding and runoff. Our
32 results indicate that only a multi-disciplinary approach can fully capture the ecohydrology of
33 retreating forests in a period of accelerated sea level rise.

34

35 **1. Introduction**

36 Low lying coastal areas are extremely vulnerable to sea level rise (SLR) and storm surges
37 (Kearney et al. 2019, Kirwan and Gedan, 2019; Schieder and Kirwan 2019). Increasing sea
38 levels push the interface between fresh and salt groundwater inland, affecting coastal forests and
39 agricultural fields (Fagherazzi et al. 2019a). Soil salinization kills trees and crops and favors the
40 expansion of salt marshes inland (Williams et al., 1999a). Ghost forests, composed of dead trees,
41 starkly punctuate the coastline, serving as poignant symbols of climate change (Kirwan and
42 Gedan, 2019). The impact of SLR is amplified along gentle shorelines, such as those found in the
43 Mid-Atlantic region of the United States. Here the retreat of forests and agricultural lands occurs
44 at fast rates with devastating consequences for ecosystems and communities (Fagherazzi et al.
45 2019b, Molino et al. 2022). Though less widely studied, storm surge events, occurring on short
46 temporal scales, can have greater impact on coastal groundwaters and the ecosystems they
47 support. The impact of storm surges on groundwater has been studied with field measurements
48 and hydrological models (Cantelon et al. 2022). Coupled groundwater-surface water 2D models


49 have been used to explore the influence of different soil characteristics (Yang et al. 2018) and
50 topographic connectivity (Yu et al. 2016) on salinization due to storm surge events and on the
51 recovery time (time to reach the pre-storm conditions, i.e. the value on the day prior to the
52 storm). Terry and Falkland (2010) estimated a recovery time of 1 year in a coastal aquifer
53 affected by a category 5 cyclone, while a similar event was felt in a low-permeability surficial
54 aquifer up to 8 years (Xiao et al. 2019). Saltwater intrusion due to the supertyphoon Haiyan
55 persisted in a sandy aquifer in the Philippines for 2 years (Cardenas et al. 2015).

56 In coastal vegetated areas, storm surge flooding and salinization can kill salt intolerant or
57 moderately tolerant vegetation species (Woods et al. 2020; Pezeshki 1992; Munns and Tester,
58 2010; Middleton and David, 2022). Saltwater infiltration affects the active root zone, which
59 typically occupies the upper decimeters of the soil (Mou et al., 1995; Xu et al., 2016; Parker &
60 Lear, 1996). Coastal forests, in particular, have very shallow water tables, and the waterlogged or
61 saturated soils with low oxygen levels inhibit the establishment of deep root systems (Coutts &
62 Philipson, 1978). Consequently, root development is largely confined to the upper, aerobic soil
63 layers (Boggie, 1972; Lieffers & Rothwell, 1987). In retreating coastal forests, roots are often
64 distributed asymmetrically, growing preferentially toward upland freshwater sources
65 (Messerschmidt et al., 2021).

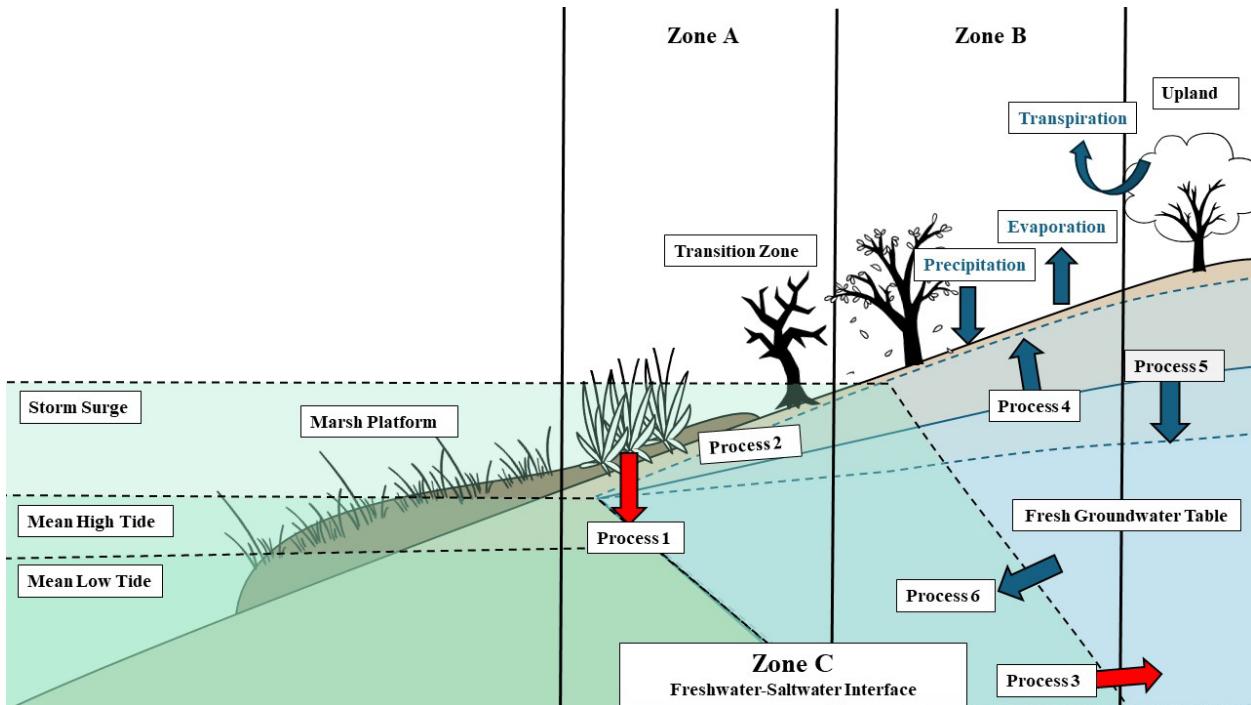
66 When salinity thresholds are exceeded for extended periods, trees and crops progressively die,
67 encouraging the establishment of more salt-tolerant vegetation species (Tully et al. 2019).

68 In this paper we present a review of the eco-hydrological processes that control the migration of
69 ghost forests inland. The review is based on the preliminary results of a large-scale project
70 funded by the US National Science Foundation. In this project, an interdisciplinary team has
71 been collecting extensive field data in ghost forests along the Delmarva peninsula, USA. The

72 review is based on field data and simple conceptual models that will inform sophisticated
 73 ecohydrological models of forest–groundwater interactions (e.g. Rodriguez-Iturbe, 2000,
 74 Rodríguez-Iturbe and Porporato 2007, D'Odorico et al. 2010).
 75 In Figure 1 we report the main processes and interactions covered in this overview. Storm surges
 76 and sea level rise flood tree roots, increasing ground water and soil salinity in a complex manner
 77 (Section 2). In particular, storm surges homogenize the forest hydrology, killing trees and
 78 reducing biodiversity (Section 3). Soil properties can either mitigate or exacerbate the
 79 salinization process during storm surges (Section 4). While trees can initially adapt to saturated
 80 and saline soils by altering their root zones (Section 5), prolonged exposure eventually results in
 81 damage or death. Major salinization events are recorded in tree rings (Section 6). Tree dieback
 82 and the decomposition of belowground organic material can lower forest elevation, which in turn
 83 increases vulnerability to storm surge flooding (Section 7). However, storm surges may also
 84 deposit sediment that raises forest elevation.

86 **Figure 1: Processes affecting the ecohydrology of coastal ghost forests and related timescales.**

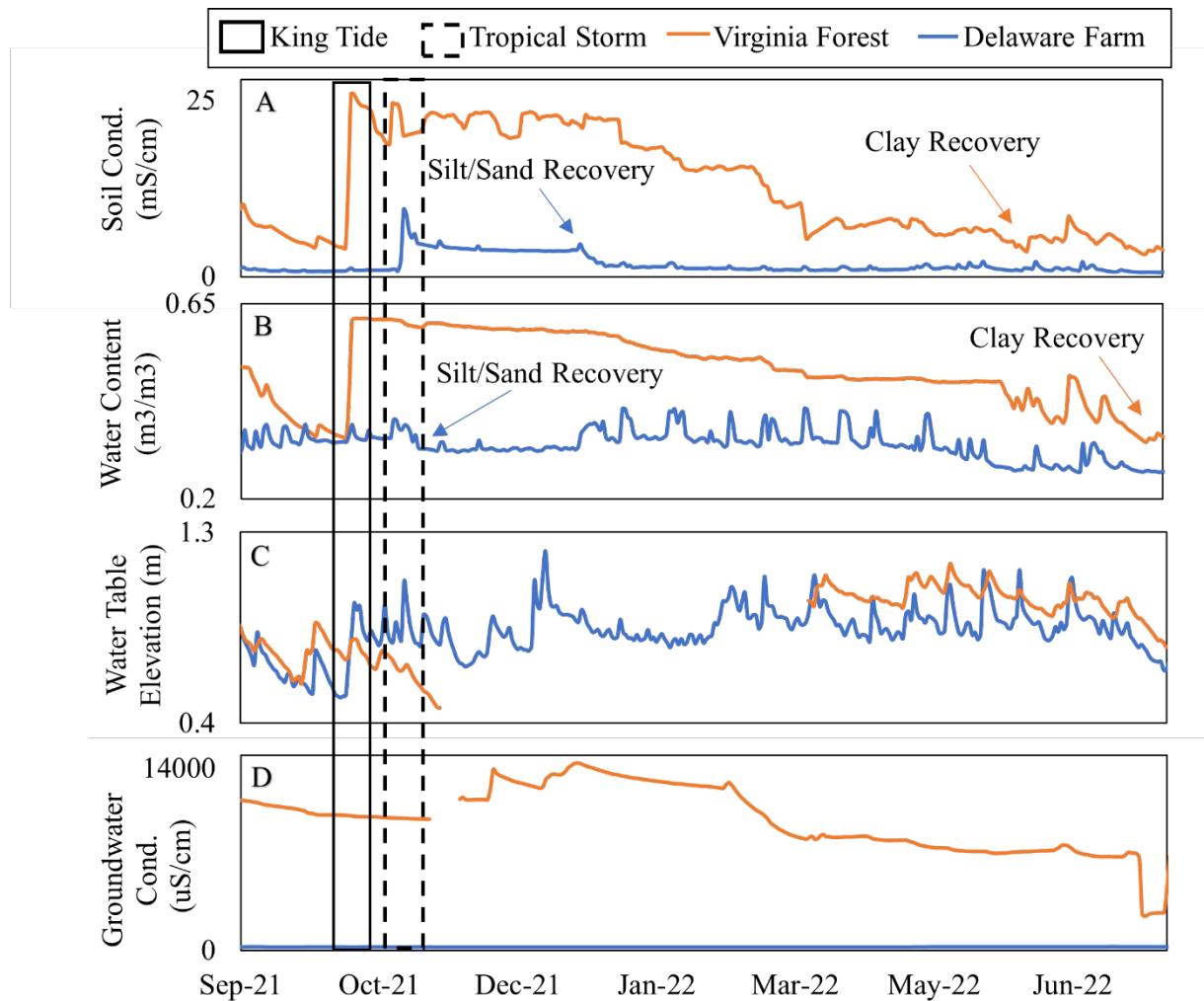
87


88

89 **2. Hydrological processes causing forest ecosystem stress**

90 The primary causes of marsh migration into forested uplands are increases in salinity and
91 saturation of the root zone. These conditions stress upland trees and shrubs and support growth
92 of saltmarsh vegetation. The drivers of these changes stem primarily from climate change, which
93 upsets the balance of hydrologic forces – the ocean level on the seaside and the water table on
94 the land side – and it is this balance that determines the salinity distribution in soils and
95 groundwater. On the seaside, a rise in mean sea level increases the high tide mark, creating a new
96 zone of regular saltwater inundation where marsh vegetation thrives (Figure 2, Zone A).

97 Similarly, episodic extreme high tides and storm surges can propagate further inland, flooding
98 freshwater ecosystems with saltwater (Figure 2, Zone B). The floodwaters infiltrate the soil,
99 salinizing the root zone and shallow groundwater (Figure 2, Process 1 & Figure 3B) (Xiao et al.,
100 2018). This process also causes saturated conditions during flooding (Figure 2, Process 2 &
101 Figure 3A), and increases both soil moisture and the water table elevation for a period of time
102 (Figure 3A and 3C). Evapotranspiration during the recovery period will accelerate pore drainage
103 but can also cause evapoconcentration of salts (Yu et al., 2021), resulting in higher root zone
104 salinities and potential formation of salt precipitates, which can subsequently dissolve during
105 rainfall events (Geng & Boufadel, 2017), creating a secondary salt stress event. Along the
106 Delmarva peninsula we saw shallow root zone salinization from both king tides and storm surges
107 (Figure 3). During both events, we measured a rise in soil moisture and soil conductivity, as well
108 as water table elevation (Figure 3A-C). The groundwater conductivity did not spike during these
109 events (Figure 3D), indicating that the saltwater infiltrated vertically from the surface (Figure 2,


110 Processes 1 and 2) and did not rise upward from movement of the subsurface interface and
111 saturation from below (Figure 2, Processes 3 and 4). This dynamic may not occur in all coastal
112 locations or during every flooding event. In steep coastal landscapes, the extent of flooding can
113 be limited. Under very wet conditions, such as during storms with heavy precipitation, the
114 infiltration of saltwater may be reduced due to already saturated soil.

116 **Figure 2: Hydrological processes at the upland-marsh transition. Sea-level rise increases the**
117 **level of mean and high tides, pushing the transition between saltmarsh and upland inland (Zone**
118 **A). Increases in sea level and storm intensity also push periodic storm surges further inland into**
119 **freshwater ecosystems (Zone B), salinizing (Process 1) and saturating (Process 2) soil and**
120 **groundwater with saline surface water from above. Increases in mean sea level cause the deep**
121 **freshwater-saltwater interface to move inland (Process 3) and the water table elevation to rise**
122 **(Process 4), potentially causing surface flooding from below. Increases in net**
123 **evapotranspiration and water extraction can cause the groundwater table elevation to fall**

124 (Process 5). After periods of heavy precipitation, the influx of fresh groundwater from the upland
125 increases, pushing the freshwater-saltwater interface seaward (Process 6). The vertical
126 dimension is deliberately exaggerated in the figure for clarity.

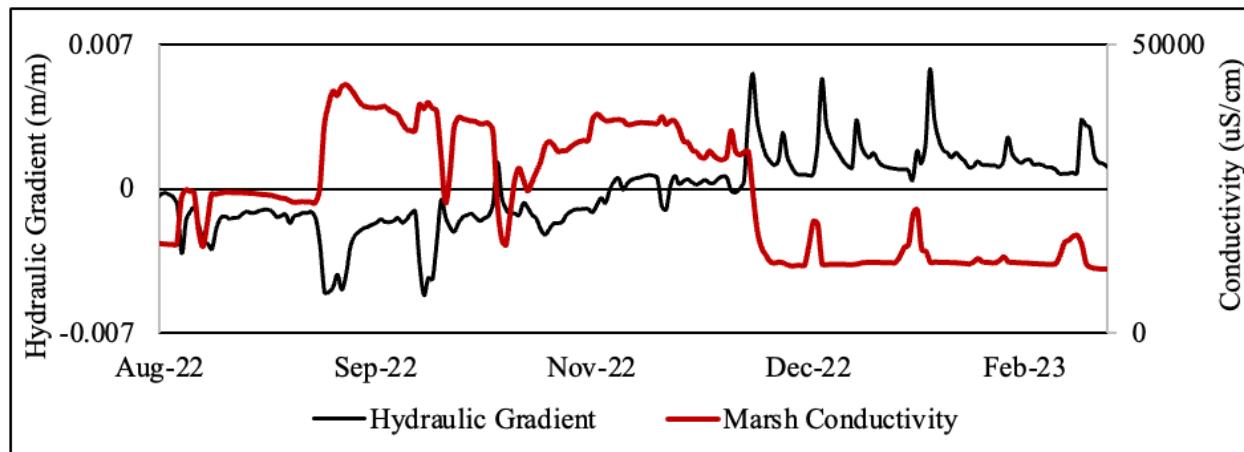
127

128 **Figure 3:** A: Volumetric soil water content, B: Soil conductivity, C: Water table elevation, and
129 D: Groundwater Conductivity in a Virginia forest and a Delaware agricultural site during a king
130 tide and tropical storm in 2021.

131

132 While the surface salinization and flooding pathway is relatively easy to see and track, there is
133 also a subsurface pathway that is less apparent and responds to different mechanisms and

134 timescales of change. In the saturated zone, the location of the interface between fresh and saline
135 groundwater (Figure 2, Zone C) reflects an equilibrium between sea level and water table
136 elevation. A rise in mean sea level that is not balanced by an equal rise in the water table will
137 cause saline groundwater to move inland (Figure 2, Process 3). For a given recharge rate, as sea
138 level rises, the water table also rises and generally keeps pace with SLR. The extent to which this
139 rise occurs, however, depends in large part on the topographic gradient in the upland, since a rise
140 in the water table above land surface will result in rejected recharge (i.e. overland flow toward
141 the marsh fed by groundwater see Michael et al., 2013). A drop in the mean water table
142 elevation, due to drought (Drexler and Ewel, 2001) or groundwater pumping (Houben and Post,
143 2017) for example, will produce the same salinization effect. These two processes – SLR and
144 water table decline – similarly increase subsurface salinity, yet they have opposite effects on root
145 zone saturation. SLR and increases in rainfall will raise the water table and induce root zone
146 saturation (Figure 2, Process 4), whereas a mean water table decline deepens the unsaturated
147 zone and tends to reduce incidence of root zone saturation (Figure 2, Process 5). If the influx of
148 fresh groundwater from the upland increases, such as during periods of heavy rainfall, the
149 freshwater-saltwater interface shifts seaward (Figure 2 Process 6).


150 Whether ecosystem stress leads to vegetation mortality depends on the magnitude of the stressor
151 and its frequency and duration. The primary controls on the maximum salinity are the salinity of
152 the adjacent tidal surface waters, the availability of freshwater for dilution, and the potential for
153 evapoconcentration. Each of these may vary over time as a result of climatic and anthropogenic
154 change. Flooding waters during storms will likely become more saline with SLR, rainfall
155 patterns and intensity may change, and evapotranspiration will increase marginally with
156 temperature rise and substantially with ecosystem change. For example, tree dieback reduces

157 transpiration, while the encroachment of shrubs and grasses could increase it. Additionally, a
158 reduction in canopy cover would lead to higher evaporation rates in the top layers of soil.

159 The controls on stressor frequency and duration are perhaps more complicated. As sea level
160 rises, the frequency of both salinization and saturation events will increase at a given position
161 along the marsh-upland transition, because a given tidal amplitude or surge height will have a
162 higher elevation and reach further inland. In addition, the frequency and intensity of surges have
163 increased (Xiao & Tang, 2019), indicating that not only is the base surface water elevation rising,
164 but the amplitude and frequency of these surges are also increasing. These processes lead to
165 more frequent occurrences of both salinization and land surface saturation (Figure 2, Processes 1
166 and 2). Root zone saturation events from below (Figure 2, Process 4) are anticipated to rise in
167 both frequency and duration as sea levels continue to increase. Furthermore, some coastal
168 regions may experience higher average rainfall or more frequent extreme rainfall events.

169 These processes occur episodically, with fast hydrologic events sufficient to trigger stress. In
170 contrast, the subsurface salinization mechanism requires longer timescales due to the slower
171 movement of the freshwater-saltwater interface (Figure 2, Process 3). This shift depends on
172 sustained changes in the land-sea hydraulic gradient, as the interface moves at the rate of
173 advective groundwater flow. At our field sites, when the hydraulic gradient is negative, there is
174 reversed flow and landward movement of the groundwater freshwater-saltwater interface (Figure
175 2 Zone C, Process 3). Figure 4 indicates the reversal of the hydraulic gradient during August-
176 December 2022 and the increase in groundwater conductivity as well as the reversal back to
177 normal flow in December 2022 and subsequent groundwater conductivity recovery. Vegetation
178 can partly adapt to these salinization events. Plants can transport fresh water to saline areas via

179 roots through hydraulic redistribution. During droughts, loblolly pine stands (*Pinus taeda*) are
180 able to maintain high water potential in the upper soil layers by redistributing water through this
181 mechanism (Domec et al., 2010). Hydraulic redistribution can thus help sustain transpiration and
182 photosynthesis during dry periods. However, in saline soils, the accumulation of ions in the root
183 xylem sap and leaf apoplast can inhibit hydraulic redistribution (Bazihizina et al., 2017).

185 **Figure 4: Hydraulic gradient and conductivity of groundwater below the marsh at a Virginia**
186 *farm site.*

187 The duration of stressor events is dependent on the duration of episodic events: duration of the
188 high tides, storm-driven surge, and seasonal changes in the hydraulic gradient, for example. But
189 this is only part of the story, as stressor duration also depends on the length of time needed to
190 reset the salinity and moisture distributions – the time to flush saltwater out of the root zone, to
191 drain the unsaturated zone, or to drop the water table. These timescales can be orders of
192 magnitude longer than those of episodic events and may be influenced by factors beyond
193 hydrology. For example, soil hydraulic properties are critical, as clayey soils tend to flush salt
194 more slowly and take longer to drain than sandy soils (Taylor & Kruger, 2019). At a Delaware
195 farm site, the soil conductivity takes about 3 months to recover following a surge, and soil

196 moisture only one week to recover (Figure 3A & B). At a Virginia forested site, the soil
197 conductivity takes 6 months to recover following a surge, and soil moisture can take up to 10
198 months to recover (Figure3A & B). This is due to much higher average surface sediment
199 permeability at the Delaware site compared to the Virginia site, which allows for faster flushing
200 and recovery times following a surge.

201 Vegetation response to salinization can also contribute to soil salinity recovery. High soil
202 salinization following a storm surge reduces the photosynthetic activity of vegetation, which in
203 turn lowers transpiration rates (Woods et al., 2020; Antonellini & Mollema, 2010). Reduced
204 transpiration prevents further salt concentration and facilitates salt dilution by precipitation.

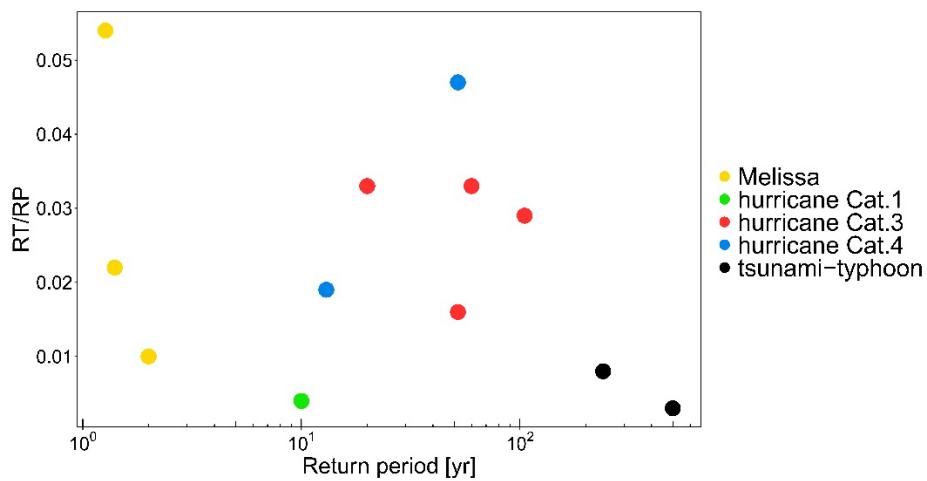
205

206 **3. Coastal forest homogenization and biodiversity loss due to storm surge events**

207 Many studies have focused on the hydrological, ecological and geomorphological consequences
208 of hurricanes, characterized by large storm surges (Fernandes et al. 2018; Middleton 2016;
209 Gardner et al. 2002; Fagherazzi et al. 2019a; Paudel and Battaglia 2021, Ury et al. 2021; Seyfried
210 et al 2023). Recently, more attention has been paid on the effects of frequent and moderate storm
211 events on coastal areas (Beebe et al. 2022; Wilson et al. 2015; Wilson et al. 2011; Nordio et al.
212 2023; Richardson et al. 2024).

213 In Nordio et al. (2023) we focused on the effects of frequent storms triggering moderate surges
214 on the groundwater systems. The tropical storm Melissa occurred on October 11-14, 2019, and
215 affected the North Atlantic coast of the USA from North Carolina to Massachusetts. During this
216 event, coastal water levels reached between 1 and 1.5 m above predicted levels (National
217 Oceanic and Atmospheric Administration). An event of the magnitude of tropical storm Melissa
218 has a return period, or frequency, of about 1-2 years.

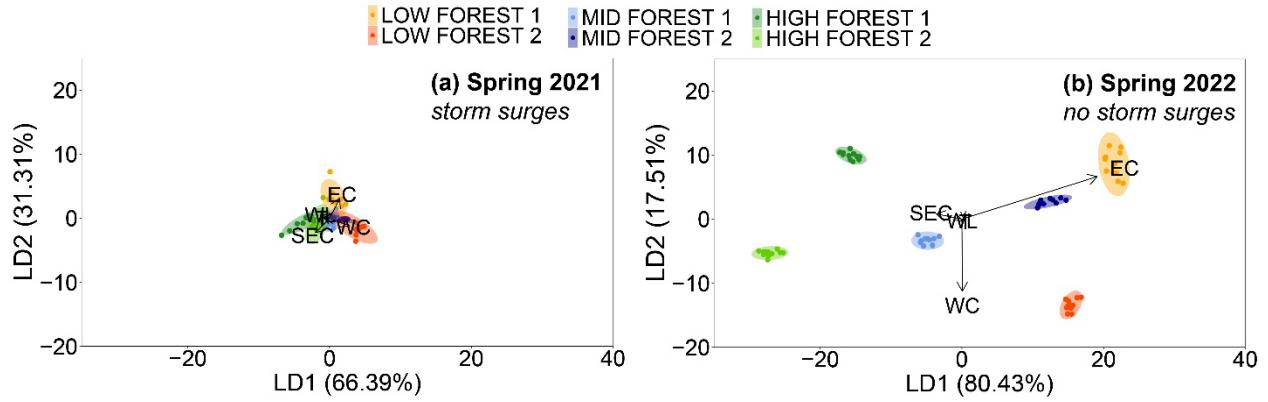
219 To determine the groundwater response to this storm we used groundwater level and
220 conductivity data we collected in eleven stations plus data from nine USGS station stations along
221 the Mid Atlantic coast of the United States (Nordio et al. 2023). Each station was characterized
222 by different soil properties and ecosystems. Recovery time was computed from data collected at
223 each station for a period of one week. We found that recovery time for groundwater conductivity
224 was ten times greater than the recovery time for groundwater level. Furthermore, in a soil
225 composed of 80% of clay the recovery time for conductivity reached 50 days.


226 The estimated recovery time from a medium-intensity storm surge is shorter than that after a
227 hurricane (Cardenas et al., 2015; Vithanage et al., 2012). However, hurricanes are less frequent,
228 which reduces the overall duration of salinization compared to that caused by moderate storms.

229 Ratios between groundwater recovery time and return period for the Melissa storm were
230 compared to similar ratios derived from the literature for other storms that affected coastal sites
231 around the world (Figure 5). The ratio represents the average percent of days in a year during
232 which the area is salinized, with conductivity well above average seasonal values. In the long-
233 term, storms like Melissa produce lasting effects comparable to strong hurricanes of category 3
234 and 4. A recovery timescale of months for groundwater specific conductivity can be crucial for
235 salt-intolerant vegetation, particularly if it occurs with a return period of only one/two years. For
236 example, salinity levels of 8 ppt sustained over six months can cause a 40% mortality rate in
237 loblolly pine (*P. taeda*) stands and a 20% mortality rate in pond pine (*P. serotina*) stands (Poulter
238 et al., 2008). In a glasshouse experiment, 60% of *Baccharis halimifolia*, 60% of *Myrica cerifera*,
239 and 20% of *Juniperus virginiana* plants died after 30 days of flooding with saline water (10 g/L).
240 At lower salinity levels (2–5 g/L), stomatal conductance was significantly reduced (Tolliver et
241 al., 1997).

242 Post-surge values for both groundwater levels and conductivities were significantly higher than
243 the pre-storm surge values. The results also indicate a significantly smaller variance in the post-
244 surge conductivity and groundwater levels. This similarity across the wells after Melissa
245 suggests more homogeneous post-storm hydrological conditions. Hydrological variability is
246 crucial for biodiversity at most scales of analysis (Konar et al. 2013). Therefore, this
247 homogenizing phenomenon could drastically reduce biodiversity and affect ecosystem
248 functioning (Konar et al., 2013). However, it is important to note that hydrological
249 homogenization can be short-lived, with some sites eventually recovering to pre-storm
250 conditions. When temporal variations in salinity are significant, the homogenization effect on
251 biodiversity becomes less clear. At some coastal locations, sea level rise and frequent tropical
252 storms have already started to change the environment with an irreversible impact on
253 biodiversity (Allen and Lendemer, 2016; Burkett et al. 2008), changes that could consequently
254 affect the socio-economics of coastal communities (Sylvain and Wall, 2011; Midgley 2012). In
255 this scenario, along forested areas close to marshland, mature trees can defoliate or die
256 (Fagherazzi et al. 2019a). Seedlings are more sensitive to specific conductivity increase while
257 mature trees can show greater salt tolerance (Poulter et al. 2008; Kirwan et al. 2007). For
258 instance, the groundwater specific conductivity levels measured during the Melissa storm surge
259 in a forest in Virginia were between two and five times higher than the tolerated conductivity
260 levels of *Pinus taeda*, the dominant tree species at the site (thresholds~8 mS/cm, Poulter et al
261 2008). These high salinity levels compounded with the flooding stress affect photosynthetic
262 activity, stomatal conductance, and biomass production (Pezeshki 1992).
263 The storm surge homogenization process was also studied by clustering hydrological variables
264 and comparing them to forest ecological patterns. Linear Discriminant Analysis (LDA) was

265 conducted by grouping all the groundwater and soil moisture variables collected in each site in
266 Virginia (Nordio and Fagherazzi, 2022a). During a storm surge event, the clusters identified by
267 LDA, which represent hydrologically and ecologically distinct forested sites, collapsed,
268 confirming the homogenizing effect of the surge. In Figure 6b we show an example of the
269 hydrological zonation in normal spring conditions, while Figure 6a reports hydrological zonation
270 after a storm surge in the same season.


271

273 **Figure 5:** Ratios between recovery time (RT) and return period (RP) for different storm events.
274 *Storms with a return period of 1-2 years can have the same effect of large and less frequent
275 storms. Each Melissa point represents a different location where data were collected. The
276 hurricane and tsunami-typhoon data were derived from the literature (modified after Nordio et
277 al. 2023).*

278

279

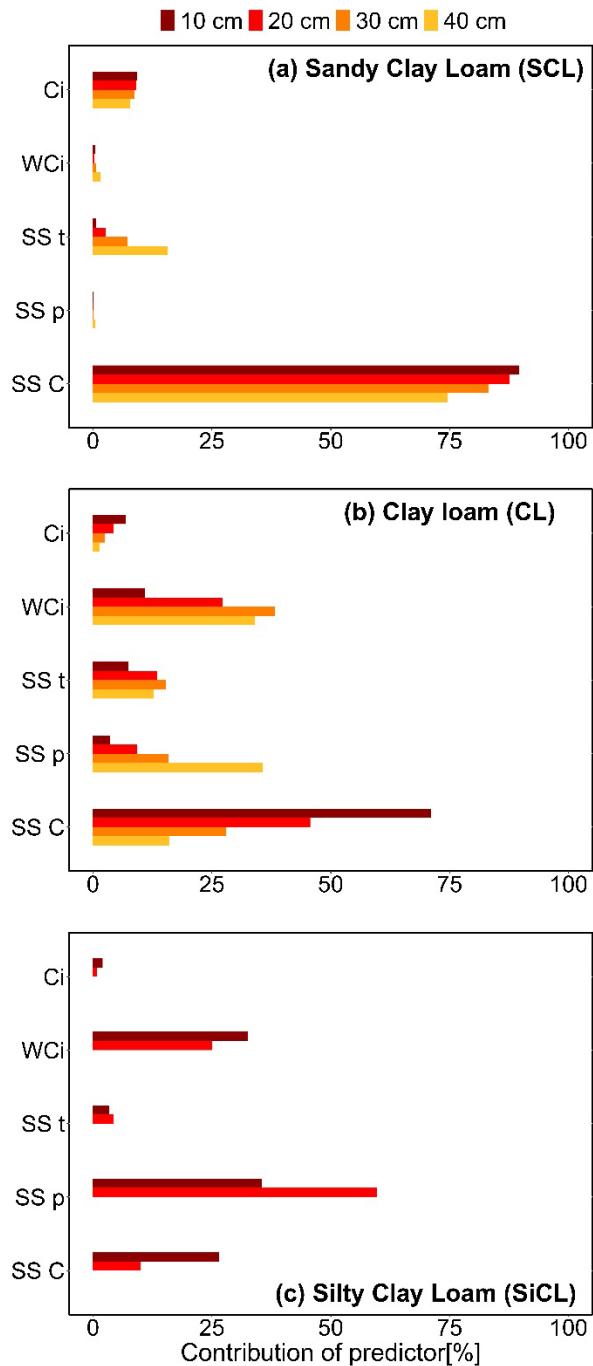
280

281 **Figure 6:** Linear Discriminant Analysis of hydrological data in a coastal forest in Virginia. In
 282 Spring 2021 a storm surge flooded the forest. Arrows are proportional to the linear function
 283 loadings. The low forest sites are located near the salt marsh, while the high forest sites are
 284 situated upland. WL=groundwater level, EC= groundwater electrical conductivity,
 285 T=temperature, WC= soil water content, SEC=soil electrical conductivity (after Nordio et al.
 286 2024).

287

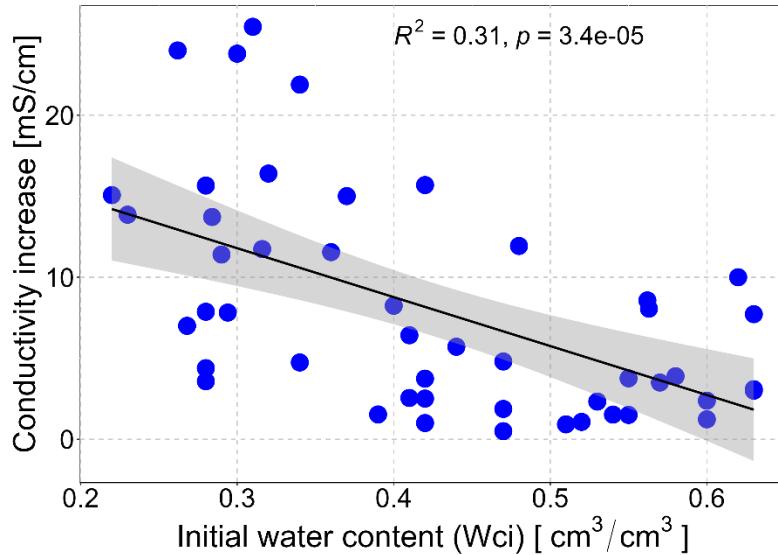
288 4. Effect of edaphic conditions on post-storm salinization

289 The ecohydrology of the root zone plays an essential role in coastal vegetated areas. Using the
 290 numerical model HYDRUS, we focused on the root zone dynamics during a storm surge event.
 291 HYDRUS 1D is a one-dimensional model that simulates water, heat and solute movement in a
 292 variably saturated medium (Šimůnek 2005). We estimated the impact of storm surge events on
 293 soils with different properties and different pre-storm conditions. In a sandy soil, salinization due
 294 to storm surges affects the entire unsaturated soil, contaminating the groundwater. In soils with a
 295 higher percentage of clay and silt salinization only partially involves the unsaturated root zone.
 296 The draining properties of a soil are important for the hydrological recovery to pre-storm
 297 conditions. However, in sandy areas, saltwater infiltration can easily reach the groundwater,
 298 salinizing critical water supplies (Barlow and Reichard, 2009).


299 In clay soils, characterized by low hydraulic conductivity, salinization only involves the first
300 layers of the root zone. Although recovery takes longer than in sandy soils, roots are partially
301 affected. In deep layers, the salinity does not increase. As a consequence, the soil column is
302 stratified in terms of soil salinity and this stratification can be exacerbated by evaporation,
303 transpiration and rainfall events (Liu et al. 2018; Guo et al. 2015; Geng and Boufadel, 2015).
304 The significance of storm surge characteristics and initial soil conditions on the increase in soil
305 salinity was evaluated by considering various scenarios involving storm surge height (SSp),
306 flooding duration (SSt), salt concentration in the flooding water (SSC), as well as initial soil
307 water content (WCi) and soil salt concentration (Ci0). In soil characterized by higher percentage
308 of sand such as sandy clay loam soil (SCL), the salt-concentration increase (ΔC) is controlled by
309 surge salinity (Figure 7a). In soils consisting of silt and clay, pre-storm edaphic conditions
310 become more important (Figure 7b-c). The initial water content and salinity of the soil are
311 particularly important in coastal areas characterized by clay and silt. In these types of soils, salt
312 concentration reached during a storm surge are extremely dangerous for salt intolerant vegetation
313 survival.
314 Studies that focus on the role of initial conditions on the impact of extreme events are few,
315 particularly in vegetated coastal areas. Our results highlight the significance of pre-storm
316 conditions on coastal flooding, concentrating on the vertical saltwater infiltration and its
317 consequences for local ecosystems. Moreover, higher soil water content likely limits the
318 saltwater infiltration during storm surge flooding in low-lying areas. Here, the unsaturated zone
319 is often thin over the year and saltwater infiltration is reduced, encouraging runoff and ponded
320 conditions. Higher soil salinity values reached in fine soils when initial hydrological conditions
321 are lower are exacerbated by the post-storm recovery process. Due to their low permeability, fine

322 soils slow the saltwater dilution after the surge, undermining the survival of the salt intolerant
323 vegetation.

324 Field data on water content and conductivity increases due to storm surge events, collected in a
325 Virginia forest (Nordio and Fagherazzi, 2022a), confirm the results of the numerical model
326 (Figure 8). In soil comprised of 80% clay the conductivity (proxy for salinity) is negatively
327 correlated to water contents (Figure 8). Therefore, if the soil is already saturated with freshwater
328 before the storm surge, less saline water can infiltrate, reducing salinization in the root zone.


329

330

331

332 **Figure 7:** Contribution of pre-storm edaphic conditions and surge characteristics to soil salinity
 333 increase. SS_p is storm surge height, SS_t is storm surge flooding time, SS_C is salt concentration in
 334 the surge water, WC_i is water content in the soil the day before the storm, and Ci is salt
 335 concentration in the soil water the day before the storm (after Nordio and Fagherazzi 2024).

336

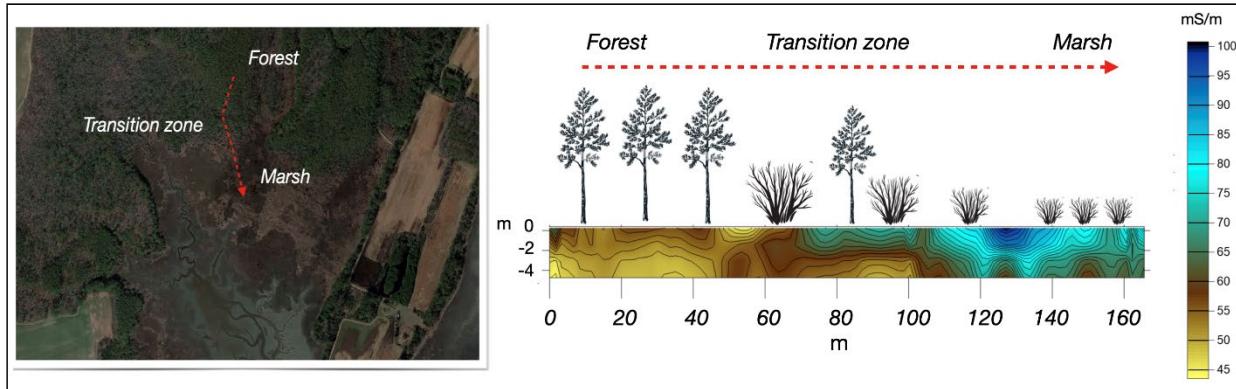
337 **Figure 8:** Electrical conductivity increase driven by a storm surge in different sites of the
338 Delmarva Peninsula as a function of initial water content (after Nordio and Fagherazzi 2024).

339

340 **5. Tree freshwater islands detected from geophysical data**

341 Water content and salinity drastically affect subsoil electrical conductivity, making it possible to
342 explore water table fluctuations and sea water transgressions along the coastline with
343 geophysical methods. Among these, electrical resistivity tomography (ERT) has been widely
344 applied in the unsaturated zone (Cassiani et al 2006) to monitor the effects of root system
345 activities (e.g. Cassiani et al., 2015, Wadas et al 2022, Boaga et al 2014). ERT needs electrodes
346 and cables installation assuring galvanic contact with soil and may be limited by logistics in
347 some humid marshes or thickly vegetated forest boundaries, restricting the use for large-scale
348 exploration. An alternative for the assessment of ground electrical properties is offered by
349 electromagnetic contact-less methods, such as the Frequency Domain Electro-Magnetometers
350 (FDEM, McNeil 1980, Boaga et al 2018). Different investigation depths can be explored
351 adopting either multi-frequency instruments or multi-coils probes. Thanks to inversion

352 procedures it is possible to retrieve accurate subsoil electrical models (Deidda et al. 2014; Diaz
353 De Alba and Rodriguez 2016).


354 In March 2023, we collected FDEM data at a site in the Delmarva Peninsula, Virginia (USA), to
355 detect the increase of soil salinity in the transition zone between the forest border and the salt
356 marshes. Saltwater intrusion and periodic flooding regulate the ecotone. From the inland areas to
357 the coastal marshes, we collected data across a forest of loblolly pines (*Pinus taeda*) and a
358 transition zone dominated by woody shrubs, including *Juniperus virginiana*, *Iva frutescens*,
359 *Baccharis halimifolia*, and *Myrica cerifera* (Brinson et al., 1995; Fernandes et al., 2018), before
360 reaching the marsh vegetation dominated by *Spartina patens* (Nordio and Fagherazzi, 2022b).
361 The data were acquired with a CMD-Explorer FDEM probe to map the electrical properties of
362 the first meters of subsoil. In the marsh environment we focused on the root zone, adopting a
363 CMD-MiniExplorer 6L probe (Table 1) for a more detailed imaging of the shallow subsoil. We
364 filtered the raw FDEM data from outliers and then we inverted the datasets using the python-
365 based code Emagpy (McLachlan et al 2021).

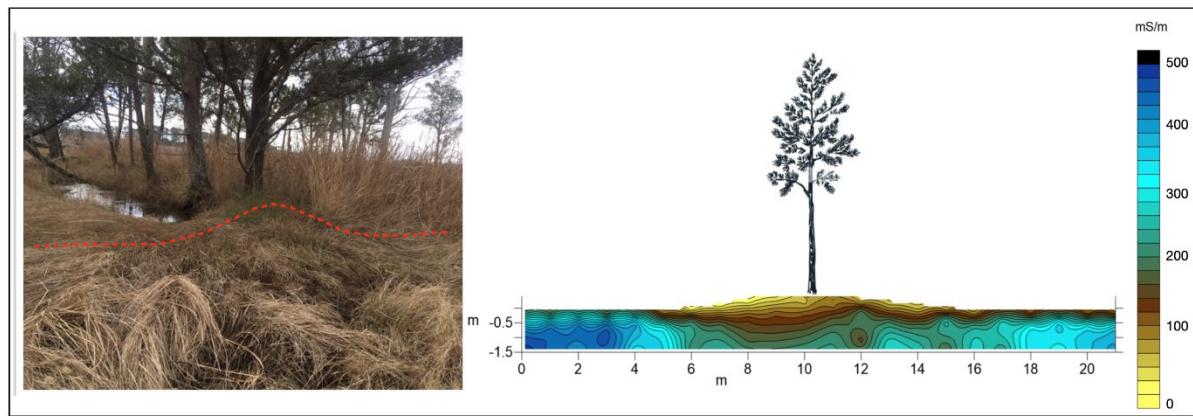
366

Model	Frequency (kHz)	Coils spacing (m)	Nominal Depth range (m)
CMD-Explorer	10	1.48-4.49 m	1.1 -6.7 m
CMD-MiniExplorer 6L	30	0.32-1.18 m	0.3 -2.1 m

367 *Table 1 Specifications of FDEM probes CMD Explorer and CMD MiniExplorer 6L used in this
368 study.*

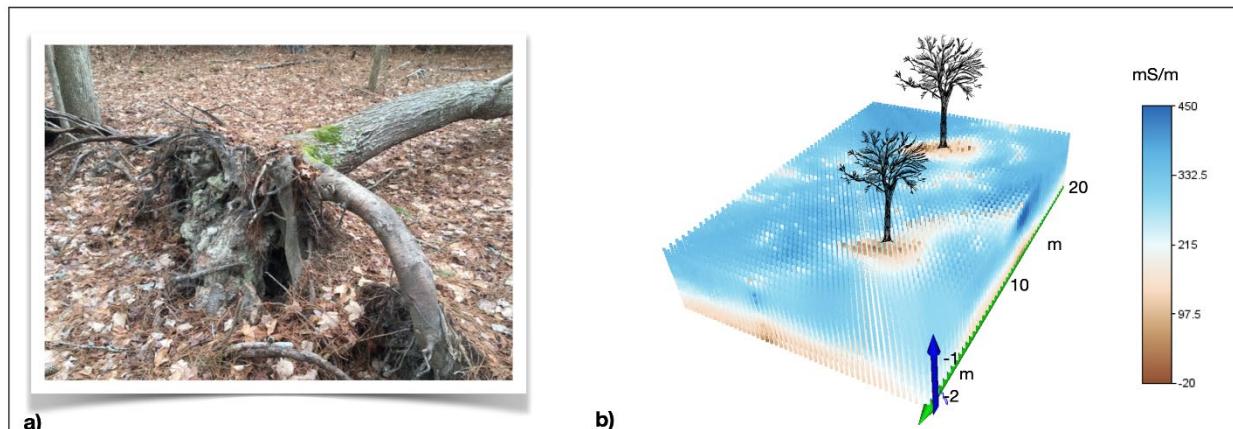
369

370


371 *Figure 9 FDEM transect from the inland forests to the salt marshes and corresponding subsoil*
 372 *electrical conductivity in mS/m*

373

374 Figure 9 shows the results of the inversion for the transect. Possible evidence of seawater
 375 transgression is indicated by the high conductivity values near the marsh in the FDEM transect.
 376 Here, conductivity may also be elevated due to evapotranspiration and subsequent salt
 377 concentration in the surface layers. Interestingly, conductivity decreases with depth, indicating
 378 that salinization is primarily caused by surface flooding rather than lateral intrusion. Lateral
 379 groundwater movement from upland areas could also contribute to the lower conductivity
 380 observed in the deeper aquifer layers.


381 Near the marsh, tree dieback makes light available to shrubs, with few sporadic trees still alive.
 382 Shrub zones are natural ecotones between marshes and uplands, and dieback and regrowth within
 383 these areas may be cyclical. Detailed FDEM measurements around isolated trees provide
 384 evidence that the root zone persists in less saline subsoil portions (Figure 10). The roots of these
 385 trees developed horizontally to avoid the saturated saltwater layer (see Figure 11a). Roots might
 386 also have dieback at depth because of salinization. Isolated trees appear to coincide with the
 387 presence of islands of fresh water in the otherwise very conductive salt marsh soil, as the 3D

388 FDEM inverted image indicates (Figure 11b). These tree roots appear to exploit natural relief or,
389 intriguingly, alter the soil elevation around them to protect against soil salinization. Additionally,
390 they may also facilitate the movement of precipitation freshwater to the root zone through stem
391 flow. Recent research showed that roots were longer and more numerous in the direction of
392 freshwater (Messerschmidt et al., 2021). These findings pose interesting perspectives on tree
393 adaptation and future development of geophysical monitoring in these transition environments.

394

395 *Figure 10. FDEM Transect across an isolated tree in a salt marsh area.*

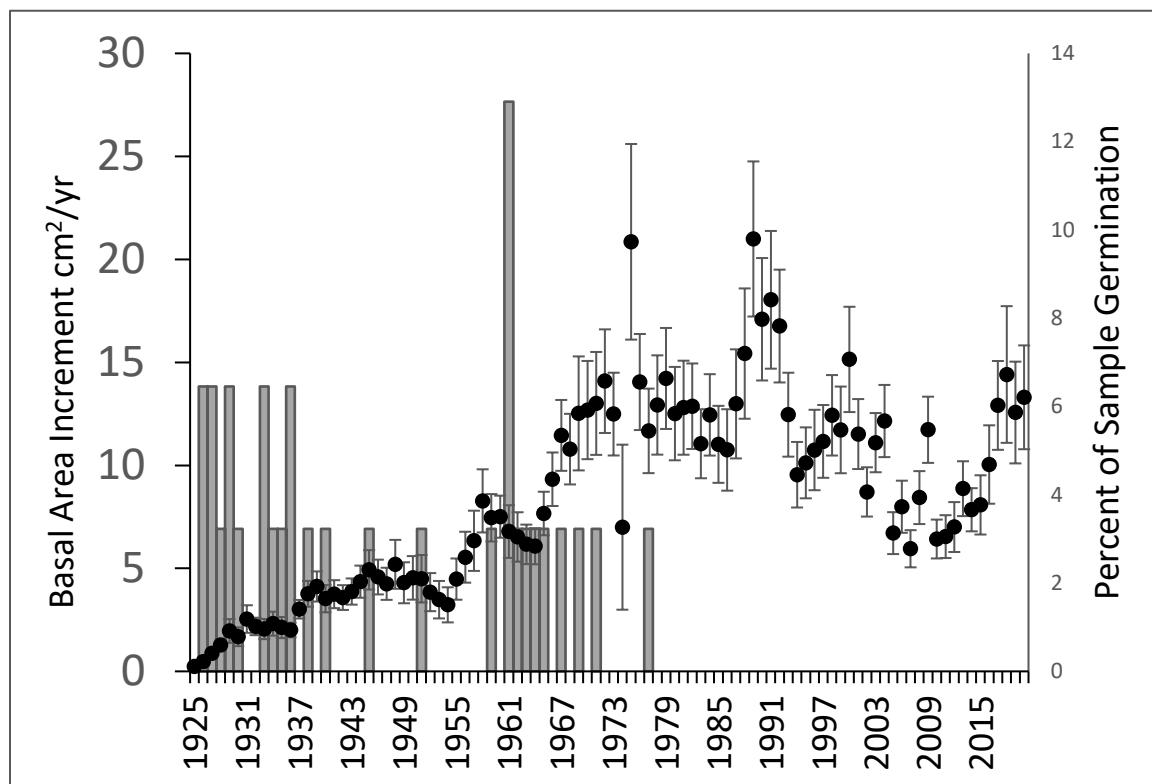
396

397 *Figure 11. a) Roots of a dead tree in the Delmarva Peninsula marshes. b) FDEM 3d inverted*
398 *results of a marshland plot; the brown low conductive zones correspond to the presence of 2*
399 *isolated trees.*

400

401 **6. Salinization effect on coastal forests**

402 Salinization and flooding in coastal forests reduce trees water uptake thus affecting the
403 hydrology of the ecosystem (Duberstein et al 2020; Krauss and Duberstein 2010). Hypoxia
404 decreases the capacity of roots to acquire water (Pedersen et al., 2021; Dat et al 2006), while the
405 elevated osmotic potential of saline water reduces the water flux through the roots (Boursiac et al
406 2005; McDowell et al 2022). Salinization also results in decreased hydraulic conductivity of
407 trees (Stiller 2009; Zhang et al 2021). Primary mechanisms for conductivity decline may
408 include osmotic stress (Munns and Tester 2008, Mendez-Alonzo et al 2016) or salt toxicity
409 (Munns and Tester 2008, Zhang et al 2021), either of which can lead to carbon starvation
410 (Matallana-Ramirez et al 2021), impaired hydraulic function (Zhang et al 2021), and cavitation
411 within the xylem, triggering hydraulic failure (McDowell et al 2022; Tyree & Sperry, 1989).
412 The ability of trees to reduce ground and surface water levels is non-trivial as forests play a role
413 in the regulation of the hydrologic cycle by transferring ground water to the atmosphere through
414 transpiration (Bonan 2008). The difference between precipitation and ecosystem-level
415 evapotranspiration determines the excess water available for runoff, drainage, and recharge
416 (Ward et al 2018). In plantation settings, trees have even been associated with reduced annual
417 streamflow in nearby streams (Jackson et al 2005). In the *Pinus* genus, common in Mid-Atlantic
418 coastal forests, water is transported through tracheid within the xylem of sap wood, with the
419 majority of transport occurring in the outer most rings and rapidly declining radially towards the
420 pith (Bodo and Arain 2021, Ewers and Oren 2000, Ruzol et al 2022). If trees respond to salt
421 exposure with a reduction in wood tissue production, their ability to transfer ground water to the
422 atmosphere may also be affected with ramifications to the system's hydrologic cycle.


423 For example, a reduction in transpiration would help maintain higher water levels in the soil,
424 preventing the infiltration of additional saltwater during storm surges. While this reduction in
425 transpiration could delay further forest salinization, it also favors soil water saturation, which
426 may trigger hypoxia and more stress in the trees (McDowell et al 2022).

427 Tree cores can be used to determine the response of coastal forests to salinization (e.g. Kirwan et
428 al., 2007; Fernandez et al., 2018; Hall et al. 2022). Here we report an analysis of tree cores in a
429 Maryland coastal forest. Eighty-one *Pinus taeda* trees located within the transition zone between
430 forest and salt marsh were cored in January 2020, and their years of germination were analyzed
431 for a regeneration event study.

432 Germination dates indicate an establishment period from approximately 1925-1930 with
433 subsequent regeneration events occurring in the early 1930s and 1960s. The last tree within our
434 analysis germinated in 1978 (Figure 12). Interestingly, several regeneration events appear to
435 occur immediately after major hurricanes in 1933 (Weightman 1933), 1938 (Roth 2006) and
436 1939 (Tannehill 1939). The average basal area increment (BAI) rose steadily between 1925 and
437 1976, then began to decline (Figure 12). Typically, BAI increases steadily, then levels off as the
438 tree ages with a sigmoidal growth pattern (Weiner and Thomas 2001). However, some studies in
439 *P. taeda* have shown a decline in BAI with age (Cheng et al 2014, Weiner and Thomas 2001).
440 Here, the decline in BAI, combined with the simultaneous cessation of regeneration, indicates
441 that tree decline began in the late 1970s. Several anomalies in the declining BAI trend occur post
442 1980. Significant, multi-year recoveries in BAI began in 1986 and 2012, each followed by 4 to 7
443 years of increased BAI before a subsequent decline. Both events followed multiple storms with
444 significant precipitation over short periods of time. Hurricane Danny, Tropical Storm Henri and
445 Hurricane Gloria in 1985. Hurricane Irene and Tropical Storm Lee in 2011, and hurricanes

446 Isaac and Sandy in 2012. The reversal in BAI trend following multiple high precipitation events
447 could be explained by a flushing of salt contaminated soils. Other studies have also indicated
448 increased tree growth in salt stressed systems following years with high fall precipitation (Hall et
449 al 2022).

450 The maximum 4-year BAI occurred from 1989 to 1992, while the minimum 4-year BAI was
451 recorded from 2005 to 2008, reflecting a 61% reduction in woody tissue production. This decline
452 could lead to a substantial reduction in water uptake by the forest, potentially accelerating system
453 inundation while possibly reducing salinization.

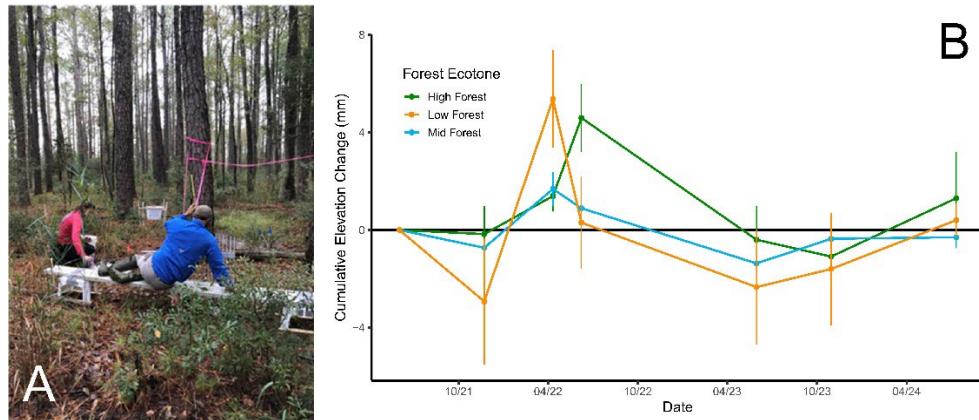
454
455 **Figure 12:** Basal area increment from trees growing within the transition zone at Monie Bay,
456 Maryland (black dots and bars representing standard error) with tree germination on the
457 secondary axis (indicated with grey boxes).

458

459 Tree rings analysis can therefore provide an excellent picture of the long-term effects of
460 hydrological stressors on forests. The example provided herein indicate that trees do respond to
461 major salinization events triggered by tropical storms, and also respond to heavy rainfall events
462 that flush the salt in the soil.

463

464 **6. Hydrological controls on accretion and subsidence at the marsh-forest boundary**


465 Projections of sea-level driven marsh migration into retreating coastal forests assume a static
466 topography, where the elevation of the soil surface remains constant through time (Kirwan et al.
467 2016, Schuerch et al. 2018, Osland et al. 2022; Molino et al 2022). However, geomorphic
468 processes including accretion, subsidence, and erosion are well known to influence the elevation
469 of other coastal environments during sea level rise (FitzGerald et al. 2008; Kirwan and
470 Megonigal 2013; Potouroglo et al. 2017). Hydrology and elevation are thoroughly intertwined.
471 Elevation and topographic slope directly affect groundwater discharge and inundation frequency
472 (Yu et al. 2016, Michael et al. 2013), while indirectly controlling hydrology through plant
473 species distribution and its effect on evapotranspiration (Field et al. 2016, Poulter, et al. 2009,
474 Stagg et al 2020, Wendelberger and Richards 2017). In turn, hydrologic processes are a strong
475 control of both ecologic and geomorphic processes at the marsh upland boundary (Langston et
476 al. 2017, Miller et al. 2021, Williams et al. 1999b, Whelan et al. 2005). Therefore, it is important
477 to understand the complex interactions between hydrology, geomorphology, and ecology.

478 Elevation gain at the marsh forest boundary is possible during large storm events through
479 deposition of sediment on the soil surface (Gardner et al. 1992, Whelan et al. 2009, Williams and
480 Flanagan 2009), or through soil organic matter accumulation associated with transitional species
481 such as *Phragmites australis* that produce large quantities of belowground biomass (Rooth et al.

482 2003). Marsh soil may expand due to the growth of pore space with flood waters or shrink due to
483 compaction during drying (Cahoon et al. 2011). Conversely, sea level rise may also lead to
484 elevation loss. For example, salt exposure may change the soil pore size creating a possible
485 mechanism for soil collapse (Chambers et al. 2019), and pulses of salt water can stimulate higher
486 decomposition rates (Sirrianni et al. 2023; Weston et al. 2011). The death of adult trees and the
487 collapse of their root structures can lead to subsidence, especially in organic rich soils
488 (Middleton and David 2022, Miller et al. 2021, Cahoon et al. 2003). Thus, the elevation of the
489 marsh-forest boundary is controlled by complex and potentially competing processes.
490 Even small changes in elevation can have significant ecological and hydrological impacts, as
491 coastal hydrology and ecology are closely intertwined and highly sensitive to such variations
492 (Fagherazzi et al 2019a, Kearney et al 2019). For example, a local reduction in soil elevation
493 may create sloughs and hollows that retain ponded water, causing damage to forest vegetation
494 (Pezeshki et al. 1990). Vegetation loss in these flooded zones would reduce both aboveground
495 litter deposition and belowground organic matter production, further decreasing the relative
496 elevation compared to nearby areas. The hydrological pathways of shallow floodwaters and
497 rainfall are highly sensitive to microtopography (Courtwright and Findlay, 2011). As a result,
498 changes in topography could influence flooding events and, consequently, vegetation cover.
499 To examine forest elevation changes, we installed rod surface elevation tables (RSETs) across a
500 retreating coastal forest near Monie Bay, Maryland, USA. RSETs (Figure 13a) consist of a
501 mechanical leveling device attached to a rod benchmark driven to refusal (Lynch et al. 2015).
502 Three RSETs were installed in each of the high, mid, and low forest zones, representing a
503 gradient of salt and inundation stress. The high forest is undisturbed, while the low forest borders
504 the marsh and presents widespread tree dieback (ghost forest). The average elevations of the

505 RSETs are 1.00m, 0.81m, and 0.63m NAVD88 (NAVD88 approximates mean sea level in the
506 region), respectively. These RSETs were paired with shallow pipes driven to ~30cm to measure
507 shallow root zone processes and feldspar marker horizon layers to measure surface accretion.
508 Based on previous work, we hypothesize that healthy forests will have nearly stable soil
509 elevations, but that subsidence is likely in the low forest due to tree mortality and increased
510 decomposition rates. Preliminary RSET results from Monie Bay suggest that elevations in the
511 high forest are indeed stable ($< -0.15 \text{ mm yr}^{-1}$). Unexpectedly, there was little change in elevation
512 in the more salt affected mid (-0.5 mm yr^{-1}) and low (-1 mm yr^{-1}) forests, despite some temporal
513 variability (Figure 13b). There was also no significant accretion above the feldspar marker
514 horizon layers at any of the RSETs ($<2\text{mm}$ at each location). This lack of accretion confirms
515 there was no hidden subsidence in the RSET record that was offset by increased surficial
516 deposition. The unexpected stability in measured soil elevations may indicate that elevation
517 change only occurs during large events. Alternatively, increases in elevation from *Phragmites*
518 belowground biomass may be offsetting decreases in elevation from tree mortality, resulting in
519 measured net elevation change rates that are small. Subsidence rates that exceed 1cm yr^{-1} were
520 documented in other types of coastal forests and suggest that subsidence could alter rates of
521 marsh migration into uplands (Cahoon et al. 2003, Middleton and David 2022). Our
522 measurements do not yet span the 5 years window recommended for establishing elevation
523 change rate trends (Lynch et al. 2015).
524 The SET data also show an elevation fluctuation of about 7 mm between October 2021 and April
525 2023. This interannual variability in elevation is not fully explained but may be linked to long-
526 term hydrological changes, such as yearly variations in groundwater table or soil moisture that
527 impact edaphic conditions. Such fluctuations in elevation could influence microtopography,

528 potentially altering flooding and infiltration patterns. The unexpected absence of subsidence in
529 the preliminary RSET record, along with the presence of unexplained interannual oscillations,
530 underscores the need for a deeper understanding of the factors controlling elevation change at the
531 marsh-upland boundary and their potential effects on ecohydrology.

546 models. The hydrology of ghost forests is complex, with groundwater salt intrusion, flooding by
547 saline water, rainfall, and evapotranspiration all playing a pivotal role. The interplay between the
548 gradual rise of sea levels over time and the sudden, intense impacts of storm flooding renders the
549 system intriguing from a hydrological perspective.

550 The intermittent nature of rainfall and storm surges provides opportunities for applying new
551 stochastic approaches developed in recent years (e.g. Kang et al. 2024, Del Jesus et al. 2015).

552 Rapid variations in vegetation cover can strongly affect hydrology, by modulating water uptake
553 and microclimate. Changes in vegetation are at the base of recent exciting results on
554 ecohydrology (Rodríguez-Iturbe, and Porporato 2007, Huang et al. 2018, Huang et al. 2021). In
555 ghost forests, these changes occur so rapidly that they allow for real-time measurements of key
556 variables. The fast retreat of the forest and consequent expansion of the salt marsh allow for the
557 use of space-for-time substitution, in which different locations of the forest can be used to
558 represent different stages of the system. This enables a fast characterization of forest retreat at
559 large spatial scales through surveys.

560 The interplay between hydrology, ecology, geomorphology, and biogeochemistry requires
561 multidisciplinary teams conducting synchronous measurements. Vegetation response is complex,
562 with tree dieback caused by different factors and occurring over long periods of time (Chen and
563 Kirwan, 2024). For example, the distinct roles of salinization and flooding on tree stress are still
564 unclear. Encroachment of new vegetation species is also complex and controlled by competition
565 and facilitation mediated by hydrology (Jobe and Gedan 2021). Interdisciplinary collaboration is
566 therefore warranted.

567 In the near future, there is a need to integrate conceptual models and field measurements in ghost
568 forests with recent theoretical models of ecohydrology (e.g. Rodriguez-Iturbe 2000).

569 Additionally, there is a need to develop new theoretical frameworks based on the stochastic
570 nature of storms that better represent the dynamics of the forest-marsh boundary.
571 Ghost forests are a stark reminder of sea level rise and the increasing frequency of storms. Both
572 drivers are hallmark indicators of climate change. The ecohydrology of the forest-marsh
573 boundary is therefore at the forefront of climate change studies, quantifying the effects of global
574 warming on coastal ecosystems and communities.

575

576

577 **Acknowledgments** This research was funded by the USA National Science Foundation awards
578 1832221 (VCR LTER), 2012322 (CZN Coastal Critical Zone) and 2224608 (PIE LTER).

579

580

581 **References**

582 Allen, J. L., & Lendemer, J. C. (2016). Quantifying the impacts of sea-level rise on coastal
583 biodiversity: A case study on lichens in the mid-Atlantic Coast of eastern North
584 America. *Biological Conservation*, 202, 119-126.

585 Antonellini, M., & Mollema, P. N. (2010). Impact of groundwater salinity on vegetation species
586 richness in the coastal pine forests and wetlands of Ravenna, Italy. *Ecological
587 Engineering*, 36(9), 1201-1211.

588 Barlow, P. M., & Reichard, E. G. (2010). Saltwater intrusion in coastal regions of North
589 America. *Hydrogeology Journal*, 18(1), 247.

590 Bazihizina, N., Veneklaas, E.J., Barrett-Lennard, E.G. and Colmer, T.D. (2017). Hydraulic
591 redistribution: limitations for plants in saline soils. *Plant, Cell & Environment*, 40(10),
592 pp.2437-2446.

593 Beebe, D. A., Huettemann, M. B., Webb, B. M., & Jackson Jr, W. T. (2022). Atmospheric
594 groundwater forcing of a subterranean estuary: a seasonal seawater recirculation
595 process. *Geophysical Research Letters*, 49(7), e2021GL096154.

596 Boaga J., A. D'Alpaos, G. Cassiani, M. Marani, M. Putti, 2014, Plant-soil interactions in salt-
597 marsh environments: experimental evidence from electrical resistivity tomography (ERT) in
598 the Venice lagoon, *Geophysical Research Letters*, Vol 41, pp.6160-6166, doi:
599 10.1002/2014GL060983

600 Boaga J., M. Ghinassi, A. D'Alpaos, G.P. Deidda, G. Rodriguez, G. Cassiani, 2018, Geophysical
601 investigations unravel the vestiges of ancient meandering channels and their dynamics in tidal
602 landscapes, *Scientific Reports*, Volume 8, Issue 1, Article number 20061, doi:
603 10.1038/s41598-018-20061-5.

604 Bodo A. V., M.A. Arain, 2021. Radial variations in xylem sap flux in a temperate red pine
605 plantation forest, *Ecol. Process.* 10, 24

606 Boggie, R. 1972. Effect of water-table height on root development of *Pinus contorta* on deep peat
607 in Scotland. - *Oikos* 23: 304-312.

608 Bonan G.B., 2008. Forests and climate change: forcings, feedbacks and the climate benefits of
609 forests. *Science*, 320(5882), 1444–1449. <https://doi.org/10.1126/Sci.1155121>

610 Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early
611 effects of salinity on water transport in *Arabidopsis* roots. Molecular and cellular features of
612 aquaporin expression. *Plant Physiology*, 139(2), 790–805.

613 Brinson, M.M., Christian, R.R. and Blum, L.K., 1995. Multiple states in the sea-level induced
614 transition from terrestrial forest to estuary. *Estuaries*, 18, pp.648-659.

615 Burkett, V. R., Nicholls, R. J., Fernandez, L., & Woodroffe, C. D. (2008). Climate change
616 impacts on coastal biodiversity.

617 Cahoon, D. R., P. Hensel, J. Rybczyk, K. L. McKee, C. E. Proffitt, and B. C. Perez. 2003. Mass
618 tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane
619 Mitch. *Journal of Ecology* 91: 1093–1105.

620 Cahoon, Donald & Perez, Brian & Segura, Bradley & Lynch, James. (2011). Elevation trends
621 and shrink-swell response of wetland soils to flooding and drying. *Estuarine, Coastal and*
622 *Shelf Science*. 91. 463-474. 10.1016/j.ecss.2010.03.022.

623 Calabrese, S., Porporato, A., Laio, F., D'Odorico, P. and Ridolfi, L., 2017. Age distribution
624 dynamics with stochastic jumps in mortality. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 473(2207), p.20170451.

625

626 Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A., & Kurylyk, B. L. (2022).
627 Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: A review. *Water
628 Resources Research*, 58(11), e2022WR032614

629 Cardenas, M. B., Bennett, P. C., Zamora, P. B., Befus, K. M., Rodolfo, R. S., Cabria, H. B., &
630 Lapus, M. R. (2015). Devastation of aquifers from tsunami-like storm surge by Supertyphoon
631 Haiyan. *Geophysical Research Letters*, 42(8), 2844-2851.

632 Craine, S. I., & Orians, C. M. (2006). Effects of flooding on pitch pine (*Pinus rigida* Mill.)
633 growth and survivorship. *The Journal of the Torrey Botanical Society*, 289-296.

634 Cassiani G., J. Boaga, D. Vanella, M. T. Perri, S. Consoli, 2015, Monitoring and modelling of
635 soil-plant interactions: the joint use of ERT, sap flow and Eddy Covariance data to
636 characterize the volume of an orange tree root zone, *Hydrol. Earth Syst. Sci.*, 19, 2213-2225,
637 doi:10.5194/hess-19-2213-2015.

638 Cassiani, G., A.M. Binley and T.P.A. Ferré, 2006, Unsaturated zone processes, in *Applied
639 Hydrogeophysics*, H. Vereecken et al. (eds.), Springer-Verlag.

640 Chambers, L. G., Steinmuller, H. E., and Breithaupt, J. L. 2019. Toward a mechanistic
641 understanding of “peat collapse” and its potential contribution to coastal wetland loss.
642 *Ecology* 100(7):e02720. 10.1002/ecy.2720

643 Chen, Y. and Kirwan, M.L., 2024. Upland forest retreat lags behind sea-level rise in the mid-
644 Atlantic coast. *Global Change Biology*, 30(1), p.e17081.

645 Cheng X., H. Zhenxiang, T. Wu, Z. Yin, 2014. Longitudinal variation of ring width, wood
646 density, and Basal area increment in 26-year-old loblolly Pine (*Pinus taeda*) trees, *Tree Ring
647 Res.* 70(2), 137-144

648 Courtwright, J. and Findlay, S.E., 2011. Effects of microtopography on hydrology,
649 physicochemistry, and vegetation in a tidal swamp of the Hudson River. *Wetlands*, 31,
650 pp.239-249.

651 Coutts, M.P. and Philipson, J.J., 1978. Tolerance of tree roots to waterlogging: I. Survival of
652 Sitka spruce and lodgepole pine. *New Phytologist*, 80(1), pp.63-69.

653 Dat, J., Folzer, H., Parent, C., Badot, P. M., & Capelli, N. (2006). Hypoxia stress. Current
654 understanding and perspectives. *Floriculture, Ornamental and Plant Biotechnology: Advances
655 and Topical Issues*, 3, 664–674.

656 Deidda, G. P., Fenu, C. & Rodriguez, G. (2014) Regularized solution of a nonlinear problem in
657 electromagnetic sounding, *Inverse Problems*, 30(12), <https://doi.org/10.1088/0266-5611/30/12/125014>.

659 Del Jesus, M., Rinaldo, A. and Rodríguez-Iturbe, I., 2015. Point rainfall statistics for
660 ecohydrological analyses derived from satellite integrated rainfall measurements. *Water
661 Resources Research*, 51(4), pp.2974-2985.

662 Díaz De Alba, P. & Rodriguez, G. (2016) Regularized inversion of multi-frequency EM data in
663 geophysical applications. In Trends in Differential Equations and Applications (eds Ortegón
664 Gallego, F., Redondo Neble, M. V., & Rodríguez Galván, J. R.), SEMA SIMAI Springer
665 Series 8, 357–369.

666 D'Odorico, P., Laio, F., Porporato, A., Ridolfi, L., Rinaldo, A. and Rodriguez-Iturbe, I., 2010.
667 Ecohydrology of terrestrial ecosystems. *BioScience*, 60(11), pp.898-907.

668 Domec J., King J.S., NoormetsA., Treasure E., Gavazzi M.J., Sun G.&McNulty S.G. (2010)
669 Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net
670 ecosystem carbon exchange. *New Phytologist* 187, 171–183.

671 Drexler, J. Z., & Ewel, K. C. (2001). Effect of the 1997–1998 ENSO-related drought on
672 hydrology and salinity in a micronesia wetland complex. *Estuaries*, 24(3), 347–356.
673 <https://doi.org/10.2307/1353237>

674 Duberstein, J. A., Krauss, K. W., Baldwin, M. J., Allen, S. T., Conner, W. H., Salter, J. S., Jr.,
675 & Miloshis, M. (2020). Small gradients in salinity have large effects on stand water use in
676 freshwater wetland forests. *Forest Ecology and Management*, 473, 118308.

677 Ewers, B. E., R. Oren, 2000. Analyses of assumptions and errors in the calculation of stomatal
678 conductance from sap flux measurements, *Tree Physiol.* 20, 579-589

679 Fagherazzi, S., Anisfeld, S. C., Blum, L. K., Long, E. V., Feagin, R. A., Fernandes, A., Kearney,
680 W. S., & Williams, K. (2019a). Sea Level Rise and the Dynamics of the Marsh-Upland
681 Boundary. *Frontiers in Environmental Science*, 7. <https://doi.org/10.3389/fenvs.2019.00025>

682 Fagherazzi, S., Nordio, G., Munz, K., Catucci, D. and Kearney, W.S., 2019b. Variations in
683 persistence and regenerative zones in coastal forests triggered by sea level rise and
684 storms. *Remote Sensing*, 11(17), p.2019.

685 Fernandes, A., Rollinson, C. R., Kearney, W. S., Dietze, M. C., & Fagherazzi, S. (2018).
686 Declining radial growth response of coastal forests to hurricanes and nor'easters. *Journal of
687 Geophysical Research: Biogeosciences*, 123(3), 832-849.

688 Field, Christopher & Gjerdrum, Carina & Elphick, Chris. (2016). Forest resistance to sea-level
689 rise prevents landward migration of tidal marsh. *Biological Conservation*. 201. 363-369.
690 10.1016/j.biocon.2016.07.035.

691 Fitzgerald, D.M., Fenster, M.S., Argow, B.A. and Buynevich, I.V., 2008. Coastal impacts due to
692 sea-level rise. *Annu. Rev. Earth Planet. Sci.*, 36, pp.601-647.

693 Gardner, L. R., Michener, W. K., Williams, T. M., Blood, E. R., Kjerve, B., Smock, L. A., et al.
694 (1992). Disturbance effects of Hurricane Hugo on a pristine coastal landscape: North Inlet,
695 South Carolina, U. S. A. *Netherl. J. Sea Res.* 30, 249–263. doi: 10.1016/0077-7579(92)90063-
696 K

697 Gardner, L. R., Reeves, H. W., & Thibodeau, P. M. (2002). Groundwater dynamics along forest-
698 marsh transects in a southeastern salt marsh, USA: Description, interpretation and challenges
699 for numerical modeling. *Wetlands Ecology and Management*, 10(2), 143-157.

700 Geng, X. and Boufadel, M.C., 2015. Numerical study of solute transport in shallow beach
701 aquifers subjected to waves and tides. *Journal of Geophysical Research: Oceans*, 120(2),
702 pp.1409-1428.

703 Geng, X., & Boufadel, M. C. (2017). The influence of evaporation and rainfall on supratidal
704 groundwater dynamics and salinity structure in a sandy beach. *Water Resources Research*,
705 53(7), 6218–6238. <https://doi.org/10.1002/2016WR020344>

706 Guo, Y., Huang, J., Shi, Z., & Li, H. (2015). Mapping spatial variability of soil salinity in a
707 coastal paddy field based on electromagnetic sensors. *PloS one*, 10(5), e0127996

708 Hall, S., S. Stotts, L.A. Haaf, 2022. Influence of climate and coastal flooding on eastern red
709 cedar growth along a marsh-forest ecotone, MDPI Forests. 13(6), 862

710 Holmes R., 1983. Computer-assisted quality control in tree-ring dating and measurement, *Tree*
711 *Ring Res.*, 43, 69–78

712 Houben, G., & Post, V. E. A. (2017). The first field-based descriptions of pumping-induced
713 saltwater intrusion and upconing. *Hydrogeology Journal*, 25(1), 243–247.
714 <https://doi.org/10.1007/s10040-016-1476-x>

715 Huang, H., Zinnert, J.C., Wood, L.K., Young, D.R. and D'Odorico, P., 2018. Non-linear shift
716 from grassland to shrubland in temperate barrier islands. *Ecology*, 99(7), pp.1671-1681.

717 Huang, H., Tuley, P.A., Tu, C., Zinnert, J.C., Rodriguez-Iturbe, I. and D'Odorico, P., 2021.
718 Microclimate feedbacks sustain power law clustering of encroaching coastal woody
719 vegetation. *Communications biology*, 4(1), p.745.

720 Jackson, R., E. Jobbagy, R. Avissar, S. Baidya Roy, D. Barrett, C. Cook, K. A. Farley, D. C. le
721 Maitre, B. A. McCarl, B. Murray, 2005. Trading water for carbon with biological carbon
722 sequestration, *Sci.* 310, 1944–1947. <https://doi.org/10.1126/science.1119282>

723 Jobe IV, J.G.D. and Gedan, K., 2021. Species-specific responses of a marsh-forest ecotone plant
724 community responding to climate change. *Ecology*, 102(4), p.e03296.

725 Kang, B., Feagin, R.A., Huff, T. and Durán Vinent, O., 2024. Stochastic properties of coastal
726 flooding events—Part 2: Probabilistic analysis. *Earth Surface Dynamics*, 12(1), pp.105-115.

727 Kearney, W. S., Fernandes, A., & Fagherazzi, S. (2019). Sea-level rise and storm surges
728 structure coastal forests into persistence and regeneration niches. *PloS one*, 14(5), e0215977.

729 Kirwan, M. L., & Gedan, K. B. (2019). Sea-level driven land conversion and the formation of
730 ghost forests. *Nature Climate Change*, 9(6), 450–457. <https://doi.org/10.1038/s41558-019-0488-7>

732 Kirwan, M. L., Kirwan, J. L., & Copenheaver, C. A. (2007). Dynamics of an estuarine forest and
733 its response to rising sea level. *Journal of Coastal Research*, 23(2), 457-463.

734 Kirwan, M. L., Walters, D. C., Reay, W. G., and Carr, J. A. (2016), Sea level driven marsh
735 expansion in a coupled model of marsh erosion and migration, *Geophys. Res. Lett.*, 43, 4366–
736 4373, doi:10.1002/2016GL068507.

737 Kirwan, M.L. and Megonigal, J.P., 2013. Tidal wetland stability in the face of human impacts
738 and sea-level rise. *Nature*, 504(7478), pp.53-60.

739 Konar, M., Todd, M. J., Muneepeerakul, R., Rinaldo, A., & Rodriguez-Iturbe, I. (2013).
740 Hydrology as a driver of biodiversity: Controls on carrying capacity, niche formation, and
741 dispersal. *Advances in Water Resources*, 51, 317-325.

742 Krauss, K. W., & Duberstein, J. A. (2010). Sapflow and water use of freshwater wetland trees
743 exposed to saltwater incursion in a tidally influenced South Carolina watershed. *Canadian*
744 *Journal of Forest Research*, 40(3), 525–535. <https://doi.org/10.1139/X09-204>

745 Langston, A. K., Kaplan, D. A., and Putz, F. E. (2017). A casualty of climate change? Loss of
746 freshwater forest islands on Florida's Gulf Coast. *Glob. Chang. Biol.* 23, 5383–5397. doi:
747 10.1111/gcb.13805

748 Lieffers, V.J. and Rothwell, R.L., 1987. Rooting of peatland black spruce and tamarack in
749 relation to depth of water table. *Canadian Journal of Botany*, 65(5), pp.817-821.

750 Liu, W., Xu, X., Lu, F., Cao, J., Li, P., Fu, T., ... & Su, Q. (2018). Three-dimensional mapping of
751 soil salinity in the southern coastal area of Laizhou Bay, China. *Land Degradation &*
752 *Development*, 29(10), 3772-3782.

753 Lynch JC, Hensel P, Cahoon DR. 2015. The surface elevation table and marker horizon
754 technique: A protocol for monitoring wetland elevation dynamics. Natural Resource Report.
755 NPS/NCBN/NRR—2015/1078. National Park Service. Fort Collins, Colorado

756 Matallana-Ramirez, L. P., R. W. Whetten, G. M. Sanchez, K. G Payn, 2021. Breeding for
757 climate change resilience: A case study of loblolly pine (*Pinus taeda* L.) in North America,
758 *Front. Plant Sci.* 12, 606908

759 McDowell, N. G., Ball, M., Bond-Lamberty, B., Kirwan, M. L., Krauss, K. W., Megonigal, J. P.,
760 ... & Bailey, V. (2022). Processes and mechanisms of coastal woody-plant mortality. *Global*
761 *Change Biology*, 28(20), 5881-5900.

762 McLachlan, P., Blanchy, G., & Binley, A. 2021. EMagPy: Open-source standalone software for
763 processing, forward modelling, and inversion of electromagnetic induction data. *Computers*
764 and *Geosciences*, 146(July 2020), 104561. <https://doi.org/10.1016/j.cageo.2020.104561>

765 McNeill, J.D., 1980. Electromagnetic terrain conductivity measurement at low induction
766 numbers. *Tech. Rep. Technical Note TN-6*. Geonics Limited.

767 Mendez-Alonzo R., J. Lopez-Portillo, C. Moctezuma, M.K. Bartlett, L. Sack, 2016. Osmotic and
768 hydraulic adjustment of mangrove saplings to extreme salinity, *Tree Physiol.* 36, 1562–1572

769 Messerschmidt, T.C., Langston, A.K. and Kirwan, M.L., 2021. Asymmetric root distributions
770 reveal press-pulse responses in retreating coastal forests. *Ecology*, 102(10), 2021, e03468.

771 Michael, H. A., Russiello, C. J., and Byron, L. A. (2013), Global assessment of vulnerability
772 to sea-level rise in topography-limited and recharge-limited coastal groundwater
773 systems, *Water Resour. Res.*, 49, 2228–2240, doi:10.1002/wrcr.20213.

774 Middleton, B. A. (2016). Differences in impacts of Hurricane Sandy on freshwater swamps on
775 the Delmarva Peninsula, Mid-Atlantic Coast, USA. *Ecological Engineering*, 87, 62–70.
776 <https://doi.org/10.1016/j.ecoleng.2015.11.035>

777 Middleton, B. A., & David, J. L. (2022). Trends in vegetation and height of the topographic
778 surface in a tidal freshwater swamp experiencing rooting zone saltwater intrusion. *Ecological
779 Indicators*, 145, 109637.

780 Midgley, G. F. (2012). Biodiversity and ecosystem function. *science*, 335(6065), 174-175.

781 Miller, Carson & Rodriguez, Antonio & Bost, Molly. (2021). Sea-level rise, localized
782 subsidence, and increased storminess promote saltmarsh transgression across low-gradient
783 upland areas. *Quaternary Science Reviews*. 265. 107000. 10.1016/j.quascirev.2021.107000.

784 Molino, G.D., Carr, J.A., Ganju, N.K. and Kirwan, M.L. (2022), Variability in marsh migration
785 potential determined by topographic rather than anthropogenic constraints in the Chesapeake
786 Bay region. *Limnol. Oceanogr. Lett*, 7: 321-331. <https://doi.org/10.1002/lo2.10262>

787 Mou, P., Jones, R. H., Mitchell, R. J., & Zutter, B. (1995). Spatial distribution of roots in
788 sweetgum and loblolly pine monocultures and relations with above-ground biomass and soil
789 nutrients. *Functional Ecology*, 689-699.

790 Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. *Annu. Rev. Plant Biol.*, 59,
791 651-681.

792 Nordio, G., & Fagherazzi, S. (2022a). Groundwater, soil moisture, light and weather data
793 collected in a coastal forest bordering a salt marsh in the Delmarva Peninsula (VA). *Data in
794 Brief*, 108584.

795 Nordio G., Fagherazzi S, 2022b, Salinity increases with water table elevation at the boundary
796 between salt marsh and forest, *Journal of Hydrology*, Volume 608, 127576, ISSN 0022-1694,
797 doi.org/10.1016/j.jhydrol.2022.127576.

798 Nordio, G., Frederiks, R., Hingst, M., Carr, J., Kirwan, M., Gedan, K., Michael, H. and
799 Fagherazzi, S., 2023. Frequent storm surges affect the groundwater of coastal
800 ecosystems. *Geophysical Research Letters*, 50(1), p.e2022GL100191.

801 Nordio, G., Gedan, K. and Fagherazzi, S., 2024. Storm surges and sea level rise cluster
802 hydrological variables across a coastal forest bordering a salt marsh. *Water Resources
803 Research*, 60(2), p.e2022WR033931.

804 Nordio, G. and Fagherazzi, S., 2024 Evapotranspiration and rainfall effects on post-
805 storm salinization of coastal forests: soil characteristics as important factor for salt-intolerant
806 tree survival. *Water Resources Research*, 10.1029/2024WR037907

807 Osland, M.J., Chiviu, B., Enwright, N.M., Thorne, K.M., Guntenspergen, G.R., Grace, J.B.,
808 Dale, L.L., Brooks, W., Herold, N., Day, J.W. and Sklar, F.H., 2022. Migration and
809 transformation of coastal wetlands in response to rising seas. *Science advances*, 8(26),
810 p.eab05174.

811 Parker, M. M., & Van Lear, D. H. (1996). Soil heterogeneity and root distribution of mature
812 loblolly pine stands in piedmont soils. *Soil Science Society of America Journal*, 60(6), 1920-
813 1925.

814 Paudel, S. and Battaglia, L.L., (2021). Linking responses of native and invasive plants to
815 hurricane disturbances: implications for coastal plant community structure. *Plant
816 Ecology*, 222(2), pp.133-148.

817 Pedersen, O., Sauter, M., Colmer, T. D., & Nakazono, M. (2021). Regulation of root adaptive
818 anatomical and morphological traits during low soil oxygen. *New Phytologist*, 229(1), 42–49.

819 Pezeshki, S.R., DeLaune, R.D. and Patrick Jr, W.H., 1990. Flooding and saltwater intrusion:
820 potential effects on survival and productivity of wetland forests along the US Gulf
821 Coast. *Forest Ecology and Management*, 33, pp.287-301.

822 Pezeshki, S. (1992). Response of *Pinus taeda* L to soil flooding and salinity. *Annales Des
823 Sciences Forestières*, 49(2), 149–159. <https://doi.org/10.1051/forest:19920205>

824 Porporato, A., D'Odorico, P., Laio, F., Ridolfi, L. and Rodriguez-Iturbe, I., 2002. Ecohydrology
825 of water-controlled ecosystems. *Advances in Water Resources*, 25(8-12), pp.1335-1348.

826 Potouroglou, M., Bull, J.C., Krauss, K.W. *et al.* (2017). Measuring the role of seagrasses in
827 regulating sediment surface elevation. *Sci Rep* 7, 11917. [https://doi.org/10.1038/s41598-017-12354-y](https://doi.org/10.1038/s41598-017-
828 12354-y)

829 Poulter, B., Christensen, N. L., & Qian, S. S. (2008). Tolerance of *Pinus taeda* and *Pinus serotina*
830 to low salinity and flooding: Implications for equilibrium vegetation dynamics. *Journal of
831 Vegetation Science*, 19(1), 15-22.

832 Poulter, B., Qian, S.S. & Christensen, N.L. Determinants of coastal treeline and the role of
833 abiotic and biotic interactions. *Plant Ecol* 202, 55–66 (2009). [https://doi.org/10.1007/s11258-008-9465-3](https://doi.org/10.1007/s11258-
834 008-9465-3)

835 Richardson, C.M., Davis, K.L., Ruiz-González, C., Guimond, J.A., Michael, H.A., Paldor, A.,
836 Moosdorf, N. and Paytan, A., 2024. The impacts of climate change on coastal
837 groundwater. *Nature Reviews Earth & Environment*, 5(2), pp.100-119.

838 Rodriguez-Iturbe, I., 2000. Ecohydrology: A hydrologic perspective of climate-soil-vegetation
839 dynamics. *Water Resources Research*, 36(1), pp.3-9.

840 Rodríguez-Iturbe, I. and Porporato, A., 2007. *Ecohydrology of water-controlled ecosystems: soil
841 moisture and plant dynamics*. Cambridge University Press.

842 Rooth, J.E., Stevenson, J.C. & Cornwell, J.C. Increased sediment accretion rates following
843 invasion by *Phragmites australis*: The role of litter. *Estuaries* 26, 475–483 (2003).
844 <https://doi.org/10.1007/BF02823724>

845 Roth, D., 2006. Rainfall information for 1938 Long Island hurricane, Hydrometeorological
846 prediction center. <https://www.wpc.ncep.noaa.gov/tropical/rain/longislandexpress1938.html>

847 Ruzol, R., C. L. Staudhammer, S. Younger, D. P. Aubrey, H. W. Loescher, C. R. Jackson, G.
848 Starr, 2022. Water use in a young *Pinus taeda* bioenergy plantation: Effect of intensive
849 management on stand evapotranspiration, *Ecosphere*. 13, e4100

850 Schieder, N. W., & Kirwan, M. L. (2019). Sea-level driven acceleration in coastal forest retreat.
851 *Geology*, 47(12), 1151–1155. <https://doi.org/10.1130/g46607.1>

852 Schuerch, M., Spencer, T., Temmerman, S. *et al.* (2018) Future response of global coastal
853 wetlands to sea-level rise. *Nature* 561, 231–234. <https://doi.org/10.1038/s41586-018-0476-5>

854 Seyfried, G.S., Chow, A.T. and O'Halloran, T.L., (2023). Salinization, inundation and tree
855 mortality interact to affect greenhouse gas emissions from stressed coastal forests. *Soil
856 Biology and Biochemistry*, 184, p.109101.

857 Simunek, J. (2005). The HYDRUS-1D software package for simulating the movement of water,
858 heat, and multiple solutes in variably saturated medea. *HYDRUS Software Series 1*.

859 Sirianni, Matthew & Comas, Xavier & Mount, Gregory & Pierce, Shelley & Coronado, Carlos &
860 Rudnick, David. (2023). Understanding Peat Soil Deformation and Mechanisms of Peat
861 Collapse Across a Salinity Gradient in the Southwestern Everglades. *Water Resources*
862 Research. 10.1029/2021WR029683.

863 Stagg, C.L., Osland, M.J., Moon, J.A., Hall, C.T., Feher, L.C., Jones, W.R., Couvillion, B.,
864 Hartley, S.B., & Vervaeke, W.C. (2020). Quantifying hydrologic controls on local- and
865 landscape-scale indicators of coastal wetland loss. *Annals of botany*.

866 Stiller, V., 2009. Soil salinity and drought alter wood density and vulnerability to xylem
867 cavitation of baldcypress (*Taxodium distichum* (L.) Rich.) seedlings. *Environmental and*
868 *Experimental Botany*, 67(1), pp.164-171.

869 Sylvain, Z. A., & Wall, D. H. (2011). Linking soil biodiversity and vegetation: implications for a
870 changing planet. *American journal of botany*, 98(3), 517-527.

871 Tannehill, I. R., 1939. September 1939 monthly weather review, US Weather Bureau.
872 <https://www.aoml.noaa.gov/general/lib/lib1/nhclib/mwreviews/1944.pdf>

873 Taylor, M., & Krüger, N. (2019). Changes in salinity of a clay soil after a short-term salt water
874 flood event. *Geoderma Regional*, 19, e00239. <https://doi.org/10.1016/j.geodrs.2019.e00239>

875 Terry, J. P., & Falkland, A. C. (2010). Responses of atoll freshwater lenses to storm-surge
876 overwash in the Northern Cook Islands. *Hydrogeology Journal*, 18(3), 749-759.

877 Tolliver, K.S., Martin, D.W. and Young, D.R., 1997. Freshwater and saltwater flooding response
878 for woody species common to barrier island swales. *Wetlands*, 17, pp.10-18.

879 Tully, K., Gedan, K., Epanchin-Niell, R., Strong, A., Bernhardt, E. S., BenDor, T., ... & Weston,
880 N. B. (2019). The invisible flood: The chemistry, ecology, and social implications of coastal
881 saltwater intrusion. *BioScience*, 69(5), 368-378.

882 Tyree, M. T., & Sperry, J. S. (1989). Vulnerability of xylem to cavitation and embolism. *Annual*
883 *Review of Plant Biology*, 40(1), 19–36.

884 Ury, E.A., Yang, X., Wright, J.P. and Bernhardt, E.S., 2021. Rapid deforestation of a coastal
885 landscape driven by sea-level rise and extreme events. *Ecological applications*, 31(5),
886 p.e02339.

887 Vithanage, M., Engesgaard, P., Villholth, K. G., & Jensen, K. H. (2012). The effects of the 2004
888 tsunami on a coastal aquifer in Sri Lanka. *Groundwater*, 50(5), 704-714.

889 Wadas, S. H., Buness, H., Rochlitz, R., Skiba, P., Günther, T., Grinat, M., Tanner, D. C., Polom,
890 U., Gabriel, G., and Krawczyk, C. M.: 2022. Geophysical analysis of an area affected by
891 subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany,
892 *Solid Earth*, 13, 1673–1696, <https://doi.org/10.5194/se-13-1673-2022>,

893 Ward, E. J., R. Oren, H. Seok Kim, D. Kim, P. Tor-ngern, B. E. Ewers, H. R. McCarthy, A. C.
894 Oishi, E. E. Pataki, S. Palmroth, N. G. Phillips, K. V. R. Schafer, 2018. Evapotranspiration
895 and water yield of a pine-broadleaf forest are not altered by long-term atmospheric [CO₂]

enrichment under native or enhanced soil fertility, *Glob. Change Biol.* 24(10), 4841– 56.
<https://doi.org/10.1111/gcb.14363>

Weightman, R. H., 1933. August 1933 monthly weather review, US Weather Bureau.
<https://www.aoml.noaa.gov/general/lib/lib1/nhclib/mwreviews/1933.pdf>

Weiner J., S. C. Thomas, 2001. The nature of tree growth and the age-related decline in forest productivity. *Oikos* 94, 374–376

Weiner, J., and S. C. Thomas, 2001. The nature of tree growth and the age-related decline in forest productivity. *Oikos* 94:374–376

Wendelberger, K. S., and Richards, J. H. (2017). Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities. *Oecologia* 184, 729–737. doi: 10.1007/s00442-017-3896-2

Whelan, K. R., Smith, T. J., Anderson, G. H., and Ouellette, M. L. (2009). Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest. *Wetlands* 29:16.

Whelan, K.R.T., Smith, T.J., Cahoon, D.R. et al. (2005) Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. *Estuaries* 28, 833–843

Weston, N.B., Vile, M.A., Neubauer, S.C. and Velinsky, D.J., 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. *Biogeochemistry*, 102, pp.135-151.

Williams, H.F.L., and W.M. Flanagan 2009. Contribution of Hurricane Rita Storm Surge Deposition to Long-Term Sedimentation in Louisiana Coastal Woodlands and Marshes. *Journal of Coastal Research*, , 1671–75. <http://www.jstor.org/stable/25738074>.

Williams, K., Pinzon, Z., Stumpf, R. P., and Raabe, E. A. (1999a). Sea-Level Rise and Coastal Forests on the Gulf of Mexico. U.S. Geological Survey Open File Report 99-441. p. 121. doi: 10.3133/ofr99441

Williams, K., Ewel, K.C., Stumpf, R.P., Putz, F.E. and Workman, T.W., 1999b. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. *Ecology*, 80(6), pp.2045-2063.

Williams, T. M. (1993). Salt water movement within the water table aquifer following Hurricane Hugo. In *Proceedings of the Seventh biennial southern silvicultural research conference* (pp. 177-183). New Orleans. LA.: USDA Forest Service. Southern Forest Experiment Station.

Wilson, A. M., Evans, T. B., Moore, W. S., Schutte, C. A., & Joye, S. B. (2015). What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. *Water Resources Research*, 51(6), 4198-4207.

Wilson, A. M., Moore, W. S., Joye, S. B., Anderson, J. L., & Schutte, C. A. (2011). Storm-driven groundwater flow in a salt marsh. *Water Resources Research*, 47(2).

Woods, N. N., Swall, J. L., & Zinnert, J. C. (2020). Soil salinity impacts future community composition of coastal forests. *Wetlands*, 40, 1495-1503.

Xiao, H., & Tang, Y. (2019). Assessing the “superposed” effects of storm surge from a Category 3 hurricane and continuous sea-level rise on saltwater intrusion into the surficial aquifer in

935 coastal east-central Florida (USA). *Environmental Science and Pollution Research*, 26(21),
936 21882–21889. <https://doi.org/10.1007/s11356-019-05513-3>

937 Xiao, H., Wang, D., Medeiros, S. C., Bilskie, M. V., Hagen, S. C., & Hall, C. R. (2019).
938 Exploration of the effects of storm surge on the extent of saltwater intrusion into the surficial
939 aquifer in coastal east-central Florida (USA). *Science of the total environment*, 648, 1002-
940 1017.

941 Xiao, H., Wang, D., Medeiros, S. C., Hagen, S. C., & Hall, C. R. (2018). Assessing sea-level rise
942 impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central
943 Florida. *Science of The Total Environment*, 630, 211–221.
944 <https://doi.org/10.1016/j.scitotenv.2018.02.18>

945 Xu, X., Zhang, Q., Li, Y., & Li, X. (2016). Evaluating the influence of water table depth on
946 transpiration of two vegetation communities in a lake floodplain wetland. *Hydrology
947 Research*, 47(S1), 293-312.

948 Yang, J., Zhang, H., Yu, X., Graf, T., & Michael, H. A. (2018). Impact of hydrogeological
949 factors on groundwater salinization due to ocean-surge inundation. *Advances in Water
950 Resources*, 111, 423-434.

951 Yu, X., Xin, P., & Hong, L. (2021). Effect of evaporation on soil salinization caused by ocean
952 surge inundation. *Journal of Hydrology*, 597, 126200.
953 <https://doi.org/10.1016/j.jhydrol.2021.126200>

954 Yu, X., Yang, J., Graf, T., Koneshloo, M., O’Neal, M. A., & Michael, H. A. (2016). Impact of
955 topography on groundwater salinization due to ocean surge inundation. *Water Resources
956 Research*, 52(8), 5794–5812. <https://doi.org/10.1002/2016wr018814>

957 Zhang H., X. Li, W. Wang, A. L. Pivovaroff, W. Li, P. Zhang, N. D. Ward, Al Myers-Pigg, H.
958 D. Adams, R. Leff, A. Wang, F. Yuan, J. Wu, S. Yabusaki, S. Waichler, V. L. Bailey, D.
959 Guan, N. G. McDowell, 2021. Seawater exposure causes hydraulic damage in dying Sitka-
960 spruce trees, *Plant Physiol.* 187, 873-885