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CHATASSERT: LILLM-Based Test Oracle Generation
With External Tools Assistance

Ishrak Hayet”, Adam Scott

Abstract—Test oracle generation is an important and challeng-
ing problem. Neural-based solutions have been recently proposed
for oracle generation but they are still inaccurate. For example,
the accuracy of the state-of-the-art technique TECO is only
27.5% on its dataset including 3,540 test cases. We propose
CHATASSERT, a prompt engineering framework designed for
oracle generation that uses dynamic and static information to
iteratively refine prompts for querying large language models
(LLMs). CHATASSERT uses code summaries and examples to
assist an LLM in generating candidate test oracles, uses a
lightweight static analysis to assist the LLM in repairing gener-
ated oracles that fail to compile, and uses dynamic information
obtained from test runs to help the LLM in repairing oracles
that compile but do not pass. Experimental results using an
independent publicly-available dataset show that CHATASSERT
improves the state-of-the-art technique, TECO, on key evaluation
metrics. For example, it improves Acc@1 by 15%. Overall, results
provide initial yet strong evidence that using external tools in the
formulation of prompts is an important aid in LLM-based oracle
generation.

Index Terms—Test oracle generation, large language models
(LLMs), tool-augmented LLMs, prompt engineering framework.

1. INTRODUCTION

OFTWARE testing is a widely adopted technique for soft-

ware quality assurance, but it is very time-consuming. Au-
tomated test case generation promises to reduce this cost, but it
is challenging. Test oracle generation is particularly challenging
to automate as the oracle needs to capture the intent of the
program to be tested. Neural techniques have been recently
proposed to generate oracles based on contextual data [1], [2],
[3], [4], [5] but they are still inaccurate. For example, the state-
of-the-art (SoTA) approach for test oracle generation, TECO
[5], produces the ground truth oracle among the ten oracles it
reports in only 42% of the cases (Section V-D). It is therefore
imperative to improve the accuracy of these techniques if we
want them to work in realistic settings.
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Recent prior work applied large language models (LLMs)
in a variety of code-related tasks, e.g., program repair [6], [7],
[8], [9], code synthesis [10], test generation [5], [11], [12], and
filtering static analysis warnings [13]. LLMs, such as CHATGPT
[14], are convenient to developers because they do not need to
gather large amounts of data to train a model for a specific
task. LLMs are pre-trained on simple general-purpose tasks
using huge amounts of data. They can be useful for solving
more specific downstream tasks provided users carefully design
prompts describing the task to be solved (Section II-A).

To assess how promising the use of LLMs for oracle gen-
eration can be, we evaluate how a CHATGPT [16] configured
with a simplistic prompt compares against the SOTA technique
TECO [5] (Section V-B). Very poor results would indicate a
low potential for using LLMs for oracle generation. Results
obtained by running TECO and the simplistic CHATGPT-based
tool on the TECO dataset show that the LLM-based tool achieves
an Acc@Ql score 1% higher compared to that of TECO. We
interpret this result as encouraging to motivate the use of LLMs
for oracle generation.

Yet, we observe that without appropriate prompt engineering,
LLMs face an important challenge of reasoning about the code
being analyzed [17], [18], [19], [20]. LLMs are oblivious to the
functionality to be tested in the program. Fig. 1(a) shows an ex-
ample test case from project NanoHt tp [15] asserting that the
size of the set that the expression cookies.getCookies ()
denotes should be one. When provided with the prefix of the
test case, excluding the assertion, the SoTA technique TECO [5]
often generates inaccurate and invalid assertions as Fig. 1(b)
highlights. TECO is limited to using a restrictive set of code
features for training, including information about local types,
absent types, unset fields, setup methods, last called methods,
and similar statements. Additionally, TECO lacks the ability to
repair the failing or non-compiling test oracles it generates.

We propose CHATASSERT to mitigate those limitations.
CHATASSERT leverages static and dynamic information to
iteratively refine the prompts of a conversational LLM,
such as CHATGPT. Through iterative refinement of prompts,
CHATASSERT avoids incoherent outputs and eventually gen-
erates exact matches. For example, CHATASSERT produces
the exact match assertion for the test from Fig. 1. Notably,
CHATASSERT can handle complex assertions by understand-
ing the relationships between methods and objects within
the code. For example, CHATASSERT is capable of recogniz-
ing that the getCookies method is declared in the type
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@Test

public void testCookieSentBackToClient () throws ... {
this.testServer.cookiesToSend.add (new Cookie(...));
HttpGet httpget=new HttpGet ("STR");
ResponseHandler<String> rHandler=new Basic...();
this.httpclient.execute (httpget, rHandler);
CookieStore cookies=this.httpclient.getCookieStore();
assertEquals (1, cookies.getCookies().size());

}

//Focal

public Cookie (String name, String value, int numDays)

{...}
(a) Test sequence and associated focal method from project NanoHttpd [15]

assertThat (cookies, hasItem("STR"));
Cookie cookie = cookies.

get ("STR"); (C, ...,=,C/, ..
assertThat (cookies) .hasSize (1
assertEquals (1, cookies.size(
assertNotNull (cookies) ;

crer9re,t, Gy S, TAR ) g0

)i

))i

(b) Assertions generated by the TECO. Highlighted assertions are invalid.

assertEquals (1, cookies.getCookies() .size());
assertEquals ("STR", cookies.getCookies () .get (0) .getName ()) ;
assertTrue (cookies.getCookies () .size() > 0);
assertEquals ("STR", cookies.getCookies () .get (0) .getValue());
assertNotEquals ("STR",cookies.get... () .get (0) .getDomain());

(c) Assertions generated by CHATASSERT. Highlighted assertion is an exact
match with the ground truth.

Fig. 1. Comparison of assertions generated by TECO and CHATASSERT for
the test case testCookieSentBackToClient.

associated with the variable cookies. CHATASSERT observes
that the method getCookies returns a List and appropri-
ately calls the size method on the returned List object. As a
result, CHATASSERT produces the correct assertion in this case.
Fig. 1(b) shows the invalid assertion that TECO generates for this
case. We conjecture that TECO fails to identify that the method
getCookies could be called on the object cookies. Also,
TECO does not prevent the generation of syntactical nonsense
as reflected in the fragment starting with (C, .. ..

CHATASSERT mitigates the semantic gap problem of LLMs
by iteratively refining prompts with sensible information ob-
tained from external tools, e.g., the output of code summa-
rization tools, the compiler output, the output of test runs,
etc. CHATASSERT has two modes of execution: generation and
repair. In generation mode, CHATASSERT uses code summaries
(cs) and examples (EX) to produce candidate test oracles. In
repair mode, CHATASSERT uses a lightweight static analysis to
assist the LLM in repairing oracles that fail to compile (SR)
and it uses dynamic information obtained from test runs to
assist the LLM in repairing oracles that compile but do not
pass (DR). CHATASSERT alternates between these two modes
of execution. CHATASSERT queries the LLM iteratively, using
prompts augmented with information collected from previous
iterations.

To understand the impact of CHATASSERT’s prompt en-
gineering method, we rigorously evaluated its oracle gen-
eration capabilities when configured with various open and
close-sourced LLMs. This study involved testing LLMs with all
features of CHATASSERT enabled and then with no features en-
abled across four popular LLMs, namely Mistral [21], Codestral
[22], and Magicoder [23], and CHATGPT [14]. The results con-
sistently show that CHATASSERT’s prompt engineering signifi-
cantly enhances the performance of all tested LLMs. Notably,

CHATGPT with CHATASSERT’s prompt engineering exhibits a
30% performance improvement compared to CHATGPT with
a simplistic prompt. This improvement is well above the im-
provement that the other LLMs obtain with CHATASSERT’S
prompt engineering; 9% on average. These findings highlight
the crucial role of prompt engineering in unleashing the full
potential of LLMs for oracle generation. Table III presents
detailed results of this comparison.

We compared CHATASSERT against prior work, including
ATLAS [1], TOGA [4], and TECO [5]. To sum up, results show
that CHATASSERT performs better overall. For example, com-
pared to TECO, CHATASSERT improves Acc@ 10 by 12% and
improves three of the four standard NLP metrics we consid-
ered: BLEU, CodeBLEU, and Rouge. Table IV shows results.
Mutation scores of the oracles that CHATASSERT generate are
also significantly higher compared to that of TECO. Fig. 6 sum-
marizes the results.

We conducted an ablation study to assess the contribution of
each of CHATASSERT’s features. We found that all features had
an impact on CHATASSERT’s performance. The contribution of
examples (i.e., feature EX) was slightly less than that of the other
features. Table VI shows the results.

Finally, we compared the performance of the variant of
CHATASSERT that excludes the feature to dynamically repair
oracles based on the test outputs (CHATASSERT-DR). The ra-
tionale is that TECO does not support that feature. Results also
show that CHATASSERT-DR is superior to TECO. For example,
it outperforms TECO on Acc@10 by 5%.

We make the following contributions:

* A novel oracle generation technique that employs prompt
engineering with static and dynamic analysis to reduce the
semantic gap between the LLMs and the objects under
analysis (i.e., the program and the test sequence);

* A tool implementing the prompt engineering framework
for oracle generation;

* A comprehensive evaluation showing the positive impact
of the proposed prompt engineering method.

Overall, results provide initial yet strong evidence of the

effectiveness of CHATASSERT. Our artifacts are publicly avail-
able: https://github.com/ncsu-swat/chatassert.

II. BACKGROUND

This section provides background information for this paper.

A. Terminology

A large language model (LLM), such as InCoder [24], Poly-
coder [25], and CHATGPT [14], is trained on massive amounts
of data using general-purpose tasks such as predicting a masked
token and predicting the following sentence. Users interact with
an LLM through a prompt, which describes a specific task. For
Software Engineering tasks, a prompt typically includes code
and text [26]. Users of LLMs often can control the temperature,
a variable that sets the level of (un)predictability of answers.

The test setup method is responsible for creating or initial-
izing the data that will be accessed by the test. A fest prefix
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is the set of statements preceding the assert statement that one
wishes to generate [1]. A focal method is a method, reachable
from the test prefix, that is more likely to be the target of the
generated assertion. (Prior work has shown that providing a
focal method improves the performance of oracle generation
techniques [1].) Different heuristics to compute focal methods
exist [27]. CHATASSERT uses the heuristic provided by Watson
and others [1]. These three elements —the setup method, test
prefix, and the focal method— are commonly used as input for
test oracle generation techniques.

A plausible assertion is an assertion that seems reasonable,
according to an objective definition (e.g., confidence scores
of prediction models), but it is not guaranteed to compile or
execute. An executable assertion is a plausible assertion that
compiles and runs successfully [5]. Furthermore, it is also im-
portant to measure how often techniques can predict the oracle
originally present in a test case, i.e., the ground truth. The
generated oracle is an exact match in that case. To sum up,
assertions are related as follows Ezact Match C Ezecutable C
Plausible.

B. Evaluation Metrics for Oracle Generation

Oracle generation techniques, including TECO, produce mul-
tiple assertions on output. For example, TECO ranks the asser-
tions it produces based on their compile, pass, and beam search
scores associated with the model output. These techniques use a
ranking score to evaluate their performance. Acc@k is a popular
metric for that. It evaluates how often the ground truth appears
among the top k elements in a ranked list. To compute Acc@ 10,
for example, we check the presence of the ground truth oracle
on each one of the first 10 reported oracles and consider that the
generation task was successful if one of them is an exact match.
The accuracy value is obtained by computing the fraction of
cases an exact match is found.

Prior work also considers NLP metrics that measure the
distance of solutions to the ground truth. These metrics com-
plement the evaluation based on exact matches (Acc@k). More
precisely, they account for the cases where exact matches are
not produced but solutions are not “too far”” [2], [5]. We consider
standard NLP metrics used in prior work, namely, BLEU [28],
CodeBLEU [29], ROUGE [30], and EditSim [31]. BLEU score
computes the n-gram similarity between a candidate and a
reference. CodeBLEU computes similarity from corresponding
abstract syntax trees and data-flow structures of candidate and
reference. ROUGE also uses n-gram similarity; similar to Nie
et al. [5], we use the F1-score of the ROUGE-L metric for that.
EditSim uses the Levenshtein distance [32].

III. ILLUSTRATIVE EXAMPLE

Fig. 2 shows one example to illustrate CHATASSERT. In the
interest of space, we selected a short example. Fig. 2(a) shows
an example test prefix from the OrientDB [33] project, which
implements a NoSQL database. Fig. 2(b) shows the dialogue
between CHATASSERT and CHATGPT to generate an oracle for
the given test prefix. In this example, CHATASSERT produces

@Test

public void testRemoveNotificationOne () {
final ODocument doc = new ODocument () ;
ORecordInternal.unsetDirty (doc);
<AssertPlaceholder>; }

(a) Example test sequence from project OrientDB [33].

P1l.1 I want you to generate a JUnit assertion for a test.
For that task, consider the following related classes
and methods:

P1.2 <include Al and A2 from Figure 4>

P1.3 Now, given test prefix <TEST> and focal method <FOCAL

>, generate a JUnit assertion:

<TEST>:

@Test

public void testRemoveNotificationOne ( ) {
final ODocument doc = new ODocument ( ) ;
ORecordInternal . unsetDirty ( doc ) ;
<AssertPlaceHolder>;

}

LRI

<FOCAL>:

Al. Based on the provided test prefix and the focal method,

one junit assertion can be as follows:
Vo

--ommited for space

assertTrue (doc.isDirty());
Vo

P2. I am getting the following assertion error: java.lang.
AssertionError at com.orientechnologies.orient.core.db.
record.TrackedSetTest.testRemoveNotificationOne (
TrackedSetTest.java:110). Can you fix the assertion?

A2. Since there is an assertion error, you can try the
following assertion which checks if doc.isDirty() is
false:

DRRY

assertFalse (doc.isDirty());

LRIRY

(b) Sequence of interactions between CHATASSERT and CHATGPT.

Fig. 2. TIllustrative example of CHATASSERT’s oracle generation for the input
from Fig. 2(a). CHATASSERT (1) summarizes the code (Fig. 4 shows the
conversation); (2) formulates a task to the LLM (P1.1-1.3); and (3) runs the
test with the generated assertion, observes a test failure and requests a repair
to the generated assertion (P2).

an oracle matching the one from the original code. The test
prefix from Fig. 2(a) creates a document object, doc, and calls
a method to reset a flag on that object indicating that it is in a
“dirty” state.

Fig. 2(b) shows the conversation between CHATASSERT and
CHATGPT. The symbol P.z.y identifies a prompt with the num-
ber  and a position within that prompt with the number y.
CHATASSERT starts the conversation by requesting CHATGPT
to summarize a fragment of the application code related to the
test (Fig. 2(a)). For this example, it provides the code for the
class ODocument and the code for the method unsetDirty
and asks CHATGPT to summarize them. Fig. 4 shows the dialog
to obtain these summaries. (Section I'V-C details the summariza-
tion task.) Code summaries add contextual and explanatory data
to the prompts, which has shown to benefit LLM’s performance
[18], [34], [35], [36]. CHATASSERT conjoins these summaries
(see P1.2) and elaborates the first prompt asking CHATGPT to
produce an assertion for the test method in P1.3 from Fig. 2(a).
It is worth noting that the CHATGPT API does not provide
sessions to save data across queries. Relevant information needs
to be communicated across queries.

In response to the first prompt, CHATGPT replies with the
assertion assertTrue (doc.isDirty () ). Note that the
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oracle

‘Dgeneration |:| repair ‘

Fig. 3.  CHATASSERT.

method isDirty was made visible to CHATGPT from the
summary. CHATASSERT replaces <AssertPlaceHolder>
in the test method with the generated assert statement and runs
the test. The execution results in a test failure. CHATASSERT
extracts the error message from the test output to refine the
prompt and requests CHATGPT to repair that assertion (P2).
CHATASSERT uses the runtime information from the output of
the test run in the formulation of another prompt. This time,
CHATASSERT obtains an assertion that matches with the ground
truth, namely assertFalse (doc.isDirty () ).

This example shows some important features of CHAT-
ASSERT. It shows the use of code summarization to improve
oracle generation (P1.2), the use of dynamic information —
associated with test runs— to repair assertions that make tests
fail (P.2), and the use of feedback to improve the quality of
subsequent interactions (P.2).

IV. APPROACH

CHATASSERT is an automated test oracle generation tech-
nique that uses external tools to obtain sensible information to
build prompts for querying an LLM.

A. Overview

CHATASSERT takes as input the test metadata (e.g., test pre-
fix), the program under test, and a set of configuration options,
and produces a set of candidate oracles on output.

Fig. 3 lays out the organization of CHATASSERT. An ex-
ecution of CHATASSERT has two stages: (1) generation and
(2) repair. The generation mode is responsible for querying the
LLM for new oracles whereas the repair mode is responsible
for fixing an oracle that either does not compile or compiles
but fails. CHATASSERT queries the LLM incrementally, refining
the prompt in every round. Intuitively, CHATASSERT provides
feedback to the LLM about the observations it makes during
the execution. For example, CHATASSERT maintains a list of

oracles that do not compile along with corresponding compiler
error messages to assist the LLM in producing better answers.
Querying the model in batch prevents specialized intervention.
It is worth noting that CHATASSERT does not sort the oracles
it generates. The problem of ranking oracles is orthogonal and
out of scope for this paper.

1) Features: Table I shows CHATASSERT’s features. Code
Summarization (CS) is the feature that extracts natural language
summaries describing methods and classes involved in the test
prefix and adds them into the prompt as part of the context.
Examples (EX) is the feature that mines similar examples from
the project under test to enable few-shot learning. Dynamic
Repair (DR) is the feature responsible for using the output of
failing test runs (e.g., the exception raised, error message when
available, etc.) to guide the LLM towards oracles that result in
passing runs. Static Repair (SR) is the feature that attempts to
statically repair oracles that fail to compile. We observed that
the LLM often generates assertions with method calls missing
the identifier of the target object. This feature uses the error
message of the failing run and a simple type analysis to locate
type-consistent identifiers for fixing the broken assertion.

B. The CHATASSERT Pseudocode

Algorithm 1 shows the pseudocode of CHATASSERT. It takes
as input the test metadata md and a set of configuration options,
including the number of candidate oracles to generate, NO.
CHATASSERT produces on output a set of candidate oracles,
0S. The test metadata md includes the elements considered
in prior work to characterize a test object [1], [4], [5], [37]: the
test setup method, if exists, and the test prefix, including the
test name.

Line 11 summarizes test-related code and stores the re-
sults in the variable summaries. Section IV-C details function
SUMMARIZE. Line 12 creates an initial prompt based on the
obtained summary, the test metadata, and the focal method of
the test [1], and stores the prompt on variable prompt.

CHATASSERT uses a prompt encoding the following data
items: t(1) the task definition, (2) code summaries, (3) global
history, and (4) local history. The function INITIAL_PROMPT
creates a prompt object and defines the first two fields, task
definition, and code summaries, which are final. As a reference,
the text under P1.1-P1.3 on Fig. 2(b) shows values for these two
fields. The global history field is a list that records observations
that CHATASSERT makes about oracles already generated and
tested and helps to guide CHATGPT towards solutions (e.g.,
“avoid oracle $oracle” as it has already been generated). Finally,
the local history is a list storing temporary information related
to a specific oracle.

The outer loop defined on lines 13-35 iteratively generates
candidate oracles until reaching the target number, NO, or the
global limit of queries to CHATGPT (NT'). Before starting a
new iteration of that loop, CHATASSERT calls a method in the
prompt object to clear the local history (line 14). Information in
the global history is retained across iterations of the outer loop
whereas the local history is always cleared at the beginning of
a local search (lines 16-35). Intuitively, the generation mode
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TABLE I
DESCRIPTION OF CHATASSERT’S FEATURES

ID Name

Description

cs Code Summ.
EX EXamples

CHATASSERT incorporates summaries of the methods used in the test prefix into the prompt.
CHATASSERT incorporates similar examples (e.g., another test from the same test file) into the prompt.

DR Dynamic Repair CHATASSERT uses dynamic information from test runs to assist the LLM repair failing assertions. It mines the error messages from
test outputs and updates the prompt accordingly (e.g., “expected x but observed y. Can you fix the assertion?”).

SR Static Repair

CHATASSERT uses compilation error messages and type information to assist the LLM repair assertions that do not compile. For

example, it looks for class definition that declare a method with an expected signature.

Algorithm 1. The CHATASSERT algorithm.

Input: The test metadata md (e.g., test prefix), the number
of candidate oracles to generate NO, the local and global
maximum number of LLM trials, respectively, LT and N7, and
the maximum number of repair trials R7T.

Output: A set of candidate oracles OS.

let
def summarize(): ... # asks llm to summ. test-related code
def initial_prompt(): ... # creates initial prompt
def focal(): ... # mines focal method
def extract_ora(): ... # extracts oracle from model output
def rewrite_test(): ... # rewrites test case with new oracle
def compile(): ... # compiles the test case
def run(): ... # runs the test case
. in
10. OS = set()
11.  summaries = summarize(md)
12.  prompt = initial_prompt(summaries, md, focal(md))
13. while NO >0 and NT-- > 0:

R N

14. prompt.clear_local_history()

15. It = LT # reset counter [t, focusing on one oracle
16. while /t-- > 0:

17. out = prompt.query() # query the model

18. ora = extract_ora(out) # extract oracle from text
19. t = rewrite_test(md, ora)

20. if not compile(?):

21. rt = RT

22. while 7t-- > 0:

23. ora = fuzz(md, ora) # e.g., add missing ids
24. if compile(t = rewrite_test(md, ora)) break
25. if 7t == —1: # ora still fails to compile

26. prompt.notify_compile_error("local", ora)
27. continue

28. tresult = run(t)

29. if tresult.success:

30. NO-- # found one! it compiles and runs

31. 0S.add(ora)

32. prompt.notify_successful_gen("global", ora)
33. break

34. else:

3s. prompt.notify_failing_ora("local", ora, tresult)

36. return OS

of CHATASSERT corresponds to the first iteration of this loop
(lines 16-35). The repair mode corresponds to the remaining it-
erations, which attempt to repair the oracle produced in the first
iteration. The inner loop starts by querying the model (line 17),
extracting the oracle from the output (line 18), and rewriting
the original test case with that oracle (line 19). The block on
lines 20-27 is responsible for repairing the code that fails to
compile. We empirically observed that the most common reason
for that problem is missing identifiers. For example, CHATGPT

generates a method call expression without indicating the target
object of that call. To deal with that problem, CHATASSERT
(1) uses the compilation error message to find what identifier
is missing, (2) uses a lightweight static analysis to find what
classes, from those instantiated in the test body, declare the
identifier, and (3) checks if pre-pending the expression with a
matching id will make the test to compile. The loop in lines
22-24 indicates that multiple identifiers can be found in this
process; the function call FUZZ abstracts the steps above. As the
repair process above focuses on one case of compilation issue,
we use the LLM itself as a fallback. After RT unsuccessful
attempts, if CHATASSERT still cannot find an oracle that makes
the test compile, it adds the compilation error message in the
local history (e.g., “the oracle $oracle fails to compile”) and
continues to another iteration of the inner loop. The local history
is part of the prompt; conceptually, it makes CHATGPT avoid
generating the oracle that variable ora stores again.

The test referred to by variable ¢ at line 28 must compile if

execution reaches that location. In that case, variable tresult
stores the results of the test run. If the test passes (line 29),
CHATASSERT decrements variable NO denoting the total num-
ber of assertions that remain to be generated, adds the assertion
to the results set, and updates the global history to indicate that
this is an executable oracle that should not be generated again
and break the inner loop. If the test fails (line 35), we update
the local history to indicate that the current oracle (ora) fails to
run and should be avoided. The method NOTIFY_FAILING_ORA
extracts the error message (e.g., “expected x found y”’) from the
test results variable (tresult) and adds it to local history, which
is subsequently used in the prompt of the following iteration of
the inner loop.
Mapping of features. The algorithm focuses on the feed-
back loop of CHATASSERT, as reflected through the notify*
method calls. Feature CS maps to line 11, feature EX is encap-
sulated in the initial prompt called at line 12, feature DR
maps to line 35, and feature SR maps to lines 21-24.

C. Code Summarization (CS)

We detail the code summarization feature in the follow-
ing. An LLM has no prior knowledge about the semantics
of the program under analysis. Conceptually, the CS feature
is responsible for obtaining an approximation of the intent of
the test prefix to facilitate the oracle generation task. To that
end, CHATASSERT proceeds as follows for each method call or
instantiation expression it encounters in the input test prefix.
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Pl I will ask you to explain a few methods and classes. I
will also walk you through the steps of a Java test
method prefix and ask you about updates to each
variable.

Al. Yes, I will try to understand and describe the method,
classes and variable assignments that you provide.

P2 Line 3 instantiates an object of class ODocument. Can
you explain what that class does? Here is the code:

Y

class ODocument implements ... {
public static final byte RECORD_TYPE = ’d’;...
public ODocument () {

setup (ODatabaseRecordThreadLocal.instance () .
getIfDefined());
}
@Override
public Optional<OVertex> asVertex () {
if (this instanceof OVertex)
return Optional.of ((OVertex) this);
OClass type = this.getImmutableSchemaClass();
if (type == null)
return Optional.empty();
if (type.isVertexType())
return Optional.of (new OVertexDelegate (this));
return Optional.empty();
} ... <other methods>

A2. The class ODocument is some form of an associative
database. It contains multiple flag variables like
trackChanges, ordered, lazylLoad etc. to control how a
document will be handled. ODocument has multiple
overloaded constructors which enable various ways of
instantiating a documents container...

P3 In line 4, method unsetDirty from class ORecordInternal
is invoked. Can you explain that method? Here is the
code:

Y

public static void unsetDirty(final ORecord record) ({
final ORecordAbstract rec = (ORecordAbstract) record;
rec.unsetDirty () ;

}

Y

A3. The purpose of method ‘unsetDirty() ‘' is to clear or

unset the dirty status of a record. In databases, a
record is considered dirty if it has been modified or
updated since it was last saved or synchronized with
the database. By calling ‘unsetDirty()‘, the record is
marked as not dirty anymore.

Fig. 4. Example of code summarization.

First, CHATASSERT locates the class c that declares a given
function f —associated with the corresponding method or
constructor— using a static type analysis based on the JavaSym-
bolSolver module [38] of the JavaParser [39] toolset. Second,
CHATASSERT considers the following cases: (1) if ¢ is not an
application class, CHATASSERT indicates so in the prompt. it
does not query the LLM; (2) if f is a method, CHATASSERT
builds a prompt with the method signature and body and asks
the LLM to summarize the method; (3) if f is a constructor,
CHATASSERT builds a prompt with the entire class body and
asks the LLM to summarize the class.

Fig. 4 illustrates the code summarization feature for the
test input sequence from Fig. 2(a). CHATASSERT identi-
fies an object instantiation at line 3 (ODocument instan-
tiation) and requests CHATGPT to provide a summary of
the entire class. In the case of a method call expression at
line 4 (ORecordInternal.unsetDirty ()), it requests
CHATGPT to summarize the method. We empirically observed

that the choice between requesting a summary of class versus
a summary of methods provides a good balance between space
efficiency as per the number of tokens required to express
method or class— and quality of results. Fig. 4 shows the
conversation between CHATASSERT, represented as “P”, and the
LLM, represented as “A”. Note that each summary request is
done separately, in a different query.

After all method call expressions are processed using the
method above, the corresponding code summaries are conjoined
and added to the prompt as part of the context. It is worth
noting that such a task pipeline (i.e., using the answer of code
summarization to help oracle generation) is akin to the “chain of
thought” prompt design [17], [18], which is highly useful for a
variety of tasks. In both cases the LLM is queried in two stages:
the first stage is responsible for building background knowledge
to help answer the task; the second stage is responsible for
answering the task.

D. Examples (EX)

The EX feature is responsible for selecting examples and
incorporating them into the prompt as context. For that, CHAT-
ASSERT uses the pre-trained UniXCoder, which has shown good
performance over its predecessors for code search and clone de-
tection [40]. More precisely, we compare the cosine similarity
score between the vector embeddings of the test method that
we want to generate the oracle to —i.e., the target test method—
and the other methods declared in the same test file. We select
only test methods as examples for which the cosine similarity
score was high. After checking with multiple thresholds, we
find a cosine similarity threshold of > 0.6 to perform well.
According to Reynolds and McDonell [34], both zero-shot and
few-shot prompting outperformed one-shot prompting since
one-shot prompting tends to contaminate the prompt semantics.
Therefore, we only include examples if we can find more than
one reference test method with cosine similarity scores above
the threshold.

E. Static Repair (SR) and Dynamic Repair (DR)

The SR feature is responsible for repairing an assertion
that fails to compile. CHATASSERT focuses on compilation
errors caused by undeclared identifiers, which we find to be
the most prevalent error in oracles generated with LLMs. If
the symbol that provoked the compilation error is a variable,
we replace all instances of the variable with the placeholder
<insert>. Then we carry out a fuzzing-based infilling by
replacing <insert> with different identifiers from the test
prefix. If the symbol is a method name, we add a prefix hole
<insert>.m(...) and carry out a fuzzing-based infilling with
identifiers of non-primitive type that are consistent with m.
CHATASSERT checks whether the assert statement compiles
after each infilling trial and it halts the repair process if the code
compiles or after RT trials.

As recent LLM-based repair techniques [36], [41], [42],
CHATASSERT leverages dynamic information for assertion
repair. More precisely, the DR feature is responsible for
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repairing an assertion that successfully compiles but fails during
execution. For that, CHATASSERT processes the error message
obtained from the failure, i.e., from the run of the test with the
invalid assertion. Then, it revises the prompt by incorporating
the error message in the prompt. CHATASSERT asks CHATGPT
to revise the assert statement by circumventing the failure.
CHATASSERT attempts to repair an oracle for LT times (Lines
15-35 from Algorithm 1.)

It is worth noting that CHATASSERT, when configured with
the DR feature, assumes that the program is bug-free, i.e., that
the test has failed because of a buggy assertion and not because
of a buggy code. However, note that CHATASSERT makes no
observations on the state as techniques for regression oracle
generation do [43], [44], so the possibility of over-constraining
behavior is diminished. The rationale for CHATASSERT pro-
viding the DR feature is twofold: (1) when the developer is
writing test code she certainly expects the assertion to pass and
(2) the error messages from test failures are a rich source of
information to guide repair.

V. EVALUATION

We pose the following research questions:

¢ RQ1: How effective is an LLM for test oracle generation?

* RQ2: Does using CHATASSERT’s prompt engineering im-

prove the oracle generation capabilities of LLMs?

* RQ3: How does CHATASSERT compare with prior work

on oracle generation?

* RQ4: What is the impact of each of CHATASSERT’s fea-

tures on its performance?

The first question evaluates how promising CHATGPT—
which has shown effectiveness in solving various Software
Engineering tasks [12], [26], [45]— can be for the task of
generating test oracles. The second question measures the
impact and generality of the prompt engineering mechanism
that CHATASSERT proposes. The third question compares
CHATASSERT against recent prior work. The fourth
question evaluates the influence of each of CHATASSERT’S
features on its performance. Finally, the fifth question compares
CHATASSERT-DR against the SoTA technique TECO in
detail.

A. Experimental Setup

We have used JavaParser [39] and JavaSymbolSolver [38] to
statically analyze code when building static context for queries
to the LLM. For the few-shot examples feature (EX), we have
used the UniXCoder [40] model with a cosine similarity thresh-
old of 0.6. We elaborate further on the dataset, experimental
setup, and comparison baselines in the following.

1) Normalization: To facilitate the identification of ex-
act matches, we make semantic-preserving transformations on
some assertion commands under the assumption that their ar-
guments are side-effect-free. For example, we consider as-
sertEquals(a,b) and assertEquals (b, a) to be
equivalent. We also remove the optional mnessage and delta
arguments from assert statements for similar reasons.

2) Metrics: As in prior work, we use Acc@k and NLP
metrics for comparison (Section II-B). In addition, we also
use mutation scores to evaluate the bug-finding ability of the
generated oracles. Considering ranking metrics (Acc@k), note
that we configure CHATGPT to generate k oracles. Recall that
CHATASSERT does not rank oracles (Section IV-A).

3) Dataset: We evaluate CHATASSERT on a part of the
evaluation set of the TECO dataset [5]. To reduce runtime and
financial costs associated with running CHATGPT on various
CHATASSERT configurations and projects, we run our experi-
ments on a sample of the TECO dataset. We randomly sample
500 distinct samples from a total of 3,540 examples in the TECO
dataset for a 98% confidence level and 5% error margin. There
are a total of 51 projects in the test set. So, the first step is to
select 10 random samples per project (=500 examples over 51
projects). For projects with less than 10 examples, we select
all the examples from that project. For projects with more than
10 examples, we randomly sample 10 samples. After executing
this procedure, if we cannot reach the count of 500 samples, we
randomly sample from the set of remaining examples again to
reach the 500 sample count. To mitigate confounding effects,
throughout the sampling process, we eliminate examples that
include Hamcrest’s [46] assertThat construct and asser-
tions that use helper methods.

4) Comparison Baselines: We group the comparison base-
lines according to their purpose:

LLM variants (used in RQ2). To evaluate the generality
and impact of CHATASSERT’s prompt engineering mechanism,
we configure the oracle generation procedure with popular
LLMs, namely CHATGPT [14], Mistral [21], Codestral [22],
and Magicoder [23]. We chose CHATGPT because it is one
of the leading large language models, particularly noted for
its advanced capabilities achieved through techniques like Re-
inforcement Learning from Human Feedback (RLHF) which
improves the model’s performance in chat contexts by learning
from interactions with humans [47]. We chose Mistral because
it is a general-purpose LLLM that has proven superior to Llama
2 13B on various benchmarks [21]. We selected Codestral
because it is a larger model specifically optimized for coding
tasks, demonstrating better performance on benchmarks such
as HumanEval compared to Llama 3 70B, and supporting a
wide range of programming languages with high accuracy [22].
Magicoder was chosen for its robust capabilities in generating
high-quality instruction data which benefits from its foundation
on another LLM, DeepSeek-Coder, which has proven to per-
form well against larger models such as CodeLlama-34B [48].
Additionally, Magicoder uses an innovative approach called
OSS-Instruct, which uses open-source code references to en-
hance performance [23].

Prior work (used in RQ3). We compare CHATASSERT
with three baseline models from prior work, namely ATLAS [1],
TOGA [4], and TECO [5]. ATLAS trains a Seq2seq model [49] for
assertion oracle generation. TOGA uses a grammar to generate
candidate test oracles which are later ranked using a fine-tuned
CodeBERT model [4], [50]. The TECO model is obtained by
fine-tuning a CODE-T5 [37] model on both syntax level data and
runtime semantics.
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Given the setup code <SETUP>, test prefix <TEST>,
and focal method <FOCAL>, generate one org.junit.
Assert statement:
<SETUP>:...\n<TEST>:...\n<FOCAL>:...

Fig. 5. CHATGPT-ONE PROMPT TEMPLATE.

TABLE 11
COMPARISON OF TECO AND CHATGPT-ONE. HIGHER VALUES
INDICATE BETTER PERFORMANCE

Model Acc@1 BLEU CodeBLEU ROUGE EditSim
TECO 0.09 0.85 0.40 0.72 0.55
CHATGPT-ONE  0.10 0.77 0.24 0.36 0.46

B. Answering RQ1: How Effective Is an LLM for Test
Oracle Generation?

To answer this question, we select CHATGPT platform’s
popular GPT3.5 model as the representative LLM because it
offers a convenient API to quickly and easily set up feasibility
experimentation. We evaluate whether CHATGPT, configured
with a simplistic prompt, can generate oracles with accuracy
that is comparable to that of the SoTA.

This research question compares the state-of-the-art tech-
nique TECO with CHATGPT-ONE, a technique obtained by using
CHATGPT with a simplistic prompt, joining four elements:
(1) a natural language description of the task, (2) the test setup
code, (3) the test prefix code, and (4) the name of the focal
method. Fig. 5 shows the prompt template that CHATGPT-ONE
uses. CHATGPT-ONE is powered by the GPT3.5 LLM and
queries the model using the default temperature. The “ONE”
in the name CHATGPT-ONE signifies that CHATGPT-ONE asks
CHATGPT for only one assert statement for each test method.

We run TECO and CHATGPT-ONE on the TECO dataset, in-

cluding 3,540 tests, and evaluate their performance using the
metrics listed in Section V-Al. We use k=1 for AccQk as
CHATGPT-ONE is asked to generate only one assert statement
for a given test method. Table II shows results comparing TECO
and CHATGPT-ONE.
Summary: Despite the absolute low marks of both techniques
in AccQl and the higher marks of the SoTA in most NLP
metrics, results show that CHATGPT-ONE is competitive with
the SoTA considering AccQ1 (Ippt difference). We conclude
that LLMs show promise for improving neural-based oracle
generation techniques.

C. Answering RQ2: Does Using CHATASSERT’s Prompt
Engineering Improve the Oracle Generation Capabilities
of LLMs?

The purpose of this question is to validate whether the prompt
engineering mechanism of CHATASSERT improves the perfor-
mance of LL.Ms for oracle generation.

Table III shows the results of all baselines and metrics.
We consider four LLMs as our baselines; one closed-source
(CHATGPT) and three open-source (MISTRAL, MAGICODER,
and CODESTRAL). These baselines also use a simplistic prompt

similar to CHATGPT-ONE (Section V-B) with the exception
of asking for TEN assert statements instead of ONE for each
test method. We evaluated these baselines on 500 randomly-
selected sample (Section V-A3) from the TECO evaluation
dataset. In contrast, CHATGPT-ONE was evaluated on the entire
3,540 samples from TECO’s evaluation dataset. This justifies the
0.05ppt performance difference between CHATGPT-ONE and
CHATGPT at Acc@]. It came as a surprise that CODESTRAL,
an open-source model, performed significantly better than
CHATGPT in Acc@1, Acc@3 and Acc@5 and achieved a sim-
ilar score to CHATGPT’s in Acc@]0. It is worth noting that
recent work [22], [51] reports similarly impressive results show-
ing that CODESTRAL achieves a HumanEval score of 81% com-
pared to 72% of CHATGPT [52]. The techniques below the
dashed line correspond to the variants of CHATASSERT, config-
ured with the baseline LLMs that appear above the dashed line.

The results indicate that CHATASSERT consistently improves
the performance of all four LLMs for test oracle generation. For
instance, CHATASSERT-CHATGPT achieves an Acc@1 of 0.45
whereas CHATGPT only reaches 0.05. CHATASSERT-CHATGPT
consistently demonstrates better performance in higher-ranked
accuracies (Acc@3, Acc@5, Acc@10), showing that the
prompt engineering features of CHATASSERT effectively en-
hance the LLM’s ability to generate exact match oracles. When
comparing Acc@]0 between CHATGPT and CHATASSERT-
CHATGPT, the Chi-Square value is 66.76 with a p-value of
3.04 x 10716, indicating a statistically significant improvement
of CHATASSERT-CHATGPT over CHATGPT with a large effect
size (Cohen’s h 1.3). Likewise, the impact of CHATASSERT on
the performance of open-source LLMs is also significant. For
instance, compared to MISTRAL, CHATASSERT-MISTRAL shows
an average increase in accuracy of 10%.

Despite the impressive performance of CODESTRAL to gen-
erate oracles with simplistic prompts compared to CHATGPT,
CHATASSERT-CHATGPT outperformed CHATASSERT-
CODESTRAL in more than 10ppt across all accuracy levels. We
have observed that CHATGPT responds very well to the sum-
marization (CS) and dynamic repair (DR) features of the prompt
compared to CODESTRAL which explains why CHATASSERT-
CHATGPT outperforms CHATASSERT-CODESTRAL.

Summary: Results indicate that CHATASSERT’S prompt engi-
neering significantly improves accuracy and NLP metrics for
all tested LLMs.

D. Answering RQ3: How Does CHATASSERT Compare With
Prior Work on Oracle Generation?

This research question evaluates the performance of
CHATASSERT in comparison to prior work. For this research
question, we consider the version of CHATASSERT that
performed best in RQ2, i.e., the one configured with CHATGPT.
As comparison baselines, we use the techniques listed in
Section V-A4. Table IV shows the results of the techniques for
various accuracy and NLP metrics. Rows above the dashed line
correspond to the baseline techniques. The last row shows the
results of CHATASSERT (same as in CHATASSERT-CHATGPT
from Table III).
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TABLE III
COMPARISON OF CHATGPT AND CHATASSERT. HIGHER VALUES INDICATE BETTER PERFORMANCE

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim
CHATGPT [14] 0.05 0.12 0.18 0.28 0.79 0.31 0.39 0.48
MISTRAL-7B [21] 0.18 0.21 0.22 0.22 0.63 0.29 0.51 0.54
MAGICODER-6.7B [23] 0.06 0.07 0.07 0.07 0.50 0.21 0.44 0.45
CODESTRAL-22B [22] 0.22 0.27 0.28 0.28 0.67 0.30 0.55 0.55
~ 053 054 08 035
CHATASSERT-MISTRAL 0.30 0.32 0.32 0.32 0.70 0.32 0.57 0.57
CHATASSERT-MAGICODER 0.23 0.25 0.25 0.25 0.66 0.32 0.54 0.57
CHATASSERT-CODESTRAL 0.33 0.35 0.35 0.35 0.74 0.38 0.62 0.62
TABLE IV

COMPARISON OF CHATASSERT AGAINST THE BASELINES ATLAS, TOGA, AND TECO. HIGHER VALUES
INDICATE BETTER PERFORMANCE

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim
ATLAS [1] 0.00 0.00 0.001 0.001 0.25 0.12 0.34 0.28
TOGA [4] 0.09 0.09 0.14 0.15 0.33 0.27 0.39 0.41
TECO [5] 0.30 0.38 0.41 0.42 0.81 0.31 0.47 0.55

Overall, results show that the Acc@k and NLP scores of
CHATASSERT are consistently higher compared to prior work.
It is worth noting that ATLAS exhibits a notably low accuracy
score. This can be attributed to ATLAS being an earlier model
that uses an RNN encoder-decoder, which may not capture the
same level of complexity as more recent models [1]. TOGA
improves over ATLAS because of its grammar-based oracle gen-
eration but still does poorly because of the restrictive nature of
its grammar and its requirement of an assertion approximation
[4], [53]. Hossain et al. similarly reports that TOGA was able to
generate an assertion in only 32% of the cases and among the
assertions it generated, more than 50% were inaccurate [54].

TECO on the other hand improves over TOGA by including
six types of code semantics with their neural model to generate
assert statements. However, because of this restrictive set of six
semantics TECO fails to generate the accurate assert statement
in many cases [5]. CHATASSERT outperforms all the prior work
by using more inclusive code summaries and examples to gen-
erate an oracle and then statically and dynamically repairs the
generated oracles with the help of CHATGPT.

Given the relative strength of TECO in comparison to ATLAS
and TOGA, we decided to conduct a detailed comparison be-

ChatAssert

Teco

(a) Venn diagram showing differences and commonalities of exact match
oracles generated by CHATASSERT and TECO. The numbers inside the
partitions represent fractions of the ground truth.

tween CHATASSERT and TECO considering (1) exact matches = f::fsse“
and (2) non-exact matches. For exact matches, we measure - " % 00

40 60
the number of exact matches that each technique generates, Mulalon:festStrengi )

analyzing the overlap and exclusivity between the oracles gen-  (b) Violin plot showing mutation strength of non-exact match oracles
erated by both methods. For non-exact matches, we measure  generated by CHATASSERT and TECO.
the ability of generated oracles to kill mutants through mutation
analysis.

Considering the exact matches, the Venn diagram from
Fig. 6(a) shows the fraction of the ground truth that each tech-

Fig. 6. Comparison between CHATASSERT and TECO on oracles that are
exact matches Fig. 6(a) and oracles that are non-exact matches Fig. 6(b).

nique generates. The diagram shows that no technique sub-
sumes the other, that CHATASSERT covers 22.4% of the oracles
distinctly whereas TECO covers 10.8% of the oracles distinctly,
and that the combination of the techniques covers 64.4% of the
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ground truth. When comparing Acc@ /0 of CHATASSERT and
TECO, the Chi-Square value is 13.02 with a p-value of 0.0003,
indicating a statistically significant difference with a medium
effect size (Cohen’s h 0.58).
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TABLE V
COMPARISON OF CHATASSERT-DR AGAINST TECO (THE SOTA). HIGHER VALUES
INDICATE BETTER PERFORMANCE

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim
TECO [5] 0.30 0.38 0.41 0.42 0.81 0.31 0.47 0.55
CHATASSERT - DR 0.35 0.41 0.44 0.47 0.81 0.28 0.47 0.49

It is worth noting that a generated oracle can be useful even
if it is not an exact match. Although the NLP metrics provide
a rough estimate for those cases, (1) they are inaccurate [55]
and (2) TECO and CHATASSERT show similar results for those
metrics. As a proxy to measure the bug detection capabilities of
non-exact match oracles and hence their quality, we carry out
a mutation analysis to find out how many mutants are killed by
these oracles. We use the PIT Mutation Test tool [56] for that.
We used the default mutation operators from the tool. Because
mutation testing is expensive, we configured PIT to generate a
maximum of 21 mutations per class when evaluating both TECO
and CHATASSERT. We used a timeout factor of 1 which helps to
overcome infinite loops. Other than that, we have not used any
time constraints. Fig. 6(b) shows the distribution of mutation
strength associated with the oracles that CHATASSERT and TECO
generate. Results show that the mutation strength of the tests
augmented with CHATASSERT’s oracles is significantly higher
(p-value < 0.05) than those augmented with TECO’s oracles,
with a medium effect size (Cliff’s Delta 0.51).

Comparing TECO with CHATASSERT-DR. This research
question evaluates how TECO compares against CHATASSERT
without dynamic repair, i.e., CHATASSERT-DR. The rationale
is that TECO does not dynamically repair test oracles.

Table V compares the various accuracy and NLP metrics
between CHATASSERT-DR and TECO. Considering Acc @k, the
numbers show a consistent improvement of CHATASSERT-DR
for all values of k. For example, the Acc@ I of CHATASSERT-DR
is 5% higher compared to that of TECO. The difference
decreases for higher values of k, but the accuracy of
CHATASSERT-DR is still 5% higher than that of TECO at
k =10 (47% and 42%, respectively). Notably, TECO was able
to produce slightly more syntactically similar oracles compared
to CHATASSERT-DR based on the NLP metrics. Curiously, we
found that NLP metrics can be unreliable when measuring a
technique’s ability to generate effective oracles [55]. We also
carry out an in-depth comparison between CHATASSERT-DR
and TECO on exact and non-exact matches.

Considering exact matches, the Venn diagram from Fig. 7(a)
shows the fraction of the ground truth that each technique
generates. Since TECO generates 10 assertions per test sample,
we retrieve 10 assertions with CHATASSERT-DR, as for
measuring Acc@]0. The diagram shows that no technique
subsumes the other, that CHATASSERT-DR discovers 19.6%
of the oracles distinctly while TECO discovers 14.6% of the
oracles distinctly. Combined, the techniques generate 61.4%
of the oracles from the ground truth set. Considering non-exact
matches, Fig. 7(b) shows the distribution of mutation strength of
the oracles generated by the techniques. Notice that the strength
associated with CHATASSERT-DR is mostly concentrated

ChatAssert-DR Teco

(a) Venn diagram showing differences and commonalities of exact match
oracles generated by CHATASSERT-DR and TECO. The numbers inside the
partitions represent fractions of the ground truth.

\/\\_/ I chatassert-dr

[ teco
40 60 80 100
Mutation Test Strength (%)

(b) Violin plot showing mutation strength of non-exact match oracles
generated by CHATASSERT-DR and TECO.

Fig. 7. Comparison between CHATASSERT-DR and TECO on oracles that are
exact matches Fig. 7(a) and oracles that are non-exact matches Fig. 7(b).

between 70-100% compared to 0-20% for the oracles that TECO
generates. We conjecture that CHATASSERT-DR produces more
effective oracles compared to TECO because CHATASSERT-DR
kills significantly more mutants (p-value < 0.05) compared to
TECO with a small effect size (Cliff’s Delta 0.38).

Summary: CHATASSERT outperforms prior techniques. Com-
pared to the SoTA technique, TECO, CHATASSERT achieves
15% higher and CHATASSERT-DR achieves 5% higher Acc@1
scores respectively. Additionally, oracles generated by both
CHATASSERT and CHATASSERT-DR demonstrate significantly
higher mutation strength than TECO.

E. Answering RQ4: What Is the Impact of Each of
CHATASSERT’s Features on Its Performance?

The purpose of this research question is to evaluate the con-
tribution of each of the features from Table I on CHATASSERT’s
performance.
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TABLE VI
ABLATION STUDY. CHATASSERT - & REPRESENTS THE VERSION OF CHATASSERT WITHOUT FEATURE z. FOR ROWS
ABOVE THE DASHED LINE, THE LOWER THE VALUE, THE HIGHER THE IMPACT OF THE CORRESPONDING FEATURE.
FOR THE ROW BELOW DASHED LINE, HIGHER VALUES INDICATE BETTER PERFORMANCE

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim
CHATASSERT - EX 0.37 0.45 0.47 0.48 0.83 0.32 0.50 0.53
CHATASSERT - CS 0.34 043 0.45 0.47 0.82 0.30 0.47 0.50
CHATASSERT - SR 0.36 0.42 0.44 0.47 0.82 0.29 0.48 0.50
CHATASSERT - DR 0.35 0.41 0.44 0.47 0.81 0.28 0.47 0.49
CHATASSERT 0.45 0.51 0.53 0.54 0.85 0.35 0.52 0.55
Table VI reports the results of this ablation study, where /» From project: gvlasov/collections-utils [57] «/

we run CHATASSERT with each of its four features removed.
(CHATASSERT’s implementation provides feature flags for that.)
Rows CHATASSERT-z show these configurations, where x

@Test public void toLinkedHashSet () {

final LinkedHashSet<Integer> expected = new
LinkedHashSet<> () ;

expected.add (1l); expected.add(2); expected.add(3);

Assert.assertEquals (expected, Arrays.asList(l, 2, 3).
refers to the abbreviation of the feature as appearing on column stream()
.collect (Collectors.toLinkedHashSet ())); /* <== %/ }
“ID” from Table 1. For reference, the last row shows the results !
of CHATASSERT with all features enabled. The table lists these /* From project: arnohaase/a-foundation [58] */
« 9 f . in d . d £ Acc@]0 @Test public void testFlatten() {
remove-one” configurations in decreasing order of Acc . final Set<Set<String>> set = new HashSet<>();
We chose to sort by Acc@/0 because it is more inclusive set.add (new HashSet<>(Arrays.asList("a", "b")));
d h h k 1 1 set.add(new HashSet<> (Arrays.asList ("b", "c", "d")));
compare to the other ran lng evels. final Collection<String> flattened
The results show that the impact of feature EX was = ACollectionHelper.flatten(set);
assertEquals (5, flattened.size()); /* <== =/ }

slightly less than the other features of CHATASSERT. Notably
CHATASSERT found few shot examples for only 45% of the
samples. Disabling that feature reduces Acc@/0 by 6%. We
observe that the CS, SR, and DR features had similar and rela-
tively higher impacts, with their removal resulting in an average
7% loss in Acc@10. A similar drop in accuracy for these dif-
ferent features suggests that multiple features contribute to the
generation of a common set of accurate oracles. Considering
Acc@], we found the Code Summarization (CS) feature to
be the most impactful with a drop of 11% points when the
feature CS is not used. Removing any of the features results in a
negative impact, indicating that all features contribute positively
to CHATASSERT’s overall performance.

Summary: Results indicate that all features of CHATASSERT
are relevant and that one accurate oracle can be generated
with the help of multiple prompting features of CHATASSERT.

VI. DISCUSSION

This section discusses positive and negative examples for
CHATASSERT, lessons and implications, and threats to validity.

A. Examples

The Venn diagram from Fig. 6(a) shows that important sets of
assertions are generated exclusively by CHATASSERT or TECO.
This section discusses a small selection of cases where we find
CHATASSERT to perform particularly well when compared to
TECO (positive cases) and cases where the contrary happens
(negative cases).

Fig. 8 shows two positive test cases, i.e., cases CHATASSERT
was able to generate the oracle matching the ground truth (exact
match), but TECO was unable to generate the oracle. In the
first example test case, toLinkedHashSet, we find that the

Fig. 8. Positive examples: only CHATASSERT succeeded in generating the
ground truth assertion.

file containing the test method also contains two other similar
test methods which CHATASSERT uses as few shot examples
(EX feature). CHATASSERT had initially left out the identifier
Collectors in the assert statement. With the help of the
static repair feature (SR), CHATASSERT was able to prepend
Collectors to the method call toLinkedHashSet ().
The combinations CHATASSERT- CS and CHATASSERT- DR,
which incorporate both features EX and SR, were able to pro-
duce the expected oracle. In the second example test case,
testFlatten, we observe that the code summarization and
the dynamic repair features were essential to producing the
oracle. When we analyzed the data from the ablation study,
we observed that CHATASSERT could not predict the expression
flattened.size () when we removed the code summariza-
tion feature (CS). Likewise, we observe that CHATASSERT was
unable to predict the correct value of the expression flat -
tened.size () (i.e., the value 5) when we removed the dy-
namic repair feature (DR). The combinations CHATASSERT- EX
and CHATASSERT- SR, which incorporate both features CS and
DR, were able to produce the expected oracle.

Fig. 9(a) highlights two negative examples, i.e., cases where
CHATASSERT failed to generate oracles but, TECO can generate
the oracles. For the case of testGroupByCustomEqual -
ity, when the test prefix contains anonymous inner classes,
CHATASSERT is unable to predict the correct assertion. For the
test testIntObjectMap, CHATASSERT can generate as-
sertEquals (11, (int)test.get (24)); which is ex-
ecutable and similar to but it is not an exact match of the ground
truth oracle. Note this is not a limitation of the technique, it
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/* From project: arnohaase/a-foundation [58] =/

@Test public void testGroupByCustomEquality ()

final AEquality equality = new AEquality () {
@Override public boolean equals(...){...}
@QOverride public int hashCode(...) {...} };

final AFunctionlNoThrow<String, Integer> len
= new AFunctionlNoThrow<String, Integer>() {

QOverride public Integer apply(String param) {...} };

final Map<AEqualsWrapper<Integer>,List<String>> grouped=

ACollectionHelper.groupBy (

Arrays.asList ("a", "bc", "d", "efg", "hi", "j"),
len, equality);
assertEquals (2, grouped.size()); /» <== x/ }
/+ From project: jcodec/Jjcodec [59] x/

@Test public void testIntObjectMap () {
IntObjectMap<Integer> test= new IntObjectMap<Integer>();
test.put (24, 11);
assertEquals (Integer.valueOf (11), test.get(24));/+<==+/}

(a) CHATASSERT failed to generate the ground truth assertion.

/* From project: arnohaase/a-foundation [58] =/
@Test public void testFilter () {

final APredicateNoThrow<String> lenl

= new APredicateNoThrow<String>() {
QOverride public boolean apply(String o) {...} };

assertEquals (Arrays.<String>asList (),

ACollectionHelper.filter (

Arrays.<String>asList (), lenl)); /*x<==x/ }
/+ From project: arnohaase/a-foundation [58] «/

@Test public void testMkStringFull() {
assertEquals ("[]", ACollectionHelper.mkString(
Arrays.asList (), "[","#","1")); /* <== x/ }

(b) Both CHATASSERT and TECO failed to generate the ground truth assertion.

Fig. 9. Negative examples.

is an inherent limitation of the evaluation metrics used in the
literature.

Fig. 9(b) shows examples where neither CHATASSERT nor
TECO can generate the correct assertion. For the test test-
Filter, we observe the presence of the anonymous inner class
(a subtype of APredicateNoThrow<String>)in the test
prefix, suggesting that neural models of TECO or CHATGPT
struggle with this kind of programming construct. For the test
testMkStringFull, we observe that the test prefix does
not contain any statements that could help in the process of
generating the correct oracle.

B. Lessons and Implications

1) Complementary Nature of Approaches: Fig. 6(a) shows
that TECO and CHATASSERT complement each other. Indeed,
the union of both techniques would have an Acc@ 10 score
of 64%, which is remarkably higher than any previous oracle
generator [5]. This observation calls for work that combines
multiple oracle generation techniques, ranking their combined
results or using their inputs as seeds for fuzzing [7].

2) Iterative Feedback Is Important But Costly: We observe
that iterative feedback has a progressively increasing positive
impact on CHATASSERT’s performance (Section V-D) at higher
values of k£ (Table IV). CHATASSERT incorporates sensible in-
formation throughout its execution to dynamically build context
to CHATGPT. This is reflected in the notify* methods on
the prompt object from Algorithm 1. Making multiple calls
to CHATGPT is relatively expensive. For instance, currently,
it takes ~10m, on average, for CHATASSERT to generate an
assertion. One of the reasons for such high costs is the instability

of the API service. For example, CHATGPT users found that
accessing the service through the API is often slower when
compared to accessing the service through the web interface.
One of the users recently reported that using a new user identi-
fier as part of the request body can result in significant speed-
ups during API access [60]. Another reason for the high cost
relates to the high usage of a closed-source LLM (in our case,
CHATGPT). These results call for action to offload subtasks
to local servers running open-source LLMs. For example, it is
possible to offload the repair task to a local infill LLM [61].
More precisely, the repair task would replace some identifiers
in the oracles that CHATGPT produces with masks and request
an infill LLM (e.g., Incoder [24]) to replace those masks with
alternative identifiers. Considering those aspects, currently, the
complete version of CHATASSERT is best used asynchronously,
to generate a batch of oracles for multiple test methods. Future
developments in open-source LLMs may enable synchronous
usage. It is worth noting that CHATASSERT-DR may be used
synchronously. It is significantly faster compared to the com-
plete version of CHATASSERT.

3) Future Enhancements: Based on the negative examples
of CHATASSERT shown in Section VI-A, we note the fol-
lowing weaknesses of CHATASSERT: (a) Anonymous inner
classes. When the context contains anonymous inner classes,
CHATASSERT is unable to generate an exact match oracle.
(b) Anonymous arrays. CHATASSERT is unable to generate
anonymous arrays as the arguments of the oracles. (¢) Con-
cretizing STR token. Similar to TECO, CHATASSERT replaces
string literals with the STR token which prevents us from eval-
uating the ability of these techniques to generate correct string
literals. (d) Deduplicating equivalent oracles. CHATASSERT
does not deduplicate the semantically equivalent oracles which
can reduce the diversity among the generated oracles. Future
enhancements can address these limitations of CHATASSERT
and optimize time to generate oracles.

C. Threats to Validity

One threat to construct validity relates to the choice of met-
rics we used to evaluate the techniques. As in prior works, to
deal with that threat, we use two different kinds of metrics to
show the different perspectives about the results. One threat to
internal validity relates to mistakes that we might have made
during the implementation. To mitigate that, we carefully in-
spected the code and walked through executions. One threat
to external validity is the choice of datasets and the sampling
criterion we used to reduce the cost to an acceptable level. We
based our experiments on the TECO dataset, which is publicly
available. Considering sampling, we determined the sampling
size to produce results that are within a 95% confidence interval
(of representing the actual result) and used stratified sampling to
ensure that all projects are uniformly represented in the sample.
Another threat to external validity is the possibility of our test
cases appearing in the training dataset of ChatGPT. Since Chat-
GPT is a closed model and the training data are not available
to end users of ChatGPT, it is difficult to determine whether
a test case belongs to the training dataset of ChatGPT. To
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mitigate this threat, we check whether ChatGPT can generate an
exact match oracle at the first attempt, by reviewing the Acc@1
performance of the model CHATGPT-ONE from Section V-B.
Since the Acc@1 score of CHATGPT-ONE is very low (0.10),
we say that it is unlikely that ChatGPT has seen most of our
test cases in its training dataset.

VII. RELATED WORK

This section elaborates on work most related to ours.

Oracle Generation. Several approaches have been proposed
in the literature to address the oracle generation problem. We
briefly discuss a subset of these approaches that do not rely on
machine learning. Randoop generates assert statements based
on user-provided contracts and uses execution feedback to
guide (test and) regression oracle generation [62], [63]. Evo-
Suite performs random mutations in the application code and
generates assert statements to maximize the number of killed
mutants [64]. Approaches that use Natural Language Process-
ing [65], [66], [67], [68], [69], [70] and Grammar-based fuzzing
have also been explored [71] to mine likely oracles.

More recently, deep learning-based assert statement genera-
tion has been mentioned to generate high-quality assert state-
ments [1], [4]. ATLAS [1] trains a Seq2seq model [49] for the
assertion generation task and uses a beam search decoder on that
model to obtain assertions for a corresponding input, i.e., a pair
of test prefix and focal method. Mastropaolo et al. [2] pretrains a
CODE-T5 model [37] on a subset of the CodeSearchNet dataset
[72] and fine-tunes on the ATLAS dataset [1] for the assertion
generation task. TOGA [4] uses a grammar to generate assertions
and a fine-tuned CodeBERT model [50] to predict assertion
likelihood. TECO [5] is an encoder-decoder transformer model
that is fine-tuned on different code semantics data, the test
prefix, and the method under test. SAGA [73] is a deep learning
model that is trained with the test prefix, focal method, and a
basic focal method summary for the task of assertion genera-
tion. However, we perform an extensive program analysis of
the test prefix to extract method calls, object instantiations, and
variable assignments which we ask ChatGPT to automatically
summarize. Our technique utilizes the conversational ability
of the pre-trained large language model ChatGPT along with
few-shot prompting, and static and dynamic repair to achieve
superior performance.

Automated Code Repair. Neural Machine Translation
(NMT)-based architectures have recently been successfully
adopted for Automated Code Repair tasks [74], [75], [76], [77].
In [74], authors use a perturbation step to generate training
samples for program repair and then train a transformer neural
network to generate the repaired program. In [75], [76], authors
train NMT models with a focus on automatic program repair.
More recently, Xia and Zhang proposed ChatRepair to repair
code using execution and conversation using ChatGPT [45].
We also use ChatGPT’s conversational ability, e.g., to ask for a
repair of a failing assertion. It is worth noting that CHATASSERT
tries to fix compilation errors due to missing identifiers without
the assistance of ChatGPT.

Large Language Models. Deep learning has emerged as
an alternative way of creating software engineering techniques
[20]. Earlier work often trains task-specific models in a su-
pervised manner, e.g., for bug detection [78], [79], [80], type
prediction [81], [82], [83], [84], program repair [77], [85],
[86], [87], and code completion [88], [89], [90]. More recent
work builds on pre-trained models, such as CodeBERT [50],
GraphCodeBERT [91], and PLBART [92], by fine-tuning these
models for specific tasks, e.g., code completion [93], code
editing [94], program repair [95], and pruning call graphs [96].
Even more recent work builds on general-purpose, large lan-
guage models (LLMs) [97], e.g., Codex [98], InCoder [24], and
PolyCoder [99]. Once trained on huge datasets, an LLM can
be queried with few-shot prompts, i.e., by providing a small
number of task-specific input-output examples to the model.
Recent work shows the potential of LLMs to support down-
stream analyses [5], [6], [7], [8], [9], [10], [11], [12], [13]. The
novel aspect of our work is the idea of iteratively querying the
LLM for oracle generation.

VIII. CONCLUSION

Oracle generation is an important and challenging problem.
Recent neural-based techniques have been proposed to address
the problem, but they are inaccurate. Improving the accuracy of
oracle generation techniques is imperative to make them more
practical. We propose CHATASSERT, a feedback-driven oracle
generation technique that iteratively incorporates dynamic and
static information in prompts to query a large language model.
Results show that CHATASSERT significantly outperforms the
baseline techniques. For example, compared to the SoTA tech-
nique TECO, CHATASSERT improves Acc@ I by 15%. Addition-
ally, results confirm that tests augmented with CHATASSERT-
generated oracles have much higher mutation test strength and
therefore higher bug-finding effectiveness. An ablation study
shows that all four components of CHATASSERT are relevant,
with examples being slightly less relevant. Our results provide
initial evidence of the promising performance of CHATASSERT
and call for further work that incorporates external tools to
cooperate with LLMs to solve Software Engineering tasks.
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