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—— Abstract

We establish new correlation bounds and pseudorandom generators for a collection of computation
models. These models are all natural generalization of structured low-degree Fz-polynomials that
we did not have correlation bounds for before. In particular:
We construct a PRG for width-2 poly(n)-length branching programs which read d bits at a time
with seed length 20(Vlogn) | g2 log?(1/¢). This comes quadratically close to optimal dependence
in d and log(1/e). Improving the dependence on n would imply nontrivial PRGs for logn-
degree Fa-polynomials. The previous PRG by Bogdanov, Dvir, Verbin, and Yehudayoff had an
exponentially worse dependence on d with seed length of O(dlogn + d2%log(1/¢)).
We provide the first nontrivial (and nearly optimal) correlation bounds and PRGs against size-
n20o8™) ACO circuits with either n'?° SYM gates (computing an arbitrary symmetric function)
or n'*® THR gates (computing an arbitrary linear threshold function). This is a generalization of
sparse Fo-polynomials, which can be simulated by an AC® circuit with one parity gate at the
top. Previous work of Servedio and Tan only handled n-*® SYM gates or n'?* THR gates, and
previous work of Lovett and Srinivasan only handled polynomial-size circuits.
We give exponentially small correlation bounds against degree-n®®) Fy-polynomials which are

10 parts (noting that at n

set-multilinear over some arbitrary partition of the input into n
parts, we recover all low degree polynomials). This vastly generalizes correlation bounds against
degree-d polynomials which are set-multilinear over a fixed partition into d blocks, which were

established by Bhrushundi, Harsha, Hatami, Kopparty, and Kumar.

The common technique behind all of these results is to fortify a hard function with the right type
of extractor to obtain stronger correlation bounds for more general models of computation. Although
this technique has been used in previous work, they rely on the model simplifying drastically under
random restrictions. We view our results as a proof of concept that such fortification can be done
even for classes that do not enjoy such behavior.
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1 Introduction/Outline of Results

Many central questions in complexity theory revolve around proving limitations of various
computational models. For example, there are research programs which seek lower bounds
against constant depth circuits, low degree polynomials over Fy, and perhaps most famously
the complexity class P.
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Usually, lower bounds against a simple class of n-bit Boolean functions C is established
by demonstrating an explicit function f such that no g € C can compute f on every input.
This is referred to as worst-case hardness. However, we may not be satisfied with this in
practice and stipulate that no g € C can even approximate f. After all, if there exists a g
that agrees with f on all but one point, the difference may be impossible to detect in practice.
Furthermore, establishing average case hardness against C can allow us to create PRGs
against C via the “hardness to randomness” framework introduced by Nisan and Wigderson
[24], as well as show hardness results against related function classes, like the majority of
functions in C. This average-case hardness statement is exactly what the study of correlation
bounds capture.

To formally define this, let D a distribution over {0,1}". Define the correlation of two
Boolean functions f,g:{0,1}" — {0,1} over D to be

corrp(f,g) = |Exmp[(—1)7 @) Fo@)]].

We will usually be concerned with D = U,,, the uniform distribution, and should be assumed
so if no distribution D is specified. Notice that this quantity is a real number in [0, 1].
For intuition, note that if f = g or f = 1 — g, the correlation is 1, whereas if f and g
only match on about half the inputs, the correlation becomes small. This fact allows us
to observe correlation is the right notion, as corr(f, g) being small implies that g cannot
predict f much better than a coin flip. For a function f and a function class C, we can
define corr(f,C) = maxyec corr(f, g). Hence the notion of f being average-case hard for C is
captured by corr(f,C) being small.

In this paper, we are most interested in the case C is the class of low degree Fo[z1, ..., z,)
polynomials. Establishing correlation bounds against low degree Fs polynomials is an
extremely interesting and central question in complexity theory, as it is either necessary or
sufficient to understand a plethora of other problems, some of which concern communication
protocols, matrix rigidity, and PRGs for circuits. See Viola’s survey [30] for a detailed
exposition on this rich program.

Unfortunately, there is a “log n-degree barrier” for PRGs and correlation bounds against
low degree polynomials. Current PRGs and correlation bounds are asymptotically tight
for constant degree polynomials, but become trivial at degree logn [29]. Getting nontrivial
PRGs (or even correlation bounds) against log n-degree polynomials has been a tantalizing
and longstanding open problem.

Towards breaking this barrier, researchers have shown strong correlation bounds for
structured subsets of low degree Fa-polynomials (such as sparse polynomials [20, 26], tensors
[3], small-read polynomials, and symmetric polynomials [4]) with the hope of being able to
generalize them. In this work, we establish new correlation bounds and PRGs for computation
models generalizing some of these polynomials, namely width-2 branching programs reading
d bits at a time, AC® containing a small number of arbitrary symmetric or linear threshold
gates, and set-multilinear polynomials.

Interestingly, all of these correlation bounds are obtained by taking a function hard
for a more specific class of polynomials, and then fortifying it with a well suited extractor.
Although such a fortification technique is not new and has been used for establishing stronger
lower bounds for formulas [18, 8], they usually rely on the fact that upon randomly fixing
a subset of variables of a formula, there are extremely few possibilities for the resulting
function. Our work shows that extractor fortification is a much broader technique that can
strengthen lower bounds against function classes even if they do not simplify greatly under a
random restriction. In particular, our correlation bounds demonstrate extractor fortification
can work if the function class, after a random restriction, has low communication complexity
or good algebraic structure.
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Inspired by this, we would like to show that extractors will always strengthen correlation

bounds, no matter what the proof of the bound is. At a first glance, this may feel intuitive.

However, due to technical reasons, this seems challenging to establish.
The remainder of this section is devoted to introducing and motivating each computational
model studied, surveying prior work in the topic, and stating all key results proven.

1.1 Better Bounds and PRGs Against AC° with More {SYM, THR}
Gates

Our knowledge of hardness and PRG results for AC? is far more developed than that of
TC°. Our state of the art PRGs for ACY is Lyu’s construction [22], which e-fools polysize
AC? circuits with seed length O(log®~!(n)log(n/e)), whereas the current best PRG of
Hatami, Hoza, Tal, and Tell which (2*”5)—fools size- O(n'*?9) TC" circuits have seed length
O(n'=%) [15]. Due to this stark contrast in parameters, it is natural to gradually work
upward from AC® by allotting a budget of SYM (calculates an arbitrary symmetric function)
or THR (calculates an arbitrary linear threshold function) gates in the circuit. This approach
has been explored for more than a decade [28, 20, 26], building upon the study of PRGs for
{SYM, THR} o AC” circuits pioneered by Luby, Velickovi¢, and Wigderson [21]. This context
explains why this circuit class a compelling generalization of sparse polynomials (which can
be written as a small-size parity of ands). All the mentioned works use the following function
introduced by Razborov and Wigderson in 1993 [25] (all arithmetic is over Fy).

T

m k
RWm,k,r(m) = Z H injﬂ (1)
i=1 j=

14=1

Most recently, Servedio and Tan [26] use RW,, j , to uncorrelate against constant-depth

size-n@°g™) ACY circuits whose top gate is {SYM, THR} (denoted as {SYM, THR} o ACY).

Their explicit bound is

.499)

corr (Rwﬁlogn = {SYM,THR}oACO) < 9-%n

Via techniques used in [20], this can be translated to correlation bounds against AC? circuits
with up to 4% SYM gates or n?*® THR gates. As can be surmised by the repeated
occurrences of n-4% the strength of the correlation bound dictates how many {SYM, THR}
gates we can afford in our budget.

We show that RW is just one of many functions from a general class of hard functions with
small correlation against {SYM, THR} o ACY circuits. For functions f : ({0,1}")* — {0,1}

and g :{0,1}™ — {0,1}", denote f o g*(x1...,21) == f(g(x1),...g(wk)).

» Theorem 1 (informal). Let g be computable by a size n®1°8™) {SYM, THR} o AC® circuit.
Let f be average-case hard against multiparty protocols', and let Ext be a suitable extractor.
Then

corr(f o Ext?1°8™ ¢) < 9= (%),

To our knowledge, this theorem gives the first context where generically precomposing
with an extractor boosts correlation bounds whose proof does not rely on simplification under
random restriction (indeed parity does not simplify under restriction and is contained in

! the formal condition is any function with small “k-party norm” or “cube norm”, but this is currently
the only technique we know that establishes average case hardness against multiparty protocols.
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Table 1 Correlation bounds against {SYM, THR} o AC§ circuits and the PRGs that follow via
the [24] framework. In all previous work, the “hard” function used was the RW function, which was
first considered by Razborov and Wigderson [25]. Our work uses a better suited function. This table
is an extension of the one found in [26].

Circuit type Circuit size S | Correlation bound PRG seed length
[28] {SYM, THR} 0 AC® | nelo=™ n-calosn 20(V/18(5/2))
[20] SYM o AC° neloglogn exp(_n0A999) 20(%) + (log(l/g))zm
[20] THR o AC° peloglosn exp(—n®"%?) 20 (mihis) 4 (log(1/e))**
126] {SYM,THR} 0 AC) | ne'os™ exp(—Q(n®19%)) | 20V 4 (10g(1/6))*
This work | {SYM, THR} o AC® nelosn exp(—Q(n®9)) | 200189 4 (log(1/e))> "

{SYM, THR} 0 AC"}). Previously, extractors have only been used to boost correlation bounds
for classes that heavily simplify under random restriction [18, 8].2 Our theorem states that
extractors can still boost correlation bounds, even if they were proven using communication
complexity rather than random restrictions.

Furthermore, our theorem distills out the reason why RW was so effective as a hard
function. Quantitatively, we can instantiate the template with a suitable extractor to obtain
a new hard function with nearly-optimal correlation bounds.

Due to our strengthened correlation bounds, we can now get correlation bounds and
PRGs against size-n®1°8™) ACY circuits with up to n-% SYM gates or n-4% THR gates.
Prior to this, no nontrivial correlation bound or PRG was known to handle such large size
and number of {SYM, THR} gates ([20] could handle the same number of {SYM, THR} gates
but only for n©Ueglogn)_gjze circuits, and [26] could handle the same size circuits, but only
n-499 SYM or n249 THR gates).

Even for {SYM, THR}oAC? circuits which have only one {SYM, THR} gate, our correlation

bounds yields improved PRGs whose seed length is 920(V/Iog5) 4 (log(1/€))?9t, which has a
better dependence on e, than previous work (see Table 1). In fact, since the best correlation
bound one can hope for is 27" this dependence is almost optimal under the Nisan-
Wigderson framework, and an alternative approach is needed to reach the optimal dependence
of log(1/e). Since any logn-degree Fy polynomial can be expressed as a SYM o ANDigg
circuit of size n'°8™, any improvement of the dependence of the seed length on S would give
nontrivial PRGs for log n-degree polynomials, a breakthrough result.

1.2 Much Better PRGs Against Width-2 Branching Programs Reading
d Bits at a Time

Usually, one constructs PRGs for natural computational models, with the idea that we can
drastically reduce the randomness we use if the randomized algorithm we are running can be
simulated by such a model. Low degree polynomials is an extremely natural mathematical
model with applications to circuit complexity, but some may not believe it is well grounded as

2 There have been uses of extractors as a hard function against classes that do not simplify under
restriction, like DNFs of Parities [9] and strongly read-once linear branching programs [12, 19, 7).
However they directly establish a correlation bound against the extractor rather than amplify a weaker
hard function by precomposing with an extractor.
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a computational one and thus not worth finding a PRG for. However, the work of Bogdanov,
Dvir, Verbin, and Yehudayoff [5] showed the beautiful connection that PRGs for degree d
polynomials are also PRGs against a particular model described as width-2 length-poly(n)
branching programs which read d bits at a time.

» Definition 2 ((d, ¢, n)-2BP ([5], adapted)). A (d,¢,n)-2BP (or more colloquially a width-2
length-¢ branching program over n bits which reads d bits at a time) is a layered directed
acyclic graph, where there are £ layers and each layer contains two nodes, which we label by
0 and 1. Each vertex in each layer j is associated with an arbitrary d-bit substring x|, of
the input x. Each node in layer j has 2% outgoing edges to layer j + 1 that are labelled by
all possible values in {0,1}¢. On input x, the computation starts with the first node vVssart
in the first layer, then follows the edge labelled by x|,.,,,., onto the second layer, and so on
until a node in the last layer is reached. The identity of this last node is the outcome of the
computation.

Such branching programs are a well motivated computation model which cover computa-
tion with only one bit of usable memory, low degree polynomials, and small width DNFs.
The survey of unconditional PRGs by Hatami and Hoza refer to this model as a compelling
computational model that places low degree polynomials in the computational landscape [14].

Unfortunately, there is a “log n-degree barrier” for PRGs and correlation bounds against
low degree polynomials. Current PRGs and correlation bounds are asymptotically tight
for constant degree polynomials, but become trivial at degree logn, as can be seen by
the current best known PRG for degree-d polynomials by Viola which has seed length
O(dlogn + d2%log(n/e)) [29]. Getting nontrivial PRGs (or even correlation bounds) against
log n-degree polynomials has been a tantalizing and longstanding open problem, and thus
PRGs for (d, poly(n),n)-2BPs also seemingly appeared to inherit this “d = logn barrier” due
to the reduction result of [5].

In this work, we construct PRGs against (d, poly(n), n)-2BPs with exponentially better
seed length, thereby giving nontrivial PRGs even in the regime d = n'=°(), Define a
d-junta to be a function ¢ : {0,1}" — {0,1} which is solely dependent on d input bits
(i.e. can be written as ¢'(z;);es for some subset S C [n] of size d). To get our shortened
seed length, we evade the log n-degree barrier by instead showing the equivalence between
PRGs for (d, poly(n),n)-2BPs and PRGs for the XOR of poly(n) many d-juntas (denoted
as JUNTA??’ZOIY(M). This class is already interesting in its own right, as it can be seen
as a generalization of sparse Fa-polynomials and combinatorial checkerboards (defined by
Watson [32] and also studied by Gopalan, Meka, Reingold and Zuckerman [11]), as well as a
specific class bounded collusion protocols studied by Chattopadhyay et al. [6]. However, we
are not aware of any literature studying JUNTAS?Z; specifically.

Our main technical contribution is strong correlation bounds for _JUNTAS?’ZOW(”). In
particular, we show the following.

» Theorem 3. There exists an explicit function f such that

Dpoly(n n

corr(f, JUNTAEZM (M) < exp (—W>

By combining this with the “hardness-to-randomness” framework of Nisan and Wigder-
son [24], we construct a PRG of seed length 20(/logn) g2 log?(1/¢). This is only a quadratic
factor away from optimal dependence on d and €. Improving the dependence on n would
be a breakthrough, since if we set n’ = 2\/@, a (d,n,poly(n))-2BP can simulate any
log n'-degree polynomial over x1, ...z, , and so having seed length o(n’) would effectively be
breaking the log n-degree barrier for Fo-polynomial PRGs.

68:5

ITCS 2025



68:6

New Pseudorandom Generators and Correlation Bounds Using Extractors

Interestingly enough, by combining an “simplification under restriction” approach pion-
eered by Ajtai and Wigderson [1] with a PRG for sparse Fa-polynomials by Servedio and
Tan [27], we are able to construct a PRG against JUNTA?ZOMM, and thus (d, poly(n), n)-

2BPs, with seed length d20(V1°8("/€))  This gives us an optimal dependence on d, but an
exponentially worse dependence on €. This suggests perhaps with a combination of these
two approaches, one might be able to achieve seed length 20(y log”)dlog(l/e).

1.3 Near-Optimal Bounds Against High Degree Set-Multilinear
Polynomials

As explained earlier, a central open question in complexity theory is to establish better-than-
O(1/+/n) nontrivial correlation bounds against Q(logn)-degree polynomials. In order to
make progress on this question, it is natural to consider structured low-degree Fs-polynomials.
This is what the work of Bhrushundi et al. does [3].

Define a polynomial p : {0,1}" — {0,1} to be set-multilinear over a partition X =
(X1,...,Xq) of the input bits if every monomial contains at most one variable from each
X; (this is slightly more general than the usual definition of ezactly one). The work of
Bhrushundi et al. [3] prove that a random degree d set-multilinear tensor has exponentially
small correlation against generic degree d/2 Fa-polynomials for d = Q(n). Towards making
this correlation bound explicit, they defined FFM(X7y, ..., Xy) = Isb(X; - Xa - -+ Xy), where
multiplication is done by treating the X; as field elements, and Isb outputs the least significant
bit of the string. Bhushrundi et al. were able to give exponentially small correlation bounds
against polynomials up to degree o(n/logn) which are set-multilinear over the fixed partition
(X1,...,X4). However, this leaves more to be wanted. The partition with respect to which
the polynomial is set-multilinear over needing to be fixed and dependent on FFM feels like
an extremely strong and asymmetric condition. Can we uncorrelate against degree < d
polynomials set-multilinear over any equipartition of X into d parts? Can the parts be
unequal? Can we have more than d of them?

We show the affirmative to all the above questions. If we take § > 0 to be an arbitrarily
small constant, we can obtain exponentially small correlation against degree < n® polynomial
1=9 (not necessarily equal) parts such
that p is set-multilinear over it. Notice improving n'=% parts to n would be a breakthrough,

for which there exists some partition of X into up to n

since all polynomials are set-multilinear over the n-partition of X = (z1,...,zy).

To do so, we fortify the hard function FFM with an extractor. Let Ext(X, W) be a strong
linear seeded extractor (for each fixing of W, Ext(-, W) is linear). For some parameter d,
define the function

ExtFFMy(X1, ..., Xg, W) = Isb(Ext(X1, W) - Ext(Xo, W) - ... - Ext(Xq, W)),

where multiplication is done over a finite field, and Isb outputs the least significant bit of
the string. First note that ExtFFMy (X7, ..., X4, W), for a fixed W, is set-multilinear over
X1,...,X4. Hence our intuition that set-multilinear polynomials might correlate the most
with the hard function is preserved in ExtFFM as well. Using ExtFFM, we are able to obtain
correlation bounds against the more intuitive notion of set-multilinear polynomials, where
the structure of the partition does not matter. This gives more leeway since now if we want
to implement this approach towards correlation bounds against low-degree polynomials, there
is a larger class of set-multilinear polynomials that we can reduce generic polynomials to.
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2 Technical Overview Of the Results

In this section, we give the overview of the proofs of the main results we covered above.

2.1 Stronger Correlation Bounds Against {SYM, THR} o AC°

We focus on showing stronger correlation bounds against {SYM, THR} o AC®, since the
subsequent arguments turning this into PRGs against AC® with a few {SYM, THR} gates are
standard. The blueprint behind this argument follows the “simplification under restrictions’
approach of previous works, but most similarly of Tan and Servedio [26]. A random restriction
is a random partial assignment where for each variable, it is left unfixed (or “alive”) with
probability p, and is otherwise set to a uniform bit. [26] shows that under a random restriction,
the hard function RW,, ;. , maintains integrity and uncorrelates against multiparty protocols,
while the {SYM, THR} oAC” simplifies to a short multiparty protocol. However, the roadblock
met in [26] preventing a correlation bound of 27" and only giving one of size 2-Un™?) jg
due to parameters in RW,, ; » being in contention with each other. To elucidate, if n is the
input size, then we must have mkr = n. Via the analysis done in [26], the correlation bound
ends up being in the form of 272 4 2=(") which forces any established correlation bound
to be at best 2~V

To understand why both conflicting terms show up, we give a quick overview of the
argument of [26]. First, RW,, j , (as defined in Equation (1)) can be thought of as a fortified
version of the generalized inner product, GIP,, i (21,...,Tk) == Y ivy H?Zl x;j, where each

)

variable is now replaced by the parity of r new variables. This is effective against random
restrictions, since as long as one of the r copies x;j1,...,%;; survive the restriction, the
corresponding term x;; in GIP will survive. They argue that after a random restriction p
is applied, the {SYM, THR} o AC® circuit simplifies to a short multiparty protocol, while
RW . k,r|p is still capable of computing GIP,, /5 ; with high probability. Conditioning upon
this, previous results of Babai, Nisan, and Szegedy [2] show that GIP,, /5 ;, has 2-Um/2")
correlation against these multiparty protocols, explaining the emergence of the 2~%(") term
in the correlation. Conditioning on RW,,, .|, being able to compute GIP,, /5 ;, introduces an
additive error to the correlation corresponding to the probability RW,, . »|, fails to simplify.
[26] bounds this by the chance all r copies of some variable z;; becomes fixed by a restriction,
which will be (1 — p)” ~ exp(—pr), explaining the occurrence of the 27" term in the
correlation.

In summary, the argument of [26] requires r needs to be large to strongly fortify the hard
function against random restrictions, while m needs to be large to have a stronger correlation
bound against multiparty protocols. However, with the constraint mr < n, we are forced to
compromise and reach the setting m = r ~ \/n.

We now propose an abstraction of the hard function, which naturally yields a stronger
correlation bound. If we define @, , : ({0,1}")™ — {0,1}™ to be

T T
®m,T(m17-"7xm) = E Lliyee-y E Tmi )
i=1 i=1

we observe RW,,, . » = GIP, , o @fmﬂ(ml, coy k) = GIPy k(@ r (1), - - -, Bmr(zx)). The
key insight is that our argument can be generalized to not just RW, but any function

fo Ext® := f(Ext(xy),...,Ext(zg))

68:7
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where f is average-case hard for multiparty protocols, and Ext is an oblivious bit-fizing
source extractor (OBF extractor). Informally, an oblivious bit-fixing source extractor for
min-entropy k is a function Ext such that if X is uniform over {0,1}" and p is a restriction
which leaves > k bits alive, the output Ext(X|,) is close to uniform. Recall our approach first
applies a random restriction to simplify our circuit to a small multiparty protocol, which
we then deal with using GIP. If the random restriction leaves sufficiently many variables
alive with high probability, then f o Ext® should still behave like f due to Ext being an OBF
extractor. Since the circuit is now a multiparty protocol, the average-case hardness of f
gives us a correlation bound.

Notice in the RW construction and the setting of parameters m = r &~ \/n, ®p r is
an OBF extractor which maps n bits to y/n bits. But this means the input to the outer
GIP function will only have = /n bits, and so the best correlation bound we can hope
to achieve is exp(—Q(y/n)). The restrictions used in the proof leave n%
with high probability, so intuitively we could hope that all these n° “bits of randomness”
could be preserved for GIP (or in general any f) rather than only \/n, potetially resulting
in a exp(—Q(n)) correlation bound alive. We do just this by using a much better OBF
extractor of Kamp and Zuckerman [17]. By making this intuition more formal using techniques
developed by Viola and Wigderson [31], we obtain 2-20"%Y) correlation bound. The idea
of replacing parities with better suited extractors has also appeared in previous work [18, §].

variables alive

2.2 PRGs for JUNTAY!, and (d,t,n)-2BPs

Our PRG construction blueprint can be briefly described as follows. We first establish
correlation bounds against JUNTA;?)td. We then put this through the Nisan-Wigderson
“hardness vs. randomness” framework to create a PRG against JUNTAfitd. We then show
that PRGs which fool JUNTAE", actually fool (d,t,n)-2BPs, making the JUNTAS", PRG our
final construction. We first discuss why PRGs for JUNTA?L imply PRGs for (d,t,n)-2BPs,
and then discuss the techniques needed to show strong correlation bounds against JUNTAj?fd.

2.2.1 PRGs for JUNTAY!, —> PRGs for (d,t,n)-2BPs

Adopting the exposition in [14], the previous work of [5] can be outlined as follows. Consider
a (d,t,n)-2BP B. By noticing that all transition functions in B are d-juntas, one can derive
that B(x) = B'(41,...,¢2(x)), where B’ is a (1,t,2t) branching program. By Fourier
expanding B’, this can be decomposed as

B(x)= 3 B(S)(—1)2es %),

Sc[2t]

[5] shows that > gy |§ (9)| is bounded , so by linearity of expectation and the Triangle
Inequality, it suffices to fool the terms (—1)Zies %@ The approach in [5] makes the
observation that each ¢;, by virtue of being a d-junta, can be written as a degree d polynomial.
Consequently, a PRG for degree d polynomials will fool (d,t,n)-2BPs with seed length
O(dlogn + d2%log(n/c)). The issue here is that at d = logn, the seed length becomes
trivial.

However, we can notice that the Fy-polynomial p(x) := ) ;. g ¢s(z) has some additional
structure. If ¢ = poly(n), p is the sum of only a polynomial number of d-juntas. If there was
a way to leverage this, and get a better PRG that fools JUNTAfffd, then we might hope to

get nontrivial PRGs even in the regime d = Q(logn).
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This observation already yields nontrivial PRGs for d = w(logn). Servedio and Tan [26

provide a PRG fooling Fy-polynomials with S terms with seed length QO(mlog(l /€)).
Since each junta can be written as a polynomial with up to 2¢ terms, each g € JUNTAZC:LIY(”)
can be written as a polynomial with S = 2%poly(n) terms, yielding a PRG with seed length
(20(‘/@ +0(logn))log(1/¢). Hence we get nontrivial seed length for d = o(log®n). > However,

we proceed alternatively to get an exponentially better seed length.

2.3 The Nisan-Wigderson Framework and Correlation Bounds for
ly(n
JUNTASZPY(™

We will once again use f o Ext® as our hard function® to establish exponentially small
correlation bounds against the class, and then apply the Nisan-Wigderson [24] framework to
construct the PRG. The latter portion is straightforward, so we focus on establishing the
correlation bounds.

Let g € JUNTA??’ZO'Y(’L). We first show that there exist a subset of variables, S, such that
upon arbitrarily fixing bits outside of this set, g can be expressed as a sparse Fy polynomial,
whereas each input block of f o Ext® heavily intersect S. Hence if we fix Xg and take the
correlation over S, each input block still maintains high min-entropy while g becomes a
sparse polynomial, which is a small SYM o AC circuit. Since the hard function is also the
same, we can then apply techniques in the previous section to conclude.

2.4 Correlation Bounds against Set-Multilinear Polynomials

Recall that [3] has shown FFM, uncorrelates against any lower degree polynomial which
is set-multilinear over (X1i,...,X4). The key ingredient behind proving strong correlation
bounds against set-multilinear polynomials over arbitrary parititons is to first fortify each
input block with extractors, and instead consider ExtFFM,. This allows us to establish
the following structural lemma, which intuitively states that even if you do not start out
with a polynomial that is set-multilinear over (X7, ..., Xy), if not too many bits in each
input block can be restricted to 1s such that the resulting function is set-multilinear over
(X1,...,Xy) induced by the live variables in each block, exponential correlation bounds can
still be obtained.

» Theorem 4. Let g be a polynomial of degree < d. Let Sy,...,Sq C [n/d] be subsets, and let
p denote the restriction created by fizing the bits in X; whose index is outside S; to 1 for each
i € [d]. If the restricted function g|,(X1,...,Xq) becomes set-multilinear in (X1,...,Xq),
then have

corr(ExtFFMy, g) < 279(Za),

To explain the proof at a high level, if the sets S; we leave alive aren’t too small, then our
strong extractor (conditioned on a good seed) will keep each block Ext(X;, W) approximately
uniform, and since the restricted function g|, is now set-multilinear over (Xi,...,Xq) we
may use a similar approach as [3] to prove the theorem.

It turns out that via a combinatorial argument, one can show that polynomials which are
set-multilinear over a large number of blocks can be turned into polynomials set-multilinear
over (X1,...,X4) by fixing not too many bits per input block X;. The correlation bounds
then follow by the structural lemma.

3 it is actually the case that a PRG from [21] already gets nontrivial seed length in the same regime,

albeit with exponentially worse dependence in ¢
4 we also precompose with parities in the formal argument
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3 Preliminaries

For positive integer n, [n] := {1,...,n} and ([Z]) is the set of all subsets of [n] with |S| = s.
We denote e(x) := (—1)*.

3.1 Convention About Input Blocks

We will canonically fix a partition of bit strings into d contiguous blocks, each with n/d bits.
In particular, any X € {0,1}" can be written as X = (Xy,...,X4) where each X, is the
n/d-bit substring. If a string Y € {0, 1} is defined, Y; will be assumed to mean the length
n/d substring of Y contained in the ith input block, defined with respect to the canonical
partition. Also, we will denote X_; := (X1,...,Xi—1, Xit1,...,X4) to be the input with
the ¢th block removed.

For a string X € {0,1}, we may sometimes identify the n/d bit string X; as an n-bit
string in the following way: the ith block is filled with X, and all other blocks are filled
with Os. Hence, if we interpret bit strings as elements of Fy, and we have X,Y € F3, the
expression X + Y; is well defined.

For parameters k,d < n and two functions f : ({0,1}™)* — {0,1} and ¢ : {0,1}*/* —
{0,1}4, we will define

fog" = flg(X1),...,9(Xa)).

3.2 Finite Fields

We will be working with finite fields of characteristic 2. For the finite field over 2™ elements,
Fan, we can naturally identify each element with an n-bit string.

» Definition 5 (character). A map x : Fon — Fy is called an additive character if for all
x,y € Fon, x(x +y) = x() + x(y). It is nontrivial if it is not the zero function.

Since Fan is an n-dimensional vector space, we see the valuations on n basis vectors uniquely
define the character. Consequently there are 2™ such characters. Notice we can conveniently
characterize all characters either by x.(z) = (z,c), or by fixing some character x, and then
defining x.(z) := x(c- ). This can be seen by verifying these maps are characters, are
distinct, and that there are 2" of them (the latter is obvious since there are 2™ values of ¢).

3.3 Models of Computation

» Definition 6 (Fy-polynomials). An Fy-polynomial (or polynomial for short) is a function
of the form p(x) := 3 gc(y ¢s [L;es @i for some ¢; € Fa (all arithmetic here are over F).

» Definition 7 (set-multilinearity). An Fa-polynomial p is set-multilinear over a partition
(X1,...,Xa) of variables if every monomial of p contains at most one variable from each X;.
Notice that all polynomials are trivially set-multililinear over (z1,...,zy).

» Definition 8 (junta). Define the class JUNTA,, , to be a function ¢ : {0,1}™ — {0, 1} which
is solely dependent on k input bits (i.e. can be written as ¢'(x;);es for some subset S C [n]
of size k). Define JUNTAfitk to be the class of functions which is the parity of t k-juntas.

» Definition 9 (k-party NOF protocol). A boolean function f: ({0,1}®)¢ can be computed
by a k-party NOF protocol with ¢ bits of communication if on input X = (X1,...,Xq), d
players, can take turns writing a bit on the board, where player i’s bit can only depend on
X_g and the other bits on the board, and the cth bit written is f(X). We denote this class
of functions to be IIj,.
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Circuits

We measure the size of a circuit by the total number of wires (including input wires) in it.
ACS are depth d circuits with unbounded fan-in whose gate set is {AND,OR,NOT}. SYM is
a gate which computes an arbitrary symmetric function, and THR is a gate which computes
an arbitrary linear threshold function. In general, if we have a gate GG, a subscript Gy will
refer to its fan-in (in this case, G is fixed to have fan-in k).

» Definition 10 ((d,C)-tree). Let d be an integer and C a computational model (e.g. a circuit
class). A function is computable by a (d,C)-tree if it is computable by a depth t decision tree
with C functions as its leaves. That is, there exists a depth d decision tree T such that for
every path m in T, F|, € C.

3.4 Probability

We will denote U, to be the uniform distribution over the finite set {0, 1}™. We will also
denote S C,, T' to be a random subset of 1" where each ¢t € T' is added to S independently
with probability p.

» Definition 11 (k-wise uniform). Consider a distribution D over ({0,1}/®)%. We say that D
is k-wise uniform if for all subsets S = {i1, ... i, } C [d] and all strings y1, ..., yr € {0,1}"/4,
. —kn/d
XErD[Vj,Xij =y;] =2 /d.
» Definition 12 (s-close in distribution). Let Dy and Dy be distributions over {0,1}"™. We
say Dy~ Do, or equivalently Dy is e-close to Ds, if for all S C {0,1}",
| Pr [zxeS]— Pr [zef] <e

:ENDl INDQ

3.5 Random Restrictions and Partial Assignments

A partial assignment or restriction is a string p € {0, 1,*}™. Intuitively, a x represents an
index that is still “alive” and hasn’t been fixed to a value yet.

We also define a composition operation on partial assignments. For two restrictions p', p?,
define p' o p? so that

1 1

pi  Pi Fx
Gomi=1" "7

Pi  Pi =%

Intuitively, one can see this as fixing bits determined by p! first, and then out of the remaining
alive positions, fix them according to p?.

A random restriction is simply a distribution over restrictions. A common random
restriction we will use is R,,, the distribution where each index will be assigned » with
probability p, and 0,1 each with probability I_Tp.

The main reason for defining restrictions is to observe their action on functions. Given
a restriction p and function f: {0,1}" — {0,1}, we define f|, : {0,1}" — {0, 1} to be the
restricted function mapping f|,(z) := f(p o ).

3.6 Pseudorandomness

Our work will involve working with pseudorandomness primitives, like pseudorandom gener-
ators (PRGs) and randomness extractors (or simply extractors).
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» Definition 13 (¢-PRG). A polytime computable function G : {0,1}* — {0,1} is an e-PRG
for a subset F of functions {0,1}" — {0,1} if for all f € F,

|Eont, (1)) = Eguv, [(-1)7E]] <e.
We also say that G e-fools F. The parameter s is the seed length. In this paper, we

will use a PRG of [27] which e-fools Fay polynomials with < S terms with seed length
20(/log ) log(1/eps).

» Definition 14 (min-entropy). Let D be a distribution over {0,1}", and define supp(D) =
{y € {0,1}" : Pryplz = y] > 0}. Define the min-entropy of D to be the quantity

z€{0,1}" y~D

—log( max Prly= :1:]) .
It is helpful to note that if for a particular k and all y € {0,1}™, all probabilities Pr .plx =
y] < 2=k then we know D has min-entropy > k.

» Definition 15 (Strong/Linear/Seeded Extractors). A (k,¢e)-seeded extractor is a function
Ext : {0,1}" x {0,1}¢ — {0,1}™ such that for any D with min-entropy > k, we have for
X~ D and W ~ Uy the following

Ext(X, W) =, U,,.
Ext is a strong seeded extractor if we also have

Pr [Ext(X,w) ~. U,]>1—c¢

’LUNUCL

Ext is a linear seeded extractor if for every fixed W, Ext(-, W) is linear over Fo. The Leftover

Hash Lemma [16] allows us to construct a strong seeded (k,€) extractor with seed length 2n,
Ext: {0,1}"-{0,1}?" — {0, 1}}—2les(1/e),

» Definition 16 (Oblivious Bit-Fixing Source Extractors). An (n, k) oblivious bit-firing source
(or OBF) is a distribution D over {0,1}" created by fizing some n — k of the bits, and then
filling in the remaining k indices with uniform and independent bits. An (k,e) oblivious
bit-fixing source extractor (or OBF extractor) is a function Ext: {0,1}" — {0,1}™ such that
for every (n,k) OBF D, we have that for X ~ D,

Ext(X) =~ Up,.
For any k > \/n, Kamp and Zuckerman [17] allows us to construct (k,279(’“2/")) OBF
extractors Ext : {0,1}™ — {0, 1}Q(k2/n)_
3.7 Correlation Bounds

We will need some tools and definitions from the literature of correlation bounds. We first
give a formal definition of correlation.

» Definition 17 (correlation). For two Boolean functions f,g : {0,1}" — {0,1}, and a
distribution D over {0,1}", define the correlation of f and g over D to be

corrp(f,g) = |EIND(_1)f(w)+g(ac) I

If no distribution is mentioned, we always assume D = U,. Furthermore, for a subset of
functions C, we define

corrp(f,C) = maxcorrp(f,g).
geC
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Viola and Wigderson defined a convenient quantity Ry, which is very useful in bounding
correlations against NOF protocols.

» Definition 18 (k-party Norm). For a function f : ({0,1}*/*)* — {0,1}, define the k-party
norm of f to be

o1 )
Ri(f) = EX£0)7~--,XIEO)7X£1)7--~7X,(€1)NU"/;€6 Z f(Xl( )7...,X,5 k))
' ' 5€{0,1}*

This norm is useful due to the following theorem.

» Theorem 19 ([31]). Let f : {0,1}™ — {0,1} be arbitrary, and let g be computable by a
d-party NOF protocol exchanging c bits. Then

Ra(f) < corr(f,g) < 2°Ra(f)"/*".

We will also use the following theorem of Nisan and Wigderson, which allow us to translate
correlation bounds into PRGs.This version is seen in the survey of Hatami and Hoza [14]

» Theorem 20 ([24], [14, Theorem 4.2.2]). Let f:{0,1}" — {0,1}. Suppose h:{0,1}" —
{0,1} is e-hard for f o JUNTA, i with respect to the uniform distribution. Then there exists
a PRG for f with seed length s = O(n#l -r2/k) and error en.

4 Nearly Optimal Correlation Bounds against {SYM, THR} o AC°

We strictly improve upon the result [26] by proving a stronger correlation bound against
{SYM, THR} o AC? circuits. This immediately gives PRGs against this class with improved
seed length via the “hardness vs. randomness” framework [24] All previous work [28, 20, 26]
looked at the function introduced in [25] created by taking the generalized inner product of
parities. We present a new function comprised of field multiplication of extractors in order
to prove stronger correlation bounds. Let m,n be parameters, and define k := n/d. We now
prove the following result:

k'996

» Theorem 21. Let Ext: {0,1}* — {0,1}2 be a (k98 2=-4%"°) OBF-source extractor
(explicit ones exist due to [17]). Let f : ({0, 1}26%7Yd 5 £0,1} be any function such that
corr(f,119) < 2-2k/2Y) " Define f o Ext? : ({0,1}%)4 — {0, 1} to be the function

foExt?(X) := f(Ext(X)),...,Ext(Xy)).

Let g be any function implementable by a n©(1°8™) _size {SYM, THR} o AC° circuit, and let
m = .00051logn. Then

.995)

corr(f o Ext™ ! g) < 279

In particular, by instantiating this template, say, with Ext being the extractor of [17] and f
being either GIP [2] or FFM [10], we get explicit f o Ext™ . We also note by simple adjusting
of constants, we can get any 22" for constant £ > 0. This gives an improvement of the
correlation bound given in [26] of 22",

Proof. We follow the same approach as done in [26]. The uniform distribution can be

expressed as applying a random restriction, and then filling in the remaining bits uniformly.
For good random restrictions, we argue that g simplifies to a {SYM, THR} o AND,,, circuit.
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We then argue that even after the random restriction, f o Ext™ " maintains its structural

integrity due to the extractor. We then finish the argument by using Hastad and Goldmann’s
connection between {SYM, THR} o AND,,, and NOF protocols, and the fact that f has small
correlation with (m + 1)-party protocols.

The proof for the simplification of g is the same as seen in [26] so we merely cite it here.
The only change is the tuning of parameters. Here is the lemma restated for our use.

» Lemma 22. Let g € {SYM, THR} o ACS with circuit size s = n"1°8™. Then for p =

& (48log s) (41

P7rz [glp is not computed by (.001pk, {SYMg2, THR 2} 0 ANDiog s })-tree]
p—Rp
<s. 27.001;)19/2‘1

— 9—Qal(pk)

Notice that for constant d this gives a bound of 2~2(/Pol¥log(n)) " yersus its use in [26] in
which a 27V "/1987) error was gained. We will see later that we can liberally set parameters
here because our hard function maintains integrity even after traversing down a path of size
n/polylog(n) (equivalent to randomly fixing n/polylog(n) bits), whereas the previous GIP
function could only withstand /n bits. This is result of using an OBF extractor with much
better parameters than simply taking the XOR of many copies.

The leaves of our tree is now much simpler class of circuits, but it is not simple enough.
Our correlation bounds can only handle circuits with fan in m = O(logn), but we currently
have fan in logs = O(log® n). Fix a leaf £ of the tree, and let {C1,...,Cs} be a collection
of subsets of [n] where C; contains the < log s indices of the variables that feed into the ith
ANDjg s gate in the bottom layer. We now use the following basic fact, as in [20] and [26],
that there is a large subset of variables that minimally intersect with each C;.

> Claim 23. A random L C, [n] (add each element to L with probability ¢) satisfies

Pr[3i € [s?] such that |C; NL| > m] < s? (Z) qm.

Instantiating this claim with our parameter setting of m and s, and setting ¢ = ©(n 1)
tells us

Pr[3i € [s?] such that |C; NL| > m] <

[

Hence there exists such an L = L(¢) such that restricting all bits outside L makes only < m
variables feed into each AND gate as desired.

To summarize, our restriction p is sampled by a distribution D specified by these three

steps.

1. We first perform restriction R,

2. and then randomly restrict < .001pk while walking down the depth-.001pk tree to a leaf
£,

3. and then randomly restrict all the variables alive in this leaf that is not in the L(¢) set
that we showed existed

At the end of this process, we have by the union bound that with all but 2~2(~»k)
probability, g|, becomes a {SYM,2, THR2} o AND,,, circuit.
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m—+1 m—+1

We now observe what happens to foExt under this restriction p. We claim f o Ext
retains its structure. Our wish is for at least £99% bits in each block to survive. That way, we
will have a high entropy oblivious bit-fixing source fed into each extractor, and the function
will be able to continue to strongly uncorrelate with m-party protocols. In Step 1, we draw
a restriction from R,. Notice the live variables are distributed like a set S C,, [n]. We see
that by a simple Chernoff and union bound,

k
Pr |3i € [m+ 1] such that |X; 0S| < % < (m + 1)27 2@k

SR,

Hence except for probability m2~ %Pk = 2_9("170(1))7 each block X; will have > pk/2
live variables. Conditioned on this, when we follow Step 2 and perform a random walk down
the decision tree to a leaf, we will assign at most .001pk bits, so we are guaranteed that each
block X; will contain at least .499pk live variables. Step 3 is to take set L(¢) and arbitrarily
restrict variables outside of it. We showed there exists an L(¢) which minimally overlaps with
the input variables to the ANDj,. s gates, but we want it to simultaneously overlap heavily
with each block. That way most of the X; will stay alive after restricting the bits outside
of L(¢) The existence of such an L({) can be established by “completing the probabilistic
method” started a few paragraphs above. Conditioning on good restrictions so far, let Y;
denote the variables that survived in X; (hence |Y;| > .499pk). We see that

Pr |3i € [m+ 1] such that |Y; NL| <

499pqk
LCq[n] 2

< (m+1)27pah),

Hence, the probability that L either intersects some C; too much or some Y; too little will
happen with probability < 2 + (m + 1)27%(Pe%) « 1. Thus there exists an L(¢) such that
restricting all variables outside of it will simultaneously simplify g to a {SYMg2, THR,2} o
AND,,, and also leave at least %qu > .249k99 /polylog(n) > k998 variables alive. Stringing
all three steps together, we know that except with probability 2~?(=?%) our random restriction
p reduces g to {SYM,2, THR,2} o AND,,, while simultaneously keeping > k9%
each X; block alive.

variables in

We are now in the final phase of the argument where we now directly bound the correlation
against the simplified circuit. We first state the results that will convert our circuits to NOF
protocols.

» Theorem 24 ([13]). Let f:{0,1}" — {0,1} be a Boolean function computed by a size-s
SYM o AND,,, circuit. Then for any partition of the n inputs of f into m + 1 blocks, there is
a deterministic NOF (m + 1)-party communication protocol that computes f using O(mlog s)
bits of communication.

» Theorem 25 ([23]). Let f : {0,1}" — {0,1} be a Boolean function computed by a
THR o AND,,, circuit. Then for any partition of the n inputs of f into m + 1 blocks, there is
a randomized NOF (m + 1)-party communication protocol that computes f with error Yey,
using O(m>lognlog(n/Yerr)) bits of communication.

We now need to show an average-case hardness result for f o Ext™*!|, against NOF
protocols. To do so, we will first calculate the k-party norm of f o Extm+1| -

» Lemma 26. Let p be a restriction which keeps > k9% variables in each X; alive. Then
.996
Rons1(f o Ext™p) < Rpp1 (f) + 4(m +1) - 274k
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Proof. Now notice that

R (f o Bxt™ ) = Exorxwe | D FIEx(XPV],), . Exe(X9m ) | (2)
6€{0,1}m+1

By assumption of p, each Xi(é")| p over uniform X; is an OBF source with min-entropy k98,
and so each Ext|,(X;) ~,_sx.996 U gp.006. Since all Xi(b) for i € [m+1],b € {0,1} are mutually

independent, it follows by a hybrid argument that

b
(EXt|p(Xi( )|p)ie[m+1]7be{0,1} o (m+1)2—4k 99 (U.2k~996)ie[m+1],be{0,1}-

Therefore, we can upper bound Equation 2 by

- S R0, Y8y | g a(m 4+ )2

5e{0,1}m+1

e
(V)i rm)bE{0,1}

< Ry (f) +4(m + 1277
as desired. <

With this, we can show that f o Ext™"?| » uncorrelates against randomized multiparty
protocols.

» Theorem 27. Let g : {0,1}™ — {0,1} be a Boolean function, and let p be a restriction such
that X;|, has > k°% live variables for each i, and g|, can be computed by an (m + 1)-party
NOF randomized protocol with with < ¢ bits and with error v. Then

corr(f o Ext™ |, g|,) < 2v + 9e— QK220 /2™)

This proof is deferred to the full version.

We now have all the ingredients to finish. Say p is good if p keeps > variables alive
in each block X; and g|, is computable by {SYM, THR} o AND,,,. We have shown for p ~ D,
this doesn’t happen only with probability 2-2®k) If 9|, has a SYM gate at the top, then
Theorem 24 says the SYM o AND,,, circuit can be computed by a deterministic NOF protocol
over X1,..., X1 using O(mlog s) bits. Plugging this in to Theorem 27 tells us

k.998

corr(fo Extm+1‘p’g|p) < 2m10gs—ﬂ(k'996/2m) < 2—9(71‘995).

If the top gate is a THR, use Theorem 25 with ¢ = 2= to get that the circuit is a
randomized NOF protocol over X, ..., X1 using O(m? lognlog(n/yer)) = O(n9%%) bits.
Plugging this into Theorem 27 gives us a correlation bound of

corr(f o Ext™ |, gl,) < on PP =k /2™)  9-Q(n %)

In either case we get the same bound, so we can bound

corr(f o Ext™ g) = |EpNDEX(71)f°EXtm+1‘P(XHg‘p(X)|

< 27900 4 By p[[Ex (— )BTy is good]

995) 995)

S 27Q(pk‘) + 279(77, — 279(77, .

The theorem is proved. <
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» Remark 28. We note that the original RW function instantiated with different parameters
can also get the same strengthened correlation bound. This requires a more nuanced analysis
than present in [26], and does not extend to general functions of the form f o Ext™*!
relies on the specific structure of GIP and €.

as it

To recap the argument for a size s circuit, we first use the multi-switching lemma to
reduce to a depth-2 circuit of fan-in log s. We then restrict more variables so that the fan-in
reduces to y/logs. We then apply correlation bounds for /log s-party protocols to get an
error of exp(—n/ 2\/@). If one trusts that this error is the bottleneck in the argument, one

can imagine running through the above argument again with s = n®®) to get a better error.

» Corollary 29. Let g(X) be a function implementable by a size s = n®1) -size {SYM, THR} o
ACY circuit, and let m = 2V'°8"_ Define k = n/(m + 1), and let Ext : {0,1}F —
{0, l}k/2o( "5 e g (k)20 logn) 9—k/2°¢ logn))—e:zztmczfor constructed from [17]. Then

COI’I’(f o EXtm+1,g) g 2_(n/20(\/10g s)).

This refinement will be useful for our correlation bounds against branching programs in
the next section. As the proof is extremely similar to the above, we defer the sketch to the
full version.

From Theorem 21, we derive the following two theorems as well.

» Theorem 30. There exists an e-PRG against size-S {SYM, THR} o ACC circuits with seed
length s = 20(Vlegs) | (log(1/e))>01.

» Theorem 31. There is an efficient e-PRG which fools AC°[SYM, n:999 S| with seed length
20W1oe %) 1 (log(1/¢))>°! and an e-PRG which fools AC°[THR, n-*9, S| with seed length
20(\/10gS) + (10g(1/6))4'01.

The proofs of these theorems follow by applying the Nisan-Wigderson hardness to
randomness approach, as well as the decision tree bootstrapping idea of [20]. The details are
deferred to the full version of the paper.

5 PRGs against (d, poly(n),n)-2BPs

In this section, we use fortified hard functions to establish strong correlation bounds against
the XOR of juntas, JUNTA?S;'Y(n). These are then pushed through the Nisan-Wigderson

“hardness vs. randomness” framework to create PRGs which can fool (d, poly(n),n)-2BPs.

We first establish the correlation bounds, and then we show that this implies our desired
PRG.
5.1 Correlation Bounds Against JUNTAEiI:iOIy(n)

This subsection is devoted to proving the following result.

» Theorem 32. Let m = dlogn, let h be the hard function in Corollary 29 instantiated on
k:=n/m bits, and let @, : {0,1}™ — {0,1} be the parity function on m bits. We then have

corr(h o @F JUNTA;?ZC) <exp <—

m?

n
d2O(\/log n) >

68:17

ITCS 2025



68:18

New Pseudorandom Generators and Correlation Bounds Using Extractors

Proof. Consider arbitrary g € JUNTAE?ZC. We will show that there exists a subset T' C [n]
of variables such that upon fixing all variables outside T', g simplifies to a sparse polynomial,
while at least one input variable in each &, stays alive. Write f = 27:61 ¢;, where each ¢;
is a d-junta. Let S; C [n] be the indices of the variables that ¢; depends on. Pick T Cy 4 [n].
For a fixed 7, we can bound

¢
d 1
Pr|TNS;| >4 < § Pr[ScT]= ( > () < exp(—Q(llog?)) < 0.1n~°.
T T {)\d
SCS;
|S]=¢
for ¢ = ©(logn). Union bounding over all 4, it follows that

Pr [3,|TNSi| > <0.1. 3)
p~Ri/a

Let Xi,..., Xy be the input blocks of size m feeding into h. We can easily calculate
l;r [F, X;NT =0] <k(1-1/d)™ < kexp(—m/d) =1/m = o(1). (4)

Union bounding Equation (3) and Equation (4), it follows that there exists a subset T' C [n]
that simultaneously intersects at most ¢ variables alive in each junta ¢;, and intersects at
least one variable in each X;. By pruning out elements, we can assume WLOG that there is
exactly one variable in each Xj.

Since a function over b bits can be written as an Fy-polynomial with up to 2° terms, it
follows for any restriction p with p~!(x) = T, ¢;|, is a polynomial with 2¢ = n®®) terms.
o)

Therefore, f|, is a polynomial with n®M terms as well, which can be written as a n®(D-sized

PAR o AND circuit. Furthermore, we know that ho &% |, is equivalent to h up to negations of

the inputs. As SYMoAC? is invariant under shifts of the input, we can appeal to Corollary 29
and observe

corr(h o @, g) = |Ex(—1)"®m(X)+9(X))

< Exp[Ex, (—1) 0 Xr X0 0000 < exp (~(n/d) 200D <

5.2 Constructing and Analyzing the PRG

With this correlation bound in hand, we can construct good PRGs against the XOR, of juntas
using the Nisan-Wigderson framework.

» Corollary 33. There is an e-PRG for JUNTA?ZQ(I) with seed length s =
20(Vlogn) 12 1602 (1 /¢))

The proof is a straightforward application of the Nisan-Wigderson framework that we
defer to the full version.

Fooling the parity of juntas actually allow us to fool arbitrary functions of juntas as long
as the function has low Fourier L; norm.

» Theorem 34. Let G be an e-PRG for JUNTA;‘?”Z], and let f:{0,1}™ — {0,1}. Then G is
an € - L1(f)-PRG for f o JUNTA, 4.

We also defer this proof to the full version.

Finally, as an application, we show PRGs against (d, t,n)-2BPs, branching programs over
n bits with width 2, length ¢, and reads d bits at a time. We will use the fact that width-2
branching programs which read one bit at a time have low Fourier L; norm (a proof can be
found in [14]).
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» Lemma 35. If f is a (1,¢,n)-2BP, then L1(f) < (t +1)/2.

We now use the fact that a (d, t,n)-2BP can be represented by a normal width-2 branching
program acting on juntas to prove that the PRG from Corollary 33 fools (d, t,n)-2BPs.

» Theorem 36. There exists an e-PRG for (d,n¢,n)-2BPs with seed length s = 20(V1osm) .
d?log*(n/e).

Proof. Given a (d,n° n)-2BP B, we note that at each vertex v € [2n°] of B, the transition
function is some d-junta ¢, which will map the d bits read at that vertex to the next vertex
to move to. Now consider the (1,n¢,2n¢)-2BP B’ defined with the same vertex set as B,
and define the transition function for v € [2n¢] in B’ to read the vth bit of the input, and
then map to the node in the next layer labeled by that bit. It is easy to see by construction
that B(z) = B'(¢1(x), ..., ¢ane(x)), which is a function in B’ o JUNTA,, 4. By Theorem
34, this can be e-fooled by an (¢/L1(B’))-PRG for JUNTAfEi”C. Using the L; bound from
Lemma 35 and the construction from Corollary 33, we see that such a PRG has seed length
90(/logn) g2 log?(1/¢). <

» Remark 37. There is an alternative PRG construction using the Ajtai-Wigderson frame-
work [1] which gives optimal dependence on d, but exponentially worse dependence on ¢.
This is presented in the full version of the paper.

6 Correlation Bounds Against Set-Multilinear Polynomials

Our correlation bound for set-multilinear polynomials follows from an instantiation of the
following theorem.

» Theorem 38. Let d < n be an integer. Let Ext : {0,1}%/4 x {0,1}?"/4 — {0, 1}F—2loe(1/¢)
be a strong linear seeded (k,e)-extractor with seed length 2n/d created from the Leftover

Hash Lemma [16], and let x some nontrivial additive character of Fonsa. Define ExtFFMy :
{0,1}+2n/d — 10,1} to be

d
ExtFFMy (X, W) = (H Ext(X;, W)) .
i=1
Let g : {0,1} — {0,1}"™ be a function, and let Sy,...,Sq C [n/d] be subsets of size > k such
that for any restriction p created by arbitrarily fizing all bits in W and outside S; in X; for
each i, g|, always becomes set multilinear in X1,...,Xq. We then have

corr(ExtFFMy, g) < de + (d — 1) (21352 + 5) .
Proof. For brevity, we let f := ExtFFMy in this proof. We will first split the correlation
expectation into first randomizing over all restrictions p of the bits in X outside of S1, ..., Sy,
then over the seed W, and then over the remaining live variables denoted by the S;, which
we denote X1lp,...,Xq|,. Now let W, be the set of seeds w such that Ext(X;|,,w) ~. Uy
for all 7. As Ext is strong-seeded, it follows by a union bound that W, cover all but a de
fraction of seeds. Thus one can write

corr(f,g) = [Ex (1) o)

< Ew,, |Ex(—=1)fle(X:W)+gl, (X, W)

< de +E B, [Ex (—1)/ 1Kol ()| 9
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Now fix a partial assignment p and seed w € W,. For brevity, let f(-) := f|,(-,w), and
similarly for ¢’. By assumption, ¢’ is set-multilinear over X We now apply a similar
argument showing up in [3]. Let o be a map taking linear forms Zie[n/d] ¢iXa; in X4 to
its vector of coefficients (¢;) € Fg/d. Note that by this definition, for any linear form ¢(X;),
(U(Xq), Xa) = £(Xq). Letting e(x) = (—1)*. We then see

EX(_l)f/(X)-‘rgl(X)‘ = ‘Exe(f(Xi) + Z gi(X ;) +gd(Xd))’
i€[d—1]

< Ex, EXde(<a(f(Xi)+ Z gi(X—i))7Xd>+gd(X—d)>‘
ield—1]
< Profa(7(0+ > gi(X) =0 (6)
- icld—1]

where we used the facts that f’ is linear in X4 (as Ext here is a linear seeded extractor),
ga(X_4) is independent of X4, and linear forms are perfectly unbiased if their coefficient
vector is nonzero. We now repeatedly use the simple inequality that for a linear map
h:F5 — F5 and a € F§, Pr,[h(z) = a] < Pr,[h(z) = 0] as follows.

IA
=
=
L'—S
| — |
Q
/N
)
>
_|_
M7
S
>
L
~
I
| S

IN A

Pr [a(f'(X)) =0] (8)

Xia-1]

To analyze this probability, we state a lemma whose proof is deferred to the full version.
» Lemma 39. For a linear form 0(Xg), a(¢(Xq)) = 0 if and only if £(Xq) = 0 for all Xq4.

Therefore, by Lemma 39,

d
Pr [a(f (X)) =0]= Pr l\fXd,x <H Ext(Xi|p,w)> = o] ,

Xia—1] Xia—1]

Clearly if Hf:_ll Ext(X;|,, W) = 0, f’ becomes identically zero. When this doesn’t happen, the
function becomes of the form x(c - Ext(Xg|,, w)) for some nonzero ¢ € Fy./a. We now claim
that there must exist some Xg|, such that x(c- Ext(Xg|,,w)). Notice that for exactly 27/4~1
values of Y, x(cY) = 0. As w € W, the probability that a random Xg|, has Ext(X4,,w)
hit one of these values must be > 1/2 — & > 0, proving the claim. Therefore, in order for
a(f'(X)) =0, it is necessary that Hf;ll Ext(X;|,, W) = 0. Therefore,
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Pr [a(f/(X)) =0 < Pr

d—1
[ Ext(xil,,w) = o]

Xa-1) Xa-1 |7
d—1
< Zlf(f[Ext(Xi\pw) =0
=1 .

1
S (d o 1) (2k—210g(1/a) + E)

Stringing the above with inequalities (5), (6), and (8), we find

1
corr(ExtFFMy, g) < de + (d — 1) <2k€2 + 5) . |

As a very nice application of this structural theorem, we show that we can achieve
exponentially small correlation against n®-degree polynomials which are set-multilinear
over some partition of the input into up to n!=9M) parts.

» Corollary 40. Let g be a degree < d polynomial which is set-multilinear over an arbitrary
partition (Ay, ..., Ac) of X into ¢ parts. Then

corr(ExtFFMy, g) < 27 %(n/ed),

Proof. For each i € [n/d], define S; to be the largest set among {X; N Ay,...,X; N A}
(arbitrarily pick one if there are ties). Notice that the sets {X; N A}, partition X,
and |X;| = n/d. Therefore, we know that each |S;| > "T/d = 25. We now claim that any
restriction p formed by arbitrarily fixing all the bits in X; which are outside S;, for each ¢,
will make g|, set-multilinear over (Xi,...,Xq). Assume for the sake of contradiction there
existed some monomial in g|,(X) that contained 2 variables from some X;. Since S; C X,
and S; N X, = 0 for j # i, both of these variables had to have come from S;. But note that
S; = X; N A, C Ay for some ¢, and we know no monomial has 2 terms from the same A; by
our assumption of g. This yields our desired contradiction.

Therefore, we can apply Theorem 38 on the sets (S;) with k = n/cd and e = 271%/¢ to
deduce that

corr(f, g) < d2—.1n/cd + (d _ 1)(2—.8n/cd + 2—.1n/cd> _ Z—Q(n/cd). <
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