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Abstract

We establish new correlation bounds and pseudorandom generators for a collection of computation

models. These models are all natural generalization of structured low-degree F2-polynomials that

we did not have correlation bounds for before. In particular:

We construct a PRG for width-2 poly(n)-length branching programs which read d bits at a time

with seed length 2O(
√

log n) · d2 log2(1/ε). This comes quadratically close to optimal dependence

in d and log(1/ε). Improving the dependence on n would imply nontrivial PRGs for log n-

degree F2-polynomials. The previous PRG by Bogdanov, Dvir, Verbin, and Yehudayoff had an

exponentially worse dependence on d with seed length of O(d log n + d2d log(1/ε)).

We provide the first nontrivial (and nearly optimal) correlation bounds and PRGs against size-

nΩ(log n) AC0 circuits with either n.99 SYM gates (computing an arbitrary symmetric function)

or n.49 THR gates (computing an arbitrary linear threshold function). This is a generalization of

sparse F2-polynomials, which can be simulated by an AC0 circuit with one parity gate at the

top. Previous work of Servedio and Tan only handled n.49 SYM gates or n.24 THR gates, and

previous work of Lovett and Srinivasan only handled polynomial-size circuits.

We give exponentially small correlation bounds against degree-nO(1)
F2-polynomials which are

set-multilinear over some arbitrary partition of the input into n1−O(1) parts (noting that at n

parts, we recover all low degree polynomials). This vastly generalizes correlation bounds against

degree-d polynomials which are set-multilinear over a fixed partition into d blocks, which were

established by Bhrushundi, Harsha, Hatami, Kopparty, and Kumar.

The common technique behind all of these results is to fortify a hard function with the right type

of extractor to obtain stronger correlation bounds for more general models of computation. Although

this technique has been used in previous work, they rely on the model simplifying drastically under

random restrictions. We view our results as a proof of concept that such fortification can be done

even for classes that do not enjoy such behavior.
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1 Introduction/Outline of Results

Many central questions in complexity theory revolve around proving limitations of various

computational models. For example, there are research programs which seek lower bounds

against constant depth circuits, low degree polynomials over F2, and perhaps most famously

the complexity class P.
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Usually, lower bounds against a simple class of n-bit Boolean functions C is established

by demonstrating an explicit function f such that no g ∈ C can compute f on every input.

This is referred to as worst-case hardness. However, we may not be satisfied with this in

practice and stipulate that no g ∈ C can even approximate f . After all, if there exists a g

that agrees with f on all but one point, the difference may be impossible to detect in practice.

Furthermore, establishing average case hardness against C can allow us to create PRGs

against C via the “hardness to randomness” framework introduced by Nisan and Wigderson

[24], as well as show hardness results against related function classes, like the majority of

functions in C. This average-case hardness statement is exactly what the study of correlation

bounds capture.

To formally define this, let D a distribution over {0, 1}n. Define the correlation of two

Boolean functions f, g : {0, 1}n → {0, 1} over D to be

corrD(f, g) = |Ex∼D[(−1)f(x)+g(x)]|.
We will usually be concerned with D = Un, the uniform distribution, and should be assumed

so if no distribution D is specified. Notice that this quantity is a real number in [0, 1].

For intuition, note that if f = g or f = 1 − g, the correlation is 1, whereas if f and g

only match on about half the inputs, the correlation becomes small. This fact allows us

to observe correlation is the right notion, as corr(f, g) being small implies that g cannot

predict f much better than a coin flip. For a function f and a function class C, we can

define corr(f, C) = maxg∈C corr(f, g). Hence the notion of f being average-case hard for C is

captured by corr(f, C) being small.

In this paper, we are most interested in the case C is the class of low degree F2[x1, . . . , xn]

polynomials. Establishing correlation bounds against low degree F2 polynomials is an

extremely interesting and central question in complexity theory, as it is either necessary or

sufficient to understand a plethora of other problems, some of which concern communication

protocols, matrix rigidity, and PRGs for circuits. See Viola’s survey [30] for a detailed

exposition on this rich program.

Unfortunately, there is a “log n-degree barrier” for PRGs and correlation bounds against

low degree polynomials. Current PRGs and correlation bounds are asymptotically tight

for constant degree polynomials, but become trivial at degree log n [29]. Getting nontrivial

PRGs (or even correlation bounds) against log n-degree polynomials has been a tantalizing

and longstanding open problem.

Towards breaking this barrier, researchers have shown strong correlation bounds for

structured subsets of low degree F2-polynomials (such as sparse polynomials [20, 26], tensors

[3], small-read polynomials, and symmetric polynomials [4]) with the hope of being able to

generalize them. In this work, we establish new correlation bounds and PRGs for computation

models generalizing some of these polynomials, namely width-2 branching programs reading

d bits at a time, AC0 containing a small number of arbitrary symmetric or linear threshold

gates, and set-multilinear polynomials.

Interestingly, all of these correlation bounds are obtained by taking a function hard

for a more specific class of polynomials, and then fortifying it with a well suited extractor.

Although such a fortification technique is not new and has been used for establishing stronger

lower bounds for formulas [18, 8], they usually rely on the fact that upon randomly fixing

a subset of variables of a formula, there are extremely few possibilities for the resulting

function. Our work shows that extractor fortification is a much broader technique that can

strengthen lower bounds against function classes even if they do not simplify greatly under a

random restriction. In particular, our correlation bounds demonstrate extractor fortification

can work if the function class, after a random restriction, has low communication complexity

or good algebraic structure.
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Inspired by this, we would like to show that extractors will always strengthen correlation

bounds, no matter what the proof of the bound is. At a first glance, this may feel intuitive.

However, due to technical reasons, this seems challenging to establish.

The remainder of this section is devoted to introducing and motivating each computational

model studied, surveying prior work in the topic, and stating all key results proven.

1.1 Better Bounds and PRGs Against AC0 with More {SYM, THR}
Gates

Our knowledge of hardness and PRG results for AC0 is far more developed than that of

TC0. Our state of the art PRGs for AC0 is Lyu’s construction [22], which ε-fools polysize

AC0 circuits with seed length Õ(logd−1(n) log(n/ε)), whereas the current best PRG of

Hatami, Hoza, Tal, and Tell which (2−nδ

)-fools size- O(n1+¶) TC0 circuits have seed length

O(n1−¶) [15]. Due to this stark contrast in parameters, it is natural to gradually work

upward from AC0 by allotting a budget of SYM (calculates an arbitrary symmetric function)

or THR (calculates an arbitrary linear threshold function) gates in the circuit. This approach

has been explored for more than a decade [28, 20, 26], building upon the study of PRGs for

{SYM, THR} ◦ AC0 circuits pioneered by Luby, Velicković, and Wigderson [21]. This context

explains why this circuit class a compelling generalization of sparse polynomials (which can

be written as a small-size parity of ands). All the mentioned works use the following function

introduced by Razborov and Wigderson in 1993 [25] (all arithmetic is over F2).

RWm,k,r(x) =

m∑

i=1

k∏

j=1

r∑

ℓ=1

xijℓ (1)

Most recently, Servedio and Tan [26] use RWm,k,r to uncorrelate against constant-depth

size-nO(log n) AC0 circuits whose top gate is {SYM, THR} (denoted as {SYM, THR} ◦ AC0).

Their explicit bound is

corr
(

RW√
n

log n ,log n,
√

n
log n

, {SYM, THR} ◦ AC0
)

f 2−Ω(n.499).

Via techniques used in [20], this can be translated to correlation bounds against AC0 circuits

with up to n.499 SYM gates or n.249 THR gates. As can be surmised by the repeated

occurrences of n.499, the strength of the correlation bound dictates how many {SYM, THR}
gates we can afford in our budget.

We show that RW is just one of many functions from a general class of hard functions with

small correlation against {SYM, THR} ◦ AC0 circuits. For functions f : ({0, 1}r)k → {0, 1}
and g : {0, 1}m → {0, 1}r, denote f ◦ gk(x1 . . . , xk) := f(g(x1), . . . g(xk)).

▶ Theorem 1 (informal). Let g be computable by a size nO(log n) {SYM, THR} ◦ AC0 circuit.

Let f be average-case hard against multiparty protocols1, and let Ext be a suitable extractor.

Then

corr(f ◦ Ext.01 log n, g) f 2−Ω(n.999).

To our knowledge, this theorem gives the first context where generically precomposing

with an extractor boosts correlation bounds whose proof does not rely on simplification under

random restriction (indeed parity does not simplify under restriction and is contained in

1 the formal condition is any function with small “k-party norm” or “cube norm”, but this is currently
the only technique we know that establishes average case hardness against multiparty protocols.

ITCS 2025
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Table 1 Correlation bounds against {SYM, THR} ◦ AC0
d circuits and the PRGs that follow via

the [24] framework. In all previous work, the “hard” function used was the RW function, which was

first considered by Razborov and Wigderson [25]. Our work uses a better suited function. This table

is an extension of the one found in [26].

Circuit type Circuit size S Correlation bound PRG seed length

[28] {SYM, THR} ◦ AC0 nc log n n−cd log n 2O(
√

log(S/ε))

[20] SYM ◦ AC0 nc log log n exp(−n0.999) 2
O

(
log S

log log S

)
+ (log(1/ε))2.01

[20] THR ◦ AC0 nc log log n exp(−n0.499) 2
O

(
log S

log log S

)
+ (log(1/ε))4.01

[26] {SYM, THR} ◦ AC0
d nc log n exp(−Ω(n0.499)) 2O(

√
log S) + (log(1/ε))4.01

This work {SYM, THR} ◦ AC0 nc log n exp(−Ω(n0.999)) 2O(
√

log S) + (log(1/ε))2.01

{SYM, THR} ◦ AC0}). Previously, extractors have only been used to boost correlation bounds

for classes that heavily simplify under random restriction [18, 8].2 Our theorem states that

extractors can still boost correlation bounds, even if they were proven using communication

complexity rather than random restrictions.

Furthermore, our theorem distills out the reason why RW was so effective as a hard

function. Quantitatively, we can instantiate the template with a suitable extractor to obtain

a new hard function with nearly-optimal correlation bounds.

Due to our strengthened correlation bounds, we can now get correlation bounds and

PRGs against size-nO(log n) AC0 circuits with up to n.999 SYM gates or n.499 THR gates.

Prior to this, no nontrivial correlation bound or PRG was known to handle such large size

and number of {SYM, THR} gates ([20] could handle the same number of {SYM, THR} gates

but only for nO(log log n)-size circuits, and [26] could handle the same size circuits, but only

n.499 SYM or n.249 THR gates).

Even for {SYM, THR}◦AC0 circuits which have only one {SYM, THR} gate, our correlation

bounds yields improved PRGs whose seed length is 2O(
√

log S) + (log(1/ε))2.01, which has a

better dependence on ε, than previous work (see Table 1). In fact, since the best correlation

bound one can hope for is 2−Ω(n), this dependence is almost optimal under the Nisan-

Wigderson framework, and an alternative approach is needed to reach the optimal dependence

of log(1/ε). Since any log n-degree F2 polynomial can be expressed as a SYM ◦ ANDlog n

circuit of size nlog n, any improvement of the dependence of the seed length on S would give

nontrivial PRGs for log n-degree polynomials, a breakthrough result.

1.2 Much Better PRGs Against Width-2 Branching Programs Reading
d Bits at a Time

Usually, one constructs PRGs for natural computational models, with the idea that we can

drastically reduce the randomness we use if the randomized algorithm we are running can be

simulated by such a model. Low degree polynomials is an extremely natural mathematical

model with applications to circuit complexity, but some may not believe it is well grounded as

2 There have been uses of extractors as a hard function against classes that do not simplify under
restriction, like DNFs of Parities [9] and strongly read-once linear branching programs [12, 19, 7].
However they directly establish a correlation bound against the extractor rather than amplify a weaker
hard function by precomposing with an extractor.
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a computational one and thus not worth finding a PRG for. However, the work of Bogdanov,

Dvir, Verbin, and Yehudayoff [5] showed the beautiful connection that PRGs for degree d

polynomials are also PRGs against a particular model described as width-2 length-poly(n)

branching programs which read d bits at a time.

▶ Definition 2 ((d, ℓ, n)-2BP ([5], adapted)). A (d, ℓ, n)-2BP (or more colloquially a width-2

length-ℓ branching program over n bits which reads d bits at a time) is a layered directed

acyclic graph, where there are ℓ layers and each layer contains two nodes, which we label by

0 and 1. Each vertex in each layer j is associated with an arbitrary d-bit substring x|v of

the input x. Each node in layer j has 2d outgoing edges to layer j + 1 that are labelled by

all possible values in {0, 1}d. On input x, the computation starts with the first node vstart

in the first layer, then follows the edge labelled by x|vstart
onto the second layer, and so on

until a node in the last layer is reached. The identity of this last node is the outcome of the

computation.

Such branching programs are a well motivated computation model which cover computa-

tion with only one bit of usable memory, low degree polynomials, and small width DNFs.

The survey of unconditional PRGs by Hatami and Hoza refer to this model as a compelling

computational model that places low degree polynomials in the computational landscape [14].

Unfortunately, there is a “log n-degree barrier” for PRGs and correlation bounds against

low degree polynomials. Current PRGs and correlation bounds are asymptotically tight

for constant degree polynomials, but become trivial at degree log n, as can be seen by

the current best known PRG for degree-d polynomials by Viola which has seed length

O(d log n + d2d log(n/ε)) [29]. Getting nontrivial PRGs (or even correlation bounds) against

log n-degree polynomials has been a tantalizing and longstanding open problem, and thus

PRGs for (d, poly(n), n)-2BPs also seemingly appeared to inherit this “d = log n barrier” due

to the reduction result of [5].

In this work, we construct PRGs against (d, poly(n), n)-2BPs with exponentially better

seed length, thereby giving nontrivial PRGs even in the regime d = n1−o(1). Define a

d-junta to be a function ϕ : {0, 1}n → {0, 1} which is solely dependent on d input bits

(i.e. can be written as ϕ′(xi)i∈S for some subset S ¢ [n] of size d). To get our shortened

seed length, we evade the log n-degree barrier by instead showing the equivalence between

PRGs for (d, poly(n), n)-2BPs and PRGs for the XOR of poly(n) many d-juntas (denoted

as JUNTA
·poly(n)
n,d ). This class is already interesting in its own right, as it can be seen

as a generalization of sparse F2-polynomials and combinatorial checkerboards (defined by

Watson [32] and also studied by Gopalan, Meka, Reingold and Zuckerman [11]), as well as a

specific class bounded collusion protocols studied by Chattopadhyay et al. [6]. However, we

are not aware of any literature studying JUNTA·m
n,d specifically.

Our main technical contribution is strong correlation bounds for JUNTA
·poly(n)
n,d . In

particular, we show the following.

▶ Theorem 3. There exists an explicit function f such that

corr(f, JUNTA
·poly(n)
n,d ) f exp

(
− n

d2O(
√

log n)

)

By combining this with the “hardness-to-randomness” framework of Nisan and Wigder-

son [24], we construct a PRG of seed length 2O(
√

log n)d2 log2(1/ε). This is only a quadratic

factor away from optimal dependence on d and ε. Improving the dependence on n would

be a breakthrough, since if we set n′ = 2
√

log n, a (d, n, poly(n))-2BP can simulate any

log n′-degree polynomial over x1, . . . xn′ , and so having seed length o(n′) would effectively be

breaking the log n-degree barrier for F2-polynomial PRGs.

ITCS 2025
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Interestingly enough, by combining an “simplification under restriction” approach pion-

eered by Ajtai and Wigderson [1] with a PRG for sparse F2-polynomials by Servedio and

Tan [27], we are able to construct a PRG against JUNTA
·poly(n)
n,d , and thus (d, poly(n), n)-

2BPs, with seed length d2O(
√

log(n/ε)). This gives us an optimal dependence on d, but an

exponentially worse dependence on ε. This suggests perhaps with a combination of these

two approaches, one might be able to achieve seed length 2O(
√

log n)d log(1/ε).

1.3 Near-Optimal Bounds Against High Degree Set-Multilinear
Polynomials

As explained earlier, a central open question in complexity theory is to establish better-than-

O(1/
√

n) nontrivial correlation bounds against Ω(log n)-degree polynomials. In order to

make progress on this question, it is natural to consider structured low-degree F2-polynomials.

This is what the work of Bhrushundi et al. does [3].

Define a polynomial p : {0, 1}n → {0, 1} to be set-multilinear over a partition X =

(X1, . . . , Xd) of the input bits if every monomial contains at most one variable from each

Xi (this is slightly more general than the usual definition of exactly one). The work of

Bhrushundi et al. [3] prove that a random degree d set-multilinear tensor has exponentially

small correlation against generic degree d/2 F2-polynomials for d = Ω(n). Towards making

this correlation bound explicit, they defined FFM(X1, . . . , Xd) = lsb(X1 · X2 · · · Xd), where

multiplication is done by treating the Xi as field elements, and lsb outputs the least significant

bit of the string. Bhushrundi et al. were able to give exponentially small correlation bounds

against polynomials up to degree o(n/ log n) which are set-multilinear over the fixed partition

(X1, . . . , Xd). However, this leaves more to be wanted. The partition with respect to which

the polynomial is set-multilinear over needing to be fixed and dependent on FFMd feels like

an extremely strong and asymmetric condition. Can we uncorrelate against degree < d

polynomials set-multilinear over any equipartition of X into d parts? Can the parts be

unequal? Can we have more than d of them?

We show the affirmative to all the above questions. If we take ¶ > 0 to be an arbitrarily

small constant, we can obtain exponentially small correlation against degree < n¶ polynomial

for which there exists some partition of X into up to n1−¶ (not necessarily equal) parts such

that p is set-multilinear over it. Notice improving n1−¶ parts to n would be a breakthrough,

since all polynomials are set-multilinear over the n-partition of X = (x1, . . . , xn).

To do so, we fortify the hard function FFM with an extractor. Let Ext(X, W ) be a strong

linear seeded extractor (for each fixing of W , Ext(·, W ) is linear). For some parameter d,

define the function

ExtFFMd(X1, . . . , Xd, W ) := lsb(Ext(X1, W ) · Ext(X2, W ) · . . . · Ext(Xd, W )),

where multiplication is done over a finite field, and lsb outputs the least significant bit of

the string. First note that ExtFFMd(X1, . . . , Xd, W ), for a fixed W , is set-multilinear over

X1, . . . , Xd. Hence our intuition that set-multilinear polynomials might correlate the most

with the hard function is preserved in ExtFFM as well. Using ExtFFM, we are able to obtain

correlation bounds against the more intuitive notion of set-multilinear polynomials, where

the structure of the partition does not matter. This gives more leeway since now if we want

to implement this approach towards correlation bounds against low-degree polynomials, there

is a larger class of set-multilinear polynomials that we can reduce generic polynomials to.
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2 Technical Overview Of the Results

In this section, we give the overview of the proofs of the main results we covered above.

2.1 Stronger Correlation Bounds Against {SYM, THR} ◦ AC0

We focus on showing stronger correlation bounds against {SYM, THR} ◦ AC0, since the

subsequent arguments turning this into PRGs against AC0 with a few {SYM, THR} gates are

standard. The blueprint behind this argument follows the “simplification under restrictions”

approach of previous works, but most similarly of Tan and Servedio [26]. A random restriction

is a random partial assignment where for each variable, it is left unfixed (or “alive”) with

probability p, and is otherwise set to a uniform bit. [26] shows that under a random restriction,

the hard function RWm,k,r maintains integrity and uncorrelates against multiparty protocols,

while the {SYM, THR}◦AC0 simplifies to a short multiparty protocol. However, the roadblock

met in [26] preventing a correlation bound of 2−Ω(n) and only giving one of size 2−Ω(n.499) is

due to parameters in RWm,k,r being in contention with each other. To elucidate, if n is the

input size, then we must have mkr = n. Via the analysis done in [26], the correlation bound

ends up being in the form of 2−Ω(m) + 2−Ω̃(r), which forces any established correlation bound

to be at best 2−Ω(
√

n).

To understand why both conflicting terms show up, we give a quick overview of the

argument of [26]. First, RWm,k,r (as defined in Equation (1)) can be thought of as a fortified

version of the generalized inner product, GIPm,k(x1, . . . , xk) :=
∑m

i=1

∏k
j=1 xij , where each

variable is now replaced by the parity of r new variables. This is effective against random

restrictions, since as long as one of the r copies xij1, . . . , xijr survive the restriction, the

corresponding term xij in GIP will survive. They argue that after a random restriction Ä

is applied, the {SYM, THR} ◦ AC0 circuit simplifies to a short multiparty protocol, while

RWm,k,r|Ä is still capable of computing GIPm/2,k with high probability. Conditioning upon

this, previous results of Babai, Nisan, and Szegedy [2] show that GIPm/2,k has 2−Ω(m/2k)

correlation against these multiparty protocols, explaining the emergence of the 2−Ω(m) term

in the correlation. Conditioning on RWm,k,r|Ä being able to compute GIPm/2,k introduces an

additive error to the correlation corresponding to the probability RWm,k,r|Ä fails to simplify.

[26] bounds this by the chance all r copies of some variable xij becomes fixed by a restriction,

which will be (1 − p)r ≈ exp(−pr), explaining the occurrence of the 2−Ω(r) term in the

correlation.

In summary, the argument of [26] requires r needs to be large to strongly fortify the hard

function against random restrictions, while m needs to be large to have a stronger correlation

bound against multiparty protocols. However, with the constraint mr f n, we are forced to

compromise and reach the setting m = r ≈ √
n.

We now propose an abstraction of the hard function, which naturally yields a stronger

correlation bound. If we define ·m,r : ({0, 1}r)m → {0, 1}m to be

·m,r(x1, . . . , xm) =

(
r∑

i=1

x1i, . . . ,

r∑

i=1

xmi

)
,

we observe RWm,k,r = GIPm,k ◦ ·k
m,r(x1, . . . , xk) := GIPm,k(·m,r(x1), . . . , ·m,r(xk)). The

key insight is that our argument can be generalized to not just RW, but any function

f ◦ Extk := f(Ext(x1), . . . , Ext(xk))

ITCS 2025
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where f is average-case hard for multiparty protocols, and Ext is an oblivious bit-fixing

source extractor (OBF extractor). Informally, an oblivious bit-fixing source extractor for

min-entropy k is a function Ext such that if X is uniform over {0, 1}n and Ä is a restriction

which leaves g k bits alive, the output Ext(X|Ä) is close to uniform. Recall our approach first

applies a random restriction to simplify our circuit to a small multiparty protocol, which

we then deal with using GIP. If the random restriction leaves sufficiently many variables

alive with high probability, then f ◦ Extk should still behave like f due to Ext being an OBF

extractor. Since the circuit is now a multiparty protocol, the average-case hardness of f

gives us a correlation bound.

Notice in the RW construction and the setting of parameters m = r ≈ √
n, ·m,r is

an OBF extractor which maps n bits to
√

n bits. But this means the input to the outer

GIP function will only have ≈ √
n bits, and so the best correlation bound we can hope

to achieve is exp(−Ω(
√

n)). The restrictions used in the proof leave n.99 variables alive

with high probability, so intuitively we could hope that all these n.99 “bits of randomness”

could be preserved for GIP (or in general any f) rather than only
√

n, potetially resulting

in a exp(−Ω(n.99)) correlation bound alive. We do just this by using a much better OBF

extractor of Kamp and Zuckerman [17]. By making this intuition more formal using techniques

developed by Viola and Wigderson [31], we obtain 2−Ω(n1−O(1)) correlation bound. The idea

of replacing parities with better suited extractors has also appeared in previous work [18, 8].

2.2 PRGs for JUNTA·t

n,d
and (d, t, n)-2BPs

Our PRG construction blueprint can be briefly described as follows. We first establish

correlation bounds against JUNTA·t
n,d. We then put this through the Nisan-Wigderson

“hardness vs. randomness” framework to create a PRG against JUNTA·t
n,d. We then show

that PRGs which fool JUNTA·t
n,d actually fool (d, t, n)-2BPs, making the JUNTA·t

n,d PRG our

final construction. We first discuss why PRGs for JUNTA·t
n,d imply PRGs for (d, t, n)-2BPs,

and then discuss the techniques needed to show strong correlation bounds against JUNTA·t
n,d.

2.2.1 PRGs for JUNTA·t

n,d
=⇒ PRGs for (d, t, n)-2BPs

Adopting the exposition in [14], the previous work of [5] can be outlined as follows. Consider

a (d, t, n)-2BP B. By noticing that all transition functions in B are d-juntas, one can derive

that B(x) = B′(ϕ1, . . . , ϕ2t(x)), where B′ is a (1, t, 2t) branching program. By Fourier

expanding B′, this can be decomposed as

B(x) =
∑

S¢[2t]

B̂(S)(−1)
∑

i∈S
ϕi(x)

.

[5] shows that
∑

S¢[t] |B̂(S)| is bounded , so by linearity of expectation and the Triangle

Inequality, it suffices to fool the terms (−1)
∑

i∈S
ϕi(x)

. The approach in [5] makes the

observation that each ϕi, by virtue of being a d-junta, can be written as a degree d polynomial.

Consequently, a PRG for degree d polynomials will fool (d, t, n)-2BPs with seed length

O(d log n + d2d log(n/ε)). The issue here is that at d = log n, the seed length becomes

trivial.

However, we can notice that the F2-polynomial p(x) :=
∑

i∈S ϕi(x) has some additional

structure. If t = poly(n), p is the sum of only a polynomial number of d-juntas. If there was

a way to leverage this, and get a better PRG that fools JUNTA·t
n,d, then we might hope to

get nontrivial PRGs even in the regime d = Ω(log n).
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This observation already yields nontrivial PRGs for d = É(log n). Servedio and Tan [26]

provide a PRG fooling F2-polynomials with S terms with seed length 2O(
√

log S log(1/ε)).

Since each junta can be written as a polynomial with up to 2d terms, each g ∈ JUNTA
poly(n)
n,d

can be written as a polynomial with S = 2dpoly(n) terms, yielding a PRG with seed length

(2O(
√

d)+O(log n)) log(1/ε). Hence we get nontrivial seed length for d = o(log2 n). 3 However,

we proceed alternatively to get an exponentially better seed length.

2.3 The Nisan-Wigderson Framework and Correlation Bounds for

JUNTA
·poly(n)
n,d

We will once again use f ◦ Extk as our hard function4 to establish exponentially small

correlation bounds against the class, and then apply the Nisan-Wigderson [24] framework to

construct the PRG. The latter portion is straightforward, so we focus on establishing the

correlation bounds.

Let g ∈ JUNTA
·poly(n)
n,d . We first show that there exist a subset of variables, S, such that

upon arbitrarily fixing bits outside of this set, g can be expressed as a sparse F2 polynomial,

whereas each input block of f ◦ Extk heavily intersect S. Hence if we fix XS̄ and take the

correlation over S, each input block still maintains high min-entropy while g becomes a

sparse polynomial, which is a small SYM ◦ AC0 circuit. Since the hard function is also the

same, we can then apply techniques in the previous section to conclude.

2.4 Correlation Bounds against Set-Multilinear Polynomials

Recall that [3] has shown FFMd uncorrelates against any lower degree polynomial which

is set-multilinear over (X1, . . . , Xd). The key ingredient behind proving strong correlation

bounds against set-multilinear polynomials over arbitrary parititons is to first fortify each

input block with extractors, and instead consider ExtFFMd. This allows us to establish

the following structural lemma, which intuitively states that even if you do not start out

with a polynomial that is set-multilinear over (X1, . . . , Xd), if not too many bits in each

input block can be restricted to 1s such that the resulting function is set-multilinear over

(X1, . . . , Xd) induced by the live variables in each block, exponential correlation bounds can

still be obtained.

▶ Theorem 4. Let g be a polynomial of degree < d. Let S1, . . . , Sd ¢ [n/d] be subsets, and let

Ä denote the restriction created by fixing the bits in Xi whose index is outside Si to 1 for each

i ∈ [d]. If the restricted function g|Ä(X1, . . . , Xd) becomes set-multilinear in (X1, . . . , Xd),

then have

corr(ExtFFMd, g) f 2−Ω( n
cd ).

To explain the proof at a high level, if the sets Si we leave alive aren’t too small, then our

strong extractor (conditioned on a good seed) will keep each block Ext(Xi, W ) approximately

uniform, and since the restricted function g|Ä is now set-multilinear over (X1, . . . , Xd) we

may use a similar approach as [3] to prove the theorem.

It turns out that via a combinatorial argument, one can show that polynomials which are

set-multilinear over a large number of blocks can be turned into polynomials set-multilinear

over (X1, . . . , Xd) by fixing not too many bits per input block Xi. The correlation bounds

then follow by the structural lemma.

3 it is actually the case that a PRG from [21] already gets nontrivial seed length in the same regime,
albeit with exponentially worse dependence in ε

4 we also precompose with parities in the formal argument
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3 Preliminaries

For positive integer n, [n] := {1, . . . , n} and
(

[n]
s

)
is the set of all subsets of [n] with |S| = s.

We denote e(x) := (−1)x.

3.1 Convention About Input Blocks

We will canonically fix a partition of bit strings into d contiguous blocks, each with n/d bits.

In particular, any X ∈ {0, 1}n can be written as X = (X1, . . . , Xd) where each Xi is the

n/d-bit substring. If a string Y ∈ {0, 1} is defined, Yi will be assumed to mean the length

n/d substring of Y contained in the ith input block, defined with respect to the canonical

partition. Also, we will denote X−i := (X1, . . . , Xi−1, Xi+1, . . . , Xd) to be the input with

the ith block removed.

For a string X ∈ {0, 1}, we may sometimes identify the n/d bit string Xi as an n-bit

string in the following way: the ith block is filled with X, and all other blocks are filled

with 0s. Hence, if we interpret bit strings as elements of Fn
2 , and we have X, Y ∈ F

n
2 , the

expression X + Yi is well defined.

For parameters k, d f n and two functions f : ({0, 1}m)k → {0, 1} and g : {0, 1}n/k →
{0, 1}d, we will define

f ◦ gk = f(g(X1), . . . , g(Xd)).

3.2 Finite Fields

We will be working with finite fields of characteristic 2. For the finite field over 2n elements,

F2n , we can naturally identify each element with an n-bit string.

▶ Definition 5 (character). A map Ç : F2n → F2 is called an additive character if for all

x, y ∈ F2n , Ç(x + y) = Ç(x) + Ç(y). It is nontrivial if it is not the zero function.

Since F2n is an n-dimensional vector space, we see the valuations on n basis vectors uniquely

define the character. Consequently there are 2n such characters. Notice we can conveniently

characterize all characters either by Çc(x) = ïx, cð, or by fixing some character Ç, and then

defining Çc(x) := Ç(c · x). This can be seen by verifying these maps are characters, are

distinct, and that there are 2n of them (the latter is obvious since there are 2n values of c).

3.3 Models of Computation

▶ Definition 6 (F2-polynomials). An F2-polynomial (or polynomial for short) is a function

of the form p(x) :=
∑

S¢[n] cS

∏
i∈S xi for some ci ∈ F2 (all arithmetic here are over F2).

▶ Definition 7 (set-multilinearity). An F2-polynomial p is set-multilinear over a partition

(X1, . . . , Xd) of variables if every monomial of p contains at most one variable from each Xi.

Notice that all polynomials are trivially set-multililinear over (x1, . . . , xn).

▶ Definition 8 (junta). Define the class JUNTAn,k to be a function ϕ : {0, 1}n → {0, 1} which

is solely dependent on k input bits (i.e. can be written as ϕ′(xi)i∈S for some subset S ¢ [n]

of size k). Define JUNTA·t
n,k to be the class of functions which is the parity of t k-juntas.

▶ Definition 9 (k-party NOF protocol). A boolean function f : ({0, 1}n/d)d can be computed

by a k-party NOF protocol with c bits of communication if on input X = (X1, . . . , Xd), d

players, can take turns writing a bit on the board, where player i’s bit can only depend on

X−d and the other bits on the board, and the cth bit written is f(X). We denote this class

of functions to be Πc
k.
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Circuits

We measure the size of a circuit by the total number of wires (including input wires) in it.

AC0
d are depth d circuits with unbounded fan-in whose gate set is {AND, OR, NOT}. SYM is

a gate which computes an arbitrary symmetric function, and THR is a gate which computes

an arbitrary linear threshold function. In general, if we have a gate G, a subscript Gk will

refer to its fan-in (in this case, G is fixed to have fan-in k).

▶ Definition 10 ((d, C)-tree). Let d be an integer and C a computational model (e.g. a circuit

class). A function is computable by a (d, C)-tree if it is computable by a depth t decision tree

with C functions as its leaves. That is, there exists a depth d decision tree T such that for

every path Ã in T , F |Ã ∈ C.

3.4 Probability

We will denote Um to be the uniform distribution over the finite set {0, 1}m. We will also

denote S ¢p T to be a random subset of T where each t ∈ T is added to S independently

with probability p.

▶ Definition 11 (k-wise uniform). Consider a distribution D over ({0, 1}n/d)d. We say that D

is k-wise uniform if for all subsets S = {i1, . . . , ik} ¢ [d] and all strings y1, . . . , yk ∈ {0, 1}n/d,

Pr
X∼D

[∀j, Xij = yj ] = 2−kn/d.

▶ Definition 12 (ε-close in distribution). Let D1 and D2 be distributions over {0, 1}n. We

say D1 ≈ε D2, or equivalently D1 is ε-close to D2, if for all S ¢ {0, 1}n,

| Pr
x∼D1

[x ∈ S] − Pr
x∼D2

[x ∈ S]| f ε.

3.5 Random Restrictions and Partial Assignments

A partial assignment or restriction is a string Ä ∈ {0, 1, ⋆}n. Intuitively, a ⋆ represents an

index that is still “alive” and hasn’t been fixed to a value yet.

We also define a composition operation on partial assignments. For two restrictions Ä1, Ä2,

define Ä1 ◦ Ä2 so that

(Ä1 ◦ Ä2)i =

{
Ä1

i Ä1
i ̸= ⋆

Ä2
i Ä1

i = ⋆.

Intuitively, one can see this as fixing bits determined by Ä1 first, and then out of the remaining

alive positions, fix them according to Ä2.

A random restriction is simply a distribution over restrictions. A common random

restriction we will use is Rp, the distribution where each index will be assigned ⋆ with

probability p, and 0, 1 each with probability 1−p
2 .

The main reason for defining restrictions is to observe their action on functions. Given

a restriction Ä and function f : {0, 1}n → {0, 1}, we define f |Ä : {0, 1}n → {0, 1} to be the

restricted function mapping f |Ä(x) := f(Ä ◦ x).

3.6 Pseudorandomness

Our work will involve working with pseudorandomness primitives, like pseudorandom gener-

ators (PRGs) and randomness extractors (or simply extractors).

ITCS 2025



68:12 New Pseudorandom Generators and Correlation Bounds Using Extractors

▶ Definition 13 (ε-PRG). A polytime computable function G : {0, 1}s → {0, 1} is an ε-PRG

for a subset F of functions {0, 1}n → {0, 1} if for all f ∈ F ,

|Ex∼Un [(−1)f(x)] − Es∼Us [(−1)f(G(s))]| f ε.

We also say that G ε-fools F . The parameter s is the seed length. In this paper, we

will use a PRG of [27] which ε-fools F2 polynomials with f S terms with seed length

2O(
√

log S) log(1/eps).

▶ Definition 14 (min-entropy). Let D be a distribution over {0, 1}n, and define supp(D) =

{y ∈ {0, 1}n : Prx∼D[x = y] > 0}. Define the min-entropy of D to be the quantity

− log

(
max

x∈{0,1}n
Pr

y∼D
[y = x]

)
.

It is helpful to note that if for a particular k and all y ∈ {0, 1}n, all probabilities Prx∼D[x =

y] f 2−k, then we know D has min-entropy g k.

▶ Definition 15 (Strong/Linear/Seeded Extractors). A (k, ε)-seeded extractor is a function

Ext : {0, 1}n × {0, 1}d → {0, 1}m such that for any D with min-entropy g k, we have for

X ∼ D and W ∼ Ud the following

Ext(X, W) ≈ε Um.

Ext is a strong seeded extractor if we also have

Pr
w∼Ud

[Ext(X, w) ≈ε Um] g 1 − ε

Ext is a linear seeded extractor if for every fixed W , Ext(·, W ) is linear over F2. The Leftover

Hash Lemma [16] allows us to construct a strong seeded (k, ε) extractor with seed length 2n,

Ext : {0, 1}n · {0, 1}2n → {0, 1}k−2 log(1/ε).

▶ Definition 16 (Oblivious Bit-Fixing Source Extractors). An (n, k) oblivious bit-fixing source

(or OBF) is a distribution D over {0, 1}n created by fixing some n − k of the bits, and then

filling in the remaining k indices with uniform and independent bits. An (k, ε) oblivious

bit-fixing source extractor (or OBF extractor) is a function Ext : {0, 1}n → {0, 1}m such that

for every (n, k) OBF D, we have that for X ∼ D,

Ext(X) ≈ε Um.

For any k >
√

n, Kamp and Zuckerman [17] allows us to construct (k, 2−Ω(k2/n)) OBF

extractors Ext : {0, 1}n → {0, 1}Ω(k2/n).

3.7 Correlation Bounds

We will need some tools and definitions from the literature of correlation bounds. We first

give a formal definition of correlation.

▶ Definition 17 (correlation). For two Boolean functions f, g : {0, 1}n → {0, 1}, and a

distribution D over {0, 1}n, define the correlation of f and g over D to be

corrD(f, g) = |Ex∼D(−1)f(x)+g(x)|.

If no distribution is mentioned, we always assume D = Un. Furthermore, for a subset of

functions C, we define

corrD(f, C) = max
g∈C

corrD(f, g).
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Viola and Wigderson defined a convenient quantity Rk, which is very useful in bounding

correlations against NOF protocols.

▶ Definition 18 (k-party Norm). For a function f : ({0, 1}n/k)k → {0, 1}, define the k-party

norm of f to be

Rk(f) := E
X

(0)
1 ,...,X

(0)

k
,X

(1)
1 ,...,X

(1)

k
∼Un/k

e


 ∑

¶∈{0,1}k

f(X
(¶1)
1 , . . . , X

(¶k)
k )


 .

This norm is useful due to the following theorem.

▶ Theorem 19 ([31]). Let f : {0, 1}n → {0, 1} be arbitrary, and let g be computable by a

d-party NOF protocol exchanging c bits. Then

Rd(f) f corr(f, g) f 2cRd(f)1/2d

.

We will also use the following theorem of Nisan and Wigderson, which allow us to translate

correlation bounds into PRGs.This version is seen in the survey of Hatami and Hoza [14]

▶ Theorem 20 ([24], [14, Theorem 4.2.2]). Let f : {0, 1}n → {0, 1}. Suppose h : {0, 1}r →
{0, 1} is ε-hard for f ◦ JUNTAr,k with respect to the uniform distribution. Then there exists

a PRG for f with seed length s = O(n
1

k+1 · r2/k) and error εn.

4 Nearly Optimal Correlation Bounds against {SYM, THR} ◦ AC0

We strictly improve upon the result [26] by proving a stronger correlation bound against

{SYM, THR} ◦ AC0 circuits. This immediately gives PRGs against this class with improved

seed length via the “hardness vs. randomness” framework [24] All previous work [28, 20, 26]

looked at the function introduced in [25] created by taking the generalized inner product of

parities. We present a new function comprised of field multiplication of extractors in order

to prove stronger correlation bounds. Let m, n be parameters, and define k := n/d. We now

prove the following result:

▶ Theorem 21. Let Ext : {0, 1}k → {0, 1}.2k.996

be a (k.998.2−.4k.996

) OBF-source extractor

(explicit ones exist due to [17]). Let f : ({0, 1}.2k.996

)d → {0, 1} be any function such that

corr(f, Πd
d) f 2−Ω(k.996/2d). Define f ◦ Extd : ({0, 1}k)d → {0, 1} to be the function

f ◦ Extd(X) := f(Ext(X1), . . . , Ext(Xd)).

Let g be any function implementable by a nO(log n)-size {SYM, THR} ◦ AC0 circuit, and let

m = .0005 log n. Then

corr(f ◦ Extm+1, g) f 2−Ω(n.995).

In particular, by instantiating this template, say, with Ext being the extractor of [17] and f

being either GIP [2] or FFM [10], we get explicit f ◦Extm+1. We also note by simple adjusting

of constants, we can get any 2−Ω(n1−ε) for constant ε > 0. This gives an improvement of the

correlation bound given in [26] of 2−Ω(n.499).

Proof. We follow the same approach as done in [26]. The uniform distribution can be

expressed as applying a random restriction, and then filling in the remaining bits uniformly.

For good random restrictions, we argue that g simplifies to a {SYM, THR} ◦ ANDm circuit.
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We then argue that even after the random restriction, f ◦ Extm+1 maintains its structural

integrity due to the extractor. We then finish the argument by using Hastad and Goldmann’s

connection between {SYM, THR} ◦ ANDm and NOF protocols, and the fact that f has small

correlation with (m + 1)-party protocols.

The proof for the simplification of g is the same as seen in [26] so we merely cite it here.

The only change is the tuning of parameters. Here is the lemma restated for our use.

▶ Lemma 22. Let g ∈ {SYM, THR} ◦ AC0
d with circuit size s = nÄ log n. Then for p =

1
48 (48 log s)−(d−1)

Pr
Ä←Rp

[g|Ä is not computed by (.001pk, {SYMs2 , THRs2} ◦ ANDlog s})-tree]

f s · 2−.001pk/2d

= 2−Ωd(pk)

Notice that for constant d this gives a bound of 2−Ω(n/polylog(n)), versus its use in [26] in

which a 2−Ω(
√

n/ log n) error was gained. We will see later that we can liberally set parameters

here because our hard function maintains integrity even after traversing down a path of size

n/polylog(n) (equivalent to randomly fixing n/polylog(n) bits), whereas the previous GIP

function could only withstand
√

n bits. This is result of using an OBF extractor with much

better parameters than simply taking the XOR of many copies.

The leaves of our tree is now much simpler class of circuits, but it is not simple enough.

Our correlation bounds can only handle circuits with fan in m = O(log n), but we currently

have fan in log s = O(log2 n). Fix a leaf ℓ of the tree, and let {C1, . . . , Cs2} be a collection

of subsets of [n] where Ci contains the f log s indices of the variables that feed into the ith

ANDlog s gate in the bottom layer. We now use the following basic fact, as in [20] and [26],

that there is a large subset of variables that minimally intersect with each Ci.

▷ Claim 23. A random L ¢q [n] (add each element to L with probability q) satisfies

Pr[∃i ∈ [s2] such that |Ci ∩ L| > m] f s2

(
w

m

)
qm.

Instantiating this claim with our parameter setting of m and s, and setting q = Θ(n−.001)

tells us

Pr[∃i ∈ [s2] such that |Ci ∩ L| > m] f 1

s
.

Hence there exists such an L = L(ℓ) such that restricting all bits outside L makes only f m

variables feed into each AND gate as desired.

To summarize, our restriction Ä is sampled by a distribution D specified by these three

steps.

1. We first perform restriction Rp,

2. and then randomly restrict f .001pk while walking down the depth-.001pk tree to a leaf

ℓ,

3. and then randomly restrict all the variables alive in this leaf that is not in the L(ℓ) set

that we showed existed

At the end of this process, we have by the union bound that with all but 2−Ω(−pk)

probability, g|Ä becomes a {SYMs2 , THRs2} ◦ ANDm circuit.
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We now observe what happens to f ◦Extm+1 under this restriction Ä. We claim f ◦Extm+1

retains its structure. Our wish is for at least k.998 bits in each block to survive. That way, we

will have a high entropy oblivious bit-fixing source fed into each extractor, and the function

will be able to continue to strongly uncorrelate with m-party protocols. In Step 1, we draw

a restriction from Rp. Notice the live variables are distributed like a set S ¢p [n]. We see

that by a simple Chernoff and union bound,

Pr
S←Rp

[
∃i ∈ [m + 1] such that |Xi ∩ S| <

pk

2

]
f (m + 1)2−Ω(pk)

Hence except for probability m2−Ω(pk) = 2−Ω(n1−o(1)), each block Xi will have g pk/2

live variables. Conditioned on this, when we follow Step 2 and perform a random walk down

the decision tree to a leaf, we will assign at most .001pk bits, so we are guaranteed that each

block Xi will contain at least .499pk live variables. Step 3 is to take set L(ℓ) and arbitrarily

restrict variables outside of it. We showed there exists an L(ℓ) which minimally overlaps with

the input variables to the ANDlog s gates, but we want it to simultaneously overlap heavily

with each block. That way most of the Xi will stay alive after restricting the bits outside

of L(ℓ) The existence of such an L(ℓ) can be established by “completing the probabilistic

method” started a few paragraphs above. Conditioning on good restrictions so far, let Yi

denote the variables that survived in Xi (hence |Yi| g .499pk). We see that

Pr
L¢q [n]

[
∃i ∈ [m + 1] such that |Yi ∩ L| <

.499pqk

2

]
f (m + 1)2−Ω(pqk).

Hence, the probability that L either intersects some Ci too much or some Yi too little will

happen with probability f 1
s + (m + 1)2−Ω(pqk) j 1. Thus there exists an L(ℓ) such that

restricting all variables outside of it will simultaneously simplify g to a {SYMs2 , THRs2} ◦
ANDm and also leave at least .499pqk

2 g .249k.999/polylog(n) k k.998 variables alive. Stringing

all three steps together, we know that except with probability 2−Ω(−pk), our random restriction

Ä reduces g to {SYMs2 , THRs2} ◦ ANDm, while simultaneously keeping g k.998 variables in

each Xi block alive.

We are now in the final phase of the argument where we now directly bound the correlation

against the simplified circuit. We first state the results that will convert our circuits to NOF

protocols.

▶ Theorem 24 ([13]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a size-s

SYM ◦ ANDm circuit. Then for any partition of the n inputs of f into m + 1 blocks, there is

a deterministic NOF (m + 1)-party communication protocol that computes f using O(m log s)

bits of communication.

▶ Theorem 25 ([23]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a

THR ◦ ANDm circuit. Then for any partition of the n inputs of f into m + 1 blocks, there is

a randomized NOF (m + 1)-party communication protocol that computes f with error µerr

using O(m3 log n log(n/µerr)) bits of communication.

We now need to show an average-case hardness result for f ◦ Extm+1|Ä against NOF

protocols. To do so, we will first calculate the k-party norm of f ◦ Extm+1|Ä.

▶ Lemma 26. Let Ä be a restriction which keeps g k.998 variables in each Xi alive. Then

Rm+1(f ◦ Extm+1|Ä) f Rm+1(f) + 4(m + 1) · 2−4k.996
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Proof. Now notice that

Rm+1(f ◦ Extm+1|Ä) = EX(0),X(1)e


 ∑

¶∈{0,1}m+1

f(Ext(X
(¶1)
1 |Ä), . . . , Ext(X

(¶m+1)
m+1 |Ä))


 (2)

By assumption of Ä, each X
(¶i)
i |Ä over uniform Xi is an OBF source with min-entropy k.998,

and so each Ext|Ä(Xi) ≈2−4k.996 U.2k.996 . Since all X
(b)
i for i ∈ [m + 1], b ∈ {0, 1} are mutually

independent, it follows by a hybrid argument that

(Ext|Ä(X
(b)
i |Ä)i∈[m+1],b∈{0,1} ≈2(m+1)2−4k.996 (U.2k.996)i∈[m+1],b∈{0,1}.

Therefore, we can upper bound Equation 2 by

E
(Y

(b)
i

)i∈[m],b∈{0,1}e


 ∑

¶∈{0,1}m+1

f(Y
(¶1)

1 ), . . . , Y
(¶m+1)

m+1 )


+ 4(m + 1)2−4k.996

f Rm+1(f) + 4(m + 1)2−4k.996

as desired. ◀

With this, we can show that f ◦ Extm+1|Ä uncorrelates against randomized multiparty

protocols.

▶ Theorem 27. Let g : {0, 1}n → {0, 1} be a Boolean function, and let Ä be a restriction such

that Xi|Ä has g k.998 live variables for each i, and g|Ä can be computed by an (m + 1)-party

NOF randomized protocol with with f c bits and with error µ. Then

corr(f ◦ Extm+1|Ä, g|Ä) f 2µ + 2c−Ω(k.996/2m).

This proof is deferred to the full version.

We now have all the ingredients to finish. Say Ä is good if Ä keeps g k.998 variables alive

in each block Xi and g|Ä is computable by {SYM, THR} ◦ ANDm. We have shown for Ä ∼ D,

this doesn’t happen only with probability 2−Ω(pk). If g|Ä has a SYM gate at the top, then

Theorem 24 says the SYM ◦ ANDm circuit can be computed by a deterministic NOF protocol

over X1, . . . , Xm+1 using O(m log s) bits. Plugging this in to Theorem 27 tells us

corr(f ◦ Extm+1|Ä, g|Ä) f 2m log s−Ω(k.996/2m) f 2−Ω(n.995).

If the top gate is a THR, use Theorem 25 with µerr = 2−n.997

to get that the circuit is a

randomized NOF protocol over X1, . . . , Xm+1 using O(m3 log n log(n/µerr)) = O(n.995) bits.

Plugging this into Theorem 27 gives us a correlation bound of

corr(f ◦ Extm+1|Ä, g|Ä) f 2n.995−Ω(k.996/2m) f 2−Ω(n.996).

In either case we get the same bound, so we can bound

corr(f ◦ Extm+1, g) = |EÄ∼DEX(−1)f◦Extm+1|ρ(X)+g|ρ(X)|
f 2−Ω(pk) + EÄ∼D[|EX(−1)f◦Extm+1|ρ(X)+g|ρ(X)||Ä is good]

f 2−Ω(pk) + 2−Ω(n.995) = 2−Ω(n.995).

The theorem is proved. ◀
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▶ Remark 28. We note that the original RW function instantiated with different parameters

can also get the same strengthened correlation bound. This requires a more nuanced analysis

than present in [26], and does not extend to general functions of the form f ◦ Extm+1 as it

relies on the specific structure of GIP and
⊕

.

To recap the argument for a size s circuit, we first use the multi-switching lemma to

reduce to a depth-2 circuit of fan-in log s. We then restrict more variables so that the fan-in

reduces to
√

log s. We then apply correlation bounds for
√

log s-party protocols to get an

error of exp(−n/2
√

log s). If one trusts that this error is the bottleneck in the argument, one

can imagine running through the above argument again with s = nΘ(1) to get a better error.

▶ Corollary 29. Let g(X) be a function implementable by a size s = nO(1)-size {SYM, THR}◦
AC0 circuit, and let m = 2

√
log n. Define k := n/(m + 1), and let Ext : {0, 1}k →

{0, 1}k/2O(
√

log n)

be a (k/2O(
√

log n), 2−k/2O(
√

log n)

)-extractor constructed from [17]. Then

corr(f ◦ Extm+1, g) f 2−(n/2O(
√

log s)).

This refinement will be useful for our correlation bounds against branching programs in

the next section. As the proof is extremely similar to the above, we defer the sketch to the

full version.

From Theorem 21, we derive the following two theorems as well.

▶ Theorem 30. There exists an ε-PRG against size-S {SYM, THR} ◦ AC0 circuits with seed

length s = 2O(
√

log S) + (log(1/ε))2.01.

▶ Theorem 31. There is an efficient ε-PRG which fools AC0[SYM, n.999, S] with seed length

2O(
√

log S) + (log(1/ε))2.01 and an ε-PRG which fools AC0[THR, n.499, S] with seed length

2O(
√

log S) + (log(1/ε))4.01.

The proofs of these theorems follow by applying the Nisan-Wigderson hardness to

randomness approach, as well as the decision tree bootstrapping idea of [20]. The details are

deferred to the full version of the paper.

5 PRGs against (d, poly(n), n)-2BPs

In this section, we use fortified hard functions to establish strong correlation bounds against

the XOR of juntas, JUNTA
·poly(n)
n,d . These are then pushed through the Nisan-Wigderson

“hardness vs. randomness” framework to create PRGs which can fool (d, poly(n), n)-2BPs.

We first establish the correlation bounds, and then we show that this implies our desired

PRG.

5.1 Correlation Bounds Against JUNTA
·poly(n)
n,d

This subsection is devoted to proving the following result.

▶ Theorem 32. Let m = d log n, let h be the hard function in Corollary 29 instantiated on

k := n/m bits, and let ·m : {0, 1}m → {0, 1} be the parity function on m bits. We then have

corr(h ◦ ·k
m, JUNTA·nc

n,d ) f exp

(
− n

d2O(
√

log n)

)

ITCS 2025
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Proof. Consider arbitrary g ∈ JUNTA·nc

n,d . We will show that there exists a subset T ¢ [n]

of variables such that upon fixing all variables outside T , g simplifies to a sparse polynomial,

while at least one input variable in each ·m stays alive. Write f =
∑nc

i=1 ϕi, where each ϕi

is a d-junta. Let Si ¢ [n] be the indices of the variables that ϕi depends on. Pick T ¢1/d [n].

For a fixed i, we can bound

Pr
T

[|T ∩ Si| g ℓ] f
∑

S¢Si

|S|=ℓ

Pr
T

[S ¢ T ] =

(
d

ℓ

)(
1

d

)ℓ

f exp(−Ω(ℓ log ℓ)) f 0.1n−c.

for ℓ = Θ(log n). Union bounding over all i, it follows that

Pr
Ä∼R1/d

[∃i, |T ∩ Si| g ℓ] < 0.1. (3)

Let X1, . . . , Xk be the input blocks of size m feeding into h. We can easily calculate

Pr
T

[∃i, Xi ∩ T = ∅] f k(1 − 1/d)m f k exp(−m/d) = 1/m = o(1). (4)

Union bounding Equation (3) and Equation (4), it follows that there exists a subset T ¢ [n]

that simultaneously intersects at most ℓ variables alive in each junta ϕi, and intersects at

least one variable in each Xi. By pruning out elements, we can assume WLOG that there is

exactly one variable in each Xi.

Since a function over b bits can be written as an F2-polynomial with up to 2b terms, it

follows for any restriction Ä with Ä−1(⋆) = T , ϕi|Ä is a polynomial with 2ℓ = nΘ(1) terms.

Therefore, f |Ä is a polynomial with nΘ(1) terms as well, which can be written as a nΘ(1)-sized

PAR ◦ AND circuit. Furthermore, we know that h ◦ ·k
m|Ä is equivalent to h up to negations of

the inputs. As SYM◦AC0 is invariant under shifts of the input, we can appeal to Corollary 29

and observe

corr(h ◦ ·k
m, g) = |EX(−1)h◦·k

m(X)+g(X)|

f EX
T

|EXT
(−1)h◦·k

m(XT ,XT̄ )+g(XT ,XT̄ )| f exp
(

−(n/d)/2O(
√

log n)
)

◀

5.2 Constructing and Analyzing the PRG

With this correlation bound in hand, we can construct good PRGs against the XOR of juntas

using the Nisan-Wigderson framework.

▶ Corollary 33. There is an ε-PRG for JUNTA·nΘ(1)

n,d with seed length s =

2O(
√

log n)d2 log2(1/ε))

The proof is a straightforward application of the Nisan-Wigderson framework that we

defer to the full version.

Fooling the parity of juntas actually allow us to fool arbitrary functions of juntas as long

as the function has low Fourier L1 norm.

▶ Theorem 34. Let G be an ε-PRG for JUNTA·m
n,d , and let f : {0, 1}m → {0, 1}. Then G is

an ε · L1(f)-PRG for f ◦ JUNTAn,d.

We also defer this proof to the full version.

Finally, as an application, we show PRGs against (d, t, n)-2BPs, branching programs over

n bits with width 2, length t, and reads d bits at a time. We will use the fact that width-2

branching programs which read one bit at a time have low Fourier L1 norm (a proof can be

found in [14]).
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▶ Lemma 35. If f is a (1, t, n)-2BP, then L1(f) f (t + 1)/2.

We now use the fact that a (d, t, n)-2BP can be represented by a normal width-2 branching

program acting on juntas to prove that the PRG from Corollary 33 fools (d, t, n)-2BPs.

▶ Theorem 36. There exists an ε-PRG for (d, nc, n)-2BPs with seed length s = 2O(
√

log n) ·
d2 log2(n/ε).

Proof. Given a (d, nc, n)-2BP B, we note that at each vertex v ∈ [2nc] of B, the transition

function is some d-junta ϕv which will map the d bits read at that vertex to the next vertex

to move to. Now consider the (1, nc, 2nc)-2BP B′ defined with the same vertex set as B,

and define the transition function for v ∈ [2nc] in B′ to read the vth bit of the input, and

then map to the node in the next layer labeled by that bit. It is easy to see by construction

that B(x) = B′(ϕ1(x), . . . , ϕ2nc(x)), which is a function in B′ ◦ JUNTAn,d. By Theorem

34, this can be ε-fooled by an (ε/L1(B′))-PRG for JUNTA·2nc

n,d . Using the L1 bound from

Lemma 35 and the construction from Corollary 33, we see that such a PRG has seed length

2O(
√

log n)d2 log2(1/ε). ◀

▶ Remark 37. There is an alternative PRG construction using the Ajtai-Wigderson frame-

work [1] which gives optimal dependence on d, but exponentially worse dependence on ε.

This is presented in the full version of the paper.

6 Correlation Bounds Against Set-Multilinear Polynomials

Our correlation bound for set-multilinear polynomials follows from an instantiation of the

following theorem.

▶ Theorem 38. Let d f n be an integer. Let Ext : {0, 1}n/d × {0, 1}2n/d → {0, 1}k−2 log(1/ε)

be a strong linear seeded (k, ε)-extractor with seed length 2n/d created from the Leftover

Hash Lemma [16], and let Ç some nontrivial additive character of F2n/d . Define ExtFFMd :

{0, 1}n+2n/d → {0, 1} to be

ExtFFMd(X, W ) = Ç

(
d∏

i=1

Ext(Xi, W )

)
.

Let g : {0, 1} → {0, 1}n be a function, and let S1, . . . , Sd ¢ [n/d] be subsets of size g k such

that for any restriction Ä created by arbitrarily fixing all bits in W and outside Si in Xi for

each i, g|Ä always becomes set multilinear in X1, . . . , Xd. We then have

corr(ExtFFMd, g) f dε + (d − 1)

(
1

2kε2
+ ε

)
.

Proof. For brevity, we let f := ExtFFMd in this proof. We will first split the correlation

expectation into first randomizing over all restrictions Ä of the bits in X outside of S1, . . . , Sd,

then over the seed W , and then over the remaining live variables denoted by the Si, which

we denote X1|Ä, . . . , Xd|Ä. Now let WÄ be the set of seeds w such that Ext(Xi|Ä, w) ≈ε Uk

for all i. As Ext is strong-seeded, it follows by a union bound that WÄ cover all but a dε

fraction of seeds. Thus one can write

corr(f, g) = |EX(−1)f ′(X)+g(X)|

f EW,Ä

∣∣∣EX(−1)f |ρ(X,W )+g|ρ(X,W )
∣∣∣

f dε + EÄEw∈Wρ |EX(−1)f |ρ(X,w)+g|ρ(X,w)| (5)

ITCS 2025
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Now fix a partial assignment Ä and seed w ∈ WÄ. For brevity, let f(·) := f |Ä(·, w), and

similarly for g′. By assumption, g′ is set-multilinear over X We now apply a similar

argument showing up in [3]. Let ³ be a map taking linear forms
∑

i∈[n/d] ciXd,i in Xd to

its vector of coefficients (ci) ∈ F
n/d
2 . Note that by this definition, for any linear form ℓ(Xd),

ïℓ(Xd), Xdð = ℓ(Xd). Letting e(x) = (−1)x. We then see

∣∣∣EX(−1)f ′(X)+g′(X)
∣∣∣ =

∣∣∣∣EXe

(
f(Xi) +

∑

i∈[d−1]

gi(X−i) + gd(Xd)

)∣∣∣∣

f EX[d−1]

∣∣∣∣EXd
e

(
ï³(f(Xi) +

∑

i∈[d−1]

gi(X−i)), Xdð + gd(X−d)

)∣∣∣∣

f Pr
X[d−1]


³(f ′(X) +

∑

i∈[d−1]

gi(X−i)) = 0


 (6)

where we used the facts that f ′ is linear in Xd (as Ext here is a linear seeded extractor),

gd(X−d) is independent of Xd, and linear forms are perfectly unbiased if their coefficient

vector is nonzero. We now repeatedly use the simple inequality that for a linear map

h : Fm
2 → F

k
2 and a ∈ F

k
2 , Prx[h(x) = a] f Prx[h(x) = 0] as follows.

Pr
X[d−1]


³(f ′(X) +

∑

i∈[d−1]

gi(X−i)) = 0


 (7)

= EX[d−2]
Pr

Xd−1

[
³(f ′(X) +

d−2∑

i=1

gi(X−i))) = ³(gd−1(X−(d−1)))

]

f Pr
X[d−1]

[
³

(
f ′(X) +

d−2∑

i=1

gi(X−i))

)
= 0

]

f · · ·
f Pr

X[d−1]

[³(f ′(X)) = 0] (8)

To analyze this probability, we state a lemma whose proof is deferred to the full version.

▶ Lemma 39. For a linear form ℓ(Xd), ³(ℓ(Xd)) = 0 if and only if ℓ(Xd) = 0 for all Xd.

Therefore, by Lemma 39,

Pr
X[d−1]

[³(f ′(X)) = 0] = Pr
X[d−1]

[
∀Xd, Ç

(
d∏

i=1

Ext(Xi|Ä, w)

)
= 0

]
.

Clearly if
∏d−1

i=1 Ext(Xi|Ä, W ) = 0, f ′ becomes identically zero. When this doesn’t happen, the

function becomes of the form Ç(c · Ext(Xd|Ä, w)) for some nonzero c ∈ F2n/d . We now claim

that there must exist some Xd|Ä such that Ç(c · Ext(Xd|Ä, w)). Notice that for exactly 2n/d−1

values of Y , Ç(cY ) = 0. As w ∈ WÄ, the probability that a random Xd|Ä has Ext(Xd|Ä, w)

hit one of these values must be g 1/2 − ε > 0, proving the claim. Therefore, in order for

³(f ′(X)) = 0, it is necessary that
∏d−1

i=1 Ext(Xi|Ä, W ) = 0. Therefore,
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Pr
X[d−1]

[³(f ′(X)) = 0] f Pr
X[d−1]

[
d−1∏

i=1

Ext(Xi|Ä, w) = 0

]

f
d−1∑

i=1

Pr
Xi

[Ext(Xi|Ä, w) = 0]

f (d − 1)

(
1

2k−2 log(1/ε)
+ ε

)

Stringing the above with inequalities (5), (6), and (8), we find

corr(ExtFFMd, g) f dε + (d − 1)

(
1

2kε2
+ ε

)
. ◀

As a very nice application of this structural theorem, we show that we can achieve

exponentially small correlation against nO(1)-degree polynomials which are set-multilinear

over some partition of the input into up to n1−O(1) parts.

▶ Corollary 40. Let g be a degree < d polynomial which is set-multilinear over an arbitrary

partition (A1, . . . , Ac) of X into c parts. Then

corr(ExtFFMd, g) f 2−Ω(n/cd).

Proof. For each i ∈ [n/d], define Si to be the largest set among {Xi ∩ A1, . . . , Xi ∩ Ac}
(arbitrarily pick one if there are ties). Notice that the sets {Xi ∩ Aj}j∈[c] partition Xi,

and |Xi| = n/d. Therefore, we know that each |Si| g n/d
c = n

cd . We now claim that any

restriction Ä formed by arbitrarily fixing all the bits in Xi which are outside Si, for each i,

will make g|Ä set-multilinear over (X1, . . . , Xd). Assume for the sake of contradiction there

existed some monomial in g|Ä(X) that contained 2 variables from some Xi. Since Si ¢ Xi

and Sj ∩ Xi = ∅ for j ≠ i, both of these variables had to have come from Si. But note that

Si = Xi ∩ Aℓ ¢ Aℓ for some ℓ, and we know no monomial has 2 terms from the same Ai by

our assumption of g. This yields our desired contradiction.

Therefore, we can apply Theorem 38 on the sets (Si) with k = n/cd and ε = 2−.1n/cd to

deduce that

corr(f, g) f d2−.1n/cd + (d − 1)(2−.8n/cd + 2−.1n/cd) = 2−Ω(n/cd). ◀

References

1 Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant depth

circuits. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages

11–19, 1985. doi:10.1109/SFCS.1985.19.

2 L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hard pseudorandom

sequences. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Comput-

ing, STOC ’89, pages 1–11, New York, NY, USA, 1989. Association for Computing Machinery.

doi:10.1145/73007.73008.

3 Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, and Mrinal Kumar.

On Multilinear Forms: Bias, Correlation, and Tensor Rank. In Jarosław Byrka and Raghu

Meka, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques (APPROX/RANDOM 2020), volume 176 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 29:1–29:23, Dagstuhl, Germany, 2020. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.29.

ITCS 2025

https://doi.org/10.1109/SFCS.1985.19
https://doi.org/10.1145/73007.73008
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.29


68:22 New Pseudorandom Generators and Correlation Bounds Using Extractors

4 Jaroslaw Blasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and Emanuele

Viola. Fourier growth of structured ℧2-polynomials and applications. In Mary Wootters

and Laura Sanità, editors, Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of

Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages

53:1–53:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.

APPROX/RANDOM.2021.53.

5 Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for

width-2 branching programs. Theory of Computing, 9(7):283–293, 2013. doi:10.4086/toc.

2013.v009a007.

6 Eshan Chattopadhyay, Jesse Goodman, Vipul Goyal, Ashutosh Kumar, Xin Li, Raghu Meka,

and David Zuckerman. Extractors and secret sharing against bounded collusion protocols.

In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages

1226–1242, 2020. doi:10.1109/FOCS46700.2020.00117.

7 Eshan Chattopadhyay and Jyun-Jie Liao. Hardness Against Linear Branching Programs

and More. In Amnon Ta-Shma, editor, 38th Computational Complexity Conference (CCC

2023), volume 264 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–

9:27, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:

10.4230/LIPIcs.CCC.2023.9.

8 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuckerman.

Mining circuit lower bound proofs for meta-algorithms. In 2014 IEEE 29th Conference on

Computational Complexity (CCC), pages 262–273, 2014. doi:10.1109/CCC.2014.34.

9 Gil Cohen and Igor Shinkar. The complexity of dnf of parities. In Proceedings of the 2016 ACM

Conference on Innovations in Theoretical Computer Science, ITCS ’16, pages 47–58, New York,

NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2840728.2840734.

10 Jeff Ford and Anna Gál. Hadamard tensors and lower bounds on multiparty communication

complexity. Comput. Complex., 22(3):595–622, 2013. doi:10.1007/s00037-012-0052-6.

11 Parikshit Gopalan, Raghu Meka, Omer Reingold, and David Zuckerman. Pseudorandom

generators for combinatorial shapes. SIAM Journal on Computing, 42(3):1051–1076, 2013.

doi:10.1137/110854990.

12 Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear branching programs

and directional affine extractors. In Proceedings of the 37th Computational Complexity

Conference, CCC ’22, Dagstuhl, DEU, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

doi:10.4230/LIPIcs.CCC.2022.4.

13 J. Hastad and M. Goldmann. On the power of small-depth threshold circuits. In Proceedings

[1990] 31st Annual Symposium on Foundations of Computer Science, pages 610–618 vol.2,

1990. doi:10.1109/FSCS.1990.89582.

14 Pooya Hatami and William Hoza. Theory of unconditional pseudorandom generators. Elec-

tron. Colloquium Comput. Complex., TR23-019, 2023. URL: https://eccc.weizmann.ac.il/

report/2023/019, arXiv:TR23-019.

15 Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. Fooling constant-depth threshold

circuits (extended abstract). In 2021 IEEE 62nd Annual Symposium on Foundations of

Computer Science (FOCS), pages 104–115, 2022. doi:10.1109/FOCS52979.2021.00019.

16 R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions.

In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC

’89, pages 12–24, New York, NY, USA, 1989. Association for Computing Machinery. doi:

10.1145/73007.73009.

17 Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and exposure-

resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007. doi:10.1137/

S0097539705446846.

https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.53
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.53
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.1109/FOCS46700.2020.00117
https://doi.org/10.4230/LIPIcs.CCC.2023.9
https://doi.org/10.4230/LIPIcs.CCC.2023.9
https://doi.org/10.1109/CCC.2014.34
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1007/s00037-012-0052-6
https://doi.org/10.1137/110854990
https://doi.org/10.4230/LIPIcs.CCC.2022.4
https://doi.org/10.1109/FSCS.1990.89582
https://eccc.weizmann.ac.il/report/2023/019
https://eccc.weizmann.ac.il/report/2023/019
https://arxiv.org/abs/TR23-019
https://doi.org/10.1109/FOCS52979.2021.00019
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009
https://doi.org/10.1137/S0097539705446846
https://doi.org/10.1137/S0097539705446846


V. M. Kumar 68:23

18 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for

demorgan formula size. In 2013 IEEE 54th Annual Symposium on Foundations of Computer

Science, pages 588–597, 2013. doi:10.1109/FOCS.2013.69.

19 Xin Li and Yan Zhong. Explicit Directional Affine Extractors and Improved Hardness for

Linear Branching Programs. In Rahul Santhanam, editor, 39th Computational Complexity

Conference (CCC 2024), volume 300 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 10:1–10:14, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik. doi:10.4230/LIPIcs.CCC.2024.10.

20 Shachar Lovett and Srikanth Srinivasan. Correlation bounds for poly-size ac0 circuits with

n(1-o(1)) symmetric gates. In Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and José D. P.

Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, pages 640–651, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

21 M. Luby, B. Velickovic, and A. Wigderson. Deterministic approximate counting of depth-2

circuits. In [1993] The 2nd Israel Symposium on Theory and Computing Systems, pages 18–24,

1993. doi:10.1109/ISTCS.1993.253488.

22 Xin Lyu. Improved pseudorandom generators for ac0 circuits. In Proceedings of the 37th

Computational Complexity Conference, CCC ’22, Dagstuhl, DEU, 2022. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2022.34.

23 Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul Erdős

is eighty, Vol. 1, 1993.

24 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System

Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1.

25 Alexander Razborov and Avi Wigderson. w(log n) lower bounds on the size of depth-3 threshold

cicuits with and gates at the bottom. Information Processing Letters, 45(6):303–307, 1993.

doi:10.1016/0020-0190(93)90041-7.

26 Rocco A. Servedio and Li-Yang Tan. Luby-Velickovic-Wigderson Revisited: Improved Cor-

relation Bounds and Pseudorandom Generators for Depth-Two Circuits. In Eric Blais,

Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomiza-

tion, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM

2018), volume 116 of Leibniz International Proceedings in Informatics (LIPIcs), pages

56:1–56:20, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

doi:10.4230/LIPIcs.APPROX-RANDOM.2018.56.

27 Rocco A. Servedio and Li-Yang Tan. Improved pseudorandom generators from pseudorandom

multi-switching lemmas. Theory Comput., 18:1–46, 2022. URL: https://theoryofcomputing.

org/articles/v018a004/, doi:10.4086/TOC.2022.V018A004.

28 Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbitrary symmetric

gates. SIAM Journal on Computing, 36(5):1387–1403, 2007. doi:10.1137/050640941.

29 Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d. In

2008 23rd Annual IEEE Conference on Computational Complexity, pages 124–127, 2008.

doi:10.1109/CCC.2008.16.

30 Emanuele Viola. Correlation bounds against polynomials. Electron. Colloquium Comput.

Complex., TR22-142, 2022. URL: https://eccc.weizmann.ac.il/report/2022/142, arXiv:

TR22-142.

31 Emanuele Viola and Avi Wigderson. Norms, xor lemmas, and lower bounds for gf(2) polynomials

and multiparty protocols. In Twenty-Second Annual IEEE Conference on Computational

Complexity (CCC’07), pages 141–154, 2007. doi:10.1109/CCC.2007.15.

32 Thomas Watson. Pseudorandom generators for combinatorial checkerboards. In 2011 IEEE

26th Annual Conference on Computational Complexity, pages 232–242, 2011. doi:10.1109/

CCC.2011.12.

ITCS 2025

https://doi.org/10.1109/FOCS.2013.69
https://doi.org/10.4230/LIPIcs.CCC.2024.10
https://doi.org/10.1109/ISTCS.1993.253488
https://doi.org/10.4230/LIPIcs.CCC.2022.34
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/0020-0190(93)90041-7
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://theoryofcomputing.org/articles/v018a004/
https://theoryofcomputing.org/articles/v018a004/
https://doi.org/10.4086/TOC.2022.V018A004
https://doi.org/10.1137/050640941
https://doi.org/10.1109/CCC.2008.16
https://eccc.weizmann.ac.il/report/2022/142
https://arxiv.org/abs/TR22-142
https://arxiv.org/abs/TR22-142
https://doi.org/10.1109/CCC.2007.15
https://doi.org/10.1109/CCC.2011.12
https://doi.org/10.1109/CCC.2011.12

	1 Introduction/Outline of Results
	1.1 Better Bounds and PRGs Against {AC}^0 with More {{SYM},{THR}} Gates
	1.2 Much Better PRGs Against Width-2 Branching Programs Reading d Bits at a Time
	1.3 Near-Optimal Bounds Against High Degree Set-Multilinear Polynomials

	2 Technical Overview Of the Results
	2.1 Stronger Correlation Bounds Against {SYM, THR}o AC^0
	2.2 PRGs for {JUNTA}^{oplus t}_{n,d} and (d,t,n)-2BPs
	2.2.1 PRGs for JUNTA ^{oplus t}_{n,d} implies PRGs for (d,t,n)-2BPs

	2.3 The Nisan-Wigderson Framework and Correlation Bounds for {JUNTA}_{n,d}^{oplus poly(n)}
	2.4 Correlation Bounds against Set-Multilinear Polynomials

	3 Preliminaries
	3.1 Convention About Input Blocks
	3.2 Finite Fields
	3.3 Models of Computation
	3.4 Probability
	3.5 Random Restrictions and Partial Assignments
	3.6 Pseudorandomness
	3.7 Correlation Bounds

	4 Nearly Optimal Correlation Bounds against {SYM, THR}o AC^0
	5 PRGs against (d,poly(n),n)-2BPs
	5.1 Correlation Bounds Against {JUNTA}^{oplus poly(n)}_{n,d}
	5.2 Constructing and Analyzing the PRG

	6 Correlation Bounds Against Set-Multilinear Polynomials

