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Abstract: 

This study employs a data-driven machine learning approach to investigate specific ferroelectric 

properties of Al1-xScxN thin films, targeting their application in next-generation non-volatile 

memory (NVM) devices. This approach analyzes a vast design space, encompassing over a million 

data points, to predict a wide range of coercive field values that are crucial for optimizing Al1-

xScxN-based NVM devices. We evaluated seven machine learning models to predict the coercive 

field across a range of conditions, identifying the random forest algorithm as the most accurate, 

with a test R² value of 0.88. The model utilized five key features: film thickness, measurement 

frequency, operating temperature, scandium concentration, and growth temperature to predict the 

design space. Our analysis spans 13 distinct scandium concentrations and 13 growth temperatures, 

encompassing thicknesses from 9nm to 1000nm, frequencies f rom 1kHz to 100kHz, and operating 

temperatures from 273K to 700K. The predictions revealed dominant coercive field values 

between 3.0 MV/cm to 4.5 MV/cm, offering valuable insights for the precise engineering of Al1-

xScxN-based NVM devices. This work underscores the potential of machine learning in guiding 



the development of advanced ferroelectric materials with tailored properties for enhanced device 

performance. 
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I. Introduction 

Ferroelectric materials, characterized by their non-centrosymmetric crystal structure, exhibit 

spontaneous polarization resulting from the alignment of dipole moments along a particular spatial 

direction. This unique property grants these materials distinctive electrical characteristics, such as 

resistive switching and energy storage.1-3 The spontaneous polarization is known to be altered 

under the influence of an external electric field which makes them attractive candidates for non-

volatile memory devices like FE field-effect transistors (FeFET), FE tunnel junction (FTJ), FE 

random access memory (FeRAM), etc.4-7 High switching speed and endurance in oxide perovskites 

made them one of the most widely used ferroelectric materials in the market since the 1990s have 

faced numerous drawbacks, which led to the development of fluorite-structured ferroelectrics in 

2006.1, 2, 4, 8-15  However, continuous research is necessary to discover new ferroelectric materials 

that can withstand harsh environmental conditions and enhance the scalability.  

III-nitride semiconductors (AlN, GaN) doped with rare earth metals like Sc and B exhibit strong 

ferroelectric polarization switching, offering enhanced performance, scalability, and suitability for 

harsh environment applications compared to other ferroelectric materials.1, 16, 17 This finding was 

unexpected, as the coercive field (Ec) and dielectric breakdown field (Ebd) are very close for III-

nitride-based semiconductors, coupled with the paucity of experiments conducted under a large 

external electric field.2, 4, 18  Wurtzite-structured aluminum scandium nitride (Al1-xScxN) is one of 

the prominent nitride-ferroelectric materials studied widely since its discovery in  2019.1, 4 The 



introduction of scandium (Sc) in aluminum nitride (AlN) can flatten the Gibbs free-energy 

landscape of the III-nitride wurtzite structure, leading to the transformation of conventional III-

nitrides into ferroelectrics.1, 19-22 Over the last decade, Al1-xScxN has been the subject of extensive 

study following the 2009 discovery of its high piezoelectric coefficient by Akiyama et al. and for 

its piezoelectric-based applications.23-31 However, its significance goes beyond piezoelectricity 

after the discovery of its ferroelectric properties. In the realm of ferroelectric materials, two crucial 

properties—remnant polarization (Pr) and coercive field (Ec)—are widely examined for 

evaluating the performance of ferroelectric materials in non-volatile memory applications. Here, 

Pr defines the on/off ratio, representing the reliability and efficiency of data storage in binary form, 

while Ec determines the size of the memory window.32 In most of the memory-based applications, 

expected Pr values are moderately high, while Ec values range from moderately low to high.4, 5, 33, 

34 In comparison to other ferroelectric materials, Al1-xScxN stands out with notably high remnant 

polarization (70 to 140 µC/cm²) and coercive field (2 to 8 MV/cm), showing values approximately 

2 to 6 times and 2 to 3 times higher respectively than those of oxide perovskites and fluorite-

structured ferroelectric materials.4 

While achieving the desired remnant polarization for Al1-xScxN is relatively feasible, the true 

challenge lies in precisely adjusting the coercive field value of Al1-xScxN to meet the specific 

demands of various applications. A noteworthy limitation of Al1-xScxN is its limited endurance, 

with the number of flipping bits close to 105. 35 The endurance of ferroelectric materials is typically 

proportional to the breakdown field (Ebd) to coercive field (Ec) ratio.4 As Al1-xScxN possesses a 

high coercive field value which results in a low Ebd/Ec ratio, consequently contributing to the 

observed low endurance.35-37 Different crucial factors have been investigated over the years to 

control the coercive field, including the adjustment of alloying composition, strain engineering, 



film thickness, growth temperature, operating temperature, and applied frequency. Ryoichi 

Mizutani et al. demonstrated that the coercive field of Al1-xScxN depends on thickness and 

measuring temperature38, while Ved Gund et al. showed that Ec of Al1-xScxN depends on applied 

frequency39. Tsai et al. demonstrated that ferroelectric properties depend on growth temperature.36 

Additionally, it has been observed that for Al1-xScxN, the coercive field decreases with increasing 

Sc concentration.1 Leakage current, another important factor governing the performance of 

ferroelectric-based memory applications, is correlated with band gap and coercive field, 

determined by the percentage of Sc concentration in Al1-xScxN. Therefore, it is essential to consider 

the band gap effect while tailoring the coercive field. 

Considering the aforementioned features, including Sc concentration (%), growth temperature 

(°C), film thickness (nm), frequency (kHz), temperature (K), and bandgap (eV), we developed a 

supervised machine learning model to predict the coercive field (MV/cm) as the target variable. 

This study aims to establish a reliable design space for Al₁₋ₓScₓN thin films fabricated using 

reactive sputtering by leveraging this model. These films are structured in Metal-Ferroelectric-

Metal (MFM) or Metal-Insulator-Metal (MIM) configurations, with or without functional 

intermediate layers, and incorporate a single layer of Al₁₋ₓScₓN.  This specific fabrication process 

and structural configurations serve as a foundational architecture for non-volatile memory devices. 

By selecting specific growth conditions and testing parameters from the developed design space, 

researchers can effectively guide fabrication processes to achieve desired coercive field values. 

. 

 



II. Methodology 

Data collection and preprocessing:  

Constructing an effective machine learning (ML) model demands high-quality data. While high-

quality data and robust algorithms are the foundation of ML-based materials design, the selection 

of descriptors guided by domain knowledge significantly controls the model predictions. 

Essentially, the selection of appropriate descriptors relies on the target variables we aim to predict. 

This work utilized domain knowledge from previous experimental and computational studies to 

identify appropriate descriptors related to the target variable.  

The methodology started with collecting data from the literature on sputter-deposited Al1-xScxN 

for ferroelectric applications, reported since 2019 through the end of 2023, followed by a 

meticulous data refinement process to ensure dataset integrity and accuracy.  A total of 84 data 

points were collected through literature surveys, focusing on the following descriptors: Sc 

concentration, growth temperature, film thickness, frequency, temperature, and bandgap, which 

were used to train the ML model. The refinement process involved eliminating redundancy in the 

dataset to mitigate noise and inconsistencies. The data was then split into training and test sets in 

an 80:20 ratio, following the Pareto principle, using a specific seed number (17) for consis tency. 

To address challenges associated with small datasets and literature data ambiguity, imputation and 

standardization procedures were applied after data splitting. During imputation, the same seed 

number (17) was used to ensure reproducibility. Additionally, this process ensured that no data 

leakage occurred between the training and testing sets. A sophisticated imputation technique 

known as multivariate imputation was utilized to fill in missing values, specifically addressing the 

absence of seven growth temperature values. This method accounts for relationships and patterns 

among multiple variables rather than imputing values based on individual variables independently. 



The Iterative Imputer class from scikit-learn was used for this purpose, along with a specific seed 

number. Standardization was then performed on the imputed training and test datasets using the 

StandardScaler library from scikit-learn, ensuring consistency across varied numerical ranges and 

units of descriptors.  Finally, the training and testing datasets were saved separately after 

imputation and standardization for ML model building and evaluation.  

Machine learning modeling:  

Given the small dataset size, careful selection of the machine learning algorithm is essential for 

accurate target variable prediction.40 Commonly employed ML algorithms for small datasets 

encompass MLR (Multiple Linear Regression), Lasso, Ridge, SVR (Support Vector Regression), 

PCR (Principle Component Regression), GPR (Gaussian Process Regression), and RF (Random 

Forest Regression).40, 41  Regression methods, like those mentioned above, are fundamental tools 

in predicting and understanding relationships between variables. In the context of material science, 

regression models serve to elucidate the quantitative relationships between material properties and 

various factors, guiding the design and optimization of materials for specific applications. The 

training dataset was applied to these models for model selection. During the training process, all 

the models were tuned via hyperparameter tuning with k-fold (5-fold) cross-validation, except for 

MLR as it does not have any hyperparameters.  In this work, K-fold cross-validation (K-fold CV) 

was chosen over leave-one-out cross-validation (LOOCV) despite the small dataset size. This 

decision was made because the dataset contains more than thirty data points, making K-fold CV a 

suitable choice.40 While LOOCV is commonly preferred for very small datasets, its computational 

expense can become prohibitive as the dataset size increases.40 During model tuning, several kernel 

functions with different parameters were tested for SVR and GPR. Evaluation metrics including 

RMSE and R-squared score were employed to assess the models on the unseen test dataset. 



Additionally, cross-validated RMSE was calculated for each of the ML models to see the 

performance of the models on unseen data. Following the comparison of evaluation metrics, 

random forest came out as the best model. This ensemble learning method aggregates predictions 

from multiple decision trees to enhance stability while minimizing variance. The 

RandomForestRegressor from scikit-learn was employed, utilizing hyper-parameters such as 

n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features, and criterion. 

These parameters were tuned using GridsearchCV with 5-fold cross-validation to prevent 

overfitting or underfitting. The performance of the trained and tuned RF model was evaluated on 

the test set. Additionally, the final model was assessed by employing different random seed 

numbers for data splitting, with consistent evaluation metrics across all splits, indicating stable 

predictions. The final model was deployed for f urther predictions. 

Feature importance:  

SHAP (SHapley Additive exPlanations) analysis was utilized to rank the features as per their 

importance and explain the output from the final ML model. To perform SHAP analysis, shap 

package from Python was used and then SHAP summary plot was constructed by using SHAP tree 

explainer. The SHAP tree explainer method is utilized to comprehend the inner construction of 

tree-based models like random forest in this case. This approach aggregates the computations 

linked with individual leaf nodes of the tree model, yielding a simplified explanation of the model's 

predictions with low-order complexity.42   

Random dataset generation and new prediction: 

Leveraging important features and domain knowledge, a random dataset was generated, focusing 

on three crucial features: Film thickness, Temperature, and Frequency. These features were 



selected based on their significance in material fabrication and testing processes. The dataset 

comprised 1,161,216 data points while keeping other feature values (Sc concentration, Growth 

temperature, and Bandgap) unchanged with those used in the initial dataset for model building and 

testing. Starting with film thickness, ranging from 9nm to 1000nm divided into 24 ranges, each 

containing 84 randomly generated data points. This range was carefully chosen ensuring a 

comprehensive spectrum of potential values observed in real-world scenarios. For example, film 

thickness variations documented in the literature1, 38 helped divide the data into the ranges, aligning 

with experimental findings. Similarly, a total of 24 ranges were established for temperature, 

ranging from 273K to 700K, based on relevant literature sources. 38, 43 Frequencies utilized in 

hysteresis loop testing, typically falling between 1 and 100 kHz, leading to the creation of 24 

ranges around these frequency values, thus capturing the essential nuances of experimental 

practices.5, 38, 39 

By combining these ranges for film thickness, frequency, and temperature, we generated a 

comprehensive dataset of design space. This newly generated dataset incorporated other critical 

attributes, such as Sc concentration, Growth temperature, and Bandgap, while preserving their 

original values from the initial dataset. This integration process ensured the dataset's coherence 

and consistency, laying a solid foundation for subsequent analyses and machine learning modeling. 

The comprehensive flow chart for the above-mentioned procedures is depicted in Figure 1. 



 

                Figure 1: Comprehensive workflow of applied machine learning method 

 

For more information on the dataset, including source references, hyperparameter search spaces, 

and the validation of the design space -please refer to the supplementary file. This additional 

information ensures clarity and supports the reproducibility of our study. 

III. Results and discussion 

The process of selecting an appropriate regression model out of the considered seven models 

involved a careful comparison of R-squared (R2) and Root Mean Square Error (RMSE) values as 

a measure of model performance. While R² evaluates how well the model explains the variability 

in the data, RMSE provides insight into the accuracy of individual predictions, ensuring a balanced 

assessment of model fit and predictive accuracy. Among these models, the Random Forest (RF) 

model emerged as the most promising candidate, exhibiting an impressive R2 value of 88% for test 



dataset. This high R2 value signifies that the RF model shows good accuracy in predicting the 

target variable when applied to unseen test data (Figure 2a). Moreover, the RMSE (Figure 2b) 

value, which quantifies the average deviation of predicted values from the actual values, was 

substantially lower for the RF model compared to other regression models, standing at 0.52 for the 

test data. This lower RMSE and higher R2 values suggest the RF model's superior predictive 

accuracy and efficacy in capturing the underlying patterns within the dataset.  

 

Figure 2: Evaluation of regression models using R2 and RMSE metrics  



Additionally, to ensure the robustness of the model, hyperparameter tuning and cross-validation 

were performed, and the RF model consistently exhibited the lowest Cross-Validated RMSE (CV 

RMSE) among all the models. This rigorous evaluation process aimed to mitigate the risks of 

overfitting or underfitting, thus enhancing the reliability and generalization capability of the 

selected RF model. Finally, the parity plot generated for the RF model further corroborated its 

predictive prowess, as evidenced by the minimal deviation observed around the diagonal line, 

indicating a close alignment between predicted and actual values (Figure 3). 

 

Figure 3: Parity plot of the best model (Random Forest) 



According to the SHAP summary plot, film thickness emerged as the most significant feature, 

while band gap was identified as the least significant feature (Figure 4). This plot also suggests 

that film thickness, temperature, and scandium concentration negatively impact the coercive field, 

while frequency and growth temperature have a slight positive influence. Following the evaluation 

of feature importance, the first five significant feature combinations related to predicted coercive 

field values have been extracted to construct the design space.  

 

Figure 4: Feature importance ranking from SHAP summary plot 

Bandgap was excluded from constructing the design space as it does not directly impact the 

coercive field value and demonstrated less importance in the feature analysis.  Also, previous 

studies showed that Bandgap depends on Sc concentration.44, 45 Despite the limited variability of 

Sc concentration as indicated by the SHAP analysis, it was still considered in predicting coercive 

field values. This decision was guided by the significant impact of Sc concentration on the coercive 

field, which was further supported by the empirical equation,  

EC(x) = −15x + 8.35 (MV/cm)                (1) 



where 0 < x < 0.43, correlating the coercive field with the scandium percentage. 36, 46  

The influence of the scandium percentage on coercive field value for Al1-xScxN has been studied 

over the years revealing a decrease in coercive field value with increasing scandium percentage. 

However, increasing scandium percentages have been associated with a degradation in crystal 

quality, directly impacting the c/a ratio effect on the switching ability of the polarization states.39, 

47, 48 The crystal structure and c/a ratio are crucial parameters for controlling the coercive field, 

and they are directly influenced by the scandium percentages. Hence, finding the ideal scandium 

percentage poses a challenge as it must achieve a balance between achieving optimal crystal 

quality and attaining the targeted coercive field value simultaneously. In the newly generated 

dataset, we incorporated all previously utilized scandium percentage values to predict the coercive 

field using our ML model. Notably, we didn't introduce any new scandium percentage values to 

this dataset because the existing ones already covered the important concentration values, 

contributing solely to the effective coercive field ranges.1, 49 Moreover, the growth temperature 

directly affects crystal quality and levels of defects, thus it is anticipated to influence the 

ferroelectric properties.36 Similarly, the approach for growth temperature followed that of the Sc 

concentration, with the temperature values from the original dataset being reused in the generation 

of the random dataset.  

The developed Random Forest (RF) model effectively predicted coercive field values for a vast 

dataset comprising 1,161,216 randomly generated data points. These predictions are visually 

depicted in Figure 5 and quantitatively represented in Table 1. Notably, the predicted coercive 

field values in Table 1 depict a predominant range, typically ranging between 3 and 4.5, indicating 

the most probable outcomes predicted by the RF model.  



 

Figure 5:  Predicted coercive field for the new dataset using the best ML model 

 

 

 

 



Table 1: Predicted coercive field range and their corresponding relative frequency for important 

features of new dataset.   

Range Count Relative Frequency (%) 

2.0-2.5 90 0.0078 

2.5-3.0 10653 0.9174 

3.0-3.5 364784 31.4140 

3.5-4.0 281381 24.2316 

4.0-4.5 201289 17.3343 

4.5-5.0 141680 12.2010 

5.0-5.5 80717 6.9511 

5.5-6.0 47643 4.1029 

6.0-6.5 24261 2.0893 

6.5-7.0 1987 0.1711 

7.0-7.5 228 0.01964 

7.5-8.0 1218 0.1049 

8.0-8.5 3649 0.3142 

8.5-9.0 1143 0.0984 

9.0-9.5 493 0.0425 

 

Following the prediction of coercive field values and their integration into the newly generated 

dataset, an Exploratory Data Analysis (EDA) approach is adopted to gain insights into the 

relationship between the predicted coercive field and important features. Utilizing Matplotlib's 

hexbin plots, the distribution and density of predicted coercive field values are visualized against 



different material parameters in Figure 6. Each subplot represents a specific feature, such as film 

thickness, frequency, temperature, Sc concentration, and growth temperature, plotted against the 

predicted coercive field. The hexbin plots enable the visualization of data density, where color 

intensity represents the count of data points within each bin. This helps to see patterns and 

connections between the predicted coercive field and the features. This understanding can then be 

used to improve material design and optimization strategies. These hexbin plots offer a 

comprehensive overview of the relationship between predicted coercive field and material 

features, facilitating a deeper understanding of the design space. By analyzing these plots, it is 

possible to identify influential material parameters and their impact on coercive field prediction, 

informing the development of targeted material fabrication and testing strategies.  

 



Figure 6:  Important feature range extracted for all the predicted coercive field values  (a) variation 

in film thickness with coercive field (b) variation in frequency with coercive field (c) variation in 

temperature with coercive field (d) variation in Sc concentration with coercive field  (e) variation 

in growth temperature with coercive field 

In addition to the exploratory data analysis, a further step is taken to delve into the relationship 

between the predicted coercive field and material features. While hexbin plots offer valuable 

insights, not all material features will show clear visual trends, therefore, to gain a more precise 

understanding, Spearman's rank-order correlation coefficient is calculated in Table 2. This 

quantitative analysis offers a systematic approach to assessing the strength and direction of the 

relationship between the predicted coercive field and other variables. By excluding less influential 

features such as 'Bandgap (eV)', the focus is refined towards identifying significant correlations 

with other parameters. This analytical step aims to provide a clearer and more concise overview 

of the trends and correlations within the dataset, complementing the insights obtained from 

visualizations. 

Table 2: Spearman correlation coefficients for predicted coercive field 

Features Spearman Correlation Coefficient 

Film thickness (nm) -0.5554 

Frequency (kHz) 0.1134 

Temperature (k) -0.5946 

Sc concentration (%) -0.1011 

Growth temperature (℃) 0.0415 

 



The Spearman's correlation coefficients for the 'Coercive Field' reveal the strength of the 

connection between each material feature and the predicted coercive field value, offering valuable 

insights into feature importance. This quantitative assessment enables anyone to discern subtle 

relationships that may not be immediately apparent from visualizations alone. By integrating both 

exploratory visualizations and quantitative correlation analysis, anyone can gain a comprehensive 

understanding of the design space. Which will identify influential material parameters and guide 

the development of targeted material fabrication and testing strategies. This holistic approach 

enhances the efficiency and effectiveness of the material design process, facilitating the 

optimization of Al1-xScxN with desired coercive field range. 

The importance of film thickness in predicting coercive field can be explained by the dependence 

of coercive field (Ec) on the polarization switching voltage. Both experimental and theoretical 

investigations have established that Ec decreases as thickness increases.38, 50, 51 The semiempirical 

relationship describing size-effect phenomena in ferroelectric materials is articulated by the 

Janovec−Kay−Dunn (JKD) law, represented as Ec∝d−2/3, where Ec denotes the coercive field and 

d signifies the average crystallite size.38, 50, 51 It's noted that for Al1-xScxN, this law remains 

applicable for thicknesses exceeding 10nm.4 In this study, the developed ML model accurately 

forecasted coercive field values for random thickness values ranging from 9nm to 1000nm. From 

Figure 6a, it's evident that as the thickness increases, the coercive field value decreases. 

Furthermore, the negative Spearman correlation coefficient for film thickness from Table 2 

supports this observation. Previous studies clearly explained the root cause of this size-dependent 

phenomenon as the presence of a space charge-induced depletion layer or non-ferroelectric 

blocking layer which eventually leads to the depolarizing field at the interfaces. 52, 53  

 



In addition to thickness, previous findings indicate a direct impact of temperature on the coercive 

field of ferroelectric materials.38, 54, 55 The temperature and coercive field in ferroelectric materials 

are related linearly and decrease with increasing temperature.38, 54, 56 We utilized our developed 

ML model to predict coercive fields for random temperature values within the range of 300K to 

700K. Figure 6c illustrates a negative correlation between coercive field and operating 

temperature, that is further supported by the negative Spearman correlation coefficient from Table 

2. Additionally, the coercive field value tends to increase with frequency due to the inertia of 

polarization reversal.57 Over time, researchers have investigated the impact of frequency on the 

coercive field in ferroelectric materials, developing various model-based theories that directly 

relate to domain wall motion and growth.58-61 Previous experimental studies on Al1-xScxN  have 

typically employed testing frequencies ranging from 1kHz to 100kHz. Consistent with this range, 

random frequency values were created within this spectrum and our established ML model was 

used to predict coercive field for each frequency. A positive correlation between frequency and 

predictive coercive field is evident from the Spearman correlation coefficient in Table 2. 

Increasing the operating frequency beyond 100 kHz can reduce the contribution of leakage current, 

as the frequency of the applied voltage increases, misalignment between the voltage and current 

response arises owing to the RC delay which poses a significant challenge in accurately measuring 

the P-E curve.62 Also, there is a positive correlation between growth temperature and coercive field  

according to Table 2. 

To illustrate the application of our findings, we can explore the predicted coercive field and 

connected features depicted in Figure 6 using a specific example. Where Figure 7 illustrates a 

particular design space with a coercive field range of 2.5 MV/cm to 3 MV/cm alongside the 

corresponding ranges for relevant material properties that influence this target property. This visual 



guide enables researchers to discern preferred values for thickness, temperature, frequency, 

scandium percentage, and growth temperature within the desired coercive field range.  

 

Figure 7:  Design space for fabricating sputter-deposited thin film within coercive field range 2.5 

to 3.0 for specific scandium concentration (%) in the range of 20 to 35 

Building upon this illustration, exploring the design space begins with a systematic search 

depending on the predicted coercive field values. This systematic search is carefully guided by 

the specification of input ranges tailored to the unique characteristics of the dataset, facilitating 

iterative exploration through incremental coercive field ranges. As each subset corresponding to 

the specified coercive field range is dynamically identified, the analysis offers a detailed 

examination. For each coercive field range, scatter plots are generated, illustrating the coercive 

field against individual material features including film thickness, temperature, frequency, 

scandium concentration, and growth temperature. The incorporation of perpendicular lines serves 



to highlight key values within the dataset, thereby enriching the analysis process. Through these 

visualizations, distinct trends and patterns emerge, fostering a comprehensive understanding of 

the relationship between coercive field and material parameters across various ranges. This 

systematic approach not only facilitates effective navigation and dissection of the design space 

but also provides a guiding framework for the refinement of material fabrication and testing 

strategies. This comprehensive visual analysis not only enhances the comprehension of material-

property relationships but also furnishes practical insights for the development of tailored Al1-

xScxN with desired coercive field characteristics.  

IV. Conclusion  

In this study, we successfully employed machine learning techniques to predict and optimize the 

coercive field of Al₁₋ₓScₓN thin films fabricated using reactive sputtering. These films consist of a 

single Al₁₋ₓScₓN layer incorporated with different layer stacking combinations to suit non-volatile 

memory applications. The Random Forest model developed in this work, validated through 

comprehensive cross-validation, exhibited a high predictive accuracy, evidenced by an R² value 

of 0.88, confirming the robustness of the approach. Leveraging this ML model, the development 

of an extensive design space enables the precise selection of key parameters, including film 

thickness, scandium concentration, and growth temperature. This approach significantly reduces 

the time and resources typically required for experimental investigations. The model's predictions 

delineate a predominant coercive field range of 3 MV/cm to 4.5 MV/cm, with a potential minimum 

range of 2.5 MV/cm to 3 MV/cm, providing a valuable framework for guiding f uture experimental 

work and device fabrication. While the findings of this study establish a solid foundation for 

optimizing Al1−xScxN thin films, they also highlight new directions for further research. Future 

investigations could extend this methodology to other ferroelectric materials and assess the model's 



generalizability across varying operational conditions. Such advancements will contribute to the 

broader development of ferroelectric materials, with significant implications for the design and 

performance of next-generation non-volatile memory devices. 
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