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Abstract:

This study employs a data-driven machine learning approach to investigate specific ferroelectric
properties of Al;..Sc,N thin films, targeting their application in next-generation non-volatile
memory (NVM)devices. This approachanalyzes a vastdesign space, encompassingover a million
data points, to predict a wide range of coercive field values that are crucial for optimizing Al;.
Sc,N-based NVM devices. We evaluated seven machine learning models to predict the coercive
field across a range of conditions, identifying the random forest algorithm as the most accurate,
with a test R? value of 0.88. The model utilized five key features: film thickness, measurement
frequency, operating temperature, scandium concentration, and growth temperature to predict the
design space. Our analysis spans 13 distinct scandium concentrations and 13 growth temperatures,
encompassing thicknesses from 9nm to 1000nm, frequencies from 1kHz to 100kHz, and operating
temperatures from 273K to 700K. The predictions revealed dominant coercive field values
between 3.0 MV/cm to 4.5 MV/cm, offering valuable insights for the precise engineering of Al ;.

Sc,N-based NVM devices. This work underscores the potential of machine learning in guiding



the development of advanced ferroelectric materials with tailored properties for enhanced device

performance.
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1. Introduction

Ferroelectric materials, characterized by their non-centrosymmetric crystal structure, exhibit
spontaneous polarization resulting from the alignmentof dipole moments alonga particular spatial
direction. This unique property grants these materials distinctive electrical characteristics, such as
resistive switching and energy storage.!3 The spontaneous polarization is known to be altered
under the influence of an external electric field which makes them attractive candidates for non-
volatile memory devices like FE field-effect transistors (FeFET), FE tunnel junction (FTJ), FE
random access memory (FeERAM), etc.*7 High switching speed and endurance in oxide perovskites
made them one of the most widely used ferroelectric materials in the market since the 1990s have
faced numerous drawbacks, which led to the development of fluorite-structured ferroelectrics in
2006.1.2.4.815 However, continuous research is necessary to discover new ferroelectric materials

that can withstand harsh environmental conditions and enhance the scalability.

[II-nitride semiconductors (AIN, GaN) doped with rare earth metals like Sc and B exhibit strong
ferroelectric polarizationswitching, offeringenhanced performance, scalability, and suitability for
harsh environment applications compared to other ferroelectric materials.!- 1617 This finding was
unexpected, as the coercive field (E.) and dielectric breakdown field (Eyq) are very close for III-
nitride-based semiconductors, coupled with the paucity of experiments conducted under a large
external electric field.2 4 18 Wurtzite-structured aluminum scandium nitride (Al;.,Sc,N) is one of

the prominent nitride-ferroelectric materials studied widely since its discovery in 2019.% 4 The



introduction of scandium (Sc) in aluminum nitride (AIN) can flatten the Gibbs free-energy
landscape of the IlI-nitride wurtzite structure, leading to the transformation of conventional I1I-
nitrides into ferroelectrics.!- 1922 Over the last decade, Al;,Sc,N has been the subject of extensive
study following the 2009 discovery of its high piezoelectric coefficient by Akiyama et al. and for
its piezoelectric-based applications.?3-3! However, its significance goes beyond piezoelectricity
afterthe discovery of its ferroelectric properties. In the realm of ferroelectric materials, two crucial
properties—remnant polarization (Pr) and coercive field (Ec)—are widely examined for
evaluating the performance of ferroelectric materials in non-volatile memory applications. Here,
Pr defines the on/offratio, representing the reliability and efficiency of data storage in binary form,
while Ec determines the size of the memory window.32 In most of the memory-based applications,
expected Pr values are moderately high, while E. values range from moderately low to high.* 5 3%
34 In comparison to other ferroelectric materials, Al;_Sc,N stands out with notably high remnant
polarization (70 to 140 puC/cm2) and coercive field (2 to 8 MV/cm), showing values approximately
2 to 6 times and 2 to 3 times higher respectively than those of oxide perovskites and fluorite-

structured ferroelectric materials.4

While achieving the desired remnant polarization for Al;,Sc,N is relatively feasible, the true
challenge lies in precisely adjusting the coercive field value of Al;,Sc,N to meet the specific
demands of various applications. A noteworthy limitation of Al;,Sc,N is its limited endurance,
with the number of flippingbits close to 10°. 3> The endurance of ferroelectric materials is typically
proportional to the breakdown field (Eyg) to coercive field (E.) ratio.* As Al;,Sc,N possesses a
high coercive field value which results in a low Eu/E; ratio, consequently contributing to the
observed low endurance.3>37 Different crucial factors have been investigated over the years to

control the coercive field, including the adjustment of alloying composition, strain engineering,



film thickness, growth temperature, operating temperature, and applied frequency. Ryoichi
Mizutani et al. demonstrated that the coercive field of Al;.,Sc,N depends on thickness and
measuring temperature38, while Ved Gund et al. showed that E. of Al;..Sc,N depends on applied
frequency?. Tsai et al. demonstrated that ferroelectric properties depend on growth temperature.’
Additionally, it has been observed that for Al;_Sc,N, the coercive field decreases with increasing
Sc concentration.! Leakage current, another important factor governing the performance of
ferroelectric-based memory applications, is correlated with band gap and coercive field,
determined by the percentage of Sc concentration in Al;_,Sc,N. Therefore, itis essential to consider

the band gap effect while tailoring the coercive field.

Considering the aforementioned features, including Sc concentration (%), growth temperature
(°C), film thickness (nm), frequency (kHz), temperature (K), and bandgap (eV), we developed a
supervised machine learning model to predict the coercive field (MV/cm) as the target variable.
This study aims to establish a reliable design space for AliSc.N thin films fabricated using
reactive sputtering by leveraging this model. These films are structured in Metal-Ferroelectric-
Metal (MEM) or Metal-Insulator-Metal (MIM) configurations, with or without functional
intermediate layers, and incorporate a single layer of AliScN. This specific fabrication process
and structural configurations serve as a foundational architecture for non-volatile memory devices.
By selecting specific growth conditions and testing parameters from the developed design space,
researchers can effectively guide fabrication processes to achieve desired coercive field values.
This applicability will streamline the fabrication approach and guide the experimental exploration
effectively. This approach offers a comprehensive roadmap for selecting feature ranges and holds

the potential to optimize future AlScN-related studies more effectively.



I1. Methodology

Data collection and preprocessing:

Constructing an effective machine learning (ML) model demands high-quality data. While high-
quality data and robust algorithms are the foundation of ML-based materials design, the selection
of descriptors guided by domain knowledge significantly controls the model predictions.
Essentially, the selection of appropriate descriptors relies on the target variables we aim to predict.
This work utilized domain knowledge from previous experimental and computational studies to

identify appropriate descriptors related to the target variable.

The methodology started with collecting data from the literature on sputter-deposited Al;_,Sc,N
for ferroelectric applications, reported since 2019 through the end of 2023, followed by a
meticulous data refinement process to ensure dataset integrity and accuracy. A total of 84 data
points were collected through literature surveys, focusing on the following descriptors: Sc
concentration, growth temperature, film thickness, frequency, temperature, and bandgap, which
were used to train the ML model. The refinement process involved eliminating redundancy in the
dataset to mitigate noise and inconsistencies. The data was then split into training and test sets in
an 80:20 ratio, following the Pareto principle, using a specific seed number (17) for consis tency.
To address challenges associated with small datasets and literature data ambiguity, imputation and
standardization procedures were applied after data splitting. During imputation, the same seed
number (17) was used to ensure reproducibility. Additionally, this process ensured that no data
leakage occurred between the training and testing sets. A sophisticated imputation technique
known as multivariate imputation was utilized to fill in missing values, specifically addressing the
absence of seven growth temperature values. This method accounts for relationships and pattems

among multiple variables rather than imputing values based on individual variables independently.



The Iterative Imputer class from scikit-learn was used for this purpose, along with a specific seed
number. Standardization was then performed on the imputed training and test datasets using the
StandardScaler library from scikit-learn, ensuring consistency across varied numerical ranges and
units of descriptors. Finally, the training and testing datasets were saved separately after

imputation and standardization for ML model building and evaluation.

Machine learning modeling:

Given the small dataset size, careful selection of the machine learning algorithm is essential for
accurate target variable prediction.* Commonly employed ML algorithms for small datasets
encompass MLR (Multiple Linear Regression), Lasso, Ridge, SVR (Support Vector Regression),
PCR (Principle Component Regression), GPR (Gaussian Process Regression), and RF (Random
Forest Regression).40- 41 Regression methods, like those mentioned above, are fundamental tools
in predictingand understandingrelationships between variables. In the context of material science,
regression models serve to elucidate the quantitative relationships between material properties and
various factors, guiding the design and optimization of materials for specific applications. The
training dataset was applied to these models for model selection. During the training process, all
the models were tuned via hyperparameter tuning with k-fold (5-fold) cross-validation, except for
MLR as it does not have any hyperparameters. In this work, K-fold cross-validation (K-fold CV)
was chosen over leave-one-out cross-validation (LOOCYV) despite the small dataset size. This
decision was made because the dataset contains more than thirty data points, making K-fold CV a
suitable choice.4? While LOOCYV is commonly preferred for very small datasets, its computational
expense can becomeprohibitive as the dataset size increases.** Duringmodel tuning, several kemel
functions with different parameters were tested for SVR and GPR. Evaluation metrics including

RMSE and R-squared score were employed to assess the models on the unseen test dataset.



Additionally, cross-validated RMSE was calculated for each of the ML models to see the
performance of the models on unseen data. Following the comparison of evaluation metrics,
random forest came out as the best model. This ensemble learning method aggregates predictions
from multiple decision trees to enhance stability while minimizing variance. The
RandomForestRegressor from scikit-learn was employed, utilizing hyper-parameters such as
n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features, and criterion.
These parameters were tuned using GridsearchCV with 5-fold cross-validation to prevent
overfitting or underfitting. The performance of the trained and tuned RF model was evaluated on
the test set. Additionally, the final model was assessed by employing different random seed
numbers for data splitting, with consistent evaluation metrics across all splits, indicating stable

predictions. The final model was deployed for further predictions.

Feature importance:

SHAP (SHapley Additive exPlanations) analysis was utilized to rank the features as per their
importance and explain the output from the final ML model. To perform SHAP analysis, shap
package from Python was used and then SHAP summary plot was constructed by using SHAP tree
explainer. The SHAP tree explainer method is utilized to comprehend the inner construction of
tree-based models like random forest in this case. This approach aggregates the computations
linked with individual leaf nodes of the tree model, yielding a simplified explanation of the model's

predictions with low-order complexity.+?

Random dataset generation and new prediction:

Leveraging important features and domain knowledge, a random dataset was generated, focusing

on three crucial features: Film thickness, Temperature, and Frequency. These features were



selected based on their significance in material fabrication and testing processes. The dataset
comprised 1,161,216 data points while keeping other feature values (Sc concentration, Growth
temperature, and Bandgap) unchanged with those used in the initial dataset for model building and
testing. Starting with film thickness, ranging from 9nm to 1000nm divided into 24 ranges, each
containing 84 randomly generated data points. This range was carefully chosen ensuring a
comprehensive spectrum of potential values observed in real-world scenarios. For example, film
thickness variations documentedin the literature!- 3 helped divide the data into the ranges, aligning
with experimental findings. Similarly, a total of 24 ranges were established for temperature,
ranging from 273K to 700K, based on relevant literature sources.3?% 43 Frequencies utilized in
hysteresis loop testing, typically falling between 1 and 100 kHz, leading to the creation of 24
ranges around these frequency values, thus capturing the essential nuances of experimental

practices.> 3839

By combining these ranges for film thickness, frequency, and temperature, we generated a
comprehensive dataset of design space. This newly generated dataset incorporated other critical
attributes, such as Sc concentration, Growth temperature, and Bandgap, while preserving their
original values from the initial dataset. This integration process ensured the dataset's coherence
and consistency,layinga solid foundation for subsequentanalyses and machine learning modeling,

The comprehensive flow chart for the above-mentioned procedures is depicted in Figure 1.
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Figure 1: Comprehensive workflow of applied machine learning method

For more information on the dataset, including source references, hyperparameter search spaces,
and the validation of the design space -please refer to the supplementary file. This additional
information ensures clarity and supports the reproducibility of our study.

II1. Results and discussion

The process of selecting an appropriate regression model out of the considered seven models
involved a careful comparison of R-squared (R?) and Root Mean Square Error (RMSE) values as
a measure of model performance. While R? evaluates how well the model explains the variability
in the data, RMSE provides insightinto the accuracy of individual predictions, ensuring a balanced
assessment of model fit and predictive accuracy. Among these models, the Random Forest (RF)

model emerged as the most promising candidate, exhibiting an impressive R? value of 88% for test



dataset. This high R? value signifies that the RF model shows good accuracy in predicting the
target variable when applied to unseen test data (Figure 2a). Moreover, the RMSE (Figure 2b)
value, which quantifies the average deviation of predicted values from the actual values, was
substantially lower for the RF model compared to other regression models, standing at 0.52 for the
test data. This lower RMSE and higher R? values suggest the RF model's superior predictive

accuracy and efficacy in capturing the underlying patterns within the dataset.
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Figure 2: Evaluation of regression models using R? and RMSE metrics



Additionally, to ensure the robustness of the model, hyperparameter tuning and cross-validation
were performed, and the RF model consistently exhibited the lowest Cross-Validated RMSE (CV
RMSE) among all the models. This rigorous evaluation process aimed to mitigate the risks of
overfitting or underfitting, thus enhancing the reliability and generalization capability of the
selected RF model. Finally, the parity plot generated for the RF model further corroborated its
predictive prowess, as evidenced by the minimal deviation observed around the diagonal line,

indicating a close alignment between predicted and actual values (Figure 3).
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Figure 3: Parity plot of the best model (Random Forest)



According to the SHAP summary plot, film thickness emerged as the most significant feature,
while band gap was identified as the least significant feature (Figure 4). This plot also suggests
that film thickness, temperature, and scandium concentration negatively impact the coercive field,
while frequency and growth temperature havea slight positive influence. Following the evaluation
of feature importance, the first five significant feature combinations related to predicted coercive

field values have been extracted to construct the design space.
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Figure 4: Feature importance ranking from SHAP summary plot
Bandgap was excluded from constructing the design space as it does not directly impact the
coercive field value and demonstrated less importance in the feature analysis. Also, previous
studies showed that Bandgap depends on Sc concentration.**45 Despite the limited variability of
Sc concentration as indicated by the SHAP analysis, it was still considered in predicting coercive
field values. This decision was guided by the significantimpactof Sc concentration on the coercive

field, which was further supported by the empirical equation,

Ec(x) =—15x +8.35 (MV/cm) (1)



where 0 <x <0.43, correlating the coercive field with the scandium percentage. 36 46

The influence of the scandium percentage on coercive field value for Al;_,Sc,N has been studied
over the years revealing a decrease in coercive field value with increasing scandium percentage.
However, increasing scandium percentages have been associated with a degradation in crystal
quality, directly impacting the c/a ratio effect on the switching ability of the polarization states.*:
47.48 The crystal structure and c/a ratio are crucial parameters for controlling the coercive field,
and they are directly influenced by the scandium percentages. Hence, finding the ideal scandium
percentage poses a challenge as it must achieve a balance between achieving optimal crystal
quality and attaining the targeted coercive field value simultaneously. In the newly generated
dataset, we incorporated all previously utilized scandium percentage values to predict the coercive
field using our ML model. Notably, we didn't introduce any new scandium percentage values to
this dataset because the existing ones already covered the important concentration values,
contributing solely to the effective coercive field ranges.!- 4> Moreover, the growth temperature
directly affects crystal quality and levels of defects, thus it is anticipated to influence the
ferroelectric properties.3® Similarly, the approach for growth temperature followed that of the Sc
concentration, with the temperature values from the original dataset being reused in the generation

of the random dataset.

The developed Random Forest (RF) model effectively predicted coercive field values for a vast
dataset comprising 1,161,216 randomly generated data points. These predictions are visually
depicted in Figure 5 and quantitatively represented in Table 1. Notably, the predicted coercive
field values in Table 1 depict a predominant range, typically ranging between 3 and 4.5, indicating

the most probable outcomes predicted by the RF model.
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Figure 5: Predicted coercive field for the new dataset using the best ML model



Table 1: Predicted coercive field range and their corresponding relative frequency for important

features of new dataset.

Range Count Relative Frequency (%)
2.0-2.5 90 0.0078
2.5-3.0 10653 0.9174
3.0-3.5 364784 31.4140
3.5-4.0 281381 24.2316
4.0-4.5 201289 17.3343
4.5-5.0 141680 12.2010
5.0-5.5 80717 6.9511
5.5-6.0 47643 4.1029
6.0-6.5 24261 2.0893
6.5-7.0 1987 0.1711
7.0-7.5 228 0.01964
7.5-8.0 1218 0.1049
8.0-8.5 3649 0.3142
8.5-9.0 1143 0.0984
9.0-9.5 493 0.0425

Following the prediction of coercive field values and their integration into the newly generated

dataset, an Exploratory Data Analysis (EDA) approach is adopted to gain insights into the

relationship between the predicted coercive field and important features. Utilizing Matplotlib's

hexbin plots, the distribution and density of predicted coercive field values are visualized against



different material parameters in Figure 6. Each subplot represents a specific feature, such as film
thickness, frequency, temperature, Sc concentration, and growth temperature, plotted against the
predicted coercive field. The hexbin plots enable the visualization of data density, where color
intensity represents the count of data points within each bin. This helps to see patterns and
connections between the predicted coercive field and the features. This understanding can then be
used to improve material design and optimization strategies. These hexbin plots offer a
comprehensive overview of the relationship between predicted coercive field and material
features, facilitating a deeper understanding of the design space. By analyzing these plots, it is
possible to identify influential material parameters and their impact on coercive field prediction,

informing the development of targeted material fabrication and testing strategies.
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Figure 6: Important feature range extracted for all the predicted coercive field values (a) variation
in film thickness with coercive field (b) variation in frequency with coercive field (c) variation in
temperature with coercive field (d) variation in Sc concentration with coercive field (e) variation

in growth temperature with coercive field

In addition to the exploratory data analysis, a further step is taken to delve into the relationship
between the predicted coercive field and material features. While hexbin plots offer valuable
insights, not all material features will show clear visual trends, therefore, to gain a more precise
understanding, Spearman's rank-order correlation coefficient is calculated in Table 2. This
quantitative analysis offers a systematic approach to assessing the strength and direction of the
relationship between the predicted coercive field and other variables. By excluding less influential
features such as 'Bandgap (eV)', the focus is refined towards identifying significant correlations
with other parameters. This analytical step aims to provide a clearer and more concise overview
of the trends and correlations within the dataset, complementing the insights obtained from

visualizations.

Table 2: Spearman correlation coefficients for predicted coercive field

Features Spearman Correlation Coefficient
Film thickness (nm) -0.5554
Frequency (kHz) 0.1134
Temperature (k) -0.5946
Sc concentration (%) -0.1011

Growth temperature (°C) 0.0415




The Spearman's correlation coefficients for the 'Coercive Field' reveal the strength of the
connection between each material feature and the predicted coercive field value, offering valuable
insights into feature importance. This quantitative assessment enables anyone to discern subtle
relationships that may not be immediately apparent from visualizations alone. By integrating both
exploratory visualizations and quantitative correlation analysis, anyone can gain a comprehensive
understanding of the design space. Which will identify influential material parameters and guide
the development of targeted material fabrication and testing strategies. This holistic approach
enhances the efficiency and effectiveness of the material design process, facilitating the

optimization of Al;_,Sc,N with desired coercive field range.

The importance of film thickness in predicting coercive field can be explained by the dependence
of coercive field (E.) on the polarization switching voltage. Both experimental and theoretical
investigations have established that E. decreases as thickness increases.3%: 5951 The semiempirical
relationship describing size-effect phenomena in ferroelectric materials is articulated by the
Janovec—Kay—Dunn (JKD) law, represented as E.oxd%3, where E. denotes the coercive field and
d signifies the average crystallite size.33 50 5! It's noted that for Al;,Sc,N, this law remains
applicable for thicknesses exceeding 10nm.* In this study, the developed ML model accurately
forecasted coercive field values for random thickness values ranging from 9nmto 1000nm. From
Figure 6a, it's evident that as the thickness increases, the coercive field value decreases.
Furthermore, the negative Spearman correlation coefficient for film thickness from Table 2
supports this observation. Previous studies clearly explained the root cause of this size -dependent
phenomenon as the presence of a space charge-induced depletion layer or non-ferroelectric

blocking layer which eventually leads to the depolarizing field at the interfaces.5% >3



In addition to thickness, previous findings indicate a direct impact of temperature on the coercive
field of ferroelectric materials.33: 5% 55 The temperature and coercive field in ferroelectric materials
are related linearly and decrease with increasing temperature. 3% 54 56 We utilized our developed
ML model to predict coercive fields for random temperature values within the range of 300K to
700K. Figure 6c¢ illustrates a negative correlation between coercive field and operating
temperature, that is further supported by the negative Spearman correlation coefficient from Table
2. Additionally, the coercive field value tends to increase with frequency due to the inertia of
polarization reversal.”” Over time, researchers have investigated the impact of frequency on the
coercive field in ferroelectric materials, developing various model-based theories that directly
relate to domain wall motion and growth.>%-%! Previous experimental studies on Al;,Sc,N have
typically employed testing frequencies ranging from 1kHz to 100kHz. Consistent with this range,
random frequency values were created within this spectrum and our established ML model was
used to predict coercive field for each frequency. A positive correlation between frequency and
predictive coercive field is evident from the Spearman correlation coefficient in Table 2.
Increasingthe operating frequencybeyond 100kHz can reduce the contribution of leakage current,
as the frequency of the applied voltage increases, misalignment between the voltage and current
response arises owingto the RC delay which poses a significantchallenge in accurately measuring
the P-E curve.%2 Also, there is a positive correlation between growth temperature and coercive field

according to Table 2.

To illustrate the application of our findings, we can explore the predicted coercive field and
connected features depicted in Figure 6 using a specific example. Where Figure 7 illustrates a
particular design space with a coercive field range of 2.5 MV/cm to 3 MV/cm alongside the

correspondingranges forrelevant material properties thatinfluence this target property. This visual



guide enables researchers to discern preferred values for thickness, temperature, frequency,

scandium percentage, and growth temperature within the desired coercive field range.
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Figure 7: Design space for fabricating sputter-deposited thin film within coercive field range 2.5

to 3.0 for specific scandium concentration (%) in the range of 20 to 35

Building upon this illustration, exploring the design space begins with a systematic search
depending on the predicted coercive field values. This systematic search is carefully guided by
the specification of input ranges tailored to the unique characteristics of the dataset, facilitating
iterative exploration through incremental coercive field ranges. As each subset corresponding to
the specified coercive field range is dynamically identified, the analysis offers a detailed
examination. For each coercive field range, scatter plots are generated, illustrating the coercive
field against individual material features including film thickness, temperature, frequency,

scandium concentration, and growth temperature. The incorporation of perpendicular lines serves



to highlight key values within the dataset, thereby enriching the analysis process. Through these
visualizations, distinct trends and patterns emerge, fostering a comprehensive understanding of
the relationship between coercive field and material parameters across various ranges. This
systematic approach not only facilitates effective navigation and dissection of the design space
but also provides a guiding framework for the refinement of material fabrication and testing
strategies. This comprehensive visual analysis not only enhances the comprehension of material-
property relationships but also furnishes practical insights for the development of tailored Al;.

Sc, N with desired coercive field characteristics.

IV. Conclusion

In this study, we successfully employed machine learning techniques to predict and optimize the
coercive field of Ali—Sc.N thin films fabricated using reactive sputtering. These films consist of a
single AliScN layer incorporated with different layer stacking combinations to suit non-volatile
memory applications. The Random Forest model developed in this work, validated through
comprehensive cross-validation, exhibited a high predictive accuracy, evidenced by an R? value
of 0.88, confirming the robustness of the approach. Leveraging this ML model, the development
of an extensive design space enables the precise selection of key parameters, including film
thickness, scandium concentration, and growth temperature. This approach significantly reduces
the time and resources typically required for experimental investigations. The model's predictions
delineate a predominantcoercivefield range of 3 MV/cmto 4.5 MV/cm, with a potential minimum
range of 2.5 MV/cmto 3 MV/cm, providinga valuable framework for guiding f uture experimental
work and device fabrication. While the findings of this study establish a solid foundation for
optimizing Al;—xScxN thin films, they also highlight new directions for further research. Future

investigations could extend this methodology to other ferroelectric materials and assess the model's



generalizability across varying operational conditions. Such advancements will contribute to the
broader development of ferroelectric materials, with significant implications for the design and

performance of next-generation non-volatile memory devices.
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