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Abstract. We present a novel training method for deep operator networks (DeepONets), one
of the most popular neural network models for operators. DeepONets are constructed by two sub-
networks, namely the branch and trunk networks. Typically, the two subnetworks are trained simul-
taneously, which amounts to solving a complex optimization problem in a high dimensional space.
In addition, the nonconvex and nonlinear nature makes training very challenging. To tackle such
a challenge, we propose a two-step training method that trains the trunk network first and then
sequentially trains the branch network. The core mechanism is motivated by the divide-and-conquer
paradigm and is the decomposition of the entire complex training task into two subtasks with reduced
complexity. Therein the Gram--Schmidt orthonormalization process is introduced which significantly
improves stability and generalization ability. On the theoretical side, we establish a generalization
error estimate in terms of the number of training data, the width of DeepONets, and the number of
input and output sensors. Numerical examples are presented to demonstrate the effectiveness of the
two-step training method, including Darcy flow in heterogeneous porous media.

Key words. deep operator networks, divide-and-conquer, sequential training method, general-
ization error analysis
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1. Introduction. Influenced by huge empirical successes of deep learning and
artificial intelligence, numerous neural network--based computational models have
been proposed. The effectiveness of these approaches has been documented and re-
ported in various research papers [31, 29, 8, 26, 34, 9, 19], with references included
therein. Among them, operator learning has garnered significant attention, particu-
larly because of its potential applications in addressing forward and backward prob-
lems involving partial differential equations (PDEs). One feature that sets the deep
learning approach apart from traditional numerical methods is the interplay between
the training process and the inference on unseen data. While the training could be
very challenging and time-consuming and require huge computational resources, once
it is complete, the inference can be done almost instantaneously.

The deep operator networks (DeepONets) [31] represent pioneering examples of
neural operator models [18], with their fundamental structures drawing inspiration
from the universal approximation theorem [10] for nonlinear operators. Since then,
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C274 SANGHYUN LEE AND YEONJONG SHIN

various neural network--based operator models have emerged, primarily aimed at en-
hancing performance on previously unseen data. Notable models encompass different
versions of DeepONets [32, 42, 25, 30, 23, 41] and Fourier neural operator adapta-
tions [5, 28, 20, 7, 39]. Nevertheless, the accuracy of the deduced solutions significantly
hinges on multiple factors, including but not limited to network architectures, training
data, hyperparameters, and training methodologies.

The current study aims to comprehend the aforementioned interplay by focus-
ing on DeepONets, given its status as one of the most widely used network models
for operators. This work introduces two main contributions. First, a novel training
method is developed, enhancing both training/optimization and generalization per-
formances. The DeepONets consist of two subnetworks, namely trunk and branch
networks. Standard approaches usually train these two subnetworks monolithically
as a unified entity using a first-order optimization method, such as Adam [24] and other
variants [37]. Accordingly, the training amounts to solving a complex optimization
problem defined in a very high dimensional space in addition to it being noncon-
vex and nonlinear. Many difficulties encountered in practice are related to training,
despite the inherent expressive capabilities of DeepONets [13, 27, 33].

To improve the conventional monolithic optimization approach, we propose a two-
step training method. The method is motivated by the divide-and-conquer paradigm.
The core mechanism is the decomposition of the entire complex optimization problem
into two subproblems with reduced complexity. As the name implies, this method
involves two steps. The first step is devoted to learning the trunk network. The trunk
network can be thought of as the basis representing the output functions, while the
branch network corresponds to appropriate coefficients. The first step aims at finding
the basis representation through the trunk network together with the corresponding
coefficients without introducing the branch network. The coefficients found in the
first step shall be the desired values for the branch networks to learn. Consequently,
in the second step, the branch network is trained to learn the values obtained from
the first step. The Gram--Schmidt orthonormalization is applied to the trunk network
in the first step, which significantly improves stability and generalization ability. This
separation of the learning process results in each step involving an optimization task
with considerably reduced complexity. In addition, we show that the minimized loss
achieved by the two-step method is identical to the one by the monolithic approach
(Theorem 3.4). We also prove that a zero training loss can be achieved under mild
overparameterization of DeepONets (Theorem 3.6). Numerical examples demonstrate
that the two-step training method significantly enhances the performance of Deep-
ONets over the same dataset when compared to results obtained through monolithic
training methods.

The other contribution is the generalization error estimate. The total error of
DeepONets can be decomposed by approximation, estimation, and optimization er-
rors. The approximation error of DeepONets is relatively well established (e.g., see
[13, 27, 33]), while the remaining two errors remain elusive. One reason may deviate
from that (1) every input function has to be transformed into a finite-dimensional
representation (e.g., discretization or generalized Fourier coefficients), and (2) Deep-
ONets learn only from a finite number of data. Unlike function approximation tasks,
the input space for operators is, in principle, infinite-dimensional, which requires one
to appropriately extend the space-filling argument [38] to the infinite-dimensional
counterpart. This is closely related to the input domain on which DeepONets can
learn and generalize. To mathematically characterize these features, we introduce
Assumption 4.3 and present multiple examples that satisfy it. We then connect
the DeepONet structures to the least-squares regression [11, 12] with respect to the
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C275

number of random sensor points for the output functions. Since the two-step training
allows the branch network to learn the optimal least-squares coefficients directly, an
existing error bound of the least-squares regression [11, 12] provides the generaliza-
tion error estimate for DeepONets. Yet, there are certain conditions to be met for
the trunk network, which we formulate in Assumption 4.7.

The rest of the paper is organized as follows. Upon introducing the problem
set and preliminaries in section 2, the proposed two-step training method for Deep-
ONets is presented in section 3. A generalization error analysis is given in section 4.
Numerical examples are presented in section 5 before conclusions.

2. Problem setup and preliminaries. Let \Omega x \subset Rdx and \Omega y \subset Rdy be com-
putational (compact) domains of interest. Let (\scrX , d\scrX ) be a metric space of functions
defined on \Omega x and let (\scrY ,\| \cdot \| \scrY ) be a normed vector space of functions on \Omega y. Let

\scrG :\scrX \ni f \mapsto \rightarrow \scrG [f ]\in \scrY 

be the operator of interest to be approximated by neural networks.
In order to utilize any input function f \in \scrX with DeepONets, it must first undergo

a conversion into a finite-dimensional quantity. There are various ways of extracting
information of f . One naive way is to consider a fixed set of discretization points
\{ xi\} m\mathrm{x}

i=1 \subset \Omega x and discretize f \in \scrX by \bfitf = (f(x1), . . . , f(xm\mathrm{x})) \in Rm\mathrm{x} [31]. Another
popular way is to extract finitely many (generalized) Fourier coefficients of f [28]. For
example, suppose f(x) =

\sum \infty 
i=1

\^fi\phi i(x) where \langle \cdot , \cdot \rangle is an appropriate inner product,

\{ \phi i\} is an associated orthogonal basis, and \^fi = \langle f,\phi i\rangle . Then, \bfitf = ( \^f1, . . . , \^fm\mathrm{x}
). For

the rest of the paper, bold font denotes a representation in a finite-dimensional space,
and mx is referred to as the number of input function sensors.

The goal of operator learning is to construct an operator network \scrG NN that ap-
proximates the target operator \scrG . An operator network is a mapping defined by

\scrG NN :Rm\mathrm{x} \ni \bfitf \mapsto \rightarrow \scrG NN[\bfitf ](\cdot )\in \scrY .(2.1)

While various methodologies for designing operator networks are available, Deep-
ONets [31, 32] are the pioneering neural operator model proposed in the literature.
This study centers its attention on DeepONets, and a detailed explanation thereof is
given in the following subsection.

2.1. Deep operator networks. For L\in N and \vec{}\bfitn = (n0, n1, . . . , nL)\in NL+1, an
L-layer feed-forward neural network is the mapping Rn0 \ni x \mapsto \rightarrow zL \in RnL where zL is
defined recursively by

z\ell =W \ell \sigma (z\ell  - 1) + b\ell , 2\leq \ell \leq L, z1 =W 1x+ b1.

Here, \sigma is a nonlinear activation function that applies elementwise, andW \ell \in Rn\ell \times n\ell  - 1

and b\ell \in Rn\ell are the weight matrix and the bias vector of the \ell th layer, respectively.
The vector \vec{}\bfitn is referred to as the network architecture and \{ W \ell , b\ell \} L\ell =1 as the network
parameters.

The DeepONet framework [31] integrates two distinct neural networks to effec-
tively approximate the target operator, referred to as the branch and trunk networks.
The construction of the branch network leads to two variants of DeepONet: unstacked
and stacked versions [31]. While the presented materials can be applicable to both
versions, for the sake of simplicity, this paper concentrates on the unstacked variant,
denoting it as DeepONet (with a slight abuse of notation) throughout the subsequent
sections. Throughout this work, N shall be referred to as the width of DeepONet.
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C276 SANGHYUN LEE AND YEONJONG SHIN

(a) Branch network (b) Trunk network

Fig. 1. An illustration of the unstacked DeepONet architecture.

The branch network is a vector-valued Lb-layer neural network

\bfitc (\cdot ; \theta ) = (c0(\cdot ; \theta ), . . . , cN (\cdot ; \theta ))\top ,(2.2)

whose architecture is \vec{}\bfitn b = (mx, n
(b)
1 , . . . , n

(b)
Lb - 1,N + 1), and \theta represents the network

parameters. The trunk network is a vector-valued Lt-layer neural network defined on
\Omega y \subset Rdy

\bfitphi (\cdot ;\mu ) = (1,\bfitphi 0(\cdot ;\mu ))\top ,(2.3)

where \bfitphi 0(\cdot ;\mu ) = (\phi 1(\cdot ;\mu ), . . . , \phi N (\cdot ;\mu )) is an Lt-layer neural network whose architec-

ture is \vec{}\bfitn t = (dy, n
(t)
1 , . . . , n

(t)
Lt - 1,N) and \mu represents the network parameters.

Then, a DeepONet is defined as the inner product of the branch and the trunk
networks, i.e.,

Onet[\bfitf ;\Theta ](y) :=\bfitphi \top (y;\mu )\bfitc (\bfitf ;\theta ) = c0(\bfitf ;\theta ) +
N\sum 
j=1

cj(\bfitf ;\theta )\phi j(y;\mu ),(2.4)

where \Theta = \{ \mu , \theta \} is the set of trainable DeepONet parameters. See Figure 1 for more
details of the DeepONet architecture.

2.2. Training of deep operator networks. Let \{ fk\} Kk=1 be a set of input
functions from \scrX and let uk(\cdot ) = \scrG [fk](\cdot ) be the corresponding output functions in \scrY .
Ideally, one wishes to minimize

\scrL ideal(\Theta ) =
1

K

K\sum 
k=1

\| Onet[\bfitf k;\Theta ](\cdot ) - uk(\cdot )\| p\scrY ,

where \| \cdot \| \scrY is the norm in \scrY , and p is a positive number that may depend on \| \cdot \| \scrY .
For example, if \| \cdot \| \scrY is the L2-norm, p = 2. In practice, however, the norm \| \cdot \| \scrY 
has to be discretized, and let \| \cdot \| \scrY m\mathrm{y}

be a discretized norm. We then seek to find
parameters of the DeepONet that minimize the training loss \scrL defined by

\scrL (\Theta ) =
1

K

K\sum 
k=1

\| Onet[\bfitf k;\Theta ](\cdot ) - uk(\cdot )\| p\scrY m\mathrm{y}
.(2.5)
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C277

Typically, the optimization problem is tackled using first-order optimization methods
such as stochastic gradient descent and its variants [37]. However, the nonconvex
and nonlinear nature of the loss frequently obstructs these methods from achieving
satisfactory loss minimization, leading to failures in some applications. However, as
evidenced by multiple extant studies [10, 31, 13, 33], DeepONets have the capacity
to approximate a multitude of nonlinear operators, including those commonly en-
countered in physical and engineering challenges, particularly those involving PDEs.
Such an expressivity of DeepONets, however, becomes null if an effective training
mechanism is not available.

3. Method. To address the aforementioned challenge, we present a novel train-
ing method for DeepONets. For ease of discussion, we confine ourselves to the case
of \scrY =Lp

\omega (\Omega y) whose norm is defined by

\| g\| \scrY =

\Biggl( \int 
\Omega y

| g(y)| pd\omega (y)

\Biggr) 1
p

\forall g \in \scrY ,

where \omega is a probability measure satisfying
\int 
\Omega y
d\omega (y) = 1, and consider the corre-

sponding discrete norm by Monte Carlo sampling,

\| g\| \scrY m\mathrm{y}
=

\Biggl( 
1

my

m\mathrm{y}\sum 
i=1

| g(yi)| p
\Biggr) 1

p

\forall g \in \scrY ,

where \{ yi\} 
m\mathrm{y}

i=1 are independent and identically distributed random samples from \omega .
Here my is referred to as the number of output function sensors.

For any g \in \scrY , let \bfitg = (g(y1), . . . , g(ym\mathrm{y}
))\top be the discretization of g. Note

that the discrete norm \| g\| \scrY m\mathrm{y}
is the standard \ell p-norm \| \bfitg \| \ell p up to a multiplicative

constant. Then the set of training data can be written as

(\bfitf k,\bfitu k) = (fk(x1), . . . , fk(xm\mathrm{x}
), uk(y1), . . . , uk(ym\mathrm{y}

)), k= 1, . . . ,K.

It follows from (2.4) that the training loss function (2.5) is

\scrL (\{ \mu , \theta \} ) = 1

K

K\sum 
k=1

1

my

m\mathrm{y}\sum 
i=1

| \bfitphi \top (yi;\mu )\bfitc (\bfitf k;\theta ) - uk(yi)| p,(3.1)

where \theta and \mu represent all the network parameters of branch \bfitc (\cdot ; \theta ) and trunk \bfitphi (\cdot ;\mu )
networks, respectively.

3.1. Loss function via matrix representation. By exploiting matrix repre-
sentation, the loss function (3.1) can be written in a simple matrix form. Let

\Phi (\mu ) =

\left[   \bfitphi \top (y1;\mu )
...

\bfitphi \top (ym\mathrm{y} ;\mu )

\right]   \in Rm\mathrm{y}\times (N+1), \bfitC (\theta ) = [\bfitc (\bfitf 1;\theta ), . . . ,\bfitc (\bfitf K ;\theta )]\in R(N+1)\times K ,

and \bfitU = [\bfitu 1, . . . ,\bfitu K ]\in Rm\mathrm{y}\times K . The matrix \Phi (\mu ) may be viewed as a Vandermonde-
like matrix, while \bfitC (\theta ) may be viewed as the corresponding coefficient-like matrix.
It can be checked that the loss (3.1) can be expressed as

\scrL (\{ \mu , \theta \} ) = 1

Kmy
\| \Phi (\mu )\bfitC (\theta ) - \bfitU \| pp,p,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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C278 SANGHYUN LEE AND YEONJONG SHIN

where \| \cdot \| p,p is the entrywise matrix norm. Hence, training DeepONets means solving
the following optimization problem:

min
\mu ,\theta 

\scrL (\{ \mu , \theta \} ) := \| \Phi (\mu )\bfitC (\theta ) - \bfitU \| pp,p.(3.2)

3.2. Reparameterization of DeepONets. A key part of the proposed train-
ing method is a specific (re)parameterization of DeepONets. Let T be a trainable
square matrix of size N +1 and consider a new trunk network \^\bfitphi which has the form
of

\^\bfitphi (\cdot ;\mu ,T ) = T\top \bfitphi (\cdot ;\mu ),

where \bfitphi (\cdot ;\mu ) is the standard trunk network defined in (2.3). The resulting DeepONet
is then

Onet[\bfitf ](y) = \^\bfitphi 
\top 
(\cdot ;\mu ,T )\bfitc (\bfitf ;\theta ) =\bfitphi \top (\cdot ;\mu )T\bfitc (\bfitf ;\theta ).

This can also be viewed as a DeepONet with the same trunk network \bfitphi (\cdot ;\mu ) as before
but a new branch network T\bfitc (\cdot ; \theta ). In fact, if \bfitc is a standard vector-valued neural
network constructed by the architecture \vec{}\bfitn b, T\bfitc (\bfitf ;\theta ) can be viewed as a reparame-
terization of the last layer's weight matrix and bias vector as

T\bfitc (\bfitf ;\theta ) = TWLb\sigma (zLb - 1) + TbLb .

With this new parameterization, we consider the loss function

min
\mu ,T,\theta 

\scrL (\mu ,T, \theta ) := \| \Phi (\mu )T\bfitC (\theta ) - \bfitU \| pp,p,(3.3)

and the proposed training method aims at solving (3.3). We note that \Phi (\mu )T can be
viewed as a Vandermonde-like matrix constructed from the new trunk network \^\bfitphi as
basis.

3.3. Proposed two-step training method. Assuming my >N , we propose a
two-step training method for solving (3.3).

Step 1. The first step trains the new trunk network \^\bfitphi through the following
minimization problem:

min
\mu ,A

\scrL (\mu ,A) := \| \Phi (\mu )A - \bfitU \| pp,p, where A\in R(N+1)\times K .(3.4)

Let (\mu \ast ,A\ast ) be an optimal solution and let \Phi (\mu \ast ) be full rank. We then set T \ast =
(R\ast ) - 1 as the inverse of R\ast obtained from a QR-factorization of \Phi (\mu \ast ), i.e., Q\ast R\ast =
\Phi (\mu \ast ). The trunk network is then fully determined as \^\bfitphi (\cdot ;\mu \ast , T \ast ).

Step 2. The second step trains the branch network to fit R\ast A\ast . Specifically, we
consider the optimization problem of

min
\theta 

\| \bfitC (\theta ) - R\ast A\ast \| 22,2.(3.5)

Assuming \theta \ast to be an optimal solution, the fully trained branch network is given by
\bfitc (\cdot ; \theta \ast ).

Remark 3.1. The first step replaces the use of the branch network from (3.1) to
the corresponding value matrix A. The trunk network's parameters \mu and the value
matrix A are then trained simultaneously to minimize the loss (3.4). Since the trunk

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C279

loss function is convex with respect to A (assuming p \geq 1), the first step shall avoid
any difficulties caused by nonlinearity and nonconvexity from the branch network. In
addition, the number of parameters involved with it is | \mu | + | A| , while the one for
the standard loss (3.1) is | \mu | + | \theta | . Hence, as long as | A| = (N + 1)K < | \theta | , the first
step yields an optimization problem whose dimension is smaller than the one of the
standard loss. Altogether, the first step (3.4) is designed to facilitate training of the
trunk network.

Remark 3.2. The role of T \ast may be viewed as applying the Gram--Schmidt or-
thonormalization process on the standard trunk network with respect to the discretiza-
tion points \{ yj\} . The approximation capability remains the same with or without T \ast ;
however, we found numerically that the introduction of T \ast significantly improves sta-
bility and generalization ability.

Remark 3.3. The proposed method splits the entire optimization problem into two
smaller problems, the complexities of which (computational and/or optimization) are
significantly reduced. In the numerical test section, we demonstrate the advantage of
our proposed method by comparing the results of a monolithic approach that trains
both networks simultaneously.

3.4. Optimization error analysis. We first show that the loss of (3.3) at an
optimal solution from the two-step training via (3.4) and (3.5) is equal to the minimum
loss of the original problem (3.2).

Theorem 3.4. Suppose that the branch network's architecture is sufficiently large
so that for any M \in R(N+1)\times K , there exists \~\theta such that \bfitC (\~\theta ) =M . Let (\mu \ast ,A\ast ) and
\theta \ast be optimal solutions of (3.4) and (3.5), respectively. Then,

\scrL (\mu \ast , T \ast , \theta \ast ) =min
\mu ,\theta 

\scrL (\{ \mu , \theta \} ).

Proof. We prove the theorem by contradiction. Suppose that there exists \{ \^\mu , \^\theta \} 
that gives \scrL (\{ \^\mu , \^\theta \} )<\scrL (\mu \ast , T \ast , \theta \ast ). By letting \^A :=\bfitC (\^\theta ), it can be checked that

\scrL (\mu \ast , T \ast , \theta \ast ) = \| \Phi (\mu \ast )T \ast \bfitC (\theta \ast ) - \bfitU \| pp,p = \| \Phi (\mu \ast )A\ast  - \bfitU \| pp,p
\leq \| \Phi (\^\mu ) \^A - \bfitU \| pp,p = \| \Phi (\^\mu )\bfitC (\^\theta ) - \bfitU \| pp,p =\scrL (\{ \^\mu , \^\theta \} ),

which is a contradiction. This shows that \scrL (\mu \ast , T \ast , \theta \ast )\leq min\mu ,\theta \scrL (\{ \mu , \theta \} ).
Let \^\mu = \mu \ast and \^\theta be the branch parameter that satisfies \bfitC (\^\theta ) =A\ast . It then can

be checked that

\scrL (\{ \^\mu , \^\theta \} ) = \| \Phi (\mu \ast )\bfitC (\^\theta ) - \bfitU \| pp,p = \| \Phi (\mu \ast )A\ast  - \bfitU \| pp,p =\scrL (\mu \ast , T \ast , \theta \ast ),

which shows that min\mu ,\theta \scrL (\{ \mu , \theta \} )\leq \scrL (\mu \ast , T \ast , \theta \ast ).

Theorem 3.4 assumes that the branch network can interpolate any given data.
This is indeed possible under mild conditions (e.g., sufficiently large width) as already
shown in [35, 43, 14, 15, 3]. In addition, if the branch network is built based on two-
layer networks, the minimization problem (3.5) can be effectively solved by a recently
developed training method, active neuron least squares (ANLS) [1, 2].

Last, for the training of the trunk network (3.4), a zero loss can also be obtained
if the architecture of the trunk network is appropriately chosen.
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C280 SANGHYUN LEE AND YEONJONG SHIN

Theorem 3.5. Suppose that p = 2, \bfitU has rank r and the trunk network \bfitphi 0 of
(2.3) is a (2my + 1)-layer rectified linear unit (ReLU) network whose architecture is
given by

\vec{}\bfitn t = (dy,4,4,

(2my - 2) times\underbrace{}  \underbrace{}  
\~n, . . . , \~n ,N), where \~n= 2min\{ N,r\} + 4.

Then, there exist \mu \ast and A\ast satisfying

\scrL (\mu \ast ,A\ast ) := \| \Phi (\mu \ast )A\ast  - \bfitU \| 22,2 \leq min
rank(\bfitZ )\leq min\{ N,r\} 

\| \bfitZ  - \bfitU \| 22,2.

In particular, if N \geq r, we have \scrL (\mu \ast ,A\ast ) = 0.

Proof. The proof can be found in Appendix A.

By combining Theorems 3.4 and 3.5, a zero training loss for DeepONets can be
achieved under overparameterization of both trunk and branch networks.

Theorem 3.6. Suppose that the architecture of the trunk network is set as de-
scribed in Theorem 3.5 with N \geq r. Suppose also that the branch network's architecture
is sufficiently large so that for any M \in R(N+1)\times K , there exists \~\theta such that \bfitC (\~\theta ) =M .
Then,

0 =min
\mu ,\theta 

\scrL (\{ \mu , \theta \} ) := \| \Phi (\mu )\bfitC (\theta ) - \bfitU \| pp,p.

Proof. It follows from Theorem 3.5 that there exist \mu \ast ,A\ast satisfying \scrL (\mu \ast ,A\ast ) = 0
as N \geq r. Since the branch network can achieve a zero loss from (3.5), there exists \theta \ast 

such that \bfitC (\theta \ast ) =R\ast A\ast . It then can be checked that

0 =\scrL (\mu \ast ,A\ast ) = \| \Phi (\mu \ast )A\ast  - \bfitU \| pp,p = \| \Phi (\mu \ast )T \ast \bfitC (\theta \ast ) - \bfitU \| pp,p =\scrL (\mu \ast , T \ast , \theta \ast ).

The proof is then completed by Theorem 3.4.

4. Generalization error analysis. The generalization error refers to a quantity
that measures how well the learned DeepONet performs on unseen functions (data).
To be more precise, let \scrX K = \{ f1, . . . , fK\} \subset \scrX be a set of functions and \{ uj :=
\scrG [fj ] : j = 1, . . . ,K\} be the corresponding output functions of the operator \scrG of
interest, which are all used for the training of DeepONets. Let Onet be a fully trained
DeepONet. For f \in \scrX \setminus \scrX K , the generalization error of the DeepONet Onet at f is
defined to be

\scrE gen(Onet[\bfitf ]) := \| \scrG [f ] - Onet[\bfitf ]\| L2
\omega (\Omega y).(4.1)

The end goal of operator learning is to construct a neural operator Onet from finitely
many data that yield a small generalization error uniformly over \scrX .

In what follows, we present a generalization error analysis for DeepONets in
terms of the number K of training data, the number mx of input function sensors,
the number my of output function sensors, and the width N of DeepONets. The
presented analysis is motivated by an approximation error analysis of DeepONets
for the coefficient-to-solution map of elliptic second-order PDEs [33] and we combine
it with the analysis [11, 12] of the least-squares approximations to incorporate the
output training data.
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C281

Let us consider a class \scrC op of operators from \scrX to \scrY = L2
\omega (\Omega y) which has a

spectral form of

\scrG [f ](y) =
\infty \sum 
j=0

cj(f)\psi j(y),

where \{ cj\} 's are Lj-Lipschitz functionals in \scrX \prime such that
\sum \infty 

j=0L
2
j <\infty , and \{ \psi j(\cdot )\} j

is an orthogonal basis for L2
\omega (\Omega y) satisfying

\langle \psi i,\psi j\rangle L2
\omega 
:=

\int 
\Omega y

\psi i(y)\psi j(y)d\omega (y) = \delta ij .

Here \delta ij is a Kronecker delta function, and \omega is a probability measure on \Omega y. It then
can be checked that every operator in \scrC op is Lipschitz.

Proposition 4.1. Any operator \scrG \in \scrC op is Lipschitz continuous. We denote L\scrG 
as the Lipschitz constant of \scrG .

Proof. For any f, f \prime \in \scrX , observe that \| \scrG [f ] - \scrG [f \prime ]\| 2L2
\omega 
=

\sum \infty 
j=0 | cj(f) - cj(f

\prime )| 2 \leq \sum \infty 
j=0L

2
jd

2
\scrX (f, f \prime ), which gives \| \scrG [f ]  - \scrG [f \prime ]\| L2

\omega 
\leq L\scrG d\scrX (f, f \prime ) with L\scrG \leq \sqrt{} \sum \infty 

j=0L
2
j .

Let \scrG N [f ](y) =
\sum N

j=0 cj(f)\psi j(y) be the best N -term approximation of \scrG [f ], and
let \scrE N (\scrG [f ]) := \| \scrG [f ]  - \scrG N [f ]\| L2

\omega 
be the corresponding best N -term approximation

error. In what follows, we make a couple of assumptions on \scrG that guarantee the
uniform boundedness and the uniform decay rate of the best N -term approximation
error, inspired by [33].

Assumption 4.2 (operators). For any \scrG \in \scrC op, the following are assumed.
1. There is a constant M > 0 such that | \scrG [f ](y)| \leq M for any f \in \scrX , and for

almost every y with respect to \omega .
2. Let \scrE N (\scrX ) := supf\in \scrX \scrE N (\scrG [f ]) be the supremum of the best N -term approx-

imation errors over \scrX . Assume that \scrE N (\scrX )\leq N - r\scrG ,\scrX for some r\scrG ,\scrX > 0 that
depends on \scrX , \scrG and the choice of basis \{ \psi j\} .

We note that there are many operators of interest satisfying Assumption 4.2. For
example, [33] considered the elliptic boundary value problem

 - \nabla \cdot (a\nabla ua) = f

for some fixed source term f and studied approximation rates of the data-to-solution
operator \scrG : a \mapsto \rightarrow ua. It was shown that the operator \scrG satisfies Assumption 4.2.

Since DeepONet requires one to extract finite-dimensional information from an
infinite-dimensional class \scrX for the input, in order to quantify how many input func-
tions are needed to fill up the target domain, we make the following assumptions.

Assumption 4.3 (input functions and sensors). The symbol \lesssim is used to suppress
constants that depend only on (\scrX , d\scrX ).

1. For all but finitely many mx \in N, there exist mx discretization points \{ xj\} m\mathrm{x}
j=1

in \Omega x satisfying

\| \bfitf  - \bfitg \| w,2 \lesssim d\scrX (f, g) +m - s
x \forall f, g \in \scrX ,

where \| \cdot \| w,2 is a weighted Euclidean norm, and s > 0 is a constant that
depends only on \scrX .
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C282 SANGHYUN LEE AND YEONJONG SHIN

2. For any K \in N, there exist K input functions \scrX K := \{ f1, . . . , fK\} in \scrX 
satisfying for any f \in \scrX ,

min
1\leq k\leq K

d\scrX (f, fk)\lesssim K - \alpha +m - s
x(4.2)

for some \alpha > 0 which may depend \scrX and mx.

Many input function spaces \scrX used in the literature (e.g., [31, 32, 5]) satisfy
Assumption 4.3. For the sake of clarity, we present three detailed examples.

Example 4.4. Let

\scrX =
\bigl\{ 
f : [ - 1,1]2 \rightarrow R | \kappa \in [0,1], f(x) = \kappa if \| x\| 2 \leq 1, and 1 otherwise

\bigr\} 
,

and define a map d\scrX over \scrX \times \scrX such that d\scrX (f, g) := | f(0) - g(0)| for any f, g \in \scrX .
It can be checked that d\scrX is a metric on \scrX . For a given set of points \{ xj\} m\mathrm{x}

j=1 where
there exists a point whose \| \cdot \| 2-norm is less than or equal to 1, let wj = 0 if \| xj\| > 1
and wj = 1

| \{ xi| \| xi\| \leq 1\} | if \| xj\| \leq 1. For f \in \scrX , let \bfitf = (f(x1), . . . , f(xm\mathrm{x}
)) and

\| \bfitf \| 2w,2 :=
\sum m\mathrm{x}

j=1wjf(xj)
2. It then can be checked that \| \bfitf  - \bfitg \| w,2 = d\scrX (f, g) for all

f, g \in \scrX , which satisfies Assumption 4.3.1.
For any K \in N, let \scrX K = \{ f1, . . . , fK\} , where fi \in \scrX and fi(0) =

i
K . It then can

be checked that for any f \in \scrX , there exists g \in \scrX K such that d\scrX (f, g)\leq K - 1, which
shows that Assumption 4.3.2 holds.

Example 4.5. Let

\scrX = \{ f \in C1([ - 1,1]) | \| f\| C1 \leq 1\} 

with d\scrX (f, g) = \| f  - g\| L2 for any f, g \in \scrX . Let \{ (xj ,wj)\} m\mathrm{x}
j=1 be the Gauss--Legendre

quadrature points and weights. Observe that for any f \in \scrX , we have \| \bfitf \| w,2 =
\| \Pi m\mathrm{x}f\| L2 , where \Pi m\mathrm{x}f is the Lagrange interpolation of f . Therefore, for any f, g \in \scrX ,

\| \bfitf  - \bfitg \| w,2 = \| \Pi m\mathrm{x}(f  - g)\| L2 \leq \| f  - g\| L2 + \| (f  - g) - \Pi m\mathrm{x}(f  - g)\| L2

\lesssim d\scrX (f, g) +m - 1
x ,

which shows that Assumption 4.3.1 holds.
For any n \in N, let K = (n+ 1)m\mathrm{x} , and consider \scrX K = \{ f \in \scrX : \bfitf \in \{  - 1 + i

n (2) :
i= 0, . . . , n\} m\mathrm{x}\} . It then can be checked that for any f \in \scrX , there exists g \in \scrX K such
that

d\scrX (f, g)\leq \| \Pi m\mathrm{x}(f  - g)\| L2 +Cm - 1
x = \| \bfitf  - \bfitg \| w,2 +Cm - 1

x

\leq \| \bfitf  - \bfitg \| \infty +Cm - 1
x \lesssim K - 1

m\mathrm{x} +m - 1
x ,

which shows that Assumption 4.3.2 holds.

Example 4.6. Let \scrX = \{ f \in Hp
\omega ([ - 1,1]) : \| f\| Hp

\omega 
\leq 1\} where Hp

\omega ([ - 1,1]) is a

weighted Sobolev space. For any f \in Hp
\omega , let \bfitf =( \^f0, . . . , \^fm\mathrm{x}

) with \^fk=\langle f, pk\rangle L2
\omega ([ - 1,1])

where pk is the orthonormal polynomial of degree k with respect to \omega . It then follows
from the well-known spectral convergence [22] that for any f, g \in \scrX ,

\| \bfitf  - \bfitg \| 2 \lesssim \| f  - g\| L2
\omega 
+m - p

x ,

implying Assumption 4.3.1.
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C283

For any n \in N, let K = (n + 1)m\mathrm{x} , and consider \scrX K = \{ f \in \scrX : \^f \in \{ i
n : i =

0, . . . , n\} m\mathrm{x} . Let Pm\mathrm{x}f =
\sum m\mathrm{x}

j=0
\^fjpk. It then can be checked that for any f \in \scrX , there

exists g \in \scrX K such that

d\scrX (f, g)\leq \| Pm\mathrm{x}
f  - g\| L2

\omega 
+ \| f  - Pm\mathrm{x}

f\| L2
\omega 
\lesssim \| \bfitf  - \bfitg \| 2 +m - p

x

\leq \| \bfitf  - \bfitg \| \infty +m - p
x \lesssim K - 1

m\mathrm{x} +m - p
x ,

implying Assumption 4.3.2.

The following assumption is the one that draws a connection between the pro-
posed two-step training method and the generalization analysis. Roughly speaking,
we generalize the assumption on the number of output sensors introduced in [11, 12]
for a class of trunk neural networks on which orthonormal basis can be formed with
respect to a given measure defined on \Omega y. This assumption is crucial as it allows one
to utilize a classical least-squares analysis in the context of DeepONets.

Assumption 4.7 (trunk networks and sensors). Let F be a feasible set of trunk
network parameters defined by

F=

\Biggl\{ 
\mu \in Ft : sup

y\in \Omega y

\| \^\bfitphi (\cdot ;\mu ,T\mu )\| 22 <\infty 

\Biggr\} 
,(4.3)

where Ft = \{ \mu : \exists T\mu such that \^\bfitphi (\cdot ;\mu ,T\mu ) forms orthonormal basis in L2
\omega (\Omega y)\} . Let

\{ y1, . . . , ym\mathrm{y}
\} be a set of discretization points randomly independently drawn from the

probability measure \omega . For rt > 0, suppose my is sufficiently large enough to satisfy

sup
\mu \in F

\Biggl( 
sup
y\in \Omega y

\| \^\bfitphi (\cdot ;\mu ,T\mu )\| 22

\Biggr) 
\leq \kappa 

my

logmy
, \kappa :=

3 log(3/2) - 1

2 + 2rt
.(4.4)

Last, we introduce assumptions for branch networks. For simplicity, we confine
ourselves to a two-layer neural network of sufficiently large width so that one achieves
a zero loss on (3.5).

Assumption 4.8 (branch networks). The following are assumed for branch net-
works.

1. The branch network is a two-layer neural network whose activation function
\sigma is Lipschitz continuous with the Lipschitz constant L\sigma .

2. For eachK, there exists a two-layer branch network of width nK that achieves
a zero loss (3.5). That is, there exists \theta \ast such that\bfitC (\theta \ast ) =R\ast A\ast . Specifically,
let \theta \ast = \{ \gamma \ell , \beta \ell ,w\ell \} nK

\ell =1 where \gamma \ell \in RN+1, w\ell \in Rm\mathrm{x} , \beta \ell \in R. Then, for
k= 1, . . . ,K,

\bfitc (\bfitf k;\theta 
\ast ) :=

nK\sum 
\ell =1

\gamma \ell \sigma (\langle w\ell ,\bfitf k\rangle + \beta \ell ) = (R\ast A\ast )k \in RN+1,

where (R\ast A\ast )k is the kth column of R\ast A\ast from (3.5).
3. Let Lc(K,N,mx) :=

\sum nK

\ell =1 \| \gamma \ell \| 2\| w\ell \| 2. Suppose Lc(K,N,mx) is uniformly
bounded independent of K, N , and mx, and denote its upper bound by Lc.

Remark 4.9. The assumptions of Assumption 4.8 are mild and easily satisfied in
many practical setups. The last assumption corresponds to the uniform boundedness
of the Lipschitz constant for the branch networks, which is often used in the literature
(e.g., [38]) to establish a convergence.
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C284 SANGHYUN LEE AND YEONJONG SHIN

We are now in a position to present the main theorem that characterizes the
generalization error of the fully trained DeepONets in terms of the number K of
training data, the number mx of input function domain sensors, the number my of
output function domain sensors, and the width N of DeepONets.

Theorem 4.10. Suppose Assumptions 4.2, 4.3, 4.7, and 4.8 hold. Let Onet be the
fully trained DeepONet, that is, the trunk networks are obtained from (3.4) with p= 2
and \mu \ast \in F defined as in Assumption 4.7, and the branch network solves (3.5). Given a
truncation operator TM (z) = sign (z)max\{ M, | z| \} , let \widetilde Onet[\bfitf ](y) := TM (Onet[\bfitf ](y)).
Then, for any f \in \scrX ,

E
\Bigl[ 
\scrE 2
gen( \widetilde Onet[\bfitf ])

\Bigr] 
\lesssim C(my, rt)N

 - r\scrG ,\scrX ,\mu \ast +K - \alpha +m - s
x +m - rt

y ,(4.5)

where C(my, rt) = 1 + 6 log(3/2) - 2
(1+rt) logmy

and the expectation is taken over all random

output function sensors \{ yi\} 
my

i=1. All the hidden constants are independent of K,
mx,my,and N but may only depend on M , L\scrG , L\sigma , Lc, and (\scrX , d\scrX ).

Proof. The proof can be found in Appendix B.

Remark 4.11. The rate r\scrG ,\scrX ,\mu \ast of convergence with respect to the width N of
DeepONet is affected by the trunk network.

5. Numerical examples. In this section, we present several numerical exper-
iments to demonstrate the performance of the proposed two-step training method.
Throughout, the two-step training method as described in section 3.3 is referred to
as 2ST and the vanilla monolithic training method is referred to as VAN. To illus-
trate the importance of the Gram--Schmidt orthonormalization (implemented by QR-
factorization) in the first step, the one without it shall be referred to as 2STw/oQR.
In all the numerical tests, we employ the standard unstacked DeepONet structure
proposed in [31].

Darcy's flow equation. In the following numerical examples, we consider
Darcy's flow equation in a bounded domain \Omega = ( - 1, 1)2 with Lipschitz boundary
\partial \Omega :

 - \nabla \cdot (\alpha (p)\nabla p) = f in \Omega ,

p= g on \Gamma D,

 - \alpha (p)\nabla p \cdot n= h on \Gamma N ,

(5.1)

where p : \Omega \rightarrow R is the scalar pressure and f is the body force. A Dirichlet bound-
ary condition is imposed on \Gamma D and a Neumann boundary condition is given on
\Gamma N = \partial \Omega \setminus \Gamma D with n as the unit outward normal vector on \Gamma N . We note that the
conductivity \alpha := \alpha (p) could yield the equation to be nonlinear. In what follows, we
will consider three different operators that arise from (5.1).

Data generation. We employ the classical Lagrange continuous Galerkin linear
finite element method (FEM) to generate the data. Both finite element libraries,
deal.II [6] and FEniCS [4], were utilized. Once the data is generated, we split it into
the training data and the test data. The training data is used for training of DeepONet
and the test data is used to evaluate the performance of the trained DeepONet.

Inference on unseen data. For a test input function \bfitf test, the DeepONet
produces an approximation to the corresponding output function utest := \scrG [ftest].
Let \{ y(test)i \} M\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

i=1 be a set of points from \Omega y to be used for evaluating the general-

ization ability. Let \bfitu test = (utest(y
(test)
1 ), . . . , utest(y

(test)
M\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

))\top be the discretization of
utest, which is not available in practice. We measure the generalization ability of the
DeepONet by means of the relative \ell 2 error defined by
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D
ow

nl
oa

de
d 

06
/0

3/
25

 to
 1

44
.1

74
.2

12
.1

05
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ON THE TRAINING AND GENERALIZATION OF DEEPONETS C285

\scrE rel(Onet[\bfitf test]) :=

\sqrt{} \sum M\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

i=1

\Bigl( 
Onet[\bfitf test](y

(test)
i ) - utest(y

(test)
i )

\Bigr) 2

\| \bfitu test\| 2
.(5.2)

Conditional optimality. If \bfitu test were known, by fixing the trunk network, one
can obtain the optimal value \bfita \ast 

test for the branch network at \bfitf test by solving

\bfita \ast 
test =

\Biggl\{ 
argmin\bfita \in RN+1\| \Phi test(\bfitmu 

\ast )\bfita  - \bfitu test\| 2 with the monolithic method,

argmin\bfita \in RN+1\| \Phi test(\bfitmu 
\ast )T \ast \bfita  - \bfitu test\| 2 with the two-step method,

where \Phi test(\bfitmu 
\ast ) is the matrix whose ith row is \bfitphi \top (y

(test)
i ;\mu \ast ). Let

O\ast 
net[\bfitf test](y) :=

\Biggl\{ 
\bfitphi \top (y;\mu \ast )\bfita \ast 

test with the monolithic method,

\bfitphi \top (y;\mu \ast )T \ast \bfita \ast 
test with the two-step method.

(5.3)

We then define \scrE rel(O\ast 
net[\bfitf test]) as the optimal relative \ell 2 error. Here the optimality

shall be understood as conditional in the sense that given \{ y(test)i \} and the trunk
network \bfitphi (\cdot ;\mu \ast ), O\ast 

net[\bfitf test] is the least-squares approximation to utest. However,
this optimality is not available in practice as O\ast 

net requires the target function \bfitu test to
obtain \bfita \ast 

test. The optimal relative \ell 2 errors by 2ST and VAN are referred to as Opt-2ST
and Opt-VAN, respectively.

5.1. Forward problem: Nonlinear conductivity. Let us consider a specific
case of (5.1). Let f = 1, g = cos(x), \partial \Omega = \Gamma D and the conductivity coefficient be
\alpha (p) = \kappa p, where \kappa is a constant function. The operator \scrG of interest is

\scrG :\scrX \ni \kappa (\cdot ) \mapsto \rightarrow p(\cdot )\in \scrY ,

where \scrX = \{ \kappa | \kappa (x, y) = \beta \forall (x, y) \in \Omega , \beta \in [1,1000]\} and \scrY is an appropriate space
where the solution p lies. Note that for any \kappa \in \scrX , it is well-known [16] that there
exists a unique solution p(\cdot ) of the system (5.1).

Since the input functions are constant functions, we simply set mx = 1, e.g.,
x1 = (0,0). Accordingly, the input data are generated as the collection of 1000
equidistant \beta values in [1,1000], i.e., \{ 1,2, . . . ,1000\} . The corresponding output data
are obtained by the FEM solver on 2049 grid points, i.e., my = 2049. The data are
then randomly split in two---900 of them are used as training and the remaining 100
are used as test data. We employ a DeepONet whose branch and trunk architectures
are \vec{}\bfitn b = (1,500,51) and \vec{}\bfitn t = (2,50,50,50,50), respectively. Both branch and trunk
networks use the ReLU activation function and were initialized by the He initialization
scheme [21]. Throughout, we employ the Adam optimizer [24] with full-batch.

In Figure 2(a), we plot the training loss versus the number of iterations by both
2ST and VAN. Specifically, the training loss refers to the trunk network loss which is
defined in (3.4) for 2ST and the standard overall loss of (3.2) for VAN. It can be clearly
seen that the loss by 2ST is roughly two orders of magnitude smaller than the one
by VAN. As a matter of fact, the smallest loss attained by 2ST is 2.33\times 10 - 7, while
the one by VAN is 2.08 \times 10 - 5. This is not a single isolated case. We tested five
independent simulations, and the averaged smallest loss achieved by the two methods
is 2.11\times 10 - 7 and 1.84\times 10 - 5 for 2ST and VAN, respectively. This demonstrates the
effectiveness of the proposed two-step method for learning the trunk network. The
remaining task for 2ST is then to learn the branch network following (3.5).
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C286 SANGHYUN LEE AND YEONJONG SHIN

(a) (b)

Fig. 2. Example 5.1. (Left) The training loss versus the number of iterations. Here the loss
refers to (2.5) for VAN and (3.4) for 2ST (thus 2STw/oQR). (Right) The branch loss (3.5) is reported
for 2ST and 2STw/oQR. This shows the effectiveness of orthogonalization in the second step of the
proposed training method. (Color online.)

Fig. 3. Example 5.1. (Top) The relative \ell 2 errors versus the 100 test \beta values by 2ST, VAN,
and 2STw/oQR. (Bottom) Left: The graph of the target operator evaluated at a test function \kappa = 5,
which is the smallest value lying in the test data. Middle and right: The absolute error maps by VAN

(middle) and 2ST (right).

In Figure 2(b), the training loss for the branch network versus the number of
iterations is plotted. We can see that the loss reaches the level of 10 - 9 by 2ST which
utilizes QR-factorization, while the one without QR cannot reach a similar level.
This demonstrates the effectiveness of the orthogonalization in the proposed two-step
training method.

In the top left of Figure 3, the relative \ell 2 errors defined in (5.2) are reported. The
errors are plotted with respect to the 100 test \beta values, where the \beta are constant input

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

3/
25

 to
 1

44
.1

74
.2

12
.1

05
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ON THE TRAINING AND GENERALIZATION OF DEEPONETS C287

functions. The results of 2ST, VAN, and 2STw/oQR are marked as asterisks (\ast ), crosses
(\times ), and triangles (\bigtriangleup ), respectively. The optimal relative \ell 2 errors defined in (5.3)
are shown as circles (\circ , Opt-2ST) for 2ST and squares (\square , Opt-VAN) for VAN, and they
serve as references. We note that having small optimal relative errors means the trunk
network was well-trained to represent unseen output functions. In a similar vein, it is
also worth noting that if the relative errors of VAN (2ST) are close to the optimal ones of
VAN (2ST), it implies that the branch network was well-trained, allowing the DeepONet
to generalize effectively. It is clearly observed that 2ST achieves the smallest relative \ell 2
errors being almost identical to the optimal ones, while 2STw/oQR yields much higher
and unstable errors. This again demonstrates the effectiveness of orthogonalization in
the proposed method. VAN is able to produce relative errors similar to optimal ones;
however, the relative optimal errors of VAN are much higher than the ones by 2ST. This
indicates the ineffectiveness of the monolithic training for learning the trunk network.
On the contrary, the proposed two-step training method 2ST effectively trains not
only the trunk network but also the branch network. On the top right, we report the
means of the relative \ell 2 errors from five independent simulations. The shaded area is
the area that falls within one standard deviation of the mean. On the bottom left, we
report the graph of the target output function for \beta = 5 (the smallest value belongs
to the test data). On the bottom middle and right, the absolute error maps by VAN

and 2ST are shown, respectively. It is clearly observed that the absolute error by 2ST

is at least one order magnitude smaller than the one by VAN.

5.2. Inverse problem: Discontinuous conductivity. In this case, let f = 0
and consider a piecewise constant (discontinuous) conductivity \alpha := \kappa (\cdot ;\beta ) where \kappa is
defined by

\kappa (x, y;\beta ) =

\Biggl\{ 
\beta if (x, y)\in \Omega 1,

1 if (x, y)\in \Omega \setminus \Omega 1,
(5.4)

where \Omega 1 is a disk centered at the origin (0,0) with radius r= 0.5. The Dirichlet and
Neumann boundary conditions are imposed by

p= 0 on \Gamma D1 ,  - \kappa \nabla p \cdot n= 0 on \Gamma N2 ,  - \kappa \nabla p \cdot n= 1 on \Gamma N1 .(5.5)

Figure 4(a) shows the detailed geometry of the problem.
We are interested in the inverse problem of (5.1) with the boundary conditions of

(5.5). That is, the operator \scrG of interest maps a given solution p to the corresponding

\Gamma D1

\Gamma N1

\Gamma N2
\Gamma N2

\Omega 2

\Omega 1

\kappa 2 = 1

\kappa 1 = \beta 

(a) Domain Geometry. (b) p(\cdot ). (c) \kappa (\cdot ;\beta = 9.98).

Fig. 4. Example 2. (a) Problem domain with detailed geometries. (b) The solution p of (5.1)
with the boundary conditions (5.5) at \kappa (\cdot ;\beta = 9.98). (c) The graph of \kappa (\cdot ;\beta = 9.98).
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C288 SANGHYUN LEE AND YEONJONG SHIN

conductivity coefficient \kappa as a function. Specifically, \scrG : \scrX \ni p(\cdot ) \mapsto \rightarrow \kappa (\cdot ) \in \scrY where
\scrX is the collection of solutions obtained at various \kappa (\cdot ;\beta ) defined in (5.4) where
\beta \in [0.01,10] for \kappa , and \scrY is the collection of the corresponding \kappa (\cdot ;\beta ). Figures 4(b)
and 4(c) show an input-output pair for the operator.

For data generation, we consider the collection of 1000 \beta values---\{ \beta = j\times 0.01 : j \in 
\{ 1,2, . . . ,1000\} \} ---and solve the corresponding equation (5.1) to obtain p. This is done
by the FEM solver on mx = 4225 points in \Omega . On that exact grid, i.e., my = 4225, the
output function data are generated according to (5.4). The data are then randomly
split into 900 training data and 100 test data. We employ a DeepONet with the
trunk and branch architectures of \vec{}\bfitn t = (2,25,25,25,25,25) and \vec{}\bfitn b = (4225,100,26),
respectively, with the ReLU activation function. Both are initialized with the He
scheme [21]. Since the effectiveness of QR was already demonstrated in the previous
example, here we only consider 2ST.

Figure 5(a) shows the training loss versus the number of iterations by both 2ST

and VAN. Specifically, it displays the trunk network training loss for 2ST and the
overall standard loss for VAN. We employ the Adam optimizer [24] with full-batch and
its default hyperparameters. It is clearly observed that the two-step training method
2ST minimizes the loss to the level of 10 - 6, while the monolithic standard training
VAN stagnates at the level of 10 - 1 after 10,000 iterations. This again indicates that
2ST effectively trains the trunk network to represent the output functions, which are
the piecewise constant functions (5.4).

For the second step (3.5) of 2ST, we employ the ANLS training method developed
in [1, 2]. This is possible because the second step is merely a standard regression task
on which ANLS is applicable. In Figure 5(b), the branch training loss is plotted
with respect to the number of ANLS iterations. ANLS minimizes the branch loss
to the level of 1.02 \times 10 - 5 merely within 100 iterations. The averaged relative \ell 2
errors over the 100 test data are also reported. It can be seen that the average test
errors are saturated after merely 20 ANLS iterations. This indicates that the branch
network is successfully trained by ANLS. We remark that ANLS is not applicable to
the monolithic training of DeepONets.

(a) (b)

Fig. 5. Example 5.2. (Left) The training loss versus the number of iterations. Here the loss
refers to (2.5) for VAN and (3.4) for 2ST. (Right) The branch training loss of 2ST versus the number
of ANLS [1, 2] iterations. Also, the average relative \ell 2 errors over the 100 test data are marked by
asterisks (\ast ).
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C289

Fig. 6. Example 5.2. (Top) The relative \ell 2 errors on the test data are reported for 2ST and
VAN. (Bottom) The absolute error maps for \beta = 2.02 (test) by VAN (left) and 2ST (right).

At the top of Figure 6, we plot the relative \ell 2 errors for the 100 test data. Since
each test datum is determined by its corresponding \beta value, the errors are plotted
with respect to the test \beta values. The optimal relative \ell 2 errors (5.3) are also reported
and serve as reference benchmarks. The optimal errors for VAN and 2ST are indicated
by squares (\square , Opt-VAN) and circles (\circ , Opt-2ST), respectively. Again note that
these optimal values are not available in practice as the underlying target output
function data are required. Therefore, the closer to the optimal values from the
trained DeepONet, the better the generalization performance it implies. It can be
seen that the optimal errors by 2ST are roughly one order of magnitude smaller than
those by VAN. This indicates that 2ST can train the trunk network more effectively
than VAN. Furthermore, it is clearly observed that the relative test errors by 2ST are
close to the optimal ones and are even almost identical especially if \beta \in [3,10]. On the
other hand, the test errors by VAN are way off from the corresponding optimal ones.
The averaged relative error over the 100 test data by VAN and 2ST are 1.48 \times 10 - 1

and 4.14\times 10 - 4, respectively. On the bottom of Figure 6, the absolute error maps of
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C290 SANGHYUN LEE AND YEONJONG SHIN

DeepONets trained by both VAN and 2ST at \beta = 2.02 (test) are shown. It can be seen
that while both capture well the discontinuity, 2ST can accurately predict the value on
the circle. This again demonstrates the effectiveness of the proposed two-step training
method over the standard monolithic one.

5.3. Multiple inputs and nonlinear conductivity. Let us consider the non-
linear conductivity \alpha (p) := \kappa p and the Dirichlet boundary condition (i.e., \Gamma N = \emptyset )
in (5.1). In this case, we illustrate the capabilities of the proposed algorithm by
considering the solution operator whose inputs are the triplet of the right-hand-side
source term f , the conductivity \kappa , and the boundary value g. That is, the operator
of interest is

\scrG :\scrX \ni (f,\kappa , g) \mapsto \rightarrow p\in \scrY .

The input function space is the set of triplets \scrX = \{ (f,\kappa , g)| f \in \scrF , \kappa \in \scrK , g \in \scrG \} ,
where \scrF , \scrK , \scrG are all the collection of constant functions in the range of [0.1,10]. The
output space \scrY is the collection of the corresponding solutions p to the system (5.1).
Note that for any (f,\kappa , g)\in \scrX , there exists a unique solution p to (5.1).

To generate a dataset, we consider the grid of 1 M points in [0.1, 10]3,\biggl\{ \biggl( 
i

10
,
j

10
,
k

10

\biggr) 
: i, j, k \in \{ 1, . . . ,100\} 

\biggr\} 
,

and each element represents the triplet of the three constant functions (f,\kappa , g). Then,
we randomly select 100,000 grid points out of 1 M and solve (5.1) to obtain the
corresponding solutions p on my = 541 points. The 100,000 data are split into 90,000
training data and 10,000 test data. Since the input functions are the triplet of constant
functions, we use the corresponding grid as the input for DeepONets. We employ the
trunk and branch networks whose architectures are \vec{}\bfitn t = (2,100,100,100,200) and
\vec{}\bfitn b = (3,100,100,100,201), respectively. The hyperbolic tangent (tanh) activation
function is used for both and the Xavier initialization scheme [17] and the Adam

optimizer [24] is utilized.
In Figure 7(a), the training loss versus the number of iterations is reported. Again,

it is clearly seen that 2ST can effectively minimize the trunk network loss reaching the

(a) (b)

Fig. 7. Example 5.3. (Left) The training loss versus the number of iterations by VAN and 2ST.
(Right) The branch training loss versus the number of iterations. This is the second step of the
proposed two-step training method.
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C291

Fig. 8. Example 5.3. The histogram of log10 of the relative \ell 2 errors on the 10,000 test data
obtained by 2ST (blue) and VAN (red).

level of 10 - 7 at the end of the training, while VAN stagnates at the level of 10 - 4. This
again confirms that 2ST effectively trains the trunk network when it is compared with
VAN. The remaining job for 2ST is to train the branch network according to (3.5).

Figure 7(b) shows the branch loss in the second step of 2ST with respect to the
number of Adam iterations. Here, we use a learning rate scheduler that starts at 10 - 3

and reduces the learning rate by a factor of 2 for every 100K iteration. It is observed
that the branch loss is sufficiently minimized at the end of the training and reaches
the level of 10 - 6.

Last, we report the histogram of log10 of the relative \ell 2 errors on the 10,000 test
data in Figure 8. It is clearly observed that the DeepONet trained by 2ST yields a
much better generalization performance than the one by VAN. The average relative
test error by the proposed two-step method is 2.9\times 10 - 4, while the one by the vanilla
monolithic training is 2.5 \times 10 - 3. This clearly indicates that how DeepONets are
trained makes a significant impact on generalization performance. We emphasize
that the only change we make is the training method, while the network architecture,
data, and initialization schemes were identical throughout.

6. Conclusions. In this study, we explored a novel training technique for Deep-
ONets. The newly introduced sequential two-step training approach involves initial
training of the trunk network that involves the Gram--Schmidt orthonormalization
by means of QR-factorization, followed by the training of the branch network. The
efficacy of the two-step training method was assessed through various numerical ex-
periments, contrasting its performance against the conventional monolithic training
approach, involving both forward and inverse Darcy problems within porous media
contexts. The efficacy and robustness of the proposed approach were clearly show-
cased in these representative examples, underscoring the significance of having robust
training algorithms tailored to a specific neural network architecture. Moreover, the
significance of pretraining the trunk network was emphasized, as it provided valuable
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C292 SANGHYUN LEE AND YEONJONG SHIN

insights into the outcomes of the complete training process. This approach resulted
in crucial improvements in accuracy while also simplifying the overall complexity of
the training. Last, a generalization error estimate is established by leveraging the
least-squares error analysis of [11, 12] in terms of the number of training data, the
number of input and output sensor points, and the width of DeepONets.

Appendix A. Proof of Theorem 3.5.

Proof. Let the rank of \bfitU be r and let Z\Sigma rV
\top be an SVD of \bfitU where Z \in Rm\mathrm{y}\times r,

\Sigma r \in Rr\times r, and V \in RK\times r. Let

\~A=

\left\{     
\Biggl( 

\Sigma rV
\top 

0(N - r)\times K

\Biggr) 
if N \geq r,

\Sigma 1:NV
\top 
1:N if N < r,

where \Sigma 1:s is a diagonal matrix of size s\times s obtained from \Sigma r by collecting the first s
rows and columns, and V1:s is obtained by collecting the first s columns of V . It then
can be checked that if the trunk network satisfies

\bfitphi \top 
0 (yi;\mu ) =

\Biggl\{ 
(Z(i),01\times (N - r)) if N \geq r,

Z
(i)
1:N if N < r,

(A.1)

where Z(i) is the ith row of Z and Z
(i)
1:s is the first s entries of Z(i), the desired

statement is obtained by letting A\ast = [0, \~A] as \Phi (\mu )A\ast = \Phi 0(\mu ) \~A = Z1:\~r\Sigma 1:\~rV
\top 
1:\~r

where \~r=min\{ N,r\} and \Phi 0(\mu ) is the matrix whose ith row is \bfitphi \top 
0 (yi;\mu ).

For the rest of the proof, we explicitly construct a deep ReLU network satisfying
(A.1). We closely follow the construction that appeared in [40]. Note that for any
distinct y1, . . . , ym\mathrm{y} in Rdy , there exists a unit vector v \in Rdy (see, e.g., [36]) such that\sqrt{} 

8

\pi d

1

m2
y

\| yi  - yj\| \leq | v\top (yi  - yj)| \leq \| yi  - yj\| \forall i \not = j.

Let yi = \~v\top yi where \~v = 2\delta  - 1
\sqrt{} 

\pi d
8 m

2
yv, and let y1 < \cdot \cdot \cdot < ym\mathrm{y}

(after reordering if

necessary). It then can be checked that | yi  - yj | \geq 2 for all i \not = j.
For a< b, let Na,b be a three-layer ReLU network of width 2 defined by

Na,b(y) =A3\sigma (A2\sigma (A1y+ b1) + b2) + b3,

where A1 =
\bigl(  - 2

2

\bigr) 
, b1 =

\bigl( 
2a
 - 2b

\bigr) 
, A2 =

\bigl( 
 - 1 0

0 1

\bigr) 
, b2 =

\bigl( 
1
1

\bigr) 
, A3 =

\bigl( 
1 1

\bigr) 
, b3 =  - 1, which

emulates the hat-like function, i.e.,

Na,b(y) =

\left\{         
1 if a\leq y\leq b,

0 if y\leq a - 1
2 or b+ 1

2 \leq y,

2(y - (a - 1
2 )) if a - 1

2 < y<a,

 - 2(y - b) if b < y< b+ 1
2 .

For k = 1, . . . , \~r, let N (k)(y) =
\sum m\mathrm{y}

j=1Z
(j)
k Nyj ,yj+1

(y) which satisfies N (k)(yj) = Z
(j)
k

for all j \in [my]. The remaining task is to construct a deep ReLU network \bfitphi 0 such
that \bfitphi 0(y;\mu ) = (N (1)(\~v\top y), . . . ,N (\~r)(\~v\top y),0N - \~r)

\top .
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ON THE TRAINING AND GENERALIZATION OF DEEPONETS C293

Let \bfitz = (z1, . . . , z\~r)
\top , \bfitc = (c1, . . . , c\~r)

\top , and consider a three-layer ReLU network
Fa,b,\bfitc of width \~n= 2\~r+ 4 defined by

Fa,b,\bfitc 

\biggl( \biggl[ 
y
\bfitz 

\biggr] \biggr) 
= \~A3\sigma 

\biggl( 
\~A2\sigma 

\biggl( 
\~A1

\biggl[ 
y
\bfitz 

\biggr] 
+\~b1

\biggr) 
+\~b2

\biggr) 
+\~b3 =

\biggl( 
y

\bfitz + \bfitc Na,b(y)

\biggr) 
,

where P = (1, - 1)\top ,

\~A1 =

\left(  A1 02\times \~r

P 02\times \~r

02\~r\times 1 P\~r

\right)  \in R\~n\times (\~r+1) with Ps =

\left(     
P 02\times 1 \cdot \cdot \cdot 02\times 1

02\times 1 P \cdot \cdot \cdot 02\times 1

...
...

. . .
...

02\times 1 02\times 1 \cdot \cdot \cdot P

\right)     \in R2s\times s,

\~b1 =

\biggl( 
b1

02(\~r+1)\times 1

\biggr) 
,

\~A2 =

\biggl( 
A2 02\times 2(\~r+1)

02(\~r+1)\times 2 I2(\~r+1)

\biggr) 
\in R\~n\times \~n,

\~b2 =

\biggl( 
b2

02(\~r+1)\times 1

\biggr) 
\in R\~n,

\~A3 =

\biggl( 
01\times 2 P\top 01\times 2\~r

\bfitc A3 0\~r\times 2 P\top 
\~r

\biggr) 
\in R(\~r+1)\times \~n,

\~b3 =

\biggl( 
0
\bfitc 

\biggr) 
\in R\~r+1.

Last, let us consider a three-layer ReLU network F
(0)
a,b,\bfitc of width 4 defined by

F
(0)
a,b,\bfitc (y) =

\^A3\sigma ( \^A2\sigma ( \^A1y+\^b1) +\^b2) +\^b3 =

\biggl( 
x

\bfitc Na,b(\~v
\top y)

\biggr) 
,

where \^A1 =
\bigl( 
A1

P

\bigr) 
\~v\top \in R4\times dy , \^b1 =

\bigl( 
b1

02\times 1

\bigr) 
, \^A2 =

\bigl( 
A2 02\times 2

02\times 2 I2

\bigr) 
, \^b2 =

\bigl( 
b2

02\times 1

\bigr) 
, \^A3 =\bigl( 01\times 2 P\top 

\bfitc A3 0\~r\times 2

\bigr) 
, \^b3 =

\bigl( 
0
\bfitc 

\bigr) 
.

Let us consider

\bfitphi 0(y;\mu 
\ast ) :=AF

ym\mathrm{y} - 1,ym\mathrm{y} ,Z
(m\mathrm{y})

1:\~r

\circ \cdot \cdot \cdot \circ F
y2,y3,Z

(2)
1:\~r

\circ F (0)

y1,y2,Z
(1)
1:\~r

(y),

where A =

\biggl[ 
0\~r\times 1 I\~r

0(N - \~r)\times 1 0(N - \~r)\times (N - \~r)

\biggr] 
. Then, it is a (2my + 1)-layer ReLU network

whose architecture is \vec{}\bfitn t as shown in the statement, and \mu \ast represents the correspond-
ing network parameters. It then can be checked that \bfitphi 0(y;\mu 

\ast ) = (N (1)(\~v\top y), . . . ,N (\~r)

(\~v\top y),0N - \~r)
\top , which completes the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

3/
25

 to
 1

44
.1

74
.2

12
.1

05
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



C294 SANGHYUN LEE AND YEONJONG SHIN

Appendix B. Proof of Theorem 4.10.

Proof. Let Vn(\mu ) = span\{ (\bfitphi (\cdot ;\mu ))j : j = 1, . . . ,N +1\} . The minimization problem
of (3.4) is equivalent to

\mu \ast = argmin
\mu \in M

\| (\Phi (\mu )\Phi (\mu )\dagger  - I)\bfitU \| 22,2,

where M is a feasible set for the trunk networks defined on Assumption 4.7. Since
\mu \ast \in M, there exists T\mu \ast such that \^\bfitphi (\cdot ;\mu \ast , T\mu \ast ) form an orthonormal basis in L2

\omega (\Omega y),
which we denote by \{ \psi \ast 

j \} Nj=0. We then rewrite the operator \scrG of interest in terms of
the new orthonormal basis, i.e.,

\scrG [f ](y) =
\infty \sum 
j=0

c\ast j (f)\psi 
\ast 
j (y).

Observe that

\| \scrG [f ] - \widetilde Onet[f ]\| 2L2
\omega (\Omega y)

= \| \scrG [f ] - \scrG N [f ] + \scrG N [f ] - \widetilde Onet[f ]\| 2L2
\omega (\Omega y)

= \| \scrG [f ] - \scrG N [f ]\| 2L2
\omega (\Omega y)

+ \| \scrG N [f ] - \widetilde Onet[f ]\| 2L2
\omega (\Omega y)

= \| \scrG [f ] - \scrG N [f ]\| 2L2
\omega (\Omega y)

+
N\sum 
j=0

(c\ast j (f) - \bfitc j(\bfitf ;\theta 
\ast ))2.

The second term on the right-hand side of the above can be further bounded as follows:

(c\ast j (f) - \bfitc j(\bfitf ;\theta 
\ast ))2

= (c\ast j (f) - c\ast j (fk) + c\ast j (fk) - \bfitc j(\bfitf ;\theta 
\ast ) - \bfitc j(\bfitf k;\theta 

\ast ) + \bfitc j(\bfitf k;\theta 
\ast ))2

\leq 3
\bigl\{ 
(c\ast j (f) - c\ast j (fk))

2 + (c\ast j (fk) - \bfitc j(\bfitf k;\theta 
\ast ))2 + (\bfitc j(\bfitf ;\theta 

\ast ) - \bfitc j(\bfitf k;\theta 
\ast ))2

\bigr\} 
\leq 3

\bigl\{ 
L2
jd

2
\scrX (f, fk) + (c\ast j (fk) - \bfitc j(\bfitf k;\theta 

\ast ))2 +L2
\sigma L

2
c(K,N,mx)\| \bfitf  - \bfitf k\| 2w,2

\bigr\} 
.

Thus, we have

\| \scrG [f ] - \widetilde Onet[f ]\| 2L2
\omega (\Omega y)

\leq \| \scrG [f ] - \scrG N [f ]\| 2L2
\omega (\Omega y)

+ 3
\bigl\{ 
L2
\scrG d

2
\scrX (f, fk) +L2

\sigma L
2
c\| \bfitf  - \bfitf k\| 2w,2

\bigr\} 
+ 3

N\sum 
j=0

(c\ast j (fk) - \bfitc j(\bfitf k;\theta 
\ast ))2.

Recall that since the trunk networks are an orthogonal basis, the optimal solution
A\ast of (3.4) is the least-squares solution as p= 2. Under Assumptions 4.2 and 4.7, it
follows from Theorem 2 of [11, 12] that we have

E

\left[  N\sum 
j=0

(c\ast j (fk) - \bfitc j(\bfitf k;\theta 
\ast ))2

\right]  \lesssim C \prime (my, rt)\| \scrG [fk] - \scrG N [fk]\| 2L2
\omega (\Omega y)

+m - rt
y ,

where C \prime (my, rt) = 6 log(3/2) - 2
(1+rt) logm\mathrm{y}

. By combining the above with Assumptions 4.2
and 4.3, we have

E
\Bigl[ 
\| \scrG [f ] - \widetilde Onet[f ]\| 2L2

\omega 

\Bigr] 
\lesssim C(my, rt)N

 - r\scrG ,\scrX ,\mu \ast +m - rt
y +K - \alpha +m - s

x ,

which completes the proof.
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