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Abstract. We present a novel training method for deep operator networks (DeepONets), one
of the most popular neural network models for operators. DeepONets are constructed by two sub-
networks, namely the branch and trunk networks. Typically, the two subnetworks are trained simul-
taneously, which amounts to solving a complex optimization problem in a high dimensional space.
In addition, the nonconvex and nonlinear nature makes training very challenging. To tackle such
a challenge, we propose a two-step training method that trains the trunk network first and then
sequentially trains the branch network. The core mechanism is motivated by the divide-and-conquer
paradigm and is the decomposition of the entire complex training task into two subtasks with reduced
complexity. Therein the Gram—Schmidt orthonormalization process is introduced which significantly
improves stability and generalization ability. On the theoretical side, we establish a generalization
error estimate in terms of the number of training data, the width of DeepONets, and the number of
input and output sensors. Numerical examples are presented to demonstrate the effectiveness of the
two-step training method, including Darcy flow in heterogeneous porous media.

Key words. deep operator networks, divide-and-conquer, sequential training method, general-
ization error analysis

MSC codes. 65K05, 65899, 93E24, 42C05

DOI. 10.1137/23M1598751

1. Introduction. Influenced by huge empirical successes of deep learning and
artificial intelligence, numerous neural network-based computational models have
been proposed. The effectiveness of these approaches has been documented and re-
ported in various research papers [31, 29, 8, 26, 34, 9, 19|, with references included
therein. Among them, operator learning has garnered significant attention, particu-
larly because of its potential applications in addressing forward and backward prob-
lems involving partial differential equations (PDEs). One feature that sets the deep
learning approach apart from traditional numerical methods is the interplay between
the training process and the inference on unseen data. While the training could be
very challenging and time-consuming and require huge computational resources, once
it is complete, the inference can be done almost instantaneously.

The deep operator networks (DeepONets) [31] represent pioneering examples of
neural operator models [18], with their fundamental structures drawing inspiration
from the universal approximation theorem [10] for nonlinear operators. Since then,
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various neural network-based operator models have emerged, primarily aimed at en-
hancing performance on previously unseen data. Notable models encompass different
versions of DeepONets [32, 42, 25, 30, 23, 41] and Fourier neural operator adapta-
tions [5, 28, 20, 7, 39]. Nevertheless, the accuracy of the deduced solutions significantly
hinges on multiple factors, including but not limited to network architectures, training
data, hyperparameters, and training methodologies.

The current study aims to comprehend the aforementioned interplay by focus-
ing on DeepONets, given its status as one of the most widely used network models
for operators. This work introduces two main contributions. First, a novel training
method is developed, enhancing both training/optimization and generalization per-
formances. The DeepONets consist of two subnetworks, namely trunk and branch
networks. Standard approaches usually train these two subnetworks monolithically
as a unified entity using a first-order optimization method, such as Adam [24] and other
variants [37]. Accordingly, the training amounts to solving a complex optimization
problem defined in a very high dimensional space in addition to it being noncon-
vex and nonlinear. Many difficulties encountered in practice are related to training,
despite the inherent expressive capabilities of DeepONets [13, 27, 33].

To improve the conventional monolithic optimization approach, we propose a two-
step training method. The method is motivated by the divide-and-conquer paradigm.
The core mechanism is the decomposition of the entire complex optimization problem
into two subproblems with reduced complexity. As the name implies, this method
involves two steps. The first step is devoted to learning the trunk network. The trunk
network can be thought of as the basis representing the output functions, while the
branch network corresponds to appropriate coefficients. The first step aims at finding
the basis representation through the trunk network together with the corresponding
coefficients without introducing the branch network. The coefficients found in the
first step shall be the desired values for the branch networks to learn. Consequently,
in the second step, the branch network is trained to learn the values obtained from
the first step. The Gram—Schmidt orthonormalization is applied to the trunk network
in the first step, which significantly improves stability and generalization ability. This
separation of the learning process results in each step involving an optimization task
with considerably reduced complexity. In addition, we show that the minimized loss
achieved by the two-step method is identical to the one by the monolithic approach
(Theorem 3.4). We also prove that a zero training loss can be achieved under mild
overparameterization of DeepONets (Theorem 3.6). Numerical examples demonstrate
that the two-step training method significantly enhances the performance of Deep-
ONets over the same dataset when compared to results obtained through monolithic
training methods.

The other contribution is the generalization error estimate. The total error of
DeepONets can be decomposed by approximation, estimation, and optimization er-
rors. The approximation error of DeepONets is relatively well established (e.g., see
[13, 27, 33]), while the remaining two errors remain elusive. One reason may deviate
from that (1) every input function has to be transformed into a finite-dimensional
representation (e.g., discretization or generalized Fourier coefficients), and (2) Deep-
ONets learn only from a finite number of data. Unlike function approximation tasks,
the input space for operators is, in principle, infinite-dimensional, which requires one
to appropriately extend the space-filling argument [38] to the infinite-dimensional
counterpart. This is closely related to the input domain on which DeepONets can
learn and generalize. To mathematically characterize these features, we introduce
Assumption 4.3 and present multiple examples that satisfy it. We then connect
the DeepONet structures to the least-squares regression [11, 12] with respect to the
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number of random sensor points for the output functions. Since the two-step training
allows the branch network to learn the optimal least-squares coefficients directly, an
existing error bound of the least-squares regression [11, 12] provides the generaliza-
tion error estimate for DeepONets. Yet, there are certain conditions to be met for
the trunk network, which we formulate in Assumption 4.7.

The rest of the paper is organized as follows. Upon introducing the problem
set and preliminaries in section 2, the proposed two-step training method for Deep-
ONets is presented in section 3. A generalization error analysis is given in section 4.
Numerical examples are presented in section 5 before conclusions.

2. Problem setup and preliminaries. Let , C R% and Q, C R% be com-
putational (compact) domains of interest. Let (X,dx) be a metric space of functions
defined on Q. and let (Y, ]| - ||y) be a normed vector space of functions on €2,. Let

G:X>f—Gfley

be the operator of interest to be approximated by neural networks.

In order to utilize any input function f € X with DeepONets, it must first undergo
a conversion into a finite-dimensional quantity. There are various ways of extracting
information of f. One naive way is to consider a fixed set of discretization points
{z;} C Q, and discretize f € X by f = (f(x1),..., f(zm,)) € R™= [31]. Another
popular way is to extract finitely many (generalized) Fourier coefficients of f [28]. For
example, suppose f(z) = > fidi(x) where (-,-) is an appropriate inner product,
{¢:} is an associated orthogonal basis, and fi= (f,¢i). Then, f= (fl, cee fmx). For
the rest of the paper, bold font denotes a representation in a finite-dimensional space,
and my is referred to as the number of input function sensors.

The goal of operator learning is to construct an operator network Gnn that ap-
proximates the target operator G. An operator network is a mapping defined by

(2.1) Gan i R™ 3 f s Oan[f]() € V.

While various methodologies for designing operator networks are available, Deep-
ONets [31, 32] are the pioneering neural operator model proposed in the literature.
This study centers its attention on DeepONets, and a detailed explanation thereof is
given in the following subsection.

2.1. Deep operator networks. For L € N and 7 = (ng,n1,...,ny) € NFT1 an
L-layer feed-forward neural network is the mapping R™ > z + 2 € R"* where z” is
defined recursively by

A= Wza(zgfl) +b', 2<e<L, Z'=wlz+bh

Here, o is a nonlinear activation function that applies elementwise, and W € R™¢Xme-1
and b* € R™ are the weight matrix and the bias vector of the fth layer, respectively.
The vector 7 is referred to as the network architecture and {W* b} as the network
parameters.

The DeepONet framework [31] integrates two distinct neural networks to effec-
tively approximate the target operator, referred to as the branch and trunk networks.
The construction of the branch network leads to two variants of DeepONet: unstacked
and stacked versions [31]. While the presented materials can be applicable to both
versions, for the sake of simplicity, this paper concentrates on the unstacked variant,
denoting it as DeepONet (with a slight abuse of notation) throughout the subsequent
sections. Throughout this work, N shall be referred to as the width of DeepONet.
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Fic. 1. An dllustration of the unstacked DeepONet architecture.

The branch network is a vector-valued Lj-layer neural network

(2.2) c(:0)=(co(30),...,en(50) T,
whose architecture is i, = (mx,ngb), . ,ng’b)_l, N +1), and 6 represents the network

parameters. The trunk network is a vector-valued L;-layer neural network defined on
Q, CR%

where ¢g(-;p) = (d1(5 1), ..., dn (-5 1)) is an Ly-layer neural network whose architec-
ture is 1 = (dy,ngt), . ,n(Ltt)fl, N) and p represents the network parameters.

Then, a DeepONet is defined as the inner product of the branch and the trunk
networks, i.e.,

N
(24)  Onalf;0)(y) =" (y;)e(F:0) = co(£30) + > _ c;(£:0)05(y; 1),

Jj=1

where © = {1, 0} is the set of trainable DeepONet parameters. See Figure 1 for more
details of the DeepONet architecture.

2.2. Training of deep operator networks. Let {fk}szl be a set of input
functions from X and let ug(-) = G[fx](-) be the corresponding output functions in .
Ideally, one wishes to minimize

K
Laaca(©) = 2 3 10seF15010) — ),
k=1

where || - ||y is the norm in Y, and p is a positive number that may depend on | - ||y.
For example, if || - ||y is the Ly-norm, p = 2. In practice, however, the norm || - |y
has to be discretized, and let || - ||y, be a discretized norm. We then seek to find

parameters of the DeepONet that minimize the training loss £ defined by

K
(25) £(0) = 2 Y 10wl 010) ~ w I, -
k=1

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/03/25 to 144.174.212.105 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ON THE TRAINING AND GENERALIZATION OF DEEPONETS Cc277

Typically, the optimization problem is tackled using first-order optimization methods
such as stochastic gradient descent and its variants [37]. However, the nonconvex
and nonlinear nature of the loss frequently obstructs these methods from achieving
satisfactory loss minimization, leading to failures in some applications. However, as
evidenced by multiple extant studies [10, 31, 13, 33], DeepONets have the capacity
to approximate a multitude of nonlinear operators, including those commonly en-
countered in physical and engineering challenges, particularly those involving PDEs.
Such an expressivity of DeepONets, however, becomes null if an effective training
mechanism is not available.

3. Method. To address the aforementioned challenge, we present a novel train-
ing method for DeepONets. For ease of discussion, we confine ourselves to the case
of Y= LP(Q,) whose norm is defined by

lally = ( /

where w is a probability measure satisfying fQ dw(y) = 1, and consider the corre-
sponding discrete norm by Monte Carlo samphng,

|g<y>|pdw<y>> T ey,

Yy

1

m
1 y

191y, = (Zlg(yi)|p> Vge,
My =

where {yi}ﬁyl are independent and identically distributed random samples from w.
Here my is referred to as the number of output function sensors.

For any g € Y, let g = (9(y1),-..,9(ym,))" be the discretization of g. Note
that the discrete norm |[|g||y,, is the standard ¢,-norm ||g|le, up to a multiplicative

constant. Then the set of training data can be written as

(Frour) = (fe(@1), s fo(@m)sur (1), - s un(Ymy ), k=1,..., K.

It follows from (2.4) that the training loss function (2.5) is

(3-1) L{{p,0}) = KZ Z|¢ yis (i3 0) = ur(yi)”,

where 6 and p represent all the network parameters of branch ¢(-;0) and trunk ¢(-; 1)
networks, respectively.

3.1. Loss function via matrix representation. By exploiting matrix repre-
sentation, the loss function (3.1) can be written in a simple matrix form. Let

&' (y1; 1)
D(p) = : eR™X N C(0) = [e(f1:6),...,c(F 3 0)] e RVFDHE
&' (Ymy: 1)
and U = [uy,...,ux] € R™*K  The matrix ® (1) may be viewed as a Vandermonde-

like matrix, while C(#) may be viewed as the corresponding coefficient-like matrix.
It can be checked that the loss (3.1) can be expressed as

£ 0) = g 1R(ICE) - U,
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where |- ||,p is the entrywise matrix norm. Hence, training DeepONets means solving
the following optimization problem:

(32) min L({, 0}) = [|®(1)C(0) — Ul,p-

3.2. Reparameterization of DeepONets. A key part of the proposed train-
ing method is a specific (re)parameterization of DeepONets. Let T' be a trainable
square matrix of size N + 1 and consider a new trunk network ¢ which has the form
of

(51, T) =T (1),

where ¢(-; 1) is the standard trunk network defined in (2.3). The resulting DeepONet
is then

Ol ) =& (5, T)e(F;0) =" () Te(f;0).

This can also be viewed as a DeepONet with the same trunk network ¢(-; i) as before
but a new branch network Tc(-;6). In fact, if ¢ is a standard vector-valued neural
network constructed by the architecture 7, T'e(f;0) can be viewed as a reparame-
terization of the last layer’s weight matrix and bias vector as

Te(f;0)=TWhea(2lv=1) 4 Tole.
With this new parameterization, we consider the loss function

(3.3) i £, 7.0) = | (1) TC() ~ U]},
and the proposed training method aims at solving (3.3). We note that ®(u)T can be
viewed as a Vandermonde-like matrix constructed from the new trunk network ¢ as
basis.

3.3. Proposed two-step training method. Assuming m, > N, we propose a
two-step training method for solving (3.3).

Step 1. The first step trains the new trunk network (}b through the following
minimization problem:
(3.4) minL(p, A) = | @) A= Ul where Ae RVHFD>K,
Let (u*, A*) be an optimal solution and let ®(p*) be full rank. We then set T* =
(R*)~! as the inverse of R* obtained from a QR-factorization of ®(u*), i.e., Q*R* =
®(11*). The trunk network is then fully determined as @ (-; pu*, 7).

Step 2. The second step trains the branch network to fit R* A*. Specifically, we
consider the optimization problem of

(3.5) min |C(6) — R A"35-
Assuming 6* to be an optimal solution, the fully trained branch network is given by
c(+;0%).

Remark 3.1. The first step replaces the use of the branch network from (3.1) to
the corresponding value matrix A. The trunk network’s parameters u and the value
matrix A are then trained simultaneously to minimize the loss (3.4). Since the trunk
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loss function is convex with respect to A (assuming p > 1), the first step shall avoid
any difficulties caused by nonlinearity and nonconvexity from the branch network. In
addition, the number of parameters involved with it is |u| + |A|, while the one for
the standard loss (3.1) is |u| + |#]. Hence, as long as |A| = (N + 1)K < |6, the first
step yields an optimization problem whose dimension is smaller than the one of the
standard loss. Altogether, the first step (3.4) is designed to facilitate training of the
trunk network.

Remark 3.2. The role of T* may be viewed as applying the Gram—Schmidt or-
thonormalization process on the standard trunk network with respect to the discretiza-
tion points {y;}. The approximation capability remains the same with or without 7°*;
however, we found numerically that the introduction of T* significantly improves sta-
bility and generalization ability.

Remark 3.3. The proposed method splits the entire optimization problem into two
smaller problems, the complexities of which (computational and/or optimization) are
significantly reduced. In the numerical test section, we demonstrate the advantage of
our proposed method by comparing the results of a monolithic approach that trains
both networks simultaneously.

3.4. Optimization error analysis. We first show that the loss of (3.3) at an
optimal solution from the two-step training via (3.4) and (3.5) is equal to the minimum
loss of the original problem (3.2).

THEOREM 3.4. Suppose that the branch network’s architecture is sufficiently large
so that for any M € RINTDXE there exists § such that C(0) = M. Let (u*, A*) and
0* be optimal solutions of (3.4) and (3.5), respectively. Then,

L, T°,0%) = min £({1,0}).
78

Proof. We prove the theorem by contradiction. Suppose that there exists {ﬂ,é}
that gives L({f,0}) < L(u*,T*,0*). By letting A :=C(0), it can be checked that

L(pT,0%) = | @(u)T"CO7) = Uy, = [@(1")A" = U},
<l[@@A-Ulp,=|®HCO) -UlL,=L{A0}).

which is a contradiction. This shows that £(p*,T™*,6*) <min, ¢ L({p,0}).
Let = p* and 6 be the branch parameter that satisfies C (6‘) A*. Tt then can
be checked that

L{a,01) = |2(u)CO) - U, =12 )A* = U, = L(u", T",67),

which shows that min, g L({p,0}) < L(p*,T*,0%). O

Theorem 3.4 assumes that the branch network can interpolate any given data.
This is indeed possible under mild conditions (e.g., sufficiently large width) as already
shown in [35, 43, 14, 15, 3]. In addition, if the branch network is built based on two-
layer networks, the minimization problem (3.5) can be effectively solved by a recently
developed training method, active neuron least squares (ANLS) [1, 2].

Last, for the training of the trunk network (3.4), a zero loss can also be obtained
if the architecture of the trunk network is appropriately chosen.
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THEOREM 3.5. Suppose that p =2, U has rank r and the trunk network ¢, of
(2.3) is a (2my + 1)-layer rectified linear unit (ReLU) network whose architecture is
given by

(2my—2) times

—
ny=(dy,4,4, n,...,n ,N), where n=2min{N,r}+4.
Then, there exist u* and A* satisfying

L A7) = | () A"~ U

2,< i Z-Ul3,.
22= 'mnk(Z)Hglinnin{N,r} H ||272

In particular, if N >r, we have L(u*, A*) =0.
Proof. The proof can be found in Appendix A. ]

By combining Theorems 3.4 and 3.5, a zero training loss for DeepONets can be
achieved under overparameterization of both trunk and branch networks.

THEOREM 3.6. Suppose that the architecture of the trunk network is set as de-
scribed in Theorem 3.5 with N > r. Suppose also that the branch network’s architecture
is sufficiently large so that for any M € RINTVXK there exists § such that C(0) = M.
Then,

0=minL({y,0}) := || @(n)C(0) - U3 -
w,0
Proof. Tt follows from Theorem 3.5 that there exist pu*, A* satisfying £(u*, A*) =0

as N >r. Since the branch network can achieve a zero loss from (3.5), there exists 6*
such that C(6*) = R*A*. It then can be checked that

0=L(p" A") =@ )A" = U}, = @) T"C(07) = Ull} , = L(n*, T*,0%).

The proof is then completed by Theorem 3.4. ]

4. Generalization error analysis. The generalization error refers to a quantity
that measures how well the learned DeepONet performs on unseen functions (data).
To be more precise, let Xx = {f1,...,fx} C X be a set of functions and {u; :=
Gifj] : 7 = 1,...,K} be the corresponding output functions of the operator G of
interest, which are all used for the training of DeepONets. Let Opet be a fully trained
DeepONet. For f € X\Xk, the generalization error of the DeepONet Oyt at f is
defined to be

(4.1) ggen(onet[f]) = ||g[f] - Onet[f]HLi(ﬂy)'

The end goal of operator learning is to construct a neural operator Oy from finitely
many data that yield a small generalization error uniformly over X'.

In what follows, we present a generalization error analysis for DeepONets in
terms of the number K of training data, the number my of input function sensors,
the number m, of output function sensors, and the width N of DeepONets. The
presented analysis is motivated by an approximation error analysis of DeepONets
for the coefficient-to-solution map of elliptic second-order PDEs [33] and we combine
it with the analysis [11, 12] of the least-squares approximations to incorporate the
output training data.
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Let us consider a class C,p of operators from X to Y = L2/(f2,) which has a
spectral form of

=> ()
=0

where {c;}’s are L;-Lipschitz functionals in X’ such that ZJ o L3 < oo, and {¢;(-)};
is an orthogonal ba31s for L2/(Q,) satisfying

(o5 12 = /Q i () (9) dwo(y) = 53y

Here 6;; is a Kronecker delta function, and w is a probability measure on €2,. It then
can be checked that every operator in Cop is Lipschitz.

PROPOSITION 4.1. Any operator G € C,,, s Lipschitz continuous. We denote Lg
as the Lipschitz constant of G.

Proof. For any f, f’ € X, observe that ||Q[f]—g[f/]||%i :Z;io le;(f)—e;(f)? <
Yo L35 (f.f'), which gives [G[f] — G[f'llrz < Lgdx(f,f') with Lg <
]

2
Z] OLJ

Let Gn[f](y) = Z _0 ¢; ()¢, (y) be the best N-term approximation of G[f], and
let En(G[f]) := |G[f] — GnI[f]llLz be the corresponding best N-term approximation
error. In what follows, we make a couple of assumptions on G that guarantee the
uniform boundedness and the uniform decay rate of the best N-term approximation
error, inspired by [33].

Assumption 4.2 (operators). For any G € C,p, the following are assumed.
1. There is a constant M > 0 such that |G[f](y)| < M for any f € X, and for
almost every y with respect to w.
2. Let En(X) :=sup ey En(G[f]) be the supremum of the best N-term approx-
imation errors over X'. Assume that Ey(X) < N77"9% for some rg x > 0 that
depends on X, G and the choice of basis {t;}.

We note that there are many operators of interest satisfying Assumption 4.2. For
example, [33] considered the elliptic boundary value problem

—V - (aVu®) = f

for some fixed source term f and studied approximation rates of the data-to-solution
operator G :a— u®. It was shown that the operator G satisfies Assumption 4.2.
Since DeepONet requires one to extract finite-dimensional information from an
infinite-dimensional class X" for the input, in order to quantify how many input func-
tions are needed to fill up the target domain, we make the following assumptions.

Assumption 4.3 (input functions and sensors). The symbol < is used to suppress
constants that depend only on (X,dx).
1. For all but finitely many my € N, there exist my discretization points {z;};
in Q, satisfying

”f_g”w,QS./dX(fag)J’_m;s Vf7g€X7

where || - |lw,2 is a weighted Euclidean norm, and s > 0 is a constant that
depends only on X.
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2. For any K € N, there exist K input functions Xx = {f1,...,fx} in X
satisfying for any f € X,

(4.2) 1g}§1<anx(f fu) SK™% +my

for some « >0 which may depend X and my.

Many input function spaces X used in the literature (e.g., [31, 32, 5]) satisfy
Assumption 4.3. For the sake of clarity, we present three detailed examples.

Ezxample 4.4. Let
X={f:[-L1?>R|x€0,1], f(z) =k if |z]| < 1, and 1 otherwise},

and define a map dy over X x X such that dx(f,g):=|f(0) — g(0)| for any f,g€ X.
It can be checked that dx is a metric on X. For a given set of points {xj} >, where

there exists a pomt whose || - [|2-norm is less than or equal to 1, let w; =0 it lz;]| >1
and IUJ = W if ||Jf]|| < 1. For f S X let f (f(l’l) ,f(l'mx)) and
171122 Z] *, w; f(x;)%. It then can be checked that ||f — g|lw,2 = dx(f,g) for all

fg€ X which satisfies Assumption 4.3.1.

For any K €N, let Xx = {f1,..., fx}, where f; € X and f;(0) = &. I hen can
be checked that for any f € X, there exists g € Xk such that dx(f,g) < K L which
shows that Assumption 4.3.2 holds.

Ezxample 4.5. Let

X={feC (L1 |Ifllcr <1}

with dx(f,9) = [|f — gllL for any f,g € X. Let {(z;,w;)};= be the Gauss-Legendre
quadrature points and weights. Observe that for any f € X, we have | f|ly2 =
IIIL,,.. fll L2, where IT,,_ f is the Lagrange interpolation of f. Therefore, for any f,g € X,

1f = gllwz =M (f =92 < I1f = gllzz + 1(f — 9) = T, (f — 9)lI 2
Sdx(f,9)+mt,
which shows that Assumption 4.3.1 holds. ‘

For any n € N, let K = (n+1)"=, and consider X ={f € X': f € {-1+ -(2):
i=0,...,n}"™}. It then can be checked that for any f € X, there exists g € Xk such
that

dx(f,9) < W, (f = 9)llz2 +Cmt = [|f = glluw2 + Cmg?t
<IF = glloo +Cmt SK™7 +mt,

which shows that Assumption 4.3.2 holds.

Ezample 4.6. Let X = {f € HE([-1,1]) : |[fllgzr < 1} where HE([-1,1]) is a
weighted Sobolev space. For any f € HP, let f= (fo7 ce fmx) with fr= (fspr) Lz (-1.1)
where py, is the orthonormal polynomial of degree k with respect to w. It then follows
from the well-known spectral convergence [22] that for any f,g € X,

1f =gl S 1f —gllez +m®,

implying Assumption 4.3.1.
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For any n € N, let K = (n+ 1)™x, and consider Xx = {f € X : f € {L:i=
0,...,n}"™. Let Py, f= Z;.”:"O fjpr- It then can be checked that for any f € X, there
exists g € X such that

dx(f,9) < 1Pt = gllzz + 1f = P fllzz S| = gll2 +mi?
<N F = glloo +mz? SK 7 +m?,

implying Assumption 4.3.2.

The following assumption is the one that draws a connection between the pro-
posed two-step training method and the generalization analysis. Roughly speaking,
we generalize the assumption on the number of output sensors introduced in [11, 12]
for a class of trunk neural networks on which orthonormal basis can be formed with
respect to a given measure defined on €),,. This assumption is crucial as it allows one
to utilize a classical least-squares analysis in the context of DeepONets.

Assumption 4.7 (trunk networks and sensors). Let F be a feasible set of trunk
network parameters defined by

(4.3) F{,U'GFt: sup II$(';M,TM)II§<OO},

YEQy
where F; = {y : 3 T), such that ¢(-; u,T,,) forms orthonormal basis in L2 (£2,)}. Let
{y1,...,Ym, } be a set of discretization points randomly independently drawn from the
probability measure w. For r; > 0, suppose m,, is sufficiently large enough to satisfy

5 m 3log(3/2) — 1
4.4 su su s T2 < k—2—, K=
(@4) s (5 (0 wnz) S o

Last, we introduce assumptions for branch networks. For simplicity, we confine
ourselves to a two-layer neural network of sufficiently large width so that one achieves
a zero loss on (3.5).

Assumption 4.8 (branch networks). The following are assumed for branch net-
works.
1. The branch network is a two-layer neural network whose activation function
o is Lipschitz continuous with the Lipschitz constant L.
2. For each K, there exists a two-layer branch network of width nx that achieves
a zero loss (3.5). That is, there exists 6* such that C(0*) = R* A*. Specifically,
let 0% = {ve, Be,we}y ™, where v € RN*L w, € R™=, B, € R. Then, for
k=1,....K,

c(f1;07) = ZWU ((we, f1,) + Be) = (R*A*), e RN L
=1

where (R*A*)j, is the kth column of R*A* from (3.5).

3. Let Le(K,N,my) := 345 |[vell2llwell2. Suppose Le(K, N,my) is uniformly
bounded independent of K, N, and my, and denote its upper bound by L.

Remark 4.9. The assumptions of Assumption 4.8 are mild and easily satisfied in
many practical setups. The last assumption corresponds to the uniform boundedness
of the Lipschitz constant for the branch networks, which is often used in the literature
(e.g., [38]) to establish a convergence.
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We are now in a position to present the main theorem that characterizes the
generalization error of the fully trained DeepONets in terms of the number K of
training data, the number my of input function domain sensors, the number m, of
output function domain sensors, and the width N of DeepONets.

THEOREM 4.10. Suppose Assumptions 4.2, 4.3, 4.7, and 4.8 hold. Let O, be the
fully trained DeepONet, that is, the trunk networks are obtained from (3.4) with p=2
and p* € F defined as in Assumption 4.7, and the branch network solves (3.5). Given a
truncation operator Tpr(z) = sign (z) max{M, |z|}, let Onet[f](y) := Tasr (Onee[ f1(y))-
Then, for any f € X,

(45)  E[€2,.(0nalf])] S Clmyr) N0 4 K= my* +m,",
_ 6log(3/2)—2 Lo
where C(my,r¢) = 1+ [t logm, and the expectation is taken over all random

output function sensors {y;}.. All the hidden constants are independent of K,
Mg, My, and N but may only depend on M, Lg, Ly, L., and (X,dx).

Proof. The proof can be found in Appendix B. ]

Remark 4.11. The rate rg x ,- of convergence with respect to the width N of
DeepONet is affected by the trunk network.

5. Numerical examples. In this section, we present several numerical exper-
iments to demonstrate the performance of the proposed two-step training method.
Throughout, the two-step training method as described in section 3.3 is referred to
as 28T and the vanilla monolithic training method is referred to as VAN. To illus-
trate the importance of the Gram—Schmidt orthonormalization (implemented by QR-
factorization) in the first step, the one without it shall be referred to as 28Tw/oQR.
In all the numerical tests, we employ the standard unstacked DeepONet structure
proposed in [31].

Darcy’s flow equation. In the following numerical examples, we consider
Darcy’s flow equation in a bounded domain Q = (—1,1)? with Lipschitz boundary
o9:

=V (a(p)Vp)=f inQ,
(5.1) p=g onlp,
—a(p)Vp-n=h on Ty,

where p : 2 — R is the scalar pressure and f is the body force. A Dirichlet bound-
ary condition is imposed on I'p and a Neumann boundary condition is given on
'y = 0Q\I'p with n as the unit outward normal vector on I'y. We note that the
conductivity « := a(p) could yield the equation to be nonlinear. In what follows, we
will consider three different operators that arise from (5.1).

Data generation. We employ the classical Lagrange continuous Galerkin linear
finite element method (FEM) to generate the data. Both finite element libraries,
deal.IT [6] and FEniCS [4], were utilized. Once the data is generated, we split it into
the training data and the test data. The training data is used for training of DeepONet
and the test data is used to evaluate the performance of the trained DeepONet.

Inference on unseen data. For a test input function f,.,, the DeepONet
produces an approximation to the corresponding output function wiess := G| ftest]-
Let {y{""}Miest be a set of points from €, to be used for evaluating the general-
ization ability. Let wtest = (Utest (y%tesw), oo Utest (ygvt;i:t)))—r be the discretization of
Utest, Which is not available in practice. We measure the generalization ability of the
DeepONet by means of the relative /5 error defined by
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2
\/ S (Ol i ™) = e ()

||utest||2

(52) grel(Oﬂet [ftest]) =

Conditional optimality. If uiest were known, by fixing the trunk network, one
can obtain the optimal value aj. for the branch network at f,.. by solving

* —
Apest =

argmingcpn+1 || Prest (1)@ — Ugest |2 with the monolithic method,
argming cpn+1 || Prest ()T @ — Ugest |2 with the two-step method,

where ®est(p*) is the matrix whose ith row is ¢T(y£tesw; w*). Let

O (y; pF)ak with the monolithic method,
¢ (y;p*)T*al,,, with the two-step method.

(53) O;et [.ftest](y) = {
We then define £,e1(Of i [frest]) s the optimal relative ¢ error. Here the optimality
shall be understood as conditional in the sense that given {ygteSt)} and the trunk
network @(-;u*), Ok [fiest] 18 the least-squares approximation to utest. However,
this optimality is not available in practice as O} requires the target function uest to

obtain aj,. The optimal relative ¢, errors by 2ST and VAN are referred to as Opt-2ST
and Opt-VAN, respectively.

5.1. Forward problem: Nonlinear conductivity. Let us consider a specific
case of (5.1). Let f =1, g = cos(z), 9 = I'p and the conductivity coefficient be
a(p) = kp, where k is a constant function. The operator G of interest is

G:X2k()—p() €,

where X = {k | k(z,y) = B Y(z,y) € Q,8 € [1,1000]} and Y is an appropriate space
where the solution p lies. Note that for any k € X, it is well-known [16] that there
exists a unique solution p(-) of the system (5.1).

Since the input functions are constant functions, we simply set my, = 1, e.g.,
xz1 = (0,0). Accordingly, the input data are generated as the collection of 1000
equidistant 8 values in [1,1000], i.e., {1,2,...,1000}. The corresponding output data
are obtained by the FEM solver on 2049 grid points, i.e., m, = 2049. The data are
then randomly split in two—900 of them are used as training and the remaining 100
are used as test data. We employ a DeepONet whose branch and trunk architectures
are 7, = (1,500,51) and 7i; = (2,50,50, 50, 50), respectively. Both branch and trunk
networks use the ReLU activation function and were initialized by the He initialization
scheme [21]. Throughout, we employ the Adam optimizer [24] with full-batch.

In Figure 2(a), we plot the training loss versus the number of iterations by both
28T and VAN. Specifically, the training loss refers to the trunk network loss which is
defined in (3.4) for 2ST and the standard overall loss of (3.2) for VAN. It can be clearly
seen that the loss by 2ST is roughly two orders of magnitude smaller than the one
by VAN. As a matter of fact, the smallest loss attained by 2ST is 2.33 x 10~7, while
the one by VAN is 2.08 x 107°. This is not a single isolated case. We tested five
independent simulations, and the averaged smallest loss achieved by the two methods
is 2.11 x 1077 and 1.84 x 107> for 2ST and VAN, respectively. This demonstrates the
effectiveness of the proposed two-step method for learning the trunk network. The
remaining task for 2ST is then to learn the branch network following (3.5).
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10 "
2ST
————2STw/oQR

training loss
branch training loss

0 2 4 6 8 10 0 2 4 6 8 10
the number of iterations «10% the number of iterations «10*
(a) (b)

Fi1G. 2. Example 5.1. (Left) The training loss versus the number of iterations. Here the loss
refers to (2.5) for VAN and (3.4) for 2ST (thus 2STw/oQR). (Right) The branch loss (3.5) is reported
for 2ST and 2STw/oQR. This shows the effectiveness of orthogonalization in the second step of the
proposed training method. (Color online.)
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Target Absolute Error (VAN) Absolute Error (25T)

Fi1G. 3. Ezample 5.1. (Top) The relative Lo errors versus the 100 test B values by 2ST, VAN,
and 2STw/oQR. (Bottom) Left: The graph of the target operator evaluated at a test function kK =5,
which is the smallest value lying in the test data. Middle and right: The absolute error maps by VAN
(middle) and 2ST (right).

In Figure 2(b), the training loss for the branch network versus the number of
iterations is plotted. We can see that the loss reaches the level of 107 by 28T which
utilizes QR-factorization, while the one without QR cannot reach a similar level.
This demonstrates the effectiveness of the orthogonalization in the proposed two-step
training method.

In the top left of Figure 3, the relative ¢5 errors defined in (5.2) are reported. The
errors are plotted with respect to the 100 test 8 values, where the 3 are constant input
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functions. The results of 28T, VAN, and 2STw/oQR are marked as asterisks (x), crosses
(x), and triangles (A), respectively. The optimal relative £5 errors defined in (5.3)
are shown as circles (o, Opt-2ST) for 2ST and squares ([J, Opt-VAN) for VAN, and they
serve as references. We note that having small optimal relative errors means the trunk
network was well-trained to represent unseen output functions. In a similar vein, it is
also worth noting that if the relative errors of VAN (2ST) are close to the optimal ones of
VAN (28T), it implies that the branch network was well-trained, allowing the DeepONet
to generalize effectively. It is clearly observed that 2ST achieves the smallest relative ¢o
errors being almost identical to the optimal ones, while 2STw/0QR yields much higher
and unstable errors. This again demonstrates the effectiveness of orthogonalization in
the proposed method. VAN is able to produce relative errors similar to optimal ones;
however, the relative optimal errors of VAN are much higher than the ones by 2ST. This
indicates the ineffectiveness of the monolithic training for learning the trunk network.
On the contrary, the proposed two-step training method 2ST effectively trains not
only the trunk network but also the branch network. On the top right, we report the
means of the relative £5 errors from five independent simulations. The shaded area is
the area that falls within one standard deviation of the mean. On the bottom left, we
report the graph of the target output function for 5 =5 (the smallest value belongs
to the test data). On the bottom middle and right, the absolute error maps by VAN
and 28T are shown, respectively. It is clearly observed that the absolute error by 2ST
is at least one order magnitude smaller than the one by VAN.

5.2. Inverse problem: Discontinuous conductivity. In this case, let f =0
and consider a piecewise constant (discontinuous) conductivity « := k(-; 8) where & is
defined by

ﬁ if (m7y>6917

(54) K/(xay;ﬂ) = {1 if (m,y) c Q\Ql’

where €25 is a disk centered at the origin (0,0) with radius » =0.5. The Dirichlet and
Neumann boundary conditions are imposed by
(5.5) p=0onTp,, —kVp-n=0onTy,, —kVp-n=1onTly,.

Figure 4(a) shows the detailed geometry of the problem.
We are interested in the inverse problem of (5.1) with the boundary conditions of
(5.5). That is, the operator G of interest maps a given solution p to the corresponding

0 I'p,
Exact value for (=9.98
9
8
7
I'n, I'n, 6
5
4
3
Ro = 1 Solution 1 :
F 1.49¢+00 0 05 1
N1 a0

(a) Domain Geometry.

(c¢) k(-; 8=9.98).

FI1G. 4. Ezample 2. (a) Problem domain with detailed geometries. (b) The solution p of (5.1)
with the boundary conditions (5.5) at k(-;8=29.98). (c) The graph of k(-;8=29.98).
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conductivity coefficient x as a function. Specifically, G : X 5 p(-) — k(-) € Y where
X is the collection of solutions obtained at various x(-;3) defined in (5.4) where
B €[0.01,10] for x, and Y is the collection of the corresponding «(-;5). Figures 4(b)
and 4(c) show an input-output pair for the operator.

For data generation, we consider the collection of 1000 8 values—{f = jx0.01:j €
{1,2,...,1000} }—and solve the corresponding equation (5.1) to obtain p. This is done
by the FEM solver on m, = 4225 points in 2. On that exact grid, i.e., my, = 4225, the
output function data are generated according to (5.4). The data are then randomly
split into 900 training data and 100 test data. We employ a DeepONet with the
trunk and branch architectures of 7, = (2,25, 25,25,25,25) and 7, = (4225, 100, 26),
respectively, with the ReLU activation function. Both are initialized with the He
scheme [21]. Since the effectiveness of QR was already demonstrated in the previous
example, here we only consider 2ST.

Figure 5(a) shows the training loss versus the number of iterations by both 2ST
and VAN. Specifically, it displays the trunk network training loss for 2ST and the
overall standard loss for VAN. We employ the Adam optimizer [24] with full-batch and
its default hyperparameters. It is clearly observed that the two-step training method
2ST minimizes the loss to the level of 1075, while the monolithic standard training
VAN stagnates at the level of 10! after 10,000 iterations. This again indicates that
28T effectively trains the trunk network to represent the output functions, which are
the piecewise constant functions (5.4).

For the second step (3.5) of 2ST, we employ the ANLS training method developed
in [1, 2]. This is possible because the second step is merely a standard regression task
on which ANLS is applicable. In Figure 5(b), the branch training loss is plotted
with respect to the number of ANLS iterations. ANLS minimizes the branch loss
to the level of 1.02 x 1075 merely within 100 iterations. The averaged relative (o
errors over the 100 test data are also reported. It can be seen that the average test
errors are saturated after merely 20 ANLS iterations. This indicates that the branch
network is successfully trained by ANLS. We remark that ANLS is not applicable to
the monolithic training of DeepONets.

0
10 2ST 10?2 : ’
e branch loss by ANLS
el e | 5 * avg. relative £, error by ANLS
= 2 *
) *
- -
5 S F
g 10 3 103},
g 2
= o
5,
10 £ 10
S|
10 [ | | 1 105 | ‘ |
0 2 4 6 8 10 0 20 40 60 80 100
the number of iterations x10* the number of iterations
(a) (b)

Fi1G. 5. Ezample 5.2. (Left) The training loss versus the number of iterations. Here the loss
refers to (2.5) for VAN and (3.4) for 2ST. (Right) The branch training loss of 2ST versus the number
of ANLS [1, 2] iterations. Also, the average relative L2 errors over the 100 test data are marked by
asterisks (*).
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F1G. 6. Ezample 5.2. (Top) The relative €2 errors on the test data are reported for 2ST and
VAN. (Bottom) The absolute error maps for 3 =2.02 (test) by VAN (left) and 2ST (right).

At the top of Figure 6, we plot the relative ¢y errors for the 100 test data. Since
each test datum is determined by its corresponding [ value, the errors are plotted
with respect to the test 5 values. The optimal relative ¢5 errors (5.3) are also reported
and serve as reference benchmarks. The optimal errors for VAN and 2ST are indicated
by squares ([J, Opt-VAN) and circles (o, Opt-2ST), respectively. Again note that
these optimal values are not available in practice as the underlying target output
function data are required. Therefore, the closer to the optimal values from the
trained DeepONet, the better the generalization performance it implies. It can be
seen that the optimal errors by 2ST are roughly one order of magnitude smaller than
those by VAN. This indicates that 2ST can train the trunk network more effectively
than VAN. Furthermore, it is clearly observed that the relative test errors by 2ST are
close to the optimal ones and are even almost identical especially if 5 € [3,10]. On the
other hand, the test errors by VAN are way off from the corresponding optimal ones.
The averaged relative error over the 100 test data by VAN and 2ST are 1.48 x 107!
and 4.14 x 1074, respectively. On the bottom of Figure 6, the absolute error maps of
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DeepONets trained by both VAN and 2ST at 3 =2.02 (test) are shown. It can be seen
that while both capture well the discontinuity, 2ST can accurately predict the value on
the circle. This again demonstrates the effectiveness of the proposed two-step training
method over the standard monolithic one.

5.3. Multiple inputs and nonlinear conductivity. Let us consider the non-
linear conductivity a(p) := kp and the Dirichlet boundary condition (i.e., I'y = ()
in (5.1). In this case, we illustrate the capabilities of the proposed algorithm by
considering the solution operator whose inputs are the triplet of the right-hand-side
source term f, the conductivity k, and the boundary value g. That is, the operator
of interest is

G:X3(f,kg)—>pe.

The input function space is the set of triplets X = {(f,x,9)|f € F,x € K,g9 € G},
where F, K, G are all the collection of constant functions in the range of [0.1,10]. The
output space ) is the collection of the corresponding solutions p to the system (5.1).
Note that for any (f,k,g) € X, there exists a unique solution p to (5.1).

To generate a dataset, we consider the grid of 1 M points in [0.1, 10]3,

A
{(10,10,1()).z,g,ke{l,...,lOO}},

and each element represents the triplet of the three constant functions ( f,,¢g). Then,
we randomly select 100,000 grid points out of 1 M and solve (5.1) to obtain the
corresponding solutions p on m, = 541 points. The 100,000 data are split into 90,000
training data and 10,000 test data. Since the input functions are the triplet of constant
functions, we use the corresponding grid as the input for DeepONets. We employ the
trunk and branch networks whose architectures are 7, = (2,100,100,100,200) and
i, = (3,100,100,100,201), respectively. The hyperbolic tangent (tanh) activation
function is used for both and the Xavier initialization scheme [17] and the Adam
optimizer [24] is utilized.

In Figure 7(a), the training loss versus the number of iterations is reported. Again,
it is clearly seen that 2ST can effectively minimize the trunk network loss reaching the
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training loss
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the number of iterations %10° the number of iterations %10°

(a) (b)
FiG. 7. Ezample 5.3. (Left) The training loss versus the number of iterations by VAN and 2ST.

(Right) The branch training loss versus the number of iterations. This is the second step of the
proposed two-step training method.
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Fi1G. 8. Example 5.3. The histogram of log,y of the relative £2 errors on the 10,000 test data
obtained by 2ST (blue) and VAN (red).

level of 10~ 7 at the end of the training, while VAN stagnates at the level of 10~%. This
again confirms that 28T effectively trains the trunk network when it is compared with
VAN. The remaining job for 2ST is to train the branch network according to (3.5).

Figure 7(b) shows the branch loss in the second step of 2ST with respect to the
number of Adam iterations. Here, we use a learning rate scheduler that starts at 10~3
and reduces the learning rate by a factor of 2 for every 100K iteration. It is observed
that the branch loss is sufficiently minimized at the end of the training and reaches
the level of 1076,

Last, we report the histogram of log;, of the relative 5 errors on the 10,000 test
data in Figure 8. It is clearly observed that the DeepONet trained by 2ST yields a
much better generalization performance than the one by VAN. The average relative
test error by the proposed two-step method is 2.9 x 104, while the one by the vanilla
monolithic training is 2.5 x 1073. This clearly indicates that how DeepONets are
trained makes a significant impact on generalization performance. We emphasize
that the only change we make is the training method, while the network architecture,
data, and initialization schemes were identical throughout.

6. Conclusions. In this study, we explored a novel training technique for Deep-
ONets. The newly introduced sequential two-step training approach involves initial
training of the trunk network that involves the Gram—Schmidt orthonormalization
by means of QR-factorization, followed by the training of the branch network. The
efficacy of the two-step training method was assessed through various numerical ex-
periments, contrasting its performance against the conventional monolithic training
approach, involving both forward and inverse Darcy problems within porous media
contexts. The efficacy and robustness of the proposed approach were clearly show-
cased in these representative examples, underscoring the significance of having robust
training algorithms tailored to a specific neural network architecture. Moreover, the
significance of pretraining the trunk network was emphasized, as it provided valuable
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insights into the outcomes of the complete training process. This approach resulted
in crucial improvements in accuracy while also simplifying the overall complexity of
the training. Last, a generalization error estimate is established by leveraging the
least-squares error analysis of [11, 12] in terms of the number of training data, the
number of input and output sensor points, and the width of DeepONets.

Appendix A. Proof of Theorem 3.5.

Proof. Let the rank of U be r and let Z%,V T be an SVD of U where Z € R™ X7,
Y, €ER™" and V € REX". Let

VT
~ it N>r,
A= O(N—r) x K
ZI:NVLTN if]\7<7"7
where ¥4 is a diagonal matrix of size s X s obtained from 3. by collecting the first s

rows and columns, and V7.5 is obtained by collecting the first s columns of V. It then
can be checked that if the trunk network satisfies

ZW 01 (n_py) fN>7
Al T . _ ( N IX(N—7) =7
( ) oN) (yis 1) {Zﬁv i N <7,

where Z(@ is the ith row of Z and Z\) is the first s entries of Z(®), the desired
statement is obtained by letting A* = [0, A] as ®(u)A* = ®o(u)A = Z1.:%1.:V,
where 7 =min{N,r} and ®¢(u) is the matrix whose ith row is ¢ (y; ).

For the rest of the proof, we explicitly construct a deep ReLU network satisfying
(A.1). We closely follow the construction that appeared in [40]. Note that for any

distinct y1,...,Ym, in R | there exists a unit vector v € R% (see, e.g., [36]) such that
Ve = 1l < 107 = )| < s — | Vi
I o (v — s o i
d m; Yi —Yjill > Yi —Yi) I Y —Yj J

Let y; = 9 "y; where © = 2(5—1\/%1771}2,11, and let y; < --- < ym, (after reordering if

necessary). It then can be checked that |y; —y;| > 2 for all i # j.
For a < b, let N, be a three-layer ReLU network of width 2 defined by

Nap(y) = A%0(A%0(Aly +b") + %) + b7,

where A' = (32), bt = (25,), A2=(—-39), 2= (1), A3 =(11), b*> = —1, which
emulates the hat-like function, i.e.,

1 ifa<y<b,

0 ify<a—1 or b+1i<y,
Na,b(Y): 1 . 1 2 2

2(y—(a—3)) ifa—35<y<a,

—2(y —b) ifb<y<b+i.

For k= 1,...,7, let N®)(y) = Y7 ZYNy o . (y) which satisfies N®)(y;) = 2

for all j € [my]. The remaining task is to construct a deep ReLU network ¢, such
that @ (y;p1) = (N (@Ty),....NO(@Ty),0n-7) 7.
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Let z=(z1,...,27) ", c¢=(c1,...,c7) ", and consider a three-layer ReLU network
Fopc of width =27 + 4 defined by

Fube (BD — A% ([120 ([11 m + El) + 52> = (z N d{,a’b(y» :

where P=(1,-1)7,

Al 0 P 02><1 02><1
. 2x7 o 021 P -+ 02y
Al = P 02><F GRnX(T—"—l) Wlth Ps: _X . ) .X ERQSXS’
02751 Ps : : K :
021 Oy -+ P

"= (o)
02711)x1)

A2 ( A? 02><2(F+1)> c RAX7
O2rr1yx2 Lo(rt1)

b* = eR"”,
02741y x1

- PT - ~ _
X 4

[;3 — (g) c Rf'—i—l'

Last, let us consider a three-layer ReLLU network F (Ob)’c of width 4 defined by

a‘7

a,b,c

(0) _ A3 A2 Al 71 72 73 z
E (y)y=Ac(A%c(Ay+b)+b°)+b _<CNa,b(77Ty)>7
where Al = (Apl)f}—r € R4Xdy’ l;l = (0211)’ A2 = (Oﬁjz 02122)’ 82 = (Osil)’ A?} =
T ~
()P0
Let us consider

* 0
oy 1) = AF gm0 0 F @ oFY )

Ymy—1,Ymy > y2,¥3, V1,y2,2 e

0751 I;

Onv_mx1 On—m)x(v—7)
whose architecture is 73; as shown in the statement, and p* represents the correspond-
ing network parameters. It then can be checked that ¢ (y;u*) = (N (5Ty),..., N™

(©"7y),0n_7) ", which completes the proof. d

where A = . Then, it is a (2m, + 1)-layer ReLU network
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Appendix B. Proof of Theorem 4.10.

Proof. Let V(1) =span{(¢(-;u));:j=1,...,N+1}. The minimization problem
of (3.4) is equivalent to
w' = argmin (@)@ ()" — DU 5,
I

where M is a feasible set for the trunk networks defined on Assumption 4.7. Since
p* € M, there exists T),~ such that (5 ,T},+) form an orthonormal basis in LZ(9,),
which we denote by {¢% } _o- We then rewrite the operator G of interest in terms of
the new orthonormal ba51s ie.,

)= ()

j=0

Observe that

IG1/] = Onet 11172 0, = IGLS] gNm +Gn[f] = Ones[ Al 72 0,
= 190/1 = Gn 172 (0, + ||gN[ ] = Onetlfl172 (0

=19f] = GnlAI72, y)+Z £)—ci(f;07)%

The second term on the right-hand side of the above can be further bounded as follows:

(5 (f) = e;(f:07)°

= (c5(f ) ( Fo) + G (fr) = ¢ (£307) = ¢;(£1:07) + ¢ (£1:07))°

<3{(¢; G (f))? + (5 (fr) = €5 (F:07)* + (e5(F:07) — €5 (F2:07)*}
§3{L2d2 (f, fie) + (65 (fi) = €5 (F130))* + LLI(K, N, m) | f = fill% 2}

Thus, we have

1G] = Ouet 11172 0, < G111 = Gn f11172 02,
+3{L2d2 (f i) + LELENF = Frllio}

+3Z (fr) — e (£1:07))%.

Recall that since the trunk networks are an orthogonal basis, the optimal solution
A* of (3.4) is the least-squares solution as p = 2. Under Assumptions 4.2 and 4.7, it
follows from Theorem 2 of [11, 12] that we have

N

D (G UR) = ei(F1:07) | SC'(my, ) 1G1fK] = Gn [ filll72 0, +m5 "

Jj=0

6log(3/2)—2

(tre) Togmy - By combining the above with Assumptions 4.2

where C'(my,r) =
and 4.3, we have

E[IG1] ~ Oneelf1IB2 | £ Clomy, r) N 70 g™ 4 K s,

which completes the proof. ]
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