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ARTICLE INFO ABSTRACT

Keywords: In this paper, we investigate optimal control problems in heterogeneous porous media. The
Optimal control optimal control problem is governed by the Darcy’s flow equation; where the pressure is the
Darcy’s flow state variable and the source/sink is the control variable. Then we introduce the reduced optimal

Heterogeneity

€V interior penalty control problem which contains only the state variable by replacing the control variable with a

dependent quantity of the state variable based on the Darcy’s equation. Here we employ C? interior
penalty finite element methods for the spatial discretization to solve the reduced optimal control
problem resulting in a fourth-order variational inequality. We use [P, Lagrange finite elements
for C* interior penalty methods, which require fewer degrees of freedom than C! finite element
methods. We provide a priori error estimates and stability analyses by considering a heterogeneous
permeability coefficient. Several numerical examples validate the given theories and illustrate the
capabilities of the proposed algorithm.

1. Introduction

Subsurface flow systems play a pivotal role in various critical applications, including groundwater management, oil reservoir
engineering, and environmental remediation. Accurate modeling and prediction of these systems are paramount for informed decision-
making, but they are often challenged by uncertainties in material properties data such as permeabilities [1].

Uncertainties in permeabilities and material properties arise due to the complex, heterogeneous nature of subsurface forma-
tions [2]. Traditional forward modeling approaches, which rely on fixed parameter values, often fall short of capturing the inherent
variability of these systems. Optimal control problems, on the other hand, provide a means to calibrate models using observed data
and desired constraints, thereby improving the accuracy of predictions and understanding of the phenomena.

Optimal control [3-5] allows for the determination of not only the best estimate of parameter values but also the identification
of control strategies to optimize system performance. Whether it involves managing groundwater resource [6], enhancing subsurface
energy system [7], or mitigating groundwater contamination [8], optimal control techniques help in achieving desired objectives
while considering the uncertainties in data.

This paper emphasizes the broader perspective of achieving optimal system behavior under conditions of uncertainty in hetero-
geneous porous media by considering Darcy’s flow equation, —V - (KVp) = 5. Here we consider the pressure p as a state variable, and
the source/sink # as a control variable with the heterogeneous permeability K. Thus, we aim to optimally control the source/sink
term without any prior information, to obtain the targeted pressure value.
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In this work, we introduce the reduced optimal control problem, which contains only the state variable, by replacing the control
variable using Darcy’s equation. The advantage of reduced optimal control [9-12] includes the reduction in the number of variables
that leads to the simplified optimization problem. Moreover, eliminating the control variable and replacing it with the state variable
helps handle the pointwise state constraints [13,14]. However, this results in having the fourth order term in the cost functional, and
hence we need to choose an appropriate numerical method to discretize the fourth order problem in order to get a good approximation
to the solution of the continuous problem.

Various finite element methods have been employed to approximate a solution for fourth-order problems. As continuous problems
within the domain Q are formulated in the Sobolev space H 2(Q) [15-17], finite element spaces [18] in conforming methods must
be subspaces of H?2(Q)—specifically, they are C! finite element spaces. However, the drawback of these conforming methods lies
in their complexity, as C! continuity imposes numerous conditions on the vertices and edges/faces of an element. Meeting these
conditions requires a substantial number of degrees of freedom. For instance, the use of Argyris triangular elements [19], which
belong to P5 with 21 degrees of freedom, or Macro elements [20], which are C' with piecewise cubic polynomials and 12 degrees
of freedom, becomes necessary. The reduction of degrees of freedom is possible through the utilization of non-conforming finite
element methods, as only weak continuity conditions need to be satisfied for the finite element functions and their derivatives. Yet,
constructing effective nonconforming finite elements, particularly for more intricate fourth order problems, requires a considerable
amount of ingenuity. On the other hand, one can explore mixed finite element methods by decomposing the biharmonic problem
into two second order problems. Challenges in this approach arise in selecting a compatible pair to meet the inf-sup conditions and
in solving the associated saddle point problem.

In this paper, we employ the C interior penalty finite element method (COIP-FEM) [21-23], which belongs to the class of
discontinuous Galerkin methods [24], where the discontinuity involves the first order or higher order derivatives. The lowest order
elements in this family are as straightforward as classical nonconforming finite elements. The advantages of C’IP-FEM include that the
method allows to capture the smoothness of solutions using higher order elements that are as efficient as higher order C! elements, and
considerably simpler. Unlike mixed methods, this approach can be readily extended to tackle more complex fourth order problems,
such as those encountered in strain gradient elasticity problems.

Thus, we focus on utilizing the C°IP-FEM for solving the optimal control problem [12,25,10,9,11] governed by Darcy’s flow
equation in heterogeneous porous media. Unlike most existing work, which considers the state to be close to the desired state in
the whole domain [26-28,10,11], we employ the general cost functional which tracks points [29-34], curves, and regions in the
domain [12] so that the state is close to the desired state in the specific parts of the domain with pointwise state constraints. We
derive error estimates and convergence analyses by considering diffusive heterogeneity in the permeability coefficient. To illustrate
the capabilities of our proposed algorithm, we provide several numerical examples testing various scenarios. For example, different
states including points, lines, and subdomains in the heterogeneous porous media are considered. Although the discrete problem is
fourth-order, by using C° interior penalty methods with [P, Lagrange finite element, the computational cost is considerably low. The
discrete problem is solved by the primal-dual active set algorithm [35,36].

This paper is organized as follows. In Section 2, the governing system is introduced, including the optimal control problem with
Darcy’s equation and pointwise state constraints. The well-posedness of the optimal control problem is considered in Section 3 as well
as the regularity results for the optimal state and optimal control. In Section 4, we utilize the C°IP-FEM to the reduced optimal control
problem, and the modified bilinear form with the (non-constant) permeability coefficient is obtained. Moreover, convergence error
analyses are provided. We demonstrate the numerical algorithm and exhibit various numerical examples in Section 5. The concluding
remarks are presented in Section 6.

2. Governing system

Let Q be a bounded convex domain in R?, with the boundary Q. The optimal control problem that we focus on is to find

_ 1
(p. 1) = argmin 5 /Ip—pdlde+ﬂ/|n|2dx , (2.1)
(p.E 5 5

where U C H& (Q) x L,(Q) and f > 0, subject to the Darcy’s flow equation
—-V-(KVp)=n inQ, (2.2a)
p=0 onoQ, (2.2b)
and the pointwise state constraints

p_(X)<p(x)<p,(x) ae x=(x,y) €Q (2.3)

Darcy’s flow equation (2.2) models the flow in porous media, characterized by the pressure scalar function p : Q — R, the
source/sink term # which is often referred as the flow rate, and the permeability tensor K € R2<2, Here we assume K € [H2(Q)]**2.
The permeability tensor is symmetric and uniformly positive definite. Positive constants k( and k; exist such that for any x € Q, the
following inequalities hold for all &£ € R?:

kotTe < ETRX)E <k ETE, VEeR>.
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The pressure p is considered to be the state variable, 7 is the control variable, and p, is the desired state. Through the optimal control
problem (2.1), we aim p to be very close to p, in the tracking points, lines, and subdomains of the domain Q while p and # satisfy
the Darcy’s equation (2.2).

In (2.1), we recall the definition of the Radon measure v on Q in [12]:

J L M
/fdv: Y F@pwl, + Z/fwig ds+ Z/fw'g, dx, 2.4)
j=1 =l m=lp

Q

where & = {7, ..., P} is afinite set of points in Q, € = {%,, ..., €} is_the union of the curves where ¢, C Q,and & = {&}, ..., &y }
is a union of the subdomains where each &,, C Q. The weight functions wlg , wh . and w’, are bounded nonnegative Borel measurable
functions defined on &7, ¥ and &, respectively. Then, the desired state p, is a target function of the pressure function p which is

given as

P on &%
Py ‘=13 P¢ on ¢\ (2.5)
De on &\ (FU2P)

such that
”deZLz(Q;v) ::/|Pd|2dv<00~
Q

We observe that the considered optimal control problem enables the generalization of the optimal control region. For instance,
the points denoted as %7 and the curves represented by ¢ are regarded as injection/production wells and fractures in the subsurface
engineering problems, respectively.

Finally, we assume that the given functions p, in (2.3) satisfy [12]

P, EW(Q) for ¢>2, (2.6a)
p_<p, on Q, (2.6b)
p_<0<p, on 0Q. (2.6¢)

In this work, instead of seeking for both the state p and the control # simultaneously, we reformulate the optimal control problem
(2.1) by utilizing the linear partial differential operator ., where

ZLp:=-V-(KVp), 2.7)

so that # can be written as # = .Zp by (2.2a). Thus, the reduced optimal control problem is obtained as following: Find p € U such
that

_ 1
p=argmin =~ /Ip—pdlzdv+ﬂ/I$p|2dx , (2.8)
ey 2 Q Q

where the admissible set is

U={pe H(QNH)(Q) : £peLy(Qandp_<p<p, in Q}. (2.9)

Note that according to (2.6b)-(2.6¢), the admissible set U is nonempty.

Remark 2.1. Due to the convexity of Q, the constraints (2.2) and K € [H2(©)]>? imply that p € H2(Q) if (p,#) € U by elliptic
regularity. Therefore the cost functional

/|p—pd|2dv+ﬂ/ In|* dx
Q Q
is well-defined by the Sobolev embedding theorem H2(Q) c C(Q) [15].

3. Well-posedness and regularity results

In this section, we briefly recapitulate the well-posedness and regularity for the given problem based on [12]. Note that the main
difference compared to [12] is that we consider the coefficient K in the elliptic partial differential equation constraint (2.2).

Theorem 3.1. The reduced optimal control problem (2.8)-(2.9) has a unique solution.
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Proof. First one can rewrite (2.8) as following:

13=argminl /lp—pdlzdv+ﬁ/|$p|2dx
peU 2 5 5

— argmin = /|p|2dv+ﬁ/|f/p|2dx—2/ppddv .
peU 2
Q Q Q

Define the bilinear form ./(-,-) as

o (v, w) :=/vwdv+ﬂ/(,,§,”u)($w)dx, 3.1)
Q Q

and the linear functional F(-) as

F(v) :=/upd dv.
Q

Then the reduced minimization problem (2.8) is written as
_ . [1
p=argmin [/ (.p) - Fp)] 32)
peU 2
By (2.4), the Cauchy-Schwarz inequality, and the Sobolev embedding theorem,
o7 (0,001 £ € (oll 19 i ni )
and
| F(v)| < o0,
for any v,w € H*(Q)n Hé (). Moreover, according to (2.4) and the trace theorem,
2
CLCREL T

forany ve H 2@ n HS(Q). This tells us that the bilinear form ./ (-,-) is continuous and coercive, and the linear functional F(-)
is bounded. Since U is a nonempty, closed, and convex subset of H 2@ n HS (Q), by the Riesz Representation theorem and the
Projection theorem [16], the reduced optimal control problem (3.2) has a unique solution. []

Now we turn to the first order (necessary) optimality condition by using Theorem 3.1 which tells us that j is the unique optimal
solution to the minimization problem (2.8)-(2.9). This then leads us to the generalized Karush-Kuhn-Tucker (KKT) conditions. In
order to deduce the conditions, we derive the variational inequality corresponding to the optimal control problem (2.8)-(2.9).

Lemma 3.1. The optimal control problem (2.8)-(2.9) has a unique solution p € U characterized by the fourth order variational inequality
[371

ﬂ/(fﬁ)(f(p—ﬁ))dX+/(ﬁ—Pd)(P—ﬁ)dVZO VpeU. (3.3)
Q Q

Proof. Let p € U be arbitrary. We define the function ® : [0, 1] - R such that
0@ :=J((1-np+1p),

where

1
1) :=3| [o-piaves [ 120 ax|.
Q Q

Since p € U is the solution to the optimization problem (2.8)-(2.9), it implies that p € U is the minimizer of J(p), and thus

OO)=J(P <J((1-0p+1tp)=0@) for 0<r<1.
This leads us that ®’(0) > 0. Therefore,
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d ]
0< &)= [EJ((l —t)p+tp)]

t=0

= ﬁ/(éfﬁ)(i"(ﬁ —-p)dx+ /(13 —p)p—p)dv,
Q Q
for any p € U, and hence the result follows. []

The fourth order variational inequality (3.3) is equivalent to the following generalized KKT conditions [38,39]:

p / (ZPN(Lg)dx + / (P—pa)gdv= / gdi Vge HX(Q)Nn Hy(Q), (3.4)
Q Q Q

where 4 is a bounded regular Borel measure satisfying

A>0 if p=p,, (3.5a)
AL0 if p=p_, (3.5b)
A=0 otherwise. (3.5¢)

See [40] for the proof of the KKT conditions.
Finally, we can find the local and global regularity results for the optimal state of the optimal control problem (2.8)-(2.9). The
solution p belongs to [41,42,12]

W3,S(Q)

loc
for any s € (1,2). Furthermore, globally [43,44,12]
pe H* Q) (3.6)
for some a € (0,1), where « is the index of elliptic regularity determined by Q. Note that for a rectangular domain [44,34], it is
known that @ = 1 — € where £ > 0.

4. C" interior penalty methods and error analysis

In this section, we introduce the COIP-FEM for spatial discretization of the reduced optimal control problem and provide error
convergence analyses. One of the main advantages of C°IP-FEM for the fourth order variational problem (3.3) is its lower cost
compared to that of the conforming continuous Galerkin methods.

4.1. CY interior penalty finite element methods

Let .7, = {T'} be a shape-regular triangulation of the domain € into triangular elements with a mesh size 4 = max; hy, where hp
is the diameter of T € .7},. Let P, (T') be the space of all polynomials of degree at most k > 0 on a set 7', and the nodal interpolation
operator for the P; finite element space associated with .7}, is denoted by I,.

In this paper, we employ the ’, Lagrange triangular elements [21]. Thus, we define the finite element space as

Vi i={w € Hy(@ | wly €P)(T) VT €}

The COIP-FEM is a class of discontinuous Galerkin methods, where the discontinuity is in the normal derivative across element
boundaries. Since V}, is not a subspace of H>(Q) (V}, € C(Q) but V}, ¢ C(Q)), this is a H-nonconforming method. The discontinuity
in normal derivatives yields the jump and the average across edges in the discrete bilinear form. We note that this method relaxes
the C! continuity requirement by replacing it with interior penalty techniques.

To construct COIP-FEM, we first define the piecewise Sobolev space

HX(Z)={veE LyQ) : vy =v|p € HXT) YT € F,}.

We denote by &), the set of all edges in the mesh and by 6"h’ the set of all the interior edges. For each T € .}, denote the boundary
of T by dT. If e éah’ , we assign to e a fixed unit normal vector n, pointing from 7_ to T,. Let v be any piecewise H?(.7,) function,
then the jump value of the normal derivative of v on e € cg’h’ (shared by the two neighboring elements T, € 7},) is defined as

[ov/om,] :=o0v,/on, —dv_/on,,

where v, = (vl7,)l,. If e € 09, then e belongs to only one triangle T', and we define
[ov/om,] :=—0v|y/on,,
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where we take n, to be the unit normal pointing outside Q. Next, let v be any piecewise H*(.7},) function for s > 5/2, then average
of the second order normal derivative of v on e € é”hl is defined as

{{oPofon)}) o=
If e € 0Q, then

{{620/6n§}} = 02U|T/6n§,

where we take n, to be the unit normal pointing outside Q. Furthermore, with the permeability coefficient K, we have

2 (00, om2) + (Po_fom2)).

[KVv)-n,] :=(K,Vv,)-n,—(K_Vv_)-n,
and
{{V(®Vv)-n,)mn,}} := % [V(K, Voy)-n,)+V(K_Vo)-n,)]|.

where K, = (KlTi)lL,.
To derive the discrete optimal control problem, we define the piecewise operator £ with respect to .7}, as

Loy =-V - (KVvh)|T, “@.1)

and we assume K is piecewise constant, and thus VK = 0 piecewise accordingly. Then the discrete problem of (2.8) is to find

_ !
pu=argmin 2| [ 1y~ pul? v+ 9oy n) | (42)
Pr€UY
Q

where

U,={p,€Vy: Inp_<I,p,<I;p,}. 4.3)
Here, b, (-, ) is the discrete bilinear form obtained by using COIP-FEM:

by wp)= Y / (Lpop)(Lywy) dx (4.4)

TeZ, T

+ Z ah;1/ [KVu,)-n,] [(KVw,)-n,] ds

eEéD}{

+ ) /{{V((KVUh)~ne)-ne}}[[(Kth)me]] ds

eeglf e
+ ) /{{V((Kth)-ne)-ne}}[(KVuh)-neﬂ,ds
eeéf’h’ e

where A, is the diameter of the edge e, and ¢ > 0 is a penalty parameter.
Similar to the continuous problem, U,, is nonempty and hence the minimization problem (4.2) has a unique solution p, € U,
characterized by the discrete variational inequality

/(ﬁh—l’d)([’h = pp)dv+ by (pp,pp — Pp) 20 Vp, €U (4.5)
Q
Then, we can rewrite (4.5) as follows:
Iy (Pps P —ﬁh)—/Pd(Ph—ﬁh)dVZO Vpy €Uy, (4.6)
Q

where the bilinear form is

o2, (U, Wy) :=ﬂbh(uh,wh)+/vhwhdv, “4.7)
Q

which approximates the bilinear form (3.1).
Moreover, through symmetrization interior penalty term

/ {{V(®Vw,;) n,) n,}}[KVv,) - n,]ds,
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and the penalty stabilization term

oh! / [KVe,) - n,] [(KVw,) - n,)]ds,

we can get the symmetric positive-definiteness (SPD) of the bilinear form b (-, -) with sufficiently large penalty parameter o, and thus
the discrete problem preserves the SPD property of the continuous problem.

4.2. Convergence analysis

Next, we will derive the error estimates based on the convergence analysis from [12]. We define the mesh-dependent H2-norm
as follows:

2 . 2 -1 2
1012007 = 2 oty + X h YD) ne]l (4.8)
Teg, eeé”hl

Thus, there exist positive constants C; and C, such that [22,21]

|bh(Uh’wh)| SCl|Uh|H2(Q;3h)|wh|H2(Q;9h) VUh,wh EVh, (4.9)
2
bh(Uh,Uh)ZCZh)thz(Q;gh) Vl)h (S Vh’ (410)

provided the penalty parameter o is sufficiently large.
We also define the mesh-dependent energy norm || - ||, by

o1l == A1l g o)+ I101T, i (4.11)

Then, according to (4.7), (4.8)-(4.10), and (4.11), there are positive constants C; and C, such that
(v, wp) < Crllogllpllwy i, Yoy, wy €Vy, (4.12)
Dy vp) 2 GollogllZ Yo, €V, (4.13)

Finally, we can derive the following theorem.
Theorem 4.1. There is a constant C > 0 independent of h such that
15— Bl < ChY, (4.14)

where a € (0, 1) is the index of elliptic regularity.

Proof. The detailed proof can be found in [12].
The following error estimates for the Lagrange interpolation operator, I, : HX(Q)NH é (Q) = V},, are based on the Bramble-Hilbert
lemma [45,46], and the local and global regularity estimates, can be found in [21,47]. We have, by (4.1),

17 —T1,pll L, < Ch**e, (4.15)
|ﬁ—nh13|H1(Q) <ch'te, (4.16)
15 = 1,51l @) < Ch'™", (4.17)
5 2
<T§‘§ 1 (p - th>|L2(T)> <Ch. (4.18)
By (4.16), (4.18), and the trace inequality with scaling, one can obtain
1/2
Y, IV -T1,p) - mll; | <Ch™. (4.19)

1
eegh

Furthermore, it follows from (2.4), and (4.15)-(4.19) that

7 —1,hll L) < Ch'te,

and thus
lp — 11,5, < Ch*. (4.20)
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Combining with (4.13), (4.20) and (4.6), we obtain

15— By} <2115 — Tyl + 21T, 5 — B I
< C[h* + 4,5 — by 1,5 — bp)]
<C (R +h*||,5 - pyll)
<C[R* +h* (1,5 = Bl + 15— Ball)]
<C (R +hNp—ylln) -

and hence the inequality of arithmetic and geometric means implies (4.14). []

5. Numerical examples

In this section, we present a set of numerical examples validating the theoretical results presented in Section 4 and demonstrating
the capabilities of the proposed algorithm in different scenarios. The computations are performed with in-house developed code based
on Matlab [40].

5.1. Global algorithm

First, we briefly summarize the global algorithm to solve the given problem. The variational inequality (4.6) can be written in the
algebraic form as follows:

p’Ag-p)—£fT(g-p) 20 VgeRW o
IhP_SPSIhP.p .

where p € RY is the solution vector, A € R¥*N js the matrix obtained from (4.7) and (4.4), and £ € RY is the vector obtained from
the second term of the left-hand side of (4.6). Here, N is the total number of nodal points. As we introduce the dual unknown u € RV,
the discrete problem (5.1) becomes the following system

Ap—f+u=0 (5.2)
u=max{0, 4+ C(p — I,p,)} + min{0, u + C(p — I,p_)}, '

where C > 0. Then, the equivalent KKT conditions are obtained as follows:

Ap+u==£
Iyp_<p<Ipp,

uz0 if p=1I,p,

u<0 if p=I,p_

u=0 if Ip_<p<I,p,.

Remark 5.1. Suppose p and u are the unique solution to (5.2). The primal dual active set algorithm [36] converges superlinearly
provided that the initial state p® and the initial dual x° are sufficiently close to p and u, respectively.

Algorithm 1 Primal dual active set algorithm.

set initials: p, .
find active sets: «7* = {i €[0, N] : p*(i) + C(p*(i) — I,p_(i)) <0},

At ={i€[0,N]: p*(D) + C(*(i) = I,p,.(i)) > 0};
inactive set: .7 = (azk U oz )
while y* # 4! do
aG, T (nLek) 1T (n k) pk*! £
solve | T(az%,:) o(stk, azk) o(ark, atf) || W+ (%) |=| Lip- (%)
1ort) o(arbiat) o(akiat) || uet () || Doon ()

update o7**! = {i € [0, N] : p*(i) + C(p**' (i) — I,p_(i)) < 0},
A ={i€[0,N]: p*(i) + CE"*' () - I,p, (1) > 0};
TR = (g kY gz ke
AU ek
end while
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Q Q Q> Q Q> Q

2
A
2

NN

(a) Case 1) (b) Case ii) (c) Case iii) (d) Case iv)

Fig. 1. Example 1. Four different cases.

5.2. Primal dual active set

The discrete problem (5.2) is a quadratic program with simple box constraints, and here we employ the primal dual active set
(PDAS) algorithm [48,36] to solve the problem. The main idea of the PDAS is to solve the system while the active sets

% ={i €[0,N]: ")+ C*(i) - I,p_(i)) < 0},
A =i €[0,N]: 4" (i) + C" (i) — Iyp, (D) > 0},

are updated by finding the nodal indices where the state does not satisfy the constraints

T,p_(i) < p*() < Tp, (i)

Here, k is the iteration number, and i is the index of nodal points. See Algorithm 1 for more details. This algorithm terminates when
the previous active sets are the same as the updated ones; equivalently, when the dual unknown y remains the same. A simple direct
solver is used to solve the linear system in the algorithm.

We note that the Lagrange multiplier A in (3.5) associated with the pointwise state constraints (2.3) is a Borel measure. As a result,
PDAS algorithm for the state-constrained problem exhibits mesh-dependent behavior and has no function space analysis as discussed
in [49-51]. To overcome these shortcomings, mixed state-control constraints technique [51-53] or Moreau-Yosida regularization
[54-57] techniques were developed. However, it is not trivial to utilize these approaches in our given problem.

In our case, we consider the reduced optimal control problem, which is obtained by replacing the control # with n = ¥p =
—V - (KVp) according to the partial differential equation constraint (2.2a). This resulted in the C interior penalty methods with only
state variable, and it requires at least a quadratic Lagrange finite element. Thus, the mixed state-control constraints (or Lavrentiev-
type regularization) approach, which reformulated the state variable p to the control variable 7, is not applicable to our approach. On
the other hand, considering the Moreau-Yosida regularization (or augmented Lagrangian-type penalization) approach is challenging
due to our use of the partial differential equation to replace the control variable in the cost functional. Since this work focuses on the
analyses and the application of C°IP-FEM methods, considering mesh-independence PDAS algorithm for our reduced problem is out
of the scope of this work but will be studied further. However, we have still illustrated the iteration numbers in the PDAS algorithm
in one of our numerical examples.

5.3. Example 1. Heterogeneous domain with layers

In this section, we test four different cases in the computational domain Q = (0, 1)2. We consider the permeability tensor K = K1,
where K is a piecewise constant, and I is the 2 X 2 identity matrix, in all the numerical experiments for the simplicity.

First two cases consider homogeneous K values;

Case i) K=5Iin Q, and

Case ii) K=1in Q.
Then, we consider heterogeneous domains by setting two different layers such as

Case iii) K=1in Q; and K= 10I in ©,, and

Caseiv) K=3Iin Q; and K=11in Q,.
Here, Q =Q, UQ,, where Q, = {(x,y) | y<0.5} and Q, = {(x,y) | y> 0.5}.

For these cases, the desired state is given in a tracking subdomain region (i.e., M = 1 while J =0 and L = 0). We recall that
J is the number of tracking points, L is the number of tracking line segments, and M is the number of tracking subdomains; see
(2.4). Here we set &; =[0.375,0.125] X [0.625,0.25]. Details are shown in Fig. 1. The weight is set to be wlg = 10°, and the penalty
parameter is chosen to be f =1 and ¢ = 10. The state constraints p, are given by

Pa(x,)=5-((x=0.5)*+(y-0.5% and p_(x,y)=—oo,

and p; =pe =4.84.
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Table 1
Example 1. Convergence results for each different cases.
Case i) Case ii) Case iif) Case iv)
h E, order E, order E, order E, order

273 1.88e-02 - 2.63e-02 - 2.79e-02 - 2.80e-02 -

274 8.07e-03 1.22 1.19e-02 0.98 1.26e-02 1.15 1.14e-02 1.40
275 1.93e-03 2.06 4.5%-03 0.95 5.21e-03 1.27 5.23e-03 1.12
276 6.44e-04 1.59 1.44e-03 1.31 2.00e-03 1.38 3.34e-03 0.65
277 1.34e-04 2.27 4.16e-04 1.82 8.64e-04 1.21 1.70e-03 0.97

Table 2
Example 1. Energy norm of the finest result 5 when 4 = 2% for each
different cases.

11511 Case i) Case ii) Case iii) Case iv)

2-8 7.30e+02 8.46e+02 8.40e+02 7.85e+02

Table 3
Example 1. The number of iterations in the PDAS algorithm
for each case.

h 273 2% 2% 26 277 278
Case i) 1 1 3 6 12 24
Case ii) 1 2 3 5 16 32
Caseiii) 1 2 3 5 7 20
Caseiv) 4 9 16 31 62 130

5.3.1. Convergence

First, to verify the optimal convergence rate of the proposed method as proven in Theorem 4.1, we measure errors on five uniform
meshes, starting with the initial mesh of 4 = 23 halving them in each refinement cycle. The errors are measured in the relative
norm E;, :=||p— p,ll»/|lpll,» where j is the numerical solution obtained with the finest grid 4 = 278. The convergence results are
summarized in Table 1, illustrating the expected optimal convergence rates. Moreover, Table 2 presents the magnitude of ||j]|,.

5.3.2. Discussions

We emphasize the importance of considering heterogeneous media to explore realistic subsurface scenarios. In Fig. 2, we compare
differences in the state variable p, among four different cases, Case i) - iv). The left column depicts the values of j;, while the right
column showcases the p, values from a top-view perspective within the control domain &;. Although Case i) and Case ii) have similar
results, the comparison between the homogeneous Case ii) (Fig. 2 c) - d)) and heterogeneous Case iii) (Fig. 2 €) - f)) reveals variations
in the pressure values p;, due to the presence of a heterogeneous layer. Specifically, we observe that the Case ii) has more diffusive and
higher pressure values on the upper domain compare to the Case iii). Furthermore, Case iv) illustrates significant different pressure
values compared to that of Case iii) as the permeability K has opposite aspects in Case iii) and Case iv). Therefore, targeting on the
pressure value p, within the region & leads to distinct optimal control solution values depending on the permeability.

Next, Fig. 3 illustrates the pressure values pj, plotted over the line x = 0.5 in the domain Q for each case. On the other hand, Fig. 4
illustrates the pressure values pj, plotted over the line y = 0.25. These figures provide clear differences in the optimal pressure values,
as discussed in the above paragraph. We note that the target pressure value p; = p» = 4.84 is almost matched.

Fig. 5 illustrates the differences in the control variable 7, across the four distinct cases, Case i) - iv). These 7, values define the
configuration of the source function (either injection or production) in the Darcy’s flow equation to attain the targeted pressure value
p, within the specified subdomain &.

Note that Table 3 shows the number of iterations in the PDAS algorithm. It is observed that the number of iterations increases as
the mesh size decreases, and hence it exhibits that the PDAS is mesh-dependent for the state-constrained optimal control problem.

5.4. Example 2. Various tracking states

In this example, the domain setup is the same as in Example 1, Case iii). However, we test various tracking states, including lines
that can be considered fractures, a point that can be regarded as an injection/production source, and combinations of these elements.
Fig. 6 illustrates the details for each case.

Thus, J =1, L =0, and M =0 for Case i) with &2, = (0.5,0.25). For Case ii), we set J/ =0, L =2, and M =0, where ¢, =
(0.25,0.125) — (0.75,0.125) and %, = (0.25,0) — (0.625,0.375). We mix different tracking states in the Case iii), suchas J =1, L =2,
and M =0, where | =(0.125,0.125), and %, = (0.375,0.25) — (0.75,0.25) and 4, = (0.375,0.125) — (0.625,0.375).
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) 0 02 04 06 08 1
(a) Case i) (b) Case i)

0 0 0 02 04 06 08 1
(c) Case ii) (d) Case ii)

) 0 02 04 06 08 1
(e) Case iii) (f) Case iii)

00 0 02 04 06 08 1
(g) Case iv) (h) Case iv)

Fig. 2. Example 1. Illustrates the state variable p, for each different cases. The right figure shows the tracking domain.

19 =10’ and p, = p 5 = 4.93 for the Case i), wlg = wgg =103

=w?, =10 and p 5 =4.73 p,; = 4.84 for the Case iii).

In addition, the weight functions and target functions are set as w

and p,; = p, =4.68 for the Case ii), and wlg, = wlg

5.4.1. Convergence

First, to confirm the optimal convergence rate of the proposed method, as demonstrated in Example 1, we calculate errors on
five uniform meshes, starting with the initial mesh of 4 = 273 halving them in each refinement cycle. The errors are computed in the
relative norm as in Example 1. The convergence results are presented in Tables 4, 5, showing the expected optimal convergence rates
in Theorem 4.1.
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Fig. 3. Example 1. Optimal state p, values over the line x = 0.5 for each case. We note that p, = p, =4.84.
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Fig. 4. Example 1. Optimal state p, values over the line y = 0.25 for each case. We note that p;, = po =4.84.

Table 4
Example 2. Convergence results for each different cases.
Case i) Case ii) Case iii)
h E, order E, order E, order
273 1.17e-02 - 7.04e-02 - 2.52e-02 -

274 6.40e-03 0.87 4.60e-02 0.61 2.45e-02 0.04
273 3.31e-03 0.95 2.67e-02 0.78 1.57e-02 0.64
276 1.63e-03 1.02 1.20e-02 1.15 7.70e-03 1.03
277 6.33e-04 1.36 4.04e-03 1.57 2.91e-03 1.40

Table 5

Example 2. Energy norm of the finest result for each different cases.
1511, Case i) Case ii) Case iii)
278 1.56e+03 1.47e+03 2.10e+03

5.4.2. Discussions

Fig. 7 illustrates the optimal solutions for the state variable p;, and the control variable 7, computed from the p, for Case i). In
Fig. 7 (a) and (b), it is evident that the point tracking on &, is active, and we observe that the pressure value reached the desired
state pressure values p; = p 4 for the point. The control variable 7, from Fig. 7 (c) shows the optimal source function values to obtain
the desired state values.

Case ii) results are shown in Fig. 8. In this case, two lines (%} and %) are given as the targeted region, which could be considered
as fractures in porous media. In Fig. 8 (a)-(b), we observe that the state pressure profile along the fracture lines are reaching the p.,
value. Next, Fig. 8 (¢)-(d) present the control values 7, computed from p,. The 7, corresponds to the optimally controlled source
function value required to attain the targeted pressure values. Notably, 7, values are slightly higher at the end of the lines (or near
the fracture tips).

Case iii) presented in Fig. 9 demonstrates the capabilities of our algorithm to combine multiple states. We observe that the pressure
values p;, are reaching values p,. Specifically, p 5 for the point and p., for the line. The value of 7, in Fig. 9 (c) - (d) represents the
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(a) Case 1) (b) Case i)
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(c) Case ii) (d) Case ii)

-200

T~ o5
00 0 0.2 0.4 0.6 0.8 1

(e) Case iii) (f) Case iii)

00 0 0.2 0.4 0.6 0.8 1
(g) Case iv) (h) Case iv)

Fig. 5. Example 1. lllustrates the control variable 7, for each different case. We observe discontinuous values on the left column figures due to the choice of our C°
interior penalty finite element space. The figures on the right column show the top view including the tracking domain.

optimal control variable 77, needed to achieve the target pressure values in Fig. 9 (a) - (b). Clearly, our algorithm can seek optimal
state values with multiple tracking, as demonstrated in Fig. 9. To achieve the desired targeted pressure on both the point and the
fracture, as shown in Fig. 9 (c), we observe that having a larger 77, value at the point is crucial, given that the area is much smaller
compared to the lines.

We have also calculated the cost functional values at each PDAS iteration for Case iii) with 4 = 275 in Table 6. The cost functional
value is computed by the following formula

1
J 3=5 /|Ph—Pd|2dV+ﬂbh(Ph,Ph) . (5.3)
Q

As the iteration runs, the value of the cost functional, J, converges to 4.07e+06 while the optimal solution satisfies the given
constraints.
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Q> Q Q- Q Qs Q
K=10I K=101I K=10I
Q4 Q Q4
K=1 Ki’l Kzl
[ )
[ ]

(a) Case 1) a source point (b) Case ii) lines (fractures) (c) Case iii) a mixture

Fig. 6. Example 2. Three different cases.

N W O

Y e Y

0 0 0 02 04 06 08 1
(a) optimal state py, (b) pj, (viewed from the top)

00 0 02 04 06 08 1
(c) optimal control ), (d) N, (viewed from the top)

Fig. 7. Example 2. Case i) Illustrates the optimal solutions for the state variable 5, and computed control variable 7. The right column figures present the top view
of each value with the tracking domain (a point 22)).

Table 6
Example 2. Case iii) Cost functional value at each PDAS iteration when h =273,

PDAS iteration 1 2 3 4 5 6 7 8 9

J/(1.0e+06) 410 4.08 4.07 4.07 4.07 407 4.07 4.07 4.07

Finally, Fig. 10 shows the evolution of the control 7, as the PDAS iteration runs. The last figure in Fig. 10, control evolution when
PDAS iteration 28, presents the converged 7j,.

5.5. Example 3. General heterogeneity

In this example, the domain is given as Q = (0, 1)?> and we test two different heterogeneous permeabilities with two line tracking
that can be considered as an injection (stream) in the geothermal energy power plant. Thus, J =0, L =2, and M =0, and 4} =

1

(0.25,0.25) — (0.25,1) and 4, = (0.75,0.25) — (0.75, 1). The target functions are plg =4.17 and pfg = 1.82, and the weights are W, =
wgg = 10°. The penalty parameters are chosen as § = 1 and ¢ = 10. In this example, we set the state constraints p. given by
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N W Ao

Y o

0
0 0.2 0.4 0.6 0.8 1
(@) pn (b) py, (from the top view)

00 0 02 04 06 08 1
©) M (d) ), (from the top view)

Fig. 8. Example 2. Case ii) Illustrates the optimal solutions for the state variable j, and computed control variable 7,. The right column figures present the top view
of each value with the tracking domain (lines ¢, and 6,).

0 0.2 0.4 0.6 0.8 1
(@) pn (b) py, (from the top view)

2500
12000
1500

1000

00 0 02 04 06 08 1
©) My (d) 7y, (from the top view)

Fig. 9. Example 2. Case iii) Illustrates the optimal solutions for the state variable j, and computed control variable 7,. The right column figures present the top view
of each value with the tracking domains (a point 22, and lines ¢, and €,).
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Fig. 10. Example 2. Case iii) Control values for each PDAS iteration k with h~7.

== N W s OO N

0 0.25 0.5 0.75 1

Fig. 11. Example 3. Case i) Illustrations of heterogeneous K(x, y) with the tracking lines.

pi(x,y)=2cosRr(x—0.1))+3 and p_(x,y)=—oo,

First, in Case i), we set the permeability as K(x, y) = K(x, y)I as shown in Fig. 11. Next, in Case ii), we set the permeability as (see
Fig. 12) K(x, y) = K(x, y)I where

if y<—-x+0.5

if —x+05<y<—-x+1
if —x+1<y<-x+15"
if —x+15<y

K(x,y)=

~N 0 W=

5.5.1. Convergence
First, to validate the optimal convergence rate of the proposed method, we compute errors as in previous Examples. The conver-
gence results are shown in Tables 7, 8, presenting the expected optimal convergence rates, which is 1 — ¢, € > 0.
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0.75

0.5

0.25

0 0.25 0.5 0.75 1

Fig. 12. Example 3. Case ii) Illustrations of heterogeneous K(x, y) with two tracking lines.

Table 7
Example 3. Convergence results for each different
cases.

Case i) Case ii)
h E, order E, order
273 3.92e-02 - 3.11e-02 -

274 2.18e-02 0.85 2.07e-02 0.59
273 1.27e-02 0.78 1.43e-02 0.53
276 9.20e-03 0.47 8.93e-03 0.68
277 5.34e-03 0.78 4.42e-03 1.01

Table 8
Example 3. Energy norm of the finest
result for each different cases.

1151l Case i) Case ii)

2-8 1.13e+03 1.19e+03

Table 9
Example 3. Case ii) Cost functional value at each PDAS iteration when h =279,

PDAS iteration 1 4 6 8 11 16 21 24 29

cost/(1.0e+06) 1.66 1.40 1.32 1.27 1.23 1.21 1.20 1.20 1.20

5.5.2. Discussions

Fig. 13 shows the optimal solutions for the state p,, and the control 7, for Case i). In Fig. 13 (a) and (b), it is clear that the state
Py, reached two different desired states on each line tracking. The control 7, from Fig. 13 (c) and (d), displays the optimal source
values required to achieve the desired state values on two line tracking. It has shown that to get the greater desired state value (the
desired state for 4] is greater than for %), the source should also be more powerful in the stream.

Fig. 14 depicts the optimal solutions for the state p,,, and the control 77, for Case ii). In Fig. 14 (a) and (b), it is demonstrated that
the state p, reaches the desired states on ¢, and %,. The control 7, from Fig. 14 (c) and (d), displays the optimal source function
values to attain the desired states. As shown in Fig. 13 (c) and 14 (c), the profile of the control 7, follows the behavior of the given
permeability K.

We have also computed the cost functional values at each PDAS iteration for Example 3, Case ii) with # =279 in Table 9. As the
iteration runs, the value of the cost functional converges to 1.20e+06 while the optimal solution satisfies the constraints.

Finally, in Fig. 15, we provide the active sets for Case i) and Case ii). These active sets are obtained at the last loop in the primal-
dual active set algorithm when the algorithm terminates. Since we have only an upper state constraint for both cases, it shows the
region in blue where the state reaches the upper pointwise constraint p_ . In other words, the optimal state approximation p; contacts
the pointwise constraint in blue nodes while the rest of the part of p,, is less than the constraint (blank part in the Fig. 15.)

6. Conclusion

In this work, we developed a computational framework for the optimal control problem for solving Darcy’s flow equation in a
heterogeneous porous media. Different layers for the permeability and various setups for the tracking domain (e.g. line, point, region)
were utilized to simulate realistic scenarios. Convergence analysis is derived and validated with several test cases, and numerical

examples are presented to illustrate the capabilities of the proposed method.
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Fig. 13. Example 3. Case i) Illustrates the optimal solutions for the state variable p;, and computed control variable 7. The right column figures present the top view

of each value.
1 4
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0.8
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0.6 25
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1
. 0.2
1 05
0 0

0 0.2 0.4 0.6 0.8 1

(a) pn (b) py, (from the top view)
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: 1000
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0 o . 0
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Fig. 14. Example 3. Case ii) Illustrates the optimal solutions for the state variable p, and computed control variable 7,. The right column figures present the top view
of each value.
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Fig. 15. Example 3. Illustrations of active sets for Case i) and Case ii). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)
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