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In this paper, we investigate optimal control problems in heterogeneous porous media. The 
optimal control problem is governed by the Darcy’s flow equation; where the pressure is the 
state variable and the source/sink is the control variable. Then we introduce the reduced optimal 
control problem which contains only the state variable by replacing the control variable with a 
dependent quantity of the state variable based on the Darcy’s equation. Here we employ 𝐶0 interior 
penalty finite element methods for the spatial discretization to solve the reduced optimal control 
problem resulting in a fourth-order variational inequality. We use ℙ2 Lagrange finite elements 
for 𝐶0 interior penalty methods, which require fewer degrees of freedom than 𝐶1 finite element 
methods. We provide a priori error estimates and stability analyses by considering a heterogeneous 
permeability coefficient. Several numerical examples validate the given theories and illustrate the 
capabilities of the proposed algorithm.

 Introduction

Subsurface flow systems play a pivotal role in various critical applications, including groundwater management, oil reservoir 
gineering, and environmental remediation. Accurate modeling and prediction of these systems are paramount for informed decision-
aking, but they are often challenged by uncertainties in material properties data such as permeabilities [1].
Uncertainties in permeabilities and material properties arise due to the complex, heterogeneous nature of subsurface forma-
ns [2]. Traditional forward modeling approaches, which rely on fixed parameter values, often fall short of capturing the inherent 
riability of these systems. Optimal control problems, on the other hand, provide a means to calibrate models using observed data 
d desired constraints, thereby improving the accuracy of predictions and understanding of the phenomena.
Optimal control [3–5] allows for the determination of not only the best estimate of parameter values but also the identification 

 control strategies to optimize system performance. Whether it involves managing groundwater resource [6], enhancing subsurface 
ergy system [7], or mitigating groundwater contamination [8], optimal control techniques help in achieving desired objectives 
hile considering the uncertainties in data.
This paper emphasizes the broader perspective of achieving optimal system behavior under conditions of uncertainty in hetero-
neous porous media by considering Darcy’s flow equation, −∇ ⋅ (𝐊∇𝑝) = 𝜂. Here we consider the pressure 𝑝 as a state variable, and 
e source/sink 𝜂 as a control variable with the heterogeneous permeability 𝐊. Thus, we aim to optimally control the source/sink 
rm without any prior information, to obtain the targeted pressure value.
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In this work, we introduce the reduced optimal control problem, which contains only the state variable, by replacing the control 
riable using Darcy’s equation. The advantage of reduced optimal control [9–12] includes the reduction in the number of variables 
at leads to the simplified optimization problem. Moreover, eliminating the control variable and replacing it with the state variable 
lps handle the pointwise state constraints [13,14]. However, this results in having the fourth order term in the cost functional, and 
nce we need to choose an appropriate numerical method to discretize the fourth order problem in order to get a good approximation 
 the solution of the continuous problem.
Various finite element methods have been employed to approximate a solution for fourth-order problems. As continuous problems 

ithin the domain Ω are formulated in the Sobolev space 𝐻2(Ω) [15–17], finite element spaces [18] in conforming methods must 
 subspaces of 𝐻2(Ω)—specifically, they are 𝐶1 finite element spaces. However, the drawback of these conforming methods lies 
 their complexity, as 𝐶1 continuity imposes numerous conditions on the vertices and edges/faces of an element. Meeting these 
nditions requires a substantial number of degrees of freedom. For instance, the use of Argyris triangular elements [19], which 
long to ℙ5 with 21 degrees of freedom, or Macro elements [20], which are 𝐶1 with piecewise cubic polynomials and 12 degrees 
 freedom, becomes necessary. The reduction of degrees of freedom is possible through the utilization of non-conforming finite 
ement methods, as only weak continuity conditions need to be satisfied for the finite element functions and their derivatives. Yet, 
nstructing effective nonconforming finite elements, particularly for more intricate fourth order problems, requires a considerable 
ount of ingenuity. On the other hand, one can explore mixed finite element methods by decomposing the biharmonic problem 
to two second order problems. Challenges in this approach arise in selecting a compatible pair to meet the inf-sup conditions and 
 solving the associated saddle point problem.
In this paper, we employ the 𝐶0 interior penalty finite element method (𝐶0IP-FEM) [21–23], which belongs to the class of 
scontinuous Galerkin methods [24], where the discontinuity involves the first order or higher order derivatives. The lowest order 
ements in this family are as straightforward as classical nonconforming finite elements. The advantages of 𝐶0 IP-FEM include that the 
ethod allows to capture the smoothness of solutions using higher order elements that are as efficient as higher order 𝐶1 elements, and 
nsiderably simpler. Unlike mixed methods, this approach can be readily extended to tackle more complex fourth order problems, 
ch as those encountered in strain gradient elasticity problems.
Thus, we focus on utilizing the 𝐶0IP-FEM for solving the optimal control problem [12,25,10,9,11] governed by Darcy’s flow 
uation in heterogeneous porous media. Unlike most existing work, which considers the state to be close to the desired state in 
e whole domain [26–28,10,11], we employ the general cost functional which tracks points [29–34], curves, and regions in the 
main [12] so that the state is close to the desired state in the specific parts of the domain with pointwise state constraints. We 
rive error estimates and convergence analyses by considering diffusive heterogeneity in the permeability coefficient. To illustrate 
e capabilities of our proposed algorithm, we provide several numerical examples testing various scenarios. For example, different 
tes including points, lines, and subdomains in the heterogeneous porous media are considered. Although the discrete problem is 
urth-order, by using 𝐶0 interior penalty methods with ℙ2 Lagrange finite element, the computational cost is considerably low. The 
screte problem is solved by the primal-dual active set algorithm [35,36].
This paper is organized as follows. In Section 2, the governing system is introduced, including the optimal control problem with 
rcy’s equation and pointwise state constraints. The well-posedness of the optimal control problem is considered in Section 3 as well 
 the regularity results for the optimal state and optimal control. In Section 4, we utilize the 𝐶0IP-FEM to the reduced optimal control 
oblem, and the modified bilinear form with the (non-constant) permeability coefficient is obtained. Moreover, convergence error 
alyses are provided. We demonstrate the numerical algorithm and exhibit various numerical examples in Section 5. The concluding 
marks are presented in Section 6.

 Governing system

Let Ω be a bounded convex domain in ℝ2, with the boundary 𝜕Ω. The optimal control problem that we focus on is to find

(𝑝̄, 𝜂̄) = argmin
(𝑝,𝜂)∈𝕌

1
2

⎡⎢⎢⎣∫Ω |𝑝− 𝑝𝑑 |2 𝑑𝜈 + 𝛽 ∫
Ω

|𝜂|2 𝑑𝐱⎤⎥⎥⎦ , (2.1)

here 𝕌 ⊂𝐻1
0 (Ω) ×𝐿2(Ω) and 𝛽 > 0, subject to the Darcy’s flow equation

−∇ ⋅ (𝐊∇𝑝) = 𝜂 inΩ, (2.2a)

𝑝 = 0 on 𝜕Ω, (2.2b)

d the pointwise state constraints

𝑝−(𝐱) ≤ 𝑝(𝐱) ≤ 𝑝+(𝐱) a.e. 𝐱 = (𝑥, 𝑦) ∈ Ω. (2.3)

Darcy’s flow equation (2.2) models the flow in porous media, characterized by the pressure scalar function 𝑝 ∶ Ω → ℝ, the 
urce/sink term 𝜂 which is often referred as the flow rate, and the permeability tensor 𝐊 ∈ ℝ2×2. Here we assume 𝐊 ∈ [𝐻2(Ω)]2×2. 
e permeability tensor is symmetric and uniformly positive definite. Positive constants 𝑘0 and 𝑘1 exist such that for any 𝐱 ∈Ω, the 
llowing inequalities hold for all 𝜉 ∈ℝ2:
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𝑘0𝜉
𝑇 𝜉 ≤ 𝜉𝑇𝐊(𝐱)𝜉 ≤ 𝑘1𝜉

𝑇 𝜉, ∀𝜉 ∈ℝ2.
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e pressure 𝑝 is considered to be the state variable, 𝜂 is the control variable, and 𝑝𝑑 is the desired state. Through the optimal control 
oblem (2.1), we aim 𝑝 to be very close to 𝑝𝑑 in the tracking points, lines, and subdomains of the domain Ω while 𝑝 and 𝜂 satisfy 
e Darcy’s equation (2.2).
In (2.1), we recall the definition of the Radon measure 𝜈 on Ω̄ in [12]:

∫
Ω

𝑓 𝑑𝜈 =
𝐽∑
𝑗=1

𝑓 (P𝑗 )𝑤
𝑗
P

+
𝐿∑
𝑙=1

∫
C𝑙

𝑓𝑤𝑙
C 𝑑𝑠+

𝑀∑
𝑚=1

∫
E𝑚

𝑓𝑤𝑚
E 𝑑𝐱, (2.4)

here P = {P1, … , P𝐽 } is a finite set of points in Ω, C = {C1, … , C𝐿} is the union of the curves where C𝑙 ⊂Ω, and E = {E1, … , E𝑀}
a union of the subdomains where each E𝑚 ⊂Ω. The weight functions 𝑤𝑗

P
, 𝑤𝑙

C
and 𝑤𝑚

E
are bounded nonnegative Borel measurable 

nctions defined on P , C and E , respectively. Then, the desired state 𝑝𝑑 is a target function of the pressure function 𝑝 which is 
ven as

𝑝𝑑 ∶=
⎧⎪⎨⎪⎩
𝑝P on P

𝑝C on C ⧵P

𝑝E on E ⧵ (C ∪P)
(2.5)

ch that

‖𝑝𝑑‖2𝐿2(Ω;𝜈)
∶= ∫

Ω

|𝑝𝑑 |2 𝑑𝜈 <∞.

We observe that the considered optimal control problem enables the generalization of the optimal control region. For instance, 
e points denoted as P and the curves represented by C are regarded as injection/production wells and fractures in the subsurface 
gineering problems, respectively.
Finally, we assume that the given functions 𝑝± in (2.3) satisfy [12]

𝑝± ∈𝑊 3,𝑞(Ω) for 𝑞 > 2, (2.6a)

𝑝− < 𝑝+ on Ω̄, (2.6b)

𝑝− < 0 < 𝑝+ on 𝜕Ω. (2.6c)

In this work, instead of seeking for both the state 𝑝 and the control 𝜂 simultaneously, we reformulate the optimal control problem 
.1) by utilizing the linear partial differential operator L , where

L 𝑝 ∶= −∇ ⋅ (𝐊∇𝑝), (2.7)

 that 𝜂 can be written as 𝜂 = L 𝑝 by (2.2a). Thus, the reduced optimal control problem is obtained as following: Find 𝑝̄ ∈ 𝑈 such 
at

𝑝̄ = argmin
𝑝∈𝑈

1
2

⎡⎢⎢⎣∫Ω |𝑝− 𝑝𝑑 |2 𝑑𝜈 + 𝛽 ∫
Ω

|L 𝑝|2 𝑑𝐱⎤⎥⎥⎦ , (2.8)

here the admissible set is

𝑈 = {𝑝 ∈𝐻2(Ω) ∩𝐻1
0 (Ω) ∶ L 𝑝 ∈𝐿2(Ω) and 𝑝− ≤ 𝑝 ≤ 𝑝+ in Ω}. (2.9)

te that according to (2.6b)-(2.6c), the admissible set 𝑈 is nonempty.

mark 2.1. Due to the convexity of Ω, the constraints (2.2) and 𝐊 ∈ [𝐻2(Ω)]2×2 imply that 𝑝 ∈ 𝐻2(Ω) if (𝑝, 𝜂) ∈ 𝕌 by elliptic 
gularity. Therefore the cost functional

∫
Ω

|𝑝− 𝑝𝑑 |2 𝑑𝜈 + 𝛽 ∫
Ω

|𝜂|2 𝑑𝐱
well-defined by the Sobolev embedding theorem 𝐻2(Ω) ⊂ 𝐶(Ω̄) [15].

 Well-posedness and regularity results

In this section, we briefly recapitulate the well-posedness and regularity for the given problem based on [12]. Note that the main 
fference compared to [12] is that we consider the coefficient 𝐊 in the elliptic partial differential equation constraint (2.2).
305

eorem 3.1. The reduced optimal control problem (2.8)-(2.9) has a unique solution.
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oof. First one can rewrite (2.8) as following:

𝑝̄ = argmin
𝑝∈𝑈

1
2

⎡⎢⎢⎣∫Ω |𝑝− 𝑝𝑑 |2 𝑑𝜈 + 𝛽 ∫
Ω

|L 𝑝|2 𝑑𝐱⎤⎥⎥⎦
= argmin

𝑝∈𝑈

1
2

⎡⎢⎢⎣∫Ω |𝑝|2 𝑑𝜈 + 𝛽 ∫
Ω

|L 𝑝|2 𝑑𝐱 − 2∫
Ω

𝑝𝑝𝑑 𝑑𝜈

⎤⎥⎥⎦ .
fine the bilinear form A (⋅, ⋅) as

A (𝑣,𝑤) ∶= ∫
Ω

𝑣𝑤𝑑𝜈 + 𝛽 ∫
Ω

(L 𝑣)(L𝑤)𝑑𝐱, (3.1)

d the linear functional 𝐹 (⋅) as

𝐹 (𝑣) ∶= ∫
Ω

𝑣𝑝𝑑 𝑑𝜈.

en the reduced minimization problem (2.8) is written as

𝑝̄ = argmin
𝑝∈𝑈

[1
2

A (𝑝, 𝑝) − 𝐹 (𝑝)
]
. (3.2)

By (2.4), the Cauchy-Schwarz inequality, and the Sobolev embedding theorem,

|A (𝑣,𝑤)| ≤ 𝐶
(‖𝑣‖𝐻2(Ω)∩𝐻1

0 (Ω)
‖𝑤‖𝐻2(Ω)∩𝐻1

0 (Ω)

)
,

d

|𝐹 (𝑣)| <∞,

r any 𝑣, 𝑤 ∈𝐻2(Ω) ∩𝐻1
0 (Ω). Moreover, according to (2.4) and the trace theorem,

A (𝑣, 𝑣) ≥ 𝐶‖𝑣‖2
𝐻2(Ω)∩𝐻1

0 (Ω)
,

r any 𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω). This tells us that the bilinear form A (⋅, ⋅) is continuous and coercive, and the linear functional 𝐹 (⋅)

bounded. Since 𝑈 is a nonempty, closed, and convex subset of 𝐻2(Ω) ∩ 𝐻1
0 (Ω), by the Riesz Representation theorem and the 

ojection theorem [16], the reduced optimal control problem (3.2) has a unique solution. □

Now we turn to the first order (necessary) optimality condition by using Theorem 3.1 which tells us that 𝑝̄ is the unique optimal 
lution to the minimization problem (2.8)-(2.9). This then leads us to the generalized Karush-Kuhn-Tucker (KKT) conditions. In 
der to deduce the conditions, we derive the variational inequality corresponding to the optimal control problem (2.8)-(2.9).

mma 3.1. The optimal control problem (2.8)-(2.9) has a unique solution 𝑝̄ ∈ 𝑈 characterized by the fourth order variational inequality 
7]

𝛽 ∫
Ω

(L 𝑝̄)(L (𝑝− 𝑝̄))𝑑𝐱 + ∫
Ω

(𝑝̄− 𝑝𝑑 )(𝑝− 𝑝̄)𝑑𝜈 ≥ 0 ∀𝑝 ∈𝑈. (3.3)

oof. Let 𝑝 ∈𝑈 be arbitrary. We define the function Θ ∶ [0, 1] →ℝ such that

Θ(𝑡) ∶= 𝐽
(
(1 − 𝑡)𝑝̄+ 𝑡𝑝

)
,

here

𝐽 (𝑝) ∶= 1
2

⎡⎢⎢⎣∫Ω |𝑝− 𝑝𝑑 |2 𝑑𝜈 + 𝛽 ∫
Ω

|L 𝑝|2 𝑑𝐱⎤⎥⎥⎦ .
nce 𝑝̄ ∈𝑈 is the solution to the optimization problem (2.8)-(2.9), it implies that 𝑝̄ ∈𝑈 is the minimizer of 𝐽 (𝑝), and thus

Θ(0) = 𝐽 (𝑝̄) ≤ 𝐽
(
(1 − 𝑡)𝑝̄+ 𝑡𝑝

)
=Θ(𝑡) for 0 ≤ 𝑡 ≤ 1.
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is leads us that Θ′(0) ≥ 0. Therefore,
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0 ≤Θ′(0) =
[
𝑑

𝑑𝑡
𝐽
(
(1 − 𝑡)𝑝̄+ 𝑡𝑝

)]
𝑡=0

= 𝛽 ∫
Ω

(L 𝑝̄)(L (𝑝− 𝑝̄))𝑑𝐱 + ∫
Ω

(𝑝̄− 𝑝𝑑 )(𝑝− 𝑝̄)𝑑𝜈,

r any 𝑝 ∈𝑈 , and hence the result follows. □

The fourth order variational inequality (3.3) is equivalent to the following generalized KKT conditions [38,39]:

𝛽 ∫
Ω

(L 𝑝̄)(L 𝑔)𝑑𝐱 + ∫
Ω

(𝑝̄− 𝑝𝑑 )𝑔 𝑑𝜈 = ∫
Ω

𝑔 𝑑𝜆 ∀𝑔 ∈𝐻2(Ω) ∩𝐻1
0 (Ω), (3.4)

here 𝜆 is a bounded regular Borel measure satisfying

𝜆 ≥ 0 if 𝑝̄ = 𝑝+, (3.5a)

𝜆 ≤ 0 if 𝑝̄ = 𝑝−, (3.5b)

𝜆 = 0 otherwise. (3.5c)

e [40] for the proof of the KKT conditions.
Finally, we can find the local and global regularity results for the optimal state of the optimal control problem (2.8)-(2.9). The 
lution 𝑝̄ belongs to [41,42,12]

𝑊 3,𝑠
loc

(Ω)

r any 𝑠 ∈ (1, 2). Furthermore, globally [43,44,12]

𝑝̄ ∈𝐻2+𝛼(Ω) (3.6)

r some 𝛼 ∈ (0, 1), where 𝛼 is the index of elliptic regularity determined by Ω. Note that for a rectangular domain [44,34], it is 
own that 𝛼 = 1 − 𝜀 where 𝜀 > 0.

 𝑪𝟎 interior penalty methods and error analysis

In this section, we introduce the 𝐶0IP-FEM for spatial discretization of the reduced optimal control problem and provide error 
nvergence analyses. One of the main advantages of 𝐶0IP-FEM for the fourth order variational problem (3.3) is its lower cost 
mpared to that of the conforming continuous Galerkin methods.

1. 𝐶0 interior penalty finite element methods

Let Tℎ = {𝑇 } be a shape-regular triangulation of the domain Ω into triangular elements with a mesh size ℎ = max𝑇 ℎ𝑇 , where ℎ𝑇
the diameter of 𝑇 ∈ Tℎ. Let ℙ𝑘(𝑇 ) be the space of all polynomials of degree at most 𝑘 ≥ 0 on a set 𝑇 , and the nodal interpolation 
erator for the ℙ1 finite element space associated with Tℎ is denoted by 𝐼ℎ.
In this paper, we employ the ℙ2 Lagrange triangular elements [21]. Thus, we define the finite element space as

𝑉ℎ ∶=
{
𝜓 ∈𝐻1

0 (Ω) ∣ 𝜓|𝑇 ∈ ℙ2(𝑇 ) ∀𝑇 ∈ Tℎ

}
.

The 𝐶0IP-FEM is a class of discontinuous Galerkin methods, where the discontinuity is in the normal derivative across element 
undaries. Since 𝑉ℎ is not a subspace of 𝐻2(Ω) (𝑉ℎ ⊆ 𝐶(Ω̄) but 𝑉ℎ ⊈ 𝐶1(Ω̄)), this is a 𝐻2-nonconforming method. The discontinuity 
 normal derivatives yields the jump and the average across edges in the discrete bilinear form. We note that this method relaxes 
e 𝐶1 continuity requirement by replacing it with interior penalty techniques.
To construct 𝐶0IP-FEM, we first define the piecewise Sobolev space

𝐻2(Tℎ) = {𝑣 ∈𝐿2(Ω) ∶ 𝑣𝑇 = 𝑣|𝑇 ∈𝐻2(𝑇 ) ∀𝑇 ∈ Tℎ}.

e denote by Eℎ the set of all edges in the mesh and by E 𝐼
ℎ
the set of all the interior edges. For each 𝑇 ∈ Tℎ, denote the boundary 

 𝑇 by 𝜕𝑇 . If 𝑒 ∈ E 𝐼
ℎ
, we assign to 𝑒 a fixed unit normal vector 𝐧𝑒 pointing from 𝑇− to 𝑇+. Let 𝑣 be any piecewise 𝐻2(Tℎ) function, 

en the jump value of the normal derivative of 𝑣 on 𝑒 ∈ E 𝐼
ℎ
(shared by the two neighboring elements 𝑇± ∈ Tℎ) is defined as

�
𝜕𝑣∕𝜕𝐧𝑒

�
∶= 𝜕𝑣+∕𝜕𝐧𝑒 − 𝜕𝑣−∕𝜕𝐧𝑒,

here 𝑣± = (𝑣|𝑇± )|𝑒. If 𝑒 ∈ 𝜕Ω, then 𝑒 belongs to only one triangle 𝑇 , and we define
� �
307

𝜕𝑣∕𝜕𝐧𝑒 ∶= −𝜕𝑣|𝑇 ∕𝜕𝐧𝑒,
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here we take 𝐧𝑒 to be the unit normal pointing outside Ω. Next, let 𝑣 be any piecewise 𝐻𝑠(Tℎ) function for 𝑠 > 5∕2, then average 
 the second order normal derivative of 𝑣 on 𝑒 ∈ E 𝐼

ℎ
is defined as{{

𝜕2𝑣∕𝜕𝐧2𝑒
}}

∶= 1
2
((
𝜕2𝑣+∕𝜕𝐧2𝑒

)
+
(
𝜕2𝑣−∕𝜕𝐧2𝑒

))
.

𝑒 ∈ 𝜕Ω, then{{
𝜕2𝑣∕𝜕𝐧2𝑒

}}
∶= 𝜕2𝑣|𝑇 ∕𝜕𝐧2𝑒 ,

here we take 𝐧𝑒 to be the unit normal pointing outside Ω. Furthermore, with the permeability coefficient 𝐊, we have
�
(𝐊∇𝑣) ⋅ 𝐧𝑒

�
∶= (𝐊+∇𝑣+) ⋅ 𝐧𝑒 − (𝐊−∇𝑣−) ⋅ 𝐧𝑒

d {{
∇((𝐊∇𝑣) ⋅ 𝐧𝑒) ⋅ 𝐧𝑒

}}
∶= 1

2
[
∇
(
(𝐊+∇𝑣+) ⋅ 𝐧𝑒

)
+∇

(
(𝐊−∇𝑣−) ⋅ 𝐧𝑒

)]
,

here 𝐊± = (𝐊|𝑇± )|𝑒.
To derive the discrete optimal control problem, we define the piecewise operator L𝑇 with respect to Tℎ as

L𝑇 𝑣ℎ = −∇ ⋅ (𝐊∇𝑣ℎ)
|||𝑇 , (4.1)

d we assume 𝐊 is piecewise constant, and thus ∇𝐊 = 0 piecewise accordingly. Then the discrete problem of (2.8) is to find

𝑝̄ℎ = argmin
𝑝ℎ∈𝑈ℎ

1
2

⎡⎢⎢⎣∫Ω |𝑝ℎ − 𝑝𝑑 |2 𝑑𝜈 + 𝛽𝑏ℎ(𝑝ℎ, 𝑝ℎ)
⎤⎥⎥⎦ , (4.2)

here

𝑈ℎ = {𝑝ℎ ∈ 𝑉ℎ ∶ 𝐼ℎ𝑝− ≤ 𝐼ℎ𝑝ℎ ≤ 𝐼ℎ𝑝+}. (4.3)

re, 𝑏ℎ(⋅, ⋅) is the discrete bilinear form obtained by using 𝐶0IP-FEM:

𝑏ℎ(𝑣ℎ,𝑤ℎ) =
∑

𝑇∈Tℎ
∫
𝑇

(L𝑇 𝑣ℎ)(L𝑇 𝑤ℎ)𝑑𝐱 (4.4)

+
∑
𝑒∈E 𝐼

ℎ

𝜎ℎ−1𝑒 ∫
𝑒

�
(𝐊∇𝑣ℎ) ⋅ 𝐧𝑒

��
(𝐊∇𝑤ℎ) ⋅ 𝐧𝑒

�
𝑑𝑠

+
∑
𝑒∈E 𝐼

ℎ

∫
𝑒

{{
∇((𝐊∇𝑣ℎ) ⋅ 𝐧𝑒) ⋅ 𝐧𝑒

}}�
(𝐊∇𝑤ℎ) ⋅ 𝐧𝑒

�
𝑑𝑠

+
∑
𝑒∈E 𝐼

ℎ

∫
𝑒

{{
∇((𝐊∇𝑤ℎ) ⋅ 𝐧𝑒) ⋅ 𝐧𝑒

}}�
(𝐊∇𝑣ℎ) ⋅ 𝐧𝑒

�
, 𝑑𝑠

here ℎ𝑒 is the diameter of the edge 𝑒, and 𝜎 > 0 is a penalty parameter.
Similar to the continuous problem, 𝑈ℎ is nonempty and hence the minimization problem (4.2) has a unique solution 𝑝̄ℎ ∈ 𝑈ℎ

aracterized by the discrete variational inequality

∫
Ω

(𝑝̄ℎ − 𝑝𝑑 )(𝑝ℎ − 𝑝̄ℎ)𝑑𝜈 + 𝛽𝑏ℎ(𝑝̄ℎ, 𝑝ℎ − 𝑝̄ℎ) ≥ 0 ∀𝑝ℎ ∈𝑈ℎ. (4.5)

en, we can rewrite (4.5) as follows:

Aℎ(𝑝̄ℎ, 𝑝ℎ − 𝑝̄ℎ) − ∫
Ω

𝑝𝑑 (𝑝ℎ − 𝑝̄ℎ)𝑑𝜈 ≥ 0 ∀𝑝ℎ ∈𝑈ℎ, (4.6)

here the bilinear form is

Aℎ(𝑣ℎ,𝑤ℎ) ∶= 𝛽𝑏ℎ(𝑣ℎ,𝑤ℎ) + ∫
Ω

𝑣ℎ𝑤ℎ 𝑑𝜈, (4.7)

hich approximates the bilinear form (3.1).
Moreover, through symmetrization interior penalty term{{

∇((𝐊∇𝑤ℎ) ⋅ 𝐧𝑒) ⋅ 𝐧𝑒
}}�

(𝐊∇𝑣ℎ) ⋅ 𝐧𝑒
�
𝑑𝑠,
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d the penalty stabilization term

𝜎ℎ−1𝑒 ∫
𝑒

�
(𝐊∇𝑣ℎ) ⋅ 𝐧𝑒

��
(𝐊∇𝑤ℎ) ⋅ 𝐧𝑒)

�
𝑑𝑠,

e can get the symmetric positive-definiteness (SPD) of the bilinear form 𝑏ℎ(⋅, ⋅) with sufficiently large penalty parameter 𝜎, and thus 
e discrete problem preserves the SPD property of the continuous problem.

2. Convergence analysis

Next, we will derive the error estimates based on the convergence analysis from [12]. We define the mesh-dependent 𝐻2-norm 
 follows:

|𝑣|2
𝐻2(Ω;Tℎ)

∶=
∑

𝑇∈Tℎ

|L𝑇 𝑣|2𝐿2(𝑇 )
+

∑
𝑒∈E 𝐼

ℎ

ℎ−1𝑒 ‖�
(𝐊∇𝑣) ⋅ 𝐧𝑒

�‖2
𝐿2(𝑒)

. (4.8)

us, there exist positive constants 𝐶1 and 𝐶2 such that [22,21]

|𝑏ℎ(𝑣ℎ,𝑤ℎ)| ≤ 𝐶1|𝑣ℎ|𝐻2(Ω;Tℎ)|𝑤ℎ|𝐻2(Ω;Tℎ) ∀𝑣ℎ,𝑤ℎ ∈ 𝑉ℎ, (4.9)

𝑏ℎ(𝑣ℎ, 𝑣ℎ) ≥ 𝐶2|𝑣ℎ|2𝐻2(Ω;Tℎ)
∀𝑣ℎ ∈ 𝑉ℎ, (4.10)

ovided the penalty parameter 𝜎 is sufficiently large.
We also define the mesh-dependent energy norm ‖ ⋅ ‖ℎ by

‖𝑣‖2
ℎ
∶= 𝛽|𝑣|2

𝐻2(Ω,Tℎ)
+ ‖𝑣‖2

𝐿2(Ω;𝜈)
. (4.11)

en, according to (4.7), (4.8)-(4.10), and (4.11), there are positive constants 𝐶1 and 𝐶2 such that

Aℎ(𝑣ℎ,𝑤ℎ) ≤ 𝐶1‖𝑣ℎ‖ℎ‖𝑤ℎ‖ℎ ∀𝑣ℎ,𝑤ℎ ∈ 𝑉ℎ, (4.12)

Aℎ(𝑣ℎ, 𝑣ℎ) ≥ 𝐶2‖𝑣ℎ‖2ℎ ∀𝑣ℎ ∈ 𝑉ℎ. (4.13)

Finally, we can derive the following theorem.

eorem 4.1. There is a constant 𝐶 > 0 independent of ℎ such that

‖𝑝̄− 𝑝̄ℎ‖ℎ ≤ 𝐶ℎ𝛼, (4.14)

ere 𝛼 ∈ (0, 1) is the index of elliptic regularity.

oof. The detailed proof can be found in [12].
The following error estimates for the Lagrange interpolation operator, Πℎ ∶𝐻2(Ω) ∩𝐻1

0 (Ω) → 𝑉ℎ, are based on the Bramble-Hilbert 
mma [45,46], and the local and global regularity estimates, can be found in [21,47]. We have, by (4.1),

‖𝑝̄−Πℎ𝑝̄‖𝐿2(Ω) ≤ 𝐶ℎ2+𝛼, (4.15)|𝑝̄−Πℎ𝑝̄|𝐻1(Ω) ≤ 𝐶ℎ1+𝛼, (4.16)‖𝑝̄−Πℎ𝑝̄‖𝐿∞(Ω) ≤ 𝐶ℎ1+𝛼, (4.17)( ∑
𝑇∈Tℎ

|L𝑇 (𝑝̄−Πℎ𝑝̄)|2𝐿2(𝑇 )

) 1
2

≤ 𝐶ℎ𝛼. (4.18)

 (4.16), (4.18), and the trace inequality with scaling, one can obtain

⎛⎜⎜⎝
∑
𝑒∈E 𝐼

ℎ

ℎ−1𝑒 ‖(𝐊∇(𝑝̄−Πℎ𝑝̄)) ⋅ 𝐧𝑒‖2𝐿2(𝑒)

⎞⎟⎟⎠
1∕2

≤ 𝐶ℎ𝛼. (4.19)

rthermore, it follows from (2.4), and (4.15)-(4.19) that

‖𝑝̄−Πℎ𝑝̄‖𝐿2(Ω;𝜈) ≤ 𝐶ℎ1+𝛼,

d thus
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‖𝑝̄−Πℎ𝑝̄‖ℎ ≤ 𝐶ℎ𝛼. (4.20)
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Combining with (4.13), (4.20) and (4.6), we obtain

‖𝑝̄− 𝑝̄ℎ‖2ℎ ≤ 2‖𝑝̄−Πℎ𝑝̄‖2ℎ + 2‖Πℎ𝑝̄− 𝑝̄ℎ‖2ℎ
≤ 𝐶

[
ℎ2𝛼 +Aℎ(Πℎ𝑝̄− 𝑝̄ℎ,Πℎ𝑝̄− 𝑝̄ℎ)

]
≤ 𝐶

(
ℎ2𝛼 + ℎ𝛼‖Πℎ𝑝̄− 𝑝̄ℎ‖ℎ)

≤ 𝐶
[
ℎ2𝛼 + ℎ𝛼(‖Πℎ𝑝̄− 𝑝̄‖ℎ + ‖𝑝̄− 𝑝̄ℎ‖ℎ)]

≤ 𝐶
(
ℎ2𝛼 + ℎ𝛼‖𝑝̄− 𝑝̄ℎ‖ℎ) ,

d hence the inequality of arithmetic and geometric means implies (4.14). □

 Numerical examples

In this section, we present a set of numerical examples validating the theoretical results presented in Section 4 and demonstrating 
e capabilities of the proposed algorithm in different scenarios. The computations are performed with in-house developed code based 
 Matlab [40].

1. Global algorithm

First, we briefly summarize the global algorithm to solve the given problem. The variational inequality (4.6) can be written in the 
gebraic form as follows:{

p𝑇 A(q− p) − f𝑇 (q− p) ≥ 0 ∀q ∈ℝ𝑁

𝐼ℎ𝑝− ≤ p ≤ 𝐼ℎ𝑝+,
(5.1)

here p ∈ℝ𝑁 is the solution vector, A ∈ℝ𝑁×𝑁 is the matrix obtained from (4.7) and (4.4), and f ∈ℝ𝑁 is the vector obtained from 
e second term of the left-hand side of (4.6). Here, 𝑁 is the total number of nodal points. As we introduce the dual unknown 𝜇 ∈ℝ𝑁 , 
e discrete problem (5.1) becomes the following system{

Ap− f+ 𝜇 = 0
𝜇 =max{0, 𝜇 +𝐶(p− 𝐼ℎ𝑝+)} +min{0, 𝜇 +𝐶(p− 𝐼ℎ𝑝−)},

(5.2)

here 𝐶 > 0. Then, the equivalent KKT conditions are obtained as follows:

⎧⎪⎪⎨⎪⎪⎩

Ap+ 𝜇 = f
𝐼ℎ𝑝− ≤ p ≤ 𝐼ℎ𝑝+
𝜇 ≥ 0 if p = 𝐼ℎ𝑝+
𝜇 ≤ 0 if p = 𝐼ℎ𝑝−
𝜇 = 0 if 𝐼ℎ𝑝− ≤ p ≤ 𝐼ℎ𝑝+.

mark 5.1. Suppose p and 𝜇 are the unique solution to (5.2). The primal dual active set algorithm [36] converges superlinearly 
ovided that the initial state p0 and the initial dual 𝜇0 are sufficiently close to p and 𝜇, respectively.

gorithm 1 Primal dual active set algorithm.
set initials: p0 , 𝜇0 .

find active sets: A 𝑘
− = {𝑖 ∈ [0, 𝑁] ∶ 𝜇𝑘(𝑖) +𝐶(p𝑘(𝑖) − 𝐼ℎ𝑝−(𝑖)) < 0},

A 𝑘
+ = {𝑖 ∈ [0, 𝑁] ∶ 𝜇𝑘(𝑖) +𝐶(p𝑘(𝑖) − 𝐼ℎ𝑝+(𝑖)) > 0};

inactive set: I 𝑘 = (A 𝑘
− ∪A 𝑘

+ )
𝑐

while 𝜇𝑘 ≠ 𝜇𝑘+1 do

solve

⎡⎢⎢⎣
A(∶,∶) I𝑇

(
∶,A 𝑘

−
)

I𝑇
(
∶,A 𝑘

+
)

I
(
A 𝑘

− ,∶
)

0
(
A 𝑘

− ,A
𝑘
−
)

0
(
A 𝑘

− ,A
𝑘
+
)

I
(
A 𝑘

+ ,∶
)

0
(
A 𝑘

+ ,A
𝑘
−
)

0
(
A 𝑘

+ ,A
𝑘
+
) ⎤⎥⎥⎦

⎡⎢⎢⎣
p𝑘+1

𝜇𝑘+1 (A 𝑘
−
)

𝜇𝑘+1 (A 𝑘
+
) ⎤⎥⎥⎦ =

⎡⎢⎢⎣
f

𝐼ℎ𝑝−
(
A 𝑘

−
)

𝐼ℎ𝑝+
(
A 𝑘

+
) ⎤⎥⎥⎦

update A 𝑘+1
− = {𝑖 ∈ [0, 𝑁] ∶ 𝜇𝑘(𝑖) +𝐶(p𝑘+1(𝑖) − 𝐼ℎ𝑝−(𝑖)) < 0},

A 𝑘+1
+ = {𝑖 ∈ [0, 𝑁] ∶ 𝜇𝑘(𝑖) +𝐶(p𝑘+1(𝑖) − 𝐼ℎ𝑝+(𝑖)) > 0};

I 𝑘+1 = (A 𝑘+1
− ∪A 𝑘+1

+ )𝑐
end while
310
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Fig. 1. Example 1. Four different cases.

2. Primal dual active set

The discrete problem (5.2) is a quadratic program with simple box constraints, and here we employ the primal dual active set 
DAS) algorithm [48,36] to solve the problem. The main idea of the PDAS is to solve the system while the active sets

A 𝑘
− = {𝑖 ∈ [0,𝑁] ∶ 𝜇𝑘(𝑖) +𝐶(p𝑘(𝑖) − 𝐼ℎ𝑝−(𝑖)) < 0},

A 𝑘
+ = {𝑖 ∈ [0,𝑁] ∶ 𝜇𝑘(𝑖) +𝐶(p𝑘(𝑖) − 𝐼ℎ𝑝+(𝑖)) > 0},

e updated by finding the nodal indices where the state does not satisfy the constraints

𝐼ℎ𝑝−(𝑖) ≤ p𝑘(𝑖) ≤ 𝐼ℎ𝑝+(𝑖).

re, 𝑘 is the iteration number, and 𝑖 is the index of nodal points. See Algorithm 1 for more details. This algorithm terminates when 
e previous active sets are the same as the updated ones; equivalently, when the dual unknown 𝜇 remains the same. A simple direct 
lver is used to solve the linear system in the algorithm.
We note that the Lagrange multiplier 𝜆 in (3.5) associated with the pointwise state constraints (2.3) is a Borel measure. As a result, 
AS algorithm for the state-constrained problem exhibits mesh-dependent behavior and has no function space analysis as discussed 

 [49–51]. To overcome these shortcomings, mixed state-control constraints technique [51–53] or Moreau-Yosida regularization 
4–57] techniques were developed. However, it is not trivial to utilize these approaches in our given problem.
In our case, we consider the reduced optimal control problem, which is obtained by replacing the control 𝜂 with 𝜂 = L 𝑝 =
 ⋅ (𝐊∇𝑝) according to the partial differential equation constraint (2.2a). This resulted in the 𝐶0 interior penalty methods with only 
te variable, and it requires at least a quadratic Lagrange finite element. Thus, the mixed state-control constraints (or Lavrentiev-
pe regularization) approach, which reformulated the state variable 𝑝 to the control variable 𝜂, is not applicable to our approach. On 
e other hand, considering the Moreau-Yosida regularization (or augmented Lagrangian-type penalization) approach is challenging 
e to our use of the partial differential equation to replace the control variable in the cost functional. Since this work focuses on the 
alyses and the application of 𝐶0IP-FEM methods, considering mesh-independence PDAS algorithm for our reduced problem is out 
 the scope of this work but will be studied further. However, we have still illustrated the iteration numbers in the PDAS algorithm 
 one of our numerical examples.

3. Example 1. Heterogeneous domain with layers

In this section, we test four different cases in the computational domain Ω = (0, 1)2. We consider the permeability tensor 𝐊 =𝐾𝐈, 
here 𝐾 is a piecewise constant, and 𝐈 is the 2 × 2 identity matrix, in all the numerical experiments for the simplicity.
First two cases consider homogeneous 𝐊 values;

Case i) 𝐊 = 5𝐈 in Ω, and
Case ii) 𝐊 = 𝐈 in Ω.
en, we consider heterogeneous domains by setting two different layers such as
Case iii) 𝐊 = 𝐈 in Ω1 and 𝐊 = 10𝐈 in Ω2, and
Case iv) 𝐊 = 3𝐈 in Ω1 and 𝐊 = 𝐈 in Ω2.
re, Ω =Ω1 ∪Ω2, where Ω1 = {(𝑥, 𝑦) | 𝑦 ≤ 0.5} and Ω2 = {(𝑥, 𝑦) | 𝑦 > 0.5}.
For these cases, the desired state is given in a tracking subdomain region (i.e., 𝑀 = 1 while 𝐽 = 0 and 𝐿 = 0). We recall that 
is the number of tracking points, 𝐿 is the number of tracking line segments, and 𝑀 is the number of tracking subdomains; see 
.4). Here we set E1 = [0.375, 0.125] × [0.625, 0.25]. Details are shown in Fig. 1. The weight is set to be 𝑤1

E
= 106, and the penalty 

rameter is chosen to be 𝛽 = 1 and 𝜎 = 10. The state constraints 𝑝± are given by

𝑝+(𝑥, 𝑦) = 5 − ((𝑥− 0.5)2 + (𝑦− 0.5)2) and 𝑝−(𝑥, 𝑦) = −∞,
311

d 𝑝𝑑 = 𝑝E = 4.84.
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Table 1

Example 1. Convergence results for each different cases.
Case i) Case ii) Case iii) Case iv)

ℎ 𝐸ℎ order 𝐸ℎ order 𝐸ℎ order 𝐸ℎ order

2−3 1.88e-02 - 2.63e-02 - 2.79e-02 - 2.80e-02 -

2−4 8.07e-03 1.22 1.19e-02 0.98 1.26e-02 1.15 1.14e-02 1.40

2−5 1.93e-03 2.06 4.59e-03 0.95 5.21e-03 1.27 5.23e-03 1.12

2−6 6.44e-04 1.59 1.44e-03 1.31 2.00e-03 1.38 3.34e-03 0.65

2−7 1.34e-04 2.27 4.16e-04 1.82 8.64e-04 1.21 1.70e-03 0.97

Table 2

Example 1. Energy norm of the finest result 𝑝̃ when ℎ = 2−8 for each 
different cases.
‖𝑝̃‖ℎ Case i) Case ii) Case iii) Case iv)

2−8 7.30e+02 8.46e+02 8.40e+02 7.85e+02

Table 3

Example 1. The number of iterations in the PDAS algorithm 
for each case.
ℎ 2−3 2−4 2−5 2−6 2−7 2−8

Case i) 1 1 3 6 12 24

Case ii) 1 2 3 5 16 32

Case iii) 1 2 3 5 7 20

Case iv) 4 9 16 31 62 130

3.1. Convergence
First, to verify the optimal convergence rate of the proposed method as proven in Theorem 4.1, we measure errors on five uniform 
eshes, starting with the initial mesh of ℎ = 2−3 halving them in each refinement cycle. The errors are measured in the relative 
rm 𝐸ℎ ∶= ‖𝑝̃− 𝑝̄ℎ‖ℎ∕‖𝑝̃‖ℎ, where 𝑝̃ is the numerical solution obtained with the finest grid ℎ = 2−8. The convergence results are 
mmarized in Table 1, illustrating the expected optimal convergence rates. Moreover, Table 2 presents the magnitude of ‖𝑝̃‖ℎ.
3.2. Discussions
We emphasize the importance of considering heterogeneous media to explore realistic subsurface scenarios. In Fig. 2, we compare 
fferences in the state variable 𝑝̄ℎ among four different cases, Case i) - iv). The left column depicts the values of 𝑝̄ℎ, while the right 
lumn showcases the 𝑝̄ℎ values from a top-view perspective within the control domain E1. Although Case i) and Case ii) have similar 
sults, the comparison between the homogeneous Case ii) (Fig. 2 c) - d)) and heterogeneous Case iii) (Fig. 2 e) - f)) reveals variations 
 the pressure values 𝑝̄ℎ due to the presence of a heterogeneous layer. Specifically, we observe that the Case ii) has more diffusive and 
gher pressure values on the upper domain compare to the Case iii). Furthermore, Case iv) illustrates significant different pressure 
lues compared to that of Case iii) as the permeability 𝐊 has opposite aspects in Case iii) and Case iv). Therefore, targeting on the 
essure value 𝑝E within the region E1 leads to distinct optimal control solution values depending on the permeability.
Next, Fig. 3 illustrates the pressure values 𝑝̄ℎ plotted over the line 𝑥 = 0.5 in the domain Ω for each case. On the other hand, Fig. 4
ustrates the pressure values 𝑝̄ℎ plotted over the line 𝑦 = 0.25. These figures provide clear differences in the optimal pressure values, 
 discussed in the above paragraph. We note that the target pressure value 𝑝𝑑 = 𝑝E = 4.84 is almost matched.
Fig. 5 illustrates the differences in the control variable 𝜂̄ℎ across the four distinct cases, Case i) - iv). These 𝜂̄ℎ values define the 
nfiguration of the source function (either injection or production) in the Darcy’s flow equation to attain the targeted pressure value 
within the specified subdomain E1.
Note that Table 3 shows the number of iterations in the PDAS algorithm. It is observed that the number of iterations increases as 
e mesh size decreases, and hence it exhibits that the PDAS is mesh-dependent for the state-constrained optimal control problem.

4. Example 2. Various tracking states

In this example, the domain setup is the same as in Example 1, Case iii). However, we test various tracking states, including lines 
at can be considered fractures, a point that can be regarded as an injection/production source, and combinations of these elements. 
g. 6 illustrates the details for each case.
Thus, 𝐽 = 1, 𝐿 = 0, and 𝑀 = 0 for Case i) with P1 = (0.5, 0.25). For Case ii), we set 𝐽 = 0, 𝐿 = 2, and 𝑀 = 0, where C1 =

.25, 0.125) − (0.75, 0.125) and C2 = (0.25, 0) − (0.625, 0.375). We mix different tracking states in the Case iii), such as 𝐽 = 1, 𝐿 = 2, 
312

d 𝑀 = 0, where P1 = (0.125, 0.125), and C1 = (0.375, 0.25) − (0.75, 0.25) and C2 = (0.375, 0.125) − (0.625, 0.375).
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Fig. 2. Example 1. Illustrates the state variable 𝑝̄ℎ for each different cases. The right figure shows the tracking domain.

In addition, the weight functions and target functions are set as 𝑤1
P

= 105 and 𝑝𝑑 = 𝑝P = 4.93 for the Case i), 𝑤1
C

=𝑤2
C

= 105

d 𝑝𝑑 = 𝑝C = 4.68 for the Case ii), and 𝑤1
P

=𝑤1
C

=𝑤2
C

= 105 and 𝑝P = 4.73 𝑝C = 4.84 for the Case iii).

4.1. Convergence
First, to confirm the optimal convergence rate of the proposed method, as demonstrated in Example 1, we calculate errors on 
e uniform meshes, starting with the initial mesh of ℎ = 2−3 halving them in each refinement cycle. The errors are computed in the 
lative norm as in Example 1. The convergence results are presented in Tables 4, 5, showing the expected optimal convergence rates 
313

 Theorem 4.1.
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Fig. 3. Example 1. Optimal state 𝑝̄ℎ values over the line 𝑥 = 0.5 for each case. We note that 𝑝𝑑 = 𝑝E = 4.84.

Fig. 4. Example 1. Optimal state 𝑝̄ℎ values over the line 𝑦 = 0.25 for each case. We note that 𝑝𝑑 = 𝑝E = 4.84.

Table 4

Example 2. Convergence results for each different cases.
Case i) Case ii) Case iii)

ℎ 𝐸ℎ order 𝐸ℎ order 𝐸ℎ order

2−3 1.17e-02 - 7.04e-02 - 2.52e-02 -

2−4 6.40e-03 0.87 4.60e-02 0.61 2.45e-02 0.04

2−5 3.31e-03 0.95 2.67e-02 0.78 1.57e-02 0.64

2−6 1.63e-03 1.02 1.20e-02 1.15 7.70e-03 1.03

2−7 6.33e-04 1.36 4.04e-03 1.57 2.91e-03 1.40

Table 5

Example 2. Energy norm of the finest result for each different cases.
‖𝑝̃‖ℎ Case i) Case ii) Case iii)

2−8 1.56e+03 1.47e+03 2.10e+03

4.2. Discussions
Fig. 7 illustrates the optimal solutions for the state variable 𝑝̄ℎ , and the control variable 𝜂̄ℎ computed from the 𝑝̄ℎ for Case i). In 
g. 7 (a) and (b), it is evident that the point tracking on P1 is active, and we observe that the pressure value reached the desired 
te pressure values 𝑝𝑑 = 𝑝P for the point. The control variable 𝜂̄ℎ from Fig. 7 (c) shows the optimal source function values to obtain 
e desired state values.
Case ii) results are shown in Fig. 8. In this case, two lines (C1 and C2) are given as the targeted region, which could be considered 

 fractures in porous media. In Fig. 8 (a)-(b), we observe that the state pressure profile along the fracture lines are reaching the 𝑝C

lue. Next, Fig. 8 (c)-(d) present the control values 𝜂̄ℎ computed from 𝑝̄ℎ. The 𝜂̄ℎ corresponds to the optimally controlled source 
nction value required to attain the targeted pressure values. Notably, 𝜂̄ℎ values are slightly higher at the end of the lines (or near 
e fracture tips).
Case iii) presented in Fig. 9 demonstrates the capabilities of our algorithm to combine multiple states. We observe that the pressure 
314

lues 𝑝̄ℎ are reaching values 𝑝𝑑 . Specifically, 𝑝P for the point and 𝑝C for the line. The value of 𝜂̄ℎ in Fig. 9 (c) - (d) represents the 
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. 5. Example 1. Illustrates the control variable 𝜂̄ℎ for each different case. We observe discontinuous values on the left column figures due to the choice of our 𝐶0

erior penalty finite element space. The figures on the right column show the top view including the tracking domain.

timal control variable 𝜂̄ℎ needed to achieve the target pressure values in Fig. 9 (a) - (b). Clearly, our algorithm can seek optimal 
te values with multiple tracking, as demonstrated in Fig. 9. To achieve the desired targeted pressure on both the point and the 
cture, as shown in Fig. 9 (c), we observe that having a larger 𝜂̄ℎ value at the point is crucial, given that the area is much smaller 
mpared to the lines.
We have also calculated the cost functional values at each PDAS iteration for Case iii) with ℎ = 2−5 in Table 6. The cost functional 
lue is computed by the following formula

𝐽 ∶= 1
2

⎡⎢⎢⎣∫Ω |𝑝ℎ − 𝑝𝑑 |2 𝑑𝜈 + 𝛽𝑏ℎ(𝑝ℎ, 𝑝ℎ)
⎤⎥⎥⎦ . (5.3)

s the iteration runs, the value of the cost functional, 𝐽 , converges to 4.07e+06 while the optimal solution satisfies the given 
315

nstraints.
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Fig. 6. Example 2. Three different cases.

. 7. Example 2. Case i) Illustrates the optimal solutions for the state variable 𝑝̄ℎ and computed control variable 𝜂̄ℎ . The right column figures present the top view 
each value with the tracking domain (a point P1).

Table 6

Example 2. Case iii) Cost functional value at each PDAS iteration when ℎ = 2−5 .

PDAS iteration 1 2 3 4 5 6 7 8 9

𝐽∕(1.0e+06) 4.10 4.08 4.07 4.07 4.07 4.07 4.07 4.07 4.07

Finally, Fig. 10 shows the evolution of the control 𝜂̄ℎ as the PDAS iteration runs. The last figure in Fig. 10, control evolution when 
AS iteration 28, presents the converged 𝜂̄ℎ.

5. Example 3. General heterogeneity

In this example, the domain is given as Ω = (0, 1)2 and we test two different heterogeneous permeabilities with two line tracking 
at can be considered as an injection (stream) in the geothermal energy power plant. Thus, 𝐽 = 0, 𝐿 = 2, and 𝑀 = 0, and C1 =
.25, 0.25) − (0.25, 1) and C2 = (0.75, 0.25) − (0.75, 1). The target functions are 𝑝1

C
= 4.17 and 𝑝2

C
= 1.82, and the weights are 𝑤1

C
=

316

2
C

= 105. The penalty parameters are chosen as 𝛽 = 1 and 𝜎 = 10. In this example, we set the state constraints 𝑝± given by
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. 8. Example 2. Case ii) Illustrates the optimal solutions for the state variable 𝑝̄ℎ and computed control variable 𝜂̄ℎ . The right column figures present the top view 
each value with the tracking domain (lines C1 and C2).

. 9. Example 2. Case iii) Illustrates the optimal solutions for the state variable 𝑝̄ℎ and computed control variable 𝜂̄ℎ . The right column figures present the top view 
317

each value with the tracking domains (a point P1 , and lines C1, and C2).
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Fig. 10. Example 2. Case iii) Control values for each PDAS iteration 𝑘 with ℎ−7 .

Fig. 11. Example 3. Case i) Illustrations of heterogeneous 𝐊(𝑥, 𝑦) with the tracking lines.

𝑝+(𝑥, 𝑦) = 2cos(2𝜋(𝑥− 0.1)) + 3 and 𝑝−(𝑥, 𝑦) = −∞,

First, in Case i), we set the permeability as 𝐊(𝑥, 𝑦) =𝐾(𝑥, 𝑦)𝐈 as shown in Fig. 11. Next, in Case ii), we set the permeability as (see 
g. 12) 𝐊(𝑥, 𝑦) =𝐾(𝑥, 𝑦)𝐈 where

𝐾(𝑥, 𝑦) =
⎧⎪⎨⎪⎩
1 if 𝑦 < −𝑥+ 0.5
3 if −𝑥+ 0.5 ≤ 𝑦 < −𝑥+ 1
5 if −𝑥+ 1 ≤ 𝑦 < −𝑥+ 1.5
7 if −𝑥+ 1.5 ≤ 𝑦

.

5.1. Convergence
First, to validate the optimal convergence rate of the proposed method, we compute errors as in previous Examples. The conver-
318

nce results are shown in Tables 7, 8, presenting the expected optimal convergence rates, which is 1 − 𝜀, 𝜀 > 0.
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Fig. 12. Example 3. Case ii) Illustrations of heterogeneous 𝐊(𝑥, 𝑦) with two tracking lines.

Table 7

Example 3. Convergence results for each different 
cases.

Case i) Case ii)

ℎ 𝐸ℎ order 𝐸ℎ order

2−3 3.92e-02 - 3.11e-02 -

2−4 2.18e-02 0.85 2.07e-02 0.59

2−5 1.27e-02 0.78 1.43e-02 0.53

2−6 9.20e-03 0.47 8.93e-03 0.68

2−7 5.34e-03 0.78 4.42e-03 1.01

Table 8

Example 3. Energy norm of the finest 
result for each different cases.
‖𝑝̃‖ℎ Case i) Case ii)

2−8 1.13e+03 1.19e+03

Table 9

Example 3. Case ii) Cost functional value at each PDAS iteration when ℎ = 2−6 .

PDAS iteration 1 4 6 8 11 16 21 24 29

cost∕(1.0e+06) 1.66 1.40 1.32 1.27 1.23 1.21 1.20 1.20 1.20

5.2. Discussions
Fig. 13 shows the optimal solutions for the state 𝑝̄ℎ , and the control 𝜂̄ℎ for Case i). In Fig. 13 (a) and (b), it is clear that the state 
reached two different desired states on each line tracking. The control 𝜂̄ℎ from Fig. 13 (c) and (d), displays the optimal source 
lues required to achieve the desired state values on two line tracking. It has shown that to get the greater desired state value (the 
sired state for C1 is greater than for C2), the source should also be more powerful in the stream.
Fig. 14 depicts the optimal solutions for the state 𝑝̄ℎ , and the control 𝜂̄ℎ for Case ii). In Fig. 14 (a) and (b), it is demonstrated that 
e state 𝑝̄ℎ reaches the desired states on C1 and C2. The control 𝜂̄ℎ from Fig. 14 (c) and (d), displays the optimal source function 
lues to attain the desired states. As shown in Fig. 13 (c) and 14 (c), the profile of the control 𝜂̄ℎ follows the behavior of the given 
rmeability 𝐊.
We have also computed the cost functional values at each PDAS iteration for Example 3, Case ii) with ℎ = 2−6 in Table 9. As the 
ration runs, the value of the cost functional converges to 1.20e+06 while the optimal solution satisfies the constraints.
Finally, in Fig. 15, we provide the active sets for Case i) and Case ii). These active sets are obtained at the last loop in the primal-
al active set algorithm when the algorithm terminates. Since we have only an upper state constraint for both cases, it shows the 
gion in blue where the state reaches the upper pointwise constraint 𝑝+. In other words, the optimal state approximation 𝑝̄ℎ contacts 
e pointwise constraint in blue nodes while the rest of the part of 𝑝̄ℎ is less than the constraint (blank part in the Fig. 15.)

 Conclusion

In this work, we developed a computational framework for the optimal control problem for solving Darcy’s flow equation in a 
terogeneous porous media. Different layers for the permeability and various setups for the tracking domain (e.g. line, point, region) 
ere utilized to simulate realistic scenarios. Convergence analysis is derived and validated with several test cases, and numerical 
319

amples are presented to illustrate the capabilities of the proposed method.
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. 13. Example 3. Case i) Illustrates the optimal solutions for the state variable 𝑝̄ℎ and computed control variable 𝜂̄ℎ . The right column figures present the top view 
each value.

. 14. Example 3. Case ii) Illustrates the optimal solutions for the state variable 𝑝̄ℎ and computed control variable 𝜂̄ℎ . The right column figures present the top view 
320

each value.
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. 15. Example 3. Illustrations of active sets for Case i) and Case ii). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
icle.)
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