2024 1EEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) | 979-8-3503-9318-7/24/$31.00 ©2024 IEEE | DOI: 10.1109/SPAWC60668.2024.10694252

2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

SHARE: A Distributed Learning Framework For
Multivariate Time-Series Forecasting

Wei Ye!f, Prashant Khandurit, Jiangweizhi Peng!, Feng Tianf,
Jun Gao*, Jie Dingf, Zhi-Li Zhang!, Mingyi Hong'
tUniversity of Minnesota Twin Cities; ¥Wayne State University; *Meta Platforms, Inc.
ye000094 @umn.edu, khanduri.prashant@wayne.edu, peng0504 @umn.edu, tianx399 @umn.edu,
jungao@meta.com, dingj@umn.edu, zhzhang @cs.umn.edu, mhong@umn.edu

Abstract—In this work, we propose a distributed time series
forecasting framework for scenarios where multiple computing
nodes collaboratively make predictions using only locally available
data streams. Our proposed framework utilizes a hierarchical
architecture, consisting of multiple /ocal models and a global
model, and provides an efficient training algorithm to achieve high
prediction accuracy. Key features of the framework are: (i) Simple
collaboration, where a carefully designed global model enables the
system to leverage the correlations among different local streams;
(ii) Flexibility, where each node can choose its local model from
a wide variety of prediction models (e.g., RNNs or Transformers)
suitable to its compute resources; (iii) Privacy and communication
efficiency, where messages communicated between the nodes
are low-dimensional embeddings. The proposed approach’s
effectiveness is demonstrated theoretically and numerically using
a number of time series forecasting tasks, with the (surprising)
observation that the proposed distributed models can match or
even outperform centralized ones.

Index terms— Time series forecasting, Vertical Learning,

Distributed Optimization

I. INTRODUCTION

Time series forecasting finds applications in many scientific
fields, including healthcare [1], finance [2], meteorology [3],
and traffic engineering [4], etc. Traditionally, regression-based
approaches have been popular for time series forecasting [5],
[6]. However, the recent success of deep learning architectures
has shown to outperform simple regression methods [7]-[12].
These recent developments along with large-scale and dis-
tributed collection of data demand the development of efficient
distributed time series prediction algorithms. However, there
is a lack of distributed forecasting modules at scale, especially
for the class of problems where each node observes only a
subset of the entire collection of data streams. In this work,
we consider a time series forecasting problem, where multiple
distributed nodes collaborate using their local data streams, to
make both local (e.g., predict street-level traffic volume) and
global predictions (e.g., predict city-level traffic volume).

This research is in part supported by Meta Platforms, Inc. Additionally,
Hong’s work is partially supported by the USDA National Institute of Food and
Agriculture (NIFA) and the National Science Foundation (NSF) National Al
Research Institutes Competitive Award under the number 2023-67021-39829,
and by NSF EPCN-2311007 and CNS-2003033. Zhang’s work is partially
supported by the NSF CNS-2212318, 2220286, and 2220292. Ding’s work
is partially supported by the Army Research Office under the Early Career
Program Award with the grant number W911NF-23-10315.

Only a handful of works have addressed the problem, and
the proposed learning algorithms are simple extensions of
centralized ones [13], [14]. The existing distributed time
series forecasting algorithms are unsuitable for meeting data
privacy and model flexibility requirements. Key challenges in
developing a distributed time series forecasting system are:
e Each node observes only a subset (i.e., partial dimensions)
of the time series, making learning challenging since the key
to accurate predictions is to utilize correlation among different
local data streams [8]-[10].
e In applications such as healthcare [1], data collected at each
node (e.g., hospital) may contain sensitive information, so
it cannot be directly shared among the collaborating nodes.
Therefore, it is highly desirable that a distributed learning
algorithm can avoid raw data sharing.
e Finally, the existing time series forecasting models lack
theoretically grounded foundations even in centralized settings.
A major obstacle in the analysis of distributed time series
forecasting models arises from the fact that the training does
not follow the standard independent and identically distributed
(i.i.d.) gradient assumptions, thereby leading to biased updates.
In this work, we develop a new framework, diStributed
HierARchical dEcomposition (SHARE) that addresses the
above-mentioned challenges while providing theoretical conver-
gence guarantees. Key to the SHARE is a unique hierarchical
architecture, where a number of local models are built to
process locally observed data streams, while a global model
is designed to fuse the embeddings of the local models.
Specifically, SHARE has the following major benefits:
Flexibility: It endows the local computing nodes the flexibility
of picking their own model architectures so that each local node
can choose from a variety of time series models (e.g., RNN,
CNN), depending on their computing resources as well as the
complexity of the local task. Effective information sharing: A
global model is designed to help fuse the information generated
from the local models, so as to best leverage the correlations
among the data streams. Theoretical guarantees: We model
the sampling of the time series as a Markov chain and show that
the proposed algorithms, when used to train the hierarchical
time series forecasting model, converge to the set of stationary
solutions of the corresponding training problem.
Finally, we note that the applicability of SHARE is much
beyond time series prediction tasks and can be, in fact, used

76

Authorized licensed use limited to: University of Minnesota. Downloaded on June 03,2025 at 17:08:22 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

to solve general distributed learning problems. Specifically,
SHARE subsumes a number of popular modern distributed
learning systems wherein the feature space of a single
data sample is distributed among the distributed nodes, the
so-called vertical federated learning [15]. Note that SHARE is
substantially different from the standard distributed learning,
or the so-called horizontal federated learning, where each node
observes data samples that share the same feature space.

A. Preliminaries

We consider a distributed learning problem with K nodes.
Each node k € [K] observes a time series x! € R% where
n € N indicates the time index. We represent the global time
series (observed across all the nodes) as x"* € RY, where
d = ZkK:l dp and x" := [(x})T,...,(x%)"]T. Denote a
sequence of multidimensional time series samples as:

x"+2 .,xn+D] eR™P forneN €))

5 P

}—(n o [Xn+1

where D > 0 is time window. Note that each node only
observes a partial time series; we define the next 7 samples as:

yro= X" xR e R form e N, 2)

where 7 is the time horizon of the prediction. The global
task is to use X" to predict a function of y”, denoted as
g(+) : R™™ — Re, which transforms a vector of data points
at a given time to a summary statistics. For example, when
predicting the total traffic across all agents, we have:

K dg

TERES D95 B auen VR fixzwm]

k=11i=1 k=11i=1

Note here that we have utilized the notation (x™,y") ~ II for
n € N to denote the feature label pairs and where II denotes

the underlying distribution that generates the time series data.

Observe that two samples X™ and x¢ for n # ¢ may not be
i.i.d. since consecutive training samples are generated using a
sliding window. This contrasts the traditional training regimes
that assume access to i.i.d. samples for training.

Next, let us move to the distributed setting, where each node
has access to only a subset of the dimensions of the global
time series xj € R% . In this case, following (1) — (2) we
define the tuple (X}, ¥7) as:

SN n+1 n+D dp. XD
Xy = [xp ', xp] € R
—n ,_ n+D+1 n+D+T1 dp XT
Yk = [xk y o X] € R (3)

for n € N. Moreover, the local task at each node k € [K] is
to forecast the local time series up to the time horizon of 7
utilizing a time window D. Since ¥;’s are the local forecasting
targets, throughout the paper, we will refer to them as labels
available at node k.

II. THE PROPOSED FRAMEWORK

In this section, we begin by describing the hierarchical model
adopted by the proposed SHARE framework, as well as its
associated training problem.

Local models. Each node k € [K] maintains a local model
(like a neural network, e.g., LSTM or RNN) parameterized by

0 € © C RPx that helps with the local prediction task. The
input to the local models is the locally observed data streams
while their output is referred to as the local embedding and
is denoted for all k € [K] by fi(6k; X)) for all n € N, where
X} is defined in (3). We note that these embeddings are often
low-dimensional and usually have dimensions much smaller
than dj, x 7 for each k € [K]. For brevity of notation, in the
following we denote fi(6x;X}) as fi(6k).

Global model. In addition to the local models, the server
maintains a global model parameterized by 6, € Oy C R,
whose goal is to capture the correlations among different
time series in order to improve the prediction accuracy. The
input to the global model is the local embeddings while its
output (referred to as the global embedding) is denoted by
fo(6o; f1,- .. fx). This global embedding will have the same
dimension as the label to be predicted, e.g., for time series
forecasting, the dimension of the global embedding will be
d x T since it is designed to predict the d dimensional global
time series for time horizon 7 (see (1) and (2)).

Problem. The goal of the forecasting problem is to learn
the optimal local parameters at each node while jointly
optimizing the global parameters. Defining § € © with 6 ==
04,07 ,...,05]7, © = UK ©; CR” and P = 3K P,
The goal of the forecasting algorithm is to learn the parameters
6 € © jointly in a distributed fashion such that a given loss
function £ : R — R is minimized as

ggg {ﬁ(a) = Exg)~ulL(fo(fo; f1(01),..., fr(0K)); (X, 5’))]}7
4

A popular choice of L(+) for time series forecasting problems is
the /5 and ¢; loss [10]. In particular, we assume the following.

Assumption 1. We assume that the loss function £(6) satisfies
L£(+(%,5)) = X5 £ 3 (%,90)).

We note that /5 and /7 losses popular for time-series forecasting
satisfy Assumption 1. Problem (4) is in general non-convex
since £(+) is non-convex in the parameters § € © for many
problems of practical interest, e.g., when the local and global
models are neural networks [16]. Next, we develop an efficient
algorithm to solve problem (4).

A. Algorithm Development

Note that the overall goal is to develop a joint optimization
and communication strategy such that the global loss as defined
in (4) is minimized. Specifically, each node aims to learn a
local model 6y, while at the same time learning a global model
0o that is shared among all nodes. To begin with, let us first
compute the stochastic gradients with respect to the local and
global models. First, let us sample (X,y) ~ II and evaluate
the stochastic gradients (SG) as

Local SG: Vg, L(0; (X,¥)) = Vo, L(00,01,...,0k; (X,¥))
= Vo, fu(0k) Vi, fo(bo, f1(01), ..., [x(0K))
Vi L(fo(f1(61), -, fx(0K);00);¥), &)

which follows from the application of the chain rule. Similar
to Local SG, we can evaluate the Global SG as

77

Authorized licensed use limited to: University of Minnesota. Downloaded on June 03,2025 at 17:08:22 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Global SG: Vi, L(0; (X,¥)) = Vo, L(00,01,...,0k;(X,¥))
= Voo fo(f1(01),..., fr(0K);00)

To implement an efficient algorithm, one would sample (X,y)
during training and implement (vertical) SG-type algorithm
using the SG estimates (5) and (6). However, a major challenge
in developing such an algorithm requires the sharing of raw
data among nodes since the computation of Local SG and
Global SG depends on the time series collected from all the
nodes, i.e., (X,y), as can be seen from (5)-(6). In the following,
we develop an efficient training algorithm that solves the above
problem without any raw data sharing.

The detailed steps to solve (4) are listed in Algorithm 1. We
note that after the initial sharing of the local embeddings across
nodes (Step 5), the local nodes compute the partial gradient
VL(-;¥}) using their locally observed data in Step 6. These
local partial gradients are then shared among nodes to construct
the full partial gradient V.L(-; ¥") using Assumption 1 in Step 7.
In Step 8, the rest of the partial gradients are evaluated using
the shared local embeddings to construct the Local SG and
Global SG in (5) and (6), respectively. Finally, the global and
local models are updated simultaneously using the computed
stochastic gradients in Steps 9 and 10, respectively.

We note that the SHARE framework provides flexibility to
choose the global model as well as the local models. The
local models extract the local time series information, while
the global models learn the correlations between the different
locally observed time series. Next, we provide the convergence
performance of the proposed framework.

B. Convergence Guarantees

Next, we provide the convergence guarantee achieved by
Algorithm 1 under the assumption that the training samples
(x™,y™) for n € N utilized for solving (4) are non i.i.d. (see
(1) and (2)). To model the non-i.i.d samples, we make the
following assumption about the data-generating process.

Assumption 2. Data-generating process {X",y" },,>o follows
a Markov chain trajectory with M states. The Markov chain

Algorithm 1 The SHARE Framework

1: Input: Rounds » = {0, 1, ..., R — 1}, local learning rates:
{nr}E |, server learning rate: 1
Initialize: Parameters, {6], 69, ..., 6%}
for r=0to R—1do
Sample (X}, y7) ~ II (see (3)) Vk € [K]
Share f3(0}) Vk € [K] with all nodes via the server
Compute VLy, (fo(05; f1,., [K);¥,) at each node
and share with all nodes via the server
7. Compute VL (4¥") = >, VLs (fo;¥}) at each
node using Assumption 1
8: Compute Vg, fx(60}), Vi, fo(05, fi,..., frx), and
Voo fo(f1,--., fx;0}) at each node (see (5) and (6)).
9: Global Update 05" =05—niVe, L(O7; (X", 5"))
10: Local Update 0; "' =07 — iV, L(07; (X", ¥"))
11: end for

AR AN

is time-homogeneous, irreducible, and aperiodic and has a
transition matrix 7' € RM*M with stationary distribution IT*.

Note that Assumption 2 assumes that the samples are generated
from a finite state space. This assumption can easily be relaxed
with an additional set of assumptions when the data samples
{X™,¥" }n>0 are generated from a Markov series rather than
a Markov chain [17]. Next, we make some assumptions about
the loss function L£(; (X,y)).

Assumption 3. Local SG and Global SG derived in (5) and (6)
are bounded, i.e., |Vy,L(0; (X,¥))]| < G fori € {0,1,.., K}.
Also, the loss function is L-Lipschitz smooth.

Assumption 3 is a standard assumption in first-order algorithm
analyses and has also been made in earlier works [17]. Next,
we state the convergence performance of SHARE.

Theorem 1. If we choose the step-sizes n) = c;/r? with
qg € (1/2,1) and ¢; > 0 for i € {0,1,--- ,K}, then
SHARE achieves: E[min; <,<r{||VeL(67)]2}] :o(ﬁ).

Note that the above result allows each node to tune its learning
rate independently, which is particularly useful since each node
can train a different ML model. It also matches the guarantees
of a centralized Markov Chain Gradient Descent for K = 1
[17]. The distributed Markov chain gradient descent under
different settings has been considered in the past. Specifically,
[18], [19] assume that each node has access to a complete
data sample; however, in the SHARE framework, each node
only observes a partial time series. Additionally, in [18], [19],
each node learns the same model and has the same local step
sizes across the network. In contrast, in SHARE framework,
each node can flexibly choose the local model. Consequently,
each node can perform local learning utilizing different step
sizes. Also, the SHARE framework allows each node to
maintain a global model to learn the correlations among
different time series. These key distinctions make the analysis
of SHARE significantly challenging compared to prior works.

III. NUMERICAL EXPERIMENTS

We now evaluate the proposed distributed multivariant
time-series framework on three real-world datasets with widely
used neural network architectures to showcase its advantages
in achieving competitive performance with centralized models
while offering flexibility in local model selection.

A. Experiment setup

Datasets: We evaluate the proposed SHAREframework on
three real-world datasets, each containing data streams with
specific physical meaning and inherent semantic correlations.
[D1] Wiki data (WIKI) [20] extracts hourly user requests of four
particular Wiki pages, and each is represented as a time series.
[D2] Traffic data (TRAC) [21] reports hourly road occupancy
rates of San Francisco Bay area freeways. The dataset contains
2-year-length records of 861 sensors. [D3] Electricity data
(ELEC) [22] contains hourly electricity consumption of 321
customers from 2012 to 2014.

78

Authorized licensed use limited to: University of Minnesota. Downloaded on June 03,2025 at 17:08:22 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

TABLE I: Comparison between the performance of SHARE with other baselines for mid- and long-term forecasting. The experiments are
conducted in both centralized (LSTM, TCN, and LSTNet) and distributed settings (SHARE(LSTM), SHARE(TCN), SHARE(LSTNet)),
using MLP as the global model. These models use D=36 hours historical window to predict 7={24, 36, 48, 72, 168} hours future horizons.
Performance is assessed using RMSE and DTW, where smaller values denote superior performance. The scaling factor for the values is
%1072, The best-performing model for each dataset is highlighted in bold.

Models Prophet LSTM SHARE(LSTM) TCN SHARE(TCN) LSTNet SHARE(LSTNet)
Metrics | RMSE DTW | RMSE DTW RMSE DTW | RMSE DTW RMSE DTW | RMSE DTW RMSE DTW
24h 1212 4658 | 1.209 4510 1209 4.495 1319 4914 1218 4618 | 1.245 4719 1.273 4.738
) 36h 1522 10.18 | 1.330 5.983 1.359 6.004 1389 6.277 1341 6.112 | 1418 6456 1.375 6.170
= 48h 1.596 1575 | 1415 7.178 1429 7.260 1.660 8.407 1.504 7.588 | 1.468 7.567 1.415 7.176
= 72h 1.819 2525 | 1.617 9.748 1.557 9.579 1.664 10.12 1.575 9.654 | 1.612 10.11 1.620 9.691
168h | 2.124 4470 | 1.724 15.67 1.726 15.67 1.808 16.60 1.747 16.01 | 1.723 16.04 1.721 15.56
24h | 8401 4355 | 6374 2443 6.555 24.89 6.618 2511 6.796 2621 | 6.741 2594 6.696 25.56
O 36h | 8145 6101 | 6.616 30.39 6.828 30.88 6972 3139 6932 3168 | 6980 3191 6918 31.43
E 48h | 8803 87.13 | 6.862 36.05 6990 35.97 7.026 36.16 7.104 36.87 | 7.357 3825 7.131 36.83
M 72n | 8871 1139 | 7.048 4436 7.365 45.36 7.584 46.17 7448 46.82 | 7.614 48.04 7.407 45.35
168h | 9.207 1764 | 7.549 68.84 8.113 72.32 7530 67.78 7.835 71.16 | 7.782 7195 7.864 70.84
24h | 6384 19.33 | 5288 2040 5.250 20.34 6.272 23.86 5382 21.08 | 5368 21.00 5.159 20.08
O 36h | 6670 4235 | 5568 2594 5.739 26.32 6.042 2821 5.695 2671 | 5528 26.12 5.419 25.38
§ 48h | 6.891 67.66 | 5869 31.63 6.003 31.61 6.634 3493 5976 3193 | 5742 3122 5819 31.21
B 72h | 6984 9584 | 6514 4243 6770 43.18 8.623 5356 6341 4179 | 6103 4053 6.265 41.07
168h | 7.160 1440 | 7.098 71.12 6915 68.08 7816 79.16 6905 7037 | 6.807 69.11 6.768 67.82

0.016

Pred

0.0014

0.014
0.0012

o |
i /‘.f U\J‘[ﬂ, \ ﬂwrﬂ.\ Nﬂ

v
aooe{ |} V

00003 | | [M || ‘\‘
I ‘1‘“‘ J'Av 00008 | JVAJ \Vﬁ! \ \](\ \ w”f\'/ \/VM \JV\J \ MS Y \J“I ‘*\.\\ “ \‘“:’,“ \"\ J \“\u/‘ W,/

Pred Pred

50 100 125 150 175 o 25 50

(a) WIKI

(b) ELEC.

100 125 150 15 o 25 50 100 125 150 175

(¢) TRAC.

Fig. 1: Forecasting results for SHARE (LSTNet) for mid-term (168 hours) forecasting using the 36-hour window.

Baselines: We consider three widely used neural network
architectures: LSTM [7], TCN [11], and LSTNet [10]. We
implement them in two ways: (1) as a centralized model and
(2) as local models within the SHARE framework. When
incorporating them as local models, we use notation like
SHARE(LSTNet) to indicate that local nodes employ the LST-
Net architecture. Additionally, we also consider Prophet [23],
a popular statistics-based time-series forecasting method.

Training schema: The learning-based approach adopts the
moving window schema defined in Sec I-A; for each time
sequence sample, we predict the future 7 timestamps based on
the historical D timestamps. In contrast, the Prophet uses the
cross-validation schema [24], where we continuously update the
training set by incorporating past data samples as time moves
forward and keep re-fitting the Prophet model for prediction.

Implementation: For all experiments, we use the following
setups unless specified otherwise. We first split the datasets into
the training, validation, and test sets with the ratio of 0.4 : 0.1 :
0.5 and apply the min-max scaler for the data normalization.
The TCN and LSTNet adhere to default implementations [10],
[11], while other modules are configured with 2 hidden layers
and 64 hidden units. For the proposed distributed learning
framework SHARE, we emulate 4 local nodes with MLP as
the global model. We distribute all data streams to these nodes
based on the physical similarity of the data source. For instance,
data streams collected at the same or similar geo-location are
grouped into one local node. Note that each node contains at

least one stream, and the number of streams in each local node
may vary. We utilize the Adam optimizer [25] with a batch
size of 128 and learning rates of 0.03 for both local and global
model training. Lastly, each experiment is run three times with
sufficient epochs, and the average performance is reported.
Metrics: We evaluate the performance using two metrics: Root
Mean Square Error (RMSE) and Dynamic Time Warping
distance (DTW). RMSE calculates the distance between
predictions and ground truth in Euclidean space, while DTW
further considers trends. For both metrics, the lower the values,
the better the prediction performance.

B. Multivariate time series forecasting

Following the above setup, we evaluate the effectiveness
of SHARE by comparing its performance to Prophet and
other centralized models. Table I summarizes the numerical
experiment results, and Fig. 1 visualizes representative results.
SHARE vs. Prophet: The reported results show that
SHARE outperforms the Prophet, despite the Prophet benefiting
from more samples through continuous expansion of the
training set. This could be attributed to the following two
reasons: (1) SHARE has stronger learning capabilities than the
statistical-based method due to the use of neural networks; (2)
The Prophet models each data stream independently, which
prevents the local client from leveraging the information from
other data streams. In contrast, SHARE is able to utilize the
correlation among all the streams.

79

Authorized licensed use limited to: University of Minnesota. Downloaded on June 03,2025 at 17:08:22 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

TABLE 1II: The performance of SHARE with mixed local models.
We use D = 36 hours historical window to predict future horizons
of 7 = {24, 36,72} hours, evaluated using the RMSE metric. The
value scaling factor is x 1072,

Dataset WIKI ELEC TRAC
SHARE | 24h | 36h | 72h | 24h | 36h | 72h | 24h | 36h | 72h
(mix) 1.32 1 140 | 1.63 | 691 | 7.14 | 7.26 | 540 | 5.82 | 6.31
TABLE III: The performance of SHARE(TCN) on the WIKI dataset

with different global and local learning rates. We use D = 36 hours
historical window to predict future horizons of 7 = 24 hours, evaluated
using the RMSE metric. The value scaling factor is x 107 2.

n Lo.001 | Lo.oos | Lo.o1 | Loos | Loa

Go.oo1 | 1.218 | 1.188 | 1.193 | 1.195 | 1.228

Gooos | 1.239 | 1.216 | 1.193 | 1.212 | 1.190

Go.o1 1.226 | 1.249 | 1.256 | 1.324 | 1.215

Goos | 1.386 | 1.333 | 1.264 | 1.269 | 1.270

Goa 2.516 | 1.686 | 1.679 | 2.232 | 1.893
SHARE vs. Centralized models: We also compare

SHARE with the centralized baselines, which have access to
all input data streams. As shown in Table I, SHARE delivers
competitive performance compared to the centralized baselines
even without local access to all data streams. Interestingly,
in certain cases, SHARE even outperforms the centralized
baselines. This may be attributed to its enhanced modeling
capabilities, stemming from the composition of multiple local
models and its effective learning of correlations among them.
Flexibility of local model selection: As noted earlier,
SHARE is not only compatible with different local models
but also allows individual nodes to choose it independently.
Table I reports the performance of SHARE using one of three
different types of neural network models in all local nodes.
We see that LSTNet is superior on the traffic dataset, while
LSTM is better on the electricity dataset. We conjecture that
this is due to the higher correlation among the traffic data
streams, leading to better performance when utilizing LSTNet.
It’s important to emphasize that the number of data streams
allocated to each node is heterogeneous, implying that local
models at each node will differ, although they may share
a similar architecture. Moreover, we also tried a mixed local
models configuration, labeled as DIVIDE(mix), where one-third
of the local nodes utilize the LSTM model, another third
use TCN, and the remaining nodes employ LSTNet. Table II
presents results evaluated via the RMSE. We observe that
even with the mixed local model, SHARE can still converge,
highlighting the flexibility of DIVIDE in local model selection.
Asynchronous learning rate: Table III evaluates the perfor-
mance of SHARE(TCN) on the WIKI dataset with different
learning rates for the local model and global model. Here, 7
in Gy, represents the learning rate of the global model, while
Mk in Ly, denotes the local learning rate of the clients. The
result implies our framework’s adaptability to different global
and local learning rates, confirming its robust performance with
a small learning rate.

REFERENCES

[1] Ons Aouedi, Alessio Sacco, Kandaraj Piamrat, and Guido Marchetto,
“Handling privacy-sensitive medical data with federated learning: Chal-

80

[2

[3

[4

[5

[6
[7

[8

[9

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20
121
[22
23
[24

[25

= =

=

=

]
]
]

—

1

1

]

1

]

1

1

1

1
1

]
]

]

lenges and future directions,” IEEE Journal of Biomedical and Health
Informatics, pp. 1-14, 2022.

Bilberto Batres-Estrada, “Deep learning for multivariate financial time
series,” 2015.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin
Wong, and Wang-chun Woo, “Convolutional Istm network: A machine
learning approach for precipitation nowcasting,” Advances in neural
information processing systems, vol. 28, 2015.

Dong Wang, Wei Cao, Jian Li, and Jieping Ye, “Deepsd: Supply-demand
prediction for online car-hailing services using deep neural networks,” in
2017 IEEE 33rd international conference on data engineering (ICDE).
IEEE, 2017, pp. 243-254.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung, Time series analysis: forecasting and control, John Wiley &
Sons, 2015.

Roger Frigola, Bayesian time series learning with Gaussian processes,
Ph.D. thesis, University of Cambridge, 2015.

Sepp Hochreiter and Jiirgen Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735-1780, nov 1997.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang,
and Chengqi Zhang, “Connecting the dots: Multivariate time series
forecasting with graph neural networks,” in Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2020, pp. 753-763.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi, “Gman:
A graph multi-attention network for traffic prediction,” in Proceedings
of the AAAI conference on artificial intelligence, 2020, vol. 34, pp.
1234-1241.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu,
“Modeling long-and short-term temporal patterns with deep neural
networks,” in The 41st international ACM SIGIR conference on research
& development in information retrieval, 2018, pp. 95-104.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun, “An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling,”
arXiv preprint arXiv:1803.01271, 2018.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li,
Hui Xiong, and Wancai Zhang, “Informer: Beyond efficient transformer
for long sequence time-series forecasting,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2021, vol. 35, pp. 11106-11115.
Maneesha Perera, Julian De Hoog, Kasun Bandara, and Saman Hal-
gamuge, “Multi-resolution, multi-horizon distributed solar pv power
forecasting with forecast combinations,” Expert Systems with Applica-
tions, vol. 205, pp. 117690, 2022.

Xiaoqgian Wang, Yanfei Kang, Rob J Hyndman, and Feng Li, “Distributed
arima models for ultra-long time series,” International Journal of
Forecasting, 2022.

Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai
Chen, and Thilina Ranbaduge, “Vertical federated learning: Challenges,
methodologies and experiments,” arXiv preprint arXiv:2202.04309, 2022.
Prateek Jain, Purushottam Kar, et al., “Non-convex optimization for
machine learning,” Foundations and Trends® in Machine Learning, vol.
10, no. 3-4, pp. 142-363, 2017.

Tao Sun, Yuejiao Sun, and Wotao Yin, “On markov chain gradient
descent,” Advances in neural information processing systems, vol. 31,
2018.

Tao Sun and Dongsheng Li, “Decentralized markov chain gradient
descent,” arXiv preprint arXiv:1909.10238, 2019.

Hoi-To Wai, “On the convergence of consensus algorithms with
markovian noise and gradient bias,” in 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE, 2020, pp. 4897-4902.

“Page view statistics for wikimedia projects,” https://dumps.wikimedia.
org/other/pagecounts-raw/, Accessed: 2022-08-23.

“California department of transportation,” https://pems.dot.ca.gov/, Ac-
cessed: 2022-09-21.

“Electricityloaddiagrams20112014 data set,” https://archive.ics.uci.edu/
ml/datasets/ElectricityLoadDiagrams20112014, Accessed: 2022-09-21.
Sean J Taylor and Benjamin Letham, “Forecasting at scale,” The
American Statistician, vol. 72, no. 1, pp. 3745, 2018.

“Prophet diagnostics,” https://facebook.github.io/prophet/docs/diagnostics.
html, Accessed: 2024-04-11.

Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

Authorized licensed use limited to: University of Minnesota. Downloaded on June 03,2025 at 17:08:22 UTC from IEEE Xplore. Restrictions apply.

