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Abstract—Teleoperation, such as remote driving, is considered
as a key use case of 5G and Next-Generation (NextG) networks.
In this context, robots, autonomous vehicles, or other autonomous
agents transmit sensor data over mobile networks to edge
or cloud servers, where AI systems collaborate with human
operators to provide situational awareness and enable remote
control. In the case of teleoperated driving, vehicles are equipped
with an array of cameras and LiDAR devices, which can generate
100s Mbps (megabits per second) of data. As shown in existing
measurement studies, such data volumes far exceed the uplink
capacity of currently deployed 5G networks, especially when
multiple vehicles compete for radio resources. Data compression
is thus imperative. In this paper, we explore the impact of sensor
data compression on the performance of downstream AI tasks
running in edge/cloud servers, which are crucial to alert human
operators for safe teleoperation. Using object recognition and se-
mantic segmentation as two example AI tasks, we study how data
compression affects the performance of these two AI tasks using
unimodal (video or LiDAR) and multi-modal (video+LiDAR)
data. We find that lossy data compression generally decreases
the performance of AI tasks. The performances of these AI tasks
exhibit differing degrees of sensitivity based on the types of data
sources and levels of compression. We also empirically identify
an optimal trade-off point for the multi-modal vision tasks.

Index Terms—5G Networks, Data Compression, AI, Edge
Computing, Teleoperation of Autonomous Vehicles

I. INTRODUCTION

Teleoperation of robots, drones, and vehicles is considered
as a key use case for 5G and next-generation (NextG) wire-
less networks, and have a wide range of applications [1]–
[3]. For example, today’s autonomous vehicles can at best
achieve Level-4 autonomy [4], which means that they can
drive autonomously only under certain operational design
domain (ODD). When encountering complex scenarios outside
the ODD, human intervention is required. This is where
teleoepration comes into play: a human operator working in a
remote teleoperation center near the edge/cloud facility can
take over the control of a vehicle encountering a scenario
(e.g., a work zone) outside its ODD and remotely navigate the
vehicle through such a scenario. In order to safely operate the
vehicle remotely, delivering critical sensor data such as camera
and LiDR data over 5G/NextG networks in a timely manner
is critical to provide situational awareness. Downstream AI
tasks such as object detection and segmentation running on
edge/cloud servers to generate alerts and early warnings are
also needed in assisting human operators in teleoperation.

Today’s autonomous vehicles are often equipped with a
multitude of sensors such as radars, cameras, and LiDAR

(a) Camera image data.

(b) LiDAR point clouds.

Fig. 1: Visualization results of 3D object detection on image
and point cloud data. Compared to raw data (left column), AI
detects fewer objects in the compressed data (right column).

devices. For instance, each Baidu Apollo vehicle [5] has 13
cameras, 5 millimeter-wave radars, and 2 LiDAR sensors,
while a Waymo vehicle [6] features a total of 29 cameras,
6 radars, and 4 LiDAR sensors. The high-precision sensors on
a single vehicle can generate data volumes of 100s of Mbits of
data (see Sec II-A for more details). Due to limited viewpoints
from a single vehicle, sensor data from nearby vehicles or from
fixed camera/LiDAR sensors from the road infrastructure (e.g.,
at a busy intersection) will also need to be delivered and fused
for safe teleoperation in complex environments. All these pose
significant bandwidth and latency burdens on the underlying
mobile networks.

While 5G networks provide significantly higher bandwidth
over 4G networks, the improvements largely manifest in the
downlink performance [7]–[9]. In other words, there is a
notable asymmetry in uplink and downlink: uplink throughput
is significantly lower than downlink throughput and quite far
from meeting the bandwidth requirements (of ”raw” sensor
data) from a single vehicle (see Sec II-B), not to mention
the bandwidth requirements for delivering sensor data from
multiple vehicles. Therefore, compressing sensor data such as
video and LiDAR before transmission is imperative in reduc-
ing the uplink bandwidth requirements. However, compressing
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the sensor data too aggressively may lead to the distortion
of important information in the sensor data, thereby affecting
the visual perception of human operators or the efficacy of
the downstream AI tasks in object detection, recognition, and
tracking. This may potentially lead the human teleoperator
to make erroneous decisions, therefore posing safety risks.
Understanding the trade-off in bandwidth reduction by com-
pressing sensor data for delivery over mobile networks and its
impact on the efficacy of downstream AI tasks is therefore an
important question that has not gained adequate attention in
the research community.

This paper is devoted to exploring this important question.
Using teleoperated driving as a key use case, our goal is two-
fold: we i) not only aim to quantify how data compression
affects the performance of downstream AI tasks by considering
two AI tasks, object detection and semantic segmentation –
both of which are crucial to teleoperation, using unimodal
(camera or LiDAR) and multimodal (camera and LiDAR)
sensor data; ii) but also attempt to empirical identify the
optimal trade-off points in data compression and downstream
AI performance for these AI tasks and uni/multimodal data
types. To this end, we utilize RGB images collected from
the onboard cameras and LiDAR point clouds, compressing
each at different ratios. We employ the state-of-the-art vision
model, BEVFusion, as a benchmark, which can perceive the
surrounding environment using either single-modal (i.e., using
only one type of sensor data) or multi-modal (i.e., using both
sensor data) inputs. We evaluate two key downstream tasks:
object detection and semantic segmentation. Sec III provides
more details about our methodology.

Our experimental results in Sec IV reveal that lossy data
compression generally decreases downstream AI performance,
exhibiting a non-linear and non-uniform relationship between
the level of compression and algorithmic effectiveness. LiDAR
and camera information excel in different vision tasks: LiDAR
outperforms in object detection, while cameras surpass in seg-
mentation, with each detecting certain objects more effectively.
Furthermore, we identify the optimal compression trade-off
for multi-modal vision tasks that utilize both the LiDAR and
camera information.

II. BACKGROUND & RELATED WORKS

In this section, we introduce performance metrics used
to characterize 5G network performance. We also include a
review of related work on related AI tasks performed at a
teleoperation station. In addition, we write about compression
techniques used for video and Lidar data and their impact on
the performance of downstream AI tasks.

A. Requirement for sensory data transmission

Recent work documents the throughput requirements of
transmitting Lidar and video data over a network. [7] The pa-
per reports a requirement of 45.6 Megabits per second (Mbps)
for a 64-beam Lidar and 2.73 Mbps for a single camera.
Various sources, including the nuScenes dataset (detailed in
Section III-B) report the use of the collection of sensors for
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Fig. 3: CDF of Uplink Throughput in 5G Networks with
different carriers in the US.

a teleoperated vehicle. [10] Based on our calculation from
information available via nuScenes, a 32-beam Lidar feed
will require a throughput of 44.48 Mbps. As a result, for
a single vehicle, the throughput requirements can be several
hundreds of Mbps. We make use of this information along with
our throughput measurements over cellular to assess whether
cellular uplink is capable of supporting uncompressed data
transmission for teleoperated vehicles.

B. 5G Uplink Performance as a Bottleneck

We conducted and made use of real-world 5G downlink and
uplink throughput measurements to evaluate the need for data
compression. Figure 2 shows a summary of the uplink and
downlink performance of commercial 5G networks deployed
by different operators. Uplink throughput refers to the rate
at which data is transmitted from the user’s device to a
remote server on the internet (in downlink, the direction is
reversed). We observe a large asymmetry, ranging from 8×
to 15× in the uplink and downlink throughput, which occurs
because cellular networks are optimized for downlink-heavy
smartphone use. This discrepancy is a result of the use of
throughput boosting techniques such as Multiple-In-Multiple-
Out (MIMO) and Carrier Aggregation (CA) in downlink, while
they are absent in uplink and the allocation of fewer slots
(time) for uplink compared to downlink. [7]

Additionally, Figure 3 shows that uplink throughput stays
under 40 Mbps for 90%, under 20 Mbps for 80%, and under 10
Mbps for almost 70% of our measurements. This behavior is
consistent across carriers. This information, coupled with the
throughput requirements discussed in II-A make the basis of
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our argument that cellular networks cannot support the upload
of uncompressed LiDAR and camera data.

C. Impact of Compression Techniques

The impact of data compression techniques on downstream
AI performance has been studied in [11]–[15]. However, these
studies are limited in scope and diversity, focusing mainly on
image or video data compression for specific environments
(e.g., 2D [12], nighttime [11]) or objects (e.g., vehicles [14],
pedestrians [11]) using only camera-source information. For
example, Poyser et al. [12] analyze the effects of common
image and video compression techniques on CNN-based video
analytics in 2D environments. Bhowmik et all. [13] assess
how lossy JPEG compression impacts infrared imagery for
CNN-based object detection. Sakthi et al. [15] investigate the
influence of standard video compression on fisheye camera
videos for 3D object detection in autonomous driving systems.

To the best of our knowledge, we are the first to examine the
compression of multi-modal data sources, incorporating both
camera and LiDAR data. We quantify the impact on object
detection and segmentation using advanced deep learning ar-
chitectures (Vision Transformer and CNN) in 3D environments
for various object types. Additionally, we explore how uni-
modal and multimodal visual perception tasks exhibit differing
sensitivities to data compression.

III. PROBLEM STATEMENT & METHODOLOGY

In this section, we outline the research question, methodol-
ogy, dataset, and evaluation model used in our experiments.

A. Problem Statement

As discussed earlier in II-B, 5G Uplink throughput cannot
support LiDAR and video data transfer to an edge or cloud
server. Hence, we require data compression to support its
transmission. However, data compression has an impact on
the performance of AI tasks at the edge or cloud. Hence, our
goals for this paper are:

1) Quantify the performance impact of data compression
on AI tasks

2) Understand and quantify the trade-off in different com-
pression strategies for video and LiDAR

B. Dataset and Benchmarks

This subsection provides the details of our dataset nuScenes
and the evaluation model BEVFusion. [10], [16]

Our evaluation model, BEVFusion, is pre-trained on the full
nuScenes dataset [10], a large-scale outdoor dataset used for
autonomous driving, containing diverse annotations to support
various tasks, such as 3D object detection, tracking, and BEV
map segmentation for 1000 samples with a train-validate-test
split of 700-150-150. Each annotated sample in the nuScenes
dataset includes six monocular camera images with a 360-
degree field of view and a 32-beam LiDAR scan.

Meanwhile, as an initial exploratory work, our experiments
are performed on a subset of the full nuScenes dataset, referred
to as nuScenes-mini, consisting of 404 samples taken from

only the training and validation sets of the complete dataset.
We utilize only the 81 samples of the nuScenes-mini validation
set in our experiments as it provides ground truth labels which
allow us to quantify error without biasing the performance
of the model to data on which it was explicitly trained. This
setup ensures that our evaluation is both rigorous and reflective
of real-world performance, allowing us to draw meaningful
conclusions about the impact of data compression on 3D object
detection.

C. Compression Method

We vary the resolutions of both the RGB camera images
and LiDAR point clouds for comparison on single- and multi-
modal tasks in an exhaustive manner. Images are downsampled
by varying the quality parameter of the Motion JPEG codec’s
intraframe compression. We select the quality parameter from
the range of [5, 15, 20, 25, 30], with higher values resulting
in lower image quality and, trivially, resulting in a decrease in
image size. For example, an image with a quality of 5 remains
visually similar to the original while resulting in a x5 reduction
in data size.

Simultaneously, the resolution of the LiDAR point clouds
produced is downsampled using simple voxelization, creating
downsampled sets resulting from voxel sizes in the range
of [0.1, 0.25, 0.5, 0.75, 1.0]m3. Larger voxel sizes result
in the contraction of points within a larger area, likewise
resulting in lower resolution and a reduction in data size.
The point clouds are downsampled individually and as with
the intraframe compression of MJPEG, there is no temporal
relationship in the reduction of their quality.

D. Downstream Vision Tasks in 3D Environments

1) Object Detection: Object detection identifies and locates
objects within a 3D environment based on their shape, posi-
tion, and orientation. It involves detecting objects’ presence
and determining their spatial coordinates in real time. This
task is vital for applications such as autonomous vehicles,
robotics, and augmented reality, where accurate and timely
object recognition and spatial understanding are essential for
navigation, interaction, and safety. BEVFusion [16] is a multi-
task multi-sensor fusion framework that fuses both camera
and LiDAR information for 3D perception tasks. For 3D
object detection, BEVFusion utilizes Swin-Transformers [17]
for image feature extraction, VoxelNet [18] for LiDAR feature
extraction and a convolution-based Bird’s-Eye View (BEV)
encoder to merge these features. The detection head includes
a center heatmap and regression heads to predict object
locations, sizes, rotations, and velocities. We evaluate the mean
Average Precision (mAP) of BEVFusion for object detection
across various compression levels of camera and LiDAR data.

2) Semantic Segmentation: Semantic segmentation parti-
tions a 3D point cloud or image pixels into semantically
meaningful parts or regions. The objective is to identify and
label various objects and components within a 3D scene.
This process is crucial for applications such as robotics,
autonomous driving, and augmented reality, where accurate

27
Authorized licensed use limited to: University of Minnesota. Downloaded on June 03,2025 at 17:11:01 UTC from IEEE Xplore.  Restrictions apply. 



recognition and labeling of 3D elements enhance interaction,
navigation, and environmental understanding.

For 3D semantic segmentation, BEVFusion utilizes the
same extracted features used for object detection but employs a
separate, independent segmentation head. This head performs
binary segmentation for each map category using focal loss.
Using the source code and pre-trained models of BEVFusion,
we evaluate the mean intersection over union (mIoU) of
segmentation across various compression levels of camera and
LiDAR data.

IV. EXPERIMENTAL RESULTS

In this section, we quantify the impact of various levels
of data compression on the pre-trained BEVFusion under its
respective evaluation metrics. We summarize our findings in
the following:

• Lossy compression decreases downstream AI perfor-
mance, exhibiting a non-linear and non-uniform rela-
tionship between the level of compression applied and
algorithmic performance.

• LiDAR and camera information excel in different vision
tasks: LiDAR outperforms in object detection, while
cameras surpass in segmentation, with each detecting
certain objects better.

• We find the optimal compression trade-off in multi-modal
vision tasks.

A. Impact of Data Compression on Object Detection

1) Camera-only object detection: We first evaluate the
impact of compression on 3D object detection based only
on the camera-captured images. Fig 4 shows the impact of
image compression quality factor on the Average Precision
(AP) for different object classes when using only camera data.
The AP for all classes decreases steadily as the compression
quality factor increases from the original to 30. The overall
mAP, represented by the red line, shows a significant drop,
indicating that higher compression negatively impacts detec-
tion performance. This drop is particularly pronounced for
“Pedestrian” and “Motorcycle,” indicating that the detailed
features required to detect these objects are more likely to
be lost due to compression.

2) LiDAR-only object detection: Fig 5 explores the effect
of voxel size on the mean Average Precision (mAP) for
various object classes using only LiDAR data. As voxel size
increases from native to 1.0m3, mAP for all classes drops
significantly. The ”traffic cone” and ”pedestrian” classes are
the most affected, with precision dropping dramatically as
voxel size increases. As the size of the voxels increases, the
AI’s ability to detect smaller objects is significantly hampered
due to the loss of detail. This emphasizes the crucial balance
needed between maintaining data accuracy and compressing
data to meet the limitations of 5G uplink.

In 3D object detection, LiDAR generally achieves a better
mAP score compared to camera-based methods due to its su-
perior depth perception and accuracy in spatial measurements.
However, for specific classes such as ”traffic cone”, the impact

of image compression is noticeably less severe than the impact
of LiDAR point cloud compression. This indicates that while
LiDAR provides better overall performance, its susceptibility
to compression highlights the importance of maintaining high-
quality data, especially for detecting smaller and more intricate
objects where detail preservation is crucial.

3) Multi-modal object detection: Fig 6 depicts a heat map
showing the combined effect of point cloud voxel size and
image compression quality on the average precision of object
detection using fused information from both camera and
LiDAR. The AP is highest in the upper left region of the heat
map because the image compression quality is high (lower
quality factor) and the voxel size is small in this region. In
contrast, the lower right region has lower compression quality
and larger voxels, resulting in the lowest precision value.
This heat map highlights the importance of optimizing voxel
size and compression quality to achieve the best detection
performance.

B. Impact of Data Compression on Segmentation

1) Camera-only Segmentation: Fig 7 illustrates the effect
of varying the image compression quality factor on the average
Intersection over Union (IoU) for different map segmentation
classes in BEVFusion, with a threshold of 0.6. As the com-
pression quality factor increases from the original (no com-
pression) to 30, the IoU for all classes decreases significantly.
The performance of the ’drivable area’ and ’ped crossing’
classes decreases significantly, indicating that higher compres-
sion rates have a detrimental effect on the accuracy of these
segmentations. This trend suggests that lower compression
quality (which preserves more image details) is critical for
the accurate segmentation of these specific classes.

2) Lidar-only Segmentation: Fig 8 presents the effect of
voxel size on the average IoU at a threshold of 0.6 for various
map segmentation classes in BEVFusion when using LiDAR
data. As the voxel size increases from the original (no vox-
elization) to 1.0 cubic meters, the IoU for all classes decreases
significantly, especially for “divider” and “stop line”. This
decrease highlights the importance of finer voxel resolution for
capturing detailed structure and maintaining high segmentation
accuracy. Larger voxel sizes result in a loss of spatial resolu-
tion, which negatively affects the accuracy of smaller and more
detailed segmentation tasks. Therefore, having a high spatial
resolution is crucial for maintaining accurate segmentation,
especially when dealing with compression limitations due to
network performance. The relationship between compression,
uplink bandwidth, and AI accuracy in object detection and
segmentation highlights the importance of optimizing these
factors together. This leads us to explore how using multi-
modal approaches, combining different data types, can help
address these challenges.

3) Multi-modal object Segmentation: Fig 9 combines the
effect of point cloud voxel size and image compression quality
on the average IoU for a map segmentation threshold of
0.6 in BEVFusion. The heatmap shows that the highest IoU
values are achieved with high image compression quality
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Fig. 4: Impact of compression quality
factor on mAP of various object cate-
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of various object categories.
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cloud voxel size and image compression quality. The
higher precision values appear in the top-left region
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(lower quality factor) and small voxel size. Conversely, low
compression quality combined with a larger voxel size leads
to the lowest IoU values. The figure highlights the necessity
of optimizing these two parameters to achieve the best seg-
mentation performance, with the upper left area of the heatmap
representing the best combination of high compression quality
and small voxel size.

C. Compression and 3D Object Detection Efficiency

Fig 10 and fig 11 provide a comprehensive view of the
trade-offs between file compression and detection performance
in terms of storage efficiency and accuracy. The first figure
shows the ratio of compressed file size over raw file size for
various image compression qualities and point cloud voxel
sizes, where darker colors indicate higher compression ratios.
The second figure displays the ratio of mAP multiplied by 100
over file size for the same range of parameters, with darker
colors representing higher detection performance relative to
file size. From Fig 10, we observe that as the point cloud
voxel size increases, the file compression ratio decreases,
indicating that larger voxel sizes result in smaller compressed
files relative to the raw file size. This trend is consistent across
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Fig. 10: Ratio of compressed file size over raw file size for
varying image compression quality and point cloud voxel size.
The color indicates the ratio, with darker colors representing
higher ratios.

different image compression qualities, although the highest
compression ratios are seen at lower voxel sizes and lower
image compression qualities.

Fig 11 illustrates the relationship between the image com-
pression quality, point cloud voxel size, and the ratio of mAP
multiplied by 100 over file size. The color intensity in the
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Fig. 12: Robotic vehicle. Fig. 13: Teleoperation cabin.

heatmap represents this ratio, where darker shades indicate
higher values. From the analysis, it is evident that higher point
cloud voxel sizes generally lead to better performance in terms
of the mAP-to-file-size ratio. Specifically, the highest ratios are
observed at a voxel size of 0.753 m3 and an image compression
quality of 30, suggesting an optimal balance between file
size and performance. As the voxel size increases beyond
this point, the ratio slightly decreases, indicating diminishing
returns. Additionally, lower image compression qualities tend
to have lower ratios, highlighting the trade-off between file
size and detection performance. This analysis highlights the
significance of optimizing image and point cloud compression
together to enhance detection performance and reduce data
size. By addressing object detection and segmentation for
single and multi-modal tasks, we show that the limitations
of 5G uplink capacity play a crucial role in determining the
efficiency of AI-driven teleoperation.

V. CONCLUSION

In summary, this paper highlights the crucial role of data
compression in enabling reliable teleoperation over 5G net-
works, where uplink limitations demand careful data manage-
ment. Our research indicates that using lossy compression can
reduce the performance of AI. We also suggest methods to
balance data fidelity with network limitations to optimize tele-
operation. Future work will explore additional AI algorithms,
refine compression methods, and test real-time transmission
using our current autonomous vehicle setup, as shown in
Fig. 12 and 13.
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