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Abstract—Al-native air interfaces, such as neural receivers, are
pivotal for ensuring efficient communication in 6G networks. By
leveraging the capabilities of neural networks, neural receivers
aim to learn the characteristics of physical channels and con-
figure numerous radio parameters more effectively than manual
feature engineering. However, the practical deployment of these
systems is hindered by high training costs and uncertainty
surrounding their ability to generalize, which have not been
sufficiently explored in the literature thus far. To fill this gap, we
explicitly identify nine distinct data domains to investigate the
generalization abilities of neural receivers. These domains arise
from user behaviors, environmental scenarios, and base station
configurations. We additionally explore the use of meta-learning
techniques while simultaneously addressing the issue of data
dimension mismatch through zero-padding to further bolster
generalization. Comprehensive numerical experiments conducted
using Nvidia’s Sionna physical layer simulator demonstrate that
our neural receiver adapts to new scenarios with just a few
seconds of fine-tuning, which yields competitive and sometimes
superior performance compared to neural receivers trained
directly on identical scenarios.

Index Terms—6G Al-native air interfaces, Physical layers,
Meta-Learning.

I. INTRODUCTION

In the latest 5G specification Release 18, 3GPP initiates the
study for the first time exploring the integration of AI/ML
algorithms with air interfaces [1], [2]. This initiative aims
to equip wireless devices with learning capability and better
adaptability to dynamic environments. Unlike classical so-
lutions, which primarily rely on manually pre-set rules or
algorithms, Al-native air interfaces, such as neural receivers
(NRXs), utilize neural networks to estimate real-time channel
quality and autonomously adjust their signaling schemes [3].
Prototype experiments conducted by industrial researchers
(including Nvidia, Nokia, Qualcomm, and Rohde & Schwarz)
demonstrate the preliminary feasibility [4], [5] and suggest
that their Al-native air interfaces could halve transmit power
compared to 5G while providing the same bandwidth and data
rates [6]. Undoubtedly, such advancement will greatly enhance
the spectrum and energy efficiency of future 6G networks.

While NRXs have shown promising results in controlled
laboratory environments, real-world wireless communication,
especially for 5G and 6G networks, is notably more complex
and heterogeneous: Mobile operators deploy diverse base
station (BS) hardware, equipping a varied number of antennas
and layouts, across different regions and may activate distinct
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services at different times; The base station transmitters will
not only dynamically decide varying coding rates, modulation
orders, and MIMO layers [7], but also employ advanced func-
tions to control power consumption, influencing the antenna
activation [8]; Moreover, the contextual environment in which
mobile users operate is also highly dynamic [9]. These factors
and complexities are generally beyond the receiver’s control,
posing challenges to the practical value of current NRXSs,
which requires training specific to the configuration of paired
transmitter and usage scenarios.

Given this, we propose the concept of universal NRX,
emphasizing its generalization capabilities. Specifically, in
situations where resources are constrained and training from
scratch is prohibitive, it should be able to accommodate
different transmitter configurations, even those unseen during
training, and rapidly adapt to varying contextual scenarios.
This adaptability ensures the universal NRX achieves optimal
performance across broad real-world conditions. Furthermore,
its design prioritizes deployment across various user equip-
ment and not just serve limited data types, catering to the
wide range of 6G applications.

Unfortunately, to our knowledge, only limited in-depth
exploration has been conducted in this area of the literature.
None of the studies have discussed the impact of different data
features, nor have they conducted comprehensive experiments
to train and evaluate the NRX across the diverse data domains;
refer to Sec. II-B. Such a gap leaves room for two intriguing
research questions:

1) Which system features will significantly impact a neural
receiver’s generalizability?

2) How to develop a universal neural receiver capable of
rapid adaptation to various scenarios?

We explore these questions by identifying and investigating
the impact of nine representative feature domains drawn from
three categories, which collectively reflect the complexity and
heterogeneity of the 5G and 6G networks: (1) Base station
side factors, encompassing variables such as BS antenna
numbers, antenna polarization, and adopted modulation order;
(2) User equipment side considerations, which include user
equipment capacity, user movement speed, and transmission
data distribution; (3) Channel and scenario contexts, incorpo-
rating radio frequency, channel scenario types, and channel
quality; listed in Table I. Our examination of these feature
domains shows that their hindrance to NRX performance stems
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Fig. 1: A systemic view of meta-learning empowered neural
receivers: with the pre-trained model, the user equipment can
quickly adapt to fast-changing channels in real time.

from two primary issues: dimension mismatch and distribution
shift. The former issue arises from the inherent restrictions
of fixed neural network inputs, while the latter is due to
the discrepancies between the training data source and more
diverse scenarios encountered during testing. For details, we
refer to Sec. III.

To address them and develop a universal NRX, we em-
ploy data augmentation through padding to address dimen-
sion mismatch and leverage Model-Agnostic Meta-Learning
(MAML) [10] to mitigate distribution shift; see Sec. IV. We
posit that the meta-parameter of an NRX can be trained on
regional cloud servers and distributed to local users. Then,
as users move between BS’s service cell, UE can fine-tune
parameters within a few seconds to adapt to the new scenario,
as illustrated in Fig. 1.

To support this approach, we conduct comprehensive nu-
merical experiments based on Nvidia’s 6G physical layer
simulator Sionna [11] to demonstrate the efficiency of our
proposed universal NRX on both single-domain and multi-
domain learning tasks. Our results indicate a bit error rate
(BER) reduction of 96.28% on average by fine-tuning for less
than a second when operating under the same channel quality
as an ordinary NRX; see Sec. V for details.

Contributions. We summarize our key findings and contribu-
tions as follows:

e To the best of our knowledge, this is the first study that
explicitly analyzes the generalizability of NRXs. We examine
a total of three categories covering nine feature domains of
communication systems perspective. We further identify two
primary issues that prevent current NRXs from generalizing.

e We employ the zero-padding techniques to resolve the
issue of dimension mismatch, and the MAML framework to
address the data distribution shift problem, aiming to develop
a universal NRX.

e Our comprehensive numerical experiment results demon-
strate that the universal NRX consistently enhances perfor-
mance, surpassing the ordinary one, especially on identified
non-generalizable domains. The universal NRX can rapidly
adapt to new scenarios within a few seconds of adaptation.

II. BACKGROUND AND STATE-OF-THE-ART

In this section, we provide a brief overview of wireless
communication systems as well as state-of-the-art works in
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Fig. 2: An abstraction of wireless communication system and
the role of neural receiver.

the neural receivers (NRXs).

A. Wireless Communication System Model

Fig. 2 abstracts a classical wireless communication system
comprising a transmitter (TX) and receiver (RX). At the
transmitter end, to ensure efficient transmission, the original
bitstream undergoes a series of standardized processing steps
such as encoding, modulation, and mapping. Specifically, the
encoder adds redundant bits to the transmission block based
on the encoding rate (a ratio of valid bits to total bits trans-
mitted), the modulator encodes the digital data bits into the
frequency domain according to the modulation order (an index
indicates how many bits carried by per Hz), and the Multiple-
Input Multiple-Output (MIMO) techniques, which leverages
antenna’s spatial multiplexing to transmit signal waves across
multiple layers simultaneously. Higher coding rates, modu-
lation orders, and transmission layers correspond to greater
upper limits of transmission throughput, but also increase
susceptibility to errors from the same channel noise [12],
[13]. Thus, the transmitter’s scheduler needs to make real-
time decisions on the above parameters based on the channel
quality feedback from the receiver.

At the receiver end, this process is reversed. The receiver
will first estimate the physical channel H based on the
reference signals. It attempts to estimate the channel H~H
as in Eq. 1, using predefined signals . and received signals
Yres, through the least squares (LS) problem with n being
noise. Utilizing this estimated channel H , the transmitted
signal can be recovered, i.e., solving for = given H and Y.
The receiver then performs demodulation and decoding to
recover the original digital data bits. In this study, we utilize
an additive white Gaussian noise (AWGN) model where H is
generated from the 3GPP Clustered Delay Line (CDL) channel
model [14]. We refer the readers to [15]-[17] for more details
about the system.

y=Hx+n (1)

B. Neural Receivers

Neural receivers (NRX) aim to replace the above-mentioned
classical receiver components, including channel estimation,
equalizer, and QAM demapper, with a neural network, de-
picted by the green module in Fig. 2. The adoption of an NRX
will not affect the way the current transmitter is employed.
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TABLE I: Description of the feature domains studied in this paper. The marker v indicates that NRX is generalizable to the
setups (or scenario) with different parameters within this domain, see representative results in Fig. 3; while X denotes NRX
suffers poor generalizability toward this domain, see representative results in Fig. 4.

’ Domains ‘ Descriptions ‘ Generalizability ‘
. The movement speed (in m/s) of the receiver to account for the Doppler effect.
Moving speed s PR PP oy R v
We set {5, 10, 30} m/s representing “walking,” “urban driving,” and "highway driving”.
The distributi f i hich th k les.
Data distribution e dlStltlbUthl’l of data §ources r.0m w ich the data pac. age samples v
We consider {random, video, audio} with the latter two is downloaded from YouTube.
. Frequency employed for transmissions between the transmitter and receiver.
Radio frequency A . . . . 4
We consider {0.8, 2.6, 3.5, 28} GHz simulating the low-/mid-/high-band characteristics.
The 1 larizati f th h itter.
Antenna polarization e layout and polarization of the antenna adopted by the transmitter. v

We use {horizontal, vertical} layouts and {omnidirectional, directional} polarization.

Modulation order

The number of information bits that are being carried per radio Hz.
We consider {QPSP, 16QAM, 64QAM, 256QAM} denoting {2, 4, 6, 8} bits per Hz.

X: shape mismatch.

CDL channel model

The channel model measured by 3GPP under different scenarios
The model {A,B,C} is NLOS urban scenario, {D, E} is LoS rural and suburban.

X: distribution shift.

Channel quality

The quality of the channel is measured by the normalized signal-to-noise ratio.
We divide the range of [-3, 11) dB into intervals of 2 dB.

X: distribution shift.

# of TX antenna

The number of antennas adopted by the transmitter used for the transmission.
We set {2, 4, 6, 8} to accommodate various hardware limitations and power modes.

X: shape mismatch
and distribution shift.

# of RX antenna

The number of antennas adopted by the receiver used for the transmission.
We set {1, 2, 3, 4} to accommodate various hardware limitations and power modes.

X: shape mismatch
and distribution shift.

The survey [3] summarizes emerging works that aim to
improve the resistance of NRX to channel noise, thereby
enhancing decoding efficiency. For example, [18] replaces the
Fast Fourier Transform (FFT) processors in OFDM receivers
with the complex-valued convolutional networks. While [19]
introduces DeepRx, which employs convolutional neural net-
works to execute the entire receiver pipeline in a manner
compatible with 5G standards. The NRX proposed in [20]
addresses the distortions caused by the Doppler effect in
extreme mobile scenarios, while [21] focuses on the multi-
user scenarios. We note that these literature studies focus
primarily on designing various neural network architectures to
enhance performance towards ideal or specific scenarios but
are missing the in-depth discussion toward the generalizability
of the proposed NRXs as the applied scenarios vary.

Meanwhile, some works attempt to enhance the gener-
alizability of NRXs but with a narrow focus: They either
only consider a minimal set of synthesized channels [22]-
[25] or utilize few-shot learning solely on neighboring or
pilot symbols in the frequency domain [26]. These studies
fail to adequately dissect the rich user context information
and high heterogeneity present in real-world deployments,
impeding NRXs from generalizing across scenarios. This gap
presents an opportunity to (1) identify NRXs’ generalizability
over different data features; and (2) develop a universal NRX
capable of rapid adaptation to various scenarios.

III. GENERALIZATION OF NEURAL RECEIVERS

To answer the first question, we identify and examine a
total of nine feature domains in this section. We analyze
each domain’s effect on the generalizability of NRX under
AWGN assumptions, outlining them in Table I. This analysis

is performed by varying the parameters of only a single
domain per experiment, with all others remaining static. The
simulation setup details is reported in Sec V-A.

A. Generalizable Domains

There are comprised of four domains in which a trained
NRX remains performant. Specifically, we consider a range
of moving speeds from 5 m/s to 30 m/s, radio frequencies
spanning from low-band (0.8 GHz) to high-band (28 GHz),
antenna layouts in both horizontal and vertical orientations,
and polarization in either omnidirectional or directional modes.
Additionally, we include input data distributions encompassing
random O-1 bits as well as real-world video and audio data.

We visualize the representative experimental results in
Fig. 3, where a trained NRX is evaluated on setups using the
other parameters in the same domain. we assess the general-
izability of the NRX by examining the bit error rate (BER)
as channel quality degrades as measured by the normalized
signal-to-noise ratio Ej/N, [27]. From the visualized results,
we observe that the NRX achieves comparable performance
across various Ejp/N, levels, indicating a degree of generaliz-
ability in those data domains.

B. Non-Generalizable Domains

We also identify five non-generalizable domains in which
the NRX struggles, as reflected in Fig. 4. We hold that these
issues stem from a combination of two primary sources: data
shape mismatch and distribution shift.

Data shape mismatch is simply a result of the NRX’s fixed
input dimension, a constraint imposed by the architecture of
its underlying neural network. Once initialized, its architecture
cannot be easily altered, rendering NRXs trained on different
parameters unadaptable. Due to this reason, as an example,
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Fig. 3: Representative experimental results on generalizable domains, where a trained NRX remains performant. The baseline
GT-CSI utilizes ground truth knowledge of the channel. The baseline LS-CSI uses classical least squares in channel estimation;

see Sec V-A for illustration.

. —— GTCSI . —— GTCSI
107 107
LS LS
—— NRXonA —— NRX-3~5
. 107 —— NRXonB . 107 —— NRX-3~-1
& —— NRXonC & —— NRX3~5
M 107 —— NRXonD 0107 —— NRX 9~11

-3 -2 -1 0 1 2
Ep/No (dB)
(b) Evaluation on SNR between
[-3, 5) dB with NRX trained on
different SNR ranges.

-1 0 1 2

Ep/No (dB)
(a) Evaluation on CDL channel
D with NRXs trained on differ-
ent CDL channel models.

-1
0 M 101

o —— GTCSI o
w w —— GT
@107 II:ISRX 2 @ 1o EST =
et on
. —— NRXon4 —— NRXon1
10 —— NRXon6 L —— NRXon2
—— NRXon 8 —— NRXon4

-3 -2 -1 0 1 2
Ep/No (dB)
(d) Evaluation on 1 UE antennas
with NRXs trained on different
UE antenna numbers.

-1 0 1 2

Ep/No (dB)
(c) Evaluation on 4 BS antennas
with NRXs trained on different
BS antenna numbers.

Fig. 4: Representative experimental results on non-generalizable domains, illustrating significant performance drops when
domain parameter varies. Note that the experiment setup differs from Fig. 3.
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Fig. 5: Comparison of generalizable and non-generalizable feature domain from their channel characteristics.

an NRX trained on a system with 2 antennas (i.e., 2 streams)
only cannot internally support a system with 4 antennas (i.e., 4
streams). It presents challenges in mobile networks, especially
concerning heterogeneous BS deployments and compatibility
with advanced functions, such as modulation, MIMO, power-
saving, etc.

Additionally, significant distribution shifts that the NRX
fails to capture are represented in various data domains, such
as channel quality, CDL Channel Model, and the number of
BS and UE antennas. We refer to Fig. 5 for a visual illustration,
which compares the characteristics of the generated channel
from two representative data domains. In the generalizable
domain of speed, the real number part of each subcarrier!

'Tn OFDM system, each subcarrier is associated with an element in the
channel matrix.

exhibits similarity across different speeds, yielding a consistent
distribution of the channel condition number?. Conversely,
within the non-generalizable domain of the CDL model,
variations in the real number part of each subcarrier across
different CDL models result in disparate distributions of the
channel condition number.

Such distinct channel characteristics lead to different levels
of generalizability for an NRX among them, with represen-
tative results visualized in Fig. 4 where the significant per-
formance drops are evident. For example, an NRX trained on
the different CDL models exhibits unsatisfactory performance
when handling the data that fits CDL model D (rural scenario

2Channel condition number quantifies the ratio of the maximum to the
minimum singular value of the channel matrix, which assesses the quality of
a communication channel.
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Fig. 6: Network architecture of neural receiver.

with line-of-sight). In some cases, the shift in data distribution
causes NRX performance to be inferior even to the classical
least-squares (LS) method.

It is worth noting that while Fig. 3 and Fig. 4 only visualize
an NRX’s ability to generalize across diverse setups within
individual domains, combining multiple domains will signifi-
cantly increase the complexity of the task. The combinatorial
explosion will cause the scenario-specific NRX to perform
poorly towards the highly heterogeneous network deployed in
the real world.

IV. TOWARD UNIVERSAL NEURAL RECEIVER

To overcome the aforementioned challenges, we lever-
age zero-padding and model-agnostic meta-learning (MAML)
techniques, which allow a trained model to be quickly adapted
to new scenarios with dramatic data shifts, while needing only
minimal tuning data. This enables a single, universal NRX
to be deployed, bypassing the overhead of fully training and
distributing independent domain-specific NRXs as they are
needed. In the following, we formally introduce the problem
task and present the details of our implementation.

A. Problem Statement

We denote the observed datasets as Dygeta =
{(Dfre Die*)},_1.r containing a total of T different
learning tasks, each with specific training and test sets
collected from the simulations by varying one or more
domain parameters. Here, Dirain {(yk, xF)p=1:Ke
represents the training set of learning task ¢ with a total of
K, samples, with D}¢¢? being the test set. For sample k in
the learning task ¢, x¥ € B represents the original 0-1 data
bit streams, while y¥ € C denotes the received signals with
the dimension [num_rx_ant, num_tx_ant, num_subcarrier,
num_symbols]. The learning task for the neural receiver fp is
to accurately recover =¥ from the received signals y¥, i.e.,

argmin L(x*, fo(y")) 2)
o
with L being the loss function of the bit error.

B. Universal Neural Receiver

As discussed in Sec. III-B, heterogeneous configurations
and technologies employed by transmitters result in notable
variation in the dimension of the receiver signal, ¥, across
deployments. Meanwhile, the learning tasks span disparate
domains (as outlined in Table I) with complex distributions,
impacting the system behavior in non-trivial ways. Due to
these issues, the model parameters 6 of NRXs are specific
to the task ¢ of a single domain. To this end, our objective is

Algorithm 1 Training of Universal Neural Receiver.

p(T): distribution over tasks
Require: D,.¢,: dataset for training the meta-parameter
Require: «, 3: step size hyper-parameters

1: Randomly initialize #

2: while not done do

3:  Sample batch of tasks 's ~ p(T)

4 for each task ¢ do

5: Evaluate Vgli(fs, D¢) with K examples.

6: Compute adapted parameters with gradient de-

scent: ¢, = 0 — aVgl,( fo, DI"4™).

T: end for

8: Upd:'ite 06— BVe 3y pim le(fo., DF*).

9: end while

Require:

to develop a universal neural receiver capable of (1) accom-
modating the varying dimensions of the received signals and
(2) effectively mitigating the data distribution shifts.
Dimension agnosticism. Our neural architecture, as used in
Sec. V, is shown in Fig. 6. Agnosticism to the input dimension
is achieved by the module in blue, which performs zero-
padding. This converts the data dimensions from [batch_size,
num_symbol, num_subcarrier, num_tx_ant] to [batch_size,
num_symbol, num_subcarrier, padded_length]. The specific
size of the padded dimension is left as a hyperparameter of
the system. We apply padding on "num_tx_ant” since all of
the shape mismatch problems we mentioned in Table I will
eventually be reflected on that dimension.

The now uniform-length data vector is passed through a

convolutional layer, eight residual blocks serving as hidden
layers, and a final convolutional layer. Each convolutional
layer utilizes a (3x3) filter with 128 channels over the OFDM
resource grids, i.e., subcarriers and symbols, and batch nor-
malization for stability. The final output of the NRX is the
Log-Likelihood Ratio (LLR), sharing the same dimension as
x¥, indicating the probability of each reconstructed bit being
equal to 1.
Task domain agnosticism. We apply meta-learning to address
distribution shifts, seeking the meta-parameter 8*, which aims
to achieve optimal performance in minimal fine-tuning steps
and samples.

We outline the training process to find a performant meta-
parameter 6* in Alg. 1. Concretely, we first initialize the NRX
with @ (Line 1). We then iterate through sample training tasks
(Line 3). For each task ¢, we update its parameters using K
samples, ie., (yF,xF) ~ Direin to determine the optimal
parameters ¢, (Line 5-6).

d’t = arg min lt(fﬂa ngm) (3)
]

with the loss function being binary cross entropy (BCE)
between the original bits and the bits reconstructed by the
neural receiver:

Li(fo, D{™™) =Y BCE(x}, fo(vr)) o)
k
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Once we obtain the parameters ¢; for each task, we evaluate
their performance on D{*** and update the meta-parameters
(Line 8), i.e.,

0* = argmin 1:(fs,, Diest 5)
ge ; t(f¢, )

Using this approach, for any new task (D}, Dist) we
can rapidly obtain performant NRX parameters ¢y which
is initialized from the meta-parameter 0* and fine-tuned on
Direin ysing Eq. 3.

V. EVALUATION

In this section, we evaluate the proposed universal neural
receiver, denoted as MAML-NRX. We outline the experimental
setup and then demonstrate the meta-learning performance
from both single-domain and multi-domain perspectives.

A. Experiment Setup

Methods. We consider four methods for comparison:

e GT-CSI: This method assumes access to ground truth
knowledge of channel state information (CSI) or the channel
matrix (i.e., H), which is then directly fed into the equalizer.
The equalizer optimizes the linear minimum mean square
error (LMMSE) between the received signal and the original
signal by compensating for the distortion induced by the
channel.

e LS-CSI: This method first estimates the channel based on
the transmitted pilots using the least squares (LS) algorithm
and then inputs this estimated channel into the LMMSE
equalizer.

e NRX: The neural receiver, featuring data padding for dimen-
sion flexibility, as depicted in Fig. 6. It is directly trained on
the Dirain,

e Joint-NRX: It uses the same architecture as the NRX but
adopts model-agnostic meta-learning training strategies (i.e.,
Alg. 1) on the D¢, Without fine-tuning steps.

o MAML-NRX: It uses the same architecture and training
strategy as the Joint-NRX but will conduct a limited number
of fine-tuning steps when evaluated on an unseen scenario.

Hyperparameters. Unless otherwise specified, we use the
following experimental hyperparameter configurations. The
transmission bit stream is randomly generated from a Bernoulli
distribution to train the neural receiver architecture depicted
in Fig. 6. We employ a batch size of 64 and the Adam opti-
mizer [28] with a learning rate of 1 x 1073, For the MAML-
NRX, the training procedure uses the same learning rate for
both inner-loop and outer-loop (i.e., & = 3 = 1 x 1079).
To ensure convergence, we set sufficient epochs for all the
experiments. For each epoch of MAML pre-training, we train
for five steps to update the ¢; (i.e., line 6 in Alg. 1) and one
more step to calculate the loss to update the meta parameter
0. For the unseen data in the evaluation stage, we fine—tune
MAML-NRX with five epochs for adaption, which requires
less than 1 second.

Evaluation. The evaluation spans different channel qualities,
ranging from E} /N, of -3 dB to 5 dB with a step length of 0.4

dB. We conduct 100 Monte-Carlo simulations for each channel
quality and with early stopping when the target number of
transmission errors occur. We use the bit error rate (BER)
defined as: BER = (ErorBis),

Implementation. All experiments are implemented and con-
ducted using NVIDIA’s Sionna simulator [11], an open-source
library for 6G physical layer simulation built upon Tensor-
Flow [29]. The simulations are executed on a workstation with
the AMD Ryzen Threadripper PRO 3995WX 64-Cores CPU
and 3 NVIDIA RTX A6000 GPUs.

B. Single-Domain Meta Learning

We first evaluate the performance of the MAML-NRX for
single-domain scenarios with only 5 steps of fine-tuning over
a few samples from the unseen dataset, costing 0.75 seconds.
We compare it with a standard ordinary NRX and a Joint-
NRX model as an ablation study. We visualize representative
results within the domains of base station antenna number,
user equipment antenna number, and channel models.

As shown in Fig. 7, MAML-NRX is pre-trained on D,etq
comprising 4 and 8 antenna setups and fine-tuning on the
2 and 6 antenna systems. We compare it with both Joint-
NRX, trained on D,y,ctq, and NRX, which is directly trained
on the 2 and 6 antenna systems. We see that MAML-NRX
achieves competitive or even superior performance. Similar
results are seen in Fig. 8 with MAML-NRX vastly exceed-
ing the performance of the baselines. In this case, Detq
comprises 1 and 4 antenna setups. In Fig. 9 MAML-NRX
continues to be superior for a D¢, comprised of CDL
models A and E. Finally, Fig. 10 demonstrates that MAML-
NRX remains competitive against the standard NRX when
D etq 18 scenarios 3 and 4 as defined in Table II.

It is worth noting that for the unseen 2 antenna system,
MAML-NRX reduces BER up to 99.99% (at E,/E, = —1.7
dB) with an average of 99.6% over the entire range of channel
qualities. From another perspective, such improvement could
lead to 2.9 dB of power savings to attain the same target bit
error rate (BER) of 1x10~°, meeting the 3GPP ultra-reliability
requirements [30].

Similarly, as visualized in Fig. 8 and Fig. 9, MAML-
NRX consistently achieves competitive or better performance
than NRX which is directly trained on the same task setups.
Specifically, when the receiver activates a varying number
of antennas, MAML-NRX achieves a reduction in BER of
up to 95.28% with an average improvement of 20.9% in
scenarios where the receiver activates one antenna. In cases
where the receiver activates two antenna setups, MAML-NRX
achieves a reduction in BER of up to 99.99% with an average
improvement of 99.96%. Across different channel models,
MAML-NRX competes favorably, demonstrating significant
improvements in both CDL channel models B and C, with
maximum enhancements of 96.95% and 93.93%, respectively.

Furthermore, we observe that MAML-NRX not only sur-
passes the LS-CSI method but also, in certain instances, out-
performs GT-CSI, which uses the ground truth knowledge of
the channel matrix. We speculate that this could be attributed
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TABLE II: Scenario with multiple domains.

Scenario Combined Domains

1 3.5GHz; 5m/s; QPSK; CDL-A;bs_ant_num 6

2 2.6GHz; 10m/s; 64-QAM; CDL-B; bs_ant_num 4
3 0.8GHz; 20m/s; 256-QAM; CDL-C; bs_ant_num 2
4 28GHz; 5m/s; 521-QAM; CDL-D; bs_ant_num 8

to the neural network’s superior learning capability exceeding
the classical LMMSE equalizer. In summary, we conclude that
adopting MAML can benefit NRX and significantly improve
its performance by reducing the BER of 82.09% on average
of different channel conditions across all the single domain
learning tasks listed in Table I, which equals 1.7 dB gain in
terms of power saving.

C. Multi-Domain Meta Learning

In addition to the single-domain meta learning, we extend
to tasks spanning multiple domains. Table II presents repre-
sentative scenarios involving the five domains used in our
experiments, each containing different tasks, with selected
results visualized in Fig. 10. We pre-train MAML-NRX on
scenarios 3 and 4 to learn meta-parameters, a total of 10
different tasks, then fine-tune the learned meta-parameters on
the evaluation scenarios 1 and 2, costing 0.72 seconds. In com-
parison, the NRX is directly trained on scenarios 1 and 2. From
Fig. 10, we observe that MAML-NRX achieves up to 43.94%
BER reduction in scenario 2, while it exhibits competitive
performance compared to NRX in scenario 1. These results

—— GTCSI
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o ks o
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Fig. 8: MAML-NRX and Joint-NRX are pre-trained on the
receiver activated {1, 4} antennas. NRX is trained on the same
data domain as evaluation.
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Fig. 10: MAML-NRX and Joint-NRX are pre-trained on both
scenarios {3, 4}. NRX is trained on the same data domain as
evaluation.
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Fig. 11: MAML-NRX fine-tuning.

demonstrate that MAML-NRX effectively handles complex
scenarios involving multiple-domain changes without requir-
ing several days of training for a domain-dedicated NRX,
providing nearly identical performance at best.

D. Efficiency of Fine-Tuning

To better understand the effect of fine-tuning, we utilize
the experiment across different antenna numbers as an ex-
ample. We visualize the change in bit error rate (BER) at
Ey/N, = —2.6 dB with varying adaptation steps, as depicted
in Fig. 11. We observe that the pre-trained model of MAML-
NRX demonstrates a level of generalizability even without any
adaptation. In just 5 steps, it more than halves the bit error
rate (BER), reducing it from 1.6 x 107 to 6 x 107°. We
note that each adaptation step only utilizes 58k bits of data
collected from the new scenarios and incurs an average cost
of 0.14 seconds, which is feasible for mobile use cases.
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VI. CONCLUSION

This paper aims to develop a universal neural receiver

capable of rapidly adapting to new scenarios. We begin by
examining the generalizability of current neural receivers
across the representative data domains, including perspectives
from base stations, user equipment, and channel contexts.
Through extensive numerical experiments, we have identified
two main challenges that lead to poor generalization perfor-
mance: data dimension mismatch and distribution shift. To
address these, we utilize zero-padding and MAML techniques.
The evaluation on both single-domain and multi-domain tasks
demonstrates that adopting MAML can significantly enhance
the performance of neural receivers on unseen scenarios by
reducing the bit error rate on average by 96.28%. It is
competitive and often superior to that receiver exclusively
trained for such scenarios.
Future works. Our analysis is based on the AWGN model,
which may not accurately reflect real-world scenarios. We
will consider more complex noise models and further set
up the prototype software-defined radio platforms for future
studies. Additionally, the acceleration of meta-model training
will be a focus of future exploration. Lastly, we will also
investigate correlations among domains and leverage more
advanced learning techniques such as domain-disentangled
meta-learning [31].

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their suggestions and
feedback. This research is supported in part by the National
Science Foundation (NSF) under grants number 2128489,
2212318, 2220286, 2220292, and 2321531, as well as an
InterDigital gift.

REFERENCES

[1] “Study on artificial intelligence (ai)/machine learning (ml) for nr
air interface,” https://portal.3gpp.org/desktopmodules/Specifications/, ac-
cessed: 2024-05-14.

[2] X. Lin, “An overview of ai in 3gpp’s ran release 18: Enhancing next-
generation connectivity?” Global Communications, vol. 2024, 2024.

[3] N. Ye, S. Miao, J. Pan, Q. Ouyang, X. Li, and X. Hou, “Artificial
intelligence for wireless physical-layer technologies (ai4phy): A com-
prehensive survey,” IEEE Transactions on Cognitive Communications
and Networking, 2024.

[4] Dominique Loberg, “Enabling an ai-native air interface for 6g,”
https://www.rohde-schwarz.com/enabling-an-ai-native-air-interface-for-
6g/, accessed: 2024-05-14.

[5] “Towards an ai-native communications system
https://www.qualcomm.com/content/dam/qcomm-martech/dm-
assets/documents/Towards-an-Al-native-communications-system-
design.pdf, accessed: 2024-05-14.

design,”

[6] “6g technologies - ai-native air interface - nokia bell labs,”
https://www.bell-labs.com/research-innovation/what-is-6g/6g-
technologies/ai-native-air-interface, accessed: 2024-05-14.

[7]1 “Mcs / tbs / code rate in a nutshell,”

https://www.sharetechnote.com/html/5G/5G_MCS_TBS_CodeRate.html,
2019, accessed: 2024-05-14.

[8] M. 1. Rochman, D. Fernandez, N. Nunez, V. Sathya, A. S. Ibrahim,
M. Ghosh, and W. Payne, “Impact of device thermal performance on 5g
mmwave communication systems,” in 2022 IEEE International Work-
shop Technical Committee on Communications Quality and Reliability
(CQOR). 1IEEE, 2022, pp. 1-6.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. Fezeu,
U. K. Dayalan, S. Verma, P. Ji, T. Li et al., “Lumos5g: Mapping and
predicting commercial mmwave 5g throughput,” in Proceedings of the
ACM Internet Measurement Conference, 2020, pp. 176-193.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126-1135.

J. Hoydis, S. Cammerer, F. Ait Aoudia, A. Vem, N. Binder, G. Marcus,
and A. Keller, “Sionna: An open-source library for next-generation
physical layer research,” arXiv preprint, Mar. 2022.

R. A. Fezeu, J. Carpenter, C. Fiandrino, E. Ramadan, W. Ye, J. Widmer,
F. Qian, and Z.-L. Zhang, “Mid-band 5g: A measurement study in europe
and us,” arXiv preprint arXiv:2310.11000, 2023.

“5g nr throughput calculator,” https://5g-tools.com/5g-nr-throughput-
calculator/, Jun. 2019, accessed: 2024-05-14.

3GPP, “3gpp ts 38.141-1 “base station (bs) conformance
testing part 1: Conducted conformance testing”, release 17,7
https://www.etsi.org/deliver/etsi-ts/138100-138199/13814102/, accessed:
2024-05-14.

A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, G. Durisi, and X. Chen,
5G Physical Layer: principles, models and technology components.
Academic Press, 2018.

C. Johnson, 5G new radio in bullets, 1st ed. Farnham (England): Chris
Johnson, 2019.

D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge, UK; New York: Cambridge University Press, 2005.

Z. Zhao, M. C. Vuran, F. Guo, and S. D. Scott, “Deep-waveform:
A learned ofdm receiver based on deep complex-valued convolutional
networks,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 8, pp. 2407-2420, 2021.

M. Honkala, D. Korpi, and J. M. Huttunen, “Deeprx: Fully convolutional
deep learning receiver,” IEEE Transactions on Wireless Communica-
tions, vol. 20, no. 6, pp. 3925-3940, 2021.

J. Pihlajasalo, D. Korpi, M. Honkala, J. M. Huttunen, T. Riihonen,
J. Talvitie, M. A. Uusitalo, and M. Valkama, “Deep learning based ofdm
physical-layer receiver for extreme mobility,” in 2021 55th Asilomar
Conference on Signals, Systems, and Computers. 1EEE, 2021, pp.
395-399.

S. Cammerer, F. A. Aoudia, J. Hoydis, A. Oeldemann, A. Roessler,
T. Mayer, and A. Keller, “A neural receiver for 5g nr multi-user mimo,”
in 2023 IEEE Globecom Workshops (GC Wkshps). 1EEE, 2023, pp.
329-334.

H. Mao, H. Lu, Y. Lu, and D. Zhu, “Roemnet: Robust meta learning
based channel estimation in ofdm systems,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). 1EEE, 2019, pp.
1-6.

S. Park, O. Simeone, and J. Kang, “Meta-learning to communicate: Fast
end-to-end training for fading channels,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 5075-5079.

R. Li, O. Bohdal, R. Mishra, H. Kim, D. Li, N. Lane, and T. Hospedales,
“A channel coding benchmark for meta-learning,” arXiv preprint
arXiv:2107.07579, 2021.

M. B. Fischer, S. Dorner, S. Cammerer, T. Shimizu, H. Lu, and
S. Ten Brink, “Adaptive neural network-based ofdm receivers,” in 2022
IEEE 23rd International Workshop on Signal Processing Advances in
Wireless Communication (SPAWC). 1EEE, 2022, pp. 1-5.

0. Wang, J. Gao, and G. Y. Li, “Learn to adapt to new environments from
past experience and few pilot blocks,” IEEE Transactions on Cognitive
Communications and Networking, vol. 9, no. 2, pp. 373-385, 2022.
Mar. 2024, page Version ID: 1213178766. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Eb/N0&oldid=1213178766
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo et al, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online]. Available: https:
/Iwww.tensorflow.org/

C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee, “5g ultra-reliable and
low-latency systems design,” in 2017 European Conference on Networks
and Communications (EuCNC), 2017, pp. 1-5.

X. Zhang, Y. Li, Z. Zhang, and Z.-L. Zhang, “Domain disentangled
meta-learning,” in Proceedings of the 2023 SIAM International Confer-
ence on Data Mining (SDM). SIAM, 2023, pp. 541-549.

Authorized licensed use limited to: University of Minnesota. Downloaded on June 03,2025 at 17:05:45 UTC from IEEE Xplore. Restrictions apply.

248



