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Abstract

Rabies is a zoonotic infectious disease of global distribution that impacts human and animal

health. In rural Latin America, rabies negatively impacts food security and the economy due
to losses in livestock production. The common vampire bat, Desmodus rotundus, is the
main reservoir and transmitter of rabies virus (RABV) to domestic animals in Latin America.
Desmodus rotundus RABV is known to impact the cattle industry, from small farmers to
large corporations. We assessed the main patterns of rabies in cattle attributed to D. rotun-
dus RABV across Latin America. Epidemiological data on rabies from Latin America were
collected from the Pan American Health Organization spanning the 1970-2023 period.
Analyses revealed an average of 450 outbreaks annually for the countries where D. rotun-
dus is distributed, with at least 6 animals dying in each outbreak. Brazil, Colombia, Peru,
and Mexico were the Latin American countries with the highest number of rabies outbreaks
during the study period and are the most affected countries in recent years. Findings sug-
gest a re-emergence of bat-borne rabies in the region with more outbreaks reported in
recent years, especially during the 2003—-2020 period. Rabies outbreaks in cattle in the
2000—-2020 period were significantly more frequent than in previous decades, with an
increase in cross-species transmission after 2002. The size of outbreaks, however, was
smaller in recent years, involving lower cattle mortality. Peru, El Salvador, and Brazil
showed a strong association (R =0.73, p = 0.01) between rabies incidence in D. rofundus
(rates per million humans: 1.61, 0.94, and 1.09, respectively) and rabies outbreaks in cattle
(rates per million cattle: 465.85, 351.01, and 48.22, respectively). A sustained, standard-
ized, and widespread monitoring of D. rotundus demography and health could serve to
inform an early warning system for the early detection of RABV and other bat-borne patho-
gens in Latin America. Current data can be used to forecast when, where, and in which
intensity RABV outbreaks are more likely to occur in subtropical and tropical Latin America.
A decrease in the size of outbreaks could suggest that strategies for epidemic management
(e.g., education, early diagnosis, vaccination) have been effective. The increase in the num-
ber of outbreaks could suggest that the factors facilitating cross-species transmission could
be on the rise.
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Introduction

Rabies is a wildlife disease causing negative impacts on ecosystem, animal, and human health
[1]. Rabies generates deaths in humans and pets, direct and indirect economic losses to live-
stock, especially cattle in Latin America, and localized extinctions of endangered wildlife due
to rabies control (e.g., bat culling) and outbreaks (e.g., Ethiopian wolves) [1—4]. Rabies is a
highly lethal, neglected tropical, zoonotic disease caused by rabies virus (RABV; Lyssavirus)
[5]. RABYV is generally transmitted through the saliva of infected mammals [6]. RABV can also
be transmitted through scratching, licking, inhalation of aerosols, and, rarely, through organ
transplants [1].

Rabies transmitted by the common vampire bat, Desmodus rotundus, in Latin America and
the Caribbean presents a complex epidemiological situation that requires multidisciplinary
efforts for its understanding and control [7, 8]. Bats are recognized as natural reservoirs of
diverse RABV variants. While canine rabies has decreased and is under control in Latin Amer-
ica, bat-borne rabies is re-emerging [9].

In subtropical and tropical areas of Latin America, D. rotundus is the natural reservoir of
RABYV variant 3 [10, 11]. Other wild animals, such as coaties and non-human primates, can be
infected and transmit RABV [12, 13]. Cattle are the most preferred prey of D. rotundus [14,
15], which generates considerable economic losses to agriculture [16, 17]. The expansion of
the cattle industry increases prey availability for D. rotundus, altering the sylvatic RABV trans-
mission cycle [17].

In the Neotropics, from southern Mexico to central Chile and Argentina, RABYV is the most
important bat-borne pathogen [18-20]. RABV genetic lineages from bats have been found in
dogs and cats, demonstrating the epidemiological role of bats in the transmission of RABV to
domestic animals [21]. RABV bat variants in humans has recently increased [22]. The large
number of bat species, the impossibility of vaccinating them, and their roosting and feeding
behavior highlight the challenge of controlling RABYV in bats [21, 23].

The economic impacts of rabies in cattle include direct mortality, direct and indirect losses
in dairy and meat production, and prevention and control costs [24]. For example, in a study
conducted in Brazil, the estimated annual economic loss was at least USD 5000 per farm [25].
Additionally, estimated amounts spent on vaccination range between USD 2 and 1437 per
property, depending on the number of livestock [25]. The average cost of annual vaccination
per farm is USD 148 [25]. The relationship between the estimated cost of rabies vaccination of
the entire herd and the economic losses per property could be, on average, 9.74% [25]. The
relationship between the total cost of vaccination and the total economic loss, adding all prop-
erties, could be at least 5.8% [25].

Desmodus rotundus is one of the only three bat species that feed exclusively on blood [26].
Desmodus rotundus has feeding habits that vary with changes in the availability of wild and
domestic prey across its range [17, 23, 27, 28]. The intensification of livestock breeding has cre-
ated a new, abundant, and reliable blood source for D. rotundus [26, 29]. The increase in prey
resources has caused D. rotundus population growth and range expansion [15, 30]. The geo-
graphical expansion of D. rotundus during the last century is linked to the increase in availabil-
ity of livestock and shelters, such as mines, tunnels, wells, sewers, and abandoned houses [31].
The wild prey of D. rotundus has been displaced due to resource extraction and agricultural
expansion in Latin America, modifying D. rotundus’ feeding preferences [8].

The objective of this study was to explore D. rotundus RABV incidence in livestock in Latin
America. Considering the sustained expansion of agriculture in this region [32] hindered by
the continuous efforts to control D. rotundus colonies [23], we hypothesized that the burden of
D. rotundus RABYV in cattle has remained stable across time. Results from this study could
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help determine where and when D. rotundus RABV prevention should be prioritized trough
vaccination.

Materials and methods
Data

The study area included 21 continental/inland Latin American countries where D. rotundus is
naturally distributed. Countries studied included (in latitudinal order) Mexico, Belize, Guate-
mala, Honduras, El Salvador, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Guyana,
Suriname, French Guiana, Ecuador, Brazil, Peru, Bolivia, Chile, Argentina, Paraguay, and
Uruguay. Data on D. rotundus RABV outbreaks in cattle were collected from the Regional
Information System for the Epidemiological Surveillance of Rabies (SIRVERA) during the
1970-2023 period [33]. SIRVERA is a database for rabies prevention in the Americas where
national health authorities of countries in the Americas report rabies incidence monthly in
coordination with PANAFTOSA-PAHO/WHO [34]. Original SIRVERA data for this period
were composed of more than 54,145 records for a plethora of species, our study focused on
rabies in cattle which represented most of the records (45.2%). The inclusion criteria for the
SIRVERA data included reports with information on types of cases (i.c., animals), date of noti-
fication (i.e., between January 1970 to December 2023), and target species (i.e., cattle).

Analyses

Spatial analyses were carried out using choropleth maps to visualize area patterns [35]. Coun-
try, year, month, and number of affected cattle (cases) were evaluated, and each report in the
database was considered an outbreak. In addition, monthly seasonality analyses and heat maps
were made to describe the distribution of rabies cases in cattle by country accounting for their
latitude [36]. Change in annual frequency of rabies outbreaks over time was estimated by
country. Change of incidence were estimated by comparing annual values against a baseline
from the 1970-1979 period. A value equal to 0 denoted no change, >0 an increase, and <0 a
decrease annual incidence of outbreaks.

Outbreaks were defined as at least one animal reported infected, while cases were defined as
the actual number of animals affected during an outbreak or period. Linear regression models
were performed to quantify the relationship between the number of RABV-infected D. rotun-
dus and RABV outbreaks in cattle. Rabies incidence was estimated annually for D. rotundus
and cattle. To mitigate sampling bias, rabies reports in D. rotundus were standardized accord-
ing to the total human population per country because there are no national population data
for the bat species. Rates of rabies reports in cattle were standardized according to the total cat-
tle population by country. Rabies in D. rofundus and cattle were presented per million individ-
uals to have comparable units (S1 Table). Software R (R version 4.3.1) and R Studio (Version
2023.06.1+524) were used for the statistical analysis and data visualization. R packages
employed included dplyr, tidyr, and devtools for data manipulation, ggplot2, bbplot, ggalt,
ggpubr, and ggrepe for data visualization and analysis [37], and sp, rgdal and maptools for spa-
tial analyses [38].

Results

The total number of rabies outbreaks in cattle in Latin America during the study period was
23,869. Of the country records of rabies outbreaks in cattle available in SIRVERA, 8.2%
(n=1958) did not have administrative data at the state, provincial, or departmental level, and
23.9% (n =5709) did not have data at the municipal level. The highest accumulation of
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Table 1. Number of rabies outbreaks in cattle per country (in latitudinal order) between 1970 and 2023. Outbreaks: The total number of outbreaks for the study
period by country. Cases: The total number of cases for the study period by country. Cases/Outbreak: average of cases per outbreak. Outbreaks/Y ear: average of outbreaks
per year. Cases/Y ear: cases per year for each country. Bold: highest values for each variable. (Data source: SIRVERA).

Country
Mexico
Belize
Guatemala
Honduras
El Salvador
Nicaragua
Costa Rica
Panama
Colombia
Venezuela
Guyana
Suriname
French Guiana
Ecuador
Brazil
Peru
Bolivia
Chile
Argentina
Paraguay
Uruguay
Average
Total

https://doi.org/10.1371/jounal.pone.0317214.t001

Outbreaks
2,286
182
412
167
276
102
143
233
2,858
310
35
11
5
894
11,302
2,731
566
9
338
961
48
1136.6
23869

Cases Cases/Outbreak Outbreaks/Year Cases/Year
16,161 7.1 57.2 304.9
231 1.3 7.6 44
797 1.9 8.9 15.1
785 4.7 42 14.8
1138 4.1 6.9 215
335 33 24 6.3
202 1.4 3.7 3.8
992 43 5.8 18.7
5,227 1.8 58.3 98.6
4,220 13.6 6.7 79.6
546 15.6 2.7 10.3
52 4.7 1 0.9
19 3.8 1 0.4
1600 1.8 179 30.2
87,515 7.7 226.1 1651.2
4,089 1.5 56.9 77.2
2,111 3.7 142 39.8
32 3.6 1 0.6
4,935 14.6 8.2 93.1
2,722 2.8 19.2 514
92 1.9 9.6 1.7
6371.5 5.1 24.7 120.2
133801 5.6 450.4 2524.5

outbreaks in the period 1970-2023 occurred in Brazil (11,302 outbreaks), followed by Colom-
bia (2858 outbreaks), Peru (2731 outbreaks), and Mexico (2286 outbreaks). For the rest of
Latin America, the accumulation of outbreaks was less than 900 total outbreaks reported per
country during the entire study period (Table 1, Fig 1A).

A total of 133,801 heads of cattle were reported infected with RABV (rabies cases) in Latin
America during 1970-2023. The highest number of cases occurred in Brazil (87,515) and
Mexico (16,161), which together accumulated 77.5% of all rabies-driven cattle cases in Latin
America during the study period (Table 1, Fig 1B). Outbreak size varied geographically, with
values ranging from 1 to 5900 cases per outbreak for Brazil, 1 to 1535 cases per outbreak for
Mexico, and from 1 to 1360 cases per outbreak for Argentina. There was a variable number of
total number of cases per country during the study period (Table 1).

Rabies outbreaks in cattle across Latin America were stable across the year, with a sustained
monthly incidence of outbreaks (Fig 2A and 2B). The average number of outbreaks across the
study area in January was 111.1 (£53.2), February 115.8 (£52.8), March 109.5 (+51,9), April
108.7 (£51.2), May 123.9 (+61.1), June 117.8 (+58.7), July 105.4 (£52,1), August 115.7 (£59.4),
September 104.3 (£51.2), October 101.5 (£49,4), November 88.9 (+44.7), and December 76.9
(£36.3). There was non-significant monthly tendency in the number of outbreaks to decrease
late in the year with a weak peak of in May (Fig 2B). We found an overall average of 106.6 out-
breaks per month during the study period across Latin America. On average, 450.4 rabies out-
breaks/year were reported across Latin America in the 50 years assessed, but this incidence

differed significantly (Anova: F(20,707) = 11.66, p<0.001) across countries (Table 1). The total
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Fig 1. Geographic distribution of rabies outbreaks in cattle between 1970 and 2023. A) Map of the total number of outbreaks per country denoting counties
with the highest (red) and lowest (blue) number of rabies outbreaks in cattle. B) Map of the total number of cases of rabies in cattle.
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number of outbreaks for the 1970s decade was 164, while for the 2010s it reached 11,787. On
the contrary, the total number of cases in the 1970s was 32,935, while for the 2010s it dropped

to 15,649 cases per decade (S1 Fig).

Countries in the tropical belt, close to the Equator line (e.g., Brazil, Colombia, southern
Mexico, and Peru), presented the highest numbers of outbreaks (Fig 2A). Countries with the
highest numbers of outbreaks included Brazil 226.1 (+48.9) outbreaks/year, Colombia 58.3
(£11.9) outbreaks/year, Mexico 57.2 (£14.7) outbreaks/year, and Peru 56.9 (£11.1) outbreaks/
year (Fig 2C). The average number of rabies cases per outbreak was 5.1 when accounting for
the entire study area and period. Argentina (14.6 cases/outbreak) and Venezuela (13.6 cases/
outbreak) had the highest outbreak sizes with ~14 dead animals per outbreak during the 50
years. The overall average number of outbreaks per year across the study area was 24.7. Con-
trolling frequency of outbreaks by cattle density per country revealed some countries with
high burden of rabies not detected in when using overall outbreak numbers. For example,
Peru had 466 outbreak reports per million cattle and El Salvador 351 outbreak reports per mil-
lion cattle, while Brazil had only 48 outbreak reports per million cattle.

The average number of cases annually was 120.2, with Brazil (1651.2), Mexico (304.9),
Colombia (98.6), Argentina (93.1), and Peru (77.2) showing the highest annual incidence
(Table 1). A significant positive relationship was observed between annual outbreaks and
annual cases in cattle in Brazil, Mexico, Colombia, and Peru. For other countries, the annual
number of cases did not correlate with the number of outbreak events (S2 Fig).

Outbreak incidence of rabies in cattle, relative to the 1970—1979 baseline period, increased
per year from 1980 to 2023 in Latin America, with a heterogeneous but sustained increase in
outbreaks in all countries since 2002. Brazil showed a peak of 1061 outbreaks in 2006 com-
pared with its 1970s baseline (standardized with a value of 0), followed by Mexico with a peak
(375 outbreaks) in 2005, and Colombia with a peak (265 outbreaks) in 2009. All countries
showed a tendency to decrease in the annual number of outbreaks early in the 2020s decade

(Fig 3).

Only 10 countries, (i.e., Peru, El Salvador, Brazil, Bolivia, Paraguay, Uruguay, Panama,
Mexico, Argentina, and Colombia) of the 21 analyzed, reported rabies in D. rotundus (S1
Table). For the countries with D. rotundus incidence data, there was a positive association
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https://doi.org/10.1371/jounal.pone.0317214.9g002

between the number of rabid D. rotundus and the number of rabies outbreaks in cattle

(R=0.73,p=0.01). Peru, El Salvador, Panama, and Colombia showed more outbreaks of
rabies in cattle than expected by the number of rabid D. rotundus reported (Fig 4, S1 Table).
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Discussion

We evaluated the main epidemiological patterns of rabies incidence in cattle attributed to D.
rotundus in Latin America between 1970-2023. Understanding trends in D. rotundus RABV
cross-species transmission from bats to cattle is essential for public health, animal health, wild-
life conservation, and the overall well-being of rural communities [39]. For public health,
updates on the epidemiology of rabies allows the development of effective interventions, pro-
tecting human populations at risk, and mitigating the economic and social impacts of the dis-
ease [40]. In the case of animal health, understanding the burden of rabies allows the
development of specific interventions in livestock production systems, promotes animal well-
being, and supports sustainable agriculture by reducing the economic impact of rabies on live-
stock herds in Latin America [41, 42]. In wildlife, more information on rabies circulation can
help guide epidemiological surveillance in wildlife, can help protect wild populations affected
by disease, and can mitigate uninformed bat culling for the control of rabies [43]. Culling non-
target bat species for rabies control actually could increase rabies transmission with the collat-
eral damage of decrease of bat-derived ecosystems services [3, 44].

No seasonality was detected in rabies cross-species transmission events. Instead, a constant
incidence was observed in the frequency of rabies outbreaks in cattle in Latin America. Rabies
outbreaks in cattle have increased at different magnitudes in Latin American countries in the
last 20 years. Outbreak size (cases reported per outbreak), however, has decreased. The lack of
detectable seasonal fluctuations in outbreak reports suggests the absence of a detectable effect
of weather on the continental patterns of rabies cross-species transmission [45]. At the local
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level, however, there may be periods in which there is a remarkable increase in the number of
rabies cases likely linked to weather [46, 47].

Rabies outbreaks could be triggered by various factors, such as changes in environmental
conditions, interactions between wildlife and livestock, and a decrease in rabies vaccination in
cattle [48]. Mandatory vaccination of cattle in high-risk foci and peripheral areas and volun-
tary vaccination in low-risk areas is suggested as a strategy for rabies control in some countries
[39]. In the Americas, mandatory vaccination against rabies for livestock it is not applied uni-
formly. The dynamics of rabies transmission can be influenced by changes in the demography
of bats, livestock management practices, and local habitat [49, 50]. Here, we report a positive
association between the number of rabies outbreaks in D. rotundus and the number of rabies
outbreaks in cattle. This suggests that wildlife health impacts domestic animal health. That is,
the wildlife-livestock interface can be modulated by external forces, so that monitoring wildlife
health benefits the livestock industry [S1].

In other studies, the behavior of D. rotundus, such as feeding and movement patterns, have
not revealed significant monthly variations [29, 31]. In tropical Latin America, environmental
conditions remain relatively stable throughout the year, with minimal variations in tempera-
ture, precipitation, or other factors influencing the behavior and demography of bats and live-
stock [52]. The absence of significant changes in livestock management over the months could
be explained by the non-seasonality in rabies transmission patterns in Latin America [39].
Despite the non-significant difference in monthly outbreaks, at the local level, months like
May could coincide with favorable conditions for greater activity or reproduction of bats [53].
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Thus, the lack of detection of monthly trends could be influenced by biased data collection or
surveillance [46, 54], and incomplete data obscuring detectable signals of seasonality. Alterna-
tively, stable food availably offered by livestock herds could help sustain D. rotundus abun-
dances and rabies incidence unchanged. Possible seasonal variations in the behavior of D.
rotundus, including feeding patterns, resting preferences, RABV seroprevalence, and move-
ment and migration patterns, as well as demographic changes, should be contrasted with
rabies in cattle in future research.

Future research could also explore the influence of environmental factors, such as tempera-
ture, humidity, and vegetation structure, on D. rotundus habitat use and their interaction with
livestock. Similarly, evaluations of seasonal patterns in livestock movement, behavior, and
grazing practices could help inform their vulnerability to D. rotundus bites. The SIRVERA
dataset used here could also be informative for continent-wide models of rabies transmission
dynamics within D. rotundus populations and between D. rotundus and cattle herds to predict
possible seasonal, latitudinal, and altitudinal trends.

Tropical environments are home to diverse ecosystems with a great wealth of wildlife,
which can be prey for D. rotundus [15, 55]. Desmodus rotundus prey can modulate the mainte-
nance and transmission of RABV in an ecosystem via dilution and amplification effects [19].
We found that tropical countries had the highest number of outbreaks across the study period
(Figs 1 and 2A). In the intertropical belt of the Americas, D. rotundus is distributed in greater
abundance and in a greater number of colonies due to favorable climatic conditions [31]. Simi-
larly, dense vegetation and varied habitats in tropical regions provide suitable roosting sites for
D. rotundus and facilitate their access to livestock [56]. Traditional livestock management
practices in tropical regions, such as free-ranging livestock and communal grazing areas, may
increase the likelihood of interactions between livestock and D. rotundus [50, 57]. We argue
that our results suggest that traditional livestock management in the tropics should be
revisited.

This study was conducted with data from passive epidemiological surveillance, with has
implicit sampling bias. For example, some Latin American countries face challenges in terms
of limited veterinary resources, including vaccination programs and surveillance [58]. A lack
of resources can make it difficult to effectively detect, quantify, control, and prevent D. rotun-
dus rabies in cattle. Limited awareness and education about rabies and its transmission
dynamics may contribute to delays in responses and inadequate preventive measures [39, 59],
resulting in an underestimation of the burden of D. rotundus rabies. Livestock farmers may be
less informed about the risks and ways to protect livestock from rabies in the tropics [60]. Our
direct observation also revealed that in countries like Guatemala, due to limitations in
resources and logistics, field veterinary epidemiologists often send to the laboratory less sam-
ples (heads of cattle) than the actual number of animals deceased (Escobar LE, personal com-
munication 1/10/2024). Thus, given the differences in diagnostic capabilities across Latin
America [9], future research could assess the burden of D. rofundus RABV accounting for
biases in disease surveillance, laboratory capacities, and reporting systems [57, 61]. We argue
that larger outbreaks could be underestimated due to surveillance fatigue, where limited field
and laboratory resources limit capacities to track the actual number of deceases animals [62].

Underreporting of cattle rabies cases in Latin America can be a major concern, influenced
by factors such as surveillance limitations, lack of awareness, and socioeconomic conditions.
Existing rabies surveillance systems often rely on passive reporting by livestock farmers, which
can lead to underreporting in remote areas [63]. Local livestock farmers and veterinarians may
lack training to identify rabies, resulting in missed cases in aeras where the disease is not
endemic [64]. In rural Latin America, economic pressures may discourage reporting by farm-
ers to avoid potential economic losses [39]. Limited access to veterinary services in rural areas
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may hamper timely diagnosis and reporting [47]. Low awareness of rabies in some areas con-
tributes to underreporting [65]. We argue that education and training should be conducted in
the areas identified in this study. Improved education and training of livestock farmers and
veterinary staff are key to improving reporting rates [65].

Additionally, underreporting of bovine rabies cases in Latin America has significant impli-
cations for public health, economic stability, and disease management strategies. Underreport-
ing leads to an underestimation of livestock deaths, with studies suggesting that for every
reported case, there may be 4.6 unreported cases [16]. Economic losses attributed to bovine
rabies can reach up to $171,992 per year in specific regions, significantly affecting smallholder
farmers [16]. The persistence of rabies in livestock, particularly from D. rotundus, poses a
direct risk to human health, as evidenced by the high percentage of human cases linked to
rabies in livestock [65]. Lack of consistent reporting hampers the ability to track rabies out-
breaks, complicating public health responses [66]. Underreporting of cases leads to poorly
informed vaccination strategies, which may not adequately address the true scale of the prob-
lem [46, 67]. Improved surveillance and reporting mechanisms are essential to accurately
assess the disease burden and implement effective control measures [65].

Future research to address underreporting of bovine rabies cases in Latin America should
focus on improving surveillance systems, enhancing farmer education, and using advanced
modeling techniques. Transitioning from passive to active surveillance methods to ensure
timely reporting of cases, as seen in Ecuador’s AGROCALIDAD program [63]. Similarly,
implementing GIS tools to map and analyze spatiotemporal trends of rabies transmission [47].
Educating farmers about rabies symptoms and reporting protocols could help increase case
identification [16]. Involving local communities in surveillance efforts to improve reporting
rates, particularly in remote areas, can help detect cryptic cases of wildlife rabies [16].

Annual outbreaks of rabies in cattle differed significantly between countries. The countries
with the highest number of outbreaks per year were Brazil, Colombia, Mexico, and Peru. We
found that these countries should consider sustained investments in rabies vaccination, D.
rotundus RABV research, and rabies surveillance under the One Health approach. This inte-
gral rabies monitoring could help secure healthier people and livestock, which directly benefits
public health and food security. Countries with strong educational and vaccination programs,
coupled with community participation may experience better rabies control [68]. Differences
in the ability to implement and maintain national rabies prevention and control measures,
such as vaccination [39, 52], may be influencing the geographic variations in the frequency of
outbreaks reported here. Future studies should investigate socioeconomic factors that may
contribute to differences in local rabies incidence, outbreak size, and reporting within and
between countries.

The prevalence of rabies in cattle in Brazil, Colombia, Mexico, and Peru can be attributed
to interrelated factors, such as the distribution of D. rotundus, cattle density, and environmen-
tal conditions. These countries present ecological and socioeconomic characteristics that facili-
tate sustained rabies transmission among cattle. The density of D. rotundus populations
correlates with rabies outbreaks [69]. Brazil and Colombia have significant populations of D.
rotundus, which thrive in rural areas where cattle are abundant [47]. High cattle populations in
these countries increase the risk of rabies transmission. For example, Colombia reported 4888
confirmed cases of cattle rabies between 2005 and 2019, with significant outbreaks in regions
with high cattle density [47, 52]. Rabies cases in Mexico were concentrated in states with high
cattle densities, indicating a direct relationship between cattle density and outbreak frequency
[69]. Climatic and topographic conditions in these countries create favorable environments
for D. rotundus, enhancing its interaction with cattle [69]. Socioeconomic factors influence
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inadequate vaccination coverage and limited public awareness, which contribute to the persis-
tence of rabies outbreaks despite control efforts [52, 67].

Data revealed an increase in rabies outbreaks in all Latin American countries starting in
2002. The increase in the number of outbreaks could suggest more frequent cross-species
transmission events or improved surveillance capabilities in the region. The geographic expan-
sion of D. rotundus and the continent-wide increase in outbreaks reveal more frequent cross-
species spillover transmission events of a bat-borne virus. For example, D. rotundus popula-
tions have been favored by anthropogenic activities, such as the widespread land use changes
in Latin America for livestock production [51, 70]. The abundance and accessibility of live-
stock as a food source for D. rotundus increase the subside of resources for the bats and
increase their contact with cattle and the possibility of RABV cross-species transmission [ 15,
51, 71]. The destruction of D. rotundus colonies is linked to bats’ displacement facilitating
rabies spread to novel regions [19, 23, 49, 72]. All countries revealed a decrease in outbreak
reports in the early 2020s, which possibly was due to the COVID-19 pandemic limiting surveil-
lance. For example, in Germany, there were fewer reports of upper respiratory tract infections,
gastrointestinal infections, and urinary tract infections during the COVID-19 pandemic [73],
as there were for Lyme disease in the United States [74]. Particularly for rabies, in India, the
COVID-19 lockdown indirectly reduced the reporting of dog bite cases [75], and in the United
States, both the number of samples sent for rabies diagnosis and the number of reported rabies
cases decreased during 2020 [76] and 2021 [77].

The number of infected animals in each outbreak varied geographically (Table 1 and Fig 1)
and temporally (Fig 2). We found a decrease in outbreak size (number of cases per outbreak),
which could suggest that epidemic management strategies have been more effective to control
outbreaks. The implementation of educational programs on animal health and rabies for live-
stock farmers in rural areas has been associated with a decrease in the incidence of rabies in
cattle [39]. Improved diagnosis allows faster and more accurate identification of RABV, lead-
ing to timely rabies control in cattle [59] and humans [78]. More accessible rabies vaccination
of livestock, pre and post exposure, leads to a decrease in the number of rabies cases (Ribeiro
etal., 2021), while lower vaccination coverage has been linked to a rise in rabies cases [16, 52].
Thus, improving cattle vaccination coverage in both endemic and recently infected areas is a
robust tool to reduce outbreak size in livestock [16, 52].

There was a positive association between rabies outbreaks in D. rotundus and outbreaks
in cattle (Fig 4). The model revealed that Peru, El Salvador, Panama, and Colombia showed
more rabies outbreaks in cattle than expected from the number of rabid D. rotundus
reported maybe due to their high livestock densities. This analysis was geographically lim-
ited to the relatively small number of D. rotundus samples submitted to national veterinary
diagnostic laboratories. In this sense, campaigns for the control and surveillance of rabies in
livestock species should include the monitoring of RABV in D. rotundus populations [28].
Previous models have shown that livestock abundance is linked to D. rotundus abundance
and that D. rofundus abundance is linked to rabies incidence in D. rotundus, which corre-
lated with RABYV cross-species transmission to livestock [28, 51, 79]. More than half
(52.4%) of Latin American countries reported no cases of rabies in D. rotundus (e.g., Guy-
ana, French Guiana, Suriname), suggesting limited to nil RABV surveillance in wildlife res-
ervoirs or poor reporting. The geographic expansion of D. rotundus facilitating its invasion
to new geographies leads to a greater risk of the emergence of rabies [80, 81]. As such, D.
rotundus monitoring and surveillance should be at the front of rabies prevention and con-
trol. For example, countries such as the United States [76, 77, 82, 83], Mexico [54], Costa
Rica [84], Peru [16], and Brazil [85, 86] have bat-borne rabies monitoring programs. The
basic components to be considered in a bat-borne rabies monitoring program include
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surveillance in rural and urban areas, training on bat-borne rabies for stakeholders and the
public, prophylactic measures for exposed people, awareness campaigns in cooperation
with environmental agencies in relation to legislation on hunting, breeding and marketing
of wild animals, and community education on the risks of zoonotic diseases transmitted by
wildlife [85, 86].

Desmodus rotundus can pose a serious threat to public health, particularly in rural and
indigenous communities where interactions with bats are more frequent. For example, in
2011, an outbreak in Yupicusa, Peru, resulted in the deaths of 21 children and two adults,
highlighting the severe impact of D. rotundus-transmitted rabies on vulnerable populations
[8]. A recent outbreak among the Maxakali people in Brazil resulted in the death of four chil-
dren due to recreational contact with bats, highlighting cultural practices that increase the risk
of exposure [87].

Historically, management of bat-borne rabies involves pre-exposure vaccination of live-
stock, vaccination of humans bitten by D. rotundus, and culling of bats [20, 23]. Bat culling
includes the topical use of anticoagulant poisons, such as warfarin or diphacinone [24, 27, 28].
Bat culling, however, has not proven to effectively serve to reduce the burden of rabies. Instead,
bat culling is counterproductive as it can increase the circulation of RABV in the area [3, 49].
Furthermore, modification of livestock practices is suggested to reduce the accessibility of bats
to their food source [88]. For example, the use of artificial light, protective pens, modification
of the size, composition and location of the livestock herd, or hormonal reproductive control
of bats has been proposed [20, 27]. The effectiveness of these measures has not been rigorously
evaluated. An oral vaccine ingested and transferred from bat to bat can reduce costs and
increase coverage at the population scale [3, 20, 89], but their effect on the ecology of rabies
and the demographics of D. rotundus have not been explored.

One of the goals of the World Health Organization and Pan American Health Organization
is that rabies control must be multinational by the year 2030 [90]. In this regard, future rabies
research can explore detailed distributional trends of D. rotundus range expansion, including
its speed, direction, and corridors used for expansion. Understanding the demography and
distribution of D. rotundus could help delineate cattle herds at risk of rabies cross-species
transmission in new regions.

A limitation of this study was the spatial uncertainty derived from the lack of standardiza-
tion and data gaps at the department, state, and municipality levels in the SIRVERA database.
A proportion of rabies in livestock records had administrative data at the state, province, or
department, and less at the municipal level. Only recent SIRVERA records offered greater data
quality suggesting a relative bias and lack of information in older data plagued by null data.
Comparatively, countries such as Brazil, Colombia, Mexico, and Peru had more complete rec-
ords, while data from countries such as French Guyana and Suriname were generally lacking.
Gaps in the dataset highlight the inequities in public and veterinary public health agencies
across the Americas, with more developed countries hosting PAHO/PANAFTOSA showing
better surveillance systems. The next frontier in rabies prevention and control in Latin Amer-
ica should consider data generation, compilation, and sharing at finer spatial scale than the
national level, such as the municipality or farm level. Finer geographic scales would allow
more precise georeferenced data and more informative analysis than those feasible with the
current database. SIRVERA, however, depends on voluntary reports made by animal health
authorities or national veterinary services in Latin American countries. The quality of the data
available per country in SIRVERA could serve as a diagnostic tool for the maturity and accu-
racy of veterinary surveillance systems in the region and could help inform adaptive manage-
ment and capacity-building efforts.
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Conclusions

Understanding the regional patterns of RABV cross-species transmission from D. rotundus to
cattle facilitates effective continent-wide control and prevention strategies. We found that
rabies is undergoing spread with more outbreaks registered across time and some countries
being more severely affected. We found that the widespread distribution of D. rotundus RABV
and a year-long incidence complicate rabies control effort. Results presented here could help
determine where and when monitoring of D. rotundus populations and active monitoring of
RABYV in bats should be prioritized. Desmodus rotundus RABV could be a robust model to
study bat-borne virus cross-species transmission to understand the drivers of recent and future
epidemics of bat-borne viruses. Rabies in livestock is a food security problem that largely
affects rural communities and threatens the well-being of farmers, public health, and veteri-
nary health. This study reveals a rise in the number of annual outbreaks of bat-borne rabies in
cattle across Latin America.
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