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DISTANCE SETS BOUNDS FOR
POLYHEDRAL NORMS VIA EFFECTIVE

DIMENSION

Abstract

We prove that, for every norm on Rd and every E ⊆ Rd, the Haus-
dorff dimension of the distance set of E with respect to that norm is at
least dimH E − (d− 1). An explicit construction follows, demonstrating
that this bound is sharp for every polyhedral norm on Rd. The tech-
niques of algorithmic complexity theory underlie both the computations
and the construction.

1 Introduction

Given a set E ⊆ Rd, let

∆(E) := {∥x− y∥ ∈ [0,∞) :x, y ∈ E}

be the distance set of E, where ∥ · ∥ is the Euclidean norm. The Falconer
distance problem is to find a lower bound on dimH ∆(E), the Hausdorff di-
mension of the distance set, in terms of the Hausdorff dimension of E itself.
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A frequent simplification is to fix a point x ∈ Rd and instead investigate the
pinned distance set

∆x(E) := {∥x− y∥ ∈ [0,∞) : y ∈ E}.

Since ∆x(E) ⊆ ∆(E) whenever x ∈ E, any lower bound on the size of ∆x(E)
immediately implies the same bound on the size of ∆(E). An interesting vari-
ant of the Falconer distance problem is to seek dimension bounds on distance
sets relative to a different norm ∥ · ∥∗. In this case, the corresponding distance
and pinned distance sets are denoted ∆∗(E) and ∆∗

x(E), respectively.
Falconer [5] proves a simple estimate in the Euclidean case:

Theorem 1.1 (Falconer [5]). If E ⊆ Rd is any set, then

dimH ∆(E) ⩾ dimH E − (d− 1).

The elementary proof presented by Falconer generalizes to other norms
with little modification. However, the techniques of algorithmic complexity
provided in [9] are highly applicable here, and we use this theory to give an
alternate proof for pinned distance sets of the general case.

Theorem 1.2. Let ∥ · ∥∗ be any norm on Rd and let E ⊆ Rd. Then

dimH ∆∗
x(E) ⩾ dimH E − (d− 1)

for all x ∈ Rd.

Remark 1.1. The proof of Theorem 1.2 does not use the symmetry of ∥ · ∥∗,
so the theorem statement can be generalized to so-called asymmetric norms.
The same is true of Theorem 1.4 below.

Polyhedral norms provide a class of finite-dimensional normed spaces which
can be considered the “worst-case scenario” for the distance set problem, as
the curvature of the norm ball plays a major role in precluding the possibility
of a large number of points with equal pairwise distances. The relevance of
nonvanishing curvature manifests itself in [8]: the authors provide the best
known bound in the planar Euclidean case, and it is demonstrated that the
essential characteristic of the Euclidean ball required for their argument is
that it is a smooth norm ball with strictly positive curvature. A construction
of Falconer [6] illustrates the marked differences in the context of polyhedral
norms.

Proposition 1.3 (Falconer [6]). Let ∥ · ∥P be a polyhedral norm on Rd. Then
there exists a compact set F ⊂ Rd with dimH F = d such that L(∆P (F )) = 0.
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The relevance of curvature to the distance set conjecture is further explored
in [1], in which Falconer’s construction is generalized to the case in which at
most countably many points of the surface of the unit ball do not lie on any
open line segment contained in the surface of the unit ball (all but finitely
many points on the surface of a polyhedral ball satisfy this condition) or for
certain convex sets for which the measure representing the curvature field is
singular with respect to surface measure. For more state-of-the-art estimates
and information on the history of the Euclidean distance set conjecture, see
[3] and [4].

Our second result shows that polyhedral norms witness the sharpness of the
dimension bound in Theorem 1.2. This, too, will be proven using complexity
theoretic tools.

Theorem 1.4. Let ∥ · ∥P be a polyhedral norm on Rd. For any s ∈ [d− 1, d],
there exists a compact set E ⊂ Rd with dimH E = s such that

dimH ∆P (E) = s− (d− 1). (1.1)

Remark 1.2. The proof of Theorem 1.2 also works with Packing dimension
in place of Hausdorff dimension. However, the resulting statement for Packing
dimension is far from sharp.

Under the hypotheses of Theorem 1.4, it follows from Theorem 1.2 that
the pinned distance sets of E have minimal dimension s− (d− 1) at every pin
in E: that is,

dimH ∆P
x (E) = s− (d− 1) for all x ∈ E.

Following a brief synopsis of the background material, we prove Theo-
rem 1.2 in Section 3. In Section 4 we construct the examples described in
Theorem 1.4.

2 Preliminaries

This section summarizes the requisite terminology and results from algorithmic
complexity theory. See [9] for a more thorough exposition of this material. We
denote by

{0, 1}∗ :=
⋃
n∈N

{0, 1}n

the set of all (finite) binary strings, including the empty string λ ∈ {0, 1}0.
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Definition 2.1 (Kolmogorov Complexity of a String). Let σ, τ ∈ {0, 1}∗. The
conditional Kolmogorov complexity of σ given τ is the length of the shortest
program π that will output σ given τ . More precisely,

K(σ | τ) := min
π∈{0,1}∗

{ℓ(π) :U(π, τ) = σ},

where U is a fixed universal prefix-free Turing machine and ℓ(π) is the length
of π. The Kolmogorov complexity of σ is simply the conditional Kolmogorov
complexity of σ given the empty string:

K(σ) := K(σ |λ),

where λ is the empty string.

Throughout, we work with a fixed encoding {0, 1}∗ →
⋃

d∈N Qd, under
which the definitions above extend from strings to vectors over the rationals.

Definition 2.2 (Kolmogorov Complexity of a Point). Let x ∈ Rd and r ∈ Z+.
The Kolmogorov complexity of x at precision r is the length of the shortest
program that outputs a point in Qd that approximates x to r bits of precision:

Kr(x) := min {K(p) : p ∈ B(x, 2−r) ∩Qd}.

If also y ∈ Rd′
and s ∈ Z+, then the conditional Kolmogorov complexity of x

at precision r given y at precision s is defined by

Kr,s(x | y) := max
{
min{K(p | q) : p ∈ B(x, 2−r) ∩Qd} : q ∈ B(y, 2−s) ∩Qd′}

.

Note that, for x ∈ Rd, Kr(x) is always less than or equal to dr+O(log r).
To simplify notation, we also denote Kr,r(x | y) by Kr(x | y), Kr,s(x |x) by
Kr,s(x), and, when r ∈ (0,∞), K⌈r⌉(x) by Kr(x).

Lemma 2.1 (Symmetry of Information [10]). For all m,n ∈ N, x ∈ Rm,
y ∈ Rn, and r, s ∈ N with r ⩾ s:

(a)
∣∣Kr(x | y) +Kr(y)−Kr(x, y)

∣∣ ⩽ O(log r) +O(log log ∥y∥).

(b)
∣∣Kr,s(x |x) +Ks(x)−Kr(x)

∣∣ ⩽ O(log r) +O(log log ∥x∥).

In the remainder of the article, we will use the O(log r) error term to
encapsulate all errors accumulated from computing terms that do not change
as the precision, r, increases to infinity. This would include the log log ∥y∥ and
log log ∥x∥ terms from Lemma 2.1 as well as logm and log n terms already
suppressed in the statement of Lemma 2.1. Using the notion of Kolmogorov
complexity, one defines the concept of effective dimension as the asymptotic
Kolmogorov complexity of a given point.
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Definition 2.3. The effective Hausdorff dimension of a point x ∈ Rd is given
by

dim(x) := lim inf
r→∞

Kr(x)

r
.

The effective Packing dimension of a point x ∈ Rd is given by

Dim(x) := lim sup
r→∞

Kr(x)

r
.

In computability theory, a set A ⊆ N is called an oracle. Heuristically, a
Turing machine T can be said to have access to A if, in addition to its usual
operations, it can inquire whether the number currently printed on the work
tape belongs to A. This operation takes one step, and the answer to the
question is recorded as a state. The machine derived from T by allowing it
access to A is denoted TA.

The concepts of complexity and dimension defined above can be relativized
to an oracle A by replacing the fixed universal Turing machine U with UA.
These relativized concepts are denoted KA, dimA, etc. For us, the utility of
oracles is that they allow us to compute the Hausdorff dimension of a set from
the effective dimensions the points it contains.

Theorem 2.2 (Point-to-Set Principle [9]). For every set E ⊆ Rd,

dimH E = min
A⊆N

sup
x∈E

dimA(x) and dimP E = min
A⊆N

sup
x∈E

DimA(x).

One can infer from the proof of the point-to-set principle that, for any
oracle A and s ∈ (0, d], the set of points x that satisfy dimA(x) < s has
s-dimensional Hausdorff measure zero. In particular, dimA(x) = d for all x
outside of a Lebesgue-null set.

As in [11], we describe the complexity of a point x ∈ Rd relative to a point
y ∈ Rd′

as the complexity of x relative to an oracle set Ay that encodes the
binary expansion of y in a standard way. We define

Ky
r (x) := KAy

r (x).

Throughout the paper, we will often invoke the notion of (Martin–Löf) “ran-
domness.” A point x ∈ Rd is random with respect to an oracle A if∣∣KA

r (x)− rd
∣∣ ⩽ O(log r).

This also implies that each of the coordinates of x is random with respect to
the others and has effective Hausdorff dimension 1 with respect to the oracle
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A. More quantitatively, for t < r, the symmetry of information (Lemma 2.1)
implies that

rd+O(log r) = KA
r (x) = KA

r,t(x) +Kt(x) +O(log r)

⩽ KA
r,t(x) + td+O(log r),

whence ∣∣KA
r,t(x)− (r − t)d

∣∣ ⩽ O(log r).

This means that the first t digits of the binary expansion of x “do not help
much” in the calculating the remaining r − t digits, and that we would ap-
proximately need (r− t)d bits to calculate them. In the proof of Theorem 1.4,
we will have occasion to choose collections of strings of digits that are random
with respect to each other, but we can see from this discussion that such a
choice is always possible.

3 Distance set bounds for arbitrary norms

We begin with a “trivial” lemma for the benefit of the reader new to the theory
of Kolmogorov complexity.

Lemma 3.1. Let A ⊆ N. For all x, y ∈ Rd and r ∈ N,

KA,x
r (y) ⩽ KA,x

r (x+ y) +O(log r). (3.1)

Proof. Let TA,x be an oracle Turing machine that operates as follows: given
a rational point p ∈ Qd, a precision level r ∈ N, and a “corrector” string
σ = σ1 . . . σd′ ∈ {0, 1}d′

of length d′ := ⌈d1/2⌉, it first computes the “small”
dyadic rational number

qσ,r :=
σ1

2−(r+1)
+ · · ·+ σd′

2−(r+d′)
.

The machine then returns the first r+ d′ +1 bits of p+ qr,σ − x as its output:

TA,x(p, r, σ) = (p+ qr,σ − x) ↾ (r + d′ + 1).

Because the oracle encodes x, this is a computable operation relative to (A, x);
hence, TA,x exists.

Now let p ∈ B(x+y, 2−r)∩Qd be a point with KA,x(p) = KA,x
r (x+y). We

use p and TA,x to compute a precision-r approximation of y. To do this, take
σ ∈ {0, 1}d′

such that p + qr,σ ∈ B(x + y, 2−(r+1)). (This explains the choice
of d′: it is just large enough to encode a rational number that “corrects” p by
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a factor of up to 1/2, upgrading the precision-r approximation to a precision-
(r + 1) approximation.) Since ∥(z ↾ (t + d′)) − z∥ < 2−t for all z ∈ Rd and
t ∈ N,∥∥((p+ qr,σ)− x) ↾ (r + d′ + 1)

)
− y

∥∥
⩽

∥∥(p+ qr,σ − x)− y
∥∥+

∥∥((p+ qr,σ − x) ↾ (r + d′ + 1)
)
− (p+ qr,σ − x)

∥∥
< ∥(p+ qr,σ)− (x+ y)∥+ 2−r−1 < 2−(r+1) + 2−(r+1) = 2−r,

so TA,x(p, r, σ) ∈ B(y, 2−r).
If µ is a string that encodes TA,x in the language of UA,x, so that

UA,x(µ, q, r, σ) = TA,x(q, r, σ) for all q, r, and σ, then

KA,x
r (y) ⩽ KA,x(µ, p, r, σ) ⩽ |µ|+KA,x(p) +KA,x(r) +KA,x(σ) +O(1)

= KA,x(p) +O(log r) = KA,x
r (x+ y) +O(log r).

(The value |µ| is a constant independent of r, and the additional O(1) repre-
sents the complexity required to concatenate µ, p, r, and σ into a single string
in the language of UA,x.)

The computations of this sort are routine, arithmetic properties such as
that in (3.1) will be used freely in what follows.

Proof of Theorem 1.2. The unit sphere in the norm ∥ · ∥∗ has Packing
dimension d − 1. Therefore, by the point-to-set principle, there exists an
oracle A ⊆ N such that

sup
z∈∂B∗(0,1)

DimA(z) = d− 1.

For any y ∈ E, if we write y = x+ ∥x− y∥∗z for some z ∈ ∂B∗(0, 1), then the
following holds: for any oracle B ⊆ N,

KA,B,x
r (y) ⩽ KA,B,x

r (y − x) +O(log r)

= KA,B,x
r (∥x− y∥∗z) +O(log r)

⩽ KA,B,x
r (∥x− y∥∗) +KA,B,x

r (z) +O(log r).

Therefore,

lim inf
r→∞

KA,B,x
r (y)

r
⩽ lim inf

r→∞

KA,B,x
r (∥x− y∥∗)

r

+ lim sup
r→∞

KA,B,x
r (z)

r
+ lim sup

r→∞

O(log r)

r
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and so

dimA,B,x(y) ⩽ dimA,B,x(∥x− y∥∗) + DimA,B,x(z)

⩽ dimA,B,x(∥x− y∥∗) + d− 1.

In particular, for every ε > 0, the point-to-set principle gives a point y ∈ E
such that

dimH E ⩽ dimA,B,x(y) + ε.

Thus, for every ε, there exists a point t = ∥x− y∥∗∈ ∆∗
x(E) such that

dimH E − (d− 1)− ε ⩽ dimA,B,x(t).

Taking the minimum over all oracles and letting ε → 0 then gives the desired
inequality.

4 Sharp examples

In this section we construct the set E ⊂ Rd proving Theorem 1.4. Fundamen-
tally, the construction adapts [7, Example 7.8], which in turn works on the
same principles as the “Venetian blinds” constructions that have been studied
widely in geometric measure theory for the extreme features they exhibit, e.g.,
in the context of orthogonal projections, see [2]. As such, the use of complexity
in building our set E is secondary to its use in actually proving that it has the
asserted properties.

Proof of Theorem 1.4. The case s = d is trivial, so let s ∈ [d − 1, d) and
α := s − (d − 1). Since ∥ · ∥P is a polyhedral norm, there exists a finite set
{v1, . . . , vN} ⊂ Rd of vectors—one for each face of the ∥ · ∥P -ball—such that

∥x∥P = max {|x · vℓ|}Nℓ=1

for all x ∈ Rd. Let c be a large constant to be specified later, and let {mk}∞k=1

be a sequence of positive integers satisfying m1 = 1, 1 + 2c/(1− α) < m2,
and, for all k ∈ Z+,

kmk ⩽ mk+1. (4.1)

We also define a sequence {nk}∞k=1 by

nk := mk + α(mk+1 −mk).

Note that, since α ∈ [0, 1) and m2 > 1+2c/(1− α), we have nk+c < mk+1−c
for all k.
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We construct E ⊂ [0, 1]d in blocks of N steps. Define

Fk :=

{
x ∈ [0, 1]d :

⌊2j(x · vℓ)⌋ = 0 for all

j ∈ (nk + c,mk+1 − c], where ℓ ≡ k (mod N)

}
(4.2)

and

E :=

∞⋂
k=1

Fk.

These definitions prescribe that the binary expansions of the projections x · vℓ
of the points in x ∈ E alternate between long strings of free digits and long
strings of zeros, with the lengths of the strings rapidly approaching infinity.
When a real number has two different binary expansions, we associate to it
the expansion terminating in an infinite string of ones. This makes the sets
Fk and thus E to be closed.

Claim. For every oracle A ⊆ N, there exists x ∈ E such that

lim inf
r→∞

KA
r (x)

r
⩾ s. (4.3)

Moreover, for all τ ∈ ∆P (E),

lim inf
r→∞

KA
r (τ)

r
⩽ α. (4.4)

By the definition of α, this will imply that dimH ∆P (E) ⩽ s − (d − 1) ⩽
dimH E−(d−1), and an application of Theorem 1.2 will entail that these hold
with equality.

To obtain this point x and ensure that it belongs to E, we iteratively select
the digits in the binary expansions of its coordinates. In particular, assuming
we have already chosen the digits in the places before themkth place, the digits
in the places [mk,mk+1) will be chosen in two steps. For each ℓ = 1, . . . , N , fix
any index 1 ⩽ iℓ ⩽ d such that the iℓth coordinate of vℓ is nonzero: vℓiℓ ̸= 0.
Let ℓ ≡ k (modN), 1 ⩽ ℓ ⩽ d.

1. We define the digits in the binary expansion of xi in the places [mk,mk+1)
for i ̸= iℓ, and in the places [mk, nk) for i = iℓ, such that the corresponding
d strings (of which d−1 have length mk+1−mk and one has length nk−mk)
are random with respect to each other, the oracle A and the first mk digits
of x. In particular, this implies that

KA
r,mk

(x) ⩾ d(r −mk)−O(log r), for all r ∈ [mk, nk).
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After we choose the digits of xiℓ in the places [nk,mk+1) in Step 2, these
random choices will allow us to conclude that

KA
r,nk

(x) ⩾ (d− α)(r − nk)−O(log r), for all r ∈ [nk,mk+1).

2. We want to define the digits in the binary expansion of xiℓ in the places
[nk,mk+1) such that

⌊
2j

d∑
i=1

2−mk+1⌊2mk+1xi⌋vℓi
⌋
≡


0 if j ∈ (nk + c,mk+1 − c],

1 if j = mk+1 − c+ 1,

0 if j = mk+1 − c+ 2,

(4.5)

where the equivalence holds modulo 2. Before showing that this is possible,
we prove that equation (4.5) implies⌊

2j(x · vℓ)
⌋
≡ 0 (mod 2) for every j ∈ (nk + c,mk+1 − c], (4.6)

provided c is chosen large enough. It will then follow from (4.2) that the
point x satisfying (4.5) belongs to Fk. In order to derive equation (4.6)
from equation (4.5), we first observe that

x · vℓ =
d∑

i=1

2−mk+1⌊2mk+1xi⌋vℓi +
d∑

i=1

(
xi − 2−mk+1⌊2mk+1xi⌋

)
vℓi . (4.7)

Notice that, if (4.5) holds, then for some M ∈ Z+ and t ⩽ 1/4, we have

d∑
i=1

2−mk+1⌊2mk+1xi⌋vℓi = 2−nk−cM + 2−mk+1+c

(
1

2
+ t

)
. (4.8)

Choose c large enough such that

max

( d∑
i=1

|vℓi |,
∣∣vℓiℓ ∣∣−1

)
⩽ 2c−3 for all ℓ, (4.9)

from which it follows that∣∣∣∣ d∑
i=1

(
xi − 2−mk+1⌊2mk+1xi⌋

)
vℓi

∣∣∣∣ ⩽ d∑
i=1

∣∣xi − 2−mk+1⌊2mk+1xi⌋
∣∣|vℓi |

⩽ 2−mk+1

d∑
i=1

|vℓi |

⩽ 2−mk+1+c−3.

(4.10)
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Combining (4.7), (4.8), and (4.10), we see that

2j(x · vℓ) = 2j−nk−cM + 2j−(mk+1−c)

(
1

2
+ t+ t′

)
,

where |t′| ⩽ 1/8. Hence, for j ∈ (nk + c,mk+1 − c], the second term above
lies in the interval (0, 1):

0 < 2j−(mk+1−c)

(
1

2
+ t+ t′

)
< 1.

Therefore, we have shown that equation (4.5) implies⌊
2j

d∑
i=1

2−mk+1⌊2mk+1xi⌋vℓi
⌋
=

⌊
2j(x · vℓ)

⌋
for j ∈ (nk + c,mk+1 − c], which immediately entails equation (4.6).

It remains to see that we can choose the digits of xiℓ in the places [nk,mk+1)
such that (4.5) holds. The condition (4.5) determines the digits of xiℓ · vℓiℓ
in places [nk,mk+1 − c+ 2), and we see from (4.9) that

2−c+3 ⩽ vℓiℓ ⩽ 2c−3.

Therefore, we can indeed make such a choice for the digits of xiℓ .

Repeating this process for all k ∈ Z+ produces the desired point x ∈ E.
Now we prove that dimA(x) ⩾ s. Let r ∈ (mk,mk+1] and ℓ ≡ k (mod N).

We estimate KA
r (x) in two cases.

Case 1: r ∈ (mk, nk].
By the symmetry of information, we have

KA
r (x) = KA

r,mk
(x) +KA

mk
(x) +O(log r)

⩾ (r −mk)d+KA
mk

(x)−O(log r).
(4.11)

The inequality is true because the digits of x in themkth through rth places are
chosen randomly with respect to A and the digits in the places 1 through mk.

Case 2: r ∈ (nk,mk+1].
By the symmetry of information, we have

KA
r (x) = KA

r,nk
(x) +KA

nk
(x)−O(log r).
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It follows from (4.11) of Case 1 that

KA
nk
(x) ⩾ (nk −mk)d+KA

mk
(x)−O(log r)

= α(mk+1 −mk)d+KA
mk

(x)−O(log r).

Thus we have

KA
r (x) ⩾ KA

r,nk
(x) + α(mk+1 −mk)d+KA

mk
(x)−O(log r)

⩾ KA
r,nk

(x1, . . . , xiℓ−1, xiℓ+1, . . . , xd)

+ α(mk+1 −mk)d+KA
mk

(x)−O(log r)

⩾ (r − nk)(d− 1) + α(mk+1 −mk)d+KA
mk

(x)−O(log r)

= (r −mk)(d− 1) + α(mk+1 −mk) +KA
mk

(x)−O(log r).

(4.12)

The third inequality above also follows from randomness. We put r = mk+1

in (4.12) to get

KA
mk+1

(x) = (mk+1 −mk)s+KA
mk

(x)−O(log r)

⩾ mk+1

(
1− 1

k

)
s+KA

mk
(x)−O(log r),

where the inequality follows from (4.1). Thus for any arbitrarily small t > 0,
we have

KA
mk+1

(x)

mk+1
⩾ s− t for large enough k.

We will now justify that the expression KA
r (x)/r is minimized when r = mk

for some k. By (4.11) of Case 1,

KA
r (x)

r
⩾

(
1− mk

r

)
d+

KA
mk

(x)

r
− O(log r)

r

=

(
1− mk

r

)
d+

KA
mk

(x)

mk

(
mk

r

)
− O(log r)

r

⩾

(
1− mk

r

)
d+ (s− t)

mk

r
− O(log r)

r

= d− (α− 1 + t)
mk

r
− O(log r)

r

(4.13)
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and similarly, by (4.12), we have in Case 2

KA
r (x)

r
⩾

(
1− mk

r

)
(d− 1) +

α(mk+1 −mk)

r
+

KA
mk

(x)

r
− O(log r)

r

⩾ d− 1 + α
mk+1

r
+

KA
mk

(x)− smk

r
− O(log r)

r

⩾ d− 1 + α
mk+1

r
− tmk

r
− O(log r)

r
.

(4.14)

Recallingmk/r ⩽ 1 andmk+1/r ⩾ 1, we conclude (4.3) from (4.13) and (4.14),
and therefore we have proved that dimH E ⩾ s.

Now, for any fixed z, y ∈ E, let τ := ∥z − y∥P ∈ ∆P (E). Thus, τ =
|(z − y) · vℓ| for some ℓ. Hence, for any k ≡ ℓ (mod N), we have

⌊2j((z − y) · vℓ)⌋ ≡ 0 (mod 2) for all j ∈ [nk + c+ 1,mk+1 − c− 1]

or

⌊2j((z − y) · vℓ)⌋ ≡ 1 (mod 2) for all j ∈ [nk + c+ 1,mk+1 − c− 1].

Therefore,
KA

mk+1−c,nk+c(τ) ⩽ O(logmk+1).

This is because specifying a string of 000’s or 111’s having length less than
mk+1 requires a program of length at most O(logmk+1). We consequently
have

KA
mk+1−c(τ) ⩽ KA

mk+1−c,nk+c(τ) +KA
nk
(τ) +O(logmk+1)

⩽ nk +O(logmk+1)

⩽ mk+1α

(
1− 1

k

)
+O(logmk+1),

where the last inequality follows from (4.1). Taking k → ∞ gives (4.4), and,
since this holds for all τ ∈ ∆P (E), we conclude that dimH ∆P (E) ⩽ α. The
desired upper bound on dimH E then follows immediately from Theorem 1.2:

s ⩽ dimH E ⩽ dimH ∆P (E) + (d− 1) ⩽ α+ (d− 1) = s.

As such, all the inequalities above are actually equalities, so equation (1.1)
holds.
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