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DISTANCE SETS BOUNDS FOR
POLYHEDRAL NORMS VIA EFFECTIVE
DIMENSION

Abstract
We prove that, for every norm on R? and every E C R?, the Haus-
dorff dimension of the distance set of E with respect to that norm is at
least dimp £ — (d — 1). An explicit construction follows, demonstrating
that this bound is sharp for every polyhedral norm on R?. The tech-
niques of algorithmic complexity theory underlie both the computations
and the construction.

1 Introduction
Given a set E C RY, let
A(E) == {llz —y[ € [0,00):2,y € E}

be the distance set of E, where || is the Euclidean norm. The Falconer
distance problem is to find a lower bound on dimy A(FE), the Hausdorff di-
mension of the distance set, in terms of the Hausdorff dimension of F itself.
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A frequent simplification is to fix a point z € R? and instead investigate the
pinned distance set

Ar(E) :=A{llx —yll € [0,00):y € E}.

Since A, (E) C A(E) whenever x € E, any lower bound on the size of A, (FE)

immediately implies the same bound on the size of A(E). An interesting vari-

ant of the Falconer distance problem is to seek dimension bounds on distance

sets relative to a different norm || - ||«. In this case, the corresponding distance

and pinned distance sets are denoted A*(E) and A% (E), respectively.
Falconer [5] proves a simple estimate in the Euclidean case:

Theorem 1.1 (Falconer [5]). If E C RY is any set, then

The elementary proof presented by Falconer generalizes to other norms
with little modification. However, the techniques of algorithmic complexity
provided in [9] are highly applicable here, and we use this theory to give an
alternate proof for pinned distance sets of the general case.

Theorem 1.2. Let ||-||. be any norm on R? and let E C RY. Then
for all x € RY.

Remark 1.1. The proof of Theorem 1.2 does not use the symmetry of || - ||,
so the theorem statement can be generalized to so-called asymmetric norms.
The same is true of Theorem 1.4 below.

Polyhedral norms provide a class of finite-dimensional normed spaces which
can be considered the “worst-case scenario” for the distance set problem, as
the curvature of the norm ball plays a major role in precluding the possibility
of a large number of points with equal pairwise distances. The relevance of
nonvanishing curvature manifests itself in [8]: the authors provide the best
known bound in the planar Euclidean case, and it is demonstrated that the
essential characteristic of the Euclidean ball required for their argument is
that it is a smooth norm ball with strictly positive curvature. A construction
of Falconer [6] illustrates the marked differences in the context of polyhedral
norms.

Proposition 1.3 (Falconer [6]). Let ||-||p be a polyhedral norm on RY. Then
there exists a compact set F C R? with dimyg F = d such that L(AT (F)) = 0.
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The relevance of curvature to the distance set conjecture is further explored
in [1], in which Falconer’s construction is generalized to the case in which at
most countably many points of the surface of the unit ball do not lie on any
open line segment contained in the surface of the unit ball (all but finitely
many points on the surface of a polyhedral ball satisfy this condition) or for
certain convex sets for which the measure representing the curvature field is
singular with respect to surface measure. For more state-of-the-art estimates
and information on the history of the Euclidean distance set conjecture, see
[3] and [4].

Our second result shows that polyhedral norms witness the sharpness of the
dimension bound in Theorem 1.2. This, too, will be proven using complexity
theoretic tools.

Theorem 1.4. Let ||-||p be a polyhedral norm on RY. For any s € [d —1,d],
there exists a compact set E C R? with dimy F = s such that

dimy AP (E) =5 — (d - 1). (1.1)

Remark 1.2. The proof of Theorem 1.2 also works with Packing dimension
in place of Hausdorff dimension. However, the resulting statement for Packing
dimension is far from sharp.

Under the hypotheses of Theorem 1.4, it follows from Theorem 1.2 that
the pinned distance sets of E have minimal dimension s — (d — 1) at every pin
in F: that is,

dimg AL (E)=s—(d—1) forall z € E.

Following a brief synopsis of the background material, we prove Theo-
rem 1.2 in Section 3. In Section 4 we construct the examples described in
Theorem 1.4.

2 Preliminaries

This section summarizes the requisite terminology and results from algorithmic
complexity theory. See [9] for a more thorough exposition of this material. We
denote by

{0,13* == [ J{o,1}"

neN

the set of all (finite) binary strings, including the empty string A € {0,1}°.
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Definition 2.1 (Kolmogorov Complexity of a String). Let 0,7 € {0,1}*. The
conditional Kolmogorov complezity of o given 7 is the length of the shortest
program 7 that will output o given 7. More precisely,
K(o|7):= min {{(n):U(r,7) =0},
mef{0,1}~
where U is a fixed universal prefix-free Turing machine and ¢(w) is the length

of w. The Kolmogorov complexity of o is simply the conditional Kolmogorov
complexity of o given the empty string:

K(o):=K(o|)\),
where A is the empty string.

Throughout, we work with a fixed encoding {0,1}* — [ ey Q4, under
which the definitions above extend from strings to vectors over the rationals.

Definition 2.2 (Kolmogorov Complexity of a Point). Let z € R? and r € Z, .
The Kolmogorov complexity of x at precision r is the length of the shortest
program that outputs a point in Q? that approximates x to r bits of precision:

K, (z) :=min {K(p):p € B(z,27") nQ%}.

If also y € RY and s € Z, then the conditional Kolmogorov complezity of x
at precision v given y at precision s is defined by

K, o(x]y) = max {min{K(p|q):p € B(z,27")NQ%} : ¢ € B(y,27*)n Q7 }.

Note that, for € RY, K,.(z) is always less than or equal to dr + O(logr).
To simplify notation, we also denote K, (z|y) by K,(z|y), K, s(z|x) by
K. s(r), and, when r € (0,00), Kp,1(x) by K, ().

Lemma 2.1 (Symmetry of Information [10]). For all myn € N, z € R™,
ye€R" andr,s e N withr > s:

(a) |Kr(z|y) + K, (y) — K. (z,y)| < Ologr) + O(loglog [[yl])-
(b) | Kr,sl | 2) + K, () — Ko ()] < Ollogr) + Ologlog|J«]).

In the remainder of the article, we will use the O(logr) error term to
encapsulate all errors accumulated from computing terms that do not change
as the precision, r, increases to infinity. This would include the loglog ||y|| and
loglog ||z|| terms from Lemma 2.1 as well as logm and logn terms already
suppressed in the statement of Lemma 2.1. Using the notion of Kolmogorov
complexity, one defines the concept of effective dimension as the asymptotic
Kolmogorov complexity of a given point.



DiI1STANCE SETS BOUNDS FOR POLYHEDRAL NORMS 5

Definition 2.3. The effective Hausdorff dimension of a point x € R? is given
by
K,
dim(z) := lim inf ﬂ
r—00 r

The effective Packing dimension of a point x € R? is given by

Dim(z) := limsup L}(Sﬂ) .
r—00 r

In computability theory, a set A C N is called an oracle. Heuristically, a
Turing machine T' can be said to have access to A if, in addition to its usual
operations, it can inquire whether the number currently printed on the work
tape belongs to A. This operation takes one step, and the answer to the
question is recorded as a state. The machine derived from T by allowing it
access to A is denoted T4.

The concepts of complexity and dimension defined above can be relativized
to an oracle A by replacing the fixed universal Turing machine U with U4.
These relativized concepts are denoted K4, dimA, etc. For us, the utility of
oracles is that they allow us to compute the Hausdorff dimension of a set from
the effective dimensions the points it contains.

Theorem 2.2 (Point-to-Set Principle [9]). For every set E C RY,

dimy E = mi dim* d dimp E = mi Dim*(z).
impy min ilelg im“(xz) an imp min :1611]; im*(x)

One can infer from the proof of the point-to-set principle that, for any
oracle A and s € (0,d], the set of points x that satisfy dim®(z) < s has
s-dimensional Hausdorff measure zero. In particular, dim®(z) = d for all
outside of a Lebesgue-null set.

As in [11], we describe the complexity of a point z € R? relative to a point
y € R as the complexity of = relative to an oracle set A, that encodes the
binary expansion of y in a standard way. We define

KY(x) = K ().
Throughout the paper, we will often invoke the notion of (Martin-Lof) “ran-
domness.” A point z € R? is random with respect to an oracle A if

|K;4(x) —rd| < O(logr).

This also implies that each of the coordinates of = is random with respect to
the others and has effective Hausdorff dimension 1 with respect to the oracle
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A. More quantitatively, for ¢t < r, the symmetry of information (Lemma 2.1)
implies that

rd+O(logr) = K*(z) = K[, (z) + Ki(z) + O(log )
< Kft(x) +td+ O(logr),

whence
fK,’f}t(as) —(r— t)d| < O(logr).

This means that the first ¢ digits of the binary expansion of x “do not help
much” in the calculating the remaining r — ¢ digits, and that we would ap-
proximately need (r —t)d bits to calculate them. In the proof of Theorem 1.4,
we will have occasion to choose collections of strings of digits that are random
with respect to each other, but we can see from this discussion that such a
choice is always possible.

3 Distance set bounds for arbitrary norms

We begin with a “trivial” lemma for the benefit of the reader new to the theory
of Kolmogorov complexity.

Lemma 3.1. Let ACN. For all z,y € R? and r € N,
KM (y) < K5 (2 +y) + O(log ). (3.1)

PROOF. Let T4* be an oracle Turing machine that operates as follows: given
a rational point p € Q% a precision level » € N, and a “corrector” string
o =o01...00 €{0,1}% of length d’ := [d'/?], it first computes the “small”
dyadic rational number

L 01 aq
Goir = 5= T T sy

The machine then returns the first r 4+ d’ + 1 bits of p + ¢, —  as its output:
T4 (p,r,0) = (D + @ro — ) [ (1 +d +1).

Because the oracle encodes x, this is a computable operation relative to (A, x);
hence, T4* exists.

Now let p € B(x+y,27")NQ% be a point with K4%(p) = KA%(x+y). We
use p and T4 to compute a precision-r approximation of y. To do this, take
o € {0,1}% such that p + ., € B(x +y,2~"tV). (This explains the choice
of d': it is just large enough to encode a rational number that “corrects” p by



DiI1STANCE SETS BOUNDS FOR POLYHEDRAL NORMS 7

a factor of up to 1/2, upgrading the precision-r approximation to a precision-
(r 4+ 1) approximation.) Since ||(z](t + d')) — z|| < 27! for all z € R? and
teN,
1((p+aro) =) [ (r+d +1)) =]
< H(p"’_qha - :L') - y” + "((p+QT,U - l‘) T(T-f- d/ + 1)) - (p+QT,a - :E)H
<P+ aro) = (@+y)| +2777H <270FD g 270HD = 97,
so T4 (p,r,0) € B(y,277").
If 4 is a string that encodes T in the language of U4*, so that
UA(u,q,r,0) = TA*(q,r,0) for all ¢,7, and o, then
K2 (y) < KA (pp,r,0) < Jpl + K42 (p) + K47 (r) + K47 (0) + O(1)
= K4%(p) + O(logr) = KA% (x4 ) + O(log ).
(The value |p] is a constant independent of r, and the additional O(1) repre-

sents the complexity required to concatenate u, p, r, and o into a single string
in the language of U4 .) O

The computations of this sort are routine, arithmetic properties such as
that in (3.1) will be used freely in what follows.

PROOF OF THEOREM 1.2. The unit sphere in the norm || -||. has Packing
dimension d — 1. Therefore, by the point-to-set principle, there exists an
oracle A C N such that

sup  Dim?(z) =d—1.
2€0B,(0,1)

For any y € E, if we write y = x + ||z — y||.2 for some z € 0B, (0, 1), then the
following holds: for any oracle B C N,

KM (y) < KWP7(y — o) + O(log )
= KB (||z — yll.z) + O(logr)
S KM (|l = ylle) + K227 (2) + O(log ).

Therefore,
KABwe KABa (| — .
liminf Ti(y) < liminf =~ (”x y” )
r—0o0 r r—00 r
KA,B,I(Z)

O(1
+ lim sup —/——= + lim sup M
r—00 r r—00 r
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and so

i P (|2 — yll.) + Dim AP (2)
i 2 (o = yll) +d — 1.

In particular, for every € > 0, the point-to-set principle gives a point y € FE
such that
dimg E < dim™® 57 (y) +«.

Thus, for every e, there exists a point ¢t = ||z — y||« € A%(FE) such that
dimyg E — (d — 1) — & < dim™5*(¢).

Taking the minimum over all oracles and letting € — 0 then gives the desired
inequality. O

4 Sharp examples

In this section we construct the set £ C R? proving Theorem 1.4. Fundamen-
tally, the construction adapts [7, Example 7.8], which in turn works on the
same principles as the “Venetian blinds” constructions that have been studied
widely in geometric measure theory for the extreme features they exhibit, e.g.,
in the context of orthogonal projections, see [2]. As such, the use of complexity
in building our set E is secondary to its use in actually proving that it has the
asserted properties.

PROOF OF THEOREM 1.4. The case s = d is trivial, so let s € [d — 1,d) and
a:=s—(d—1). Since ||-||p is a polyhedral norm, there exists a finite set
{v',..., vV} € R? of vectors—one for each face of the || - || p-ball—such that

]| p = max {|z - o[},

for all z € R%. Let ¢ be a large constant to be specified later, and let {mi}ee,
be a sequence of positive integers satisfying m; = 1, 1 4+ 2¢/(1 — @) < ma,
and, for all k € Z,,

kmg < mpgy1. (4.1)

We also define a sequence {ny}7; by
ng = my + a(me41 — mg).

Note that, since o € [0,1) and ma > 14+2¢/(1 — «), we have np+c¢ < mp41—c¢
for all .
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We construct E C [0,1]? in blocks of N steps. Define

2/ (z-v")| =0 for all
Fpom dze o, B o)l =0fra (4.2)
J € (ng 4+ ¢,mp1 — ¢], where £ =k (mod N)

and -
E:= ﬂ F.
k=1

These definitions prescribe that the binary expansions of the projections z - v
of the points in # € F alternate between long strings of free digits and long
strings of zeros, with the lengths of the strings rapidly approaching infinity.
When a real number has two different binary expansions, we associate to it
the expansion terminating in an infinite string of ones. This makes the sets
F}, and thus F to be closed.

14

Claim. For every oracle A C N, there exists x € E such that

KA
lim inf K @) > s. (4.3)
T—00 T
Moreover, for all T € AT (E),
KA
lim inf K0 < a. (4.4)
r—o00 T

By the definition of «, this will imply that dimpg AT(E) < s — (d —1) <
dimyg E'—(d—1), and an application of Theorem 1.2 will entail that these hold
with equality.

To obtain this point = and ensure that it belongs to E, we iteratively select
the digits in the binary expansions of its coordinates. In particular, assuming
we have already chosen the digits in the places before the myth place, the digits
in the places [mg, mg41) will be chosen in two steps. Foreach £ = 1,... N, fix
any index 1 < iy < d such that the i,th coordinate of v? is nonzero: vfé # 0.
Let £ =k (mod N),1 < ¢ <d.

1. We define the digits in the binary expansion of x; in the places [my, mgy1)
for ¢ # iy, and in the places [my, ny) for ¢ = iy, such that the corresponding
d strings (of which d—1 have length my1; —my, and one has length n; —my)
are random with respect to each other, the oracle A and the first my digits
of x. In particular, this implies that
K& (x) > d(r—mg) —O(logr), forall r € [mg,ng).

Mg



10 I. ALTAF, R. BUSHLING, AND B. WILSON

After we choose the digits of x;, in the places [ng, mg41) in Step 2, these
random choices will allow us to conclude that

K2 (x) = (d—a)(r —ni) — O(logr), for all r € [ng, mpy1).

TNk

2. We want to define the digits in the binary expansion of x;, in the places
[k, mE+1) such that

d 0 if j € (ng+c,mpp1 —d,
{23' D o 2me g | va =1 if j=mpy —c+1, (4.5)
i=1 0 if j=mp —c+2,

where the equivalence holds modulo 2. Before showing that this is possible,
we prove that equation (4.5) implies

|27(z-v")| =0 (mod 2) for every j € (ny +c,myi1 —d, (4.6)

provided c is chosen large enough. It will then follow from (4.2) that the
point x satisfying (4.5) belongs to Fj. In order to derive equation (4.6)
from equation (4.5), we first observe that

d d
2ot = Z 2= mk | Mkt g | of 4 Z (zi — 27 2R |) vf. (4.7)
i=1 i=1
Notice that, if (4.5) holds, then for some M € Zy and t < 1/4, we have
d 1
D 2T |2y | uf = 27RO M 4 2T Ee (2 1 t>. (4.8)
i=1

Choose c¢ large enough such that

d
max(Z vi], |of, 1) <297 for all £, (4.9)
=1
from which it follows that
d d
Z (l,z _ 9= M4 Lka+1miJ) Uf < Z ’xz _9—Mk1 |_2mk+1xij | |’Uf|
i=1 =1

d (4.10)
<27y " o]
=1

— -3
< 2 Mmi41+c¢ .
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Combining (4.7), (4.8), and (4.10), we see that
1 0\ _ oj—mp—c j—(m —c) 1 /
2 (x-v") =207 M 20T UM §+t+t ,

where |t'| < 1/8. Hence, for j € (ny + ¢, mp4+1 — ], the second term above
lies in the interval (0,1):

0 < 2/~ (mir1=e) (; +t+ t’) <1.

Therefore, we have shown that equation (4.5) implies

d
2737 2 g of | = [2/( )
i=1
for j € (ng + ¢, mi41 — ¢, which immediately entails equation (4.6).

It remains to see that we can choose the digits of z;, in the places [ng, mg41)
such that (4.5) holds. The condition (4.5) determines the digits of z;,- vf,
in places [ng, mg+1 — ¢+ 2), and we see from (4.9) that

27 Cof, <2070
Therefore, we can indeed make such a choice for the digits of z;,.

Repeating this process for all £ € Z, produces the desired point = € E.
Now we prove that dim*(z) > s. Let 7 € (mg, mpy1] and £ = k (mod N).
We estimate K/ (z) in two cases.

Case 1: 7 € (my, ngl.
By the symmetry of information, we have
K,A(a:) = K;:‘mk (z) + Kr‘gk (z) + O(logr) (4.11)
> (r—mk)d—i—K;zk(x) — O(logT). '
The inequality is true because the digits of x in the mgth through rth places are
chosen randomly with respect to A and the digits in the places 1 through my.

Case 2: r € (ng, mi41]-
By the symmetry of information, we have

Kf(x) = KA () + K;?k () — O(logr).

TNk
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It follows from (4.11) of Case 1 that

K;:‘k () = (ng —my)d + K;:k () — O(logr)
= a(mp41 — mg)d + K;ik (z) — O(log ).

Thus we have

K@) > K[, (@) + a(misr — me)d + K () — O(log )
> Kff}nk (T1y ooy Tiym 1y Tigtls - - -, Td)
+ a(myr —my)d + K (z) — O(logr) (4.12)
(r—mng)(d—1) + a(mgsr — mi)d + K;gk () — O(logr)
=(r—mg)(d—1)+ almgys —mg) + K;:‘Lk (x) — O(log ).

WV

The third inequality above also follows from randomness. We put r = my41
in (4.12) to get
K2, (2) = (mi1 —mi)s + KA (2) — O(logr)

MEk+1

1
> Mgy (1 — k:) s+ K;;‘lk () — O(logr),

where the inequality follows from (4.1). Thus for any arbitrarily small ¢ > 0,
we have

Kho, (@
Ll() > s—1t for large enough k.
Mi+1

We will now justify that the expression K (x)/r is minimized when r = my,
for some k. By (4.11) of Case 1,

A A
T r r r
= (1m)d+ff<>(m> _ Ollogr)
' AT r (4.13)
> <l—m)d+(5_t)w_0(1°g7“)
T r r
=d—(a—1+t)%_w
r r
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and similarly, by (4.12), we have in Case 2

e L e
r r r r r
A _
S 14a M Ko, (x) —smp O(logr) (4.14)
r T r
S d_14q M tme Ologr)
r r r

Recalling my /r < 1 and my41 /7 > 1, we conclude (4.3) from (4.13) and (4.14),
and therefore we have proved that dimg F > s.

Now, for any fixed 2,y € E, let 7 := ||z — y|p € AP(E). Thus, 7 =
|(z — y) - v*| for some £. Hence, for any k = ¢ (mod N), we have

127((z —y)-v")] =0 (mod 2) forall je& [ng+c+1,mup1—c—1]
or
127((z—y)-v")| =1 (mod?2) forall je[ng+c+1,mpyr —c—1].

Therefore,
K’;Vqlk_*_lfc,nkﬁ*c(/r) < O(]'Og mk+1)‘
This is because specifying a string of 000’s or 111’s having length less than

M1 requires a program of length at most O(logmy41). We consequently
have

K’I’I;‘lk_*_lfc(T) < K;?Lk_;_lfc,nkJrc(T) + K’;?k (T) + O(log mk+1)
< ng + O(log myy1)

1
< mk+105<1 - k) + O(log mp41),

where the last inequality follows from (4.1). Taking k — oo gives (4.4), and,
since this holds for all 7 € AP(E), we conclude that dimg AP (E) < a. The
desired upper bound on dimy F then follows immediately from Theorem 1.2:

s <dimg E < dimg AP (E)+ (d—1)<a+(d—1)=s.
As such, all the inequalities above are actually equalities, so equation (1.1)

holds. O
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