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ABSTRACT

Aim: The species that compose local communities possess unique sets of functional and ecological traits that can be used as indi-
cators of biotic and abiotic variation across space and time. Body size is a particularly relevant trait because species with different
body sizes typically have different life history strategies and occupy distinct niches. Here we used the body sizes of non-volant
(i.e., non-flying) terrestrial mammals to quantify and compare the body size disparity of mammal communities across the globe.
Location: Global.

Time Period: Present.

Major Taxa Studied: Non-volant terrestrial mammals.

Methods: We used IUCN range maps of 3982 terrestrial mammals to identify 1876 communities. We then combined diet data
with data on climate, elevation and anthropogenic pressures to evaluate these variables' relative importance on the observed
body size dispersion of these communities and its deviation from a null model.

Results: Dispersion for these communities is significantly greater than expected in 54% of communities and significantly less
than expected in 30% of communities. The number of very large species, continent, range sizes, diet disparity and annual tem-
perature collectively explain > 50% of the variation in observed dispersion, whereas continent, the number of very large species,
and precipitation collectively explain > 30% of the deviation from the null model.

Main Conclusions: Climate and elevation have minimal predictive power, suggesting that biotic factors may be more important
for explaining community body size distributions. However, continent is consistently a strong predictor of dispersion, likely due
to it capturing the combined effects of climate, size-selective human-induced extinctions and more. Overall, our results are con-
sistent with several plausible explanations, including, but not limited to, competitive exclusion, unequal distribution of resources,
within-community environmental heterogeneity, habitat filtering and ecosystem engineering. Further work focusing on other
confounding variables, at finer spatial scales and/or within more causal frameworks is required to better understand the driver(s)
of these patterns.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited and is not used for commercial purposes.
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1 | Introduction

Communities are complex biological units, which are made
up of disparate species that fulfil a variety of ecological roles.
Collectively, this local biodiversity produces an interactive net-
work whose membership and interactions fluctuate across time
and space. Physical geographic features, evolutionary history,
life history, climate and many other factors result in the inclu-
sion of different collections of species from the continental spe-
cies pools across space (Vellend 2010; Gotzenberger et al. 2012).
Meanwhile, events on short (e.g., drought and monsoons) and
long (e.g., glaciation and climate change) timescales result in
local extirpations and global extinctions, producing further al-
teration of community dynamics (Lyons and Smith 2013). All
of this results in the potential for communities to be highly tax-
onomically and functionally heterogeneous across the globe.
However, the relative contributions of abiotic and biotic processes
to this heterogeneity remain poorly understood (Ricklefs 1987).
Furthermore, we do not yet understand whether local (e.g.,
competition) or regional (e.g., climate) processes dominate the
assembly of species into communities (i.e., community assem-
bly), with the former predicting that nearby communities would
be highly heterogeneous (Terborgh and Faaborg 1980), and the
latter predicting that local communities merely reflect the re-
gional diversity (Cornell 1985). Finally, the degree to which the
activities of humans have reduced this heterogeneity, if at all,
remains understudied (although see Dornelas et al. 2014; Fraser
et al. 2022).

Many previous studies have addressed questions regarding
heterogeneity among and between communities within a tax-
onomic framework; here we address them within a functional
framework. In order to accomplish this, we need to assess the
ecological niches that are occupied within individual commu-
nities and how the distributions of these niches vary from one
community to another. Body size, while by no means a compre-
hensive measure of a species’ niche, is inextricably associated
with many other life history traits, including population size and
density, home range size, diet and metabolic rate (Peters 1983).
Furthermore, body size is an easily measured trait and has
been exhaustively recorded for many extant and extinct taxa
(e.g., Alroy 1999; Smith et al. 2003; Faurby et al. 2018; Gearty,
McClain, and Payne 2018; Gearty, Carrillo, and Payne 2021;
Gearty and Payne 2020; Cooke et al. 2022). Body size, therefore,
serves as a reasonable and convenient proxy for an individual
species’ fundamental niche. Consequently, the distribution of
body sizes of species within a community can be used to assess
the disparity of the niches that are occupied within that commu-
nity (Brown and Nicoletto 1991; Marquet and Cofre 1999; Bakker
and Kelt 2000; Kelt and Meyer 2009; Smith and Lyons 2013;
Fraser and Lyons 2020). Specifically, the properties of the dis-
tribution of body sizes within a community, particularly dis-
persion, can be used to identify the relative niche breadth and
density of communities (Fraser and Lyons 2020).

Mammalia is an extremely diverse and well-documented clade
that is ideal for such a community-level assessment. Extant non-
volant terrestrial mammals span a wide range of body sizes,
ranging from less than 2 g (Remy's pygmy shrew) to greater than
5000kg (African bush elephant). Beyond this body size diver-
sity, they also occupy a wide range of diets and life histories,

resulting in a large and disparate array of occupied ecological
niches (Cooke, Eigenbrod, and Bates 2019; Smith et al. 2022).
The body size distributions of mammalian communities have
been shown to be highly conserved within individual biomes
and geographic regions (Brown and Nicoletto 1991; Marquet
and Cofre 1999; Bakker and Kelt 2000; Kelt and Meyer 2009).
Furthermore, continental body size distributions of mammals
tend to be quite similar to one another, especially prior to the
Late Pleistocene extinction (Bakker and Kelt 2000; Lyons, Smith,
and Brown 2004; Smith and Lyons 2011; Lyons and Smith 2013).
However, despite the similarities of mammalian body size dis-
tributions at these different geographic scales, the distributions
of body sizes in local mammalian communities indeed vary
dramatically across space (Marquet and Cofre 1999; Lyons and
Smith 2013; Lyons, Smith, and Ernest 2019). Further, limited
work has investigated how these distributions globally vary at
the community level (however, see Lyons and Smith 2013 for a
sample of communities across different continents). Finally, to
our knowledge, the biotic and abiotic factors that govern these
body size distributions have never been investigated.

To this end, we used ITUCN mammal range maps (IUCN 2023) to
identify the species that compose individual non-volant terres-
trial mammal communities across the globe. Using these com-
munity assemblages and existing mammal body size data, we
quantified the body size distributions (as a proxy for niche distri-
bution) of these individual communities. We then combined ex-
isting mammal diet data (Wilman et al. 2014) with global data on
modern climate (Fick and Hijmans 2017), elevation (Danielson
and Gesch 2011) and anthropogenic disturbances (Sanderson
et al. 2002; Millennium Ecosystem Assessment 2005; Lepers
et al. 2005; Venter et al. 2016) to investigate the comparative ef-
fects of community species composition, regional climate and
human impacts on the body size dispersion of mammal commu-
nities. In addition to investigating the relative impacts of these
variables on the observed body size dispersion values, we also
developed a null model based on observed home ranges, trophic
body size relationships and continental species pools to investi-
gate the relative impacts of these variables on the deviation of
the observed dispersion values from a null expectation.

2 | Methods and Materials

We assembled a biogeographic database consisting of 3982
non-volant terrestrial mammal species (hereafter referred to as
mammals). Extant geographic ranges were obtained from the
IUCN Red List (IUCN 2023). Trait data, including diet and body
mass, were obtained from the Elton Traits database (Wilman
et al. 2014). Diet in this database is reported as percentages of
various food sources (e.g., 10% invertebrate, 10% fruit, 20% seed
and 60% other plant). To simplify this for our analyses, we de-
rived two diet codings, one continuous and one discrete. First,
we calculated the total percentage of any plants (fruit, nectar,
seeds and other plants) in each species’ diet. Second, we coded
each species as one of three discrete trophic group based on the
plant composition of their diet: Carnivore (< 5% plant), Omnivore
(> 5% plant and <95% plant) and Herbivore (>95% plant). Body
mass in the Elton Traits database is reported in grams. We log, ;-
transformed this body mass to fit the assumptions of the regres-
sions described below. We also derived a discrete body mass
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coding, consisting of three size classes: small (< 1kg), medium
(>1kg and <10kg) and large (>10kg) (Smith and Lyons 2011).
We used synonymy data from the TUCN Red List (https://www.
iucnredlist.org/search?dl=true&permalink=6da36cdc-5f19-
46€7-b980-aeb06b2b6208) to match species in the Elton Traits
database to their IUCN geographic ranges.

We assembled global abiotic and anthropogenic impacts data
from various sources. We obtained elevation data at 30s reso-
lution from the Global Multi-resolution Terrain Elevation Data
model (Danielson and Gesch 2011). We collected various climate
variables at 30s resolution from the WorldClim 2 database (Fick
and Hijmans 2017), including mean annual temperature (BIO1),
temperature seasonality (BIO4), maximum temperature (BIO5),
minimum temperature (BIO6), mean annual precipitation
(BIO12) and precipitation seasonality (BIO15). We utilised defor-
estation data at 0.1° resolution from the Millennium Assessment
(Millennium Ecosystem Assessment 2005; Lepers et al. 2005).
Finally, we obtained a measure of human pressures on ecolog-
ical systems, termed the Human Footprint, at 1km resolution
(Sanderson et al. 2002; Venter et al. 2016). This metric is based
on a model that incorporates data from 2009 on human popula-
tion density, croplands, pasturelands, navigable waterways and
human-constructed infrastructure such as buildings, roads and
railways.

We used the dggridR R package (Barnes and Sahr 2017) to es-
tablish 7292 equal-area hexagonal cells across the surface of the
Earth (res =6), each with an area of about 70,000km?. The cen-
troids of the cells are, on average, 285 km away from their nearest
neighbours. This is in line with recommended spatial resolutions
of >200km when dealing with range maps to avoid overestima-
tion of species occupancy area and mischaracterisation of spatial
patterns of species richness (Hurlbert and Jetz 2007; Hawkins,
Rueda, and Rodriguez 2008). We then removed all hexago-
nal cells whose midpoints were over the ocean (5204 cells) or
Antarctica (178 cells), resulting in 1910 terrestrial cells. Using the
raster R package (Hijmans 2022), we calculated the average of the
Human Footprint and Deforestation measurements for each of
these cells. We also calculated the mean of each climate variable
and elevation for each cell. We assembled mammal communi-
ties by identifying which mammal species’ ranges overlap with
each cell. For statistical purposes, we discarded 34 communities
that had fewer than 5 species (Iceland, Svalbard, New Zealand,
the Caribbean, the Falkland Islands and most of Greenland). We
then used the remaining 1876 communities to calculate a range of
community statistics for each cell: species richness, dispersion of
body mass, body mass skewness, body mass kurtosis, minimum
and maximum body mass, proportion of species in each body
size class (small, medium and large), number of species larger
than 100kg (i.e., those with increased ecosystem engineering
potential (Naiman 1988)), mean percent of plant in the species’
diets, dispersion of percent of plant in the species’ diets, propor-
tion of species in each trophic group (herbivore, omnivore and
carnivore), mean range size and dispersion of range size. To cal-
culate dispersion, we took the average pairwise difference of all
co-occurring species as introduced by Fraser and Lyons (2017):

n

D 2 2 bl ®

i=1 j=it+1

where x; denotes the trait value (e.g., body mass) of the ith spe-
cies, and n represents the total number of mammal species in a
community.

To assess how mammal community assembly and development
have impacted community body mass dispersion across the
globe, we developed a null model to quantify what body mass
dispersion would be if species were randomly assigned to com-
munities. A key prediction of competitive exclusion models is
that co-occurring species may have overdispersed trait distri-
butions with respect to a null model that considers all species
that could possibly be sampled from the regional species pool.
However, since there are well-known associations between
trophic levels, range size and body mass that may be driven by
processes independent of competitive exclusion (Brown and
Maurer 1987; Cooke et al. 2022), simply permuting body mass
without considering these other factors would generate an anti-
conservative null. Therefore, in developing our null model, we
conserved the geographic range of each species but associated
it with a randomly chosen body mass from another species that
shares its trophic group and body size class and that lives on
the same continent. In other words, we took all small carnivore
species in North America and randomly shuffled their body
masses, then took all medium carnivores in North America and
shuffled their body masses, and so on. This process accounts for
the aforementioned well-known associations between trophic
group, body mass and range size. For example, a null model in
which an elephant-sized mammal has the range size of a mouse
or vice versa would be physiologically unrealistic. The null
model also maintains the proportion of species in each of the
three trophic groups and the proportion of species in each of the
three size classes within individual communities, both of which
are critical to the functioning of ecosystems (Cooke et al. 2022).
A null model without these constraints would be ecologically
unrealistic. Finally, this also accounts for the known differences
in body size distributions in different continental species pools
(Bakker and Kelt 2000; Lyons, Smith, and Brown 2004; Lyons
and Smith 2013). Other functional traits could be used to further
parameterise the null model (e.g., diurnal/nocturnal or habitat
tiering), but we decided to balance the accuracy of the null model
with its simplicity. We performed this simulation 100 times and
calculated the body mass dispersion for each community each
time to provide a range of expected community body mass dis-
persions across modern mammal communities given the geo-
graphic ranges of species, the different species that inhabit each
continent, and the trophic and body size compositions of com-
munities. For each community, we then calculated the average
difference between these simulated body mass dispersions and
the observed body mass dispersion, henceforth referred to as the
deviation from the null. We used a one-sample Wilcoxon test to
calculate the probability that the observed dispersion is from the
same distribution as that of the null model. We used the FDR
correction to adjust the p-values for multiple (1876) comparisons
(Benjamini and Hochberg 1995).

Ecological data that are observed across geographical space
often exhibit spatial autocorrelation where data that are ob-
served closer to one another often exhibit similar values
(Legendre 1993). Due to this phenomenon, such observations
are no longer statistically independent, violating the assump-
tions of most parametric statistical tests, resulting in more
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significant results than are merited if not addressed (Dale
and Fortin 2002). We used the spdep R package to calculate
the global version of Moran's I for our entire dataset (Cliff and
Ord 1981; Bivand 2022). This metric ranges from —1 (perfectly
dispersed) to 1 (perfectly clustered). Values of zero indicate
that observations have no spatial autocorrelation and are sta-
tistically independent. With the dependent variable set to the
observed body size dispersion, we calculated a Moran's I value
of 0.64. With the dependent variable set to the deviation of the
observed body size dispersion from the null model, we cal-
culated a Moran's I value of 0.58. Both values indicate very
strong spatial autocorrelation, as expected. Therefore, given
the large number of observations, we implemented a spatial
subsampling routine to ensure independence of the data,
as is common in geospatial ecology (Dale and Fortin 2002).
First, we used the dggridR R package to establish 272 equal-
area hexagonal cells across the surface of the Earth (res=3),
each with an area of about 1,900,000 km?. We then identified
which one of these large cells corresponded to each mammal
community hexagon's centroid. We filtered out 146 large hex-
agonal cells that did not cover any mammal communities,
leaving 126 large cells which contained between 1 and 37
mammal community hexagons (median =14). We then sam-
pled one mammal community for each of the large hexagon
cells (Figure S1). With this subsample of 126 mammal com-
munities, Moran's I dropped to between —0.06 and 0.21, in-
dicating that this spatial subsampling indeed results in more
independent observations. Given this, we then used this sub-
sampling routine to conduct the statistical analyses described
below. For each statistical analysis, we generated 100 random
spatial subsamples of 126 mammal communities and averaged
the statistical results across all 100 iterations (described for
each analysis below).

First, we estimated the relative importance of various abiotic
and biotic factors in predicting both the observed mass dis-
persion and the deviation from the null. The biotic predictors
included continent, proportion small-sized, proportion large-
sized, mean percent plant in diet, dispersion of percent plant in
diet, proportion of herbivores, proportion of carnivores, mean
range size, range size dispersion, human footprint index and
deforestation index. The abiotic predictors included measures
of a mammal community's habitat and were mean elevation,
mean annual temperature, mean temperature seasonality,
mean maximum temperature, mean minimum temperature,
mean annual precipitation and mean precipitation seasonality.
Species richness was also included as a predictor to account
for any sampling biases. We used the cor function in R to cal-
culate the correlations between all pairwise independent vari-
ables (Table S1). Positive correlations (N=77) ranged from 0.01
to 0.97, with a mean of 0.26, and negative correlations (N=94)
ranged from —0.01 to —0.95, with a mean of —0.24. Given the
high correlation between several of the variables (21 correlations
with an absolute value greater than 0.5), we prioritised methods
that account for such variable intercorrelation. We used the re-
laimpo R package (Gromping 2006) to calculate the LMG metric
(Lindeman, Merenda, and Gold 1980) for each of these variables
as predictors of both the observed size dispersion and the devia-
tion from the null. The LMG metric decomposes the R? value of
a full regression into individual contributions for each predictor.
While similar to a standard partial R? value which is calculated

from the sequential sums of squares, the LMG metric takes into
account potential variable intercorrelation by averaging these
partial R? values over all possible orderings of the variables in
the regression equation, taking into account the dependence of
partial R? values on the order of predictors (Gromping 2006).
Therefore, if a variable consistently has strong predictive power
regardless of its order in the regression equation, it will have a
large LMG value, whereas a variable that often does not con-
tribute to the R? will have a low LMG value. We calculated the
minimum, mean and maximum LMG values for each predictor
across the 100 spatial subsampling iterations. For the analyses
where the observed mass dispersion was the response variable,
we excluded minimum and maximum mass, proportion small-
sized and proportion large-sized as predictors because of their
direct dependence in the calculation of mass dispersion.

Finally, we performed an exhaustive suite of regressions with
any predictors that had a mean LMG value greater than 0.01, ex-
plaining more than 1%, on average, of the variance. We used the
dredge() function from the MuMIn package in R (Barton 2022)
to run a set of linear regressions with all combinations of these
important predictors against each of the response variables. The
predictors were ordered within the regression equations based
on their LMG values. The model coefficients were standardised
using their partial standard deviations (using the ‘beta = “par-
tial.sd” option), which has the same effect as scaling and cen-
tring the input variables while also adjusting for the multiple
correlation of each variable to the other variables (Bring 1994;
Cade 2015). This ensures that the effect sizes are comparable
across all the variables and that the strong correlations between
the variables (Table S1) are accounted for when calculating the
effect sizes. For each of these sets of dredge regressions, we then
performed model averaging based on the AICc support values
of each individual regression using the model.avg() function
from the MuMIn R package (Burnham and Anderson 2002;
Barton 2022). This process produced a model-averaged coeffi-
cient and a standard error for each predictor. We then used the
Hmisc R package (Harrell 2023) to calculate a weighted mean
and weighted standard deviation for each predictor across the
100 spatial subsampling iterations using the inverses of the
squared standard errors as the reliability weights.

We performed all data manipulation and statistical analyses
using version 4.3.3 of the R programming language (R Core
Team 2024). We used the tidyverse suite of R packages to manip-
ulate data (Wickham et al. 2019). We used the sf (Pebesma 2018;
Pebesma and Bivand 2023) and terra (Hijmans 2023) R pack-
ages to perform geospatial analyses. Finally, we used the gg-
plot2 (Wickham 2016), deeptime (Gearty 2023), patchwork
(Pedersen 2022) and viridis (Garnier et al. 2021) R packages to
visualise the results of all of the above analyses.

3 | Results

We recover a familiar species richness latitudinal gradient, with
the communities with the highest species richness between
30°S and 30°N, including Southeast Asia, northern South
America and central Africa (Figure 1). However, not all com-
munities within this latitudinal zone have high species richness,
such as northern Africa, eastern South America and Australia.
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FIGURE 1 | Mammal community species richness as a function of geography. The left panel shows richness values plotted geographically for

individual hexagonal communities, and the right panel shows a histogram of all the community richness values. The right panel provides a colour

scale for the left panel.

Communities outside of this latitudinal zone consistently have
lower species richness, with richness generally decreasing to-
wards the poles.

Mass dispersion, however, shows a dramatically different pat-
tern (Figure 2a). The overall distribution is normally distributed
with a mean of about 1.5 log, ,g. Notable regions with communi-
ties with elevated mass dispersion include many parts of Africa,
South Asia and parts of the Arctic. The lowest mass disper-
sions occur in Madagascar, parts of South America and parts
of Southeast Asia. North America and Asia (outside of South
Asia) have an apparent inverse latitudinal gradient with mass
dispersion generally increasing towards the poles. There is a sig-
nificant negative relationship (p <0.001) between species rich-
ness and mass dispersion, although this only accounts for a very
small proportion of the variance (R?=0.035) (Figure 2a). The
most extreme mass dispersion values occur only at extremely
low species richness (<40 species). Furthermore, in the lower
end of richness (0-100 species), mass dispersion appears to con-
verge on moderate values with increasing number of species.
However, at higher richness (100-350 species), it diverges to two
separate regions of dispersion space (roughly 1.0-1.3 and 1.5-1.8

log,,8)-

Mass kurtosis describes the relative height of a distribution com-
pared to its standard deviation. We find that mass kurtosis is
generally uniform across the globe with all communities having
kurtosis greater than 1 (Figure 2b) indicating that most of the
community body mass distributions are normally distributed
(Lyons and Smith 2013). However, there are some communities
with extremely elevated kurtosis (> 3) indicating distributions
with high peaks and long tails. This includes parts of Indonesia,
the Philippines and Australia. The communities with the lowest
kurtosis occur in Greenland and other parts of the Arctic and
northern Africa. There is a significant positive relationship be-
tween kurtosis and species richness (p <0.001), but again, this
explains relatively little of the community variance of kurto-
sis (R>=0.067) (Figure 2b). As with mass dispersion, the most
extreme community values occur only for communities with
low species richness, with kurtosis converging with increasing
richness.

Mass skewness describes the length and direction of the tail
of the distribution. We find that skewness across the globe is

normally distributed, with a mean of about 0.3 (Figure 2c). Most
communities (>84%) have positive skewness, indicating that
larger mammals make up the long tail of the distribution, likely
reflecting the overall skewness of mammalian body masses
(Brown and Maurer 1989). The communities with the highest
skewness values, and therefore the longest right tails, occur in
Australia, South America, Indonesia and the Philippines. The
communities with the lowest skewness values, often with neg-
ative values indicating long left tails made up of smaller mam-
mals, occur in northernmost Canada and Greenland, Tibet,
Nepal and parts of Africa. There is a barely significant negative
relationship between skewness and species richness (p=0.01),
but again, this explains little of the community variance of
skewness (R?>=0.003) (Figure 2¢). As with the other metrics, ex-
treme values of community skewness occur only in communi-
ties with very low species richness and skewness converges with
increasing richness.

The average community consists of about 58% small species
(<1kg), 23% medium species (1kg-10kg) and 19% large species
(>10kg), although there is a great deal of variation from com-
munity to community (Figure 3). The proportion of large species
within communities is elevated in many parts of Africa, Nepal,
Tibet and the arctic (including Greenland and northernmost
Canada). Other communities, like those in parts of Australia,
most of South America, Central America and central and south-
ern North America have very reduced proportions of large spe-
cies and inflated proportions of small and medium species. Most
islands, such as those in Oceania and Madagascar have no large
species whatsoever.

Community mass dispersion estimates from the null model
vary globally, with a mean of 1.43 log, g (Figure 4a). At the
continental scale, South America and Australia have the low-
est expected mass dispersions; North America, Europe and
Asia have intermediate null expectations; and Africa has the
highest average null dispersion. Despite the broad continen-
tal differences in null model estimates resulting in a multi-
modal distribution (Figure 4a), the degree to which observed
dispersions deviate from the null model follows a normal dis-
tribution (Figure 4b). Furthermore, regions such as northern
North America and Madagascar, deviate from this continen-
tal pattern. Mass dispersion estimates for communities with
lower species richness can fluctuate dramatically between
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| Mammal community body mass dispersion (a), kurtosis (b) and skewness (c) as functions of geography and species richness. The

left panels show metrics plotted geographically for individual hexagonal communities. The middle panels show histograms of metrics across all

communities. The middle panels provide colour scales for their respective left panels. The right panels show the metrics as functions of community

taxonomic size. Each point represents a geographic community. Red dashed lines represent linear regressions with p-values and r-squared values
reported in the top-right corner of each panel. Note that the p-values are anti-conservative due to spatial autocorrelation.

individual simulations, resulting in large errors (standard
deviations of up to 0.29 log,,g; Figure 5a). The average esti-
mates from the null model broadly appear to match the ob-
served mass dispersion. However, upon closer inspection, 56%
of the observed mass dispersions for communities are signifi-
cantly greater than their respective estimates from the null
model and 29% of communities have significantly lower ob-
served dispersion than their respective null model estimates
(Figures 4 and 5; one-sided Wilcoxon signed rank test, p <0.05
with FDR adjustment (Benjamini and Hochberg 1995)).

When assessing the relative importance of all 20 variables, the
number of very large species, mean range size and continent are
the most important predictors of raw dispersion, collectively ac-
counting for 40% of the variance (Figure 6). The dispersion of the
proportion of plants in diets, the mean annual temperature and
the mean minimum temperature are the next most important

predictors. When predicting the deviation of the observed body
mass dispersion from our null model, the continent, mean an-
nual precipitation and number of very large species in the com-
munity are the most important predictors. Other important
predictors include mean minimum temperature and mean an-
nual temperature. Of the two human impact variables, only de-
forestation was above the cut-off of 0.01, albeit marginally.

The dredge regressions covered 15 predictor variables for raw
dispersion and 17 predictor variables for the deviation from
the null model (Figure 7). Being on Asia or South America has
a significant negative relationship with raw dispersion (com-
pared to Africa), whereas being on Oceania, Europe, North
America or South America has a significant positive relation-
ship with the deviation from the null model. With regards to bi-
otic predictors, the number of very large species, the mean and
dispersion of range size, and the mean and dispersion of plant
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FIGURE 3 | Size composition of mammal communities as a function of geography. The left panels show the proportions of small (<100g),

medium (100g to 10kg) and large (> 10kg) species with individual hexagonal communities. The distributions of these proportions are summarised

as histograms in the right panels. The right panels provide colour scales for their respective left panels.

in diet have positive relationships with the observed mass dis-
persion of communities, whereas species richness has a nega-
tive relationship with observed mass dispersion. The number
of very large species and the dispersion of range size have
positive relationships with the null deviation, whereas species
richness has a negative relationship with the deviation. With
regards to abiotic predictors, no variables had a significant re-
lationship with observed dispersion. Mean precipitation sea-
sonality has a positive relationship with deviation from the

null model, whereas mean minimum temperature and mean
annual precipitation have a negative relationship with it.

4 | Discussion
Mammal communities across the globe exhibit a wide variety of

body size distributions (Brown and Nicoletto 1991; Marquet and
Cofre 1999; Bakker and Kelt 2000; Kelt and Meyer 2009; Lyons
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metrics plotted for individual hexagonal communities; right panels show histograms of metrics. The right panels provide colour scales for their

respective left panels.

and Smith 2013). The complex overlapping of mammalian home
ranges produces highly taxonomically and functionally unique
communities that have body size distribution characteristics
that are distinctive from one another, including dispersion,
skewness, kurtosis and composition (Figures 2 and 3). Often
these characteristics also deviate quite dramatically from those
of the body size distribution of mammals as a whole. For exam-
ple, some communities have negative body size skewness, which
greatly contrasts with the positive skewness consistently found
at the continental level (Lyons, Smith, and Brown 2004; Lyons
and Smith 2013) (Figure 2c). There is also notable variation in
the size composition of modern mammal communities, with
some communities having almost exclusively small mammals
while others have equal proportions of small, medium and large
mammals (Figure 3). While particular regions may have higher
or lower community body size metrics than others, such as
many Southeast Asian communities having highly elevated kur-
tosis or many African communities having elevated dispersion,
there does not appear to be any broadly generalisable geographic

pattern (e.g., latitudinal gradient) for mass dispersion, kurtosis
or skewness (Figure 2). Species richness does not account for
much of the variation of these metrics either (Figures 1, 2 and 6).
However, the variance of these metrics does decrease at higher
species richness as communities have more overlapping species
and thus body size distributions of communities with high spe-
cies richness tend to reflect the distributions of the continental
species pool (Figure 2).

Here we find that the observed body mass dispersion of com-
munities tends to reflect the varying biotic and abiotic factors
of these communities, even at high species richness (Figure 6).
In fact, the 18 variables that we included in our regressions ac-
counted for a total of 87.5% of the variance. In terms of biotic
variables, we find that the number of very large species, range
size, continent and trophic composition are the most important
predictors of observed dispersion. A community's continent ex-
plains, on average, 13% of the total variance (Figure 6), reflect-
ing the large differences in species pools from one continent to
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another (Smith and Lyons 2011), which is strongly influenced by
the intensity of the megafaunal extinction on continents (Lyons,
Smith, and Brown 2004; Smith et al. 2018, 2019). The average
and variation of species’ range sizes also appear to play a major
role, collectively explaining 17% of the variation in observed
mass dispersion across communities (Figure 6). Communities
with larger average range sizes tend to have larger size disper-
sion (Figure 7). Range size is correlated with body size (Brown
and Maurer 1987; Lyons and Smith 2013; Lyons, Smith, and
Ernest 2019), so this may indicate an expected influence of body
size composition on body size dispersion. Maximum size, mini-
mum size and the proportions of small- and large-sized species
were explicitly not included in this analysis but are indirectly in-
cluded because of the relationship between body size and range
size. However, species with larger range sizes may also have
decreased regional competition and redundancy, which may
also lead to increased dispersion. The average and variation of %
plant in species diets collectively explain about 10% of the varia-
tion (Figure 6). Specifically, communities with higher means or
dispersions also tend to have larger observed dispersion values
(Figure 7). While herbivory may also be tied to body size (Price
and Hopkins 2015; Pineda-Munoz, Evans, and Alroy 2016; Cooke
et al. 2022), this may also indicate stronger competition among
species that are more herbivorous due to limited plant resources,
resulting in higher body size and niche compartmentalisation.
Finally, the number of species with body masses greater than
100kg within a community single-handedly accounts for about
14% of the variation of observed dispersion (Figure 6). An excess
of large species within a community likely drives an increased
body size range, which would cause an increased pairwise dis-
tance between all species pairs, resulting in an overall increase
in the body mass dispersion metric. However, it appears that

this is a much more important factor than the percentage of any
particular size class, even the small size class (Figure 6). This
seems understandable given that mammal community body size
distributions tend to have positive skewness (Figure 2); a raw
increase in the number of very large species has a much higher
chance of increasing the body size range than a raw increase in
the number of small species.

In terms of abiotic factors, temperature (annual average, min-
imum, maximum and seasonality) collectively accounts for
about 18% of the variation of observed dispersion and precipi-
tation, whereas precipitation (annual and seasonality) explains
5% (Figure 6). These variables all exhibit slightly negative effect
sizes with respect to body size dispersion, perhaps suggesting
that niche disparity is decreased in colder and/or dryer habitats;
however, it should be noted that none of these effect sizes are sig-
nificantly different from zero (Figure 7). This aligns with obser-
vations of decreased functional richness in birds and mammals
in cold or dry regions (Oliveira et al. 2016; Schumm et al. 2019).
Elevation also shows little relationship with observed disper-
sion. Taken together, this suggests that ecological structure and
interactions may be more important than these abiotic factors
for structuring the disparity of body sizes in local communities.
In fact, previous studies agree that communities with high re-
source availability, such as tropical rainforests, have low com-
petition for those resources, resulting in relatively low niche
variability, whereas communities with low resource availability,
such as temperate regions, have high degrees of competition and
relatively high niche variability (Oliveira et al. 2016).

Overall, even when accounting for home ranges (Tucker,
Ord, and Rogers 2014), trophic levels and body size classes
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deviation from the null model. Asterisks indicate variables that were
excluded from the raw dispersion analysis. The dashed line indicates
the 0.01 cut-off.

(Price and Hopkins 2015; Cooke et al. 2022) and different
continental species pools (Bakker and Kelt 2000; Lyons and
Smith 2013), there is a strongly non-random association of
species to communities. These results are largely consistent
with many different potential drivers. First, strongly compet-
ing species must live in largely non-overlapping geographic
ranges (i.e., competitive exclusion) (Hardin 1960). Similarly
sized species, which likely share similar diets (Carbone
et al. 1999, 199; Price and Hopkins 2015; Pineda-Munoz,
Evans, and Alroy 2016; Cooke et al. 2022), should therefore
tend to occupy different communities, and we would expect
greater body size variation within individual communities
than expected by chance. Second, the unequal distribution of
energy across communities predicts that some communities
should have lower dispersion than others due to varying num-
bers of supported niches (Brown and Nicoletto 1991; Marquet
and Cofre 1999). Further, an increase in the spatial variety
of food resources within individual communities would also
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FIGURE 7 | Regression coefficient estimates from model averaging.
Only variables with more than 0.01 LMG were included (see Figure 6).
White points represent coefficients for models where the dependent
variable is the observed body mass dispersion. Black points represent
coefficients for models where the dependent variable is the deviation
of the observed body mass dispersion from the null model. Asterisks
indicate variables that were excluded from the raw dispersion analysis.
Error bars represent 95% confidence intervals (error bars that overlap
with zero are faded). Continental coefficients are based on differences
with respect to Africa.

be expected to support a larger number of niches through the
creation of microhabitats (Stauffer et al. 1996; Jones, Szyska,
and Kessler 2011). We would, therefore, expect some commu-
nities within a continent to have more size dispersion than
expected by chance while others are expected to have less
size dispersion than expected based on the amount of energy
available in those communities, the heterogeneity of within-
community energy availability or the degree of environmen-
tal filtering (Sudrez-Tangil and Rodriguez 2023). Third, very
large species of mammals are known to indirectly create
more open niches via ecosystem engineering (Naiman 1988;
Erwin 2008). For example, elephants and other large mam-
mals can cause vegetation changes, modify fire regimes, im-
pact soil formation and transfer sediment and nutrients, all of
which have monumental impacts on niche availability for and
occupation by other mammals (Naiman 1988; Haynes 2012;
Doughty et al. 2016; Geremia et al. 2019). We would expect
communities with more large-bodied species would result in
higher body size dispersion among other size classes. Fourth,
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the potential seasonal migration of species into and out of
communities with high precipitation seasonality due to the
seasonal viability of particular niches may artificially inflate
our calculation of body size dispersion, whereas the calcula-
tion of body size dispersion in any single season would possi-
bly be much lower (and in line with the expectations from the
null model) (Ochoa-Ochoa et al. 2019; Parolari et al. 2020). As
aresult, there is likely to be significant variation in the degree
to which these different mechanisms are important for differ-
ent communities.

Ultimately, we acknowledge that the approach we have
taken here prevents us from fully distinguishing between
these different drivers. First, range maps are notorious for
not reflecting heterogeneity and porosity within ranges, not
accounting for seasonal migration and lacking abundance in-
formation (Hurlbert and White 2005; Hawkins, Rueda, and
Rodriguez 2008; Qian 2020; Higino et al. 2023). The use of
range maps, particularly at the scale we have elected to use,
may therefore reduce the amount of community-level and re-
gional variation, weakening any possible signal related to spa-
tial biotic or abiotic variation. It's possible that future analyses
at finer spatial scales or of only small mammals, which have
much smaller ranges and would therefore be less impacted
by the lack of porosity and, would be better suited to test the
expectations of the mechanisms discussed above. Second, we
only covered a small subset of all possible abiotic variables in
this study. Future studies would benefit from expanding this
to other abiotic variables, including, but not limited to, soil
characteristics, hydrology and geological history. Beyond this,
quantifying the degree to which abiotic factors vary within
communities would be valuable, although this would also
likely require a much finer spatial resolution.

Finally, neither of the human impact metrics that we inves-
tigated—deforestation and the human footprint—directly ex-
plained appreciable amounts of variance in the observed mass
dispersion nor the deviation from the null model. Humans
have most certainly had a profound impact on mammal com-
munities across the globe, with anthropogenic global change
recorded since the Pleistocene (Lyons and Smith 2013; Smith
et al. 2018; Toth et al. 2019; Cooke et al. 2022). However, here
we find no evidence that humans have directly impacted the
density and/or disparity of mammal body size within indi-
vidual communities in so far as we can detect it through this
body mass dispersion metric. Given that human impacts have
been highly biased against larger sized mammals (Smith
et al. 2018) and have had differential effects on different con-
tinents (Lyons, Smith, and Brown 2004), it is extremely likely
that human impacts are highly correlated with other variables
that we included in our analyses, such as continent and num-
ber of extra-large species. Furthermore, communities with
below average proportions of large species (< 18.5%) converge
on mass dispersion values much lower than those of commu-
nities with above average proportions (>18.5%) (Figure 5).
Therefore, we propose that these communities with larger pro-
portions of large species and higher mass dispersion represent
more natural, undisturbed communities (green in Figure 5),
whereas communities with lower proportions of larger species
and lower mass dispersion represent more disturbed commu-
nities (blue in Figure 5).

5 | Conclusion

Numerous abiotic and biotic factors interact to produce a complex
set of interactions in mammal communities, resulting in highly
heterogeneous body size distributions, even at this coarse spatial
scale. Continental species pools, trophic levels, range sizes and
regional climate appear to have varying effects on these distribu-
tions, specifically the dispersion of body mass. However, when
continental differences, home ranges and trophic and body size
composition are accounted for, many mammal communities
still have higher body mass disparity than would be expected
by chance whereas a minority of communities have lower mass
disparity than expected. Overall, our results are consistent with
many different plausible mechanisms including, but not limited
to, competitive exclusion, unequal distribution of resources,
within-community environmental heterogeneity, habitat filter-
ing and ecosystem engineering. The relative importance of these
mechanisms is likely to differ among communities. Future work
including other confounding biotic and abiotic variables, at final
spatial scales and/or within more causal frameworks is required
to better understand how these patterns have arisen over time.
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