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We study the applicability of the finite temperature effective potential in the equation of motion of a 

homogeneous “misaligned” scalar condensate φ and find important caveats that severely restrict its domain 

of validity: (i) the assumption of local thermodynamic equilibrium is in general not warranted, (ii) we 

show a direct relation between the effective potential and the thermodynamic entropy density S ¼ 

−∂VeffðT;φÞ=∂T, which entails that for a dynamical φðtÞ the entropy becomes a nonmonotonic function of 

time, (iii) parametric instabilities in both cases with and without spontaneous symmetry breaking lead to 

profuse particle production with nonthermal distribution functions, (iv) in the case of spontaneous 

symmetry breaking spinodal instabilities yield a complex effective potential, internal energy and entropy, 

an untenable situation in thermodynamics. All these caveats associated with using the effective potential 

in the equation of motion of the condensate cannot be overcome by finite temperature equilibrium 

resummation schemes. We argue that the dynamics of the condensate leads to decoupling and freeze-out 

from local thermodynamic equilibrium, and propose a closed quantum system approach based on unitary 

time evolution. It yields the correct equations of motion without the caveats of the effective potential, and 

provides a fully renormalized and thermodynamically consistent framework to study the dynamics of the 

“misaligned” condensate, with real and conserved energy and entropy amenable to numerical study. The 

evolution of the condensate leads to profuse stimulated particle production with nonthermal distribution 

functions. Possible emergent asymptotic nonthermal states and eventual rethermalization are conjectured. 

DOI: 10.1103/PhysRevD.111.016028 

I. INTRODUCTION 

The finite temperature effective potential is a very 

powerful diagnostic tool to study the phase structure of 

quantum field theories including thermal and quantum 

corrections. It is the finite temperature extension of the zero 

temperature effective potential originally proposed by the 

pioneering work of Refs. [1–4] to study how radiative 

corrections modify the symmetry breaking properties of 

the vacuum. Functional methods provide a systematic 

formulation of the zero temperature effective potential as 

the generating functional of single particle irreducible 

Green’s functions at zero four momentum [5–8]. 

The extension of the effective potential to equilibrium 

finite temperature was pioneered by Refs. [9,10]. It 

describes the free energy landscape as a function of the 
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spatially homogeneous and time independent order 

parameter, the expectation value of a scalar field φ, thereby 

characterizing the different phases of a theory. As such, the 

finite temperature effective potential plays a fundamental 

role in cosmology, as it may describe possible 

cosmological phase transitions [11–15]. 

A. Motivation and objectives 

The finite temperature effective potential was originally 

introduced and developed with the aim of describing 

2470-0010=2025=111(1)=016028(25) Published by the American Physical Society 

https://orcid.org/0000-0001-8062-1306
https://ror.org/05vs4fq96
https://ror.org/05vs4fq96
https://ror.org/01an3r305
https://doi.org/10.1103/PhysRevD.111.016028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


HERRING, CAO, and BOYANOVSKY PHYS. REV. D 111, 016028 (2025) 

016028-2 

equilibrium aspects of spontaneous symmetry breaking 

including quantum and thermal effects in terms of a free 

energy as a function of the homogeneous and static order 

parameter. However, it is often used in the equations of 

motion of such an order parameter to describe the dynamics 

of, for example, “misaligned” condensates. A recent study 

[16] of the zero temperature effective potential, extending 

the Hamiltonian framework introduced in Refs. [4,17], 

revealed several important caveats that invalidate its 

applicability in the equation of motion of the order 

parameter, namely the condensate or mean field. In the case 

when the tree-level potential does not feature broken 

symmetry minima, oscillations of the condensate around its 

minimum lead to instabilities associated with parametric 

amplification resulting in the exponential growth of the 

fluctuations around the mean field with profuse particle 

production, a physical mechanism similar to that of 

reheating in cosmology [18–24]. In the case when the tree-

level potential admits broken symmetry minima, a different 

instability emerges when the excursion of the mean field 

probes a region where the potential features negative 

second derivatives. This is the spinodal (or tachyonic) 

instability and again leads to exponential growth of 

fluctuations around the mean field. In this case the growth 

of fluctuations is associated with the formation and growth 

of correlated domains [17,25,26]. In statistical physics this 

is the hallmark of the process of spinodal decomposition 

and phase ordering dynamics in phase transitions [27–30]. 

Both types of instabilities lead to the unambiguous 

conclusion that the zero temperature effective potential, 

which by definition and construction is a static function of 

the mean field, is inadequate to describe the dynamics of 

the mean field [16]. 

Motivated by the ubiquity and importance of the 

effective potential in cosmology and in general to study the 

phases of a quantum field theory, our objectives in this 

article are as follows: (i) to critically examine the validity 

of the finite temperature effective potential in the equation 

of motion of a homogeneous “misaligned” condensates and 

(ii), if it is found to be unreliable, to provide an alternative 

and consistent formulation of the dynamics of the 

condensate. While ultimately our aim is to study these 

aspects within the context of an expanding cosmology, in 

this article we restrict our focus to the case of Minkowski 

space-time as a first step. Undoubtedly, a critical 

assessment of the validity of the effective potential in the 

equation of motion of condensates must start with this 

simpler case from which much can be learned and whose 

study will pave the way towards a firmer understanding in 

cosmology. 

B. Brief summary of results 

We extend and complement the Hamiltonian 

formulation of the finite temperature effective potential 

introduced in Ref. [10], yielding a clear relation to the zero 

temperature case studied in Ref. [16]. We obtain an exact 

result: the finite temperature effective potential is the 

Helmholtz free energy density for the fluctuations around 

the expectation value of the scalar field φ (order 

parameter). This relation has an important thermodynamic 

consequence: S ¼ −∂Veff½T;φ=∂T, where S is the 

thermodynamic entropy density. Therefore, the 

applicability of the effective potential in a dynamical 

equation of motion for a “misaligned” condensate φ is 

restricted by fundamental thermodynamic properties of the 

entropy. In the case of unbroken symmetry we find a 

nonmonotonic time dependence of the entropy, and in the 

case of broken symmetry the entropy becomes complex as 

a consequence of spinodal instabilities. Both cases are 

untenable in local thermodynamic equilibrium. 

Implementing a Chapman-Enskog expansion of the 

Boltzmann equation, we show that the assumption of local 

thermodynamic equilibrium (LTE) is in general 

unwarranted as it requires a fine-tuning of couplings to the 

heat bath. Furthermore, we argue that parametric and 

spinodal instabilities invalidate the use of an effective 

potential, which by design and construction is a static 

equilibrium function of φ, in the equation of motion for the 

condensate. It is argued that the dynamical evolution of the 

condensate leads to a “freeze out” of the density matrix and 

decoupling from LTE, and propose a closed quantum 

system approach to the dynamics. We introduce a method 

based on unitary time evolution to obtain directly the 

correct equations of motion for the condensate, which 

features conservation of energy and entropy, these are 

always real and without the caveats associated with the 

effective potential. Parametric and spinodal instabilities 

lead to an energy transfer between the condensate and the 

fluctuations resulting in stimulated particle production with 

nonthermal distribution functions. A fully renormalizable 

and thermodynamically consistent framework to study the 

dynamics, amenable to numerical study is provided. 

Possible asymptotic states and rethermalization are 

conjectured. 

The article is organized as follows: in Sec. II, we briefly 

review the Hamiltonian approach to the zero temperature 

effective potential before extending the formulation from 

Ref. [10] to finite temperature. In this section we relate the 

static effective potential nonperturbatively to the 

Helmholtz free energy and thermodynamic entropy of the 

fluctuations and obtain the well known result for the one-

loop effective potential. In Sec. III we analyze the 

reliability of the static effective potential in the equation of 

motion for the condensate under the assumption of LTE. In 
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this section we show that LTE is in general not warranted 

and discuss severe caveats in the use of the effective 

potential in the equations of motion arising from 

parametric amplification and spinodal instabilities. In Sec. 

IV it is argued that the dynamics leads to a “freeze out” 

from LTE and decopuling from the thermal bath and 

introduce a closed quantum system approach based on 

unitary time evolution to obtain the correct equations of 

motion. These are shown to conserve energy density and 

entropy, which are manifestly real without the caveats of 

the effective potential. In this section it is shown that 

parametric and spinodal instabilities are efficient 

mechanisms of energy transfer between the condensate and 

the fluctuations leading to profuse stimulated particle 

production with nonthermal distributions. We provide a 

fully renormalized and thermodynamically consistent 

framework to study the dynamics of the condensate 

amenable to numerical study. Section V conjectures on the 

emergence of possible asymptotic states and 

rethermalization. In Sec. VI we present our conclusions 

and suggest further avenues of study. An Appendix 

summarizes the nonequilibrium correlation functions 

needed to obtain the equations of motion. 

II. THE STATIC EFFECTIVE POTENTIAL: ZERO VS 

FINITE TEMPERATURE 

A. Zero temperature 

Before we consider the finite temperature effective 

potential, we briefly summarize the main concepts behind 

the Hamiltonian approach of Refs. [4,16,17] with the 

objective of comparing with the finite temperature case 

discussed below. 

Let us consider a scalar theory described by the 

Hamiltonian 

 Hˆ ¼ Z d xπˆ22 þ ð∇2ϕÞ2 þ VðϕˆÞ; ð2:1Þ 

where πˆ is the canonical momentum conjugate to the 

scalar field ϕˆ
. The Hamiltonian interpretation of the 

effective potential [4,16,17] defines the effective potential 

as the expectation value of Hˆ in a normalized coherent 

state jΦi in which the field acquires a space-time 

independent expectation value, namely a mean field φ, 

 φ ¼ hΦjϕˆðx;t⃗ÞjΦi; hΦjπˆðx;t⃗ÞjΦi ¼ 0; ð2:2Þ 

as 

 Veffð jHˆ ðx;t⃗ÞjΦi; ð2:3Þ 

where V is the spatial volume. Shifting the field operator 

ϕˆ 
by its coherent state expectation value φ, ϕˆðx;t⃗ Þ ¼ φ 

þ δˆðx;t⃗ Þ; πˆðx;t⃗ Þ ≡πˆδðx;t⃗ Þ; ð2:4Þ 

the constraints (2.2) imply 

 hΦjδˆðx;t⃗ÞjΦi ¼ 0; hΦjπˆδðx;t⃗ÞjΦi ¼ 0; ð2:5Þ 

leading to 

1 

Veff ¼ VðφÞ þ V  Z d3x 

 2 ˆ 2 

 × h j 2 þ ∇2 þ 2 ð Þ þ jΦi; ð2:6Þ 

where the expectation value of the linear terms in δˆ 
and 

πˆδ vanish by the constraints (2.2), and the dots in Eq. (2.6) 

stand for higher powers of δ leading to higher loop 

corrections. 

In the Hamiltonian formulation quantization proceeds by 

expanding the fluctuation field δðx;t⃗ Þ in the basis of 

solutions of the Heisenberg field equations for a free field 

with mass squared V00½φ, namely 

δ̈ ðx;t⃗ Þ −∇2δðx;t⃗ Þ þ V00½φδðx;t⃗ Þ ¼ 0; ð2:7Þ 

and the field δðx;t⃗ Þ is expanded in mode functions, 

pℏffiffi Xk h k k ik⃗ ·x⃗ ak†⃗ gkðtÞe−ik⃗ ·x⃗ i; ð2:8Þ 

δðx;t⃗ Þ ¼ pV ⃗ a⃗ g ðtÞe þ pℏ 

 πδðx;t⃗Þ ¼ pVffiffi Xk⃗hak⃗ g˙kðtÞeik⃗ ·x⃗ þ a†k⃗ g˙kðtÞe−ik⃗ ·x⃗ 

i; ð2:9Þ 
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where the mode functions gkðtÞ are solutions of the 

equations [16] g̈ kðtÞ þ ω2kðtÞgkðtÞ ¼ 0; ωk2 ¼ k2 þ V00½φ; 

ð2:10Þ with the Wronskian condition g˙kðtÞgkðtÞ − 

g˙kðtÞgkðtÞ ¼ −i; ð2:11Þ 

and the annihilation and creation operators are time 

independent and obey canonical commutation relations. 

For a space-time constant φ, the mode functions are given 

by 

 e−iωkt 2 

 gkðtÞ ¼ p2ωkffi ; ωk ¼ qk þ V00½φffi; ð2:12Þ 

yielding the mode expansion 

pℏffiffi Xk 1 kffi h k −iωkteik⃗ ·x⃗ þ a†k⃗ eiωkte−ik⃗ ·x⃗ i; 

δðx;t⃗ Þ ¼ pV ⃗ p2ω a⃗ e 

ð2:13Þ 

pℏffiffi Xk rωkffih k −iωkteik⃗ ·x⃗ − ak†⃗ eiωkte−ik⃗ 

·x⃗ i; πδðx;t⃗ Þ ¼ −ipV ⃗ 2 a⃗ e 

ð2:14Þ 

and the quadratic Hamiltonian inside the brackets in Eq. 

(2.6) becomes 

k ℏωkðφÞa†k⃗ ak⃗ þ 12: ð2:15Þ  H ¼

⃗ 

The constraints (2.5) are implemented by requesting 

occupation numberthat the coherent statenk⃗ ¼jΦai†k⃗ abe an 

eigenstate of the Fockk⃗ ; however, the lowest expect- 

ation value of the quadratic Hamiltonian is obtained for the 

vacuum state for the fluctuations δˆ
, namely [16] 

 ak⃗ jΦi ¼ 0; ∀ k;⃗ ð2:16Þ 

leading to the constraint (2.5). 

 Taking the infinite volume limit with ⃗ → 

V R d3k=ð2πÞ3 and using (2.16), we find that the effectivePk 

potential (2.3) is given by 

ℏ 

VeffðφÞ¼VðφÞþ 2Z ð2dπ3kÞ3 ωkðφÞþOðℏ2Þþ:

 ð2:17Þ 

The ℏ in (2.17) originates in the pℏ in the usual field 

quantization (2.13), (2.14) and implies that the expres-ffi 

sion (2.17) is the zero temperature one-loop effective 

potentialnk ≠ 0, then the integrand in the second term 

features an[16,17]. If jΦi is an excited eigenstate with extra 

contribution nkωkðφÞ thereby raising the energy. 

In order to compare the above results to the finite 

temperature case, we introduce the pure state density 

matrix ρ≡ jΦihΦj; ð2:18Þ 

from which it follows that φ ¼ Trϕˆðx⃗ Þρ; VeffðφÞ ¼ V 1 

TrHρ; ð2:19Þ 

and the constraints (2.5) become 

 Trδˆðx⃗ Þρ ¼ 0; Trπˆδðx⃗ Þρ ¼ 0: ð2:20Þ 

Before moving on to the finite temperature case, it must 

be emphasized there are two main assumptions leading up 

to the zero temperature result (2.17): (i) that the mean field 

φ is time independent, yielding the mode functions given 
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by Eq. (2.12), (ii) that V00ðφÞ > 0, condition that yields real 

frequenciesWhen φ evolves in time, as in the dynamical 

case, theωkðφÞ. 

mode functionsthrough the time dependence oftions (2.10) 

withgkVðt00Þðφare solutions of the mode equa-ðtÞÞ that 

now depends on timeφðtisÞ, and gives rise tonegative for 

some 

parametric instabilities, and ifvalues of V00ðφÞ 2 00ðφÞj 

since for φ, there are instabilities for k < jV 

these wave vectors the frequencies ωk become purely 

imaginary. Both instabilities will be addressed in Sec. III 

within the context of the applicability of the finite 

temperand have been discussed in greater depth in 

Ref.ature effective potential in the dynamical evolution of 

φðtotÞ 

[16] 

which we refer the reader for a more detailed treatment. 

B. Finite temperature 

The discussion above highlights the interpretation of the 

zero temperature effective potential as the expectation 

value of the Hamiltonian in a particular coherent state, 

defined to be the vacuum for the fluctuations around the 

mean field φ. This formulation does not have a 

straightforward extrapolation to finite temperature, 

because the equilibrium density matrix corresponds to a 

mixed state that describes an ensemble, not a pure state as 

in (2.18). 

The constraints (2.5), which can be implemented 

straightforwardly in the case of a pure state, must now be 

imposed in terms of Lagrange multipliers added to the 

Hamiltonian in the thermal density matrix. This is achieved 

by following the formulation of the finite temperature 

effective potential advocated in the seminal articles [9,10]. 

In particular by implementing the Hamiltonian formulation 

of Ref. [10],1 wherein the effective potential is obtained 

from the Legendre transform of the equilibrium free energy 

under the constraint that the expectation value of the field 

is a space-time constant. 

 
1 See the appendix in this reference. 

To discuss the main arguments in a clear manner, we 

focus on the simple case of a scalar field with a Lagrangian 

density 

 L½  ¼ 2 ½ ;

 ð2:21Þ 

yielding the Hamiltonian (2.1). Let us introduce 

 HJ½ϕ ¼ H½ϕ þ Z d3xJðx⃗ Þϕðx⃗ Þ; ð2:22Þ 

where Jðx⃗ Þ is an external classical source. The canonical 

partition function is given by 

 Z½T;J ≡ e−βF½T;j ¼ Tr e−βHJ½ϕ; ð2:23Þ 

whereThe F½T;J is the Helmholtz free energy 

andexpectation value of the fieldβϕ¼ðx⃗ 1Þ=Tin. 

equilibrium 

presence of the source is defined as 

 φðx⃗ Þ ≡ TrTrϕðex⃗ −ÞeβH−Jβ½HϕJ½ϕ ; ð2:24Þ 

which is obtained as a variational derivative with respect to 

the c-number source, namely 

 1 δ δ 

φðx⃗ Þ ¼ −β δJðx⃗ Þln½Z ¼ δ Jðx⃗ ÞF½T;J; 

ð2:25Þ the source Jðx⃗ Þ can be interpreted as a Lagrange 

multiplier for the constraint φðx⃗ Þ ¼ hϕðx⃗ Þi where the 

expectation value is obtained with the partition function 

Z½T;J. The relations (2.24), (2.25) are inverted to yield 

 Jðx⃗ Þ ¼ J½φðx⃗ Þ; ð2:26Þ 
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from which the Legendre transform 

 Ω½T;φ ¼ F½T;J½φ − Z d3xJ½φðx⃗ Þφðx⃗ Þ; ð2:27Þ 

yields the generalized Gibbs free energy as a function(al) 

of temperature and the expectation value φðx⃗ Þ. Using the 

definition (2.24) it is straightforward to find that 

δ 

 δφ ðx⃗ ÞΩ½T;φ ¼ −J½φðx⃗ Þ: ð2:28Þ 

From now on we will consider a spatially constant 

expectation value φ, which implies a translationally 

invariant partition function, and introduce 

 j  Z d3xJðx⃗ Þ; F½T;J ≡VF½T;j; ð2:29Þ 

with V the spatial volume, and following Refs. [9,10] 

define the finite temperature effective potential as 

Ω½T;φ ≡VVeffðT;φÞ: 

From Eqs. (2.27), (2.30) it follows that 

ð2:30Þ 

Veff½T;φ ¼ F½T;j½φ − j½φφ 

and 

ð2:31Þ 

dVeffd½φT;φ ¼ −j: 
ð2:32Þ 

This relation is very illuminating, let us first consider it 

at tree level, without quantum and thermal corrections, 

when Veff½φ ¼ V½φ. The relation (2.32) clearly states that 

j is the external force necessary to maintain the space-time 

constant φ at a value that does not correspond to the 

minimum of the potential. This force vanishes for φ 

satisfying dVrelation½φ=d(2.32)φ ¼ 0, namely the 

equilibrium condition. Themust be compared to the 

classical equation 

of motion for a spatially constant (homogeneous) field 

configuration, namely at tree level (dots stand for time 

derivatives) 

d 

 d φV½φ ¼ −φ̈ ; ð2:33Þ 

which when compared with Eq. (2.32) clearly states that in 

absence of dynamical evolution, the external force j must 

be applied to maintain φ away from the equilibrium value. 

This observation will be of paramount importance in the 

discussion of dynamics in the next sections. 

As it will become clear in the discussion below, it is 

more convenient to discuss the effective potential and its 

dynamical generalization in terms of the fluctuations of the 

field ϕðx⃗ Þ around the expectation value φðx⃗ Þ, a 

classical c-number field. Hence, as in the zero temperature 

case, Eq. (2.4), we introduce the field operator 

 δðx⃗ Þ ¼ ϕðx⃗ Þ −φðx⃗ Þ; ð2:34Þ 

and write 

 HJ½ϕ ≡ Z d3xJðx⃗ Þφðx⃗ Þ þ HJ½δ; ð2:35Þ 

where 

 HJ½δ ≡ H½δ þ φ þ Z d3xJðx⃗ Þδðx⃗ Þ; ð2:36Þ 

from which we find 

 e−βF½T;J
 ¼ e−βR d3xJðx⃗ Þφðx⃗ Þe−βFδ½T;J; ð2:

37
Þ 

with the Helmholtz free energy for the fluctuations around 

the mean field, 

 Fδ½T;J ¼ −β 1ln½Tr e−βHJ½δ; ð2:38Þ 

and 

 F½T;J ¼ Fδ½T;J þ Z d3xJðx⃗ Þφðx⃗ Þ: ð2:39Þ 

With this transformation, the relation (2.26) yielding the 

source Jðx⃗ Þ in terms of the expectation value φðx⃗ Þ is 

obtained from the constraint 
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 hδðx⃗ Þi ¼ TrTrδðxe⃗ Þ−eβH−βJH½δJ½δ ¼ 0: ð2:40Þ 

The Legendre transform (2.27) yields the generalized 

Gibbs free energy as 

 Ω½T;φ ¼ Fδ½T;J½φ; ð2:41Þ 

which upon considering a spatially constant expectation 

value φ yields the effective potential 

 Veff½T;φ ¼ Fδ½T;φ;j½φ: ð2:42Þ 

Namely, the effective potential is the Helmholtz free 

energy density for the quantum fluctuations around a 

space-time constant expectation value, with the constraint 

hδðx⃗ Þi ¼ 0 which defines j ≡ j½φ. The condition (2.32) 

yielding 

dV  eff½φT;φ ¼ −j½φ

 ð2:43Þ d 

is now a consistency condition. This is a main conclusion 

of this analysis, and while it is a direct result of the analysis 

in the pioneering work in Refs. [9,10], we emphasize it 

here because (i) it is an exact result, valid to all orders in 

couplings and loop expansion, (ii) it has important 

thermodynamic consequences, in particular 

Veff½T;φ ≡Fδ½T;φ ¼ U½T;φ − TS½T;φ; ð2:44Þ where 

U½T;  ¼ V TrHTrJe½−βHJ½δ ¼ ∂∂ Fδ½T;φg;

 ð2:45Þ 

is the internal energy density, anddynamic entropy density 

as a function ofS½T;φφ , which by theis the thermo- 

relations (2.44), (2.45) is given by2 

 S½T;φ ¼ T Veff½T;φ: ð2:46Þ 

These are nonperturbative, exact relations that link directly 

the effective potential to the thermodynamic internal 

energy and entropy. In particular, the relation (2.46) is very 

important because when Veff½T;φ is used in a dynamical 

 
2 The partial derivatives are at constant φ. 

equation of motion for the mean field φ, its time evolution 

translates into a time evolution of the entropy density, 

which must be compatible with the fundamental principles 

of thermodynamics. 

Under reversible transformations, namely local 

thermodynamic equilibrium, the entropy obeys the second 

law of thermodynamics, it remains constant or increases 

monotonically. This fundamental aspect will be shown 

below to be in striking contradiction with the use of the 

effective potential in dynamical situations. 

C. The one-loop effective potential 

With the Hamiltonian (2.1) we find 

HJ½δ ¼ VV½φ þ Z d ðx⃗ Þ þ ⃗ 

 1 2 

 þ 2 V00½φδ ðx⃗ Þ þ 3! ðx⃗ Þ þ  

 þ ðJðx⃗ Þ þ V0½φÞδðx⃗ Þ; ð2:47Þ 

were primes stand for derivatives with respect to φ. 

corrections, the constraintNeglecting the terms ∝δ3;hδ4;, 

which yield higher loop0 is fulfilled by setting 

δðx⃗ Þi ¼ 

Jðx⃗ Þ ≡ j, namely a spatial constant, given by 

 j ¼ −V0½φ; ð2:48Þ 

thereby cancelling the linear term in δ in (2.47). That the 

condition (2.48) yields hδðx⃗ Þi ¼ 0 when neglecting the 

cubic and higher powers of δ is clear, because under these 

conditions the Hamiltonian is quadratic in δ, describing a 

simple free field of squared massHJ V00½φ for which the 

density matrix e−β ½δ is Gaussian with zero mean. 

Quantizing the fluctuations by expanding the fluctuation 

field δðx;t⃗ Þ as in Eq. (2.13) with the frequencies 

  

 



HERRING, CAO, and BOYANOVSKY PHYS. REV. D 111, 016028 (2025) 

016028-8 

 ωkðφÞ ¼ qk2 þ V00ðφÞffi; ð2:49Þ 

implementing the constraint (2.48), and keeping solely the 

quadratic terms in δ in (2.47) yields 

ℏωkðφÞak†⃗ ak⃗ þ 12 : ð2:50Þ  HJ½δ ¼ VV½φ þ k 

⃗ 

The calculation of the Helmholtz free energy now becomes 

a simple textbook exercise in quantum statistical 

mechanics, the partition function 

Z ¼ e−βF½φ ¼ e−βVV½φTrΠk⃗ e−βHk⃗ ;

 ð2:51Þ with 

 Hk⃗ ¼ ℏωkðφÞa†k⃗ ak⃗ þ 12 : ð2:52Þ 

The trace is calculated in the occupation number basis 

yielding 

∞ 

TrΠk⃗ e−βHk⃗ ¼ Πk⃗e−βℏωkðφÞ=2 nXk⃗ ¼0 e−βℏωkðφÞnk⃗ # 

¼ Πk⃗ 1e−−βeℏ−ωβkℏðφωÞk=ð2φÞ; 

 ¼ e P⃗Pk⃗ 
ln

½1−e−βℏωkðφÞ; ð2:53Þ 

passing to the infinite volume limit with 

d3k 

k →V Z ð 2πÞ3 ; ð2:54Þ 

⃗ 

we find the one-loop finite temperature effective potential 

(2.42) 

Vðeff1Þ½φ ¼ V½φ þ ℏ2 Z ð2dπ3kÞ3 ωkðφÞ 

 þ T Z ð2dπ3kÞ3 ln½1 − e−βℏω
k
ðφÞ; ð2:55Þ 

which is the usual result [9–12]. The T → 0 limit yields the 

zero temperature one-loop effective potential given by Eq. 

(2.17), obtained in the previous section via the Hamiltonian 

approach and the particular coherent state jpoints out that 

the coherent stateΦi yielding the constraintis precisely the 

ground state of the fluctuation(2.5). This analysis 

clearlyjΦi with the constraint 

(2.16) 

Hamiltonian, because in the zero temperature limit, only 

the ground state contributes to the partition function Z. 

An alternative that will prove useful to obtain the 

equation of motion for the condensate to study dynamics in 

the next section is to obtain dVeff=dφ from Eq. (2.43) where 

j is determined from solving the constraint 

sionhδðx⃗ Þi ¼Veff½0φ. For example, to zeroth order in the 

loop expan- ¼(2.43)V½φ. To generate a loop expansion for 

and the tree-level condition (2.48)j satisfies Eq. we follow 

Ref. [10] and write j ¼ −V0½φ þ ℏj1 þ ℏ3=2j2 þ  ð2:56Þ 

field expansionwhere j1;j2  are of(2.13)
O

(showing thatðℏ0Þ, 

with this expansion and theδ∝ℏ1=2) it follows 

that 

 j1ℏδ∝ℏ3=2; j2ℏ3=2δ∝ℏ2 ; ð2:57Þ 

which are of the same order in ℏ (loop expansion) as δ3 

≃ℏ3=2;δ4 ≃ℏ2 . 

To generate the loop expansion in a systematic manner, 

we write the Hamiltonian (2.47) as 

 HJ½δ ¼ VV½φ þ H0 þ HI; ð2:58Þ 

with 
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1 

H0 ¼d3x2 π2δðx⃗ 

Þ þ ⃗ ðx⃗ Þ; 

ð2:59Þ 

and 

HI ¼ d3xðJðx⃗ Þ þ 

V0½φÞδðx⃗ Þ 

þ 

3!V000½φδ3ðx

⃗ Þ 1 

where 

 HIðτÞ ¼ eℏτH0HIe−ℏτH0: ð2:64Þ 

The solution of (2.63) is 

UðτÞ ¼ 1 −ℏ1 Z0τ HIðτ1Þdτ1 

 1 τ τ 

þ ℏ2 Z0 τdτ1 Z0 1 HIðτ1ÞHIðτ2Þdτ2 þ  

 ¼ Tτe−
ℏ1R0 HI

ðτ
1
Þdτ

1; ð2:65Þ 

wheretime evolution operator in the interaction picture in 

imagi-Tτ is the τ ordering symbol. Therefore, UðτÞ is the 

nary time, namely in the Matsubara representation [31]. We 

can now write the partition function as 

Tre−βHJ½δ ¼ e−βVFð1Þ½φhUðℏβÞi0; 

where 

ð2:66Þ 

e−βVFð1Þ½φ
 ¼ e−βVV½φTre−βH0; ð2:67Þ 

and the expectation value in the free field theory, defined 

as 

Tre−β U hUðℏβÞi0 ¼ 

TreH−0βHð0ℏβÞ; ð2:68Þ 

can be obtained in a systematic loop expansion. The trace 

in Eq. (2.67) is precisely given by Eq. (2.53) with the result 

that Fð1Þ½φ
eff

1Þis the one-loop finite temperature 

effective½φ given by Eq. (2.55). Therefore, from potential 

Vð 

Eq. (2.42) we find the general form of the effective 

potential 

 Veff½φ ¼ Vðeff1Þ½φ −β 1V ln½hUðℏβÞi0: ð2:69Þ 

This is an exact result where j is determined by the 

expansion.constraint hδðx;t⃗ Þi ¼ 0 order by order in the 

loop 

OðWe note that lnThe expectation valueℏ2Þ because 

hδm½hðUx;⃗ ðℏτÞiβÞi(2.68)0 0¼ begins at two loops, 

namely0 for odd values of m.can now be obtained in a 

loop expansion, with the field δ in the Matsubara 

interaction picture δðx;⃗ τÞ ¼ eℏτH0δðx;⃗ 0Þe−
ℏτH0, namely p 

δðx;⃗ τÞ ¼ pVℏffiffi Xk⃗p21ωkffi hak⃗ e−ωkτeik⃗ ·x⃗ þ a†k⃗ 

eωkτe−ik⃗ ·x⃗ i: 

 

V0000 

 þ 4!½φδ4ðx⃗ Þ þ : 

Let us define 

ð2:60Þ 

UðτÞ ¼ eℏτH0e−ℏτðH0þHIÞ; 

from which it follows that 

ð2:61Þ 

e−βðH0þHIÞ ¼ e−βH0UðℏβÞ: 

UðτÞ obeys the differential equation 

ð2:62Þ 

dUðτÞ ¼ −ℏ1 HIðτÞUðτÞ; Uð0Þ ¼ 1; dτ ð2:63Þ 
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ð2:70Þ 

However, we need the explicit expression for the source 

JðxÞ, which is determined from the constraint 

TreTr−βHe0UHð0ℏβÞδβð0⃗ ;0Þ ¼ 

hUðhℏUβðÞℏδβð0⃗Þi;00Þi0 ¼ 0: ð2:71Þ 

 −β Uðℏ Þ 

Up to leading order ℏ0 (neglecting cubic and higher order 

powers of δ in HI), the numerator yields 

− Z d4xðJðx⃗ Þ þ V0½φÞhδðx;⃗ τÞδð0⃗ ;0Þi0 ¼ 0; 

ℏβ 

 d4x ≡ Z0 dτ Z d3x; ð2:72Þ 

since hδðx;⃗ τÞδð0⃗ ;0Þi0 ≠ 0 it follows that Jðx⃗ Þ ¼ j ¼ 

−V0½φ, which is precisely the relation(2.29), and 

consistent with the expansion(2.48) with j(2.56)defined. by 

Eq. 

Now we obtain the OðℏÞ contribution to j by considering 

the cubic term in the interaction, yielding 

− Z d4xðJðx⃗ Þ þ V0½φÞhδðx;⃗ τÞδð0⃗ ;0Þi0 þ 

V0003!½φhδ3ðx;⃗ τÞδð0⃗ ;0Þi0 ¼ 0; ð2:73Þ 

using Wick’s theorem hδ3ðx;⃗ τÞδð0⃗ ;0Þi0 ¼ 3hδðx;⃗ 

τÞδð0⃗ ;0Þi0hδ2ðx;⃗ τÞi0; ð2:74Þ 

the calculation of hδ2ðx;⃗ τÞi0 is straightforward using the 

expansion (2.70), leading to the result 

− d4xhδðx;⃗ τÞδð0⃗ ;0Þi0Jðx⃗ Þ þ V0½φ þ 

2V000½φ ℏ 

× Z 2  ω3 k ½1 þ 2nkðφÞ ¼ 0; nkðφÞ ¼ 

eβℏωkðφÞ − 1; d k 1 

ð2:75Þ 

from which we find j ¼ −V0½φ þ ℏ 2 V000½φ Z 

2dω3kk ½1 þ 2nkðφÞ 

 ¼ −d dφVðeff1Þ½φ; ð2:76Þ 

given bythus explicitly confirming the relation(2.55) up to 

order ℏ, namely one loop.(2.43) with Vð
eff

1Þ½φ
 

This analysis confirms the “recipe” to obtain the 

oneδloop effective potential advocated in Ref.φ in the 

Lagrangian density, expand in the fluctuation[9]: write ϕ 

¼δ up to second order andþ neglect the linear term in δ, the 

resulting Lagrangian density describes a free field theory 

of a scalar field of mass squared M2 ¼ V00½φ. The one-loop 

effective potential is the Helmholtz free energy density of 

this free field theory. 

Although alternative functional methods yield the 

effective potential in a loop expansion, the main purpose of 

revisiting and complementing the Hamiltonian framework 

of Ref. [10], confirming the one-loop results of Refs. [9,10] 

and explicitly showing that the zero temperature limit 

coincides with the effective potential obtained from the 

expectation value of the Hamiltonian in the state (2.16) as 

shown in Ref. [16], is to highlight the following aspects: 

(1) The finite temperature effective potential is obtained 

for space-time constant expectation values under the 

assumption of thermal equilibrium. It is identified 

with the Helmholtz free energy density under a 

constraint that the expectation value of the 

fluctuations around a fixed space-time constant 

mean field vanish. This constraint is implemented 

by introducing a Lagrange multiplier via an external 

constant source J coupled linearly to the field. The 

Lagrange multiplier J represents an external force 

that keeps the expectation value of the field in 

equilibrium away from the minimum of the 
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effective potential. This force vanishes when the 

expectation value corresponds to the extremum of 

the effective potential. This is the content of the 

exact relation (2.32). 

(2) The Hamiltonian formulation of both the zero and 

finite temperature effective potential explicitly 

shows that the one-loop finite temperature effective 

potential is the Helmholtz free energy of the free 

field fluctuations δ around the expectation value φ. 

Up to one loop, this is a free scalar field theory of 

squared mass V00½φ, which is a space-time 

constant, quantized in terms of the usual mode 

functions 

eiω
k
t of constant frequency ωkðφÞ¼pk2 þV00½φffi. 

Furthermore, the distribution function (occupation 

number) of these quanta is the usual thermal 

equilibrium Bose-Einstein distribution with 

frequency ωkðφÞ. The zero temperature limit is the 

ground state expectation value of the free field 

Hamiltonian associated of these fluctuations. It is 

precisely the one-loop effective potential obtained 

from the Hamiltonian method in Ref. [16]. 

(3) The finite temperature effective potential being 

identified with the Helmoltz free energy density has 

particular thermodynamic significance because it is 

directly related to the internal energy density and the 

entropy density, S ¼ −∂Veff½T;φ=∂T. This relation is 

exact and entails that if the effective potential is used 

in a dynamical equation of motion of the mean field, 

fundamental thermodynamic properties of the 

entropy restrict its domain of validity in such 

equation of motion. 

(4) The perturbative method implemented to obtain 

j½φ, yielding Eq. (2.76) will be seen below to be 

very similar to the formulation of the equations of 

motion from nonequilibrium quantum field theory. 

While several of these points seem obvious from 

the results leading up to the final expression of the 

effective potential (2.69) with the one-loop result 

given by Eq. (2.55), when uncritically extrapolated 

to the dynamical case they will lead to conclusions 

that are at odds with the fundamental tenets of 

(local) thermodynamic equilibrium. 

III. DYNAMICS: OPEN QUANTUM SYSTEM 

PERSPECTIVE 

As discussed in the previous section, the finite 

temperature effective potential is a static quantity, designed 

to explore the free energy landscape in equilibrium at finite 

temperature as a function of a space-time constant order 

parameter, namely the expectation value of the scalar field 

in equilibrium. Yet, it is often used in dynamical situations 

in an equation of motion for this homogeneous order 

parameter: 

φ̈ ðtÞ þ d Veff½φðtÞ ¼ 0: ð3:1Þ 

dφ 

In this section, we endeavor to understand if and under 

what circumstances such an equation of motion in terms of 

Veff½φ is valid. We note that an important consequence of 

using the static effective potential in the equation of motion 

(3.1) is that, in this equation the effective potential only 

depends on time via the time evolution of φ, leading to the 

conserved quantity 

1ðφ˙Þ2 þ Veff½φ ¼ E ¼ constant: ð3:2Þ 

2 

This result is a direct consequence of assuming that the 

Helmholtz free energy density depends on time solely via 

the time evolution of φ. A consequence of this equation 

when combined with the exact result (2.46), is that the 

thermodynamic entropy depends on time via the time 

dependence of the mean field. 

It has important implications: let us consider the 

unbroken symmetry case in which the minimum of the 

effective potential is at φ ¼ 0, and that the initial value of 

φ corresponds to a large amplitude with φ˙ ¼ 0, hence a 

large value of E. Then as φðtÞ rolls down the potential hill 

φ and consequently Veff½φ, become small, however, the 

velocity φ˙ has to become large, therefore while Veff is 

small, its time derivative becomes large, entailing that the 

Helmholtz free energy and the entropy, which have been 

obtained in equilibrium are actually changing rapidly in 

time. This behavior results in a contradiction between the 

assumptions of thermal equilibrium and the validity of the 

dynamical equation of motion. 

A. Local thermodynamic equilibrium? 

Using Veff½φ, a static function, in the dynamical 

equation of motion (3.1) suggests that an underlying (albeit 

unspelled) assumption is that of LTE. Namely, that the 

distribution function nkðφÞ which enters in dVeff=dφ [see 

Eq. (2.76)] is always the Bose-Einstein distribution 

function at temperature T with the frequencies ωkðtÞ ¼ pk2 

þ V00½φðtÞffi which are now time dependent. This implies 

that the distribution function adjusts to the change in the 

frequency on time scales much shorter than that of the 
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evolution of the frequency itself. Underpinning this 

assumption is the concept of treating the dynamics of φ as 

a quantum open system, namely that the scalar field is in 

contact with other degrees of freedom that constitute a 

thermal bath, itself in equilibrium at temperature T, with 

which it exchanges energy momentum via collisional 

processes. In postulating Eq. (3.1) for the dynamics, the 

bath itself and its interactions with the scalar field are not 

specified. 

A consistent justification of the assumption of LTE and 

the applicability of the effective potential as a function of 

time through the evolution of φðtÞ and the distribution 

functions nkðφðtÞ;tÞ would imply solving simultaneously 

the set of Boltzmann equations for the distribution function 

with a fully specified collisional term from the coupling to 

the bath degrees of freedom, along with the equation of 

motion for φðtÞ. Undoubtedly implementing such 

program is a major undertaking and has not yet been 

attempted, nor is it our objective in this study. Instead we 

invoke the usual argument [11,32,33] of comparing the 

time scales of collisional relaxation with those from the 

dependence of the distribution function assuming the 

validity of LTE in its time evolution. Such arguments are 

ubiquitous in cosmology and underpin the understanding 

of the validity of LTE during cosmological expansion as 

well as the freeze-out of species and decoupling from a 

thermal environment [11,32,33]. 

In absence of external forces, and in a homogeneous 

situation the distribution function obeys the Boltzmann 

equation [11,32,33] 

d 

nkðtÞ ¼ C½nk; ð3:3Þ dt 

where C½nk is the collision kernel. The exact distribution 

function, solution of this Boltzmann equation is written as 

nkðtÞ ¼ nlteðk;tÞ þ δnkðtÞ where nlteðk;tÞ is the LTE 

distribution function, and δnkðtÞ is the departure from 

LTE. If δnkðtÞ=nlteðk;tÞ ≪ 1 then LTE is a reliable 

approximation to the exact distribution function. The 

departure from LTE is studied within a Chapman-Enskog 

expansion [34], in terms of the ratios between the 

relaxation time and the time scale of variation of the 

distribution function, and the ratio of the mean free path to 

 
3 See Sec. IV, Eq. (4.41) and following in Ref. [32].

 where up to one loop 

the spatial scale of variation (Knudsen number). LTE 

ensues when these ratios are ≪ 1. 

In absence of a specific model for the collision kernel we 

can resort to the relaxation time approximation for a 

qualitative (and semiquantitative) estimate [11,32,33],3 

d 1 

dt nkðtÞ ¼ − T δnkðtÞ; δnkðtÞ ¼ ðnkðtÞ − nlteðk;tÞÞ; 

ð3:4Þ 

where T is the average time between collisions, i.e., 

relaxation time or inverse reaction rate Γ ¼ 1=T [11,32–34], 

1 

 T ¼ n hσvi; ð3:5Þ 

with n the density of scatterers, σ the cross section and v 

the relative velocity. We take the LTE distribution function 

 nlteðk;tÞ  k ;

 ð3:6Þ 

since this is the distribution function that enters in 

Veff½φðtÞ. To first order in the Chapman-Enskog 

expansion 

[32,34]by nlteð,kn;ktðÞ, therefore to this ordertÞ on the left-

hand side of Eq. (3.4) is replaced 

d 

 δnkðtÞ ¼ −T dt nlteðk;tÞ; ð3:7Þ 

and LTE is a reliable approximation if 

δn ðtÞ ≪ 1: 

 nlteðkk;tÞ ð3:8Þ 

Let us consider the high temperature limit βωk ≪ 1 where 

we expect a short relaxation time, yielding  
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   nlteðkk
;
tÞ   

     ωkkðtÞ  

  ð3:9Þ δn ðtÞ ≃T ω˙ ðtÞ ; 

therefore LTE in this regime is fulfilled when 

 T  

 ωω˙kkððttÞÞ  

  ≪ 1: ð3:10Þ 

Approximating the high temperature limits 

 3 g2 

 n ≃ T ; hσvi ≃ T 2 ; ð3:11Þ 

with g a dimensionless coupling, and considering 

longwavelength fluctuations, since we expect these to be 

the slowest to relax to LTE, the condition (3.8) yields 

 

 V 

 1; 

    

 2g ½   

 ð3:12Þ 

which obviously depends not only on the coupling g to the 

bath but also the details of the potential V½φ such as mass 

and couplings. To be specific, let us consider the case with 

tree-level potential 

 m2 2 λ 4 2 

 V½φ ¼ 2 φ þ 4φ ; m > 0; ð3:13Þ 

with a large amplitude initial condition 

φ˙ð0Þ ¼ 0; λφ4ð0Þ ≃ T4; λφ2ð0Þ ≫ m2; ð3:14Þ 

consistently with an initially thermalized state of large 

energy density2 ∝ T4. As φðtÞ rolls down the potential 

hill,pλffiφ2ð0Þ;V000½φ ≃λφφðtðÞ0≃Þ; well before 

reaching the minimum [for example 

Vφð000½φÞ=2≃] λφit follows thatð0Þ and the 

ratioφ˙ðtÞ(3.12)≃ implies that the con- 

dition for the validity of LTE becomes 

 g2 ;

 ð3:15Þ 

which may very well be violated depending on a delicate 

balance, in other words a fine tuning, of the strengths of 

couplings. For example, if the collisional kernel refers to 

collisions among the quanta of the scalar field, with self-

interaction given by the potential (3.13) then g2 →λ2 with 

an obvious violation of the LTE condition for weak 

coupling. 

While a more careful treatment of the quantum kinetics 

combined with the equation of motion for φ is required for 

a thorough assessment of the validity or breakdown of LTE, 

a program well beyond the scope of this study, this simple 

analysis highlights that the validity of LTE must be 

carefully assessed and should not be taken for granted as it 

may not be fulfilled and may imply fine tuning in generic 

cases. The reader will recognize that the criterion for the 

validity of LTE is the usual one invoked in cosmology 

[11,32,33], where the reaction rate Γ ¼ 1=T is compared to 

the Hubble expansion rate H: in the cosmological case LTE 

is valid for H=Γ≪ 1. In the dynamical case under 

consideration, ω˙ kðtÞ=ωkðtÞ replaces H; however, other 

than this difference, which ultimately is a difference on 

time scales, the main arguments are indeed similar. 

The effective potential being identified with the 

Helmholtz free energy density implies that 

 Veff½φ ¼ U½φ − TS½φ; ð3:16Þ 

U ¼ hHVJ½δi ¼ V½φ þ ℏ 2 Z ð2dπ3kÞ3 ωk½1 þ 

2nkðφÞ ð3:17Þ 
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is the internal energy density, and d3k 

S¼ ð

2πÞ3fð1þnkðφÞÞlnð1þnkðφÞÞ−nkðφÞlnðnkðφÞÞg 

ð3:18Þ 

is the entropy density, with the occupation numbers 

1 

 nkðφÞ ¼ eβωkðφÞ − 1: ð3:19Þ 

frequenciesIn the dynamical caseωkðφðtÞÞ. As a result, 

the entropy densityφðntÞkðdepends on time, 

consequentlyφÞ do depend on time via the the occupation 

numbers depends on time, and its time derivative is given 

by 

S˙ ¼ −V000½2φTð2tÞφ˙ Z ð2dπ3kÞ3 nkðφÞð1 þ nkðφÞÞ:

 ð3:20Þ 

6Consider the tree-level potential (3.13) with V000ðφφðtÞÞ 

¼¼ 0, 

This behavior is actually more general, when the 

symmetrywithλφðtÞφ, whenðtÞ ¼ φφð0is oscillating near 

the minimum atÞcosðmtÞ, it follows that S˙ ∝ sinð2mtÞ. 

is unbroken, φ oscillates around the minimum and 

V000½φðtÞφ˙ðtÞ changes sign, thereby alternating between 

increasing and decreasing entropy along the trajectory. 

Namely, the entropy density is a nonmonotonic function of 

 

4 gkðτÞ þ ½ηk − 2αcosð2τÞgkðτÞ ¼ 0; ð3:24Þ dτ 

 
whose

 

instability

time, a behavior that, a priori is not compatible with a 

thermodynamic entropy. It may be argued that in the 

quantum open system approach the entropy of the system 

may not be a monotonic function of time as the system 

exchanges energy and momentum with the bath, and that 

the change in entropy of the system reflects heat transfer to 

and from the bath, while the total entropy of the system 

plus the bath increases monotonically or remains constant. 

However, we emphasize that the nonmonotonicity is in the 

entropy density, therefore the change in entropy is 

extensive, therefore such an argument implicitly accepts 

that the bath itself is not in thermal equilibrium and its 

dynamics is affected by the system in an extensive manner. 

Clearly these arguments must be quantified, however, the 

point remains that the time dependence of the entropy 

raises relevant questions on the validity of LTE in the 

dynamical evolution of the mean field. 

B. Caveats: Parametric and spinodal instabilities 

One of the main objectives of comparing the finite 

temperature effective potential to the zero temperature 

effective potential obtained in Ref. [16] is to highlight that 

the main caveats associated with using the effective 

potential in the dynamical equation of motion (3.1) 

discussed in this reference also apply to the one-loop finite 

temperature effective potential (2.55). After all taking the 

T → 0 limit in this expression yields the one-loop effective 

potential obtained in Ref. [16] in the Hamiltonian 

formulation. 

The previous analysis on the validity of LTE, based on a 

collisional Boltzmann equation, does not include the 

possibility of instabilities which lead to particle production 

and nonthermal distribution functions. Two ubiquitous 

instabilities were studied in detail within the context of the 

zero temperature effective potential in Ref. [16]: 

parametric and spinodal, the latter ones associated with 

spontaneous symmetry breaking. While we refer the reader 

to this reference for further details, for completeness of 

presentation we summarize here the main aspects of both 

instabilities, with the objective of emphasizing that both 

prevent a formulation of an equilibrium finite temperature 

effective potential as described in the first section. 

Let us first consider the tree-level potential (3.13), 

yielding V00½φðtÞ ¼ m4 þ 3λφ2ðtÞ with m2 > 0 and small 

amplitude oscillations around the minimum at φ ¼ 0, 

 

bands

 

have

 

been
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namely   

 φðtÞ ¼ φð0ÞcosðmtÞ: 
ð3:21Þ 

yielding 

 V00ðφðtÞÞ ¼ m2 þ 3λφ2ð0Þcos2ðmtÞ: ð3:22Þ 

Quantization of the fluctuation field δ [16] with an 

effective mass squared V00½φðtÞ given by (3.22) leads to 

Mathieu’s equation [35–37], which features instability 

bands from parametric amplification describing profuse 

particle production [16,18–24]. While we refer the reader 

to Ref. [16] and references therein for a more detailed 

discussion, for consistency and completeness of 

presentation we summarize here some of the important 

aspects of parametric instability in this case. Introducing 

the dimensionless variables 

¼¼ φ2ð0Þ τ mt −; α 

3λ 2 ; 

4m 

k ¼ þ 2 þ 2α; κ ¼ k ; ð3:23Þ η 1 κ 

m 

the mode equations (2.10) become of the form of Mathieu’s 

equation [35–37] 

d2 

and h1ðτÞ satisfying the condition (2.11). 

 

 

analyzed in 

A general solution gkðtÞ is a linear combination of these 

two linearly independent solutions. The width of each 

band, labeled by an integer index n ¼ 2;3 is found to be 

proportional to αn [16]. Within these instability bands the 

amplitudes of the mode functions grow as gkðtÞ ∝ eνkt with 

real νk ≥ 0 being the Floquet exponents, the smaller wave 

vectors feature the largest νk and wider bandwidth of the 

unstable regions [16]. 

These instabilities and the concomitant particle 

production clearly indicate that maintaining LTE by 

collisional coupling to a bath is not a warranted assumption 

and in general implies fine tuning of couplings to the bath. 

Furthermore, particle production in the parametrically 

unstable bands results in nonthermal distribution functions 

which cannot be approximated by the usual Bose-Einstein 

distribution functions that emerge in the equilibrium 

description because particle production is effective within 

localized bands in momentum. If collisional processes 

distribute the particles outside the unstable bands into an 

LTE Bose-Einstein distribution function, such processes 

must occur on timescales shorter than the inverse of the 

largest Floquet exponent, again implying a fine-tuning 

between the coupling to the heat bath and the parameters 

of the potential. Clearly this is not a generic situation and 

depends on particular models and couplings to the bath 

degrees of freedom. 

Let us now consider the case in which the tree-level 

potential leads to spontaneous symmetry breaking, for 

example the potential (3.13), but with m2 ¼ −μ2 with μ2 > 0, 

Refs. [16,35–37]. Figure 1 displays two linearly 

independent solutions in the first instability band, showing 

the exponential growth from parametric instability. 

 τ τ 

FIG. 1.h1ð0Þ ¼ 0Two linearly independent solutions of Mathieu;h10ð0Þ ¼ 1, for the first unstable band. A general solution for a mode 

function’s Eq. (3.24), h0ðτÞ;h1ðτÞ with initial conditionsgkðτÞ is a complex linear combination ofh0ð0Þ ¼ 1;h00ð0Þ ¼h0ðτ0Þ; 
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yielding V00½φ ¼ −μ2 þ 3λφ2. Within the (classical) 

spinodal region φ2 < μ2=3 it follows that V00½φ < 0 and 

there is a band of spinodally unstable wave vectors k2 < 

jV00½φj for which thet mode functions grow exponentiallyR 

t ð Þ ¼ pj ½ ðgkÞjðtÞ ¼ sffi keR νkðt0Þdt0 
þ

k rke− ν
k
ðt0Þdt0 with νk t 

V00 φ t − k2 > 0, and s , rk determined by initial conditions, 

thereby signalling exponential growth of fluctuations. In 

this case, for jφj within the spinodal region and values of k 

in the unstable band, the frequencies ωk½φ ¼ pk2 þ V00½φffi 

are purely imaginary and the Helmholtz free energy 

density, namely the effective potential, the internal energy 

density, occupation numbers nkðφÞ and entropy (3.18) are 

all complex, an untenable situation from the 

thermodynamic perspective, even when φðtÞ “rolls down” 

the potential hill very slowly within the spinodal. That 

equilibrium thermodynamics (or LTE) cannot describe this 

situation is well known in statistical physics: the spinodal 

instabilities are associated with the dynamical process of 

phase separation and the growth of correlated ordered 

domains [27–29], and has also been studied in quantum 

field theory [17,25,26]. Particle production in these 

spinodally unstable bands is followed by particle 

production by parametric instabilities when the mean field 

φ has rolled down below the spinodal point and oscillates 

near the (broken symmetry) minimum, again resulting in 

nonthermal distribution functions as a result of particle 

production from parametric amplification in the unstable 

bands. 

Both types of instabilities result in profuse particle 

production and nonthermal distribution functions for the 

produced particles which are localized in momentum 

within the unstable bands. A redistribution of particles into 

thermal distribution functions, the underlying assumption 

in using the finite temperature effective potential, implies 

a strong coupling to a thermal bath in such a way that this 

redistribution occurs on time scales much shorter than the 

timescales associated with the instabilities. Obviously if 

and when such a coupling arises is a model dependent, 

highly fine-tuned and nongeneric case. 

C. Partial summary 

In the previous sections we have shown that the finite 

temperature effective potential is associated with the 

equilibrium Helmholtz free energy density as a function of 

the mean field φ. This is an exact result valid to all orders 

in couplings and loop expansion with important 

thermodynamic implications, and assessed whether using 

the effective potential in the equation of motion for φ is 

warranted. 

Based on the following aspects, our conclusions are that 

the regime of validity of the static effective potential to 

describe the dynamics of the mean field is very limited. 

(1) Using VeffðφðtÞÞ in the equation of motion with 

Veff½φ obtained in equilibrium quantum field 

theory, assumes that there is LTE, at a fixed constant 

temperature, presummably maintained via a 

coupling to a thermal bath in equilibrium at such 

temperature. Although the coupling to the thermal 

bath is in general not specified, we have provided 

general arguments based on the Boltzmann equation 

with a collision term in the relaxation time 

approximation to suggest that LTE is not warranted 

in many relevant cases, unless there is a fine tuning 

of couplings to the thermal bath. 

(2) We have found severe caveats in the cases both 

without and with symmetry breaking tree-level 

potentials. In absence of symmetry breaking, 

parametric instabilities associated with the 

oscillatory dynamics of the mean field near the 

minimum of the potential, leads to profuse particle 

production, with distribution functions that are not 

thermal, and more importantly, a nonmonotonic 

behavior of the entropy. While this latter behavior 

may be argued to describe an exchange of entropy 

with an external bath, it runs counter to the main 

tenets of local equilibrium thermodynamics. 

(3) In the case when the tree-level potential admits 

broken symmetry minima, spinodal instabilities 

prevent an LTE description of the dynamics. In 

particular for a band of spinodaly unstable wave 

vectors when φ is within the classical spinodal 

region within which V00ðφÞ < 0, the effective 

frequencies are purely imaginary, fluctuations grow 

exponentially, yielding a complex effective 

potential, distribution function nkðφÞ, internal 

energy, and entropy. Whereas the imaginary part of 
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the internal energy may be associated with a decay 

rate of a particular nonequilibrium state [17,26], an 

imaginary part of the entropy is untenable, and 

unacceptable in thermodynamics. 

(4) The caveats emerging from assuming that the 

effective potential can be used in the dynamical 

evolution of the mean field, cannot be overcome by 

any resummation program in equilibrium quantum 

field theory, such as, for example resummation of 

“hard-thermal loops” [38]. Such nonperturbative 

resummation frameworks cannot possibly address 

the dynamical instabilities associated with 

parametric amplification or spinodal 

decomposition, the latter being a hallmark of the 

early stages of phase separation, the formation and 

growth of correlated domains and coarsening during 

a phase transition [27–29]. 

IV. DYNAMICS: DECOUPLING AND FREEZE 

OUT, CLOSED QUANTUM SYSTEM EVOLUTION 

The discussion in the previous section outlines several 

problems inherent in merely using the finite temperature 

effective potential to describe the behavior of a dynamical 

expectation value/condensate. Critically, employing this 

effective potential tacitly assumes a persistent local 

thermodynamic equilibrium between the condensate and 

the environment which requires a precise analysis of the 

couplings to the thermal bath. This obfuscates the problem 

and prevents one from making simple, model-independent 

statements about the dynamics of the condensate under 

such conditions. However, one may consider a closely 

related scenario wherein a condensate, which was 

previously in local thermodynamic equilibrium, decouples 

from the bath and proceeds to evolve in time. In this section 

we will investigate these dynamics, thereby providing an 

avenue for studying the behavior of the mean field beyond 

the time scale when LTE is no longer warranted. This 

problem is not only both tractable and relevant in its own 

right, but it will provide a useful comparison to the 

phenomenologically motivated approach of using the 

effective potential in the equation of motion [see Eq. (3.1)]. 

Let us first consider the case when the tree-level 

potential does not feature spontaneous symmetry breaking, 

and an initial condition on the mean field such that its 

velocity is very small and it is up the potential hill, far from 

the minimum of the tree-level potential so that it does not 

feature oscillations that lead to parametric amplification 

and breakdown of LTE in generic cases. As φ rolls down 

the potential hill with a small initial velocity, there is a time 

interval when the evolution of the mean field is slow and 

the condition (3.10), or alternatively (3.12), for the validity 

of LTE is fulfilled. This entails that the instantaneous 

frequencies ωkðφðtÞÞ are varying slowly on the relaxation 

time scale, this can be quantified in an adiabatic expansion 

of the solutions of the mode equations (2.10) [16]. 

Proposing the Wentzel-Kramers-Brillouin solution 

e−iRtt0 Ωkkðt0Þdt0 

 g
kðtÞ ¼ p2Ω ðtÞffi ; ð

4:1Þ 

which when inserted into Eq. (2.10) reveals that ΩkðtÞ must 

satisfy 

 Ω2kðtÞ ¼ ω2kðtÞ − 12  Ω ̈ k − 3Ω˙ 2k: ð4:2Þ 

The resulting equation can be solved in an adiabatic 

expansion 

Ωk2ðtÞ ¼ ωk2ðtÞ1 − 1 ω̈ kk þ 3  ω˙ kk2 þ : ð4:3Þ 

Assuming a slow initial evolution, let us consider the 

leading (zeroth) adiabatic order, namely 

0 e−iRtt0 

ωkkðt0Þdt0 

 gðk ÞðtÞ ¼ p2ω ðtÞffi ; ð4:4Þ 

as the mean field evolves, its velocity increases, and at 

some timescale t0 LTE breaks down and the system can no 

longer remain in thermal contact with the bath. This is the 

physics of decoupling between the system and the bath. 

From this timescale onwards, the scalar field evolves 

independently of the bath, this situation is similar to the 

decoupling of photons in cosmology, when the mean free 

path from Thompson scattering is larger than the Hubble 

radius, the photons evolve freely. Within this context, the 

time of decoupling is referred to as the “surface of last 

scattering” and is often approximated to be an 

instantaneous process. 

We model the similar situation as an “instantaneous” 

decoupling assuming that the density matrix for the 

fluctuations around the mean field is frozen in the 

Heisenberg picture, and describes the fluctuations of a free 

field with the frequencies at the decoupling time t0. This 
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assumption leads to the following initial conditions to 

leading adiabatic order from Eq. (4.4): 

1 ω 

t 

gkðt0Þ ¼ p2ωkðt0Þffi ;2 g˙kð 0Þ ¼ −i p2kωðkt0ðÞt0Þffi ; 

 ωkðt0Þ ¼ qk þ V00ðφðt0ÞÞffi; ð4:5Þ 

that the mean field is within a region withwhere ωkðt0Þ are 

real and positive under the assumptionV00ðφðt0ÞÞ > 0, 

which is always the case for potentials with unbroken 

symmetry. The initial conditions (4.5) imply that the 

Wronskian condition (2.11) on the mode functions gkðtÞ is 

satisfied. 

Assuming the validity of LTE up to the decoupling time 

t0, the initial density matrix at this time is taken to be given 

by 

e−β0H0 

 ρðt0Þ ¼ Tr e−β0H0 ; ð4:6Þ 

where 

 H0 
≡ Xk ℏωkðt0Þ a†

k⃗ ak⃗ þ 21 : ð4:7Þ 

⃗ 

This choice of initial density matrix is consistent with the 

one-loop effective potential, which is determined by a 

density matrix describing a free field with a squared mass 

V00ðφÞ > 0 as discussed in Sec.(2.50)II B. , in particular the 

fluctuation Hamiltonian in Eq. 

When the tree-level potential features broken symmetry 

minima and a spinodal region wherein V00ðφÞ < 0, the 

situation is much more subtle. The band of wave vectors 0 

≤ k < jV00ðφÞj is spinodally unstable, LTE is not fulfilled 

regardless of the value of φ˙; and, as discussed in the 

previous section, the mode functions within this band 

feature (nearly) exponential growth in time as a 

consequence of the instability. The initial conditions (4.5) 

are valid if V00ðφÞ > 0, in other words φ is outside the 

spinodal region, however they must be modified if φ is 

within the unstable region where V00ðφÞ < 0. Nevertheless, 

we can parametrize the initial conditions on the mode 

functions within the unstable band at some initial time t0 as 

 1 Wk 

 gkðt0Þ ¼ p k ; g˙kðt0Þ ¼ −ip ; 

 2W 2Wk 

 Wk ¼ pk2 þffi M2ffi; M2 > 0; ffi ð4:8Þ 

which again imply that the Wronskian condition is 

fulfilled. The effective mass term M2 > 0 is a 

parametrization of the initial condition at a time t0, its 

actual value depends on the precise “misalignment” 

mechanism that has resulted in the mean field φ to be 

within the spinodally unstable region and must be specified 

for particular realization of the dynamics. 

A. An explicit example: A “quenched” phase 

transition 

Let us consider the case of a rapid phase transition 

modeled by a scalar field theory with a time dependent 

mass term with Lagrangian density 

 L ¼ μ þ ðT ðtÞ TcÞ þ ; ð4:9Þ 

 2 2 4 

with a > 0 a dimensionless constant, and a time dependent 

temperature 

TðtÞ ¼ TiΘðt0 −tÞþTfΘðt−t0Þ; Ti > Tc; Tf < Tc: 

ð4:10Þ 

This situation describes a sudden phase transition at time 
t 

¼ t0 from an unbroken symmetry case for t < t0 with Ti > Tc 

to a broken symmetry case for t > t0 with Tf < Tc. If for t < t0 

the mean field φ is oscillating with small amplitude around 

the equilibrium minimum of the potential at φ ¼ 0 (for t < 

t0), and at the transition time t0 is found with a value φ0, the 

mode functions are of the form eiWkt with 

Wk 
¼ pk2 þ M2ffi; M2 ¼ aðT2

i − Tc
2Þ þ 3λφ0

2
 >ð 0: Þ 

4:11 
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For t > t0, after the temperature dropped to Tf < Tc the 

mean field is now within the spinodal region if the initial 

value φ0 is such that aðT2
f − T2

cÞ þ 3λφ2
0 < 0, the mode 

functions at the transition time have precisely the initial 

conditions (4.8). After this sudden transition, the mean 

field will begin rolling down the potential hill, and the 

mode functions gkðtÞ that describe the fluctuations will 

grow nearly exponentially while the mean field is within 

the spinodal. This simple but relevant example explicitly 

describes a physical situation in which the mean field is 

found initially within the spinodal region. The ensuing time 

evolution of the mode functions exhibit the (nearly) 

exponential growth associated with the dynamics of the 

phase transition and the emergence of correlated domains 

with a growing correlation length [17,26]. 

This specific example is by no means exhaustive, nor do 

we dwell here on the “quenching mechanism,” but it 

highlights that in the dynamical case the “misalignment” 

mechanism by which the initial value of the mean field is 

found inside the spinodal region must be specified, along 

with the initial conditions on the mode functions that 

describe the fluctuations around the mean field. 
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 gkðt0Þ ¼ p21 k ; g˙kðt0Þ ¼ −ipW2 k k ; Wk ¼ pk2 þ M2ffi; M2 ≡  MV00ð2φðt0ÞÞ;V0000ðφφðt00ÞÞ > 0:

 ð4:12Þ 

 W ffi W ffi > 0; V ð ðt ÞÞ < 0 

 

Under the assumption of instantaneous decoupling and 

to establish a relation with the thermal density matrix 

discussed in the previous Sec. II B within the context of the 

static finite temperature effective potential, let us introduce 

and has a clear and simple interpretation: it describes a free 

field theory for the fluctuations with squared mass M2 > 0 

given by Eq. (4.12) in thermal equilibrium at a temperature 

T0 ¼ 1=β0. 

The main assumption behind this choice is that the 

k  

and the initial density matrix is taken to be given by 

e−β0H0 

 ρðt0Þ ¼ −β0H0 ; ð4:14Þ 

Tre 

where the frequencies Wk are given by Eq. (4.12) and the 

time independent annihilation and creation operators are 

the same that enter in the quantization of the fluctuation 

field δðx;t⃗ Þ, given by (2.8). 

This particular choice of the initial density matrix is 

motivated by an “instantaneous decoupling” from LTE 

shorter than the relaxation time and the scalar field 

decouples instantaneously from the bath. From this time 

onwards the density matrix follows unitary time evolution 

determined by the dynamics of the scalar field. 

Note the similarity with the fluctuation Hamiltonian, the 

second term on the right hand side of Eq. (2.50) which 

yields the static one-loop effective potential, however, 

unlike the frequencies (2.49) that enter in (2.50), which are 

imaginary within the spinodal region, the Wk that enter in 

H0 are always real. 

In this (Gaussian) density matrix it follows that 

 H0 XℏWk a†
k⃗ ak⃗ þ 12 ; ð4:13Þ

coupling to the thermal bath maintains LTE up to timewhich the time scale of change of the frequencies is mucht0 at 
⃗ 

 

 h  

 a†k⃗ i ¼ Tra†k⃗ ρðt0Þ ¼ 0; hak⃗ i ¼ Trak⃗ ρðt0Þ ¼ 0; 

h 

 a†k⃗ ak⃗ 0i ¼ Tra†k⃗ ak⃗ 0 ρðt ⃗ ⃗ ⃗ ⃗ ; hak ⃗ak⃗ 0 i ¼ 0; ∀ k;⃗ k⃗ 0; ð4:15Þ 

 

and Wick’s theorem applies. the Schrödinger picture with the unitary time evolution 

operator. 

B. Equations of motion For any operator O, Heisenberg’s equation of motion become After thermal 

decoupling, the density matrix is frozen in the Heisenberg picture and the time evolution is unitary, 
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Both cases, with and without spontaneous symmetry 

breaking in the tree-level potential can be summarized by 

the following initial conditions that satisfy the Wronskian 

condition  
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where we allow the Hamiltonian to depend explicitly on 

time. The solution of (4.16) is 

 Oðx;t⃗ 0Þ ¼ U−1ðt;t0ÞOðx;t⃗ 0ÞUðt;t0Þ; ð4:17Þ 

where the unitary time evolution operator (in what follows 

we set ℏ ¼ 1) is given by 

U1ðt;t0Þ ¼ Te−i 
i
tRt0

tHt0 
H

tð
t
dt0Þ

dt0 ; 

 U− ðt;t0Þ ¼ T˜ e R ð 0Þ 0  : ð4:18Þ 

where T;T˜ are the time and anti-time-ordering symbols. 

In the Heisenberg picture a density matrix does not 

depend on time, whereas in the Schrödinger picture its time 

evolution is given by ρðtÞ ¼ Uðt;t0Þρðt0ÞU−1ðt;t0Þ; ð4:19Þ 

namely the density matrix evolves unitarily in time, as a 

consequence the entropy S ¼ −TrρðtÞlnðρðtÞÞ is time 

independent. 

normalized such that TrHeisenberg field operator are given 

byWith an initial state described by a density matrixρðt0Þ 

¼ 1, expectation values of aρðt0Þ, 

 hOðtÞi ¼ TrOðtÞρðt0Þ ¼ TrOðt0ÞρðtÞ: ð4:20Þ 

Expectationvalues and correlation functions are obtained 

via functional derivatives of the generating functional 

[39,40] 

Z½Jþ;J− ≡ Tr½Uðt;t0;JþÞρðt0ÞU−1ðt;t0;J−Þ; 

with respect to the external sources J, where 

ð4:21Þ 

− 

U1ðt;t0;JþÞ ¼ Tei 
iRtt0tt0H

H
tð;

t
J0;

−
JþdtÞ ; 

ð4:22Þ 

 U− ðt;t0;J−Þ ¼ T˜ e R ð 0 Þ 0   

with 

 Hðt;JÞ ≡ HðtÞ þ Z d3xJðx;t⃗ ÞOðx;t⃗Þ: ð4:23Þ 

For example correlation functions hOþðx⃗ 1;t1ÞOþðx⃗ 

2;t2Þi ¼ TrðTOðx⃗ 1;t1ÞOðx⃗ 2;t2ÞÞρðt0Þ; 

¼ − δJþðxδ⃗ 21Z;t1½JÞδþJ;Jþ−ðx⃗2;t2Þ

    Jþ¼J−¼0; 

ð4:24Þ 

hO−ðx⃗ 2;t2ÞOþðx⃗ 1;t1Þi ¼ TrOðx⃗ 1;t1Þρðt0ÞOðx⃗ 2;t2Þ; 

¼ δJþðxδ⃗ 21Z;t1½JÞδþJ;J−ð−x⃗2;t2Þ

    Jþ¼J−¼0; 

ð4:25Þ 

etc. An important result is that hOþðx;t⃗ Þi ≡ TrOðx;t⃗ 

Þρðt0Þ ¼ i δJ½þJðþx;t⃗ ;J−Þ  

 þ¼ ¼0 δZ 

¼ hO−ðx;t⃗ Þi ≡ Trρðt0ÞOðx;t⃗

 Þ ¼ −i 

δJ½−Jþx;t⃗ ;JÞ− J

  

 

 JþJ¼−J−¼0: δZ 

ð ð4:26Þ 
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This is the Schwinger-Keldysh or in-in formulation of 

nonequilibrium quantum field theory [39–44]. 

Let us consider a scalar quantum field theory for a field 

ϕ as discussed in the previous sections, the generating 

functional (4.21) in the field representation can be written 

in a functional integral representation 

Z½Jþ;J− ¼ Z DϕfDϕiDϕ0
ihϕfjUðt;t0;JþÞjϕii 

× hϕijρðt0Þjϕ0iihϕ0ijU−1ðt;t0;J−Þjϕfi; ð4:27Þ 

in turn the field matrix elements of the evolution operators 

can be written as path integrals, namely hϕfjUðt;t0;JþÞjϕii 

≡ Z DϕþeiR L½ϕþ;Jþd4x; 

 ϕþðt0Þ ¼ ϕi; ϕþðtÞ ¼ ϕf; ð4:28Þ 

hϕ0ijU−1ðt;t0;J−Þjϕfi ≡ Z Dϕ−e−iR L½ϕ−;J−d4x; 

 ϕ−ðt0Þ ¼ ϕ0i; ϕ−ðtÞ ¼ ϕf; ð4:29Þ 

where 

L½ϕ;J ¼ 2  ∂ 2 

Jϕ: 1
 ϕ 

ð4:30Þ 

Finally, the functional and path integral representation of 

the generating functional becomes 

Z½Jþ;J− ¼ Z DϕfDϕiDϕ0i Z DϕþDϕ− 

 × eiR ½L½ϕþ;Jþ−L½ϕ−;J−d4xρðϕi;ϕ0i;t0Þ; ð4:31Þ 

with the boundary conditions on the fields ϕ given by Eqs. 

(4.28), (4.29) and the notation R d4x R R . The 

doubling of fields with the  branches is a direct 

consequence of the time evolution of a density matrix, with 

time evolution forward via1 Uðt;t0Þ and backwards with U− 

ðt;t0Þ, in contrast to the usual S-matrix or in-out 

formulation which involves only time evolution forward 

because it evolves a state rather than a density matrix. 

Our objective is to obtain the equation of motion for the 

expectation value of the scalar field ϕ, namely 

 Trϕðx;t⃗Þρðt0Þ ≡φðtÞ; ð4:32Þ 

where we consider φ to be spatially homogeneous, hence 

only the zero momentum component of ϕ acquires an 

expectation value. The equation of motion for φ is obtained 

by following the identity (4.26) which implies that hϕþi ¼ 

hϕ−i ¼ φ. 

 
The equation of motion for φðtÞ is obtained by writing 

ϕ1 ðx;t⃗ Þ ¼ φðtÞ þ δðx;t⃗ Þ; ð4:33Þ 

in the Lagrangian L½ϕ;J in Eq. (4.30) and requesting 

that 

 hδðx;t⃗ Þi ¼ 0; ð4:34Þ 

to all orders in perturbation theory, namely the same 

constraint as in the static case (2.40). 

 
     

 

   

  

 

 

  

 
  

 
             



HERRING, CAO, and BOYANOVSKY PHYS. REV. D 111, 016028 (2025) 

016028-24 

Upon integration by parts and neglecting surface terms 

which do not contribute to the equations of motion, and 

coupling sources only to the fluctuating fields δ, we obtain 

(dots denote ∂=∂t) 

The currents J in this expression are intended to yield the 

correlation functions of the fluctuations δ in terms of 

functional derivatives with respect to them, and should not 

be confused with the Lagrange multiplier j in the static case 

of the previous section which enforces the constraint 

(2.40). 

The last line in (4.35) determines the interaction vertices, 

these are depicted in Fig. 2, just as in the static case, the 

linear term is considered as part of the interaction. It is 

instructive to compare to the static case in particular the 

interaction term in Eq. (2.60), which shows that in the 

dynamical case φ̈ in the linear term in δðx;t⃗ Þ in the 

interaction term in the last line in (4.35) replaces the 

Lagrange multiplier J in (2.60). This is in agreement with 

the discussion right before the classical equation of motion 

(2.33) comparing it to the constraint equation (2.32). 

The equation of motion for the mean field is obtained 

action term infrom the condition(4.35)hδto first order, we 

findð0⃗ ;0Þi ¼ 0. Considering the inter- 

− i Z ðφ̈ ðtÞ þ V0ðφÞÞhδþð0⃗ ;0Þδþðx;t⃗ Þi þ 

ð3φðtÞÞhδþð0⃗ ;0Þðδþðx;t⃗ ÞÞ3id4x ¼ 0: ð4:36Þ 

V000 

 

FIG. 2. Interaction vertices from the Lagrangian (4.35) up to 

tionsand including Oðδ3Þ, the solid lines correspond to the 

fluctua-∓ φ̈ ðtÞþ V0ðφðtÞÞÞ, the black δ. The gray box stands 

for ið dot stands for ∓iV000ðφðtÞÞ. 

The expectation values are obtained in the free field theory 

defined by the first two lines in (4.35), with the initial 

density matrix ρðt0Þ. (4.35) describe a free scalar field The 

first two lines in theory with a time dependent mass 

V00ðφðtÞÞ, yielding the field equations (2.7), and the field 

expansion (2.8). Using Wick’s theorem it follows that 

hδþð0⃗ ;0Þðδþðx;t⃗ÞÞ3i ¼ 3hδþð0⃗ ;0Þδþðx;t⃗Þihðδþðx;t⃗

 ÞÞ2i; 

ð4:37Þ 

and factorizing hδþð0⃗ ;0Þδþðx;t⃗ Þi from the expression 

Z ½L½φ;δ ;J −L½φ;δ ;J d4x ¼ þiZ    −ð∇δþÞ2 −V00ðφðtÞÞδþ2 þJþδþ 

 Z  ∂δ−2 ðφðtÞÞδ−2 þJ−δ−d4x 

 −iZ ðφ̈ ðtÞþV0ðφðtÞÞÞδ þðx;t⃗
 000 þ3 þ − 

 
 

 
        

 
 
 

         4  35  
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(4.36) we find 

 

FIG. 3. Equation of motion up to one loop. The solid straight line 

is the propagatorδþðx;t⃗ Þδþðx;t⃗ Þi. hδþð0⃗ ;0Þδþðx;t⃗ Þi, the 

closed loop is h 

 1 2 

 φ̈ ðtÞ þ V0ðφÞ þ 2 V000ðφðtÞÞhðδþðx;t⃗ÞÞ i ¼ 0; ð4:38Þ 

this equation is depicted symbolically in Fig. 3. 

Various correlation functions needed to obtain the 

equations of motion are summarized in the Appendix. 

With the field expansion (2.8) and the correlations (4.15) 

it is straightforward to find hðδþðx;t⃗ ÞÞ2i ¼ ℏ Z ð2π3 

Þ3 jgkðtÞj2ð1 þ 2nkð0ÞÞ; ð4:39Þ 

d k 

finally yielding the equation of motion 

ℏ 

φ̈ ðtÞ þ V0ðφðtÞÞ þ 2 V000ðφðtÞÞ 

 d3k 2 

 × ð 2πÞ3 jgkðtÞj ð1 þ 

2nkð0ÞÞ ¼ 0: ð4:40Þ 

It is straightforward to check that the same equation of 

motion is obtained from using the backward branch (δ−) 

contribution from the last line in Eq. (4.35). This is because 

hhðδδþþð0ð⃗ x;t⃗;0ÞÞÞδ−2ði ¼ hðx;t⃗ Þiδis factorized. 

Also, and of course, the−ðx;t⃗ ÞÞ2i where now the 

propagator 

same equation is obtained by considering the constraint 

hδ−This method to obtain the equations of motion for 

expec-ð0⃗ ;0Þi ¼ 0. tation values, based on the in-in or 

Schwinger-Keldysh formulation of nonequilibrium 

quantum field theory is general and applies to any quantum 

field theory, furthermore, with few modifications it can be 

extended to the realm of cosmology [45]. 

In the case of the scalar field theory defined by the 

Hamiltonian (2.1) the equation of motion (4.38) can also 

be obtained directly from the Heisenberg field equation, 

which follow from the variational principle applied to the 

full action ϕ ̈ðx;t⃗ Þ −∇2ϕðx;t⃗ Þ þ V0ðϕðx;t⃗ ÞÞ ¼ 0; ð4:41Þ 

which is obviously fulfilled as an expectation value in the 

initial density matrix, namely 

Trρðt0Þðϕ ̈ðx;t⃗ Þ −∇2ϕðx;t⃗ Þ þ V0ðϕðx;t⃗ ÞÞÞ ¼ 0: ð4:42Þ 

Shifting the field operator by the spatially homothe 

Heisenberg field equationgeneous mean field ϕðx;t⃗ Þ 

¼(4.41)φðtÞ þ δðx;t⃗ Þ yields, for 

φ̈ ðtÞ þ V0ðφðtÞÞ þ ½δ̈ ðx;t⃗Þ −∇2δðx;t⃗ Þ þ 

V00ðφðtÞÞδðx;t⃗ Þ 

 1 2 

 þ 2V000ðφðtÞÞδ ðx;t⃗ Þ þ  ¼ 0; ð4:43Þ 

using the quantization of the fluctuation via the solution of 

the free field equations of motion in the background of 

the mean field, Eqs. (2.7), (2.8), leads to the vanishing of 

the (third) term inside the bracket in (4.43), yielding the 

expectation value (4.42) 

1 2 φ̈ ðtÞ þ V0ðφðtÞÞ þ 2

V000ðφðtÞÞðTrρðt0Þδ ðx;t⃗ ÞÞ þ  ¼ 0: 

ð4:44Þ 

With the initial density matrix given by (4.14), the field 

expansion (2.8), and the expectation values (4.15), it is 

straightforward to find that 

d k 
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Trρðt0Þδ2ðx;t⃗Þ ¼ ℏ Z ð2π3 Þ3 jgkðtÞj2ð1 þ 2nkð0ÞÞ:

 ð4:45Þ 

Thereby confirming the equation of motion (4.38) 

obtained via the more general in-in Schwinger-Keldysh 

formulation. This is not only reassuring, but it also 

confirms that the equations of motion for the condensate 

follow from unitary time evolution as it is obtained from 

the expectationvalue of the Heisenberg equations of motion 

for the field operators in a time independent density matrix. 

While this latter derivation is arguably simpler, we have 

also presented the more rigorous in-in formulation due to 

its generality and appropriate use in non-equilibrium 

quantum field theory. 

In Refs. [40,46,47] the Schwinger-Keldysh effective 

action up to one loop was obtained in terms of the fields 

with labels  on the two branches, corresponding to forward 

and backwards time evolution. This action is rewritten in 

terms of the Keldysh center of mass and relative variables 

ðequations of motion obtained from a variational 

principleΦ ¼ ϕþ þ ϕ−Þ=2;R ¼ ðϕþ −ϕ−Þ, respectively, and 

the 

on these variables [40]. Up to one loop it is shown in Refs. 

[46,47] that the effective equations of motion are of the 

Langevin type, with a Gaussian stochastic noise, the 

expectation value of the scalar field is directly determined 

by the expectation value of the center of mass coordinate 

with the probability distribution function (Gaussian) of this 

noise, yielding the equations of motion for the expectation 

value of the scalar field in the initial density matrix [46,47], 

which is the method used above to derive the equations of 

motion from the Heisenberg field equations. 

When the mean field φ is time independent, namely in 

the static case, and when φ is away from the spinodal 

region the mode functions are 

 e−iωkt 2 

 gkðtÞ ¼ p2ωkffi ; ωk ¼ qk þ V00ðφÞffi; ð4:46Þ 

[see Eq. (2.12)] and the last two terms in the equation of 

motion (4.40) become 

V0ðφðtÞÞ þ 2 V000ðφðtÞÞ Z ð2π3 Þ3 2ωk 

1 þ 2nkðφÞ ℏ d k 1 

d 

 ¼ d φVeffðφÞ; ð4:47Þ 

in agreement with the static case, Eq. (2.76). However, 

when φðtÞ is dynamical, the mode functions gkðtÞ 

describe the parametric and spinodal instabilities discussed 

in the previous sections and the last two terms in the 

equation of motion (4.40) cannot be identified with a 

derivative of an effective potential. 

As a consequence of the mode equations (2.10), it is 

straightforward to show that the equation of motion (4.40) 

yields the conserved quantity 

E˜ ¼ 12ðφ˙ðtÞÞ2 þ VðφðtÞÞ 

  ffl{zE˜3cl ffl}2 2 2 

þ 2 Z ð2πÞ3 ½jg˙kðtÞj þ ωkðtÞjgkðtÞj ð1 

þ 2nkð0ÞÞ ℏ d k | ffl{zE˜fl ffl} 

 ¼ constant; ð4:48Þ 

as can be easily confirmed by taking E˙˜ 
and using Eq. 

(2.10), yielding φ˙ times Eq. (4.40). The brackets in Eq. 

(4.48) define the classical (E˜
cl), and fluctuation (E˜

fl) 

contributions to the total energy density respectively. 

It is important, and enlightening, to compare this 

conservation law to that obtained from using the static 

effective potential in the dynamical equation of motion of 

the homogeneous mean field (3.2). First, we prove that the 

Eq. (4.48) is the expectation value of the time-independent 

and its canonical momentumOHamiltonianðℏÞ, namely 

one-loop order. Let us shift both the field(2.1) in the 

initial density matrixπ as ρðt0Þ up toϕ 

ϕðx;t⃗Þ ¼ φðtÞ þ δðx;t⃗ Þ; πðx;t⃗ Þ ¼ φ˙ðtÞ 

þ πδðx;t⃗ Þ; 

ð4:49Þ 

yielding 

1 

H½ϕ ¼ V2 ðφ˙ðtÞÞ2 þ VðφðtÞÞ þ Hδ þ ; ð4:50Þ where 
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 2

 ˆ 2 

 Hδ ¼ Z d  2 þ ∇2 þ 2 ; ð4:51Þ 

and the dots in Eq. (4.50) stand for linear terms with 

vanishing expectation value in the density matrix ρðt0Þ, 

along with cubic and quartic terms in δ which yield higher 

loop corrections. Upon quantization of the fluctuation field 

via the mode expansion (2.8), (2.9) and using the 

expectation values (4.15), we find 

1 ℏ d k 

 V TrHδρðt0Þ ¼  2 Z ð2π3 Þ3 jg˙kðtÞj2 þ 

ω2kðtÞjgkðtÞj2 

 × 1 þ 2nkð0Þ; ð4:52Þ 

therefore, up to one loop ðOðℏÞÞ we find 

 E˜ ¼ V 1 TrH½ϕρðt0Þ; ð4:53Þ 

namely the constancy of E˜ 
is the statement that the field 

Hamiltonian is time independent. In contrast to Eq. (3.2) 

with the caveats discussed in the previous section in the 

broken symmetry case, the expectation value of the energy 

density is constant and always real, and because the time 

evolution is unitary the entropy density d3k 

S¼ 

ð2πÞ3fð1þnkð0ÞÞlnð1þnkð0ÞÞ−nkð0Þlnðnkð0ÞÞg; 

ð4:54Þ 

where Eq. (4.54) is obtained using the initial thermal state 

set by the decoupling and is constant and real. 

by Eq.This is in striking contrast to Eq.(3.16) in terms of 

the internal energy and entropy(3.2) with VeffðφÞ given 

densities (3.17), (3.18) each one varying in time, with a 

nonmonotonic behavior for the entropy and both featuring 

an imaginary part when the mean field is in the spinodal 

region. 

C. Stimulated particle production 

The equation of motion (4.40) and conservation law 

(4.48) are very similar to the zero temperature case 

obtained in Ref. [16], with the only difference being the 

initial occupation number in the one-loop contribution. 

Following this reference, this similarity suggests us to 

relate the growth of the mode functions either by 

parametric amplification or spinodal instabilities to particle 

production. 

1. Unbroken symmetry case 

In this case the time-dependent frequencies2 ωkðtÞ 

¼ pk þ V00ðφðtÞÞffi are always positive, and we introduce 

the zeroth adiabatic order mode functions 

 − ω ð 0Þ 0 

 f˜kðtÞ ¼ epiR2tωkkðttÞdtffi : ð4:55Þ 

We expand the exact mode functions gkðtÞ in terms of these 

adiabatic modes by introducing Bogoliubov coefficient 

functions A˜ kðtÞ;B˜ kðtÞ defined by the following 

relations gkðtÞ ¼ A˜ kðtÞf˜kðtÞ þ B˜ kðtÞf˜kðtÞ; ð4:56Þ 

 g˙kðtÞ ¼ −iωkðtÞA˜ kðtÞf˜kðtÞ − B˜ kðtÞf˜kðtÞ; ð4:57Þ 

which can be inverted to obtain the Bogoliubov 

coefficients 

 A˜ kðtÞ ¼ if˜kðtÞg˙kðtÞ − iωkðtÞgkðtÞ; ð4:58Þ 

 B˜ kðtÞ ¼ −if˜kðtÞg˙kðtÞ þ iωkðtÞgkðtÞ: ð4:59Þ 
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It follows from the Wronskian condition (2.11) that jA˜ 

kðtÞj2 − jB˜ kðtÞj2 ¼ 1: ð4:60Þ 

The definitions (4.56), (4.57) yield ak⃗ gkðtÞ þ a†−k⃗ gkðtÞ 

¼ ck⃗ ðtÞf˜kðtÞ þ c†−k⃗ ðtÞf˜kðtÞ; ð4:61Þ 

ak⃗ g˙kðtÞ þ a†−k⃗ g˙kðtÞ ¼ −iωkðtÞck⃗ ðtÞf˜kðtÞ − c−†k⃗ 

ðtÞf˜kðtÞ ; 

ð4:62Þ 

where 

ck⃗ ðtÞ ¼ ak⃗ A˜ kðtÞ þ a−†k⃗ B˜ kðtÞ; 

 c†k⃗ ðtÞ ¼ a†k⃗ A˜ kðtÞ þ a−k⃗ B˜ kðtÞ; ð4:63Þ 

the condition (4.60) ensures that ck⃗ ðtÞ;c†k⃗ ðtÞ obey equal 

time canonical commutation relations. It is straightforward 

to show that the quadratic Hamiltonian Hδ given by Eq. 

(4.51) can be written in terms of the time dependent 

operators c†k⃗ ðtÞ;ck⃗ ðtÞ as 

 Hδ ¼ Xk ℏωkðtÞc†k⃗ ðtÞck⃗ ðtÞ þ 12 : ð4:64Þ 

⃗ 

Following Ref. [16] we define the number of adiabatic 

particles as 

 N˜ kðtÞ ¼ h0jc†k⃗ ðtÞck⃗ ðtÞj0i ¼ jB˜ kðtÞj2; ð4:65Þ 

where the vacuum state j0i is such that 

 ak⃗ j0i ¼ 0; ∀ k:⃗ ð4:66Þ 

The relation (4.59) and the Wronskian condition (2.11) 

yield 

N˜ kðtÞ ¼ 2 ω1kðtÞ jg˙kðtÞj2 þ ω2kðtÞjgkðtÞj2 − 12 ;

 ð4:67Þ 

from which it follows that 

ω ðtÞ 1þ2N ð 

V1 TrHδρðt0Þ ¼ ℏ2 Z ð2dπ3kÞ3

 k  ˜ k tÞð1þ2nkð0ÞÞ: 

ð4:68Þ 

 With the initial conditions (4.5) ðgkð0Þ ¼ p2ω
1

kð0Þffi ; 

g˙kð0Þ ¼ −ipω2kω
ð0

kð
Þ0ÞffiÞ, it follows that 

 N˜ kð0Þ ¼ 0; ð4:69Þ 

therefore the initial state is the vacuum state for the 

adiabatic particles. The distribution function for the 

adiabatic particles is given by 

FkðtÞ ¼ Trc†k⃗ ðtÞck⃗ ðtÞρðt0Þ  

¼ N˜ kðtÞ þ nkð0Þ1 þ 2N˜ kðtÞ; 

 Fkð0Þ ¼ nkð0Þ; ð4:70Þ 

the second term in FkðtÞ describes stimulated production of 

adiabatic particles. In terms of this distribution function, 

the one-loop contribution to the energy density, Eq. (4.68) 

can be written in the following illuminating manner, 

 1 ℏ d k 

V  TrHδρðt0Þ ¼ 2 Z ð2π3 Þ3 ωkðtÞ1 þ 2FkðtÞ:

 ð4:71Þ 
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We can now gather these results to express the conserved 

energy density (4.48) in the form 

E˜ ¼ 12 ðφ˙ðtÞÞ2 þ VðφðtÞÞ þ ℏ 2 Z ð2dπ3kÞ3 

ωkðtÞ1 þ 2FkðtÞ: 

ð4:72Þ 

This expression is remarkably similar to the energy density 

obtained at zero temperature in Ref. [16], but in terms of 

the distribution function FkðtÞ, which describes stimulated 

particle production instead of the vacuum adiabatic particle 

number density N˜ kðtÞ. The conservation of E˜ along with 

Eq. (4.70) taken together have an important physical 

interpretation of the dynamics: a mechanism of energy 

transfer between the mean field and the quantum 

fluctuations resulting in the stimulated production of the 

adiabatic particles with nonthermal distributions. In 

particular, the exponential growth of the mode functions 

gkðtÞ as a consequence of parametric amplification must 

result in a drain of the energy stored in the mean field, 

energy that goes into particle production with nonthermal 

distributions. The motivation for the choice of the zeroth-

order adiabatic mode functions (4.55) now becomes clear: 

while φðtÞ is oscillating around the minimum, parametric 

amplification of fluctuations drains energy from the 

condensate, diminishing its amplitude. This dissipative 

mechanism entails that asymptotically φ will settle at the 

minimum and the frequencies become slowly varying 

functions of 2time approaching an asymptotic limit ωkð∞Þ 

¼ 

fp˜kðtÞ → e i kð∞Þ =ffip2ωkð∞Þffi describing 

asymptotic “out” k þ V00. In this limit 

the mode functions 

particle states. 

2. Broken symmetry case 

This case is more subtle. Although it is not clear that the 

fluctuation contribution E˜
fl in Eq. (4.48) grows as a 

consequence of the spinodal instabilities, since for 

spinodally unstable modes ω2
kðtÞ < 0, it follows from the 

mode equations (2.10) that 

E˜˙fl ¼ ℏ 2 dtd V00ðφðtÞÞ Z ð 2dπ3kÞ3 jgkðtÞj21 þ 

2nkð0Þ: 

ð4:73Þ 

As φðtÞ rolls down the potential hill from near the 

maximum of the potential towards the symmetry breaking 

minima,the inflection point, namely the end of the spinodal 

region.V00ðφðtÞÞ increases from a negativevalue to zero at 

Therefore, because jgkðtÞj2 grows nearly exponentially in 

this region, it follows that the fluctuation contribution 

grows nearly exponentially while φðtÞ traverses the 

spinodal region. Furthermore, the temperature correction 

in (4.73) implies an enhancement as compared to the zero 

temperature case [16], again a manifestation of stimulated 

production of fluctuations. Because the total energy 

density remains constant, this energy is drained from the 

classical contribution E˜
cl in Eq. (4.48), again, a mechanism 

of energy transfer from the mean field to the fluctuations 

implying damping of the amplitude of the mean field. 

Because ωkðtÞ are imaginary for spinodally unstable wave 

vectors, we cannot define the adiabatic modes as in the 

previous case. However, motivated by the argument that 

the growth of fluctuations implies a damping of the mean 

field as a consequence of energy transfer to the 

fluctuations, we follow the treatment of Ref. [16] and 

introduce Ks as the maximum unstable wave vector while 

φðtÞ is in the spinodal region. For example for the typical 

potential VðφÞ ¼ −m2φ2=2 þ λφ4=4 with m2 > 0, it follows 

that the maximum unstable wave vector is 

 Ks ¼ jV00ð0Þj: ð4:74Þ 

For k ≤ Ks there is no unambiguous definition of an adiabatic 

particle number, whereas for k > Ks the mode functions can 

again be written as in Eqs. (4.56), (4.57) in terms of the 

zeroth-order adiabatic modes yielding the results obtained 

above for the case of unbroken symmetry. Therefore, 

separating the spinodally unstable modes we now write the 

fluctuation contribution to the energy density (4.48) as 
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E˜fl ¼ 4ℏπ2 Z0Ksjg˙kðtÞj2 þ ω2kðtÞjgkðtÞj2ð1 þ 2nkð0ÞÞk2dk 

ðtÞ½1 þ 2F ðtÞk 

 þ 4ℏπ2 ZKΛs ωk k 2dk: ð4:75Þ 

where the distribution function FkðtÞ is the same as in Eq. 

(4.70), and we have introduced an upper momentum cutoff 

Λ≫ jV00ðφÞj to discuss renormalization aspects. 

Since both spinodal and parametric instabilities lead to 

an efficient transfer of energy from the condensate to the 

fluctuations, we expect that at long time, the condensate 

will oscillate around a minimum below the classical 

spinodal as the instabilities eventually must shut off by 

energy conservation. In this asymptotic long time limit the 

V00ðφðtÞÞ > 0 and the frequencies are real, and the 

contribution from the modes with k < Ks becomes of the 

same form as for those with k > Ks. Therefore we expect that 

in the long time limit as φ oscillates with small amplitude 

around a minimum away from and not probing the spinodal 

region, the mode functions can again be written as in Eqs. 

(4.56), (4.57), with the interpretation of asymptotic 

adiabatic particle production, so that the exponential 

growth from spinodal instabilities is imprinted in the 

Bogoliubov coefficient functions, thereby describing the 

production of asymptotic particles. 

Therefore, in this limit both contributions in (4.75) have 

the same form in terms of the stimulated distribution 

function of produced particles FkðtÞ. 

D. Renormalized dynamical framework 

The expression (4.75) for E˜
fl allows us to treat both 

cases with and without symmetry breaking on the same 

footing: the case Ks ¼ jV00ð0Þj ≠ 0 corresponds to symmetry 

breaking and Ks ¼ 0 to unbroken symmetry. In Ref. [16] the 

renormalization aspects were studied for the zero 

temperature case, which can be obtained from the results 

above by setting nkð0Þ ¼ 0. Because of the exponential 

suppression of the high momentum modes in the thermal 

distribution functions, it follows that the ultraviolet 

divergences are those of the zero temperature case and, as 

discussed in detail in Ref. [16], are completely described 

by the “1” in the bracket in the second term in (4.75), 

namely the zero point energy. 

We proceed to subtract this term from the fluctuation 

energy and lump it together with VðϕðtÞÞ in the full energy 

density (4.44), thus defining a new effective potential 

VeffðφÞ  ðφÞ þ 4π ZKs 

ωkðtÞk2dk; ð4:76Þ  ℏ Λ 

yielding 

V¯ effðφÞ ¼ VðφÞ þ  16ℏπ2 Λ4 þ V00ðφÞΛ2 −  14 

V00ðφÞ2 

− 1 þ 14ðV00ðφÞÞ2 ln jV00μð2
φÞj ×ln 4μΛ22 

2 

 − V00ðφÞ2HjV00ðK
φsÞj1=2; ð4:77Þ 

where μ2 is a renormalization scale and 

 1 2 

H½x ¼ 2 2xx þ signV200ðφÞ3=2 

− xsignV00ð
2φÞx þ signðV001=

ð
2φÞ1=2 

 − lnx þ x þ signV00ðφÞ ; ð4:78Þ 

with Ks ¼ 0 for unbroken symmetry and Ks ¼ jV00ð0Þj for 

broken symmetry. In a renormalizable theory, the 

ultraviolet divergent terms are absorbed into 

renormalization of the parameters, for example for the bare 

scalar potential 

 m20 2 λ0 4 

 VðφÞ ¼ V0 þ 2 φ þ 4 φ ; ð4:79Þ 

renormalization is achieved by introducing the 

renormalized parameters 
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m2RðμÞ ¼ m20 þ 166λπ02 Λ2 − 326λπ02 m20ln 4μΛ22 − 

12; 2 

ð4:80Þ 

λRðμÞ ¼ λ0 − 32π2 ln 4μ
Λ

2
2 − 12; ð4:81Þ 

V0RðμÞ ¼ V0 þ 16Λπ42 þ m02 16Λπ22 − m4 ln 4μΛ22 − 21; 

ð4:82Þ 

and replacing bare by renormalized quantities up to one 

loop, 

V¯ effR ðφÞ ¼ VRðφÞ þ 41  VR00ðφÞ2 ln jV00Rμð2φÞj 

 − ðV00RðφÞÞ2HjV00RKðφsRÞj1=2; ð4:83Þ 

where the subscript R refers to the renormalized quantities 

in terms of the renormalized mass and coupling. The 

renormalization group invariance of the effective potential 

has been discussed in Refs. [3,16]. We note that the 

argument of the function H, is ðjVφ00Rðis within the 

spinodal0Þj=jV00RðφÞjÞ1=2 > 1 for the broken symmetry 

case when region ðsignðV00ðφÞÞ < 0Þ. 

This effective potential is manifestly real, unlike the 

usual effective potential that becomes complex when φ is 

within the spinodal region. After renormalization the total 

conserved energy density becomes 

E˜ ¼ 12ðφ˙ðtÞÞ2 þ V¯ ReffðφÞ þ 4π2 Z0Ksjg˙kðtÞj2 þ 

ωk2ðtÞjgkðtÞj21 þ 2nkð0Þk2dk ℏ 

 
5 The thermodynamic entropy should not be confused with 

the coarse-grained entanglement entropy discussed in Ref. 

[16]. 

þ 2π2 ZKs ωkðtÞFkðtÞk2dk; ð4:84Þ ℏ Λ 

where everywhere the mass and coupling are the 

renormalized quantities. The fully renormalized equations 

of motion are obtained as follows: beginning with the 

conserved energy density (4.48), and Efl given by Eq. (4.75) 

subtract from this expression the term with the “1” inside 

the bracket of the second line, and lump it together with 

VðφÞ to define V¯ ReffðφÞ as in Eq. (4.76). Now taking the 

time derivative of E yields φ˙ times the equation of motion, 

which upon using the equations for the mode functions 

(2.10) lead to the renormalized equation of motion φ̈ ðtÞ þ 

d dφV¯ ReffðφÞ þ V000R ðφðtÞÞ 

× Z0ΛjgkðtÞj2ð1 þ 2nkð0ÞÞ −Θ2ðkωk−ðφKÞsÞk2dk ¼ 0; 

ð4:85Þ 

where again, everywhere, the mass and coupling are the 

renormalized ones. Equation (4.85), along with the mode 

equations (2.10), with initial conditions (4.12) provide a 

complete description of the dynamics of the mean field 

(condensate) with the following properties: 

(1) The equation of motion (4.85) is consistently 

renormalized. 

(2) The renormalized effective potential 
V¯ RðφÞ is 

manifestly always real for all values of the mean 

field even within the spinodal region, unlike the 

usual effective potential which is complex in the 

case when the tree-level potential features broken 

symmetry minima. 

(3) The energy density is manifestly real and conserved. 

(4) The equation of motion for the condensate arises 

from unitary time evolution of an initial density 

matrix, as confirmed by obtaining it also from the 

expectation value of the equations of motion of the 

Heisenberg field operators in the initial density 

matrix. Therefore the thermodynamic entropy is 

constant.5 

V. DISCUSSION 
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The dynamics described by the equation of motion 

(4.85) with the conserved energy (4.84) suggests the 

emergence of stationary asymptotic states. Let us consider 

first the case in which the tree-level potential features only 

one minimum, namely unbroken symmetry, with large 

amplitude initial conditions on the condensate. As φ 

oscillates around the minimum parametric instabilities lead 

to profuse particle production, which drains energy from 

the “classical” part of the energy into the fluctuations, 

populating parametrically unstable bands in momentum 

with a nonthermal distribution function. Particle 

production will continue as long as oscillations continue as 

demonstrated with the simple Mathieu equation analysis in 

the previous section. As the energy of the condensate is 

drained from particle production, the amplitude of 

oscillations diminishes and the bandwidths of the unstable 

bands become narrower, suggesting a dissipative 

mechanism that drives the condensate to the equilibrium 

minimum but with a highly excited nonthermal population 

of particles. Eventually this transfer of energy must stop 

and φ settles at the minimum with vanishing velocity, the 

frequencies ωkðtÞ →ωkð∞Þ, and the zeroth-order mode 

functions (4.55) describe asymptotic “out” single particle 

states. This is an asymptotic fixed point of the dynamics. 

Such asymptotic limit will yield the asymptotic value(s) 

φð∞Þ as the solution(s) of the renormalized equation of 

motion (4.85), subject to the constraint of total energy 

density (4.84) with φ˙ð∞Þ ¼ 0;φ̈ ð∞Þ ¼ 0. 

If the tree-level potential features symmetry breaking 

minima and the initial value of the mean field is large, with 

a large energy density, then both spinodal and parametric 

instabilities will be effective in draining energy from the 

condensate leading to particle production with nonthermal 

distributions. As the amplitude of the mean field 

diminishes the mean field can asymptotically settle in a 

broken symmetry minimum away from the origin, but it is 

also possible, with a large energy density, that 

asymptotically the mean field settles in a state with 

vanishing value. This would imply a restoration of 

symmetry, which is a possibility for a large energy density, 

that must be studied numerically and will likely depend on 

the particular value of parameters. However, in this case 

the condensate oscillates around a minimum with 

diminishing amplitude eventually settling at this minimum 

and again the frequencies ωkðtÞ →ωkð∞Þ and the zeroth-

adiabatic order mode functions (4.55) describe asymptotic 

“out” single particle states. In this case the Bogoliubov 

coefficients and the stimulated distribution function (4.70) 

include the growth of fluctuations from both, spinodal and 

parametric instabilities. The asymptotic value(s) φð∞Þ are 

again determined by the solutions of the equation of motion 

(4.85) with the energy constraint (4.84) with φ˙ð∞Þ ¼ 0;φ̈ 

ð∞Þ ¼ 0. 

When the amplitude of oscillations diminishes from the 

energy transfer to fluctuations via particle production, it is 

possible that the dynamics “unfreezes” and the coupling to 

the heat bath or alternative collisional processes become 

effective again, perhaps leading to a redistribution of the 

produced quanta and a “rethermalization” on longer 

timescales. At this stage, this is, of course, a conjecture that 

can only be assessed with a detailed treatment of the 

quantum kinetics including the couplings to the bath and or 

other collisional processes, and merits further and deeper 

study. 

VI. CONCLUSIONS AND FURTHER QUESTIONS 

The finite temperature effective potential plays a 

fundamental role in understanding the phase structure of 

quantum field theories, including thermal and quantum 

corrections with ubiquitous applications in cosmological 

phase transitions. It was originally developed to describe 

the free energy landscape as a function of an order 

parameter, which is usually a scalar field condensate, by 

design and construction it is an equilibrium concept. 

However, it is often used in the equation of motion for the 

order parameter, or “misaligned” condensate. 

A recent study [16] of the zero temperature effective 

potential revealed several important caveats that indicate 

that using the zero temperature effective potential to 

describe the dynamics of the condensate is in general 

unwarranted. Motivated by its importance in cosmology, in 

this article we focus on understanding if and when the finite 

temperature effective potential is suitable in the equations 

of motion of a homogeneous condensate. Extending the 

Hamiltonian formulation we identify the finite temperature 

effective potential with the Helmholtz free energy of the 

fluctuations around the condensate. This identification has 

a profound thermodynamic significance: it allows us to 

establish a direct relation with the thermodynamic entropy 

density S ¼ −∂Veff½T;φ=∂T. Therefore, fundamental 

When the condensate oscillates around an equilibrium 

 

minimum, we find that the entropy is a nonmonotonic 

function of time, whereas if the tree-level potential feature 
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thermodynamic properties of the entropy severely restrict 

the applicability of the effective potential in a dynamical 

equation of motion. 

symmetry breaking minima, the effective potential and 

entropy are complex when the condensate probes the 

spinodal region with negative second derivative of the tree-

level potential. We argue that collisional processes cannot 

in general maintain local thermodynamic equilibrium 

unless there is a fine-tuning of couplings, and that the time 

evolution of the condensate leads to a “freeze-out” of the 

density matrix and decoupling from the thermal bath. A 

closed quantum system approach based on unitary time 

evolution yields the correct and fully renormalized 

equations of motion for the condensate conserving both 

energy and entropy, which are manifestly real and without 

the caveats of the effective potential. These equations 

imply an efficient energy transfer mechanism between the 

condensate and fluctuations as a consequence of profuse 

stimulated particle production via parametric amplification 

or spinodal instabilities. Particles are produced with 

nonthermal distribution functions localized in momentum 

within instability bands either spinodal or parametric, 

draining energy from the condensate, suggesting the 

emergence of asymptotic stationary states, the nature of 

which must be established numerically. 

We focused on obtaining the equations of motion 

consistently up to one loop, which do not include higher 

order collisional processes, these are of paramount 

importance if rethermalization is to occur on longer 

timescales by a redistribution of the created particles. 

Possible alternative 

 

 hδþðx;t⃗Þδþðx⃗ 0;t0Þi ≡ TrTδðx;t3⃗Þδðx⃗ 0;t0Þρðt0Þ 

avenues to study these processes would be to implement 

the effective action approaches introduced in Refs. [48,49]. 

Although the study in this article is carried out in 

Minkowski space time, we expect that many of the lessons 

will remain relevant in an expanding cosmology. In 

particular the method to obtain the (causal) equations of 

motion for the condensate including radiative corrections 

may be adapted from those introduced recently [45] for a 

different situation within the cosmological context. 
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In this appendix we summarize the correlation functions 

of the fluctuating field δðx;t⃗ Þ that enter in the equation of 

motion for the mean field φðtÞ. With the quantization of 

the fluctuation field δðx;t⃗ Þ given by Eq. (2.8), and the 

initial density matrix (4.14) with the expectation values 

(4.15), we find the following correlation functions:  

d k 

¼ ℏ Z ð2πÞ3 gkðtÞgkðt0Þe−ik⃗ ·ðx⃗ −x⃗ 0Þnkð0Þ þ gkðt0ÞgkðtÞeik⃗ ·ðx⃗ −x ⃗ 0Þ1 þ nkð0ÞΘðt 

− t0Þ 

 

þ gkðt0ÞgkðtÞeik⃗ ·ðx⃗ −x⃗ 0Þnkð0Þ þ gkðtÞgkðt0Þe−ik⃗ ·ðx⃗ −x⃗ 0Þ1 þ nkð0ÞΘðt0 − tÞ 

hδ−ðx;t⃗Þδ−ðx⃗ 0;t0Þi ≡ TrT˜ δðx;t3⃗Þδðx⃗ 0;t0Þρðt0
Þ 

ik· x x ik· x x 

d k 

¼ ℏ Z ð2πÞ3 gkðtÞgkðt0Þe− ⃗ ð⃗ − ⃗ 0Þnkð0Þ þ gkðt0ÞgkðtÞe ⃗ ð⃗ − ⃗ 0Þ1 þ nkð0ÞΘðt0 − tÞ 

ðA1Þ 

þ gkðt0ÞgkðtÞeik⃗ ·ðx⃗ −x⃗ 0Þnkð0Þ þ gkðtÞgkðt0Þe−ik⃗ ·ðx⃗ −x⃗ 0Þ1 þ nkð0ÞΘðt − t0Þ 

 hδþðx;t⃗Þδ−ðx⃗ 0;t0Þi ≡ Trδðx;t⃗Þρðt0Þδðx⃗ 0;t0Þ ¼ Trδðx⃗ 0;t0Þδðx;t⃗ Þρðt0Þ 

ðA2Þ 

 ¼ 2 3 ÞgkðtÞeik⃗ ·ðx ⃗ −x⃗ 0Þnkð0Þ þ 

gkðtÞgkðt0Þe−ik⃗ ·ðx⃗ −x ⃗0Þ1 þ nkð0ÞðA3Þ 

 hδ−ðx;t⃗Þδþðx⃗ 0;t0Þi ≡ Trδðx⃗ 03;t0Þρðt0Þδðx;t⃗Þ ¼ik·Trx xδðx;t⃗Þδðx⃗ 0;t0Þρðt0
Þ ik· x x 

 ¼ Z ð2d kÞ3 gkðtÞgkðt0Þe− ⃗ ð⃗ −⃗ 0Þnkð0Þ þ gkðt0ÞgkðtÞe ⃗ ð⃗ − ⃗ 0Þ1 þ nkð0Þ: ðA4Þ 
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