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Is the finite temperature effective potential effective for dynamics?
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We study the applicability of the finite temperature effective potential in the equation of motion of a
homogeneous “misaligned” scalar condensate ¢ and find important caveats that severely restrict its domain
of validity: (i) the assumption of local thermodynamic equilibrium is in general not warranted, (ii) we
show a direct relation between the effective potential and the thermodynamic entropy density S %
-0V ;0T;bP=0T, which entails that for a dynamical ¢dtb the entropy becomes a nonmonotonic function of
time, (iii) parametric instabilities in both cases with and without spontaneous symmetry breaking lead to
profuse particle production with nonthermal distribution functions, (iv) in the case of spontaneous
symmetry breaking spinodal instabilities yield a complex effective potential, internal energy and entropy,
an untenable situation in thermodynamics. All these caveats associated with using the effective potential
in the equation of motion of the condensate cannot be overcome by finite temperature equilibrium
resummation schemes. We argue that the dynamics of the condensate leads to decoupling and freeze-out
from local thermodynamic equilibrium, and propose a closed quantum system approach based on unitary
time evolution. It yields the correct equations of motion without the caveats of the effective potential, and
provides a fully renormalized and thermodynamically consistent framework to study the dynamics of the
“misaligned” condensate, with real and conserved energy and entropy amenable to numerical study. The
evolution of the condensate leads to profuse stimulated particle production with nonthermal distribution
functions. Possible emergent asymptotic nonthermal states and eventual rethermalization are conjectured.
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[. INTRODUCTION

The finite temperature effective potential is a very
powerful diagnostic tool to study the phase structure of
quantum field theories including thermal and quantum
corrections. It is the finite temperature extension of the zero
temperature effective potential originally proposed by the
pioneering work of Refs. [1-4] to study how radiative
corrections modify the symmetry breaking properties of
the vacuum. Functional methods provide a systematic
formulation of the zero temperature effective potential as
the generating functional of single particle irreducible
Green'’s functions at zero four momentum [5-8].

The extension of the effective potential to equilibrium
finite temperature was pioneered by Refs. [9,10]. It
describes the free energy landscape as a function of the
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spatially homogeneous and time independent order
parameter, the expectation value of a scalar field ¢, thereby
characterizing the different phases of a theory. As such, the
finite temperature effective potential plays a fundamental
role in cosmology, as it may describe possible
cosmological phase transitions [11-15].

A. Motivation and objectives

The finite temperature effective potential was originally
introduced and developed with the aim of describing
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equilibrium aspects of spontaneous symmetry breaking
including quantum and thermal effects in terms of a free
energy as a function of the homogeneous and static order
parameter. However, it is often used in the equations of
motion of such an order parameter to describe the dynamics
of, for example, “misaligned” condensates. A recent study
[16] of the zero temperature effective potential, extending
the Hamiltonian framework introduced in Refs. [4,17],
revealed several important caveats that invalidate its
applicability in the equation of motion of the order
parameter, namely the condensate or mean field. In the case
when the tree-level potential does not feature broken
symmetry minima, oscillations of the condensate around its
minimum lead to instabilities associated with parametric
amplification resulting in the exponential growth of the
fluctuations around the mean field with profuse particle
production, a physical mechanism similar to that of
reheating in cosmology [18-24]. In the case when the tree-
level potential admits broken symmetry minima, a different
instability emerges when the excursion of the mean field
probes a region where the potential features negative
second derivatives. This is the spinodal (or tachyonic)
instability and again leads to exponential growth of
fluctuations around the mean field. In this case the growth
of fluctuations is associated with the formation and growth
of correlated domains [17,25,26]. In statistical physics this
is the hallmark of the process of spinodal decomposition
and phase ordering dynamics in phase transitions [27-30].

Both types of instabilities lead to the unambiguous
conclusion that the zero temperature effective potential,
which by definition and construction is a static function of
the mean field, is inadequate to describe the dynamics of
the mean field [16].

Motivated by the ubiquity and importance of the
effective potential in cosmology and in general to study the
phases of a quantum field theory, our objectives in this
article are as follows: (i) to critically examine the validity
of the finite temperature effective potential in the equation
of motion of a homogeneous “misaligned” condensates and
(i1), if it is found to be unreliable, to provide an alternative
and consistent formulation of the dynamics of the
condensate. While ultimately our aim is to study these
aspects within the context of an expanding cosmology, in
this article we restrict our focus to the case of Minkowski
space-time as a first step. Undoubtedly, a critical
assessment of the validity of the effective potential in the
equation of motion of condensates must start with this
simpler case from which much can be learned and whose
study will pave the way towards a firmer understanding in
cosmology.

B. Brief summary of results
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We extend and complement the Hamiltonian
formulation of the finite temperature effective potential
introduced in Ref. [10], yielding a clear relation to the zero
temperature case studied in Ref. [16]. We obtain an exact
result: the finite temperature effective potential is the
Helmbholtz free energy density for the fluctuations around
the expectation value of the scalar field ¢ (order
parameter). This relation has an important thermodynamic
consequence: S ¥ -0VersT,=0T, where S is the
thermodynamic  entropy  density. Therefore, the
applicability of the effective potential in a dynamical
equation of motion for a “misaligned” condensate ¢ is
restricted by fundamental thermodynamic properties of the
entropy. In the case of unbroken symmetry we find a
nonmonotonic time dependence of the entropy, and in the
case of broken symmetry the entropy becomes complex as
a consequence of spinodal instabilities. Both cases are
untenable in local thermodynamic  equilibrium.
Implementing a Chapman-Enskog expansion of the
Boltzmann equation, we show that the assumption of local
thermodynamic  equilibrium (LTE) is in general
unwarranted as it requires a fine-tuning of couplings to the
heat bath. Furthermore, we argue that parametric and
spinodal instabilities invalidate the use of an effective
potential, which by design and construction is a static
equilibrium function of ¢, in the equation of motion for the
condensate. It is argued that the dynamical evolution of the
condensate leads to a “freeze out” of the density matrix and
decoupling from LTE, and propose a closed quantum
system approach to the dynamics. We introduce a method
based on unitary time evolution to obtain directly the
correct equations of motion for the condensate, which
features conservation of energy and entropy, these are
always real and without the caveats associated with the
effective potential. Parametric and spinodal instabilities
lead to an energy transfer between the condensate and the
fluctuations resulting in stimulated particle production with
nonthermal distribution functions. A fully renormalizable
and thermodynamically consistent framework to study the
dynamics, amenable to numerical study is provided.
Possible asymptotic states and rethermalization are
conjectured.

The article is organized as follows: in Sec. 11, we briefly
review the Hamiltonian approach to the zero temperature
effective potential before extending the formulation from
Ref. [10] to finite temperature. In this section we relate the
static effective potential nonperturbatively to the
Helmbholtz free energy and thermodynamic entropy of the
fluctuations and obtain the well known result for the one-
loop effective potential. In Sec. Il we analyze the
reliability of the static effective potential in the equation of
motion for the condensate under the assumption of LTE. In
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this section we show that LTE is in general not warranted
and discuss severe caveats in the use of the effective
potential in the equations of motion arising from
parametric amplification and spinodal instabilities. In Sec.
IV it is argued that the dynamics leads to a “freeze out”
from LTE and decopuling from the thermal bath and
introduce a closed quantum system approach based on
unitary time evolution to obtain the correct equations of
motion. These are shown to conserve energy density and
entropy, which are manifestly real without the caveats of
the effective potential. In this section it is shown that
parametric and spinodal instabilities are efficient
mechanisms of energy transfer between the condensate and
the fluctuations leading to profuse stimulated particle
production with nonthermal distributions. We provide a
fully renormalized and thermodynamically consistent
framework to study the dynamics of the condensate
amenable to numerical study. Section V conjectures on the
emergence of possible asymptotic states and
rethermalization. In Sec. VI we present our conclusions
and suggest further avenues of study. An Appendix
summarizes the mnonequilibrium correlation functions
needed to obtain the equations of motion.

II. THE STATIC EFFECTIVE POTENTIAL: ZERO VS

FINITE TEMPERATURE

A. Zero temperature
Before we consider the finite temperature effective
potential, we briefly summarize the main concepts behind
the Hamiltonian approach of Refs. [4,16,17] with the
objective of comparing with the finite temperature case
discussed below.
Let us consider a scalar theory described by the
Hamiltonian

H* % Z d X" 22b 6¥2dhka2 b V3G P; 32:1p

where 1" is the canonical momentum conjugate to the

scalar field ¢ . The Hamiltonian interpretation of the
effective potential [4,16,17] defines the effective potential
as the expectation value of H” in a normalized coherent
state jOi in which the field acquires a space-time
independent expectation value, namely a mean field ¢,

¢ % h®jd"ox;t Pjdi;

hOj"dx;tPjdi %4 0;  32:2b

as
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1

=—(P
vers”) =V Vi sxctbio; 52:3b

where V is the spatial volume. Shifting the field operator
¢ Dby its coherent state expectation value ¢, & 6x;t” b % ¢

b 8" 6x;t” b; m"ox;t” b =n"s0x;t” b; §2:4b

the constraints (2.2) imply

hdj5 6x;t Pjdi % 0;  hOjn"sdx;t PjDi % 0;  82:5b
leading to
1
Ve % VOGP b v_ Z d
[} % @ 1V"’ @ 2 2 2
xhj2pV2  p2 &b  pjdi; 82:6p

where the expectation value of the linear terms in & and
1" s vanish by the constraints (2.2), and the dots in Eq. (2.6)
stand for higher powers of & leading to higher loop
corrections.

In the Hamiltonian formulation quantization proceeds by
expanding the fluctuation field 66x;t” b in the basis of
solutions of the Heisenberg field equations for a free field
with mass squared V%, namely

8 ax;t” b -V268x;t” b b VO%pSdx;t” b % 0; §2:7b

and the field 86x;t” b is expanded in mode functions,

pAffiE-Xk h k k ik* x* akt” gkdtPe-ik” x” i; 2:8p

86x;t” b % pV ~a’ g dtbe b ph

nisOx;t b % pVffifi-Xk'hak” g kdtbPeik” x* b atk” g kdtbPe-ik” -x*
i; 02:9p
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where the mode functions gedtP are solutions of the

equations [16] g kdtb b w2kdtbgkdth % 0; wk2 % k2 b Vooksd;
02:10p with the Wronskian condition gdtbgidtP -
g'«otbgidthb % —i; 2:11p
and the annihilation and creation operators are time
independent and obey canonical commutation relations.
For a space-time constant ¢, the mode functions are given
by
e-iwkt 2
gkoth % p2wkfh-;

wk % gk p Voosdffi; 02:12p

yielding the mode expansion

phffiffi-Xk 1 kE-h k -iwkteik” x” p atk” eiwkte-ik™ X" i;

50x;t" b % py pwae

02:13p

phffiffi-Xk —rwkffih k -iwxteik” x* — akt” eiwkte-ik”

X1y edx;t” b % -ipV "~ 2ae

02:14p

and the quadratic Hamiltonian inside the brackets in Eq.
(2.6) becomes

< 1
H% k hwkddpbatcarp " 2:

-

02:15p

The constraints (2.5) are implemented by requesting

occupation numberthat the coherent statenk-¥%j@aitk-abe an
eigenstate of the Fockk™ ; however, the lowest expect-

PHYS.REV.D 111, 016028 (2025)
ation value of the quadratic Hamiltonian is obtained for the

vacuum state for the fluctuations & , namely [16]

acjOi ko vk~ 82:16b
leading to the constraint (2.5).
Taking the infinite volume limit with t>

V R d3k=02nP3and using (2.16), we find that the effectivePy

potential (2.3) is given by
h

VeidpPUVEDPb_ 27 82dmskbs wkddbpOdh2bb:

02:17p

The # in (2.17) originates in the ph in the usual field
quantization (2.13), (2.14) and implies that the expres-ffi
sion (2.17) is the zero temperature one-loop effective
potentialnk # 0, then the integrand in the second term
features an[16,17]. If j®i is an excited eigenstate with extra
contribution nkwkdob thereby raising the energy.

In order to compare the above results to the finite
temperature case, we introduce the pure state density

matrix p= jOih®j; 02:18p

from which it follows that ¢ % Trd"dx” bp; Veffddb % V_1

TrHp; 62:19p

and the constraints (2.5) become

Tr6"8x bp % 0; Trm"s0x” bp % O: §2:20p

Before moving on to the finite temperature case, it must
be emphasized there are two main assumptions leading up
to the zero temperature result (2.17): (i) that the mean field

¢ is time independent, yielding the mode functions given
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by Eq. (2.12), (ii) that V9§ ¢Pb > 0, condition that yields real
frequenciesWhen ¢ evolves in time, as in the dynamical

case, thewkddb.

mode functionsthrough the time dependence oftions (2.10)
withgkVdtooPddare solutions of the mode equa-6tbp that
now depends on timeddtisP, and gives rise tonegative for
some

parametric instabilities, and ifvalues of VooddpPb 2 00ddPj
since for ¢, there are instabilities for k < jV

these wave vectors the frequencies wk become purely
imaginary. Both instabilities will be addressed in Sec. Il
within the context of the applicability of the finite
temperand have been discussed in greater depth in
Ref.ature effective potential in the dynamical evolution of
oddtotp

[16]
which we refer the reader for a more detailed treatment.

B. Finite temperature

The discussion above highlights the interpretation of the

zero temperature effective potential as the expectation
value of the Hamiltonian in a particular coherent state,
defined to be the vacuum for the fluctuations around the
mean field ¢. This formulation does not have a
straightforward extrapolation to finite temperature,
because the equilibrium density matrix corresponds to a
mixed state that describes an ensemble, not a pure state as
in (2.18).
The constraints (2.5), which can be implemented
straightforwardly in the case of a pure state, must now be
imposed in terms of Lagrange multipliers added to the
Hamiltonian in the thermal density matrix. This is achieved
by following the formulation of the finite temperature
effective potential advocated in the seminal articles [9,10].
In particular by implementing the Hamiltonian formulation
of Ref. [10],'wherein the effective potential is obtained
from the Legendre transform of the equilibrium free energy
under the constraint that the expectation value of the field
is a space-time constant.

! See the appendix in this reference.
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To discuss the main arguments in a clear manner, we
focus on the simple case of a scalar field with a Lagrangian
density

1
Lp? PP =V iy, % :
52:21p

yielding the Hamiltonian (2.1). Let us introduce

Hi%d % HY%d b Z d3xJdx” Pddx™ b; 02:22p

where J&x~ b is an external classical source. The canonical

partition function is given by

ZT;) = e-pruT;j ¥4 Tr e-pHng; 02:23p

whereThe F%T,) is the Helmholtz free energy
andexpectation value of the fieldBdp%dx” 1b=Tin.
equilibrium

presence of the source is defined as

d0x” b = TrTrpfex—=bepr=puHomse;  02:24b

which is obtained as a variational derivative with respect to
the c-number source, namely

16 6
GOX P Y —B_ )X PInZ % 6_____JdX" PFAT;J;

82:25b the source J&x” b can be interpreted as a Lagrange
multiplier for the constraint ¢x~ P % hdpdx~ bi where the

expectation value is obtained with the partition function

ZY%T;). The relations (2.24), (2.25) are inverted to yield

JOX” P % J%dOX P; 82:26b

016028-5



HERRING, CAO, and BOYANOVSKY

from which the Legendre transform

QBT % FAT:I%d - Z d3xJ%ddx” bddx" b;  82:27p

yields the generalized Gibbs free energy as a function(al)
of temperature and the expectation value ¢dx” b. Using the
definition (2.24) it is straightforward to find that

6

Sb___ 38X PQUBT: % —Jhddx b:  32:28P

From now on we will consider a spatially constant
expectation value ¢, which implies a translationally
invariant partition function, and introduce

1
i VZdox b

FiAT;) SVFAT; 02:29p

with V the spatial volume, and following Refs. [9,10]
define the finite temperature effective potential as

Q¥T; =VVerdT; db: d2:30p
From Egs. (2.27), (2.30) it follows that
VeffAT;d % FUT;j%b - j%dd 02:31p
and
dVerrd2dT;d % —j:
cMdAQT,p % ] 52:32b

This relation is very illuminating, let us first consider it
at tree level, without quantum and thermal corrections,
when V%0 % V¥%2d. The relation (2.32) clearly states that
j is the external force necessary to maintain the space-time
constant ¢ at a value that does not correspond to the
minimum of the potential. This force vanishes for ¢
satisfying dVrelation%2$=d(2.32)d % O,

equilibrium condition. Themust be compared to the

namely the

classical equation

of motion for a spatially constant (homogeneous) field
configuration, namely at tree level (dots stand for time
derivatives)

PHYS. REV.D 111, 016028 (2025)

d__ Vi % - ; 32:33p

which when compared with Eq. (2.32) clearly states that in
absence of dynamical evolution, the external force j must
be applied to maintain ¢ away from the equilibrium value.
This observation will be of paramount importance in the
discussion of dynamics in the next sections.

As it will become clear in the discussion below, it is
more convenient to discuss the effective potential and its
dynamical generalization in terms of the fluctuations of the
field $dx” b around the expectation value ¢dx~ P, a

classical c-number field. Hence, as in the zero temperature

case, Eq. (2.4), we introduce the field operator

856X P % ddX” b -pdx_ b; 02:34b
and write
Hi%ad = Z d3xJdX” bpdx” b p Hi%:6; 82:35p
where
Hi%6 = H%S b & b Z d3xJdx” b66x” P;  82:36b
from which we find
I 37
e-BFY%T;) V4 @-BR d3x16x” bdpdX” Pe-BFskT;); 02:7'p

with the Helmholtz free energy for the fluctuations around
the mean field,

Fs¥AT;) V4 —B_1In¥aTr e-pHis; 02:38p

and

FIAT;) % Fs4T:) b Z d3xJ8X” Pbdx” b:  82:39p

With this transformation, the relation (2.26) yielding the
source Jx~ P in terms of the expectation value ¢pdx” P is

obtained from the constraint
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h&88x~ bi % TrTr&oxe™b=epr=piHuss % 0:  62:40b

The Legendre transform (2.27) yields the generalized
Gibbs free energy as

QWT;d % Fs¥iT, ) Va0, 02:41pb

which upon considering a spatially constant expectation
value ¢ yields the effective potential

VefthaT, ¥ Fs¥aT,d;jlad: 02:42b
Namely, the effective potential is the Helmholtz free
energy density for the quantum fluctuations around a
space-time constant expectation value, with the constraint
h&6x” bi % 0 which defines j = j%¢. The condition (2.32)
yielding

dv. __ cfthodT,d %
02:43p d

%9

is now a consistency condition. This is a main conclusion
of'this analysis, and while it is a direct result of the analysis
in the pioneering work in Refs. [9,10], we emphasize it
here because (i) it is an exact result, valid to all orders in
couplings and loop expansion, (ii) it has important
thermodynamic consequences, in particular

Ver?a T, =Fs/4T;d Y4 UT;d — TSIAT, d; 62:44b where

5 e—BHJYzS
|———— —{p
— %V TrHTreY-pHns % P 00 Fs¥%T,dg;

02:45pb

UKT; ¢

is the internal energy density, anddynamic entropy density
as a function ofS}%;T;bd , which by theis the thermo-

relations (2.44), (2.45) is given by?

_9
SHT,d% 5 T VeraT;d: 02:46b
These are nonperturbative, exact relations that link directly
the effective potential to the thermodynamic internal
energy and entropy. In particular, the relation (2.46) is very
important because when V% T;$ is used in a dynamical

2 The partial derivatives are at constant ¢.
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equation of motion for the mean field ¢, its time evolution

translates into a time evolution of the entropy density,
which must be compatible with the fundamental principles
of thermodynamics.

Under reversible transformations, namely local
thermodynamic equilibrium, the entropy obeys the second
law of thermodynamics, it remains constant or increases
monotonically. This fundamental aspect will be shown
below to be in striking contradiction with the use of the
effective potential in dynamical situations.

C. The one-loop effective potential

With the Hamiltonian (2.1) we find

! !

z —(V8(x))2,
s % Whbbzd 2 Tac ppa Y o)

1 2
b2_Vooksds ax" bp3l —V"#18 s¢bp

b 8J6x” b b Volspb&dX~ b; 82:47p

were primes stand for derivatives with respect to o.
corrections, the constraintNeglecting the terms «&3h&%;,
which yield higher loopO0 is fulfilled by setting

50x” Pi %
J8x_ P =j, namely a spatial constant, given by

j % =Vo¥ad; 02:48p

thereby cancelling the linear term in 6 in (2.47). That the
condition (2.48) yields h6dx~ Pi % 0 when neglecting the
cubic and higher powers of § is clear, because under these
conditions the Hamiltonian is quadratic in 8, describing a
simple free field of squared massh; Voo’sd for which the
density matrix e-g »sis Gaussian with zero mean.

Quantizing the fluctuations by expanding the fluctuation
field 88x;t” b as in Eq. (2.13) with the frequencies

016028-7
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wkdPb % gka b Vood Pbffi; 02:49b

implementing the constraint (2.48), and keeping solely the
quadratic terms in 6 in (2.47) yields

Hi%:6 %4 VW% b k hwkdpbakt”ak p 12_: 82:50p

-

The calculation of the Helmholtz free energy now becomes
a simple textbook exercise in quantum  statistical
mechanics, the partition function

Z % e-pvvup Trlk”

e-pFrd /A e-BHx

02:51b with
02:52b

Hic % hwkddbatk ak p 12_:

The trace is calculated in the occupation number basis
yielding

Trk e-pHc Y4 Mk’ e-prwddp=2 nXk %0 e-Bhwkdppni #

Y Mk 1€e—-Beh-wBkhddwbk=52dp;
_p -
Yae ? km"(rp)e P'Pk’ln1zl—e—ﬁhwk6¢b; 02:53p
passing to the infinite volume limit with
d3k
k>VZ0 2mps3; 02:54p

we find the one-loop finite temperature effective potential
(2.42)

Veetribad % Vb p_ A2 Z §2dmskbP3 wkddb

PHYS. REV. D 111, 016028 (2025)
bTZ___ 62drdkP3Inlsl — e BrwdéP. §2:55p

which is the usual result [9-12]. The T - 0 limit yields the
zero temperature one-loop effective potential given by Eq.
(2.17), obtained in the previous section via the Hamiltonian
approach and the particular coherent state jpoints out that
the coherent state®i yielding the constraintis precisely the
ground state of the fluctuation(2.5). This analysis

clearlyj®i with the constraint

(2.16)
Hamiltonian, because in the zero temperature limit, only
the ground state contributes to the partition function Z.

An alternative that will prove useful to obtain the
equation of motion for the condensate to study dynamics in
the next section is to obtain dVeg=d¢ from Eq. (2.43) where
j is determined from solving the constraint

sionh80x” bi %4Ver0¢. For example, to zeroth order in the
loop expan- %4(2.43)V¥%¢. To generate a loop expansion for

and the tree-level condition (2.48)j satisfies Eq. we follow

Ref. [10] and write j %4 VoY% b hj1p h3=2j2p §2:56b

field expansionwhere jq;j2 are of(2.1 3)0(sh0wing thatdhlp,
with this expansion and thegxp1=>) it follows

that

jihdxh3=2; j2h3726¢h?; 82:57p

which are of the same order in & (loop expansion) as 63
~h3=2;64 =h2.

To generate the loop expansion in a systematic manner,
we write the Hamiltonian (2.47) as
Hi%8 % VW% p Hop Hi; 02:58p

with

016028-8



IS THE FINITE TEMPERATURE EFFECTIVE POTENTIAL ...

1 |
21 5 (Vo(x))? + 2 V"[g]5?
Ho ¥d3x2_ 260X~
Pp * X b;
02:59p
and
Hi % d3xdldx” P b
Vol dbsdx™ b
Voooo 02:60p

b —4:p648x b b :

Let us define

USTb % entHoe-rHobHIb; 02:61p
from which it follows that
e-poHobHIP % e-pHoUBABP: 02:62p
Udtpb obeys the differential equation
dudeb % —ht HiIOthUSTP; UJ0P % 1;dt  02:63p
b _
31VoooYsp530x
“p1
where
Hidth % enHoHie-nHo: 02:64p
The solution of (2.63) is
Udth % 1 -kt Zor HidT1bdT1
T T T
b h2Zo-dt1Zo,HidtiPHIdT2PdT2 b
¥ Twe " nRo H|at1pdt1; 02:65pb

wheretime evolution operator in the interaction picture in
imagi-T-is the T ordering symbol. Therefore, Udth is the

PHYS. REV.D 111, 016028 (2025)
nary time, namely in the Matsubara representation [31]. We
can now write the partition function as

Tre-pHis ¥ e-pvrswndhUJ B Pio; 02:66b

where

e-BVFUsd % e-wWise Tre-pHo; 02:67p

and the expectation value in the free field theory, defined
as
Tre-p U
Trex-opHdoBP; 82:68P

hUSABPIc %

can be obtained in a systematic loop expansion. The trace

in Eq. (2.67) is precisely given by Eq. (2.53) with the result
that Ff’“’Vzcbefflpis the one-loop finite temperature

¢

effective’s™ given by Eq. (2.55). Therefore, from potential

Vé

Eq. (2.42) we find the general form of the effective
potential

Vefthsd Y VaetripVap —B__1V InYshUSABPI0: 82:69b

This is an exact result where j is determined by the
expansion.constraint h&dx;t” bi % 0 order by order in the

loop

O0We note that InThe expectation valueh?p because
h&m¥%hdUx;” dhtPiBPI(2.68)0 0% begins at two loops,
namelyO for odd values of m.can now be obtained in a

loop expansion, with the field & in the Matsubara

interaction picture 60x;” TP % en8dx;” OPe o, namely p

850x;” th % pVAffifi-Xk'p2 lwk-hak” e-weik” x* p atk”

ewkte-ik” X i
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02:70p

However, we need the explicit expression for the source
Joxp, which 1is determined from the constraint

TreTr-grnecUnd.iBPSRE0~ ;0P Y
hUBhhUBSPASRE0 Pi;00Pi0 % 0:  82:71b

-8 Udhb

Up to leading order h° (neglecting cubic and higher order
powers of & in Hy), the numerator yields

- Z dax8J6x” b b VolsdPh66x;” th880” ;0Pio % O;

Z hB

d*x=70 dtzd; 82:72p

since h&dx;” tP&80” ;:0Pio 2 0 it follows that JOX™ P % j %

-V0%0, which is precisely the relation(2.29), and

consistent with the expansion(2 48) with j(2.56)defined. by
Eq.

Now we obtain the 08P contribution to j by considering

the cubic term in the interaction, yielding

- Z daxdJox” b b Vokdbhddx;” T80~ ;0Pio b

Vooo3!%phd3dx;” th860° ;0bio % 0; §2:73p

using Wick’s theorem h&30x;” th880” ;0Pio % 3h6dx;”

th630” ;0Pioh528x;” TPio; 62:74b

the calculation of h82dx;” thiois straightforward using the
expansion (2.70), leading to the result

Z — daxh88x;” tE80” ;0Pi0o)dX” b b Vol p _
2Vooo%:¢ A

PHYS. REV. D 111, 016028 (2025)
X Z2___wk%l b 2nkddb % O; nkddb %

eprwddp — 1; d k 1
02:75b
from which we find j % -VoY%d b A_2 Vooolsp Z
2dwskk %1 p 2nkddb
Y% —d__ddVeetrip¥ad; 02:76p

given bythus explicitly confirming the relation(2.55) up to
order i, namely one loop.(2.43) with Vf’efé"’/zdD

This analysis confirms the “recipe” to obtain the
onebloop effective potential advocated in Ref.d in the
Lagrangian density, expand in the fluctuation[9]: write ¢
%6 up to second order andp neglect the linear term in 6, the
resulting Lagrangian density describes a free field theory
of a scalar field of mass squared M?% V°%d. The one-loop
effective potential is the Helmholtz free energy density of
this free field theory.

Although alternative functional methods yield the
effective potential in a loop expansion, the main purpose of
revisiting and complementing the Hamiltonian framework
of Ref. [10], confirming the one-loop results of Refs. [9,10]
and explicitly showing that the zero temperature limit
coincides with the effective potential obtained from the
expectation value of the Hamiltonian in the state (2.16) as
shown in Ref. [16], is to highlight the following aspects:

(1) The finite temperature effective potential is obtained

for space-time constant expectation values under the
assumption of thermal equilibrium. It is identified
with the Helmholtz free energy density under a
constraint that the expectation value of the
fluctuations around a fixed space-time constant
mean field vanish. This constraint is implemented
by introducing a Lagrange multiplier via an external
constant source J coupled linearly to the field. The
Lagrange multiplier J represents an external force
that keeps the expectation value of the field in
equilibrium away from the minimum of the
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IS THE FINITE TEMPERATURE EFFECTIVE POTENTIAL ...

effective potential. This force vanishes when the
expectation value corresponds to the extremum of
the effective potential. This is the content of the
exact relation (2.32).

(2) The Hamiltonian formulation of both the zero and
finite temperature effective potential explicitly
shows that the one-loop finite temperature effective
potential is the Helmholtz free energy of the free
field fluctuations & around the expectation value ¢.
Up to one loop, this is a free scalar field theory of
squared mass V%%db, which is a space-time
constant, quantized in terms of the usual mode
functions

P ok2 by bfi.

et of constant frequency wkdd
Furthermore, the distribution function (occupation
number) of these quanta is the usual thermal
equilibrium  Bose-Einstein  distribution  with
frequency widdb. The zero temperature limit is the
ground state expectation value of the free field
Hamiltonian associated of these fluctuations. It is
precisely the one-loop effective potential obtained
from the Hamiltonian method in Ref. [16].

(3) The finite temperature effective potential being
identified with the Helmoltz free energy density has
particular thermodynamic significance because it is
directly related to the internal energy density and the
entropy density, S % -0V T;d=0T. This relation is
exact and entails that if the effective potential is used
in a dynamical equation of motion of the mean field,
fundamental thermodynamic properties of the
entropy restrict its domain of validity in such
equation of motion.

(4) The perturbative method implemented to obtain
%9, yielding Eq. (2.76) will be seen below to be
very similar to the formulation of the equations of
motion from nonequilibrium quantum field theory.

While several of these points seem obvious from
the results leading up to the final expression of the
effective potential (2.69) with the one-loop result
given by Eq. (2.55), when uncritically extrapolated
to the dynamical case they will lead to conclusions
that are at odds with the fundamental tenets of
(local) thermodynamic equilibrium.

III. DYNAMICS: OPEN QUANTUM SYSTEM
PERSPECTIVE

As discussed in the previous section, the finite
temperature effective potential is a static quantity, designed
to explore the free energy landscape in equilibrium at finite
temperature as a function of a space-time constant order

PHYS. REV. D 111, 016028 (2025)
parameter, namely the expectation value of the scalar field
in equilibrium. Yet, it is often used in dynamical situations
in an equation of motion for this homogeneous order
parameter:

& 5tb b __d Verilsdbdtb % 0:
do

In this section, we endeavor to understand if and under
what circumstances such an equation of motion in terms of
Vertsd is valid. We note that an important consequence of
using the static effective potential in the equation of motion
(3.1) is that, in this equation the effective potential only
depends on time via the time evolution of ¢, leading to the
conserved quantity

03:1p

_16¢'p2 b Ver¥sd % E % constant:
2

03:2p

This result is a direct consequence of assuming that the
Helmbholtz free energy density depends on time solely via
the time evolution of ¢. A consequence of this equation
when combined with the exact result (2.46), is that the
thermodynamic entropy depends on time via the time
dependence of the mean field.

It has important implications: let us consider the
unbroken symmetry case in which the minimum of the
effective potential is at ¢ % 0, and that the initial value of
¢ corresponds to a large amplitude with ¢ % 0, hence a
large value of E. Then as ¢dtb rolls down the potential hill
¢ and consequently V5P, become small, however, the
velocity ¢ has to become large, therefore while Verr is
small, its time derivative becomes large, entailing that the
Helmbholtz free energy and the entropy, which have been
obtained in equilibrium are actually changing rapidly in
time. This behavior results in a contradiction between the
assumptions of thermal equilibrium and the validity of the
dynamical equation of motion.

A. Local thermodynamic equilibrium?

Using Ver?sd, a static function, in the dynamical
equation of motion (3.1) suggests that an underlying (albeit
unspelled) assumption is that of LTE. Namely, that the
distribution function nd¢Pb which enters in dVeg=dd [see
Eq. (2.76)] is always the Bose-Einstein distribution
function at temperature T with the frequencies widtp % pk?
b V% atpffi which are now time dependent. This implies
that the distribution function adjusts to the change in the
frequency on time scales much shorter than that of the

016028-11



HERRING, CAO, and BOYANOVSKY

evolution of the frequency itself. Underpinning this
assumption is the concept of treating the dynamics of ¢ as
a quantum open system, namely that the scalar field is in
contact with other degrees of freedom that constitute a
thermal bath, itself in equilibrium at temperature T, with
which it exchanges energy momentum via collisional
processes. In postulating Eq. (3.1) for the dynamics, the
bath itself and its interactions with the scalar field are not
specified.

A consistent justification of the assumption of LTE and
the applicability of the effective potential as a function of
time through the evolution of ¢$dtp and the distribution
functions nddath;tb would imply solving simultaneously

the set of Boltzmann equations for the distribution function
with a fully specified collisional term from the coupling to
the bath degrees of freedom, along with the equation of
motion for ¢dtb. Undoubtedly implementing such
program is a major undertaking and has not yet been
attempted, nor is it our objective in this study. Instead we
invoke the usual argument [11,32,33] of comparing the
time scales of collisional relaxation with those from the
dependence of the distribution function assuming the
validity of LTE in its time evolution. Such arguments are
ubiquitous in cosmology and underpin the understanding
of the validity of LTE during cosmological expansion as
well as the freeze-out of species and decoupling from a
thermal environment [11,32,33].

In absence of external forces, and in a homogeneous
situation the distribution function obeys the Boltzmann
equation [11,32,33]

d

__nkdtb % Clnk; 03:3p dt

where Clny is the collision kernel. The exact distribution
function, solution of this Boltzmann equation is written as
ndth % niedk;th p &nidtb where niedk;tb is the LTE
distribution function, and 6nidtpb is the departure from
LTE. If 6ndtP=nidk;tPp <« 1 then LTE is a reliable
approximation to the exact distribution function. The
departure from LTE is studied within a Chapman-Enskog
expansion [34], in terms of the ratios between the
relaxation time and the time scale of variation of the
distribution function, and the ratio of the mean free path to

3 See Sec. IV, Eq. (4.41) and following in Ref. [32].
where up to one loop

PHYS.REV.D 111, 016028 (2025)
the spatial scale of variation (Knudsen number). LTE

ensues when these ratios are < 1.

In absence of a specific model for the collision kernel we
can resort to the relaxation time approximation for a
qualitative (and semiquantitative) estimate [11,32,33],3

d 1
dt__nkdtb % —_T 6nkdtb; &nkdtb % dnkdtb — nitedk;tbb;

03:4p

where T is the average time between collisions, i.e.,
relaxation time or inverse reaction rate % 1=T [11,32-34],

03:5p

T%n hovi;

with n the density of scatterers, o the cross section and v
the relative velocity. We take the LTE distribution function

1
nreOk;th  ef@ (0 — 1 ;
03:6pb

since this is the distribution function that enters in
Verspdth. To first order in the Chapman-Enskog
expansion

[32,34]by nite8,kn;(tdb, therefore to this ordertp on the left-
hand side of Eq. (3.4) is replaced

d
Snidth % -T dt—nieOk;th; 03:7p
and LTE is a reliable approximation if
6n 0th < 1:
Nitedkk’tP 33:8p

Let us consider the high temperature limit Bwi << 1 where

we expect a short relaxation time, yielding
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nlteakk;tp
Wiy 5¢b

53:9p N gty =7 W 5tp .

therefore LTE in this regime is fulfilled when

_"‘_

Ww K33 tbb
< 1: 03:10p

Approximating the high temperature limits

3 82
n=T,; hovi=T_2; 03:11p

with g a dimensionless coupling, and considering
longwavelength fluctuations, since we expect these to be
the slowest to relax to LTE, the condition (3.8) yields

—_— UUUysz cb
Vi o

<< Vv

1

2g%
83:12p

which obviously depends not only on the coupling g to the
bath but also the details of the potential V% such as mass
and couplings. To be specific, let us consider the case with
tree-level potential

m2 2 A4 2
Vidlh2odpad; m > 0; 03:13p

with a large amplitude initial condition
¢80P % O; A*B0b ~ T4 AP280b > m?;  8§3:14p
consistently with an initially thermalized state of large

energy density? « T4 As ¢dtp rolls down the potential

PHYS. REV. D 111, 016028 (2025)
hill,pAffig200P; V%% =AdddtdP0=p; well before

reaching the minimum [for example

Vdd®©0%db=2=] Adit follows thatdOp and the
ratiodp'dtP(3.12)= implies that the con-

dition for the validity of LTE becomes
/11/4
— << lg ;
03:15p

which may very well be violated depending on a delicate
balance, in other words a fine tuning, of the strengths of
couplings. For example, if the collisional kernel refers to
collisions among the quanta of the scalar field, with self-
interaction given by the potential (3.13) then g2 >A? with
an obvious violation of the LTE condition for weak
coupling.

While a more careful treatment of the quantum kinetics
combined with the equation of motion for ¢ is required for
a thorough assessment of the validity or breakdown of LTE,
a program well beyond the scope of this study, this simple
analysis highlights that the validity of LTE must be
carefully assessed and should not be taken for granted as it
may not be fulfilled and may imply fine tuning in generic
cases. The reader will recognize that the criterion for the
validity of LTE is the usual one invoked in cosmology

[11,32,33], where the reaction rate I' % 1=T is compared to
the Hubble expansion rate H: in the cosmological case LTE
is valid for H=l« 1. In the dynamical case under
consideration, w’ dtP=wdtP replaces H; however, other
than this difference, which ultimately is a difference on
time scales, the main arguments are indeed similar.

The effective potential being identified with the
Helmholtz free energy density implies that

Veithsd % U%d - TSHp; 33:16b
U% hHY#Si % Visb b Ao 27 82dnskbs wisl b
2nkddb 33:17p
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is the internal energy density, and d3k

Z s o
2nib3fd1pnkdppPInd1pnkddpPbP-nkddpPIndnkddbbg

03:18p
is the entropy density, with the occupation numbers
1
nkdodb % eBwkddpp — 1: 03:19p

frequenciesIn the dynamical casewcddpdtbb. As a result,
the entropy densityddntbiddepends on time,
consequentlyob do depend on time via the the occupation

numbers depends on time, and its time derivative is given

by

S' % -Vooos2pTdtbd’ Z-82dm3kP3 nkdppPal b nkddPbp:
03:20p

6Consider the tree-level potential (3.13) with V8 bpatpp
%Y 0,

This behavior is actually more general, when the

symmetrywithAdpdtbd, whendtb % dddpis oscillating near

the minimum atbcosdmtP, it follows that S' X sind2mtP.

is unbroken, ¢ oscillates around the minimum and
Vooo¥.ddtbd ' dtb changes sign, thereby alternating between
increasing and decreasing entropy along the trajectory.
Namely, the entropy density is a nonmonotonic function of

4 gkdtb b Nk - 20cosd2thbgdthb % 0; §3:24b dt

whose

instability

PHYS.REV.D 111, 016028 (2025)

time, a behavior that, a priori is not compatible with a
thermodynamic entropy. It may be argued that in the
quantum open system approach the entropy of the system
may not be a monotonic function of time as the system
exchanges energy and momentum with the bath, and that
the change in entropy of the system reflects heat transfer to
and from the bath, while the total entropy of the system
plus the bath increases monotonically or remains constant.
However, we emphasize that the nonmonotonicity is in the
entropy density, therefore the change in entropy is
extensive, therefore such an argument implicitly accepts
that the bath itself is not in thermal equilibrium and its
dynamics is affected by the system in an extensive manner.
Clearly these arguments must be quantified, however, the
point remains that the time dependence of the entropy
raises relevant questions on the validity of LTE in the
dynamical evolution of the mean field.

B. Caveats: Parametric and spinodal instabilities

One of the main objectives of comparing the finite
temperature effective potential to the zero temperature
effective potential obtained in Ref. [16] is to highlight that
the main caveats associated with using the effective
potential in the dynamical equation of motion (3.1)
discussed in this reference also apply to the one-loop finite
temperature effective potential (2.55). After all taking the
T - 0 limit in this expression yields the one-loop effective
potential obtained in Ref. [16] in the Hamiltonian
formulation.

The previous analysis on the validity of LTE, based on a
collisional Boltzmann equation, does not include the
possibility of instabilities which lead to particle production
and nonthermal distribution functions. Two ubiquitous
instabilities were studied in detail within the context of the
zero temperature effective potential in Ref. [16]:
parametric and spinodal, the latter ones associated with
spontaneous symmetry breaking. While we refer the reader
to this reference for further details, for completeness of
presentation we summarize here the main aspects of both
instabilities, with the objective of emphasizing that both
prevent a formulation of an equilibrium finite temperature
effective potential as described in the first section.

Let us first consider the tree-level potential (3.13),
yielding V°%pdtb % m*p 3Ad26tP with m?> 0 and small
amplitude oscillations around the minimum at ¢ % 0,

bands
have

been
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namely

: .
$dth % d60PcosOmtp: 53:21p

yielding

Vooddatbb % m2 b 3Ap200bPcos20mtb:  §3:22b

Quantization of the fluctuation field & [16] with an
effective mass squared V% ¢ddtp given by (3.22) leads to
Mathieu’s equation [35-37], which features instability
bands from parametric amplification describing profuse
particle production [16,18-24]. While we refer the reader
to Ref. [16] and references therein for a more detailed
discussion, for consistency and completeness of
presentation we summarize here some of the important
aspects of parametric instability in this case. Introducing
the dimensionless variables

z
VY 5 ¢?0P tmt —; a
3\ 2;
4m
k% b?b2a;k¥%k; 63:23p 1k
m

the mode equations (2.10) become of the form of Mathieu’s
equation [35-37]

d2

h0(0)=1, h0'(0)=0, n = 4, a =1

ho (1)

'0“‘20“‘40“‘60‘ ‘80“‘100
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A general solution gkdtPb is a linear combination of these

two linearly independent solutions. The width of each
band, labeled by an integer index n % 2;3 is found to be
proportional to an [16]. Within these instability bands the
amplitudes of the mode functions grow as gydtp « "¢ with
real v > 0 being the Floquet exponents, the smaller wave
vectors feature the largest vk and wider bandwidth of the
unstable regions [16].

These instabilities and the concomitant particle
production clearly indicate that maintaining LTE by
collisional coupling to a bath is not a warranted assumption
and in general implies fine tuning of couplings to the bath.
Furthermore, particle production in the parametrically
unstable bands results in nonthermal distribution functions
which cannot be approximated by the usual Bose-Einstein
distribution functions that emerge in the equilibrium
description because particle production is effective within
localized bands in momentum. If collisional processes
distribute the particles outside the unstable bands into an
LTE Bose-Einstein distribution function, such processes
must occur on timescales shorter than the inverse of the
largest Floquet exponent, again implying a fine-tuning
between the coupling to the heat bath and the parameters
of the potential. Clearly this is not a generic situation and
depends on particular models and couplings to the bath
degrees of freedom.

Let us now consider the case in which the tree-level

150

100 h1(0)=0, h1'(0)=1, n =4, o =1

50

hl (7)

0

-50

B P R R R B
1000 20 40 60 80

oot T

FIG. 1.h180p % 0Two linearly independent solutions of Mathieu;h1°50b % 1, for the first unstable band. A general solution for a mode

function’s Eq. (3.24), h0dtb;h1dtb with initial conditiOHSgkérb is a complex linear combination ofh030Pp % 1;h0°30p %h03T0P;

and h19tp satisfying the condition (2.11).

analyzed in

potential leads to spontaneous symmetry breaking, for

example the potential (3.13), but with m2% —p? with p2> 0,

Refs. [16,35-37]. Figure 1 displays two linearly
independent solutions in the first instability band, showing
the exponential growth from parametric instability.
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yielding V%%d¢ % -p? b 3Ad2. Within the (classical)
spinodal region ¢? < u?=3 it follows that V°°%¢ < 0 and

there is a band of spinodally unstable wave vectors k? <
jV°°’/z¢j for which the:mode functions grow exponentiallyR

b %

t® pj ¥ Bgkbjotb % sffi eR ytPdto bk rke” VidwParwith vk t

V@ t - k?>0, and s, rk determined by initial conditions,
thereby signalling exponential growth of fluctuations. In
this case, for jj within the spinodal region and values of k
in the unstable band, the frequencies wi¥ % pk? p VO%offi
are purely imaginary and the Helmholtz free energy
density, namely the effective potential, the internal energy
density, occupation numbers nd¢db and entropy (3.18) are
all complex, an untenable situation from the
thermodynamic perspective, even when ¢dtb “rolls down”
the potential hill very slowly within the spinodal. That
equilibrium thermodynamics (or LTE) cannot describe this
situation is well known in statistical physics: the spinodal
instabilities are associated with the dynamical process of
phase separation and the growth of correlated ordered
domains [27-29], and has also been studied in quantum
field theory [17,25,26]. Particle production in these
spinodally unstable bands is followed by particle
production by parametric instabilities when the mean field
¢ has rolled down below the spinodal point and oscillates
near the (broken symmetry) minimum, again resulting in
nonthermal distribution functions as a result of particle
production from parametric amplification in the unstable

bands.

Both types of instabilities result in profuse particle
production and nonthermal distribution functions for the
produced particles which are localized in momentum
within the unstable bands. A redistribution of particles into
thermal distribution functions, the underlying assumption
in using the finite temperature effective potential, implies
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a strong coupling to a thermal bath in such a way that this
redistribution occurs on time scales much shorter than the
timescales associated with the instabilities. Obviously if
and when such a coupling arises is a model dependent,
highly fine-tuned and nongeneric case.

C. Partial summary

In the previous sections we have shown that the finite
temperature effective potential is associated with the
equilibrium Helmholtz free energy density as a function of
the mean field ¢. This is an exact result valid to all orders
in couplings and loop expansion with important
thermodynamic implications, and assessed whether using
the effective potential in the equation of motion for ¢ is
warranted.

Based on the following aspects, our conclusions are that
the regime of validity of the static effective potential to
describe the dynamics of the mean field is very limited.

(1) Using Verd0dtbb in the equation of motion with
Vert/sd obtained in equilibrium quantum field
theory, assumes that there is LTE, at a fixed constant
temperature, presummably maintained via a
coupling to a thermal bath in equilibrium at such
temperature. Although the coupling to the thermal
bath is in general not specified, we have provided
general arguments based on the Boltzmann equation
with a collision term in the relaxation time
approximation to suggest that LTE is not warranted
in many relevant cases, unless there is a fine tuning
of couplings to the thermal bath.

(2) We have found severe caveats in the cases both
without and with symmetry breaking tree-level
potentials. In absence of symmetry breaking,
parametric  instabilities associated with the
oscillatory dynamics of the mean field near the
minimum of the potential, leads to profuse particle
production, with distribution functions that are not
thermal, and more importantly, a nonmonotonic
behavior of the entropy. While this latter behavior
may be argued to describe an exchange of entropy
with an external bath, it runs counter to the main
tenets of local equilibrium thermodynamics.

(3) In the case when the tree-level potential admits
broken symmetry minima, spinodal instabilities
prevent an LTE description of the dynamics. In
particular for a band of spinodaly unstable wave
vectors when ¢ is within the classical spinodal
region within which V®3¢b < 0, the effective
frequencies are purely imaginary, fluctuations grow
exponentially, yielding a complex effective
potential, distribution function nddb, internal
energy, and entropy. Whereas the imaginary part of
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the internal energy may be associated with a decay
rate of a particular nonequilibrium state [17,26], an
imaginary part of the entropy is untenable, and
unacceptable in thermodynamics.

(4) The caveats emerging from assuming that the
effective potential can be used in the dynamical
evolution of the mean field, cannot be overcome by
any resummation program in equilibrium quantum
field theory, such as, for example resummation of
“hard-thermal loops” [38]. Such nonperturbative
resummation frameworks cannot possibly address
the dynamical instabilities associated with
parametric amplification or spinodal
decomposition, the latter being a hallmark of the
early stages of phase separation, the formation and
growth of correlated domains and coarsening during
a phase transition [27-29].

IV. DYNAMICS: DECOUPLING AND FREEZE

OUT, CLOSED QUANTUM SYSTEM EVOLUTION

The discussion in the previous section outlines several
problems inherent in merely using the finite temperature
effective potential to describe the behavior of a dynamical
expectation value/condensate. Critically, employing this
effective potential tacitly assumes a persistent local
thermodynamic equilibrium between the condensate and
the environment which requires a precise analysis of the
couplings to the thermal bath. This obfuscates the problem
and prevents one from making simple, model-independent
statements about the dynamics of the condensate under
such conditions. However, one may consider a closely
related scenario wherein a condensate, which was
previously in local thermodynamic equilibrium, decouples
from the bath and proceeds to evolve in time. In this section
we will investigate these dynamics, thereby providing an
avenue for studying the behavior of the mean field beyond
the time scale when LTE is no longer warranted. This
problem is not only both tractable and relevant in its own
right, but it will provide a useful comparison to the
phenomenologically motivated approach of using the
effective potential in the equation of motion [see Eq. (3.1)].

Let us first consider the case when the tree-level
potential does not feature spontaneous symmetry breaking,
and an initial condition on the mean field such that its
velocity is very small and it is up the potential hill, far from
the minimum of the tree-level potential so that it does not
feature oscillations that lead to parametric amplification
and breakdown of LTE in generic cases. As ¢ rolls down
the potential hill with a small initial velocity, there is a time
interval when the evolution of the mean field is slow and
the condition (3.10), or alternatively (3.12), for the validity
of LTE is fulfilled. This entails that the instantaneous
frequencies wdpdtbb are varying slowly on the relaxation
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time scale, this can be quantified in an adiabatic expansion
of the solutions of the mode equations (2.10) [16].
Proposing the Wentzel-Kramers-Brillouin solution

e-iRtto Qkkdtopdto

8% p2Q BtpE- st 1p

which when inserted into Eq. (2.10) reveals that Q,dtP must

satisty
Q2Bth % wadth - 12_ Q% 2QF =30 2 34:2p

The resulting equation can be solved in an adiabatic
expansion

Q2dth % wik2dthl — 12 w36 kk b 4 @3 Wk b: 84:3p
Assuming a slow initial evolution, let us consider the
leading (zeroth) adiabatic order, namely

0 e-iRtto
wkkdtopdto

gokpOth % p2w Othff-; 04:4p

as the mean field evolves, its velocity increases, and at
some timescale to LTE breaks down and the system can no
longer remain in thermal contact with the bath. This is the
physics of decoupling between the system and the bath.
From this timescale onwards, the scalar field evolves
independently of the bath, this situation is similar to the
decoupling of photons in cosmology, when the mean free
path from Thompson scattering is larger than the Hubble
radius, the photons evolve freely. Within this context, the
time of decoupling is referred to as the “surface of last
scattering” and is often approximated to be an
instantaneous process.

We model the similar situation as an “instantaneous”
decoupling assuming that the density matrix for the
fluctuations around the mean field is frozen in the
Heisenberg picture, and describes the fluctuations of a free

field with the frequencies at the decoupling time to. This
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assumption leads to the following initial conditions to
leading adiabatic order from Eq. (4.4):

1 w
t
gkdtob % p2wkdtob£fi-;2 g'kd ob % —i p2kwdktodPtobffi-;

wkdtob % gk p Vooddpdtobbffi; 04:5p

that the mean field is within a region withwhere widtob are

real and positive under the assumptionyoodddtoPb > 0,

which is always the case for potentials with unbroken
symmetry. The initial conditions (4.5) imply that the
Wronskian condition (2.11) on the mode functions gkdtb is
satisfied.

Assuming the validity of LTE up to the decoupling time
to, the initial density matrix at this time is taken to be given
by

e-BoHo

pdtoP % Tr_______e-BoHo; 04:6b

where

Ho ™ Xk Awidtob a’car b 21_:

-

04:7p

This choice of initial density matrix is consistent with the
one-loop effective potential, which is determined by a
density matrix describing a free field with a squared mass
VO§ b > 0 as discussed in Sec.(2.50)I1 B. , in particular the
fluctuation Hamiltonian in Eq.

When the tree-level potential features broken symmetry
minima and a spinodal region wherein V®3¢p < 0, the
situation is much more subtle. The band of wave vectors 0
< k < jVO3dPj is spinodally unstable, LTE is not fulfilled
regardless of the value of ¢’; and, as discussed in the
previous section, the mode functions within this band
feature (nearly) exponential growth in time as a
consequence of the instability. The initial conditions (4.5)
are valid if VO°%3¢b > 0, in other words ¢ is outside the
spinodal region, however they must be modified if ¢ is
within the unstable region where Vb < 0. Nevertheless,

PHYS.REV.D 111, 016028 (2025)
we can parametrize the initial conditions on the mode
functions within the unstable band at some initial time toas

1 W
gkdtob % p—x; g'kdtob % —ip——;
2W 2Wy

Wk pk? p-M>ffi; M?2> 0; fi——04:8b

which again imply that the Wronskian condition is
fulfilled. The effective mass term M? > 0 is a
parametrization of the initial condition at a time to, its
actual value depends on the precise “misalignment”
mechanism that has resulted in the mean field ¢ to be
within the spinodally unstable region and must be specified
for particular realization of the dynamics.

A. An explicit example: A “quenched” phase
transition
Let us consider the case of a rapid phase transition
modeled by a scalar field theory with a time dependent
mass term with Lagrangian density

1 A
L% = daud b 2oT%tb— Td? p —d%  54:9p
2 2 4

with a > 0 a dimensionless constant, and a time dependent
temperature
Totb % TiO0to -tPpTi@0t-tob;

Ti>Tg Te< Te:

04:10p

This situation describes a sudden phase transition at time t
% to from an unbroken symmetry case for t < to with T;> T
to a broken symmetry case for t > towith Tr< Tc. If for t < to
the mean field ¢ is oscillating with small amplitude around
the equilibrium minimum of the potential at ¢ % 0 (for t <
to), and at the transition time tois found with a value do, the
mode functions are of the form eiwxt with

Wi pk2 p M2ffi; M2 % adT% - T.2b b 3\do? >6 0: b

4:11
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For t > to, after the temperature dropped to Tr< Tc the
mean field is now within the spinodal region if the initial
value ¢ois such that adT?% - T%P p 3Ad% < 0, the mode
functions at the transition time have precisely the initial
conditions (4.8). After this sudden transition, the mean
field will begin rolling down the potential hill, and the
mode functions gcdtb that describe the fluctuations will
grow nearly exponentially while the mean field is within
the spinodal. This simple but relevant example explicitly
describes a physical situation in which the mean field is
found initially within the spinodal region. The ensuing time
evolution of the mode functions exhibit the (nearly)
exponential growth associated with the dynamics of the
phase transition and the emergence of correlated domains
with a growing correlation length [17,26].

This specific example is by no means exhaustive, nor do
we dwell here on the “quenching mechanism,” but it
highlights that in the dynamical case the “misalignment”
mechanism by which the initial value of the mean field is
found inside the spinodal region must be specified, along
with the initial conditions on the mode functions that
describe the fluctuations around the mean field.
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Under the assumption of instantaneous decoupling and
to establish a relation with the thermal density matrix
discussed in the previous Sec. II B within the context of the
static finite temperature effective potential, let us introduce

gkdtob % p21k;
04:12pb

g'kOtob % —ipW2 kk;

W W £

Wk % pk2 b M2ffi;

PHYS. REV. D 111, 016028 (2025)
and has a clear and simple interpretation: it describes a free
field theory for the fluctuations with squared mass M?> 0
given by Eq. (4.12) in thermal equilibrium at a temperature
To % 1=|30.
The main assumption behind this choice is that the

M2= \MVood2¢8tobP;Voeoodpddtoobb > O:

> 0; Vaotbp<O

k

and the initial density matrix is taken to be given by

€-PoHo

pOtob %4
Tre

~BoHo ; 04:14p

where the frequencies Wy are given by Eq. (4.12) and the
time independent annihilation and creation operators are
the same that enter in the quantization of the fluctuation
field 88x;t” b, given by (2.8).

This particular choice of the initial density matrix is
motivated by an “instantaneous decoupling” from LTE

Ho

XAW, a*c ae b12_;

shorter than the relaxation time and the scalar field
decouples instantaneously from the bath. From this time
onwards the density matrix follows unitary time evolution
determined by the dynamics of the scalar field.

Note the similarity with the fluctuation Hamiltonian, the
second term on the right hand side of Eq. (2.50) which
yields the static one-loop effective potential, however,
unlike the frequencies (2.49) that enter in (2.50), which are
imaginary within the spinodal region, the Wi that enter in
Hoare always real.

In this (Gaussian) density matrix it follows that

04:13p

coupling to the thermal bath maintains LTE up to timewhich the time scale of change of the frequencies is muchto at

h
atk’i % Tratk” pdtob % O;

h
atk-ag’ ol ¥4 Tratk”aK” opOt

1

0) =m(0)5, p = PohWi _ | Ok

hak”i % Trak” pdtob % O;

hak ak’oi % 0; V k;" k™ ©; d4:15p

[

and Wick’s theorem applies.

016028-

B. Equations of motion For any operator O,

the Schrodinger picture with the unitary time evolution

%erator.

Heisenberg’s equation of motion become After thermal

decoupling, the density matrix is frozen in the Heisenberg picture and the time evolution is unitary,
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Both cases, with and without spontaneous symmetry
breaking in the tree-level potential can be summarized by
the following initial conditions that satisfy the Wronskian
condition
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where we allow the Hamiltonian to depend explicitly on
time. The solution of (4.16) is

00x;t”0b % U™18t;toP0dX;t” oPUBL;toP;  84:17P

where the unitary time evolution operator (in what follows
we set i % 1) is given by

U8t;tob % Te-i Ruhio Mg taropto ;

U dttop 4T eR 80P o d4:18p

where T;T™ are the time and anti-time-ordering symbols.
In the Heisenberg picture a density matrix does not

depend on time, whereas in the Schrodinger picture its time

evolution is given by pdtp % Udt;toPpdtoPU10t;tob; 84:19P

namely the density matrix evolves unitarily in time, as a
consequence the entropy S % -TrpdtbIndpdtbp is time

independent.

normalized such that TrHeisenberg field operator are given
byWith an initial state described by a density matrixpdtop
% 1, expectation values of apdtob,

hOdtbi % TrOdtbpdtob % TrOdtobpdth: §4:20b

Expectationvalues and correlation functions are obtained
via functional derivatives of the generating functional
[39,40]

Z%:JP;)~ = TrsUdt;to;)Pppdtob U~ 18t;to;) b; d34:21p
with respect to the external sources J, where
U18t;t0;Jpb % Tei 'RuotoH ;00 Hoaitp ;
04:22p

PHYS. REV. D 111, 016028 (2025)
U dtite ) P T eR 8o P o

with

Hot;Jp = HOtb b Z d3xJox;t”  POdx;t°P:  84:23b

For example correlation functions hOPdx™ 1;t1POPEX”

2,tPi Y TroTOOX™ 1;t1P06X_> 2;t2PPpdtob;

Vi - 8JIpdx8” 21Z;t1%)b8p);Ip-0x2;t2P
Ib%I%0;

04:24p

hO-6x~ z;tzpobax_) 1,tbPi Y TrOdx™ 1;t1Dp6toD06x* 2, tab;

A 81pdx8” 21Z;t1%Ib6pl;1-8-X"2;t2P
ISR

04:25p
etc. An important result is that hOpdx;t” i = TrOdx;t”
bpd&tob % i S5JVsp)Bpx;t” ;)-b
b% %40 82

% hO-ox;t” Pi = TrpdtobOdX;t~

P i

S81Vs-Jpx;t” ;0b-

Ipl%--%0: 67

8 04:26p
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This is the Schwinger-Keldysh or in-in formulation of
nonequilibrium quantum field theory [39-44].

Let us consider a scalar quantum field theory for a field
¢ as discussed in the previous sections, the generating
functional (4.21) in the field representation can be written
in a functional integral representation

1
20400;)- % 7 DD DD Udt; to; PP

x hijpdtobjdoiihdoijU-18t;to;)-Pjdri; §4:27p
in turn the field matrix elements of the evolution operators
can be written as path integrals, namely hdfjUdt;to;JpPjdii

=Z DdpeiR Ladp;Ipdax;

dpOtob % i; dpoth % o 04:28p
hooijU-18t;t0;J-Pjofi = Z Dd-e-iR Lsd-;)-dax;
¢b-0tob % doj; b-0tb % of; 04:29p

where
Ll a2 —

~15vp 2 —yop p— 02
ot 2

JPp: 1
¢
04:30p

Finally, the functional and path integral representation of

the generating functional becomes

Z%)p;)- ¥ Z DoiDPiDdoi Z DopDP-

X iR %Ludp;lb-L%d-;)-daxpddi;doi;tob;  84:31b

with the boundary conditions on the fields ¢ given by Eqgs.

tdl dPx

(4.28), (4.29) and the notation Rd* — 1 RR.The

PHYS. REV. D 111, 016028 (2025)
doubling of fields with the branches is a direct

consequence of the time evolution of a density matrix, with
time evolution forward via1 U8t;tob and backwards with U-
Ot;tob, in contrast to the usual S-matrix or in-out
formulation which involves only time evolution forward
because it evolves a state rather than a density matrix.

Our objective is to obtain the equation of motion for the
expectation value of the scalar field ¢, namely

Trdpdx;t bpdtob =hdtb; d4:32p

where we consider ¢ to be spatially homogeneous, hence
only the zero momentum component of ¢ acquires an
expectation value. The equation of motion for ¢ is obtained
by following the identity (4.26) which implies that hopi %

hdp-i % &.

b 2
b b - - 1 98P

2 at
The equation of motion for ¢atpb is obtained by writing

d10x;t” b % dotb p 80x;t” b; §4:33p

in the Lagrangian L%®;J in Eq. (4.30) and requesting

that

h&dx;t” bi % 0; d4:34p

to all orders in perturbation theory, namely the same
constraint as in the static case (2.40).
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Upon integration by parts and neglecting surface terms
which do not contribute to the equations of motion, and
coupling sources only to the fluctuating fields §, we obtain
(dots denote d=0t)

Z%LY%d;6 ;) —LAd;6 ;) dax Y piZ

o1
-7 =
2 ot

. _ —\2 __ M
(Vo) =V,

PHYS. REV.D 111, 016028 (2025)

-0V &6pb2 -VoodpdtbPSp2 pJpdp

06-2 0¢d0otPbS-2 pJ-6-dax

bbiv adatbpd b d*x =36 >6 b: §4:35p

-iz 8¢ 3tbbVoddatbbbsi

The currents J in this expression are intended to yield the
correlation functions of the fluctuations & in terms of
functional derivatives with respect to them, and should not
be confused with the Lagrange multiplier j in the static case
of the previous section which enforces the constraint
(2.40).

The last line in (4.35) determines the interaction vertices,
these are depicted in Fig. 2, just as in the static case, the
linear term is considered as part of the interaction. It is
instructive to compare to the static case in particular the
interaction term in Eq. (2.60), which shows that in the
dynamical case ¢ in the linear term in &3x;t” b in the
interaction term in the last line in (4.35) replaces the
Lagrange multiplier J in (2.60). This is in agreement with
the discussion right before the classical equation of motion
(2.33) comparing it to the constraint equation (2.32).

s TP HVIO) i+ V()

] ]

5~

iV (o)

FIG. 2. Interaction vertices from the Lagrangian (4.35) up to
tionsand including O863pb, the solid lines correspond to the
fluctua-F ¢ 8tbp Voddpdtbbb, the black 8. The gray box stands

for id dot stands for FiVooodddtpp.

pdx;t”
000 b3 b -
The equation of motion for the mean field is obtained

action term infrom the condition(4.35)héto first order, we
findd0~ ;0Pi % 0. Considering the inter-

- i Z 8 8tb p Voddbbh&pd0~ ;0pSpAX;t” bi b

33¢patbPhSpd0~ ;0p88pdX;t” PP3idax % 0: 84:36b

Vooo
The expectation values are obtained in the free field theory
defined by the first two lines in (4.35), with the initial
density matrix pdtoP. (4.35) describe a free scalar field The
first two lines in theory with a time dependent mass

Voodddtpb, yielding the field equations (2.7), and the field

expansion (2.8). Using Wick’s theorem it follows that

h&p80~ ;0p85pdx;t Ph3i % 3h&pd0~ ;0pSpdx;t PihdSpdX;t”
pb2i;

04:37p

and factorizing h&P80~ ;0p&Pdx;t”  bi from the expression
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(4.36) we find
+
+
+ T L3
+

FIG. 3. Equation of motion up to one loop. The solid straight line
is the propagator6Pdx;t” P&PEx;t” bi. h&P80~ ;0p6PEX;t” Pi, the
closed loop is h

1 2
¢ dtb b Voddb b 2_Vooodddtbbhdspdx;t b i % 0; d4:38p

this equation is depicted symbolically in Fig. 3.
Various correlation functions needed to obtain the
equations of motion are summarized in the Appendix.
With the field expansion (2.8) and the correlations (4.15)

it is straightforward to find hd8&pdx;t” PP2i 4 hZ ____ §2r
P3 jgkdtPj201 b 2nkd0PP; §4:39p

dk

finally yielding the equation of motion

h
¢ 8th b Voddadtbb b _2 Vooodddthb

Z dsk 2
x 0
04:40pb

21b3 jgkdthj 81 b

2nkd0bb % 0:

It is straightforward to check that the same equation of
motion is obtained from using the backward branch (&)

contribution from the last line in Eq. (4.35). This is because

hhd66pp003~ x;t";Obbbzs‘zai Ya hax;t_) Pidis factorized.

Also, and of course, the-dx;t” PbP2i where now the

propagator

PHYS.REV. D 111, 016028 (2025)
same equation is obtained by considering the constraint

h&-This method to obtain the equations of motion for

expec-00~ ;0Pi % 0. tation values, based on the in-in or

Schwinger-Keldysh ~ formulation of nonequilibrium
quantum field theory is general and applies to any quantum
field theory, furthermore, with few modifications it can be
extended to the realm of cosmology [45].

In the case of the scalar field theory defined by the
Hamiltonian (2.1) the equation of motion (4.38) can also
be obtained directly from the Heisenberg field equation,
which follow from the variational principle applied to the
full action ¢ dx;t” b -V2pox;t” b p VO8ddx;t” bb % 0; 64:41P

which is obviously fulfilled as an expectation value in the
initial density matrix, namely
TrpdtoPdd 6x;t” P -V2dbdx;t” b b Vodddx;t” Pbb % 0: §4:42b

Shifting the field operator by the spatially homothe

Heisenberg field equationgeneous mean field ¢ox;t” b

%(4.41)$0tb b 80x;t” b yields, for

& 6tb b VoSbtbb b %8 dx;th -V288xt” b
VooddpdtPpsdx;t” b

1 2

b _2Vooodddthps dx;t" P b % 0; 84:43p

using the quantization of the fluctuation via the solution of
the free field equations of motion in the background of
the mean field, Egs. (2.7), (2.8), leads to the vanishing of
the (third) term inside the bracket in (4.43), yielding the
expectation value (4.42)

1 2§ ot p Vodddtbb p 2 _
VooodpdtPPETrpdtobs 6x;t” bbb %O0:

04:44p

With the initial density matrix given by (4.14), the field
expansion (2.8), and the expectation values (4.15), it is
straightforward to find that

dk

016028-25



HERRING, CAO, and BOYANOVSKY

Trpdtob828x;t P % A Z 823 b3 jgkdtbj281 p 2nkd0Pb:
04:45p

Thereby confirming the equation of motion (4.38)
obtained via the more general in-in Schwinger-Keldysh
formulation. This is not only reassuring, but it also
confirms that the equations of motion for the condensate
follow from unitary time evolution as it is obtained from
the expectationvalue of the Heisenberg equations of motion
for the field operators in a time independent density matrix.
While this latter derivation is arguably simpler, we have
also presented the more rigorous in-in formulation due to
its generality and appropriate use in non-equilibrium
quantum field theory.

In Refs. [40,46,47] the Schwinger-Keldysh effective
action up to one loop was obtained in terms of the fields
with labels on the two branches, corresponding to forward
and backwards time evolution. This action is rewritten in
terms of the Keldysh center of mass and relative variables
dequations of motion obtained from a variational

principle® % &P p dp=2;R % P - p, respectively, and
the

on these variables [40]. Up to one loop it is shown in Refs.
[46,47] that the effective equations of motion are of the
Langevin type, with a Gaussian stochastic noise, the
expectation value of the scalar field is directly determined
by the expectation value of the center of mass coordinate
with the probability distribution function (Gaussian) of this
noise, yielding the equations of motion for the expectation
value of the scalar field in the initial density matrix [46,47],
which is the method used above to derive the equations of
motion from the Heisenberg field equations.

When the mean field ¢ is time independent, namely in
the static case, and when ¢ is away from the spinodal
region the mode functions are

e-iwkt 2

gkOth % p2wkf-; wk % gk p Vooddbffi; 04:46b

[see Eq. (2.12)] and the last two terms in the equation of
motion (4.40) become
Vodddtbb p _2 Vooodpdtbp Z 8213 b3 2wk
1p2nkdob A dk 1
d

% d__@Verrddb; 34:47p
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in agreement with the static case, Eq. (2.76). However,
when ¢dtb is dynamical, the mode functions gidtp
describe the parametric and spinodal instabilities discussed
in the previous sections and the last two terms in the
equation of motion (4.40) cannot be identified with a
derivative of an effective potential.

As a consequence of the mode equations (2.10), it is
straightforward to show that the equation of motion (4.40)
yields the conserved quantity

E™ % _120¢°0tPP2 b VOdOtbP

ffl{ze"3a ffl}2 2 2
b_ ____2Z7Z03d2nb3%jgkdthPj p wkdtbjgkdthj &1
b 2nkd0bPb A dk|  ffl{zern ffl}

% constant; d4:48p

as can be easily confirmed by taking E and using Eq.
(2.10), yielding ¢ times Eq. (4.40). The brackets in Eq.

(4.48) define the classical (E~c|), and fluctuation (ENﬂ)

contributions to the total energy density respectively.

It is important, and enlightening, to compare this
conservation law to that obtained from using the static
effective potential in the dynamical equation of motion of
the homogeneous mean field (3.2). First, we prove that the
Eq. (4.48) is the expectation value of the time-independent

and its canonical momentumOHamiltoniandAP, namely
one-loop order. Let us shift both the field(2.1) in the
initial density matrixrt as pdtob up tod

ddx;t°P % ddtb p 88x;t7 b; ndx;t” b % ¢'oth
b sdx;t”  b;
04:49p
yielding
1

HY%:0 % V2_0¢ 6tbb, b VOPAtPP p Hsp;  04:50p where
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s, 5 (9 Vo) o 2

2

Hs% Z d 2pV2 b 2 ; 04:51p

and the dots in Eq. (4.50) stand for linear terms with
vanishing expectation value in the density matrix pdtoP,

along with cubic and quartic terms in 6 which yield higher

loop corrections. Upon quantization of the fluctuation field
via the mode expansion (2.8), (2.9) and using the
expectation values (4.15), we find

1 h dk

— V TrHspdtob % _
w2kdthjgkdtPj2

2 Z 082m3 b3 jgkdthj2 p

x 1 p 2nkd0Pp; 04:52p
therefore, up to one loop 80dAPP we find
E” % V_1 TrH%dbpdtob; 04:53p

namely the constancy of E is the statement that the field

Hamiltonian is time independent. In contrast to Eq. (3.2)
with the caveats discussed in the previous section in the
broken symmetry case, the expectation value of the energy
density is constant and always real, and because the time
evolution is unitary the entropy density d3k

Sh -

02mtb3fd1pnkd0PPING1pnkd0PP-nkd0PINdNKG0PPg;

d4:54p

where Eq. (4.54) is obtained using the initial thermal state
set by the decoupling and is constant and real.

by Eq.This is in striking contrast to Eq.(3.16) in terms of
the internal energy and entropy(3.2) with Vegddbb given
densities (3.17), (3.18) each one varying in time, with a

nonmonotonic behavior for the entropy and both featuring

PHYS. REV.D 111, 016028 (2025)
an imaginary part when the mean field is in the spinodal

region.

C. Stimulated particle production

The equation of motion (4.40) and conservation law
(4.48) are very similar to the zero temperature case
obtained in Ref. [16], with the only difference being the
initial occupation number in the one-loop contribution.
Following this reference, this similarity suggests us to
relate the growth of the mode functions either by
parametric amplification or spinodal instabilities to particle
production.

1. Unbroken symmetry case

In this case the time-dependent frequencies; wdth
% pk p V°8batpbffi are always positive, and we introduce

the zeroth adiabatic order mode functions

-wdob o

f7k0tpb % epiR2:wikdttPdtff-: 04:55p

We expand the exact mode functions gidtp in terms of these
adiabatic modes by introducing Bogoliubov coefficient
functions A~ (dtP;B™ dtb defined by the following

relations gkdtb % A~ k0thf™kdtP p B kdtPf kdtP; 84:56P

g'kOtb % —iwkOtPA™ kOtbf™kOth — B~ kOtPf~kOtP; 04:57P

which can be inverted to obtain the Bogoliubov

coefficients

A~ Othb % if”kétbg'katb - iwkatbgkétb; 04:58p

B~ kOtb %4 —if"kOtbg'kdtb p iwkdtbgkdth: §4:59b
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It follows from the Wronskian condition (2.11) that jA”
kdtPj2 — jB™ kdtbj2 % 1: 34:60p
The definitions (4.56), (4.57) yield ak’ gkdtb p at-k* gkdtp

Y ck 0tPf™kdtb p ct-k” OtbPf kOtP; 84:61b

ac gkdtb b a'-k* g'«dth % —iwkatpck* dtbf™dth - -k’

Stbf~ot” ;
04:62pb

where
o’ Oth % a A” (dtb b a-"k* B™ (dtb;

ctk’ th % a'k” A~ «dth b a_’ B «dth; 84:63pb
the condition (4.60) ensures that c,° tP;c’” §tP obey equal
time canonical commutation relations. It is straightforward
to show that the quadratic Hamiltonian Hs given by Eq.

(4.51) can be written in terms of the time dependent

operators ctk” dtb;c” 8t as

Hs % Xk hwkdtbctk dtbck dtb p 12_: 04:64b

-

Following Ref. [16] we define the number of adiabatic
particles as

N~ kdtb % hOjctk” 8tbck” tbjOi % jB™ kdtbj2; 34:65b

where the vacuum state jOi is such that

ak’j0i % 0; V k:” 84:66b
The relation (4.59) and the Wronskian condition (2.11)
yield
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N~ kdth %4 2 w1kdth jg'kdthj2 b w2kdtbjgkdthj2 — 12_;
04:67p

from which it follows that

w 3th 1p2N &

— TrHspdtob % A2 Z d2dnskb3
k ~ ktP61p2nkd0PP:

- Vi -

04:68p

With the initial conditions(4.5) 8gkd0P % p2¢aorti ;

g'kd0P % —ip¥2¢,%%sPopffib, it follows that

N~ kd0b % O; 04:69p
therefore the initial state is the vacuum state for the
adiabatic particles. The distribution function for the
adiabatic particles is given by

Fkdtp % Trctk” dtbck” dtbpdtob

% N” k3t b nkd0P1 p 2N~ k3tb;

FkdOP % nkd0P; 04:70p

the second term in Fidtpb describes stimulated production of
adiabatic particles. In terms of this distribution function,
the one-loop contribution to the energy density, Eq. (4.68)
can be written in the following illuminating manner,

1 h dk

V_ TrHsp8tob % _ 27 821 b3 wkdtb1 p 2Fkdth:

04:71p
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We can now gather these results to express the conserved
energy density (4.48) in the form

E” % 12_0¢'8tbb2 p VobAtPP b A_
wkdtb1 p 2Fkdth:

_ 27 62dmnskps

04:72p

This expression is remarkably similar to the energy density
obtained at zero temperature in Ref. [16], but in terms of
the distribution function Fdtb, which describes stimulated
particle production instead of the vacuum adiabatic particle
number density N kdtb. The conservation of E™ along with
Eq. (4.70) taken together have an important physical
interpretation of the dynamics: a mechanism of energy
transfer between the mean field and the quantum
fluctuations resulting in the stimulated production of the
adiabatic particles with nonthermal distributions. In
particular, the exponential growth of the mode functions
gdtb as a consequence of parametric amplification must
result in a drain of the energy stored in the mean field,
energy that goes into particle production with nonthermal
distributions. The motivation for the choice of the zeroth-
order adiabatic mode functions (4.55) now becomes clear:
while ¢dtp is oscillating around the minimum, parametric
amplification of fluctuations drains energy from the
condensate, diminishing its amplitude. This dissipative
mechanism entails that asymptotically ¢ will settle at the
minimum and the frequencies become slowly varying
functions of >time approaching an asymptotic limit wideob
Ya

fp~kotp (9 =0) - e i weob =ffip2wkdoobffi describing

- asymptotic “out” k p Voo. In this limit
the mode functions

particle states.

2. Broken symmetry case

This case is more subtle. Although it is not clear that the

fluctuation contribution E q in Eq. (4.48) grows as a

consequence of the spinodal instabilities, since for
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spinodally unstable modes w?dtP < 0, it follows from the
mode equations (2.10) that

E”nl A___2 dtd Vooddpdtbp Z d____ 2dmskbs jgkdtbj21 p
2nkd0b:

04:73b

As ¢0tb rolls down the potential hill from near the
maximum of the potential towards the symmetry breaking

minima,the inflection point, namely the end of the spinodal
region.V°3¢$dtpbp increases from a negativevalue to zero at

Therefore, because jgkdtpbj2 grows nearly exponentially in
this region, it follows that the fluctuation contribution
grows nearly exponentially while ¢dtp traverses the
spinodal region. Furthermore, the temperature correction
in (4.73) implies an enhancement as compared to the zero
temperature case [16], again a manifestation of stimulated
production of fluctuations. Because the total energy
density remains constant, this energy is drained from the

classical contribution E ¢in Eq. (4.48), again, a mechanism

of energy transfer from the mean field to the fluctuations
implying damping of the amplitude of the mean field.
Because widtb are imaginary for spinodally unstable wave
vectors, we cannot define the adiabatic modes as in the
previous case. However, motivated by the argument that
the growth of fluctuations implies a damping of the mean
field as a consequence of energy transfer to the
fluctuations, we follow the treatment of Ref. [16] and
introduce Ks as the maximum unstable wave vector while
¢datp is in the spinodal region. For example for the typical

potential VAP % —m2d2=2 p Ad4s=4 with m2> 0, it follows
that the maximum unstable wave vector is

Ks % jV0od0Dj: 34:74b

For k < Ksthere is no unambiguous definition of an adiabatic
particle number, whereas for k > K the mode functions can
again be written as in Eqgs. (4.56), (4.57) in terms of the
zeroth-order adiabatic modes yielding the results obtained
above for the case of unbroken symmetry. Therefore,
separating the spinodally unstable modes we now write the
fluctuation contribution to the energy density (4.48) as
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E™A % 4fore2 Zoksjg kOtPj2 b w2kdtbjgkdtbj201 p 2nkd0bbkadk

otb%:1 b 2F dtbk

b 4Am2 Zkns Wk k 2dk: 04:75b

where the distribution function Fkdtp is the same as in Eq.
(4.70), and we have introduced an upper momentum cutoff
A>> jVooddPbj to discuss renormalization aspects.

Since both spinodal and parametric instabilities lead to
an efficient transfer of energy from the condensate to the
fluctuations, we expect that at long time, the condensate
will oscillate around a minimum below the classical
spinodal as the instabilities eventually must shut off by
energy conservation. In this asymptotic long time limit the
Vooddpdtbp > 0 and the frequencies are real, and the
contribution from the modes with k < Ks becomes of the
same form as for those with k > Ks. Therefore we expect that
in the long time limit as ¢ oscillates with small amplitude
around a minimum away from and not probing the spinodal
region, the mode functions can again be written as in Egs.
(4.56), (4.57), with the interpretation of asymptotic
adiabatic particle production, so that the exponential
growth from spinodal instabilities is imprinted in the
Bogoliubov coefficient functions, thereby describing the
production of asymptotic particles.

Therefore, in this limit both contributions in (4.75) have
the same form in terms of the stimulated distribution
function of produced particles Fidtb.

D. Renormalized dynamical framework

The expression (4.75) for E~ﬂ allows us to treat both

cases with and without symmetry breaking on the same

footing: the case Ks % jVood0bj # g corresponds to symmetry

breaking and Ks % O to unbroken symmetry. In Ref. [16] the
renormalization aspects were studied for the zero
temperature case, which can be obtained from the results
above by setting nd0P % 0. Because of the exponential
suppression of the high momentum modes in the thermal
distribution functions, it follows that the ultraviolet
divergences are those of the zero temperature case and, as
discussed in detail in Ref. [16], are completely described
by the “1” in the bracket in the second term in (4.75),
namely the zero point energy.

PHYS.REV.D 111, 016028 (2025)
We proceed to subtract this term from the fluctuation
energy and lump it together with V8 dtbb in the full energy

density (4.44), thus defining a new effective potential

=V 7 3¢ b 4 Zk
34:76b _ A

Vettdpp
wkdtbkodk;

yielding

V™ eff0pP Y% VOdP b 16AM2 A4 b VooddbA2 — _14
Vood b2

xIn 4pA22 —— L5 L46V005pb2 In Voo 5,
- 2
- Vooddb2Hjyo03< *bj1-a; 54:77b
where p?is a renormalization scale and
1 2
HY%x % _2 2xx p signV2008db3=2
- xsignvooazd)px b signt’iv‘x’1=({52cb|Dl=2
- Inx p x p signVoodob ; 04:78b

with K% O for unbroken symmetry and K°®% jVood0Ppj for
broken symmetry. In a renormalizable theory, the
ultraviolet  divergent terms are absorbed into
renormalization of the parameters, for example for the bare
scalar potential

m2 2 Ao 4

Vobb % VopZd b4 ; 84:79p

renormalization is achieved by introducing the

renormalized parameters
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m2rR8P % m2o b £66AT02 A>—326A102 m2ekr 422 -

12;2
04:80p
3603
220 —
ARBUP % Ao 321210 4Ty, 54:81p

VorGuP % Vo b 16AR2 b m02—1-67°cn226—ﬁ?4 In 4pAsz - 21+
4T

04:82pb

and replacing bare by renormalized quantities up to one
loop,

V™ efiR 0P Y% VRIDP b 41_ VrooddPriniVoorpd2dpj

— OVoorddPP2HjVoorKAdsrbPj1=2; 04:83p

where the subscript R refers to the renormalized quantities
in terms of the renormalized mass and coupling. The
renormalization group invariance of the effective potential
has been discussed in Refs. [3,16]. We note that the
argument of the function H, is djVooRdis within the
spinodal0Opj=jVoo*ddPjp1=2 > 1 for the broken symmetry
case when region dsigndVooddpbp < 0b.

This effective potential is manifestly real, unlike the
usual effective potential that becomes complex when ¢ is
within the spinodal region. After renormalization the total
conserved energy density becomes

E” Y& 120¢'0tPbP2 p V™ ReffddbP p 4m2 Zoksjg'kdtbPj2 b

wk2dthjgkdtPj21 b 2nkd0bkadk A

3> The thermodynamic entropy should not be confused with
the coarse-grained entanglement entropy discussed in Ref.
[16].
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b 212 Zks wdtPFOtbkodk; 64:84b A A

where everywhere the mass and coupling are the
renormalized quantities. The fully renormalized equations
of motion are obtained as follows: beginning with the
conserved energy density (4.48), and Eq given by Eq. (4.75)
subtract from this expression the term with the “1” inside
the bracket of the second line, and lump it together with
VabP to define V™ rddP as in Eq. (4.76). Now taking the

time derivative of £ yields ¢ times the equation of motion,

which upon using the equations for the mode functions

(2.10) lead to the renormalized equation of motion ¢ &tb p
f

d__ddV™ reiddb p 472Vooor 5ddtbb
X Zonjgk0tphj201 p 2nkd0Pb -2 &kwr=ddibsbkadk % 0;

04:85p

where again, everywhere, the mass and coupling are the
renormalized ones. Equation (4.85), along with the mode
equations (2.10), with initial conditions (4.12) provide a
complete description of the dynamics of the mean field
(condensate) with the following properties:
(1) The equation of motion (4.85) is consistently
renormalized.

(2) The renormalized effective potential V- rRODP is

manifestly always real for all values of the mean
field even within the spinodal region, unlike the
usual effective potential which is complex in the
case when the tree-level potential features broken
symmetry minima.

(3) The energy density is manifestly real and conserved.

(4) The equation of motion for the condensate arises
from unitary time evolution of an initial density
matrix, as confirmed by obtaining it also from the
expectation value of the equations of motion of the
Heisenberg field operators in the initial density
matrix. Therefore the thermodynamic entropy is
constant.’

V. DISCUSSION
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The dynamics described by the equation of motion
(4.85) with the conserved energy (4.84) suggests the
emergence of stationary asymptotic states. Let us consider
first the case in which the tree-level potential features only
one minimum, namely unbroken symmetry, with large
amplitude initial conditions on the condensate. As ¢
oscillates around the minimum parametric instabilities lead
to profuse particle production, which drains energy from
the “classical” part of the energy into the fluctuations,
populating parametrically unstable bands in momentum
with a nonthermal distribution function. Particle
production will continue as long as oscillations continue as
demonstrated with the simple Mathieu equation analysis in
the previous section. As the energy of the condensate is
drained from particle production, the amplitude of
oscillations diminishes and the bandwidths of the unstable
bands become narrower, suggesting a dissipative
mechanism that drives the condensate to the equilibrium
minimum but with a highly excited nonthermal population
of particles. Eventually this transfer of energy must stop
and ¢ settles at the minimum with vanishing velocity, the
frequencies wkdtP - wideob, and the zeroth-order mode
functions (4.55) describe asymptotic “out” single particle
states. This is an asymptotic fixed point of the dynamics.

Such asymptotic limit will yield the asymptotic value(s)

¢ddeob as the solution(s) of the renormalized equation of
motion (4.85), subject to the constraint of total energy
density (4.84) with ¢'8oob % 0;¢ doob % 0.

If the tree-level potential features symmetry breaking
minima and the initial value of the mean field is large, with
a large energy density, then both spinodal and parametric
instabilities will be effective in draining energy from the
condensate leading to particle production with nonthermal
distributions. As the amplitude of the mean field
diminishes the mean field can asymptotically settle in a
broken symmetry minimum away from the origin, but it is
also possible, with a large energy density, that
asymptotically the mean field settles in a state with
vanishing value. This would imply a restoration of
symmetry, which is a possibility for a large energy density,
that must be studied numerically and will likely depend on
the particular value of parameters. However, in this case

the condensate oscillates around a minimum with
diminishing amplitude eventually settling at this minimum
and again the frequencies widtP - wideob and the zeroth-
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adiabatic order mode functions (4.55) describe asymptotic
“out” single particle states. In this case the Bogoliubov
coefficients and the stimulated distribution function (4.70)
include the growth of fluctuations from both, spinodal and
parametric instabilities. The asymptotic value(s) pdoob are
again determined by the solutions of the equation of motion
(4.85) with the energy constraint (4.84) with ¢'deob % 0;b
doob % 0.

When the amplitude of oscillations diminishes from the
energy transfer to fluctuations via particle production, it is
possible that the dynamics “unfreezes” and the coupling to
the heat bath or alternative collisional processes become
effective again, perhaps leading to a redistribution of the
produced quanta and a “rethermalization” on longer
timescales. At this stage, this is, of course, a conjecture that
can only be assessed with a detailed treatment of the
quantum kinetics including the couplings to the bath and or
other collisional processes, and merits further and deeper
study.

VI. CONCLUSIONS AND FURTHER QUESTIONS

The finite temperature effective potential plays a
fundamental role in understanding the phase structure of
quantum field theories, including thermal and quantum
corrections with ubiquitous applications in cosmological
phase transitions. It was originally developed to describe
the free energy landscape as a function of an order
parameter, which is usually a scalar field condensate, by
design and construction it is an equilibrium concept.
However, it is often used in the equation of motion for the
order parameter, or “misaligned” condensate.

A recent study [16] of the zero temperature effective
potential revealed several important caveats that indicate
that using the zero temperature effective potential to
describe the dynamics of the condensate is in general
unwarranted. Motivated by its importance in cosmology, in
this article we focus on understanding if and when the finite
temperature effective potential is suitable in the equations
of motion of a homogeneous condensate. Extending the
Hamiltonian formulation we identify the finite temperature
effective potential with the Helmholtz free energy of the
fluctuations around the condensate. This identification has

When the condensate oscillates around an equilibrium

minimum, we find that the entropy is a nonmonotonic
function of time, whereas if the tree-level potential feature
a profound thermodynamic significance: it allows us to
establish a direct relation with the thermodynamic entropy
density S % —0VenlsT,d=0T. Therefore, fundamental
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thermodynamic properties of the entropy severely restrict No data were created or analyzed in this study.
the applicability of the effective potential in a dynamical
equation of motion. APPENDIX: CORRELATION FUNCTIONS

symmetry breaking minima, the effective potential and
entropy are complex when the condensate probes the
spinodal region with negative second derivative of the tree-
level potential. We argue that collisional processes cannot
in general maintain local thermodynamic equilibrium
unless there is a fine-tuning of couplings, and that the time
evolution of the condensate leads to a “freeze-out” of the
density matrix and decoupling from the thermal bath. A
closed quantum system approach based on unitary time
evolution yields the correct and fully renormalized
equations of motion for the condensate conserving both
energy and entropy, which are manifestly real and without
the caveats of the effective potential. These equations
imply an efficient energy transfer mechanism between the
condensate and fluctuations as a consequence of profuse
stimulated particle production via parametric amplification
or spinodal instabilities. Particles are produced with
nonthermal distribution functions localized in momentum
within instability bands either spinodal or parametric,
draining energy from the condensate, suggesting the
emergence of asymptotic stationary states, the nature of
which must be established numerically.

We focused on obtaining the equations of motion
consistently up to one loop, which do not include higher
order collisional processes, these are of paramount
importance if rethermalization is to occur on longer
timescales by a redistribution of the created particles.
Possible alternative

h&Pdx;t"P&PEX” %;t0pi = TrT68x;t3"PSdX” %t°Ppditoh

avenues to study these processes would be to implement
the effective action approaches introduced in Refs. [48,49].

Although the study in this article is carried out in
Minkowski space time, we expect that many of the lessons
will remain relevant in an expanding cosmology. In
particular the method to obtain the (causal) equations of
motion for the condensate including radiative corrections
may be adapted from those introduced recently [45] for a
different situation within the cosmological context.
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In this appendix we summarize the correlation functions

of the fluctuating field 6&x;t” b that enter in the equation of
motion for the mean field ¢tb. With the quantization of
the fluctuation field 88x;t” b given by Eq. (2.8), and the
initial density matrix (4.14) with the expectation values

(4.15), we find the following correlation functions:

dk

Y% hZ____02nb3 gkdtbgkdtobe-ik” -ax” -x* obnkdOP p gkdtobPgkdtbeik’ -6x”-x~ ob1l p NkGOPOSL
- tob

b gkdtobgkdtbeik” -5x” -x” obNkOOP p gkdtbgkdtobe-ik* -ox”—x"obl p NkOOPOJto - th 0A1p

h&-8x;t"P6-8X” %t0pi = TrT™ 8x;t3°P63X” %1% pdit” ik- xx k- xx
dk

“%h d2mb3 gkdtbgkdtoPe-~5" -~ obnkdOP p gkdtobgkdtbPe 5" -~opl p NkHOPOAto - th
b gkdtobgkdtbeik” -6x” -x” obnNkAOP p gkdtbgkdtobe-ik” -6x” -x" b1 p NkAOPOGt — tob 0A2Pb

h&Pax;t"p6-8x" %t0pi = Trd6x;t PpdtobSdx” %t % Trodx” %t°p8dx;t”  bpdtob

3
f i
Ya () 2 3 PgkdtpPeik -ax~ -x" obNkOOP p
gkdtbgkdtobPe-ik” -ax” -x “op1 p NkGOPJA3P

h&-6x;t P&PdX” %;t%pi = Tr68x~ °3;t°bp6tob66x;tﬁp " Trx xS0x;t"P6AX” °;t°Pp6top ik- xx

h
Y m Zd2d kb3 gkdtbgkdtobe-~ s> -~ opbnkd0P p gkOtobgkdtbe *&” -~ o1 p NkdOP:6A4P
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