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Abstract—Motivated by the increasing demand for detecting
and classifying human poses in the realm of personalized fitness
training by Al technologies, which provide feedback on the form to
help users exercise more accurately, and the proven effectiveness
of some deep learning models in achieving that, this study aims to
investigate three different ensemble approaches for artificial neural
network models for detecting and classifying human poses. The
pre-trained MoveNet model was employed to extract the positions
of 17 body keypoints, which were used as input data for the
subsequent three classification models - a Feedforward Neural
Network (FNN), LSTM, and GRU. The LSTM and GRU models
have the ability to process time series data as input, resulting
in improved accuracy compared to the FNN model. Specifically,
the LSTM model achieved an accuracy of nearly 95%, while the
GRU model outperformed with an accuracy exceeding 95% and
the potential to reach 97.27%.

Index Terms—Deep Learning, MoveNet, LSTM, GRU, Human
Fitness Pose Classification

I. INTRODUCTION

With the advancements in Al technologies, the demand for
customized experiences is increasing. A prime example of
this is the need for personalized training in human fitness.
Multiple artificial neural network models have been utilized to
solve fitness-related issues, including the Feedforward Neural
Network, Convolutional Neural Network (CNN), and Recurrent
Neural Network (RNN).

The Feedforward Neural Network (FNN), as referenced in
[1], [2], is a kind of artificial neural network where the flow
of information is unidirectional, moving from the input layer
through the hidden layers before eventually arriving at the
output layer and the connections between neurons do not form
any cycles or loops. This “feedforward” architecture facilitates
the efficient processing of input data and finds applications
in several areas, including the recognition of fitness poses.
For instance, [3] utilizes the FNN to identify tennis players,
enabling them to apply the model in tennis coaching and
technology.

The MoveNet is a CNN that is purpose-built for identifying
17 keypoints on the human body, including significant anatom-
ical landmarks and joints [4], [5]. It is well-suited for tasks
associated with motion analysis and human pose estimation.
MoveNet has proven to be useful in developing applications for
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body exercises. For instance, [6] leverages MoveNet to create a
body exercise app that can recognize human poses and provide
audio feedback in real-time.

The LSTM network is a type of RNN architecture that
addresses the vanishing gradient problem commonly encoun-
tered in traditional RNNs [7], [8]. This problem occurs when
gradients, which are used to update the network’s weights
during backpropagation, become smaller with each iteration.
As a result, minimal weight adjustments occur, limiting the
network’s ability to learn, particularly with long-term dependen-
cies. However, the human fitness pose dataset is characterized
by long-term dependencies, where earlier body positions signif-
icantly impact subsequent ones. The LSTM network overcomes
this issue by employing specialized cell states and gating mech-
anisms that regulate the flow of information and selectively
preserve or update the cell state as required. As a result, LSTMs
can efficiently learn and retain long-term dependencies, making
them a useful tool for human fitness pose classification. An
example of the LSTM’s efficiency is demonstrated in [9], which
uses this model for real-time human action detection.

A simpler alternative type of RNN architecture to LSTM
networks is the Gated Recurrent Unit (GRU) [10]. They are
designed to effectively learn long-term dependencies in sequen-
tial data by addressing the vanishing gradient problem. Unlike
LSTMs, GRUs have a simpler design with fewer parameters,
which makes them easier and faster to train on a computer. This
often results in the same or better performance for certain tasks,
particularly when resources are limited, or the dataset is small.
GRUs have demonstrated success in the sports field, and as
an example, [11] propose a model for detecting sports-related
actions using GRUs.

Motivated by the increasing demand for human fitness pose
detection and classification in the realm of personalized training
and the proven effectiveness of aforementioned deep learning
models in achieving that, investigate three different ensemble
learning models for the detection and classification of human
fitness poses. In this study, the pre-trained MoveNet model
was utilized to extract the positions of 17 body keypoints
as input data for the subsequent classification models. The
initial classification model employed is a Feedforward Neural
Network, which predicts the human pose for each frame. The
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following two models, namely LSTM and GRU, can utilize time
series data as input, resulting in improved accuracy compared
to the first model. An LSTM model trained on 20-frame chunks
of a video achieved an accuracy close to 95%, while a GRU
model achieved an accuracy of 97.27%.

The organization of this paper is as follows: related works are
discussed in Section II, followed by details on the dataset and
model implementations in Section III and the evaluation results
in Section IV. Lastly, a brief conclusion and future work are
provided in Section V.

II. RELATED WORKS

This section presents some related studies on the use of deep
learning for the detection and classification of human fitness
poses.

Jhen-Min Hung et al. [3] suggested a method that employs
YOLO v5 multi-target bounding-box detection and Multi-Layer
Perceptron (MLP) neural network, which is a type of FFNN
that consists of one or more hidden layers between the input
and output layers, to distinguish between forehand-swing and
backhand-swing in tennis players. The work used video data
from the 2020 and 2019 US Open Tennis Championships. The
process involved extracting frames from the videos, detecting
the players and balls using the YOLO v5 model, and classifying
the poses using the MLP. The work used hyperparameters
to optimize the result so maximum accuracy reached 93%.
In another study, Rajdeep Chatterjee et al. [12] presented an
intelligent system for detecting tennis players’ poses. They
used Detection2 to detect the keypoints of humans and used
them as input to train a Random Forest (RF) model. This work
also compared the results to different fine-tuned CNN models
and found that the RF model had the highest accuracy and
shortest training time. Detection2 is an object detection and
segmentation framework developed by Meta Al [13].

Applications of human pose classification and recognition
have been explored in other fields. For instance, Huu et al. [14]
developed a posture recognition system called mobilenetV?2 for
medical surveillance. The system employs the LSTM network
to analyze the temporal patterns of the features and classify
them into different postures such as standing, sitting, lying
down, bending, and squatting. With the use of LSTM, the sys-
tem achieves high accuracy and efficiency on various datasets,
and it can be used to monitor patients’ activities and health
conditions. Similarly, Meng Xu et al. [15] introduced a method
that employs an LSTM module in conjunction with a rotation
classification loss to estimate the camera pose (i.e., the position
and orientation of a camera) from image sequences in order to
estimate human poses. The LSTM module captures temporal
information from the images, while the rotation classification
loss helps minimize errors in determining camera orientation.
The effectiveness of the proposed approach was evaluated on
two publicly available datasets (KITTI and EuRoC), and the
results were compared against those of several other advanced
methods.

III. EXPERIMENTAL STUDY
A. Dataset

Our study employed a fitness video dataset supplied by
[16]. The dataset contains 10 of the most commonly practiced
exercises, such as armraise, legraise, bicyclecrunch, birddog,
curl, fly, overhead press, pushup, squat, and superman, and
each exercise consists of 100 videos filmed in diverse lighting
conditions and backgrounds. For our experiment, we allocated
80% of the data to the training set and the remaining 20% to
the validation set.

B. Data Preprocessing

We performed the following two steps to preprocess the data
for further analysis:

1) Video Frame Extraction: To analyze the dataset of
fitness poses, the videos were first split into a sequence
of images. This allowed the frames in a video to be
processed using machine learning models. The desired
temporal resolution can be adjusted by varying the num-
ber of frames extracted per second, which can have an
impact on the accuracy and performance of the models.
For this dataset, 24 frames per second were extracted to
capture the crucial moments of each exercise.

2) Person-focused Image Croppoing: Once the frames
were extracted, the subsequent step involved cropping
the images to concentrate on the individuals performing
the fitness poses. The dataset provided metadata about
the person’s position in each frame, which was utilized
to achieve this. The images were cropped and centered
on the person to ensure that the machine learning model
focuses on the individual and their movements during the
exercises.

C. Human Keypoints Detected by MoveNet

In this study, the pre-trained MoveNet model was used to
detect 17 human keypoints in each video frame, including the
nose, eyes, ears, shoulders, elbows, wrists, hips, knees, and
ankles, which provides the keypoint locations in the form of
(z,y) coordinates and the confidence scores of each identified
keypoint. These keypoints served as the input data for the
subsequent three different classification neural networks. The
MoveNet was chosen for its efficiency and real-time applica-
bility. It is designed for human pose estimation and can run
on mobile devices, making it a suitable choice for fitness pose
classification applications.

D. Artificial Neural Network Models

In this section, a comparative study of three different artificial
neural network models is presented for the classification of
human fitness poses. The positions of 17 human keypoints
are obtained using the pre-trained MoveNet model in each
video frame, which serves as input data for the subsequent
classification task. Furthermore, the implementation details of
each evaluated model are provided accordingly.
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1) Feedforward Neural Network: Our FNN model takes a
tensor of shape (batch_size, 51) as input, where ‘51’ represents
the number of features in the input data. The input tensor is
passed through a custom function that maps the input tensor
to a higher dimensional space, resulting in a tensor of shape
(128). See Fig. 1.

inputs = tf.keras.Input(shape=(51))
embedding = landmarks_to_embedding(inputs)

layer = keras.layers.Dense(128, activation=tf.nn.relus)(embedding)
layer = keras.layers.Dropout(@.5)(layer)
layer = keras.layers.Dense(64, activation=tf.nn.relus)(layer)

layer = keras.layers.Dropout(@.5)(layer)
outputs = keras.layers.Dense(len({class_names), activation="softmax")(layer)

model = keras.Model(inputs, outputs)
model . summary ()

Fig. 1. The implementation details of FNN model.

The mapped tensor then passes through two dense layers with
different numbers of neurons. The first dense layer has 128
neurons and applies the ReLU6 activation function, which is a
variant of the Rectified Linear Unit (ReLU) activation function
with a maximum output of 6. The second dense layer has 64
neurons and also applies the ReLU6 activation function. Both
dense layers are followed by a dropout layer that randomly sets
50% of the input units to 0 at each update during training to
prevent overfitting. Last, the output of the second dropout layer
is fed into a dense layer with len(class_names) neurons, where
class_names represents the number of exercises (which is equal
to 10 in our study) and a softmax activation function is applied.

2) Long Short-Term Memory Network: Instead of classifying
the names of fitness poses solely based on the raw pixel values
of the video frames, our LSTM model was altered to handle a
new type of input data by adjusting the input shape to match the
quantity of 17 keypoints by MoveNet and confidence scores.
In particular, the altered input data format consists of three
features: the x and y coordinates and the confidence score of
each detected keypoint by MoveNet for every frame in a video
sequence and incorporates two additional features: the class
index number (ranging from O to 9 for the 10 poses in our
dataset) and the corresponding class names.

Moverover, LSTM is a recurrent model, and there is a need
to decide the sequence length of each input. Therefore, two
different LSTM models were experimented with in our study
as follows.

def create_lstm_model(input_shape, num_classes):
model = Sequential()
model.add(Bidirectional (LSTM(128, return_sequences=True), input_shape=input_shape))
model.add(Dropout(8.4})
model.add(L5TM(128, return_sequences=True))
model. add(Dropout(8.4})
model.add(LSTH(64))
model. add(Dropout (8.4} )
model.add(Dense(32, activation="relu"))
model.add(Dense(num_classes, activation="softmax"})

model. compile(loss="sparse_categorical_crossentropy”, optimizer="adam®, metrics=["accuracy”])
return medel

Fig. 2. The implementation details of LSTM 1 model.

The first model, named LSTM 1 (see Fig. 2), involved
taking the first 100 frames of each video as input for the first
layer, which was a bidirectional LSTM layer with 128 units.
Following that was a dropout layer, and then an LSTM layer
with 128 units as the subsequent layer. Another dropout layer
was added, followed by an LSTM layer with 64 units as the
third layer, followed by a dropout layer, a dense layer having
32 units, and lastly, a dense softmax layer, which generated the
class probabilities.

The second model, referred to as LSTM 2, involved seg-
menting each video into smaller 20-frame chunks. Redundant
frames that contain repetitive movements are eliminated to
improve the efficiency of the model. LSTM 2 adopted a similar
architecture to LSTM 1. As shown in Fig. 3, the data for
both training and testing were normalized. The model was
constructed with a bidirectional LSTM layer consisting of 256
units, batch normalization, and dropout. This was followed by
an additional LSTM layer with 128 units, dropout, and batch
normalization. Subsequently, an LSTM layer with 64 units,
batch normalization, and dropout, and then followed by two
dense layers. To prevent overfitting and select the best model
based on validation loss, early stopping was implemented as a
callback during the training process. A batch size of 16 and a
maximum of 100 epochs were employed to train this model.

n(X, sxiz=2)) / np.std(X, axis=d)

def creste lstm model 2(input_shape, num classes)s
mode] = Sequential()
mode]. a0 (Bidiractions] (LSTH(256, return_sequencessTrue), input_shapesinput_shape))
model. add(Batchiiormalization())
mode]. add(Drapout(@.5))
model.add{LSTM(125, return_sequencessTrue))
model. sdd(Batchiormalization())
model. add(Dropout(@.5))
mode]. add(LSTH(64))
mode]. odd (Botchtiormalization())
model. add (Orapout(@.5))
mode]. add(Dense(32, activations"relu”))
mode]. add(Dense (num_elasses, sctivations"softss:”))

model, conpile (loss="sparse_categorical_crossentropy”, optimizer="adas”, metricse[“accuracy’])
return model

X_train_norm = rormalize_data(x_train_v2)
X_test nora = normalize data(x_test v2)

fum_classes = len(np.unique(y_train_v2))
ingut_shape = (X_train_norm.shape[1], X_train_norm.shape[2])

model 2 = create_Lstn_model_2(input_shape, nus_classes)

early_stopping = EarlyStopping(monitor 5", patience=19, restore best weights=True)

mode] 2. Fit(X_train_norm, y_train v2, 9, batch_size=16, volidotion dates(X_test_norm, y_test v2), collbacks=[carly_stopping])

Fig. 3. The implementation details of LSTM 2 model.

3) Gated Recurrent Unit: The GRU model was similar to the
architecture of the LSTM model. It also involved segmenting
each video into smaller 20-frame chunks. Redundant frames
that contain repetitive movements are eliminated to improve the
efficiency of the model. The data for both training and testing
were also normalized. As shown in Fig. 4, the initial layer of
our GRU model consisted of a bidirectional GRU layer with 256
units, batch normalization, and a dropout layer. Next, a second
GRU layer with 128 units, batch normalization, and dropout
were included. After that, a third GRU layer with 64 units was
added, followed by batch normalization and dropout. Finally,
two dense layers were added to output the class probabilities.
Early stopping was included as a callback during training to
avoid overfitting and saved the best model based on validation
loss. A batch size of 16 and a maximum of 100 epochs are
used to train the model. To prevent overfitting and select the
best model based on validation loss, early stopping was also
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implemented as a callback during the training process. A batch
size of 16 and a maximum of 100 epochs were employed to
train this model.

mode] = Sequential()
model return,

), dnput_ _shape) )
mode].add(BotchHormelization())

mode] .34 (Dropout (0.5))

mode].308(GRU(126, return_sequencessTrue))
mode].add(BotchHormelization())

mode] .2dd(Dropout (0. 5))

mode].30(GRU(64))

mode].sdd(Batchiormalization())

mode] .2dd(Dropout (0.5))

model 0dd(Dense(32, octivation="relu™))

mode] sd(Dense(nun_elasses, sctivations”softmsx”))

ompilc(loss="sporse_categorical_crossentropy”, optimizer="odes’, metrics=(accuracy”])
model

num_classes = len(np.unique(y_train_v2))
input_shape = (X_train_norm.shape[1]), X_train_norm.shape[2])

val_loss®, L restors best weights=True)
model 2. Fit(X_train nors, y_train_v2, epochs=199, batch size=15, validation data=(X_tast_norm, y_test_v2), callbacks=[early_stopping])

Fig. 4. The implementation details of GRU model.

IV. EVALUATION RESULTS

In this section, the training and validation accuracy of each
experimented artificial neural network model is depicted as a
function of the number of training epochs.

A. MoveNet and Feedforward Neural Network

The model in this case was trained for a total of 128 epochs,
and both the training and validation accuracy showed a positive
trend as the number of epochs increased. As shown in Fig. 5,
the training accuracy reached around 80%, while the validation
accuracy achieved to 85%. It is worth noting that the validation
accuracy surpassed the training accuracy, suggesting that the
model generalized well to unseen data. This is desirable as it
indicates that the model is less likely to overfit on the training
data and can maintain good performance on new data samples.
The model performed well overall, with a weighted accuracy
of 76%.
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Fig. 5. Accuracy of MoveNet and Feedforward Neural Network Models for
Each Frame per Video

B. MoveNet and Long Short-Term Memory Network

At first, LSTM 1 model was trained using the first 100-frame
sequences for each video, but the outcomes were unsatisfactory.
The accuracy levels for both training and validation were below

22%, as depicted in Fig. 6. To improve the model’s perfor-
mance, for the LSTM 2 model, the videos were divided into 20-
frame segments, with any additional frames being discarded. As
a result, the training accuracy of LSTM 2 achieved an accuracy
approaching 95% on both training and validation datasets, as
displayed in Fig. 7, which was attributed to the implementation
of normalized data input and an increased number of layers.
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Fig. 6. Accuracy of MoveNet and LSTM 1 trained on the first 100-frame
sequence per video
095
0.90
045
=
g 0s0
:
g
4 075
070
065
= Training Accuracy
0.60 = Validation Accuracy

0 5 10 15 P P
Epochs

Fig. 7. Accuracy of MoveNet and LSTM 2 trained on 20-frame chunks per
video with data normalization

C. MoveNet and Gated Recurrent Unit

The GRUs model performs admirably, obtaining over 95%
accuracy for both the training and validation sets after just
five iterations, as shown in Fig. 8. The training and validation
accuracies, however, occasionally switch due to variations in the
plot. Despite the fluctuation, the model stops before its expected
time at epoch 29, stopping with a weighted accuracy over 95%,
with the possibility of reaching 97.27%.

D. Comparison of Results

The model’s performance was assessed using the precision
score, which measures the proportion of true positive classifi-
cations relative to all positive classifications. The formula for
precision is as follows:
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Fig. 8. Accuracy of MoveNet and GRU trained on 20-frame chunks per
video with data normalization

. True Positive
Precision =

True Positive + False Positive

As seen in Table I, the FNN model performs well on three
classes (poses), such as “curl”, “fly”, and “overheadpress”, with
precision scores of 0.86, 0.84, and 0.89, respectively. However,
some classes, such as “basic_lagraise”, “bicyclecrunch”, and
“superman” have low precision scores of 0.29, 0.17, and
0.28, respectively. These results indicate that the model can
accurately classify certain exercises while maintaining a balance
between precision and recall.

TABLE I
PRECISION SCORES OF THREE DIFFERENT ARTIFICIAL NEURAL
NETWORKS MODELS FOR TEN HUMAN FITNESS POSES

FeedForward | LSTM 2 | GRU
armraise 0.67 0.97 0.97
basic legraise 0.29 0.00 0.00
bicyclecrunch 0.17 0.00 0.25
birddog 0.59 0.77 0.93
curl 0.86 1.00 0.99
fly 0.84 0.99 0.99
overheadpress 0.89 0.96 1.00
pushup 0.74 0.53 0.91
squat 0.75 1.00 0.96
superman 0.28 0.08 0.00

LSTM 2 showed the best performance. Table I demonstrates
that it demonstrated exceptional accuracy in recognizing five
exercises, which are “armraise”, “curl”, “fly”, “overhead press”,
and “squat”, with precision scores of 0.97, 1.00, 0.99, 0.96,
and 1.00, respectively. However, the other exercises, such as
“basic_legraise”, “bicyclecrunch”, “pushup”, and “superman”,
were more challenging to classify correctly. Clearly, compared
to the Feedforward Neural Network, the MoveNet framework
and the LSTM model showed robust performance in identifying
specific human poses.

Based on the results in Table I, the GRU model shows
outstanding performance in recognizing most workout poses
with high precision scores for seven exercises, namely “arm-
raise”, “birddog”, “curl”, “fly”, “overheadpress”, “pushup”,
and “squat” with precision scores close to 1.00. However,

some exercises, such as “basic_legraise”, “bicyclecrunch”, and
“superman”, present difficulties for the model and have low
precision scores.

V. CONCLUSION AND FUTURE WORK

In this paper, a comparative study of three artificial neural
network models is presented: a FNN model, LSTM models in
different configurations, and a GRU model combined with the
pre-trained MoveNet framework for classifying human fitness
poses. The experimental results reveal promising achievements
in accurately classifying human exercise poses. The GRU model
exhibited the highest accuracy, surpassing 95% and potentially
reaching 97.27% in the study. Additionally, one tested LSTM
model also demonstrated good performance with an accuracy
score approaching 95%.

In this study, we acknowledge a limitation related to the
challenges encountered in classifying certain exercises. Despite
the overall promising and high accuracy results, we faced
difficulties in effectively distinguishing between a few similar
poses. These poses exhibited similarities in terms of body
movements or positions, posing a challenge for our models to
accurately classify them.

To address this limitation and improve model performance,
several approaches can be explored. Increasing the quantity
and quality of training data using some data augmentation
techniques, or adjusting the model architecture are potential
strategies. Furthermore, future research could involve integrat-
ing alternative pre-trained human pose estimation frameworks
such as OpenPose [17], PoseNet [18], or Detectron2 [19]
to detect human keypoints. These frameworks can then be
incorporated as inputs for our evaluated neural network models,
potentially leading to improved accuracy and performance.
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