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Abstract—Motivated by the increasing demand for detecting
and classifying human poses in the realm of personalized fitness
training by AI technologies, which provide feedback on the form to
help users exercise more accurately, and the proven effectiveness
of some deep learning models in achieving that, this study aims to
investigate three different ensemble approaches for artificial neural
network models for detecting and classifying human poses. The
pre-trained MoveNet model was employed to extract the positions
of 17 body keypoints, which were used as input data for the
subsequent three classification models - a Feedforward Neural
Network (FNN), LSTM, and GRU. The LSTM and GRU models
have the ability to process time series data as input, resulting
in improved accuracy compared to the FNN model. Specifically,
the LSTM model achieved an accuracy of nearly 95%, while the
GRU model outperformed with an accuracy exceeding 95% and
the potential to reach 97.27%.

Index Terms—Deep Learning, MoveNet, LSTM, GRU, Human
Fitness Pose Classification

I. INTRODUCTION

With the advancements in AI technologies, the demand for

customized experiences is increasing. A prime example of

this is the need for personalized training in human fitness.

Multiple artificial neural network models have been utilized to

solve fitness-related issues, including the Feedforward Neural

Network, Convolutional Neural Network (CNN), and Recurrent

Neural Network (RNN).

The Feedforward Neural Network (FNN), as referenced in

[1], [2], is a kind of artificial neural network where the flow

of information is unidirectional, moving from the input layer

through the hidden layers before eventually arriving at the

output layer and the connections between neurons do not form

any cycles or loops. This ”feedforward” architecture facilitates

the efficient processing of input data and finds applications

in several areas, including the recognition of fitness poses.

For instance, [3] utilizes the FNN to identify tennis players,

enabling them to apply the model in tennis coaching and

technology.

The MoveNet is a CNN that is purpose-built for identifying

17 keypoints on the human body, including significant anatom-

ical landmarks and joints [4], [5]. It is well-suited for tasks

associated with motion analysis and human pose estimation.

MoveNet has proven to be useful in developing applications for

body exercises. For instance, [6] leverages MoveNet to create a

body exercise app that can recognize human poses and provide

audio feedback in real-time.

The LSTM network is a type of RNN architecture that

addresses the vanishing gradient problem commonly encoun-

tered in traditional RNNs [7], [8]. This problem occurs when

gradients, which are used to update the network’s weights

during backpropagation, become smaller with each iteration.

As a result, minimal weight adjustments occur, limiting the

network’s ability to learn, particularly with long-term dependen-

cies. However, the human fitness pose dataset is characterized

by long-term dependencies, where earlier body positions signif-

icantly impact subsequent ones. The LSTM network overcomes

this issue by employing specialized cell states and gating mech-

anisms that regulate the flow of information and selectively

preserve or update the cell state as required. As a result, LSTMs

can efficiently learn and retain long-term dependencies, making

them a useful tool for human fitness pose classification. An

example of the LSTM’s efficiency is demonstrated in [9], which

uses this model for real-time human action detection.

A simpler alternative type of RNN architecture to LSTM

networks is the Gated Recurrent Unit (GRU) [10]. They are

designed to effectively learn long-term dependencies in sequen-

tial data by addressing the vanishing gradient problem. Unlike

LSTMs, GRUs have a simpler design with fewer parameters,

which makes them easier and faster to train on a computer. This

often results in the same or better performance for certain tasks,

particularly when resources are limited, or the dataset is small.

GRUs have demonstrated success in the sports field, and as

an example, [11] propose a model for detecting sports-related

actions using GRUs.

Motivated by the increasing demand for human fitness pose

detection and classification in the realm of personalized training

and the proven effectiveness of aforementioned deep learning

models in achieving that, investigate three different ensemble

learning models for the detection and classification of human

fitness poses. In this study, the pre-trained MoveNet model

was utilized to extract the positions of 17 body keypoints

as input data for the subsequent classification models. The

initial classification model employed is a Feedforward Neural

Network, which predicts the human pose for each frame. The
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following two models, namely LSTM and GRU, can utilize time

series data as input, resulting in improved accuracy compared

to the first model. An LSTM model trained on 20-frame chunks

of a video achieved an accuracy close to 95%, while a GRU

model achieved an accuracy of 97.27%.

The organization of this paper is as follows: related works are

discussed in Section II, followed by details on the dataset and

model implementations in Section III and the evaluation results

in Section IV. Lastly, a brief conclusion and future work are

provided in Section V.

II. RELATED WORKS

This section presents some related studies on the use of deep

learning for the detection and classification of human fitness

poses.

Jhen-Min Hung et al. [3] suggested a method that employs

YOLO v5 multi-target bounding-box detection and Multi-Layer

Perceptron (MLP) neural network, which is a type of FFNN

that consists of one or more hidden layers between the input

and output layers, to distinguish between forehand-swing and

backhand-swing in tennis players. The work used video data

from the 2020 and 2019 US Open Tennis Championships. The

process involved extracting frames from the videos, detecting

the players and balls using the YOLO v5 model, and classifying

the poses using the MLP. The work used hyperparameters

to optimize the result so maximum accuracy reached 93%.

In another study, Rajdeep Chatterjee et al. [12] presented an

intelligent system for detecting tennis players’ poses. They

used Detection2 to detect the keypoints of humans and used

them as input to train a Random Forest (RF) model. This work

also compared the results to different fine-tuned CNN models

and found that the RF model had the highest accuracy and

shortest training time. Detection2 is an object detection and

segmentation framework developed by Meta AI [13].

Applications of human pose classification and recognition

have been explored in other fields. For instance, Huu et al. [14]

developed a posture recognition system called mobilenetV2 for

medical surveillance. The system employs the LSTM network

to analyze the temporal patterns of the features and classify

them into different postures such as standing, sitting, lying

down, bending, and squatting. With the use of LSTM, the sys-

tem achieves high accuracy and efficiency on various datasets,

and it can be used to monitor patients’ activities and health

conditions. Similarly, Meng Xu et al. [15] introduced a method

that employs an LSTM module in conjunction with a rotation

classification loss to estimate the camera pose (i.e., the position

and orientation of a camera) from image sequences in order to

estimate human poses. The LSTM module captures temporal

information from the images, while the rotation classification

loss helps minimize errors in determining camera orientation.

The effectiveness of the proposed approach was evaluated on

two publicly available datasets (KITTI and EuRoC), and the

results were compared against those of several other advanced

methods.

III. EXPERIMENTAL STUDY

A. Dataset

Our study employed a fitness video dataset supplied by

[16]. The dataset contains 10 of the most commonly practiced

exercises, such as armraise, legraise, bicyclecrunch, birddog,

curl, fly, overhead press, pushup, squat, and superman, and

each exercise consists of 100 videos filmed in diverse lighting

conditions and backgrounds. For our experiment, we allocated

80% of the data to the training set and the remaining 20% to

the validation set.

B. Data Preprocessing

We performed the following two steps to preprocess the data

for further analysis:

1) Video Frame Extraction: To analyze the dataset of

fitness poses, the videos were first split into a sequence

of images. This allowed the frames in a video to be

processed using machine learning models. The desired

temporal resolution can be adjusted by varying the num-

ber of frames extracted per second, which can have an

impact on the accuracy and performance of the models.

For this dataset, 24 frames per second were extracted to

capture the crucial moments of each exercise.

2) Person-focused Image Croppoing: Once the frames

were extracted, the subsequent step involved cropping

the images to concentrate on the individuals performing

the fitness poses. The dataset provided metadata about

the person’s position in each frame, which was utilized

to achieve this. The images were cropped and centered

on the person to ensure that the machine learning model

focuses on the individual and their movements during the

exercises.

C. Human Keypoints Detected by MoveNet

In this study, the pre-trained MoveNet model was used to

detect 17 human keypoints in each video frame, including the

nose, eyes, ears, shoulders, elbows, wrists, hips, knees, and

ankles, which provides the keypoint locations in the form of

(x, y) coordinates and the confidence scores of each identified

keypoint. These keypoints served as the input data for the

subsequent three different classification neural networks. The

MoveNet was chosen for its efficiency and real-time applica-

bility. It is designed for human pose estimation and can run

on mobile devices, making it a suitable choice for fitness pose

classification applications.

D. Artificial Neural Network Models

In this section, a comparative study of three different artificial

neural network models is presented for the classification of

human fitness poses. The positions of 17 human keypoints

are obtained using the pre-trained MoveNet model in each

video frame, which serves as input data for the subsequent

classification task. Furthermore, the implementation details of

each evaluated model are provided accordingly.
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1) Feedforward Neural Network: Our FNN model takes a

tensor of shape (batch size, 51) as input, where ‘51’ represents

the number of features in the input data. The input tensor is

passed through a custom function that maps the input tensor

to a higher dimensional space, resulting in a tensor of shape

(128). See Fig. 1.

Fig. 1. The implementation details of FNN model.

The mapped tensor then passes through two dense layers with

different numbers of neurons. The first dense layer has 128

neurons and applies the ReLU6 activation function, which is a

variant of the Rectified Linear Unit (ReLU) activation function

with a maximum output of 6. The second dense layer has 64

neurons and also applies the ReLU6 activation function. Both

dense layers are followed by a dropout layer that randomly sets

50% of the input units to 0 at each update during training to

prevent overfitting. Last, the output of the second dropout layer

is fed into a dense layer with len(class names) neurons, where

class names represents the number of exercises (which is equal

to 10 in our study) and a softmax activation function is applied.

2) Long Short-Term Memory Network: Instead of classifying

the names of fitness poses solely based on the raw pixel values

of the video frames, our LSTM model was altered to handle a

new type of input data by adjusting the input shape to match the

quantity of 17 keypoints by MoveNet and confidence scores.

In particular, the altered input data format consists of three

features: the x and y coordinates and the confidence score of

each detected keypoint by MoveNet for every frame in a video

sequence and incorporates two additional features: the class

index number (ranging from 0 to 9 for the 10 poses in our

dataset) and the corresponding class names.

Moverover, LSTM is a recurrent model, and there is a need

to decide the sequence length of each input. Therefore, two

different LSTM models were experimented with in our study

as follows.

Fig. 2. The implementation details of LSTM 1 model.

The first model, named LSTM 1 (see Fig. 2), involved

taking the first 100 frames of each video as input for the first

layer, which was a bidirectional LSTM layer with 128 units.

Following that was a dropout layer, and then an LSTM layer

with 128 units as the subsequent layer. Another dropout layer

was added, followed by an LSTM layer with 64 units as the

third layer, followed by a dropout layer, a dense layer having

32 units, and lastly, a dense softmax layer, which generated the

class probabilities.

The second model, referred to as LSTM 2, involved seg-

menting each video into smaller 20-frame chunks. Redundant

frames that contain repetitive movements are eliminated to

improve the efficiency of the model. LSTM 2 adopted a similar

architecture to LSTM 1. As shown in Fig. 3, the data for

both training and testing were normalized. The model was

constructed with a bidirectional LSTM layer consisting of 256

units, batch normalization, and dropout. This was followed by

an additional LSTM layer with 128 units, dropout, and batch

normalization. Subsequently, an LSTM layer with 64 units,

batch normalization, and dropout, and then followed by two

dense layers. To prevent overfitting and select the best model

based on validation loss, early stopping was implemented as a

callback during the training process. A batch size of 16 and a

maximum of 100 epochs were employed to train this model.

Fig. 3. The implementation details of LSTM 2 model.

3) Gated Recurrent Unit: The GRU model was similar to the

architecture of the LSTM model. It also involved segmenting

each video into smaller 20-frame chunks. Redundant frames

that contain repetitive movements are eliminated to improve the

efficiency of the model. The data for both training and testing

were also normalized. As shown in Fig. 4, the initial layer of

our GRU model consisted of a bidirectional GRU layer with 256

units, batch normalization, and a dropout layer. Next, a second

GRU layer with 128 units, batch normalization, and dropout

were included. After that, a third GRU layer with 64 units was

added, followed by batch normalization and dropout. Finally,

two dense layers were added to output the class probabilities.

Early stopping was included as a callback during training to

avoid overfitting and saved the best model based on validation

loss. A batch size of 16 and a maximum of 100 epochs are

used to train the model. To prevent overfitting and select the

best model based on validation loss, early stopping was also
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implemented as a callback during the training process. A batch

size of 16 and a maximum of 100 epochs were employed to

train this model.

Fig. 4. The implementation details of GRU model.

IV. EVALUATION RESULTS

In this section, the training and validation accuracy of each

experimented artificial neural network model is depicted as a

function of the number of training epochs.

A. MoveNet and Feedforward Neural Network

The model in this case was trained for a total of 128 epochs,

and both the training and validation accuracy showed a positive

trend as the number of epochs increased. As shown in Fig. 5,

the training accuracy reached around 80%, while the validation

accuracy achieved to 85%. It is worth noting that the validation

accuracy surpassed the training accuracy, suggesting that the

model generalized well to unseen data. This is desirable as it

indicates that the model is less likely to overfit on the training

data and can maintain good performance on new data samples.

The model performed well overall, with a weighted accuracy

of 76%.

Fig. 5. Accuracy of MoveNet and Feedforward Neural Network Models for
Each Frame per Video

B. MoveNet and Long Short-Term Memory Network

At first, LSTM 1 model was trained using the first 100-frame

sequences for each video, but the outcomes were unsatisfactory.

The accuracy levels for both training and validation were below

22%, as depicted in Fig. 6. To improve the model’s perfor-

mance, for the LSTM 2 model, the videos were divided into 20-

frame segments, with any additional frames being discarded. As

a result, the training accuracy of LSTM 2 achieved an accuracy

approaching 95% on both training and validation datasets, as

displayed in Fig. 7, which was attributed to the implementation

of normalized data input and an increased number of layers.

Fig. 6. Accuracy of MoveNet and LSTM 1 trained on the first 100-frame
sequence per video

Fig. 7. Accuracy of MoveNet and LSTM 2 trained on 20-frame chunks per
video with data normalization

C. MoveNet and Gated Recurrent Unit

The GRUs model performs admirably, obtaining over 95%

accuracy for both the training and validation sets after just

five iterations, as shown in Fig. 8. The training and validation

accuracies, however, occasionally switch due to variations in the

plot. Despite the fluctuation, the model stops before its expected

time at epoch 29, stopping with a weighted accuracy over 95%,

with the possibility of reaching 97.27%.

D. Comparison of Results

The model’s performance was assessed using the precision

score, which measures the proportion of true positive classifi-

cations relative to all positive classifications. The formula for

precision is as follows:

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 03,2025 at 19:14:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Accuracy of MoveNet and GRU trained on 20-frame chunks per
video with data normalization

Precision =
True Positive

True Positive + False Positive

As seen in Table I, the FNN model performs well on three

classes (poses), such as “curl”, “fly”, and “overheadpress”, with

precision scores of 0.86, 0.84, and 0.89, respectively. However,

some classes, such as “basic lagraise”, “bicyclecrunch”, and

“superman” have low precision scores of 0.29, 0.17, and

0.28, respectively. These results indicate that the model can

accurately classify certain exercises while maintaining a balance

between precision and recall.

TABLE I
PRECISION SCORES OF THREE DIFFERENT ARTIFICIAL NEURAL

NETWORKS MODELS FOR TEN HUMAN FITNESS POSES

FeedForward LSTM 2 GRU
armraise 0.67 0.97 0.97
basic legraise 0.29 0.00 0.00
bicyclecrunch 0.17 0.00 0.25
birddog 0.59 0.77 0.93
curl 0.86 1.00 0.99
fly 0.84 0.99 0.99
overheadpress 0.89 0.96 1.00
pushup 0.74 0.53 0.91
squat 0.75 1.00 0.96
superman 0.28 0.08 0.00

LSTM 2 showed the best performance. Table I demonstrates

that it demonstrated exceptional accuracy in recognizing five

exercises, which are “armraise”, “curl”, “fly”, “overhead press”,

and “squat”, with precision scores of 0.97, 1.00, 0.99, 0.96,

and 1.00, respectively. However, the other exercises, such as

“basic legraise”, “bicyclecrunch”, “pushup”, and “superman”,

were more challenging to classify correctly. Clearly, compared

to the Feedforward Neural Network, the MoveNet framework

and the LSTM model showed robust performance in identifying

specific human poses.

Based on the results in Table I, the GRU model shows

outstanding performance in recognizing most workout poses

with high precision scores for seven exercises, namely “arm-

raise”, “birddog”, “curl”, “fly”, “overheadpress”, “pushup”,

and “squat” with precision scores close to 1.00. However,

some exercises, such as “basic legraise”, “bicyclecrunch”, and

“superman”, present difficulties for the model and have low

precision scores.

V. CONCLUSION AND FUTURE WORK

In this paper, a comparative study of three artificial neural

network models is presented: a FNN model, LSTM models in

different configurations, and a GRU model combined with the

pre-trained MoveNet framework for classifying human fitness

poses. The experimental results reveal promising achievements

in accurately classifying human exercise poses. The GRU model

exhibited the highest accuracy, surpassing 95% and potentially

reaching 97.27% in the study. Additionally, one tested LSTM

model also demonstrated good performance with an accuracy

score approaching 95%.

In this study, we acknowledge a limitation related to the

challenges encountered in classifying certain exercises. Despite

the overall promising and high accuracy results, we faced

difficulties in effectively distinguishing between a few similar

poses. These poses exhibited similarities in terms of body

movements or positions, posing a challenge for our models to

accurately classify them.

To address this limitation and improve model performance,

several approaches can be explored. Increasing the quantity

and quality of training data using some data augmentation

techniques, or adjusting the model architecture are potential

strategies. Furthermore, future research could involve integrat-

ing alternative pre-trained human pose estimation frameworks

such as OpenPose [17], PoseNet [18], or Detectron2 [19]

to detect human keypoints. These frameworks can then be

incorporated as inputs for our evaluated neural network models,

potentially leading to improved accuracy and performance.
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