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ABSTRACT

Centrifugal pendulum vibration absorbers (CPVAs) are es-
sentially collections of pendulums attached to a rotor or rotating
component or components within a mechanical system for the pur-
pose of mitigating the typical torsional surging that is inherent to
internal combustion engines and electric motors. The dynamic
stability and performance of CPVAs are highly dependent on the
motion path defined for their pendulous masses. Assemblies of
absorbers are tuned by adjusting these paths such that the pendu-
lums respond to problematic orders (multiples of average rotation
speed) in a way that smooths the rotational accelerations aris-
ing from combustion or other non-uniform rotational acceleration
events. For most motion paths, pendulum tuning indeed shifts as a
function of the pendulum response amplitude. For a given motion
path, the tuning shift that occurs as pendulum amplitude varies
produces potentially undesirable dynamic instabilities. Large
amplitude pendulum motion that mitigates a high percentage of
torsional oscillation while avoiding instabilities brought on by
tuning shift introduces complexity and hazards into CPVA design
processes. Therefore, identifying pendulum paths whose tuning
order does not shift as the pendulum amplitude varies, so-called
tautochronic paths, may greatly simplify engineering design pro-
cesses for generating high-performing CPVAs.

This paper expands on the work of Sabatini [1], in which
a mathematical condition for tautochronicity is identified for a
class of differential equations that includes those that arise in
the modeling of the motion of a pendulum in a centrifugal field.
The approach is based on a transformation from the physical
coordinate to a standard Hamiltonian system. We show that
transforming a nonlinear oscillator made tautochronic through
path modification actually transforms the nonlinear oscillator
into a simple harmonic oscillator. To illustrate the new approach
and results, the technique is applied to the simplified problem of
determining the cut-out shape that produces tautochronic motion
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for a mass sliding in the cut-out of a larger mass that is free to
translate horizontally without friction. In the simplified problem,
centrifugal acceleration is replaced by constant gravitational ac-
celeration and rotation of the rotor inertia is replaced by the
translation of the large base mass.

Keywords: Pendulum vibration absorber, Tautochrone,
Isochronous condition

1. INTRODUCTION

Automotive Original Equipment Manufacturer (AOEMs)
prioritize vehicle comfort and a desirable overall driving experi-
ence in new vehicle design. As a result, car companies are highly
motivated to identify technologies and techniques to control un-
wanted vibrations. Centrifugal pendulum vibration absorbers
(CPVAs) are now commonly leveraged to address engine gener-
ated torsional vibration [2-5]. In typical vehicle CPVA designs,
a major challenge is the tuning of pendulums within an absorber
assembly by identifying the precise hinge geometries to generate
an assembly of pendulums that do not over-respond (and there-
fore clatter) while at the same time correcting driveline torsional
vibration to designated amplitudes [6, 7].

Pendulums are order-tuned, meaning their geometry is cho-
sen so that the pendulums respond at a natural frequency that
is a specific multiple of average drive-line rotation speed. The
intuition for order tuning is motivated by considering a simple
pendulum in gravity (conceptualized as a mass-less rod connect-
ing a pendulum mass m to a pivot point). The small amplitude
and undamped resonance of a simple pendulum occurs when a
driving force excites the pendulum at a frequency equal to \/(m ,
where g is the acceleration due to gravity, and / is the length of
the pendulum rod. By replacing gravitational acceleration g by a
centrifugal acceleration term, Rw?, where w is the rotor rotation
speed (in radians per second) and R is the distance from a rotor
center to the pivot point of a mass-less pendulum rod of length
I, a correct estimate of the natural frequency of a pendulum is
generated as w\/R/L.

An unfortunate reality is that pendulum natural frequencies
will typically shift as a function of their swing amplitudes. This
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shifting resonance complicates pendulum design. In this article,
we investigate the design of tautochronic pendulums, meaning
pendulums that move such that their natural frequencies do not
shift as a function of their amplitude of motion. We expect
such designs will become increasingly important in improving
the stability and performance of a Centrifugal Pendulum Vibra-
tion Absorbers (CPVAs) since the nonlinear effects of shifting
resonances are mitigated.

CPVAs are passive devices which are used to reduce engine-
order torsional vibrations in rotating machines [8]. The dynamic
stability and performance of these devices are highly dependent
upon the motion path defined for their pendulous masses. We
specifically investigate a class of paths that are tautochronic,
which implies that their resonance does not vary as the pen-
dulum amplitude grows. In [8], a tautochronic path is derived
for a pendulum sliding within a cut-out of a larger mass. The
larger mass rolls on frictionless roller bearings. In this paper the
tautochronic path for the same problem is obtained through an
alternative approach. Sabatini [1] investigated the period of a
class of dynamic systems that includes both pendulum motion in
a CPVA and pendulum motion in our simplified prototype gravity
pendulum. His work led to general condition that must hold for
a tautochronic pendulum path. We show that this condition en-
forces an equivalence between a nonlinear oscillator and a simple
harmonic oscillator, which has the same period of motion for all
initial conditions (and hence all amplitudes of motion).

2. TAUTOCHRONIC CONDITION

Sabatini in [9], [1] presented a method for deriving the tau-
tochronic condition for a class of nonlinear quadratic oscillators
with the following form,

5+ p(s)s* +4q(s) =0, (D

where s is a physical position coordinate of the oscillator, p(s)
and ¢ (s) are smooth odd functions of the coordinate s, and p(s)
has positive leading coefficient. According to [10], these types
of oscillators have the following form of Lagrangian &

& = %m(s)s'2 - V(s), )

where the system mass m(s) is position-dependent and V(s) is
the system potential energy. In both the centrifugal and gravita-
tion fields, a pendulum vibration absorber system has this same
form of Lagrangian and equation of motion (EOM) as that shown
in Equation (1) and (2). Specifically, the oscillator coefficients
p(s) and ¢(s) in this physical problem depend on the instanta-
neous radius of curvature p(s) of the absorber mass path, which
is assumed to vary as a function of arc-length and thus accommo-
dates a broad range of motion paths including non-circular paths.
Similarly, the position-dependent system mass m(s) results from
the fact that the center of rotation (rotor) and the center of path
curvature for the absorber mass do not share the same point (in
general), and therefore, even for a circular path, the radial posi-
tion of the absorber mass from the center of the rotor varies as
a function of the absorbers arc-length displacement. With this
general path formulation, we specifically seek the path curvature

p(s) for the absorber mass path that results in a tautochronic free
vibration response of the entire system involving absorber and
base mass motion. Following the work of [9], the tautochronic
path curvature can be identified with the help of a transformation
that transforms Equation (1) into its Hamiltonian form. This co-
ordinate transformation is specifically outlined in the following
theorem and then subsequently applied to a pendulum vibration
absorber in a uniform gravity field.

2.1 Motion Path Modification to a Simple Harmonic
Oscillator
Theorem 1. Let s be a function of t satisfying s(0) = 5o, $(0) =
So, and
§+p(s)$?+4q(s) =0, (3)

where ' - ' indicates differentiation in t. Suppose s € (s, Sy),
—o0 < 51 < 0 < s, £ 00 and that p is a bounded, integrable
function on (sy, s;). Let

’

P(s) = [ p(x) dx and ®(s) = J exp P(x) dx, (4)
0 0
and let u(t) = ®(s(t)), then the initial value problem for s in

(3) is equivalent to an initial value problem for u(t) given by
u(0) = ®(s9), u(0) = D’ (s0)$0 and

i+ h(u) =0, (5)

where h(u) = ®'(s) - q(s). When the transformation ® : s — u
produces a differential equation of the form indicated in (5) such
that the coefficient h(u(s)) = @' (s) - q(s) = w? - u, where w?,
is a positive constant, then both s(t) and u(t) must be periodic
functions with constant period T = 2n/w, for all possible ini-
tial conditions so and $o. That is, the oscillator’s motion is
tautochronic.

Proof. For
u(r) = ®(s(1)), (6)
it follows that
i =®(s)s, (7N
ii = @ ()5 + D' (s)5, (8)

where @’ (s) = du/ds and ®” (s) = d>u/ds>. Then ii + h(u) can
be divided by @’ (s) (because @’ (s) # O for all s) and rewritten
as

D7 (s)\ .. h(D(s))
+ ( (s) )s + () ©)]
§+p(s)s?+q(s) = 0, (10)

the last equality following from (3). The initial conditions on u,
u(0) = ®(sp), u(0) = D’ (s50)$0, are an immediate consequence
of (6) and (7). This shows that the initial value problem (5) is
equivalent to the initial value problem (3).

Next, consider the polar phase plane for the initial value prob-
lem u(0) = @(5(0)), u(0) = D(s9) and equation (5). Specifically
let

u=I(t)cosW¥(r) and u =T'(¢)sin ¥(z). (1D
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Then the original initial value problem can be written as two
first-order differential equations for the polar amplitude I'(¢) and
the polar angle W(¢),

[(7) sin ¥ (z) + T(£)¥(¢) sin ¥(¢)

r() = cos P(1) ’ (12)
_ _ in2
W) = h(T"(¢) cos (1)) cl(is(;I)’(t) I'(¢) sin” ¥(¢) e

From equation 11, it follows that ['(0) = («(0)? +1(0)%)'/2.
Observe that if .
oY
or
then provided u(7) (and therefore s(¢)) is periodic, the solution
period T is given by

0, (14)

2r
T =J (1/¥) a¥, (15)
$=0

which is independent of the choice of u(0) and #(0), so that the
solution u(¢) has a period of oscillation that is tautochronic. The
expression 1/¥(¢) is an instantaneous frequency of oscillation in
the sense that it represents the instantaneous rate of change of the
phase angle .

Using Equation (13), the tautochronic condition (Equa-
tion (14)) implies that

uh(u) — u*h' (u) = 0, (16)

where h’'(u) = dh/du. If u = 0, then the tautochronic condition
(16) is satisfied trivially. Whenu # 0, the equation can be divided
by u, and it follows that

- = a7
u
which implies that

Inh(u) =Inu+C, (18)

so that

elnh(u) —_ elnueC’

and consequently,
h(u) = w’u (19)

for some postitive constant wi = ¢€. Therefore, the tautochronic
condition in (16) implies that & + w%u = 0, which indicates u
undergoes a simple harmonic oscillation with constant period of
motion T = 27 /w,,. This implies that the nonlinear initial value
problem in Equation (3) must also be tautochronic with the same
period of motion for all amplitudes of periodic motion. O

2.2 Application of the Tautochronic Condition

To identify the tautochronic path for an absorber system, the
isochronous condition in Equation (16) needs to be expressed in
physical coordinates. This is accomplished by substituting the co-
ordinate transformation u = ®(s), which leads to an equation in

physical coordinates involving the transformation and the oscilla-
tor coefficients p(s) and g(s), as well as the following derivatives,
@’(s) and ¢’ (s). Lastly, a derivative of the isochronous condition
results in an equivalent condition that only depends on p(s) and
q(s) and their derivatives, and thus eliminates the transformation
from this condition altogether, enabling a direct application of
this in the absorber problem.
To start, we have

h(w) = g(@" (w)e ), (20)
which after computing a derivative with respect to u, results in
_ 9q(®~'(w) afb_l(u))ep(qu(u))

(@ (u)) Iu

OP(®~" (u) 90~ ()
8(®"(u)  du

h' (u)

g(@ " (u))eP@ @) 1)

By using the derivative defined by Equation (7), the following
form for 4’ (u) is obtained

W (u)=q" (@' (u) +q(@ ' (w)p(@ ' ().  (22)

Now by substituting Equations (20) and (22) in Equation (16),
we have

q' (@ (w) + 61((‘13‘1(”)))17((@_1(14))))

- %(q((@‘l(u»)e”“"<“>>)= 0. (23)

We know from the transformation defined by Equation (6) that
®~'(u) = s, and therefore the following isochronous condition
from [1] can be derived in terms of the physical coordinate s,

o =q(s)®'(s) = q'()P(s) - D(s)p(s)q(s), (24

where
o(s)=0, (25)

is required for the nonlinear oscillator in Equation (1) to exhibit
tautochronic motion (i.e., free vibration response that is of con-
stant period).

Notice that Equation (24) involves the transformation ®(s)
and its derivative @’ (), which depend on the integrals shown in
Equation (4). Since o (s) = 0, it follows that o’ (s) must also be
identically zero.

®"(s) D(s)

a’(s) = q(s) o) D) q"(s)
D(s) ,
—q(s)p(s) - o () (s)p(s)
- AP () =0, (26)

(Recall @’(s) # O for all 5.) Ultimately, as g,,—((;)) = p(s) and

% # 0, we have

q" () +p'(s)q(s) + p(s)q’'(s) =0, (27)
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FIGURE 1: Pendulum vibration absorber system in a gravity field.

which is an equivalent tautochronic condition that now conve-
niently depends explicitly on the position-dependent coefficients
p(s) and g(s), and thus eliminates the transformation ®(s) and its
related integrals involving p(s) (as observed in Equation (24)).
Specifically, when applied in the pendulum absorber problem,
Equation (27) results in a differential equation in terms of the
radius of curvature p(s) that can now be directly solved for the
tautochronic motion path that results in a tautochronic free vibra-
tion response of the pendulum and base mass. In the following
sections, we investigate the application of the new isochronous
condition (Equation (27)) to identify a system tautochronic mo-
tion path for a pendulum vibration absorber in a uniform gravity
field and then further compare the properties of this tautochronic
response in the physical coordinates versus the transformed co-
ordinates u.

3. PENDULUM VIBRATION ABSORBER IN GRAVITY FIELD

Figure 1 shows a pendulum vibration absorber system in
a uniform gravity field, which consists of a pendulous mass m
that can slide along path cutouts prescribed within a base mass M
that is free to translate horizontally (without friction) in a uniform
gravity field. The system has two degrees of freedom S and U,
which are the arc-length position of the pendulum mass S and the
horizontal motion of the base mass U. Mass m is assumed to start
at the vertex with an initial speed in the horizontal direction. An
arbitrary pendulum path is assumed for the pendulum mass and
is parameterized using the local tangent angle ¢, which can vary
as a function of its arc-length position S, and thus accommodates
circular and non-circular paths in the formulation. We assume
that the vertex occurs at § = 0.

3.1 Dynamic Model
For the gravity problem shown in Figure 1, the system kinetic
energy T is

| B ) . .
T= Em(uz + 8% +20US cos ¢(S)) + EMUZ, (28)
and the system potential energy is V = mgY (§), where Y (S) is the
vertical height of the absorber mass relative to the zero potential
line (corresponding with S = 0). Then, the system Lagrangian
& =T -V is the following

| . 1.
£ = Em(U2 + 82 +2US cos ¢(8)) + EMU2 -mgY(S), (29)

and the system total energy C, =T + V is
. ) . 1.
C, = Em(U2 + 8% +2US cos ¢(9)) + EMU2 +mgY(S), (30)

where C, is the total energy constant that depends on the system
initial conditions. Furthermore, the system linear momentum C,,
* or . .
Cuzﬁsz+mScos¢(S)+MU, 3D
where C,, is also a constant of motion depending on the system
starting conditions. One can eliminate the U dependence in
the total energy (Equation (30)) by solving Equation (31) for U,
and then substituting the result into Equation (30). Then, the
EOM governing the pendulum motion S can be obtained after
computing a time derivative of the resulting energy equation,

' 6( cos ¢(S) sin ¢ (s) )5’2 L 1+sing(s) _

1 + e sin® ¢(S) -

0, (32
p(1 + esin® ¢(8))

where p = dS/d¢ is the local radius of curvature of the pendulum
path and € = m/M is an inertia ratio consisting of the pendulum
mass divided by the base mass. The EOM is non-dimensionalized
using the following scheme,

s=S8/po, p=p/po, and T =wot,

where specifically the dependent coordinate S and the radius
of curvature p are non-dimensionalized by the initial radius of
curvature pg and the independent coordinate time ¢ is scaled by
the small amplitude natural frequency wg = +/g/po. This results
in the following non-dimensional EOM for the absorber motion
S,

o € COs ¢ sin ¢ 24 (W) =0, (33

p(9) (1+esin2¢) 1 +esin’ ¢

where the non-dimensional time 7 results in the following time
derivative substitutions in Equation (32),

() =wo(). ()=wy()". where () =d()/dr.

Lastly, following a change in dependent variable from s to ¢,
the oscillator in Equation (33) can be put into the standard form
(see Equation (1)) for application of the isochronous condition.
Specifically, this change in dependent variable results in the fol-
lowing substitutions in Equation (33),

do
S,:ﬁ¢, and s"=—p¢/2+,5¢”,

d¢
which results in
¢" +p($)¢” +4(¢) =0, (34)
where the position-dependent coefficients p(¢) and g(¢) are
1 dp(¢)  ecos(e)sin(¢)
= , 35
Pig) p(¢) do 1 + e sin®(¢) =
e (1+ ) sin(9)
+ €) sin
q(¢) = : , (36)
p(@)(1 +esin®(4))
respectively.
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3.2 Tautochronic Path for the Pendulum Mass

In this section, we apply the isochronous condition defined
by the Equation (27) to the pendulum vibration absorber in a
gravity field. This is accomplished after substituting the oscil-
lator coefficients p(¢) and g(¢) (Equation (35) and (36)) and
their derivatives (with respect to ¢) into Equation (27). This
results in the following first-order differential equation for the
non-dimensional path curvature 5(¢), specifically

ds
cos ¢ (1 + € sin’ ¢>) % +sin ¢ (1 + € + 3e cos? d)) p(p) =0,

(37
Equation (37) can be solved in closed-form, which results in the
following solution for the tautochronic path curvature

Ccos¢

p(p) = (38)

27
(1 + e sin’ ¢)

where the constant of integration C = 1 is selected so that p = pg
at the path vertex ¢ = 0, where py is the initial radius of curvature
of the path. Equation (38) prescribes the motion path that the
pendulum mass should follow to ensure the system will execute
tautochronic free vibration when set in motion. In this example,
the motion path is specified via the path radius of curvature and
specifically indicates how the curvature should vary as a function
of the pendulum position ¢(S). Moreover, the tautochronic path
curvature in Equation (38) is the same as that derived in [11],
which was obtained using the calculus of variations. This verifies
the isochronous condition and further demonstrates the utility of
this technique, which after obtaining the EOM and coefficients p
and g, it directly produces a differential equation in terms of the
general path variable to be solved for the tautochronic path.

3.3 Investigation of the Period of Oscillation for the

Tautochronic Path

In this section we investigate the period of oscillation for the
gravity problem through a comparison of the instantaneous fre-
quency of the pendulum response in both physical coordinates ¢
and transformed coordinates u. Specifically, we will acquire the
explicit form of the transformation u = ®(¢) and i (u) for a pen-
dulum vibration absorber in a gravity field. Of particular interest
is the resulting period of motion of the system defined by Equa-
tion (34). For this purpose, first we represent this oscillator in
polar coordinates to give insight into the instantaneous frequency
of oscillation, which can be obtained from the polar angle re-
sponse. Next, we use the transformation u = ®(¢) to verify the
simple harmonic oscillator form of this system when expressed
in the u coordinates. Lastly, we simulate both oscillators in polar
coordinates to compare their instantaneous frequency of oscil-
lation during free vibration, which is ¥ (for the u-coordinates)
and ¢ (for the ¢-coordinates). Of course the simple harmonic
system in the u coordinates will have a constant frequency of os-
cillation that is independent of amplitude (i.e., initial conditions).
However, the physical system in the ¢ coordinates is a nonlinear
oscillator, but has properties similar to that of a linear oscilla-
tor. Specifically, it has a frequency of oscillation that varies over
an oscillation period, but the mean of this variation is equal to

the frequency of the u response and is therefore constant and
independent of amplitude.

To accomplish this, the tautochronic motion path defined
in Equation (38) is used to identify explicit oscillator coeffi-
cients p(¢) and g(¢). First, we express the physical system
response in polar coordinates, using ¢ = R(f)cos(¥(t)) and
¢ = R(t) sin(y (1)), where R(¢) is the amplitude and ¥ (¢) is the
polar angle. This enables us to express the EOM in Equation (34)
as two first-order differential equations for the polar amplitude
R(t) and phase angle y/(¢), which are

R(t) siny(¢) + R()y (¢) siny (1)

R(1) = cos ¥ (1)

; (39)

—pR2(t) sin®(y (1)) cos (¢ (1))
R(¢)
_gceos(y (1))

R(1)
R(#) sin®(y (1))
-~ R(n

(1) =

(40)

where it can be further verified that in physical coordinates,
the instantaneous frequency is not independent of amplitude,
dyr/dR + 0. However, as will be further emphasized with simu-
lations, the system response in physical coordinates still executes
a constant period free vibration that is independent of amplitude.

For comparison, we derive the transformation u = ®(¢)
and the oscillator in u coordinates. This can be accomplished
using Equation (4) with the explicit oscillator coefficient p(¢)
(Equation (35)) evaluated with the tautochronic path curvature
(Equation (38)), which following two integration steps results in

P(¢) = ij(x) dx =logcos¢ — % log (1 + € — ecos’ ),
(4D
and
sin ¢

w/1+esin2¢

As expected, transforming the oscillator in Equation (34) using
u = ®(¢), results in the following simple harmonic oscillator

4
u=o(¢) = J P dx = (42)
0

i+ (1+eu=0, (43)

where h(u) = (1 + €)u. Specifically, this is a linear oscillator
with a constant natural frequency w,,, where

wy =Vl +eg, (44)

which is non-dimensional as a result of the dependent and inde-
pendent variable scaling outlined in Section 3.1. In accordance
with the theorem (see section 2.1), the isochronous condition in
u-coordinates (see Equation (16)) can be immediately verified,
specifically after substituting 4(u) = (1 + €)u and its derivative
W (u) =(1+e).
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FIGURE 2: Phase plane portrait for the tautochronic nonlinear sys-
tem in physical coordinate ¢.

FIGURE 3: Phase plane portrait for the tautochronic linear system
inu.

Simulation results showing the system response in the phase
plane is shown for the physical coordinate ¢ in Figure 2 and for the
u coordinate in Figure 3. These results show how the transforma-
tion u = ®(¢) nonlinearly stretches the amplitude of the simple
harmonic oscillator. Furthermore, the instantaneous frequency
for the system in physical ¢ and u coordinates are presented in
Figure 4 for the case of € = 0.165. The system in physical coor-
dinates is simulated for three different initial starting amplitudes,
which include R(0) = %, R(0) = § and R(0) = Z. As expected,
the instantaneous frequency of oscillation is constant for the os-
cillator in u coordinates for all starting conditions. In addition, as
depicted in the figure, the frequency of oscillation does vary for
the system in physical coordinates. Specifically, the instantaneous
frequency varies both with starting amplitude and during a period
of oscillation, which are expected characteristics of a nonlinear
oscillator. However, it can be further observed that the average
frequency over a period of motion is constant (equal to the fre-
quency of the u system response) and independent of amplitude,
which is an intriguing feature of this nonlinear tautochronic oscil-
lator. These free vibration characteristics demonstrate the utility
of a pendulum vibration absorber motion path that uses a system
tautochrone. A system tautochrone is found to enable constant
period free vibration of the nonlinear pendulum response, which

— Physical coord (¢) w/ R(0)=%
— Physical coord (¢) w/ R(0)=§

Physical coord (¢) w/ R(0)=%

= Transformed coord (u)

» ;

i) ¥

sal UL UL

AT AT ATATAT,
’ ’ Timle?(sec) " ®

FIGURE 4: Instantaneous frequency of both oscillators for € =
0.165.

can facilitate precise tuning of the pendulum across all ampli-
tudes of operation and thus eliminate nonlinear detuning related
performance issues including reduced vibration attenuation and
problematic bifurcations that can occur in the system response.

4. CONCLUSION

Theorem (1) presents a transformation that transforms a class
of quadratic nonlinear oscillators which represent the dynamics
of pendulum vibration absorber into a simple harmonic oscilla-
tor. Consequently, we showed that the initial value problem for
the system in physical coordinates, s, is equivalent to an initial
value problem in the transformed coordinate, u. Then, stem-
ming from the transformed system, an isochronous condition is
derived which comprises the transformation and position depen-
dent coeflicients, p and g. Applying the condition to the system
leads to a differential equation which solving it culminates in the
tautochronic path for the cutout shape. We presented an equiv-
alent isochronous condition that explicitly depends on position
dependent coefficients of the nonlinear oscillator and eliminates
dependence on the transformation. Then the novel condition is
applied to the pendulum vibration absorber problem in a gravity
field and ultimately, derived a tautochronic path curvature. Fi-
nally, we conducted an investigation on the period of oscillation
to comprehend different aspects of the proposed transformation
and the path. For this purpose we explored the system through
analyzing the instantaneous frequency of oscillation, amplitude
and phase plane portraits for the system in both physical and trans-
formed coordinates. The results show that for the tautochronic
system, the period of the system in physical coordinates, executes
the same period of oscillation as the system in the transformed
coordinates.
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