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ABSTRACT
Centrifugal pendulum vibration absorbers (CPVAs) are pas-

sive devices and a proven technology for reducing torsional
vibrations in rotating systems, including helicopter rotors and
crankshafts of internal combustion engines. CPVAs consist of
pendulums mounted on a rotor, driven by system rotation, and
tuned to counteract engine-order fluctuating torques acting on
the rotor, thereby smoothing vibrations. In this study, a unifilar
CPVA configuration is proposed to address torsional vibrations
in electric machines (EMs). A principal challenge in this appli-
cation is the high-orders of torsional vibration inherent in current
EM operation. As order increases, the path radius of curvature
that the absorber mass is required to follow (for proper tuning)
diminishes, which presents machining challenges. A dynamic
model for a unifilar CPVA is developed and then linearized to
compute the tuning orders of the system. A quadratic formula is
derived whose roots govern the two natural orders of the system
and initial results show a desirable large separation between these
orders in a prototype design. The developed model will facilitate
future simulation studies of the system forced vibration response
to characterize the stability and vibration control performance of
this design.
Keywords: Vibration, Unifilar configuration, Bifilar configu-
ration, Double Pendulum, Electric motors, Tuning order

1. INTRODUCTION
Recognizing the risks that climate change poses to commu-

nities and ecosystems around the world, the international com-
munity has adopted the Paris Agreement with the goal to limit
global warming to well below 2°C compared to pre-industrial
temperatures [1]. Electric vehicles (EV) are a critical technology
to decarbonize road transport. There is transformation in vehi-
cle engineering as drivelines and powertrain electrify. Electric
motors are at the heart of an EV propulsion system and torsional
vibrations in electric motors produces problematic vibration and

†Joint first authors
∗Corresponding author
Documentation for asmeconf.cls: Version 1.36, June 3, 2025.

audible noise. Due to the increasing price volatility and supply
chain issues of rare earth metals, there is a growing need for
rare-earth-free motors. A particularly promising Electric motor
(EM), the switched reluctance machine (SRM), is able to achieve
high levels of efficiency without relying on rare earth metals.
This characteristic not only makes it environmentally friendly
but also reduces dependency on scarce resources. Despite these
advantages, SRMs have encountered limited adoption primarily
because of its tendency to experience torsional vibrations, leading
to undesirable noise emissions during operation. This has hin-
dered broader acceptance and utilization of SRMs across various
sectors [2].

Centrifugal pendulum vibration absorbers (CPVAs) have be-
come an important technology for correcting torsional vibrations
in the latest generation of fuel-efficient internal combustion en-
gines (ICEs) and hybrid electric vehicles [3]. Similar to ICEs,
EMs generate torque fluctuations at a frequency that is a specific
multiple of average rotation speed or order. When properly tuned
to a given order, CPVAs can smooth torsional vibrations across
all operating speeds. Because they are tuned to correct a specific
order of vibtration, CPVAs are potentially more effective than a
frequency-tuned device that typically offers correction at fixed
frquency, and hence within a narrow window of engine speeds.
Just as in ICEs, CPVAs may provide a way to address problematic
torsional excitation orders generated by EMs. Because torsional
vibration is a major issue for SRMs in particular, coupling CPVA
and SRM technology could enable a wider adoption of SRMs,
which have currently been relegated to noise-insensitive applica-
tions.

A principal challenge with implementing CPVAs in EMs is
that they must be able to address the high-orders of vibration
inherent in current EM operation. EM vibration orders are sig-
nificantly higher than the typical combustion-generated orders
present in most ICE applications (typically 2, 3, or 4 depending
on the number of engine cylinders). Since the absorber mass path
radius of curvature is proportional to the inverse of the tuning or-
der squared, the machining precision required to manufacture the
small path curvatures in high-order pendulum designs can quickly
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become challenging if not all-together infeasible. Implementing
a high-order design requires careful consideration of the CPVA
suspension mechanism, which prescribes the relative motion be-
tween the absorber and the host rotor. Many designs have been
developed to suspend the pendulum absorber mass to the rotor
of interest, including a simple pendulum, a roll-form absorber, a
unifilar absorber (single-point suspension) and most commonly
a bifilar absorber (two-point suspension) [4]. These suspensions
have been known for decades and the configurations shown in
Figure 1 are most commonly implemented in practice [5] [6].

As shown in Figure 1 (a), the roller-in-slot configuration has
the simplest construction of the three, where the roller acts as the
pendulum. Since torsional vibration reduction is proportional
to the amount of absorber mass present, meeting vibration re-
duction targets can lead to a larger roller radius. However, more
importantly, roller slip is a prominent possibility in a roller-in-slot
CPVA, because the roller is not controlled by a diametrical pinch
of any kind. Roller slip may interfere with CPVA dynamics and
impair correction performance.

Shown in Figure 1 (b) is a bifilar CPVA, which is the most
common suspension used in practice, especially in ICE appli-
cations as it can accommodate non-circular paths. Noncircular,
Epcycloidal paths have performance advantages when consider-
ing the nonlinear softening characteristics present in circular path
design [7]. However, with the already stringent tolerances on the
path radius of curvature in a high-order design, non-circular path
curvatures would require even further precision which is imprac-
tical considering the torsional orders present in current EMs.

As shown in Figure 1 (c), the unifilar-type absorber is me-
chanically simpler than the bifilar suspension as the component
parts can all be produced by simple boring and turning opera-
tions [6], and like the roller-in-slot design, is more practical for
machining path curvatures for high-order designs. Unlike the
other two designs shown in Figure 1 (a) and (b), a unifilar CPVA
is a double pendulum and is commonly referred to as centrifugal
double pendulum vibration absorber (CDPVA), since it has two
degrees-of-freedom (DOFs) and therefore two tuning orders. Un-
like the bifilar suspension, a unifilar pendulum can rotate relative
to its unison motion with the roller. Being able to tune a single
CPVA to two orders has been exploited by previous researchers
for specific multi-order applications including helicopter rotor
hub vibration [8] and ICE cylinder deactivation [9]. The study
by Manchi et al. [9] used a compound pendulum-type CDPVA,
which suspends the rotating pendulum inertia from a pivot point
attached to the rotor. Another recent study by Mahe et al. [10],
used a CDPVA type similar to the rolling cylinder and ring con-
figuration shown in Figure 1 (c), except that the pendulum mass
(cylinder) is suspended on the inside of a hollow roller ring that
rolls within the cut-out on the rotor. Similar to our study here, the
Mahe et al. [10] design was for an EM application, which involved
tuning one of the two resonances to the single-order of excitation.
Despite the two orders involved which can further complicate the
design in a single-order application, the linear tuning appeared
feasible due to the large separation between the resulting tuning
orders.

In this work, we develop a dynamic model for the unifi-
lar configuration shown in Figure 1 (c), which suspends a large

rolling pendulum ring from a small roller pin. Unique to our
model development, we specifically enforce a symmetry in the
radius of the cutout on the rotor to be equivalent to that of the
inner pendulum ring, which under strong centrifugal loading re-
sults in a diametrical pinch on both sides of the roller (between
the rotor and the pendulum) that tends to limit the propensity of
the roller to slip during operation [11]. The equations of motion
(EOM) for this unifilar CPVA configuration are developed and
then subsequently linearized to investigate the linear tuning orders
of this system. From the linear EOM, a quadratic formula is de-
rived whose roots yield the two system tuning orders. We further
show that this configuration is capable of producing CPVA de-
signs with a desirable large separation between the tuning orders.
These developed EOM will provide a basis for future simulation
studies that will investigate the forced vibration response of the
system including the stability of the absorber response and its
resulting performance at reducing the torsional fluctuations of
the rotor. Although circular paths can lead to stability issues as
amplitudes increase, the inherently large operating speeds of cur-
rent EMs are expected to keep pendulum operating amplitudes
small. Furthermore, a related open question, is the possibility of
exploiting the additional relative pendulum rotational motion in-
herent in a unifilar architecture to achieve non-circular motion of
the pendulum COM, which could enable stability-enhancements
and expand the operating and design space of a unifilar CPVA for
high-order EM applications.

2. DYNAMIC MODEL
In this section, a complete set of governing equations for the

unifilar CPVA system are derived using Lagrange’s equations,
which are linearized and then subsequently used to calculate
the system natural frequencies. The unifilar CPVA is shown in
Figures 2 - 4. This configuration consists of a pendulum ring of
mass 𝑚𝑃 and internal radius 𝑏 that rolls on a solid roller pin of
mass 𝑚𝑅 and radius 𝑎. The roller pin rolls within a cut-out of
radius 𝑏 bored into a carrier of inertia 𝐽𝐶 , which is herein referred
to as the rotor. The radius of the cut-out in the rotor is required to
be the same as the pendulum internal radius. When the cutouts
on the rotor and the pendulum are identical it causes the roller
to be pinched between two identical surfaces that share the same
normal. Specifically, this is between point 𝑄 and 𝑃 shown in
Figure 3, which are the contact points for the roller and pendulum
as well as the roller and rotor, respectively. Due to the centrifugal
loading during operation, the roller will maintain contact with the
pendulum and the rotor, and is assumed to exhibit pure rolling
motion without slip along the two cutout surfaces. If the cutout of
the pendulum and rotor are not identical, then the normal forces
will not remain diametrically opposed and this can exacerbate the
potential of the roller to slip during motion [11].

Figure 2 shows the pendulum at its vertex position, which is
its equilibrium position due to the strong centrifugal acceleration
imposed by the rotation of the rotor, whose degree of freedom is
defined by the angle 𝜃. When a torsional disturbance is present
on the rotor, the pendulum and roller will begin to oscillate from
their equilibrium position and 𝑅𝑃 (𝑆𝑃 , 𝑆𝑅) and 𝑅𝑅 (𝑆𝑅) defines
the radial distance from the center of rotor to the pendulum COM
and roller COM, respectively, where 𝑆𝑃 is the arclength displace-
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FIGURE 1: Different types of Rotating Vibration Absorbers: (a) Roller-in-slot Type Absorber (b) Bifilar Type Absorber (c) Unifilar Type Ab-
sorber [6]

ment of pendulum COM relative to the roller COM and 𝑆𝑅 is the
arclength displacement of the roller COM relative to the rotor.
Therefore, the three DOFs used herein to describe the configu-
ration of a single unifilar CPVA attached to a rotor include the
rotor angle 𝜃, the roller arclength displacement 𝑆𝑅, and the pen-
dulum arclength displacement 𝑆𝑃 . Figures 3 and 4 demonstrate
sequentially these three DOFs. Specifically, Figure 3 shows the
pendulum and roller when displaced from their vertex position,
which is to demonstrate the motion of the absorber system relative
to the rotor. It is observed in Figure 3 that the radial distance from
center of rotor cutout 𝑂𝐶 to the center of roller 𝑂𝑅 remains the
same throughout the motion and hence the path traversed by the
roller center is circular with radius 𝜌0 = 𝑏 − 𝑎. In addition, when
pendulum and roller share the same tangential velocity at their
contact point (and thus move together), then the pendulum center
𝑂𝑃 also follows a circular path trajectory of radius 2𝜌0 = 2(𝑏−𝑎),
relative to point 𝑂𝑐.

Furthermore, Figure 4 shows the additional rotational motion
that the pendulum ring can have relative to the roller pin, which is
described by the angle 𝛽. This additional DOF of the pendulum
results in a double pendulum configuration for the entire system.
Specifically, the COM of the roller 𝑂𝑅 and pendulum 𝑂𝑃 can be
located relative to the rotor cutout center 𝑂𝐶 using the arclengths
𝑆𝑅 or 𝑆𝑃 , which are related to the angles 𝛼 and 𝛼+𝛽, respectively.
Specifically, for the roller,

𝑆𝑅 = 𝜌0𝛼, (1)

and for the pendulum,

𝑆𝑃 = 𝜌0 (𝛼 + 𝛽). (2)

2.1 Kinematics relating pendulum and roller position
Next, we develop kinematic relationships for the unifilar sus-

pension that will be subsequently used in formulating the EOM

for this CPVA system. Specifically, we will derive expressions
for the absolute rotations of the roller and pendulum (relative to
the rotor) in terms of the arclength DOFs 𝑆𝑅 and 𝑆𝑃 .

To start, as shown Figure 4, we define rotating unit vectors
𝑖 and 𝑗 , which rotate with the rotor angular coordinate 𝜃. In
addition, we define another set of rotating coordinates 𝑒𝑛 and 𝑒𝑡 ,
which define the normal and tangent directions associated with
the roller center arclength displacements (relative to the rotor
motion) and finally we define a set of rotating coordinates 𝑒𝛽 and
𝑒𝑝 , which define the normal and tangent directions associated
with the pendulum center arclength displacement (relative to the
roller center).

In addition, we define the angle relationships when both the
pendulum and roller move together (i.e., when 𝑆𝑃 = 0). As both
the roller and pendulum move in unison, the roller and pendu-
lum centers follow the arclength displacement shown in Figure 3,
where the roller displacement 𝑆𝑅 = 𝜌0𝛼 and the pendulum dis-
placement is simply 2𝑆𝑅 = 2𝜌0𝛼. During this motion, the roller
and pendulum mass rotate with absolute rotation angles 𝜙 and 𝜓,
respectively. The tangential velocity of the roller COM 𝑂𝑅 can
be expressed in two ways, namely using the local interior angle 𝛼
and the absolute roller rotation 𝜙, which results in the following
velocity constraint

(𝑏 − 𝑎) 𝛼̇ 𝑒𝑡 = 𝑎 𝜙̇ 𝑒𝑡 . (3)

Similarly, equating the tangential velocities at the pendulum COM
𝑂𝑝 using the interior angle 𝛼 and the absolute pendulum rotation
𝜓, results in the following kinematic constraint

2 (𝑏 − 𝑎) 𝛼̇ 𝑒𝑡 = 𝑏 𝜓̇ 𝑒𝑡 . (4)

Eliminating the interior angle 𝛼 by combining Equa-
tions (3) and (4), enables the pendulum 𝜓̇ and roller 𝜙̇
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angular velocities to be related in the following way

𝜓̇ =
2𝑎
𝑏
𝜙̇. (5)

During unison motion, the total rotation of the roller 𝜙 and pen-
dulum 𝜓 relative to the rotor can be directly related to the roller
arclength position 𝑆𝑅. Specifically, this is derived by eliminating
the angle 𝛼 in combining Equations (1) and (3), which results in

𝜙(𝑆𝑅) =
𝑆𝑅

𝑎
, (6)

for the roller, and then using this result in Equation (5), which
results in

𝜓(𝑆𝑅) =
2𝑆𝑅
𝑏

, (7)

for the pendulum.
Similarly, using Equations (1) and (2), the relative rotation

of the pendulum 𝛽 can be expressed in terms of the arclengths 𝑆𝑅
and 𝑆𝑃 , namely

𝛽 =
𝑆𝑃 − 𝑆𝑅

𝜌0
. (8)

Then, the absolute rotation of the pendulum consists of
𝛽(𝑆𝑅, 𝑆𝑃) − 𝜓(𝑆𝑅), which is the superposition of the clockwise
defined unison motion as the pendulum rolls with the roller𝜓(𝑆𝑅)
and the counter-clockwise defined relative motion as the pendu-
lum rolls relative to the roller 𝛽(𝑆𝑅, 𝑆𝑃).

2.2 Equations of motion for the Unifilar CPVA
The dynamic model for the unifilar CPVA system is derived

using Lagrange’s equations. The kinetic energy of the system
𝑇 consists of the rotational kinetic energy of the rotor as well
as both the translational and the rotational kinetic energy of the
roller and pendulum, which is expressed as

𝑇 =
𝐽𝐶

2
𝜔⃗𝐶 . 𝜔⃗𝐶 + 𝐽𝑅

2
𝜔⃗𝑅 . 𝜔⃗𝑅 + 𝑚𝑅

2
𝑣⃗𝑅 . 𝑣⃗𝑅

+ 𝐽𝑃

2
𝜔⃗𝑃 . 𝜔⃗𝑃 + 𝑚𝑃

2
𝑣⃗𝑃 . 𝑣⃗𝑃 ,

(9)

where 𝐽𝐶 is the inertia of the rotor, 𝜔⃗𝐶 = 𝜃̇ 𝑘̂ is the angular velocity
of the rotor, 𝐽𝑅 is the inertia of the roller about its COM, 𝜔⃗𝑅 is
the angular velocity of the roller, 𝑣⃗𝑅 is the linear velocity of the
roller, 𝑚𝑅 is the mass of the roller, 𝐽𝑝 is the inertia of pendulum
about its COM, 𝜔⃗𝑃 is the angular velocity of the pendulum, and
𝑣⃗𝑃 is the linear velocity of pendulum, and 𝑚𝑃 is the mass of the
pendulum. The total angular velocity of the roller 𝜔⃗𝑅 includes
the rotor rotation rate 𝜃̇ and the relative roller rotation rate 𝜙̇ (see
Equation (6)),

𝜔⃗𝑅 = (𝜃̇ − 𝜙̇) 𝑘̂ = (𝜃̇ − 𝑆̇𝑅/𝑎) 𝑘̂ . (10)

The total angular velocity of the pendulum 𝜔⃗𝑃 includes the rotor
rotation rate 𝜃̇ and the total relative pendulum rotation rate 𝛽̇ − 𝜓̇

(see Equations (7) and (8)),

𝜔⃗𝑃 = (𝜃̇ − 𝜓̇ + 𝛽̇) 𝑘̂ =

(︂
𝜃̇ +

(︂
2
𝑎

𝑏
− 3

)︂
𝑆̇𝑅/𝜌0 + 𝑆̇𝑃/𝜌0

)︂
𝑘̂ . (11)

Lastly, the roller and pendulum COM velocities 𝑣2
𝑅
= 𝑣⃗𝑅 · 𝑣⃗𝑅 and

𝑣2
𝑃
= 𝑣⃗𝑃 · 𝑣⃗𝑃 can be expressed as

𝑣⃗𝑅 · 𝑣⃗𝑅 =

[︂
𝑆̇𝑅𝑒𝑡 +

(︂
𝜃̇ 𝑘̂ × 𝑅𝑅 (𝑆𝑅) 𝑒𝑅𝑅

)︂]︂
·
[︂
𝑆̇𝑅𝑒𝑡 +

(︂
𝜃̇ 𝑘̂ × 𝑅𝑅 (𝑆𝑅) 𝑒𝑅𝑅

)︂]︂
= 𝑆̇2

𝑅 + 𝑅2
𝑅 𝜃̇

2 + 2𝑆̇𝑅 𝜃̇𝐺𝑅

(12)

𝑣⃗𝑃 · 𝑣⃗𝑃 =

[︂
𝑆̇𝑅𝑒𝑡 + 𝑆̇𝑃𝑒𝛽 +

(︂
𝜃̇ 𝑘̂ × 𝑅𝑃 (𝑆𝑃 , 𝑆𝑅) 𝑒𝑅𝑃

)︂]︂
·
[︂
𝑆̇𝑅𝑒𝑡 + 𝑆̇𝑃𝑒𝛽 +

(︂
𝜃̇ 𝑘̂ × 𝑅𝑃 (𝑆𝑃 , 𝑆𝑅) 𝑒𝑅𝑃

)︂]︂
= 𝑆̇2

𝑃 + 𝑆̇2
𝑅 + 𝑅2

𝑃 𝜃̇
2 + 2𝑆̇𝑃 𝜃̇𝐺𝑃

+ 𝑆̇𝑅 𝜃̇

(︄
2𝐺𝑃 cos

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃
−

𝑑𝑅2
𝑝

𝑑𝑆𝑝
sin

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃)︄
,

(13)
where 𝑒𝑅𝑅

and 𝑒𝑅𝑃
are radial unit vectors whose directions spec-

ify the rollers radial position 𝑅𝑅 (𝑆𝑅) and the pendulums radial
position 𝑅𝑃 (𝑆𝑅, 𝑆𝑃) relative to the rotor center, respectively. The
path functions 𝐺𝑅 and 𝐺𝑃 result from the vector cross and dot
product and can be expressed in terms of the roller and pendulum
radial positions, specifically

𝐺𝑅 (𝑆𝑅) =

⌜⃓⎷
𝑅2
𝑅
(𝑆𝑅) −

1
4

(︄
𝜕𝑅2

𝑅
(𝑆𝑅)

𝜕𝑆𝑅

)︄2

, (14)

and

𝐺𝑃 (𝑆𝑃 , 𝑆𝑅) =

⌜⃓⎷
𝑅2
𝑃
(𝑆𝑃 , 𝑆𝑅) −

1
4

(︄
𝜕𝑅2

𝑃
(𝑆𝑃 , 𝑆𝑅)
𝜕𝑆𝑝

)︄2

. (15)

The Lagrangian L = 𝑇 − 𝑉 of the system is expressed as
follows

𝑑

𝑑𝑡

(︄
𝜕L

𝜕𝑞̇𝑖

)︄
−𝜕L

𝜕𝑞𝑖
= 𝑄𝑖 , (16)

where 𝑇 is the system kinetic energy, 𝑉 is the system potential
energy, 𝑞𝑖 is the generalized coordinates, which includes the roller
position 𝑆𝑅, the pendulum position 𝑆𝑃 , and the rotor rotation
angle 𝜃, and 𝑄𝑖 corresponds to the generalized forces acting on
the system. Here we set𝑄𝑖 = 0 since our interest is in deriving the
natural frequencies of this system. Since the centrifugal forces are
many orders of magnitude greater than the gravitational forces,
the potential energy is commonly ignored in modeling a CPVA
system and therefore the LagrangianL = 𝑇 . Using Equation (16),
the EOM for pendulum motion 𝑆𝑃 is

(1 + 𝜅𝑃) 𝑆𝑃 +
[︃
cos

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃
+ 𝜅𝑝 (2𝜒 − 3)

]︃
𝑆𝑅+(︂

𝑆̇2
𝑅/𝜌0 + 2𝑆̇𝑅 𝜃̇

)︂
sin

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃
+

𝜌0𝜃

[︃
(𝑛̃2

0 − 1) cos(𝑆𝑃/𝜌0) + 𝜅𝑃 + 1 + cos
(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃]︃
+

𝜌0𝜃̇
2
[︃
(𝑛̃2

0 − 1) sin(𝑆𝑃/𝜌0) + sin
(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃]︃
= 0 (17)
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FIGURE 2: Schematic view of a Unifilar CPVA assembly on the carrier at its equilibrium position.

FIGURE 3: Off-vertex position of the Unifilar CPVA when both the
roller and pendulum roll in unison.
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FIGURE 4: Off-vertex position of the Unifilar CPVA when the pendu-
lum rotates with the additional angle β relative to its unison motion
with the roller pin.
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where 𝜅𝑃 = (𝑘𝑃/𝜌0)2 and 𝜒 = 𝑎/𝑏 are non-dimensional terms
related to the pendulum radius of gyration 𝑘𝑝 and the roller and
pendulum geometries 𝑎, 𝑏, and 𝜌0 = 𝑏 − 𝑎. In addition, 𝑛̃0 is
the well-known classical absorber linear tuning order for a single
pendulum absorber mass [12], which for the case of a point mass
is dictated solely by the absorbers geometry, that is

𝑛̃0 =

√︃
𝑐 − 𝜌0
𝜌0

, (18)

where 𝑐 − 𝜌0 is the distance from the pendulum mass pivot point
to the rotor center and 𝜌0 is the effective pendulum length, which
is distance from the pivot point to the center of mass of pendulum.
As shown in Figure 2 and 4, the pendulum pivot point is the roller
center, point 𝑂𝑅. Note that we have also substituted the radial
positions of the roller 𝑅𝑅 (𝑆𝑅) and the pendulum 𝑅𝑃 (𝑆𝑃 , 𝑆𝑅) into
the Lagrangian before computing the EOM (See Appendix A for
further details). Similarly, the EOM for the roller motion 𝑆𝑅 is[︂

1 + 𝜖

(︂
1 + 𝜅𝑅 (1/𝜒 − 1)2

)︂
+ 𝜅𝑃

(︂
9 + 4𝜒2 − 12𝜒

)︂]︂
𝑆𝑅+[︃

cos
(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃
+ 𝜅𝑃 (2𝜒 − 3)

]︃
𝑆𝑃+

𝜌0𝜃

[︄
(1 + 𝜖)

(︂
1 + (𝑛̃2

0 − 1) cos(𝑆𝑅/𝜌0)
)︂
+ cos

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃
+

𝜅𝑃 (2𝜒 − 3) − 𝜅𝑅 (1/𝜒 − 1)
]︄
− sin

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃ [︄
𝑆̇2
𝑃/𝜌0 + 2𝑆̇𝑃 𝜃̇

]︄
+

𝜌0𝜃̇
2

[︄
(1 + 𝜖) (𝑛̃2

0 − 1) sin(𝑆𝑅/𝜌0) − sin
(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃ ]︄
= 0, (19)

where 𝜅𝑅 = (𝑘𝑅/𝜌0)2 is the ratio of the roller radius of gyration
𝑘𝑅 to the effective pendulum length 𝜌0. Finally, the EOM for the
rotor motion 𝜃 is[︄

𝛾 + 𝜅𝑃 + 𝜅𝑅 + 𝜖
(︂
1 + (𝑛̃2

0 − 1)2
)︂
+ 2

(︃
1 + (𝑛̃2

0 − 1) cos
(︃
𝑆𝑃

𝜌0

)︃)︃
+

2(𝑛̃2
0 − 1) cos

(︃
𝑆𝑅

𝜌0

)︃
(1 + 𝜖) + 2 cos

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃ ]︄
𝜌0𝜃+[︃

1 + 𝜅𝑃 + (𝑛̃2
0 − 1) cos

(︃
𝑆𝑃

𝜌0

)︃
+ cos

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃]︃
𝑆𝑃+[︄

1 − 𝜅𝑅 (1/𝜒 − 1) + (𝑛̃2 − 1) cos
(︃
𝑆𝑅

𝜌0

)︃
(1 + 𝜖) + (2𝜒 − 3)𝜅𝑃+

cos
(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃
+𝜖

]︄
𝑆𝑅+

[︃(︃
−(𝑛̃2 − 1) sin

(︃
𝑆𝑃

𝜌0

)︃
− sin

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃)︃]︃
(︄
2𝑆̇𝑃 𝜃̇ +

𝑆̇2
𝑃

𝜌0

)︄
+

[︃
(𝑛̃2 − 1) sin

(︃
𝑆𝑅

𝜌0

)︃
(−1 − 𝜖) +

(︃
𝑆𝑃 − 𝑆𝑅

𝜌0

)︃]︃
(︄
2𝜃̇ 𝑆̇𝑅 +

̇𝑆𝑅
2

𝜌0

)︄
= 0 (20)

where 𝛾 = 𝐽𝐶/(𝑚𝑃𝜌
2
0) is the ratio of rotor inertia to pendulum

inertia (about its pivot point 𝑂𝑅).

2.3 Linear tuning order of a unifilar CPVA
Next, we linearize the EOM to identify the small amplitude

natural frequency of the CPVA system, which provides insight
into how the roller and pendulum mass, inertia, and geometry
affect the tuning of this system. To linearize the EOM, we assume
small amplitude motions for 𝑆𝑅 and 𝑆𝑃 , and that the rotor rotates
with constant angular velocity 𝜃̇ = Ω and therefore 𝜃 = 0.

The linear EOM for the pendulum motion 𝑆𝑃 is

(1+ 𝜅𝑃)𝑆𝑃 +
[︁
1+ 𝜅𝑃 (2𝜒−3)

]︁
𝑆𝑅 + (𝑛̃0Ω)2𝑆𝑃 −Ω2𝑆𝑅 = 0. (21)

The linear EOM for the roller motion 𝑆𝑅 is[︂
1 + 𝜖

(︁
1 + 𝜅𝑅 (1/𝜒 − 1)2)︁+𝜅𝑃 (9 + 4𝜒2 − 12𝜒)

]︂
𝑆𝑅+

+
[︁
1 + 𝜅𝑃 (2𝜒 − 3)

]︁
𝑆𝑃 +

(︁
𝑛̃2

0 (1 + 𝜖) − 𝜖
)︁
Ω2𝑆𝑅 −Ω2𝑆𝑃 = 0.

(22)

The coupled set of a linear EOM for the system can be cast in a
matrix form,

M ̈⃗
𝑆 + K𝑆 = 0, (23)

where 𝑆 = [𝑆𝑃 , 𝑆𝑅]𝑇 , the system mass matrix M is

M =[︄
1 + 𝜅𝑝 1 + 𝜅𝑃 (2𝜒 − 3)

1 + 𝜅𝑃 (2𝜒 − 3) 1 + 𝜖
(︁
1 + 𝜅𝑅

(︁ 1
𝜒
− 1

)︁2)︁+𝜅𝑃 (9 + 4𝜒2 − 12𝜒)

]︄
,

(24)
and the system stiffness matrix K is

K = Ω2
[︃
𝑛̃2

0 −1
−1 𝑛̃2

0 (1 + 𝜖) − 𝜖

]︃
, (25)

Next, we solve the eigenvalue problem to obtain the two system
natural frequencies 𝜔1 and 𝜔2, specifically by computing the
following determinant

|K − 𝜔2
𝑖 M| = 0, (26)

whose roots (the natural frequencies) are proportional to the linear
tuning orders of the system 𝑛̃1 and 𝑛̃2, where 𝜔1 = 𝑛̃1Ω and
𝜔2 = 𝑛̃2Ω. It can be observed that the rotor speed Ω2 can be pre-
factored in Equation (26), and the resulting determinant yields
the following quadratic equation for the system tuning orders 𝑛̃1
and 𝑛̃2,[︂

4𝜅𝑃 (𝜒 − 2)2 + 𝜖 (1 + 𝜅𝑃)𝜒−2 (︁𝜅𝑅 (𝜒 − 1)2 + 𝜒2)︁ ]︂ 𝑁̃2 +[︄
𝜖

(︂
1 − 2𝑛̃2

0 + 𝜅𝑃 (1 + 𝑛̃2
0) − 𝜅𝑅𝜒

−2𝑛̃2
0 (𝜒 − 1)2

)︂
−

2
(︃
1 + 𝑛̃2

0 + 𝜅𝑃

(︂
2𝜒 − 3 + 𝑛̃2

0
(︁
5 + 2𝜒(𝜒 − 3)

)︁ )︂)︃]︄
𝑁̃ +

(𝑛̃2
0 − 1)

(︂
𝑛̃2

0 (1 + 𝜖) + 1
)︂
= 0, (27)

where the two roots 𝑁̃1,2 of Equation (27) are related to the two
system tuning orders, 𝑛̃1 =

√︁
𝑁̃1 and 𝑛̃2 =

√︁
𝑁̃2.
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FIGURE 5: Tuning order versus mass ratio of both pendulums. Pa-
rameters: κP = 4, κR = 0.25, a = 0.183 mm, b = 0.366 mm and
χ = 0.5.

Figure 5 shows the effect of roller to pendulum mass ratio 𝜖

on the tuning orders 𝑛̃1 and 𝑛̃2 for a prototype 12th order design,
which is a possible order of excitation for an EM. In this design, we
consider a pendulum radius “𝑏 = 2𝑎” that is twice the roller radius
“𝑎”, which aligns with the concept of a comparatively larger
pendulum and a smaller roller. The tuning order corresponding
to 𝑛̃2 is the primary resonance that will address a problematic
torsional vibration at order 12 and we have slightly overtuned this
resonance by about 3% (relative to 12), which is common practice
in circular path design (see for example [13]). The other tuning
order 𝑛̃1 is a result of the double pendulum architecture. As shown
in Figure 5, the roller to pendulum mass ratio 𝜖 does influence
both tuning orders, however, the primary resonance 𝑛̃2 is rather
insensitive to this as it varies by less than 1% over the range of
𝜖 shown. Whereas, the secondary resonance 𝑛̃1 shows about a
10% variation over this range of 𝜖 . This redundant order 𝑛̃1 does
present challenges when tuning to a single order of excitation.
However, for the small roller and large pendulum design, it does
shows a desirable large separation, where 𝑛̃1 is about 3 times less
than the primary tuning order 𝑛̃2.

Furthermore, Figure 6 shows the influence of the radius of
gyration of the pendulum on the tuning order for a fixed mass
ratio 𝜖 = 0.10. The pendulum inner radius “𝑏 = 2𝑎” is still twice
that of the roller radius “𝑎”, but we now consider increasing
the outer radius of the pendulum ring, which will increase the
radius of gyration of the pendulum. In this case, we allow the
pendulum outer radius to increase from 2𝑎 to 4𝑎, which would
increase the non-dimensional radius of gyration parameter 𝜅𝑃
from 4 to 10. In further support of the large pendulum and
small roller design, Figure 6 favorably shows that increasing the
pendulum ring thickness can further separate the two orders, with
the primary order 𝑛̃2 being negligibly affected. We believe the
large separation should make this design feasible to implement,
minimizing the possibility of rotor disturbance at the redundant
order 𝑛̃1. Future simulation work of the forced response will
further investigate this.

order 1 n1

order 2 n2
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FIGURE 6: Tuning order versus pendulum radius of gyration. Pa-
rameters: κR = 0.25, a = 0.183 mm, b = 0.366 mm, χ = 0.50, and
ϵ = 0.1.

3. CONCLUSION

In this paper, a unifilar CPVA architecture is specifically pro-
posed for electrified motor applications that consists of a large
outer pendulum ring suspended from a small roller pin. A qualita-
tive comparison is made between the unifilar, bifilar and roller-in-
slot configurations. A unifilar-type absorber has inherent advan-
tages in terms of its simple mechanical construction compared to
that of the bifilar when considering the machining challenges as-
sociated with non-circular path design and the high-orders present
in current EMs. A unifilar also has an advantage over the roller-
in-slot design, in that the roller is diametrically pinched between
the pendulum and rotor, which reduces the propensity of the roller
to slip and thus avoiding problematic dynamic responses of the
CPVA and rotor.

A dynamic model for a unifilar CPVA is developed and then
linearized to compute the tuning orders of the system. Compared
to the bifilar and roller-in-slot designs, the unifilar is a double
pendulum architecture and this results in two tuning orders for
the system. A quadratic formula is derived whose roots govern
the two natural orders of the system and initial results show a de-
sirable large separation between these orders in a prototype 12th
order CPVA design. Although circular paths can lead to stabil-
ity issues as amplitudes increase, the inherently large operating
speeds of current EMs are expected to keep pendulum operating
amplitudes small. High excitation still poses instability risks how-
ever, and hence standard over-tuning to keep amplitudes low may
be required (see for example [13]). Furthermore, a related open
question, is the possibility of exploiting the additional relative
pendulum rotational motion inherent in a unifilar architecture to
achieve non-circular motion of the pendulum COM, which could
enable stability-enhancements and expand the operating and de-
sign space of a unifilar CPVA for high-order EM applications.
The developed model will facilitate these future simulation and
analysis studies of the system forced vibration response to char-
acterize the stability and vibration control performance of this
design.
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4. APPENDIX A
Parametric equations for the radial positions of the COM of

the roller 𝑅𝑅 (𝑆𝑅) as well as the pendulum 𝑅𝑃 (𝑆𝑃 , 𝑆𝑅) are derived
here in terms of arclength parameters 𝑆𝑃 and 𝑆𝑅. Specifically, the
horizontal position 𝑋𝑃 and vertical position 𝑌𝑃 of the pendulum
COM relative to a rotor fixed coordinate system (𝑖, 𝑗) (see Figure
4) can be expressed as,

𝑋𝑃 = 𝜌0 sin𝛼 + 𝜌0 sin (𝛼 + 𝛽),

= 𝜌0 sin
(︃
𝑆𝑅

𝜌0

)︃
+ 𝜌0 sin

(︃
𝑆𝑃

𝜌0

)︃
(28)

𝑌𝑃 = (𝑐 − 2𝜌0) + 𝜌0 cos𝛼 + 𝜌0 cos (𝛼 + 𝛽),

= (𝑐 − 2𝜌0) + 𝜌0 cos
(︃
𝑆𝑅

𝜌0

)︃
+ 𝜌0 cos

(︃
𝑆𝑃

𝜌0

)︃
. (29)

Similarly, the horizontal 𝑋𝑅 and vertical 𝑌𝑅 position of the roller
COM relative to a rotor fixed coordinate system (𝑖, 𝑗) (see Fig-
ure 4) can be expressed as,

𝑋𝑅 = 𝜌0 sin𝛼,

= 𝜌0 sin
(︃
𝑆𝑅

𝜌0

)︃
(30)

𝑌𝑅 = (𝑐 − 2𝜌0) + 𝜌0 cos𝛼,

= (𝑐 − 2𝜌0) + 𝜌0 cos
(︃
𝑆𝑅

𝜌0

)︃
, (31)

where we make use of Equations (1) and (2) to replace 𝛼 and
𝛽 and express these positions in terms of the arclengths 𝑆𝑅 and
𝑆𝑃 . Finally, the pendulum radial position 𝑅2

𝑝 = 𝑋2
𝑝 + 𝑌2

𝑝 can be
calculated using Equations (28) and (29), which results in,

𝑅2
𝑝 (𝑆𝑃 , 𝑆𝑅) = 𝑐2 − 4𝑐𝜌0 + 2𝜌2

0

[︂
3 + cos

(︂
𝑆𝑃−𝑆𝑅

𝜌0

)︂]︂
+ 2(𝑐 − 2𝜌0)𝜌0

[︂
cos

(︂
𝑆𝑃
𝜌0

)︂
+ cos

(︂
𝑆𝑅

𝜌0

)︂]︂
Likewise, the roller radial position 𝑅2

𝑅
= 𝑋2

𝑅
+𝑌2

𝑅
can be calculated

from Equations (30) and (31), which results in,

𝑅2
𝑅 (𝑆𝑅) = 𝑐2 + 5𝜌2

0 − 4𝑐𝜌0 + 2(𝑐 − 2𝜌0)𝜌0 cos
(︃
𝑆𝑅

𝜌0

)︃
(32)
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