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EPHEMERAL PERSISTENCE FEATURES AND
THE STABILITY OF FILTERED CHAIN COMPLEXES*

Facundo Mémoli' and Ling Zhou!

ABSTRACT. We strengthen the usual stability theorem for Vietoris-Rips (VR) persistent
homology of finite metric spaces by building upon constructions due to Usher and Zhang
in the context of filtered chain complexes. The information present at the level of filtered
chain complexes includes points with zero persistence which provide additional information
to that present at homology level. The resulting invariant, called verbose barcode, which
has a stronger discriminating power than the usual barcode, is proved to be stable under
certain metrics that are sensitive to these ephemeral points. In some situations, we provide
ways to compute such metrics between verbose barcodes. We also exhibit several examples
of finite metric spaces with identical (standard) VR barcodes yet with different verbose VR
barcodes thus confirming that these ephemeral points strengthen the standard VR barcode.

1 Introduction

In topological data analysis, persistent homology is one of the main tools utilized for extract-
ing and analyzing multiscale geometric and topological information from metric spaces.

Typically, the persistent homology pipeline (as induced by the Vietoris-Rips filtration) is
explained via the diagram:

Metric Spaces — Simplicial Filtrations — Persistence Modules

where, from left to right, the second map is homology with field coefficients. Throughout
the paper, we fix a base field F. We restrict our considerations to finite metric spaces, finite-
dimensional simplicial complexes, and finite-dimensional chain complexes. Specifically, in
this paper, for any chain complex (C, ), the total dimension dim(Cy) = ;- dim(Cy) is
finite.

Pairs of birth and death times of topological features (such as connected components, loops,
voids, and so on) give rise to the barcode, also called the persistence diagram, of a given
metric space [15, 6]. The so-called bottleneck distance dp between the persistent homology
barcodes arising from the Vietoris-Rips filtration of metric spaces provides a polynomial time
computable lower bound for the Gromov-Hausdorff distance dgy between the underlying
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metric spaces. However, this bound is not tight, in general (cf. Example 6.9). A version of
this theorem restricted to the case of finite metric spaces states:

Theorem 1 (Stability Theorem for dg, [10, 12]). Let X and Y be two finite metric spaces.
Let By(X) (resp. Bx(Y)) denote the barcode of the persistence module Hy (VRe(X)) (resp.
Hy (VRe(Y))). Then, for any degree k € Zxo,

dp(Bi(X), Be(Y)) < 2-daeu(X,Y).

In this paper, with the goal of refining the standard stability result alluded to above, we
concentrate on the, usually implicit but conceptually important, intermediate step which
assigns a filtered chain complex (FCC) to a given simplicial filtration:

Metric Spaces — Simplicial Filtrations — — Persistence Modules.

Related work on FCCs. An FCC is an ascending sequence of chain complexes connected
by monomorphisms. For instance, an FCC induced by a simplicial filtration {X;};r can be
represented by the following commutative diagram: for any ¢ < t/,

ak 6k

B

Cu(Xy) - S G (X)) — 5 Cr(Xy) — -
| U T N

C*(Xt/) : ﬁ) Ck+1(Xt/) ﬂ) Ck(Xt/) *k>

where each X; is a simplical complex and C,(X;) denotes the simplical chain complex of
X;.

Studies of the decomposition of FCCs in several different settings can be found in [31, 14,
25, 8, 7]. We follow the convention of Usher and Zhang [31], where they study a notion
of Floer-type complexes as a generalization of FCCs and prove a stability result for the
usual bottleneck distance between concise barcodes of Floer-type complexes. In particular,
they studied FCCs in detail and considered the notion of wverbose barcode Byer , of FCCs,
which consists of the standard barcode (which the authors call concise barcode and denote
as Bcon,k 1= By) together with additional ephemeral bars, i.e. bars of length 0.

They also proved that every FCC decomposes into the direct sum of indecomposables & (a, a+
L, k), which they called elementary FCCs, of the following form (see Definition 3.16): if
L € [0,00) and a € R, then £(a,a + L, k) is given by

t<a: om0 g Gn=0 Ly %20 g
U )
Op4+2=0 Ok+1=0 =
tela,a+L): ---—0 s 0 ha Fz =0 0—
Or42=0 £ Op41:Yy— l: =
te[a—i—L,oo): o0 k+2 s Fy k+1:Y—T Fr J,=0 0= e,
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where Fa denotes the vector space generated by x. If L = oo, then &(a,0,k) (with the
convention that a + o0 = o0) is given by

Pl =0 0 =0 0 =0

t<a: > ) 2 0 b 0—
Ok+2=0 1= Ok+1=0 ! 0r=0

tela,0): -+ —0 > 0 > Fo 0—

The degree-l verbose barcode of the elementary FCC &£(a,a + L, k) is {(a,a + L)}, where
each pair (a,a + L) is called a bar and L is its length, for [ = k and is empty for | # k.

The concise barcode of an FCC is defined as the collection of non-ephemeral bars, i.e. bars
corresponding to elementary FCCs with L # 0 in its decomposition, which agrees with the
standard barcode. Indeed, the k-th persistent homology of the elementary FCC £(a,a+ L, k)
is the interval persistence module associated with the interval [a,a + L), for L € [0,00]. In
particular, Hi(E(a, a, k)) is the trivial persistence module.

In real calculations, barcodes are often computed for simplexwise filtrations first (i.e., sim-
plices are assumed to enter the filtration one at a time), in which case all elementary FCCs
correspond to intervals with positive length. This implies that, although not outputted,
verbose barcodes are computed in many persistence algorithms. For VR FCCs, we made a
small modification of the software Ripser introduced by Bauer (see [1]) to extract verbose
barcodes of finite metric spaces.

In [8], Chacholski et al. studied invariants for tame parametrized chain complexes, which
are a generalization of filtered chain complexes obtained by allowing maps between chain
complexes to be non-injective. In the finite-dimensional case, their notions of Betti diagram
and minimal Betti diagram for filtered chain complexes respectively boil down to the verbose
barcode and concise barcodes introduced in [31]. In a subsequent paper [7], the authors
introduced an algorithm for decomposing filtered chain complexes into indecomposables.
Giunti and Landi reported [20] having independently explored ideas similar to the ones in
our paper.

When a filtered chain complex arises from a simplicial filtration, its verbose barcode can
also be obtained through the usual matrix reduction procedure applied to the boundary
matrix of the underlying simplicial filtration. In this simplicial setting, in |17, 28, 18, 30]
the authors study problems related to the reconstruction of simplicial complexes embedded
in R? via verbose barcodes (which they call “augmented persistence diagrams").

Overview of our results. One drawback of the bottleneck stability result described in
Theorem 1 is that one asks for optimal matchings between the concise (i.e. standard)
barcodes Bcon k(X ) and Boon,k(Y') for each individual degree k independently.

With the goal of finding a coherent or simultaneous matching of barcodes across all degrees at
once, we study the interleaving distance d; between FCCs (see Definition 4.1) and establish
an isometry theorem between dy and the matching distance dy; between the verbose barcodes
(see Definition 4.7):
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Theorem 2 (Isometry theorem). For any two filtered chain complexes (Cy,d0c,lc) and
(Dx,0p, D),

Sup dm (Bver k(Ci)s Bver,x(D«)) = di ((Cx, 0c, £c) , (Dx, 0D, D)) -
€4:>0

To prove that dy < dp (see Section 4.3.2), we adapt ideas implicit in [31, Proposition 9.3]
which the authors applied to establish the stability of Floer-type complexes (on the same
underlying chain complex). For the other direction, dy; = d (see Section 4.3.2), we employ
an approach similar to the one used to demonstrate that the standard bottleneck distance
between concise barcodes is upper bounded by the interleaving distance between persistent
modules, cf. |23, Theorem 3.4].

In contrast to dg between concise barcodes, dy; between verbose barcodes of VR FCCs is
not stable under the Gromov-Hausdorff distance between metric spaces. Indeed, dy; is only
finite if the two underlying metric spaces have the same cardinality. We remedy this issue
in Section 5.2 by incorporating the notion of tripods as in [26].

Let (X,dx) be a metric space, Z a set and ¢x : Z — X a surjective map. We equip Z
with the pullback vectors ¢% dx of the distance function dx and call the pair (Z, ¢% dx) the
pullback (pseudo-metric) space (induced by ¢x). A tripod between two sets X and Y is a
pair of surjections from a common set Z to X and Y respectively, which will be expressed
by a tuple (Z, ¢x, ¢y ) or a diagram

X $x Z¢Y v

Given a degree k, we define the pullback bottleneck distance (induced by degree-k verbose
barcodes) between two finite metric spaces X and Y to be the infimum of the matching
distance between the degree-k verbose barcodes of the VR FCCs induced by the respective

pullbacks (Z, % dx) and (Z, ¢§ dy ), where the infimum is taken over finite tripods X «¢—X
Z ¢—Y» Y. We denote the resulting quantity by (/1\]37;6; see Definition 5.3. When it is not

necessary to specify a particular degree k, we will write &\B instead of Jka.

Similarly, we define the pullback interleaving distance (induced by VR FCCs) between metric
spaces, and denote it by di (see Definition 5.2).

Remark 1.1 (Terminology). We point out the following regarding the use of the term ‘dis-
tance’” when referring to dgy and dy:

(1) 31370 satisfies the triangle inequality Corollary 6.10.
(2) For k > 0, the question of whether C/l\B,k satisfies the triangle inequality is still open.

(3) JI does not satisfy the triangle inequality; see Section 5.4.1 for details.

Due to Items (2) and (3), the term ‘distance’ is being abused through the use of the ter-
minology ‘pullback bottleneck distance’ and ‘pullback interleaving distance’. We do so for
consistency with Item (1) and due to the fact that in Section 5./.1 we provide a way to
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modify C/Z\I and JB so that they do satisfy the triangle inequality (while still being Gromov-
Hausdorff stable), thus making them pseudo-metrics between metric spaces.

In general, the pullback bottleneck distance c’l\B (or the pullback interleaving distance c/l\l)
depends on the underlying metric spaces, rather than solely on the verbose barcodes (or
FCCs). However, we prove that dg o depends only on the barcodes; see Proposition 1.5.

It follows from Theorem 2 that we immediately have the following:

Corollary 1.2. Let (X,dx) and (Y,dy) be two finite metric spaces. Then,

sup _inf  dm (Bverk(Z2x), Bverk(Z < inf  supdy (Bverk(Zx), Bver k(2
wp  dnf M (Bver k(Zx), Bver,k(Zy)) (gl sup M (Bver k(Zx ), Bverk(Zy )

sup dp i, (X,Y) di (X,Y).
k

In the theorem below, we show that the pullback bottleneck distance C/Z\B is stable under
the Gromov-Hausdorff distance dgy, and that the bottleneck distance dg between degree-k
concise barcodes is never larger than a/l\Byk. We show in several examples below and in Section
5.3 that, between degree-k concise barcodes, C/l\B,k can be strictly larger than dg. Thus, the
stability of &\B provides a better lower-bound estimate of dgp, compared with the standard
bottleneck distance dp (cf. Theorem 1). See Section 5.2 for the proof of Theorem 3.

Theorem 3 (Pullback stability theorem). Let (X,dx) and (Y,dy) be two finite metric
spaces. Then, for any k € Z>o,

dB (BCon,k(X)a BCon,k(Y)) < JB,k (X7 Y) < C/Z\I (X7 Y) <2- dGH(X¢ Y) (1)

See Figure 1 for a pair of 3-point metric spaces for which the bottleneck distance dg between
their concise barcodes fails to distinguish them, but the pullback bottleneck distance dp
induced by verbose barcodes succeeds at telling them apart.

In Section 5.4, we introduce two variants of the pullback interleaving /bottleneck distance (see
Definition 5.13 and 5.14), which offer advantages in terms of computational efficiency (see
Section 6.2.1). We refer to all variations of pullback interleaving and bottleneck distances
as ‘pullback distances’. We show that all pullback distances are stable under the Gromov-
Hausdorff distance dgy between metric spaces and they provide better lower bounds for dgy
than the bottleneck distance between the concise barcodes; see Theorem 9.

In order to have a more concrete understanding of the pullback bottleneck distance and in
order to explore the possibility of computing it, we study the relation between the verbose
barcode of a pullback space (Z, ¢% dx) with the verbose barcode of the original space X. We
conclude that the verbose barcodes of Z and X only differ on some distinguished diagonal
points; see Proposition 1.3 below and its proof in Section 6.1.1.
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0 |Cl—02| |61—62|

Figure 1: First table: Three-point metric spaces X7 and X5 together with their verbose
barcodes. Here a < b < ¢; for i = 1,2. Second table: the bottleneck distance between con-
cise barcodes, the pullback bottleneck distance and twice of the Gromov-Hausdorff distance
between X7 and Xs. See Example 5.9.

We now set up some notation about multisets'. Recall that a multiset consists of a set X
together with a multiplicity function my : X — Zx>g. The support of a multiset is defined as
supp(X,mx) := {x € X | mx(x) > 0}. In this paper, we will adopt the following notation
to denote multisets: for an element x € X, and for a non-negative integer m, =™ will be
understood to mean that z has multiplicity m i.e. mx(x) = m. So that, for example,
when we write {z}, 2, 73!} we mean the multiset where X = {1, 72,23} and mx(z1) = 4,
mx(z2) = 1, mx(x3) = 21. For convenience, for a non-negative integer m, by {z}" we will
denote the multiset containing exactly m copies of x. In other words, {z}™ = {2"}.

For a multiset A, we define its cardinality, card(A), as the sum of multiplicities of its
elements. A sub-multiset A" of A, denoted A’ = A, is a multiset whose support is a subset
of the support of A and whose elements have multiplicities satisfying m4/(a) < ma(a) for
all ae A’. For any [ > 1, we let

P(A):={A c A:card(A") =1}, (2)

that is, P;(A) consists of sub-multisets of A each with cardinality [. Let Py(A) = .

Proposition 1.3 (Initial formula for pullback barcodes). Let k = 0 and m = 1, and let X
be a finite pseudo-metric space. For {xj ,...,x;, } = X for some ji < --- < jp, consider
the multiset Z = X u{zj,...,xj,}. Then, for k>0,

BVer,k(Z) = BVer,k(X) U |_| |_| {diam({xjiH} U /BZ) ’ (17 1)} . (3)

m—1
=0 BieP((X\{wj,yq De{sy s, })

In particular, Byer,o(Z) = Bver,0(X) L uzigl{diam({mjiﬂ}) (1,1)} = Byer,o(X) L {(0,0)}™.

!We use the notation {-} for multisets as well when its meaning is clear from the content.
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Because the concise barcode can be obtained from the verbose barcode by excluding all
diagonal points, the above proposition interestingly implies that Beon x(Z) = Bcon k(X)) for
any degree k.

To better understand Equation (3) in the case when k > 1, we give a graphical explanation
in Figure 2. Let (X, dx) be a finite metric space with X = {x1,...,2,}. Each finite pullback
space (Z, ¢%dx) of X can be regarded as a multiset X u {z;,,...,z;,} equipped with the
pullback pseudo-metric ¢%dx induced from dx, for some m > 0and 1 < ji < -+ < jp <
see Remark 6.3. In other words, the extra points in Z are ‘repeats’ of the points in X. We
will call each point in X the parent of its repeated copies. More specifically, for each z € Z,
the point ¢x(z) € X will be called the parent of z. We identify Z with

X\_|{xl,...,xl,...,xn,...,xn},
—_ —_——

mi mn

where each m; > 0 is the multiplicity of the extra copies of x; in Z and my +---+m,, = m.

We call m := (myq,...,my) the pullback vector associated with Z.
=X mi ma mn
A A A
- i) @ N N @ N
1=0: L1,y e ooy Ty L1y L1y ooy Tly L2 Ty e e ey L2yevny Ty Ty e -5 Ty
t1=mp —1: T1, T2y ooy Ty L1y L1y ey L1y T2, T2y« o vy T2yevny Ty Tyyen .y Ty
izml : L1y X2y eee sy L1y L]yeeeyLly L2yTL2y oo yL2yevey LpyTpy...,Tp
t=m1+ -+ Mmy_q: L1, L2, 3 Tn, L1, L1y --, L1, L2,L25 .-+, L2+, Tpy; Ty ---3 Ty

Figure 2: Using the notation from Equation (3), for each i (i.e., for each row), the point
xj,,, is colored blue. For each ¢, multiset 8; in Equation (3) ranges over all k-element sub-
multisets of the red-colored multiset. Notice that each red-colored multiset consists of every
point before x;, , (from left to right) excluding the parent of zj,, .

In Section 6.1.2, we prove the following proposition which provides an explicit formula both
for the coordinates of the extra diagonal points and for their multiplicity in all degrees (see
page 51 for the notation p(m(I,))). As above, we let X = {z1,...,z,}.

Proposition 1.4 (Explicit formula for pullback barcodes). Let Z := X u {z1}™ w - U
{xn}", where each mj = 0 is the multiplicity of the extra copies of x; in Z. Then, for any
degree k,

BVer,k(Z) = BVer,k(X) o |_| {diam({xilv'xim o 7337,';;}) : (15 1)}1%(%(][))) .
1<p<k+1
1<ip<---<ip<n
mj

I<:+1)’ for each j.

In particular, the multiplicity of diam({z;}) - (1,1) is (

We examine the relationship between &\B and dp, and obtain an interpretation of &\B in terms
of matchings of points in the barcodes. To compute dg, one looks for an optimal matching
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where points from a barcode can be matched to any points on the diagonal. However, in
the computation of dg, points are only allowed to be matched to verbose barcodes and a
particular multiset supported on the diagonal, where the choice of these diagonal points
depends on the metric structure of the two underlying metric spaces.

In degree 0, since the verbose barcode of any pullback space Z of X only differs from
the verbose barcode of X in multiple copies of the point (0,0), the distance dp is indeed
computing an optimal matching between concise barcodes which only allows bars to be
matched to other bars or to the origin (0,0) (see Figure 3). Given that all degree-0 bars
originate at 0, we derive the following explicit formula for computing the distance dg for
degree-0 (see Section 6.2.2 for the proof):

Proposition 1.5 (Pullback bottleneck distance in degree 0). Let X and Y be two finite
metric spaces such that card(X) = n < n’ = card(Y’). Suppose the death time of finite-length
degree-0 bars of X and Y are given by the sequences a1 = -++ = an—1 and by = -+ = by _q,
respectively. Then,

&\B,O(X,Y)zmax{ max |a; — b;|, max bl}.

1<is<n—1 n<is<n/—1

X1: e--(Q --o XQ: e
BVer,O = BCon,O {(07 a), (07 OO)} ‘ {(07 OO)}
death death
(0,0) (0,0)
(0,a) " (0,a) N
dB T2 \\\ C/I\B =a
1
,I
/I
birth birth

Figure 3: Top: X; a two-point space, X5 the one-point space, and their 0-th verbose (or
concise) barcode. Bottom: visualization of dg and dp, where in both figures the point (0, )
is matched with (0,00) and the distance between points is measured using the max norm.

For positive degrees, the situation becomes more complicated because, in addition to the
point (0,0), other choices of diagonal points need to be considered, as evidenced by the
formula for pullback barcodes in Proposition 1.3. Although we cannot obtain a formula
as simple as that for the degree-0 case, the pullback distances can be simplified utilizing
pullback vectors. See Section 6.2.1 for details, where we also analyze the time complexity
for brute-force algorithms for pullback distances.

In Section 6.2.3, we present an important example involving certain five-point ultra-metric
spaces. This example illustrates both the strictness of some inequalities in Theorem 9 and
the failure of the triangle inequality of the pullback interleaving distances (see Corollary
6.12).
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1.1 Organization of the Paper

In Section 3, we recall the notions of filtered chain complexes, verbose barcodes and concise
barcodes. For the case of Vietoris-Rips FCCs, we characterize verbose barcodes of ultra-
metric spaces, cf. Theorem 5, and study the relation between isometry of metric spaces as
well as filtered chain isomorphism and filtered homotopy equivalence of FCCs in Section 3.3.
In Section 4, we study the interleaving distance between FCCs and the matching distance
between verbose barcodes, and we establish an isometry theorem for these two notions of
distances, i.e. Theorem 2. Starting from Section 5, we specifically focus on the case of
Vietoris-Rips FCCs and define dB and dI via tripods of metric spaces in Section 5.1. In
addition, we establish a Gromov-Hausdorff stability for them by proving Theorem 3 in Sec-
tion 5.2. Examples are provided in Section 5.3 to demonstrate that both inequalities in
Theorem 3 can be strict. In Section 5.4, we introduce two variants of the pullback interleav-
ing/bottleneck distance. In Section 6.1, we establish relations between the verbose barcodes
of the pullback of a metric space and those of the original space, by proving Proposition 1.3
and Proposition 1.4. In Section 6.2, we study the interpretation and computability of the
pullback distances. We prove Proposition 1.5 in Section 6.2.2.

2 Preliminaries
In this section, we recall some backgrounds on (pseudo-)metric spaces, Vietoris-Rips com-
plexes and the Gromov-Hausdorfl distance.

Given a set X, a metric dx on X is a function dx : X x X — [0, +0) such that for any
x,y, 2z € X, the following axioms hold:

e dx(z,y) =0 and dx(x,y) = 0 if and only if z = y;
e (Symmetry) dx(z,y) = dx(y,z);
e (Triangle inequality) dx(z,2) < dx(z,y) + dx(y, 2).
A metric space is a pair (X, dx) where X is a set and dx is a metric on X.

An wultra-metric dx on X is a metric dx on X satisfying the strong triangle inequality:
dx(z,2z) < max{dx(z,y),dx(y,2)} for all z,y,z € X. A pseudo-metric dx on X is a
function dx : X x X — [0,40) satisfying the axioms for a metric, except that in the
first axiom different points are allowed to have distance 0. Given two pseudo-metric spaces
(X,dx) and (Y,dy), a map f : (X,dx) — (Y,dy) is said to be distance-preserving if
dx(z,2') = dy(f(x), f(2')) for all z,2" € X. A bijective distance-preserving map is called
an isometry. Two pseudo-metric spaces X and Y are isometric, denoted X =~ Y, if there
exists an isometry between them.

Given a finite pseudo-metric space (X, dx) and € > 0, the e- Vietoris—Rips complex VR¢(X)
is the simplicial complex with vertex set X, where

a finite subset 0 — X is a simplex of VR,(X) <= diam(o) < e.
Here diam(-) denotes the diameter of a subset of X. Let
VR(X) := VRdiam(X) (X),
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which is the full complex on X. For each k € Zx¢, we denote by Cr(VR (X)) the free F-vector
space generated by k-simplices in VR(X), and let C,(VR(X)) be the free simplicial chain
complex induced by VR(X) over coefficients in F, with the standard simplicial boundary
operator &X. Notice that up to homotopy equivalence the simplicial complex VR(X) only
depends on the cardinality of X, so does the chain complex (C,(VR(X)), 0%).

The Hausdorff distance between two subspaces X and Y of a metric space Z is
dG(X,Y) :=inf{r>0: X< B(Y,r) and Y € B(X,r)}.

For metric spaces (X,dx) and (Y, dy), recall from [16, 21| that the Gromov-Hausdorff dis-
tance between them is the infimum of r > 0 for which there exist a metric space Z and two
distance preserving maps 1y : X — Z and ¢y : Y — Z such that dZ(¢x(X), ¥y (Y)) <,
ie.,

den(X,Y) := y A (x (X), ¥y (V).

Reformulation of dgp using maps. The distortion of a map ¢ : X — Y is defined to be

dis(¢) i= sup |dx(z,2') — dy (p(), p(a'))].

z,x'eX

For maps ¢ : X — Y and ¢ : Y — X, their co-distortion is defined to be

codis(p,v) := sup |dx(z,9¥(y)) — dy(e(x),y)].
rzeX,yeY

It follows from [22, Theorem 2.1| that

don(X.Y) = il % max{dis(p),dis(), codis(p, ). @)
prx—
VY —>X

Reformulation of dgpy using correspondences. A correspondence between X and Y is a
subset R of X xY such that for any x € X there exists at least one y € Y such that (z,y) € R
and for any y € Y there exists at least one z € X such that (z,y) € R. The distortion of a
correspondence R between X and Y is defined to be:

dis(R) := sup |dx (z,2") — dy (y,9')| .
(z,y),(z',y")ER

Let (X, Y") denote the collection of all correspondences between X and Y. It follows from
[3, Theorem 7.3.25] that

dou(X,Y) = %Re %?)12 " dis(R). (5)

Reformulation of dgy; using tripods. A parametrization of a set X is a set Z together with
a surjective map ¢ : Z — X. A tripod between two sets X and Y is a pair of surjections
from another set Z to X and Y respectively, expressed by the diagram (cf. [26])

¥ $x Z¢y v
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The distortion of a tripod (Z, ¢px, ¢y ) between X and Y is defined to be:

dis((Z, ¢x,dy)) :== sup |dx(dx(2),ox(2) — dy(dy(2), oy (2"))].

z,2'eZ

It follows from [3, Section 7.3.3] that

dGH(Xa Y) = % o Inf o dlS((Z, ox, ¢Y)> (6)
Xz sy

Remark 2.1. Notice that for finite metric spaces X and Y, as given by Equation (6), the
Gromov-Hausdorff distance dgu(X,Y) can be computed by only considering finite tripods.
To see this, consider a possibly infinite tripod (Z,¢x,dy). Define Z' = {(¢px(2), ¢y (2)) |
z € Z} c X xY, which is finite given that both X and Y are finite. It is straightforward
to verify that dis(Z') = dis(Z). Therefore, for computing dgu(X,Y) via Equation (6), any
tripod between X andY can be replaced by a finite tripod whose underlying set has cardinality
no greater than card(X) - card(Y’).

3 Filtered Chain Complexes (FCCs)

In this section, we recall from [31] the notion of filtered chain complexes (in short, FCCs)
together with the construction of verbose barcodes and concise barcodes for FCCs.

3.1 Filtered Chain Complexes

Let F be a fixed field. A non-Archimedean normed vector space over F is any pair (C, /)
where C' is a finite-dimensional vector space over F endowed with a filtration function
0:C — Ru {—w} defined as a map satisfying the following axioms:

(i) ¢(x) = —oo if and only if x = 0;
(ii) For any 0 # A e F and x € C, {(Ax) = {(x);
(iii) For any = and y in C, {(z + y) < max {{(z),l(y)}.

A finite collection (z1,...,x,) of elements of C is said to be orthogonal if, for all Ay,..., A,

in IF,
14 (Z; )\Z-xz-) = r)\rlligﬁ(xz)

An orthogonalizable F-space (C, /) is a finite-dimensional non-Archimedean normed vec-
tor space over F such that there exists an orthogonal basis for C'. Two subspaces are V, W
of C' are said to be orthogonal if for all z € V and y € W, l(x + y) = max{{(x),{(y)}.

Below, we introduce a couple of lemmas regarding filtration functions and the orthogonality
of subspaces, which will be referenced in later sections.

Lemma 3.1. For any x,y € C such that {(x) # ((y), we have £(z + y) = max{{(z), (y)}.
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Proof. Given that ¢(x) = ¢(—=x), it follows that £(y) = ¢((y + x) + (—2)) < max{{(y +
x),¢(x)}. Therefore, if £(y) > ¢(z) it must be that ¢(y) < ¢(y+x). This implies max{/(x), {(y)} <
l(x 4+ y). A similar argument applies if £(y) < ¢(x). O

Lemma 3.2 (Lemma 2.9, [31]). Let (C,¥¢) be a non-Archimedean normed vector space over
F. Then,

o For subspaces U,V and W of C, if U and V are orthogonal and U @V and W are
orthogonal, then U and V@ W are orthogonal.

e [fU and V are orthogonal subspaces of C, and if (u1,...,u,) and (vi,...,vs) are
orthogonal collections of elements of U and V', respectively, then (ui, ..., up,v1,...,0s)
1s orthogonal in U @ V.

Definition 3.3 (Filtered chain complex). A filtered chain complex (FCC) over T is a
finite-dimensional chain complex (Cy = ®pezCk, 0c) over F together with a function (o :
Cyx — Ru{—ow0} such that each (Ck,lc|c, ) is an orthogonalizable F-space, and {codc < lc.

A morphism of FCCs from (Cy,0c,lc) to (D, 0p,€p) is a chain map ®, : Cy — D,
that is filtration preserving, i.e. £po ®, < {c.

Example 3.4 (Vietoris-Rips FCC). For a finite pseudo-metric space (X,dx), we denote

by (C+(VR(X)), %) the chain complex of the simplicial complex VR(X) (see Section 2).
Define a filtration function £~ : C4(VR(X)) — R U {—o0} by

X (Z i az> = max {diam(0;)}

where the o; are simplices, and (X (0) := —c0. Then (Cy(VR(X)), 0%, ¢X) is an FCC, and

the set of simplices is an orthogonal basis for it.

Definition 3.5 (Filtered homotopy equivalent). Two chain maps Py, ¥y : Cx — Dy are
called filtered chain homotopic if they are filtration preserving and there exists a filtration
preserving chain map K : Cy — Dyy1 such that &, — V¥, = 0c K + K0p.

We say that (Cy, 0c,lc) and (Dy,0p,€p) are filtered homotopy equivalent (or f.h.e.)
if there exist filtration preserving chain maps ®, : Cy — Dy and V, : Dy — Cy such
that U, o ®, is filtered chain homotopic to the identity Idc while @4 o W, s filtered chain
homotopic to Idp.

Definition 3.6 (Filtered chain isomorphism). Two FCCs (Cy, dc,Lc) and (Dy,0p,fp) are
said to be filtered chain isomorphic (or f.c.i.) if there exists a chain isomorphism

P, 2 (Ck, 0c) = (Dy, 0p) such that £p o @, = lc,
denoted by (Cy, dc,lc) = (D+,0p,Lp), or Cyx = Dy for simplicity.

Remark 3.7. Let FCC denote the category whose objects are FCCs and morphisms are
given in Definition 3.5. Then the filtered chain isomorphism relation coincides with the
isomorphism in the category FCC.
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Dual of a FCC. Given a non-Archimedean normed vector space (C,¢), the dual space
C* becomes a non-Archimedean normed vector space if equipped with the dual filtration
function £* : C* — R u {—o0} given by

0*(¢) :=sup{—{l(x) | x € C, ¢(x) # 0}.

By [31, Proposition 2.20], if (y1,...,¥,) is an orthogonal ordered basis for (C,¥¢), then the
dual basis (yf,...,y;) is an orthogonal ordered basis for (C*,¢*) such that £*(y}) = —€(y;)
fori=1,...,m.

3.2 Verbose and Concise Barcodes
In this section, we recall the definition of verbose barcode and concise barcode from [31].

Definition 3.8 (Singular value decomposition). Let (C,{c) and (D,fp) be two orthogonal-
izable F-spaces, and let A : C — D be a linear map with rank r. A (unsorted) singular
value decomposition of A is a choice of orthogonal ordered bases (yi,...,yn) for C and
(1,...,2m) for D such that:

® (Yri1,---,Yn) s an orthogonal ordered basis for Ker A;
o (x1,...,2,) is an orthogonal ordered basis for ITm A;
o Ay, =ux; fori=1,...,r.

If (1,5 Yn)s (1, ..oy xm)) is such that o(y1) — bo(x1) = -+ = Lo(yr) — Lo(xy), we call
((Y15---3Yn), (X1,...,2m)) a sorted singular value decomposition.

The existence of a singular value decomposition for linear maps between finite-dimensional
orthogonalizable F-spaces is guaranteed by [31, Theorem 3.4].

Definition 3.9 (Verbose barcode and concise barcode). Let (Cy, dc,lc) be an FCC over F
and for each k € Z write 0y = 0c|c,- Given any k € Z choose a singular value decomposition
(Y1, Yn), (T1, ..., @m)) for the F-linear map 011 : Cr+1 — Ker 0 and let v denote the
rank of Ox41. Then the degree-k verbose barcode of (Cy,0c,lc) is the multiset Byer  of
elements of R x (R w {o0}) consisting of

(i) a pair (£(x;),4(y;)) for each i =1,...,r = rank(dx+1); and
(ii) a pair (£(z;),0) for eachi=1r+1,...,m = dim(Ker ).

These pairs are also called bars. The first (resp. second) entry in a bar is called the birth
time (resp. death time) of that bar. The length of a bar, i.e., {(y;) — £(z;) = 0 or , is
called its life time (or also called persistence). The concise barcode of (Cy,0c,lc) is
the submultiset of the verbose barcode consisting of those elements where €(y;) — £(z;) > 0.

It is shown in [31, Theorem 7.1] that each degree-k verbose barcode is independent of the
choice of the singular value decomposition of k1.

Remark 3.10. In the case of Vietoris-Rips FCCs (see Example 3.4 ), the concise barcode is
equivalent to the classical persistent homology barcode [31, page 6].
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Remark 3.11. Let X be a finite metric space. The degree-0 verbose barcode Byero and
the degree-0 concise barcode Boono of the Vietoris-Rips FCC (Cy(VR(X)), 0x, %) are the
same. Notice that this is not necessarily true for pseudo-metric spaces, in which case verbose
barcode may contain several copies of (0,0).

The following theorem states that one can construct an orthogonal ordered basis for the
target space when given any orthogonal ordered basis for the source space. This theorem
will be applied in later sections to prove the stability of verbose barcodes; see Section 4.3.1.

Theorem 4 (Theorem 3.5, [31]). Let (C,4c) and (D,fp) be two orthogonalizable spaces,
let A:(C,lc) — (D,€p) be a linear map and let (y1,...,yn) be an orthogonal ordered basis
for C. Then one may algorithmically construct an orthogonal ordered basis (yi,...,y,) for

C such that
o If Ay; =0, then y, = v;;
o lo(y)) = Lo(yi) and p(Ay,) < U(Ay;), for any i;
o The set {Ay. : Ay, # 0} is orthogonal in D.

Example 3.12 (Verbose barcodes of Vietoris-Rips FCCs). Recall from Example 5./ the
notion of Vietoris-Rips FCC. Let X be a finite pseudo-metric space of n points. Note that
VR(X) has trivial homology groups Hi(VR(X)) = 0 for each k = 1, i.e. Ker 0y = Im 0x41.
Thus, the following sequence is exact at each degree except for 0, where Cy := C(VR (X))
for k=0

On+1=0 On— 0 0
Do =022 o, s O — 2 Oy —25 0

The cardinality of k-verbose barcodes (with multiplicity) of (Cx(VR(X)), 0x,£~) is

n, k=0,
card(Bver x (X)) = dim(Ker d) = (ZH), for1<k<n-—2,
0, fork=n—

Indeed, because 0y = 0, we have card(Byero(X)) = dim(Cp) = n. For 1 < k < n— 2, we
prove by induction that card(Byerk(X)) = (k+1) First, when k = 1 we have

dim(Im ;) = dim(Ker 6y) — dim(Hy) = dim(Cp) — dim(Hp) = n — 1,
and thus,

card(Byer1 (X)) = dim(Cy) — dim(Tm é;) = (Z) (1) = <” ) 1).

Suppose that card(Byer,x—1(X)) = dim(Ker dy_;) = (”;1) Then, for degree k we have
(k :L_ 1) = dim(Cy) = dim(Ker ;) + dim(Im ;) = card(Byer (X)) + dim(Ker d,_1),
implying that

cardBras0) = (1)) —eadBnna0) = () - (") = (00 0)
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3.2.1 Verbose Barcodes of Ultra-Metric Spaces

In Theorem 5 we provide a complete characterization of the verbose barcodes of a finite
ultra-metric space (X,ux). The statement of the theorem uses a special ordering of the
points described in |27, Proposition 4.19] which we now recall.

Let (X,ux) be an ultra-metric space of n points. We order the points in X following the
procedure described in the proof of [27, Proposition 4.19]. In order to produce one such
ordering x1 < 9 < --- < xp of X:

e Pick an arbitrary point x; € X;
e Find z3 € X — {1} such that ux(z1,72) = mingex_(5,) ux (71, 7);

e Find 3 € X — {z1, 22} such that ux (22, 23) = mingex (g, 2.} Ux (T2, T);

e Find z; € X —{x1,...,2,-1} such that ux(z;—1,z;) = MiNge X (o), 21} ux(zi—1,2);

e Finish when (n — 1) points are found, and label the remaining point in X as z,.

Note that this ordering is not unique. We will refer to any such order as a self-consistent
order on X .?

For the rest of this subsection, we assume that, given an ultra-metric space (X, uy), the
finite set X consists of points 1 < - -+ < x, ordered as above.

Theorem 5 (Verbose barcodes of ultra-metric spaces). For any degree k > 1, we have

BVer,k(X) = |_| {uX (mil—lvwikﬂ) ’ (17 1)}

2<iy <iy<r<ipi1<n
n—1 n—k—1 i
= |_| {ux(xi,g:j) (1, 1)}( w1) . (7)

j—i=k+1 i=1

We represent the multiplicity of points in Byer(X) via a matrix whose (7, j)-th element
is the multiplicity of the point wx (z;,z;) - (1,1). Then, Equation (7) can be expressed as
follows: for any k£ > 1, the non-zero part of the multiplicity matrix is

T1 ... Tk41 &;gk—? $kk+3 e IUn3
1 k-1 k—1 T Z:l)
- it P I (s
- o
L2 (k—l) e (k—l)
Tkt ()

Tn

2The key property of any such order is that it permits immediately reading off the usual degree-0 VR
barcodes from the ultra-metric space structure; see Proposition 3.13 for details.
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It can be derived from [24, Corollary 2.13] that ultra-metric spaces only have non-trivial
concise barcodes in degree 0. Furthermore, the 0-th barcode of a finite ultra-metric space is
given by the following proposition.

Proposition 3.13 (|27, Proposition 4.19]). The degree-0 verbose (or concise) barcode for
the Vietoris-Rips FCC of (X, ux) is

{(O,ux(xi,xiﬂ)) 1= 1,. oo — 1} [ {(0, OO)} .

To prove Theorem 5, we first show the following simple lemma.
Lemma 3.14. The following hold:

(1) Foranyi < j, ux(xi,r;) = max {ux (i, vit1), ux (Tit1,75)} = maxjqcj1 {ux (2, 2141)} -

(2) For any iy <ig < --- < i, diam ({z;,, Ty, ..., @i, }) = ux (i, Tip,)-
Proof. For the first equality of Part (1), the inequality ‘<’ is true because ux is an ultra-
metric. It remains to show ‘>’. Recall that z;41 € X—{x1,...,2;}is such that ux (z;, x;11) =
Milgex (4,2} Ux (T3, ). Since j > i, we have x; € X — {x1,...,2;}, and thus

ux (i, Tiv1) < ux(w, j).
Since ux is an ultra-metric, it follows from the above inequality that
ux (zit1, ;) < max {ux (i, vi+1), ux (v, )} = ux (i, 7;).

Therefore, we have max {ux (s, Tiy1), ux (Tit1, )} = ux(x;, x;).
The equality ux (x;, xj) = max;<j<j—1 {ux (2, z141)} can be shown by induction on j — .
Part (2) follows directly from the second equality of Part (1). Indeed, for any i; < is <

-+ < iy, applying Part (1) for each pair iy < iy,1, we obtain

diam ({xi,, Tig, - .., @i }) = max  {ux(x;,xi41)} = ux(@iy, iy ). O
i1 <I<ip—1

Remark 3.15. The ordered multiset {ux (z;, :L"Hl)}?’;ll consists of the death times of finite-
length bars in degree 0. One immediate consequence of Lemma 3.1/ is that one can recover
the ultra-metric ux from {uX(a:i,le)};:ll. Let ix : X x X — R be defined as:

0, i=7
tx (zi,m5) = { max;q<j1 {ux (x, xi41)}, 1<j
ﬂx(l'j,xi), 7> ]

Then, ux = ux.

We now prove Theorem 5.
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Proof of Theorem 5. Fix a degree kK = 1. For notational simplicity, let ¢ := 8§+1 and

:= (X, We use [-] to denote simplices which are ordered lists of vertices, and we call the
first vertex appearing in a simplex its leading verter. Here the order on the vertices is the
one described above Theorem 5.

For a k-simplex v = [70,..., 7], we denote its j-th face by face;(y) for j = 0,...,k. In
other words, face;(7) is a (k — 1)-simplex obtained by removing the j-th vertex ~; of ~.

Claim 1: For any (k + 1)-simplex v = [@j, 1, %), Tip, .-, Tiy, ] With 2 < iy <ip < -+ <
igr1 <nandany j=1,...,k—1,

(y) = ux(xi, 1,74, ,) = £ (facej(y)) = £(0v).

The first and second equalities follow from Lemma 3.14 Part (2) directly, by which we also
have £ (faceo(y)) = ux(wi,,xi,,,) and £ (faceg(y)) = ux(x;,, ;). Moreover, this implies
that

¢ (faceg(7)) , £ (facer (7)) < £ (face;j (7))

for every j = 1,...,k — 1. Because simplices are orthogonal, we have

(oy) = max ((face;(7)) = L(face;(7)).

7=0,....k+1
Claim 2: Let A := {[azil,l,xil,xh, T ] 2 < <dp <o <lgy < n}, whose cardi-
nality is (Z:) Then, 0A is orthogonal.

For any linear combination ¢ := >} 4 Ay (07) of elements in 0A where the coefficients A,
come from the base field F, we want to show that ¢ (c) = maxy_ o (07y). The ‘<’ follows
from the definition of filtration functions. It remains to prove ‘=’.

To prove this, consider all simplices that achieve the maximum max),_ .o £(d7y). Out of these
simplices, we select the simplex ¥ = [z, 1, i, Tiy, . - - , T4, , | Which has the smallest leading
vertex according to the given self-consistent order. The choice of 4 may not be unique.

Note that the 1-st face of 4, denoted as face| (y) = [2;, -1, %i,, . - ., 24, , |, cannot be cancelled
out by other terms in the linear combination ZVE 4 Ay (07) . Consider another ' that also
achieves the maximum maxy_ o £(dv). For any j > 2, the j-th face of 7/ will start with two
consecutive vertices, and thus cannot be [x;, 1,24y, ..., %;, ] given that iy — (ip — 1) > 2.
Hence, if [x;,_1, %y, ..., x;, ] were the j'-th face of 4’ for some j’, j' can only be 0 or 1.
Since v # 7, j' cannot be 1. If j* = 0, then v = [x;,_2, %, —1, Tiy, - - - , Tiy,, | has a leading
vertex smaller than x;, ;. This contradicts the definition of 4 as having the smallest leading
vertex. Therefore, we have £(c) = {(face;(7)). Incorporating Claim 1, we obtain

t(c) = Lfacer (7)) = £(7) = £(07) = max (07).

Thus, Claim 2 holds.
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Claim 3: Let B := {[zj, -1, Tiy, Tig, - - -, Tip | | 2 <41 < i < --- < i < n}, whose cardinality
is (";1) Then, dA U B is an orthogonal basis for Cx(VR (X)) whose dimension is (,",).

First, notice that the cardinality of dA L B matches the dimension of Ci(VR (X)):

n—1 n n—1\ n
k+1 k) \k+1)
Thus, to show that 0A L B is an orthogonal basis for Ci(VR (X)), it suffices to show 0A L B

is an orthogonal subset. Since both dA and B are orthogonal subsets, by Lemma 3.2, it
remains to show that A and B are orthogonal to each other.

Let ¢ and ¢’ be non-zero linear combinations of elements in 0A and B, respectively. We
want to prove f(c + ') = max{l(c),(c’)}. When £(c) # ¢(c'), apply Lemma 3.1. When
£(c) = £(c'), since ‘<’ is trivial, we only need to show ‘>’. assume ¢ = >} 4 A, (07) and let
7 be a simplex from the summands of ¢ that achieves the maximum £(c) = maxy_ .0 £(07).
By Claim 1, we know ¢(c) = £(v) = {(face1(vy)). By noting that face;(7) is not in the span
of B, we conclude that ¢(c + ¢’) = {(facei (7)) = £(c) = ¢(c).

Thus, Claim 3 holds.

In summary, we have proved that the following gives orthogonal bases for the boundary
operators:

Ck:-H : ({6[:@1,1, IL‘il, . ,xik+2]} s {[xi1,1,1'1'1, . 7$ik+1]}>

b |

Ck . 0 ({a[wil—lwxilv"'7xik+1]}7 {[xi1—17xi17"'7xik]}>
J» [ 1
Ok—l : 0 e

By the definition of verbose barcodes, we have

BVer,k(X) = {(6 (67) L (7))}7EA
= {(ﬁ (ﬁ[xil_l, Ligye-- ,.%'ik+1]) ,E ([-Til—la Liys--- ’xilﬁ-l]))}2<i1<i2<~~-<ik+1<n

|—| {uX (‘T@'I*hxikH) (1, 1)}

2<i1<io < <ip41<n

n—=k n it
L] | (ux(@ion ) - 103060
i=2 j=itk

n—1 n—k—1 j—i—2)

|_| {ux (w4, ;) - (1, 1)}( k—1

j—i=k+1 i=1
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3.3 Decomposition of FCCs

In this section, we recall from [31], that the collection of verbose barcodes is a complete
invariant of FCCs, and that the collection of concise barcodes is an invariant up to filtered
homotopy equivalence. In addition, for the case of Vietoris-Rips FCCs, we verify that
isometry implies filtered chain isomorphism while the inverse is not true.

Definition 3.16 (Elementary FCCs). For a € R, L € [0,0] and k € Z, we define the
elementary FCC, denoted by E(a,a + L, k), to be the FCC (Ey, 0, E) given as follows:

F, m=k

~,0p:=0andl(\) :=a foreach0 # A € E, =F.
0, otherwise

o [fL =0, then B, 1= {

Fx, m==k
e If L € [0,00), then Ey, := {Fy, m=k+1 withdg : y — z,x — 0, g : y —
0, otherwise

a+ L,x — a such that {x,y} is an orthogonal basis.

By noting that ((y), ()) forms a singular value decomposition for d1, we conclude that the
degree-k verbose barcode of £(a,a+ L, k) is {(a,a + L)} with the convention that a+ 00 = o0.
For [ # k, it is clear that the degree-I verbose barcode of £(a, a+ L, k) is empty. The following
proposition shows that each FCC can be decomposed as the direct sum of some elementary
FCCs.

Proposition 3.17 (Proposition 7.4, [31]). Let (Cy, dc,{c) be a FCC, and denote by Byer i
the degree-k verbose barcode of (Cy,0c,€c). Then there is a filtered chain isomorphism

(Cyocle) =P P Ela,a+Lk).

k€Z (a,a+L)EBver,k

Theorem 6 (Theorem A & B, [31]). Two FCCs (Cy,dc,lc) and (Dy,0p,Lp) are

(i) filtered chain isomorphic to each other if and only if they have identical verbose barcodes
i all degrees;

(ii) filtered homotopy equivalent to each other if and only if they have identical concise
barcodes in all degrees.

Example 3.18 (fh.e. but not f.ci.). Let X and Y be (ultra-)metric spaces of 4 points
given in Figure /. The FCCs (Cx(VR(X)),0%,¢%) and (C«(VR(Y)), 0¥, ¢¥) arising from

Vietoris-Rips complexes have the same concise barcodes but different verbose barcodes.

In Figure J, the ultra-metric spaces X = {x1 < o < 3 < 24} and Y = {y1 < 12 <
ys < ya} are ordered according to respective self-consistent orders (see page 15). Then
we can apply Theorem &5 to obtain the barcodes of the two metric spaces. The diagram
below applies to both X and Y, so we will use the following compressed notation. First,
letting a sequence of indices igiy . . .1 denote the corresponding simplex [z, iy, ..., %; | (or
[Yios Yirs - - - » Yip |, Tesp.) and applying the diagram on page 18, we have the following singular
value decompositions for 0y and 0y :

JoCG 15(2), 258-328, 2024 276


http://jocg.org/
http://creativecommons.org/licenses/by/3.0/

Journal of Computational Geometry

jocg.org

Tyq
p
PN T
/| AY
//[I \\ 1
2 12 x2
2
AR BN 2
L1l e---+---->0 T2 T3
S
1 ~e 1
T3 T4
1_R
- /0 1
)~ [
/\\/’ \\
2 40 9 2
22
l/ ‘\\
!, ! 1
1

Figure 4: Top: the ultra-metric space X and its dendrogram representation; Bottom: the
ultra-metric space Y and its dendrogram representation. In the dendrogram representations,
the distance between two points is defined as the first time when the two points are merged

together. For example, dx (z1,z2) = 1 and dx(x1,24) = 2.

Co : <{6(1234)} : (123,124, 234})

= I

C 0 ({6(123), 0(124), 0(234)}

Co: 0

Then the barcodes of the two metric spaces are given as follows.

e The verbose barcodes for X are

(12,23, 34) )

!

( (8(12), 0(23), 3(34))} )

{(07 1)a(07 1)7(0’2)7(()’00)}7 k=0
1,1),(2,2),(2,2)}, k=1
B (X) = 4 (112222
{(2,2)}, k=2
<, otherwise.
JoCG 15(2), 258-328, 2024 277


http://jocg.org/
http://creativecommons.org/licenses/by/3.0/

Journal of Computational Geometry jocg.org

e The verbose barcodes for Y are

{(Oa 1)?(07 1)7(072)a(0300)}7 k=0
{(2’2)7(2’2)7(272)}7 k=1
{(2,2)}, k=2

A, otherwise.

e The concise barcodes for X and Y are

{(07 1)7 (07 1)7 (07 2)7 (0,00)}, k=0

, otherwise.

Bconk(X) = Boonk(Y) = {

Recall from Example 3.4 the notation for Vietoris-Rips FCCs. Let (X,dx) and (Y, dy)
be two finite pseudo-metric spaces. It is clear that the chain complexes C,(VR(X)) and
C«(VR(Y)) are chain isomorphic if and only if | X| = |Y|. In addition, if |X| = |Y| holds,

then any bijection f: X — Y induces a chain isomorphism
fr: Co(VR(X)) = Co(VR(Y)).

Below, we show that the respective Vietoris-Rips FCCs of two isometric pseudo-metric spaces
are filtered chain isomorphic.

Proposition 3.19 (Isometry implies f.c.i.). Let (X,dx) and (Y,dy) be two finite pseudo-
metric spaces. If (X,dx) and (Y,dy) are isometric, then FCCs (Cyx(VR(X)), 0%, ¢X) and
(C+(VR(Y)), 0¥, 6Y) are filtered chain isomorphic.

Proof. Suppose (X,dx) and (Y,dy) are isometric. Then there exists a bijective map ¢ :
(X,dx) — (Y,dy) such that dx (z,2") = dy (¢(z), p(a’)) for all z,2" € X. Clearly, ¢ induces
a chain isomorphism @, : C,(VR(X)) — C«(VR(Y)) such that each k-simplex [z1,...,zx]
in VR(X) is mapped to [¢(z1),...,¢(xx)] in VR(Y). Since ¢ is distance-preserving, we
have that ¢¥ o &, = ¢X. Thus, ®, is a filtered chain isomorphism. O

However, the converse of Proposition 3.19 is not true.

Example 3.20 (f.c.i. but not isometric). Let X and Y be the ultra-metric spaces (each
consisting of 5 points) depicted in Figure 5. These spaces are extensions of those presented
m Erxample 3.18, obtained by adding the points x5 and ys to X and Y, respectively. The
distance matrices for X and'Y are respectively:

011 2 2 012 2 2
1 01 2 2 10 2 2 2
110 2 2 ]and |2 2 0 1 1
2 2 2 0 05 221 0 05
2 2 2 05 0 2 21 05 0
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I

Z2

T3

Tq

Zs

0.5

0.5

Figure 5: Top: the ultra-metric space X and its dendrogram representation; Bottom: the
ultra-metric space Y and its dendrogram representation.

We apply Theorem 5 to compute the verbose barcodes of the two spaces and see that they are

equal:

{(0
{(1
Byer 1 (X) = Bverx(Y) = { {(2,
{(2

4 Isometry Theorem (di = dy)

k=0
k=1
k=2
k=3
otherwise.

In TDA, it is well-known that, under mild conditions (e.g. g-tameness, see [11]), a certain
isometry theorem holds: the interleaving distance between persistence modules is equal to
the bottleneck distance between their concise barcodes (cf. [13, 9, 13]). In our notation,
this means that for any degree k and any two FCCs (Cy, dc, ¢c) and (D, dp,¥¢p),

dB (Bcon,k(Cx), Beonk(Dx)) = di (Hy o (Cy, 0c, £c) ,Hy, 0 (D4, 0p,{p)) .

In this section, we prove an analogous isometry theorem for the verbose barcode: the inter-
leaving distance di between filtered chain complexes is equal to the matching distance dy
between their respective verbose barcodes:
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Theorem 2 (Isometry theorem). For any two filtered chain complexes (Cy,d0c,lc) and
(Dx,0p, D),

kSLle dM (BVer,k(C*)vg\/er,k(D*)) = dI ((C*a aCaZC) 3 (-D*7 aDa‘gD)) .
€40

4.1 Interleaving Distance d; between FCCs

An FCC (Cy,dc,lc) can be viewed as a functor from the poset category (R, <) to the
category of chain complexes:

t— L' ({t}) and (t < s) = (651 ({t}) — €' ({s}))
where £'(-) represents the preimage.

We review the general notion of interleaving distance given by [2, Definition 3.1 & 3.2|. For
a given category C, two functors V,W : (R, <) — C are said to be )-interleaved if these
exist families of morphisms {f; : V; —» Wiis}er and {g: : Wi — Viis}ier such that the
following diagrams commute for all ¢ < ¢/

Vt,t/ V46,46
Vi— W Vivs —— Vigs
fo gt

ft gy

Wits o— rroas Wt/+5 Wi —wa Wy
and
Ut t+28
Vi > Vigos Vits
gt ft+6
ft 945

Wiss Wi Griias > Witas

Definition 4.1 (Interleaving Distance). The interleaving distance between two functors
V,W: (R, <) - C is

di(V,W) :=inf {6 > 0:V and W are §-interleaved} .
Here we follow the convention that inf 5 = 400.

Remark 4.2. The concept of d-interleaving can be reformulated using the following con-
structions described in [31]. Given an FCC (Cy,0c,c) and X € R, let C3 denote the
subspace of Cy spanned by x € Cy such that lo(x) < A, i.e.

CP =L ([~o0,A]) € Ck.

Because of the property £c o 0c < Lo, Ci‘, together with the restrictions of 0c and Ec,
constitutes an FCC denoted by (C,0c,Lc). For real numbers X < X, the inclusion z/\ :
C} — C) naturally gives rise to a chain map from (C,0c,4c) to (C’i‘ ,0c,lc) that is
filtration preserving.

For ¢ > 0, a d-interleaving between two FCCs (Cy, 0c, o) and (Dy, 0p,€p) is a pair (Py, V)
of chain maps @, : Cy — Dy and Yy : D, — C such that
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L EDO@*<£C+57
o lcoV, </Ip+4;

e For each \ € R, the compositions U3 00} : C) — O+ and ®)H00W) : D) — DRF20
are equal to the respective inclusions.

This reformulation is inspired by [31, Definition A.1], but it differs from the one in that
paper. Indeed, our definition is more stringent in that it demands equality between the
aforementioned maps whereas the one in [31, Definition A.1] only requires the compositions
O} o W) and ®LF0 o W), depending on the context, to either be chain homotopic to the
inclustons or to induce the same maps on homology as the inclusions.

Proposition 4.3. Let (Cy,0c,lc) and (Dy,0p,fp) be two FCCs. Then,
dI ((C*, ac,fc), (D*, aD,ED)) <0 < (C*, ac) = (D*, aD).

In particular, if di ((Cx, 0c, bc), (Dx, 0p,€p)) < 00, then any d-interleaving (P, V) between
(Cx,0c,Lc) and (Dy, 0p,Lp) is such that U, o &, =Ide and @, 0 U, = Idp.

Proof. Because di ((Cx, dc,c), (Dx«,0p,¢p)) < o0, there is a d-interleaving (P, U,) be-
tween (Cy, dc, c) and (Dy, 0p,£Lp), for some § > 0. Let A > 0 be large enough. Then we
have ¥, o &, = Id¢, as chain maps, because of the following commutative diagram:

(C*7a0760))\: (C*7(907€C) — (C*7507€C))\+26: (C*7aC7€C)

(D*7 aDazD))\—HS = (D*7 aD7£D)

And similarly, ®, o U, = Idp. Thus, (Cy,dc) = (Dx, dp).

Conversely, suppose that (Cy, dc) = (Dx, 0p), via chain maps @, : Cx — Dy and ¥, : D, —
Cy. Tt is clear that (®,, U, ) forms a d-interleaving between (Cy, dc, ¢c) and (D, 0p,¢p),
for § := max{|[lc —¥p o Pu|w,||lp — o o Vi|w}. Because both C, and D, are finite-
dimensional, their filtration functions are bounded above, which implies that § < co. O

Proposition 4.4. If two FCCs (Cy, dc,Lc) and (Dy,0p,€p) are filtered chain isomorphic
(see Definition 3.6), then di ((Cy, dc,£c), (D«,dp,¢p)) = 0.

Because of Proposition 4.3, the interleaving distance between FCCs is only interesting when
we consider the case when two FCCs have the same underlying chain complexes. Let (Cy, 0¢)
be a finite-dimensional non-zero chain complex over F, and let Iso((Cy, dc)) be the set of
chain isomorphisms on (Cy, d¢).

Theorem 7. Let (Cy, d¢) be a non-zero chain complex over F and let {1, : Cy — Ru{—00}
be two filtration functions such that both (Cy, d0c,¢1) and (Cy, 0c,l2) are FCCs. Then,

di ((Cx,0c, 1), (Cx, 0c, £2)) = ool H(% o) [€1 — £2 0 oo
%Elso(Cx,
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Here we follow the convention (—o0) — (—o0) = 0 when computing ||{1 — l2|ls. When €1 is
the trivial filtration function, we have

dI ((C*a aCa 61)) (C*a aC’ 62)) = HEQHOO

Proof. For any ®, € Iso((Cy, 0c)), we check directly that (®,,®;!) forms a d-interleaving
between (Cy, dc, ¢1) and (Cy, ¢, l2), for

0= max{||€1 — €2 e} (I)*Hoo» ||f1 @) @;1 — EQH@} = Hfl — EQ e} (I)*”oo-

Thus,

d 14 l3)) < inf Uy — g 0 By .
{(Curd0,0), (Cude, ) < | int [0 ir

Conversely, it follows from Proposition 4.3 that dy ((Cx, ¢, ¢1), (Cx, 0c, £2)) < o, and that
each d0-interleaving (P, ¥, ) between (Cy, d¢, 1) and (Cy, 0, £2) satisfies @, € Iso((Cy, 0¢)).
Moreover, we have |1 — 3 0 ®yllx < 6. By minimizing over ¢ and (P, ¥, ), we obtain

dr ((Cx,0c, 1), (Cy, 0c,¥2)) = inf by — U0 Dylleo. O
I(( %, OCy 1)7( %y UC 2)) <I>*EISIOI(IC*,6C) H 1 20 *HOO

We immediately obtain the following corollary:

Corollary 4.5. Let (Cy,0c) be a non-zero chain complex over F and let 1,0y : Cy —
R 1 {—o0} be two filtration functions such that both (Cy, dc,t1) and (Cy,0c,¥2) are FCCs.
Then,

€1llo0 = [€2llco| < di ((C, 0c 1), (Ci, 0c £2)) < 1 — L2oo-

Proof. The first inequality follows from {1 —l20®|loc = [[€1 ] — [€2 © Pulloo] = |[[€1]c0 — [€2] 0],
for every chain isomorphism ¢,. The second inequality follows by taking ®, to be the iden-
tity map. O

Example 4.6 (d; between Elementary FCCs). Recall the notion of elementary FCCs from
Definition 3.16. Let a and b be two real numbers. We claim that

la—0b|, k=1
dr (E(a,a, k), E(b,b,1)) {oo, ksl
When k = 1, the chain complexes underlying E(a,a, k) and E(b,b, k) are isomorphic. In
E(a,a,k), let x and y be the generators of degrees k and k+ 1, respectively. Correspondingly,
let ' and y' be the generators for E(b,b, k). Any chain isomorphism ®, from E(a,a, k) to
E(b,b, k) can be represented as ®x) = Az’ and ®y) = Ny’ for some non-zero \,\' € F.
Thus, we have

[€a — €y © @slloo = max {|€a(z) — lo(Az)|, [la(y) — L(Xy)|} = |a —].

For the case k # 1, since the underlying chain complezes of E(a,a,k) and E(b,b,l) are not
isomorphic to each other, we have dy (€(a,a,k),E(b,b,1)) = c0.
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4.2 Matching Distance dy; between Verbose Barcodes

Let H = {(p,q):0<p<g<oo}, and let A := {(r,r):7€Rxou {+00}}. We denote
H := H u A the extended real upper plane. Let dy be the metric on H inherited from the
lp-metric: for p,q,p’, ¢ € Rxo u {00},

max {|p —p'|,|l¢ — ¢}, ¢4 <o,
do((p,0); (0, 4)) = | (P, @) — (1 d)w = { Ip — 1], q=q =,
0, otherwise.

1
It follows that the distance from a point (p,q) to the diagonal A is §(q —p).

We will often consider multisets of points in the extended real upper plane. Let A%, H®, and
ET represent multisets where each point from A, H, and H, respectively, is included with
countably infinite multiplicity. These multisets are equipped with the metric d*, inherited
from their respective underlying sets.

Let A and B be multisets with supports A and B, and multiplicity functions m4 and mp,
respectively. Define the sets consisting of “labeled” elements in A and B by

A:={(z,i):zeA 1<i<ma(z)} and B:={(y,7):yeB, 1<j<mpy)}

We define the concept of map from the multiset A to the multiset B as that of a map
¢ : A — B between the corresponding “labeled” sets A and B and, for simplicity, we will
then just write ¢ : A — B. If ¢ is bijective, it is called a bijection between the corresponding
multisets.

Let (Z,dz) be a metric space, and let A and B be multisets supported on Z. For any map
¢ : A — B, we define its cost as

costz (o) := sug dz(a,¢(a)).

Definition 4.7 (The Matching Distance dy). Let A and B be two non-empty multisets
supported on H. The matching distance between A and B is

dyvi(A, B) := inf {costg(qﬁ) A% Ba bz’jection} = inf {sup la —¢(a)|o : A % Ba bijection

acA
where dyi(A, B) = oo if card(A) # card(B).

Definition 4.8 (The Bottleneck Distance dp). Let A and B be two finite non-empty mul-
tisets supported on H. The bottleneck distance between A and B is

dp(A, B) := dy(Au A%, B u A%).

Theorem 8 ([9, 23]). Let V and W be persistence modules whose vector spaces are finite-
dimensional. Then,

di(V, W) = dg(B(V), B(W)),
where di(V, W) is defined in Definition J.1 with C = Vec and B(-) denotes the barcode of a
persistence module.
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It follows from the following proposition that the matching distance between verbose bar-
codes is larger than or equal to the bottleneck distance between concise barcodes.

Proposition 4.9. Let A and B be finite multisets supported on H. Let Ag and By be finite
multisets supported on the diagonal A such that card(A v Ag) = card(B u By). Then,

dB(A, B) < dM(A u Ay, Bu Bo).

Proof. In this proof, we denote cost(-) by cost(-). By the respective definitions of dg and
dni, we have

(i) d(A, B) = inf {cost(gg) t AU A% ‘B UA® a bijection};

(ii) dyi(A U Ag, B U By) = inf {cost(¢) tAUAg S BUBya bijection} .

0

For each 0 < r < o0, consider the multiset {(r,7)}* and notice that

A% = || {(rm)}™.

Since Ay and By are finite, for every r there exists at least one bijection
fr :A(r, )} \Ag — {(r,m)}*\Bo.

Moreover, we have

cost(fr) = |(r,r) = fr((r; 7))o = [(r;7) = (r,7) oo = 0.
Together, the maps {f, : r € [0, 0]} induce a bijection

[ A™\Ag — A*\B,

with cost(f) = sup,cfo,c0] cost(fr) = 0.
Let ¢ : A u Ay — B U Bg be any bijection. Observe that

AUA® =AU (Agu (AP\Ay)) = (AU Ag) u (AP\Ap)

and, similarly,

B U A* = (B u By) u (A*\By).

Thus, the bijections ¢ : AU Ag — By By and f : A®\Ay — A™\By together define a
bijection ¢ : A U A® — B u A®. Moreover, because cost(f) = 0, we have

dyv(A U A® B U A%) < cost(¢) = max{cost(¢), cost(f)} = cost(g).

Letting ¢ run through all bijections from A U Ag to B U By, we obtain that (i) < (ii). O

The corollary below follows directly from Proposition 4.9:
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Corollary 4.10. Given two FCCs (Cy,dc,lc) and (Dy,dp,fp) and any dimension k, we
have

dB (Bcon,k(Cx), Boonk(Dx)) < dm (Bverk(Cx), Bverk(Dx)) -

At the end of this section, we show that chain isomorphisms induce permutations of verbose
barcodes. Given a finite-dimensional FCC (Cy, dc, £c), let Byer be its verbose barcode. We
write £ = o and B = By, for notational simplicity.

Lemma 4.11. Let (Cy, 0c) be a non-zero chain complex over F and let £ : Cy, — R 1 {—o0}
be a filtration function such that (Cy,0c,¢) is an FCC. Then, for any ®, € Iso((Cy, d¢)),

1. (Cx,0c,l 0 Dy) is a filtered chain complex, cf. Definition 3.5.
2. (Cy,0c,¢) and (Cy, 0c,Lo®y) are filtered chain isomorphic, via the chain isomorphism
ot
Proof. Part (2) follows directly from Part (1), since ®;! is a chain isomorphism such that

(lo®,)od, 1 =

It then remains to show in Part (1) that £ o ®, is a filtration function. This holds because
for any x,y e Cy and 0 # A e I,

o U(Dy(1)) = —0 = Du(z) =0 < x=0;
o ((Px(Ar)) = £(Ps(2));
o U(Pu(z +y)) = U(Ps(z) + Pu(y)) < max {{(Dx(x)), £(Px(y))}-

In addition, because ®, is chain map and £ is a filtration function, we have

Lod,000=Fo0coP, <fod,. O

Because (Cy, dc, ) and (Cy, dc, £ o ) are filtered chain isomorphic, they have the same
verbose barcode B. Recall from Definition 3.9 that for each dimension k, the degree-k

verbose barcode By, is given by a singular value decomposition ((y1,...,Yn), (€1, ..., %)) of
the linear map 0g41 : Cr1 — Ker d (see Definition 3.8). In other words, (yi,...,y,) and
(1,...,2m,) are orthogonal ordered bases for Ck,1 and Ker 0, respectively, such that for

r = rank(9x+1),

® (Yrs1,---,Yn) is an orthogonal ordered basis for Ker 0 1;
e (r1,...,x,) is an orthogonal ordered basis for Im 0 1;
® Op1yi=x; fori=1,... 7.

o Uyr) —L(x1) = -+ = Lyr) — L(xr).

Since @, is a chain isomorphism, we have ®;1(Cx11) = Cr41. In addition,

y € Pp(Kerdy) <= Pp(dry) =0 <= 0ry =0 < y e Kerd.
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Thus, @ (Ker d) = Ker 0k, and similarly ®y1(Ker dg11) = Ker 0g11. Also, it follows from
Y€ Ppp1(Imopi1) = y= Ppy1(0ky17) = Op41(Pry17) == yelmdpyy
that (pk_;,_l(:[m (9k+1) =Im ak+1.

Proposition 4.12. Denote y; = @;il(yi) and 7; = @, '(z;) for each i = 1,...,n and
j=1,....,m. Then (§1,-..,9n), (Z1,...,&m)) forms a singular value decomposition of
Ok+1 : Cry1 — Ker 0y in the filtered chain complex (Cy, 0c,l o Dy).

Proof. The proof, while essentially a straightforward list of validated axioms, is included
here to assist readers in understanding the mechanics of singular value decompositions in
non-Archimedean normed vector spaces.

First note that (g1, ...,9,) and (Z1, ..., Zy,) are orthogonal ordered bases for @y 1(Cky1) =
Cr+1 and @ (Ker dx) = Ker 0, respectively. Moreover, for r = rank(dx11),

® (§r+1,---,Un) is an orthogonal ordered basis for @y 1(Ker dy1) = Ker d1;

e (Z1,...,Z,) is an orthogonal ordered basis for @1 (Im dg11) = Im O 1;

o Oyl =Fifori=1,...,7.

0 (oD, (1) —LoDu(T1) = = Lo Du(yy) — Lo Dy(Zy). O
Comparing dp and dy; with the Hausdorff Distance dy. Recall the Hausdorff distance
dy from page 10.

Proposition 4.13. For any A, B c ﬁoo,
du(A, B) < du(A, B).
As a result, for two finite metric spaces X and Y and degree k = 0, we have

o di(Boonk(X) u A%, Beonk(Y) 1 A®) < dp(Bcoon k(X), Beonk(Y)); and

o du(Bverk(X), Bverk(Y)) < dv(Bver,k(X), Bverk(Y)).

Proof. For any bijiection ¢ : A — B and for any a € A, we have
d*(a,B) < [la—¢(a)| and d*(¢(a),A) < [a— ¢(a)]w-

It then follows that

max {maxdoo(a, B), max d®(¢(a), A)} < min {max la—é(a)|ew: A % Ba bijiection} ,
acA ¢(a)eB acA

ie. dH<A,B) < dM(A,B) [l

We use the notation dg, du, and dy to refer to the distances dg(Bcon,k(X), Boonk(Y)),
di (Bver,k(X), Bver,x(Y)), and dy(Bver,k(X), Bver,x(Y')), respectively. While we have shown
that both dp and dy provide lower bounds for dy;, Example 4.14 illustrates that there is no
ordering between dg and dy.
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Example 4.14. Consider the metric spaces X andY from Example 3.18 together with their
verbose barcodes in degree 1. It is clear that

A (Bver1(X), Bver,1(Y)) =1 > 0 = dp(Bcon,1(X), Boon1(Y)).

Consider the same X, and let Y' be the metric space obtained by changing the length of
the bottom edge of Y in Figure 4 from 1 to 2. One can easily verify that Boono(X) =
{(0,1)2,(0,2), (0,00)} and Beono(Y') = {(0,1),(0,2)%,(0,00)}. In this case, we have

dH(BVer,O(X)7 BVer,O(Y/)) =0<1= dB(BCon,O(X)7 BCon,O(Y/))-

For any A = {ay,...,a,} € H® and m e N*, let A(m1) := {a"T1}7 | < H*®.
Proposition 4.15. For any finite A = {as,...,an}, B = {b1,..., by} < H®, we have
dH(A,B) = inf dM(A(M),B(m’))

(7, )eN™ x N7’
[72]1+n=nV |1 +n'

Proof. The ‘<’ direction follows from Proposition 4.13 and the fact that dy does not depend
on the multiplicities of points: for any (m,m’) € N* x N,

dia(A, B) = dig(A(m), B(i)) < d(A(m), BG)).

We now prove the inverse inequality ‘=’. For each a, let ¢(a) € B be any one of the closest
points in B to a. This gives us a bijection between multisets

¢:A—{od(ar),...,0(an)} with a; — ¢(a;).

Similarly, we have a bijection between multisets ¢ : B — {¢(b1), ..., p(by)} such that each
©(b) is one of the closest point in A to b.

For each i, define m; := card(¢~'(a;)) + 1 and let % = (mq,...,my). For each j, define
mj = card(¢p~1(b;)) + 1 and let m/ := (m},...,m/,). Then ¢ 1 ¢! defines a bijection
between multisets

A(m) = Au{pbi),...,o(by)} ot B(n) = {é(a1),...,p(an)} u B.

Therefore, we have

inf da(A(m), B(m')) <dm(A(m), B(m'))
(7,17 )eN" x N
7)1 +n=[7]|1 +n'

= max d*(a, (¢ L 1) (a))

=1ma. a — s a b;) — b;
m X{Igle/{( ||CL ¢(Q)HOO ae{cp(bgl,..i{cp(bn/)} HSD( ) |OO}

acA beB
=du(A4, B). O

=max {max d®(a, B), maxd™ (A, b)}
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4.3 Proof of the Isometry Theorem

In this section, we prove the isometry theorem. If two FCCs have non-isomorphic underlying
chain complexes, then d; between the two FCCs is 00, and so is the dy; between their verbose
barcodes. Thus, it remains to show that when two FCCs have the same underlying chain
complexes, dy between their verbose barcodes is equal to the interleaving distance between
the two FCCs.

Theorem 2 (Isometry theorem). For any two filtered chain complexes (Cy,0c,lc) and
(D*,aDafD)z

kszp dm (Bver,k(Cy), Bverk(Dx)) = di ((Cx, 0c, ¢c) , (D, 0p, D)) .
€24:>0

4.3.1 The Inequality dy; < d;

In this section, we prove the inequality dy < dj. First, we state here a lemma proved by
Usher and Zhang in [31], along with a sketch of the proof given in their paper.

Lemma 4.16 (Lemma 9.2, [31]). Let (C,¢c) and (D,Lp) be two orthogonalizable F-spaces,
let A: (Cle) — (D,lp) be a linear map with the singular value decomposition ((y1,-..,Yn),
(x1,...,%m)) and let ¢, be another filtration function on D such that (D, {’,) is orthogonaliz-
able. For any 0 = |{p—Ly |, there is a singular value decomposition ((yi, ..., yy), (z}, ..., 2]

for the map A : (C,lc) — (D, ) such that

i EC(:’J;) = EC(yZ)y fO’)"i =1,...,n;

o |Uh(zh) —tp(z;)| <9, fori=1,...,r:=rank(A).
Lemma 4.17. Let (Cy,dc) be a finite-dimensional non-zero chain complex over F and let
01,0y : Cx > Ru{—00} be two filtration functions such that both (Cy, 0c, £1) and (Cy, 0c, ¥2)
are FCCs. Denote by B, and B\z,er the verbose barcodes of (Cy,0c,01) and (Cy, dc, la),

respectively. Then, we have

dm (B\lfer’ B%/'er) = kSIZl,p dm (B%/er,k’ B%/er,k) < Hgl - EQHOO
€4>0

Proof. Even though [31, Proposition 9.3| states a weaker result, their proof, which we provide
for completeness, permits establishing the claim.

Fix an integer k € Z>o and a § = |1 — {2] . We want to show that dy (B%,er,k, B\Q/er,k) < 0.

Let r := rank(A), and let ((y1,...,Yn), (1,...,2m)) be a singular value decomposition for
0 := Oky1 ¢ (Cry1,01) — (Kerdg,¢1). Then we follow the following steps to construct a
singular value decomposition for dx11 : (Ck11,42) — (Ker 0, £2).

/

1. Apply Lemma 4.16 to obtain ((v{,...,4,), (z},...,2,)), a singular value decomposi-
tion for 0 : (Cky1,¢1) — (Ker 0, £2) such that

o U1(y)) =0i(y;), fori=1,...,n;

o |lo(xh) —ly(z;)| <6, fori=1,...,r.
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2. The dual elements ((zf*,...,2%), (y}*,...,y¥)) form a singular value decomposition

for the adjoint map 0* : ((Ker 0x)*, £5) — (Cj 1, 47), cf. page 13.

3. Apply Lemma 4.16 to obtain ((&1,...,&m), (N1,-..,Mm)), & singular value decomposi-
tion for 0* : ((Ker o)*, £5) — (Cf, 1, ¢5) such that

o 05(&) =05(xf¥), fori=1,...,m;
o |U5(mi)— O (yl*) <o, fori=1,...,r.

4. The dual elements ((nf,...,n}), (&5, ..,&:)) form a singular value decomposition
for the map 0** : (C}¥,,05%) — ((Kerdy)**,£5%), i.e. the map 0 : (Cpy1,02) —
(Ker 8k,€2).

Next we define a bijection between the finite-length bars in B\l,eryk and B%,er’k by
fo (), ba(yi)) = (G2(&5), (), Vi = 1,
and check that maxi<;<, ||(€1(xi), €1(yi)) — (€2(&F), €2(n])) |0 < 9. Indeed, for 1 <i <,

162 (&) — La ()|

A

[02(E5) + 05 ()| + | — 05 (2*) — £1(x;)| (by triangle inequality),

< | = 65(&) + 3 ()] + [€2(af) — £1(x:)| (by the property of £3),
<04+4d0=9
and similarly,
2 () = Cr ()| = | = €5(mi) — La(yi)| = | = £3(mi) + L5 (yi*)| < 6.

Then, it remains to build a bijection f between infinite-length bars in B{,er’k and B%er’k such
that the difference between the birth time of a bar with the birth time of its image under
f is controlled by §. Let Vi and V5 be an #i-orthogonal complement and fo-orthogonal
complement of Im 0y inside Ker 0y, respectively. For j = 1,2, let m; : Ker 0y — V; be the
¢;-orthogonal projection associated with the decomposition Ker 0y = Im dr11 @ Vj.

Notice that m]y, : Vo — Vi is a linear isomorphism, whose inverse is maly; @ Vi — Va.
In addition, given the ¢;-orthogonal ordered basis (xy41,...,2Zn) for Vi, we have an f5-
orthogonal ordered basis (m2|v; (Tr+1), - - ., 2|y, (zm)) for V. Define a bijection between the
infinite-length bars in B{,er’ i and B%,er’k as

f : (51(.%‘1),00) — (€2(7T2|V1(.Z‘Z’)),OO),VZ' =7r+ 1, o.M,

and check that max, 1<j<m |(¢1(x;), 0) — (€2(m2|v; (zi)), ©) e < §. This holds because, for
r+1<i<m,
lo(malva (7)) < La(zi) < 1) + 6,

and
Oi(z) = (v, (m2lva (24))) < bi(m2lva (7)) < La(malvs (1)) + 0. O

Proposition 4.18. With the same notation as in Lemma /.17, we have

dM (B%/erv B%/er) < dI ((C*7 50,£1> 3 (C*, 00762)) .
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Proof. Given any ®, € Iso(Cx, d¢), it follows from Proposition 4.12 that B2, = B&gj 100,E20%+)

the verbose barcodes of (Cy, d¢c, 2 o ®,). Together with Lemma 4.17, we have
dm (Bi/ewB\Q/er) = du <B\1/er>‘8£/i:7607£20¢*)) < ||y =l 0 @u|op,

for every @, € Iso(Cy, 0c). Therefore,

dwm (B%/er’ B%/er) < <I>*€IsIno(iCI'l* oc) Hfl — {30 (I)*HOO = d; ((C*v aC7£1) ’ (C*v aCa£2)) )

where the equality follows from Theorem 7. O

4.3.2 The Inequality dy; > dp

Next, we establish the reverse inequality dy = dp via an idea similar to the one employed in
demonstrating that the standard bottleneck distance between concise barcodes is at most
the interleaving distance between persistent modules, cf. [23, Theorem 3.4].

Proof of Theorem 2 “dy; = dp”. The proof is trivial if (Cy, dc,¢c) and (Dy,dp,¢p) have
non-isomorphic underlying chain complexes. We now consider the case when the chain
complexes (Cy, dc) and (Dy, dp) are isomorphic, and we assume without loss of generality
that (Dy,dp) = (Cx, d¢) and write £; := Lo, le := {p.

Take some § > 0 such that § > dyr <B%,er’k, B%er,k) for all degree k € Z=¢. Recall that

dm (B\l/er,kv B%/er,k) = lnf{ m?“x Ha - fk(a)HOO | B\l/er,k = B\Q/er,k a leeCthH } :

ag Ver,k
Thus, for each k, there is a bijection fy, : B\l,er = B\Q,er i such that

max o — () <0 )
ae Ver, k

For a € B{,er’k c H”, we assume that a = (a1, as). Also, we write b = fi,(a) and assume that
b = (b1,b2). Next, we construct an isomorphism between the following elementary FCCs
(see Definition 3.16):

hi - E(ar, a2, k) — E(b1, ba, k).

Notice that as and by are either both finite or both infinite, otherwise the left-hand side of
Equation (8) is equal to oo, which contradicts with § < oo.

Case (1): ag = by = 0. Then £(ay,az, k) and E(by1, ba, k) have the same underlying chain
complex:

=0
L —— 0 ——= Fzp, 250 —— ...,

and the filtration functions are given by ¢1(xx) = a1 and fa(xzx) = by, respectively. The
following defines a chain isomorphism

hy : E(al,oo,k) — g(bl,OO,k‘) with xp — xp.
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Case (2): ag,by < oo. Then &(ai,as, k) and E(by,be, k) have the same underlying chain
complex:

Ok+1(Yk+1)=2k 0, =0

— 00— ]:Fyk+1 ” ka:

0 >,

and the filtration functions are given by ¢1(zr) = a1, 1(yr+1) = ag and flo(xg) = by,
lo(ygp+1) = b, respectively. The following defines a chain isomorphism

hy - E(ar, az, k) — E(b1, ba, k) with a3, — g, ypr1 — Yrr1

In either case, it is straightforward to check that hj satisfies the following condition
|61 = €3 0 hig|low < max {lay — b2, a1 — ba2|} = [la — f(a)[ < 6.
We write hy , whenever it is necessary to emphasize that hj depends on a.

Recall from Proposition 3.17 that we have the following decomposition of FCCs
(0*700751) = @ @ 5((11,(12,k) and (0*760762) = @ @ 5(b17b27k)'

1 2
kEZ>0 QEBVer,k kEZZO beBVer,k

Let b := Ppez, @GEB\I/er,k hiq : (Cx,0c,l1) — (Cx, 0c, l2), which is then a chain isomor-
phism such that

[61 —la0h|w = nax max |61 — €2 0 hy g0 < 0.

€220 a€Bi,,

It then follows from Theorem 7 that

dI ((0*760751)7(0*560a£2)) = min ”El *EQO(I)*HOO < Hgl *EQOhHOO <.
Dy elso(Cy,0¢)

Since § is arbitrary, we obtain the desired inequality di < dy. O

5 Vietoris-Rips FCCs and an Improved Stability Result

In this section, we study the Vietoris-Rips FCC of metric spaces. Recall from Example 3.4
that given a finite pseudo-metric space (X, dx), (Cx(VR(X)), 0%, ¢~) denotes the filtered
chain complex arising from Vietoris-Rips complexes of X. To simplify notation, we will
omit the differential map 0% and the filtration function. We use Cy(VR(X)) to refer to the
Vietoris-Rips filtered chain complex (Cy(VR(X)), 8%, £%).

The matching distance between the verbose barcodes of two Vietoris-Rips FCCs of finite
metric spaces is infinite if the underlying metric spaces have different cardinality. As a
consequence, the matching distance between verbose barcodes of Vietoris-Rips FCCs is not
stable under the Gromov-Hausdorff distance dgp, since dgg between any two bounded
metric spaces is always finite.

We overcome the above problem by incorporating the notion of tripods. Recall from Section
2 the distortion dis(R) of a tripod R and how the Gromov-Hausdorff distance can be obtained
via finding the infimum of dis(R) over all tripods R.
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In Section 5.1, through tripods, we can pull back two metric spaces X and Y (with possibly
different cardinalities) into a common space Z, and then compare (via the matching distance)
the barcodes of the FCCs induced by the respective pullbacks; see Definition 5.3. For each
degree k, we call the resulting distance the pullback bottleneck distance and denote it by
de i (X,Y). We apply the same strategy to define what we call the pullback interleaving

distance, written as 62\1 (X,Y): use tripods to pull back spaces to a common space and
compare the interleaving distance between the FCCs induced by the respective pullbacks;
see Definition 5.2.

In Section 5.2, we prove the following stability results to show that the pullback bottleneck
distance is stable under dgyr, and that its stability improves the standard stability result of
the bottleneck distance between concise barcodes (cf. Theorem 1):

Theorem 3 (Pullback stability theorem). Let (X,dx) and (Y,dy) be two finite metric
spaces. Then, for any k € Z>o,

d (Bconk(X), Beonk(Y)) < C/Z\B,k: (X,Y) <di (X,Y) <2-dou(X,Y). (1)

In Section 5.3, we present examples to demonstrate that both inequalities in Theorem 3
can be tight and strict. In Section 5.4, we study two variants of the pullback interleav-
ing/bottleneck distance.

5.1 Pullback Interleaving Distance and Pullback Bottleneck Distance

In this section, we introduce our construction of the pullback interleaving distance and the
pullback bottleneck distance between metric spaces, and study some basic properties of these
two notions.

Let (X,dx) be a finite metric space, and let ¢ : Z — X be a finite parametrization of X.
We denote by ¢*dx the pullback pseudo-metric® on Z induced by ¢ given as follows: for
any z,2' € 7,

¢*dz(2,2') = dx((2), 6(2")).

For brevity, we often write the pulled-back pseudo-metric space as

Zx = (Z,¢"dx). (9)
Given a simplex o = [z0,...,2,] in Cx(VR (Z)), we write

b(o) im {[é(zoh-..,cb(zn)], if ¢(2) # 6(z;) for any i # j,

0, otherwise.

Let C«(VR(Zx)) denote the Vietoris-Rips FCC of the pseudo-metric space Zx. It is not
hard to see that ¢ induces a surjective chain map

¢ : Cu(VR(Zx)) - Ci(VR(X)).

3The map ¢ does not need to be surjective to define the pullback pseudo-metric.
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Remark 5.1. We have X o¢ < 04X where the inequality can be strict in general. Indeed, if ¢
is not injective, there exist z1, 29 € Z such that ¢(z1) = ¢(22) = x € X. Then ¢([z1,22]) =0
and

EX o gb([zl, 22]) =—0<0= EZX([Zl, 2’2]).

On the other hand, we always have |[(7X | = diam(Z, ¢*dx) = diam(X,dx) = |5 w.

Via the notions of tripod and Vietoris-Rips filtered chain complexes, we construct the pull-
back interleaving distance as follows:

Definition 5.2 (Pullback interleaving distance). For two finite metric spaces X and Y,
we define the pullback interleaving distance (induced by the Vietoris-Rips FCCs)
between X and Y to be

& (X,Y) = inf{dI(C*(VR(ZX)),C*(VR(ZY)))|X X7 DY 4 finite tripod},

where Zx 1= (Z,¢%dx) and Zy := (Z, ¢3-dy).

With a similar idea and again invoking tripods, we refine the standard bottleneck distance
and introduce a new notion of distance between verbose barcodes:

Definition 5.3 (Pullback bottleneck distance). Let k € Zxq. For two finite metric spaces X
and Y, the pullback bottleneck distance (induced by the degree-k verbose barcodes)
between X and Y is defined to be

dox (X,Y) ::inf{dM(BVer,k(ZX),BVM(ZY))|X X 7 oY a finite tm’pod},

where Zx 1= (Z,¢%dx) and Zy := (Z, ¢3-dy).

Remark 5.4 (Infima are minima in Definition 5.2 and 5.3). Applying Proposition 1.3,

we observe that for any finite tripod X ox Z il Y, dv (Bver,k(Zx), Bverk(Zy))

takes values in the finite set {la — b| | a € Imdx,b € Imdy} u {0}. In other words,
dm (Bverk(Zx ), Bverk(Zy)) is a finite-set valued function as a function defined on (finite)
tripods. Consequently, the infimum in the definition of dgj (X,Y) is indeed a minimum.

A similar argument applies to the pullback interleaving distance, implying that the infimum
in the definition of dy (X,Y) is indeed a minimum.

We have the following relation between the pullback interleaving distance and the pullback
bottleneck distance, which is an immediate consequence of Theorem 2:

Corollary 1.2. Let (X,dx) and (Y,dy) be two finite metric spaces. Then,

sup inf  dm (Bverk(Zx), Bverx(Z < inf  supdy (Bverk(Zx), Bverk(Z
P (2 omaby) M (Bver 1 (Zx), Bver,k(2y)) (gt sup M (Bver k(Zx), Bver,k(Zy))

supdp  (X,Y) di (X,Y).
k
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Similarly to Remark 5.4, one can check that the suprema in the LHS and RHS above are
both maxima.

Proof of Proposition 1.2. By the isometry between dy; and dy, we have

sup CTBJC (X,Y)

keZ=o
. bx by . .
= sup inf {dM (Bverk(Zx), Bver,x(Zy)) | X Z Y a finite trlpod}
keZ=o
. ox Py . .
< mf{ sup dm (Bverk(Zx), Bverk(Zy)) | X Z Y a finite tI‘lpOd}
k}eZ;o
. dx by . .
=inf {dl (C«(VR(Zx)),Cx(VR(Zy))) | X Z Y a finite trlpod}
=di (X,Y). 0

Remark 5.5 (dB dy). Let two finite metric spaces X and 'Y have the same cardinality

(in which case the dy; of verbose barcodes is finite). Considering any surjective set map

f id f
X —— Y and the resulting tripod X <X x L, Y, we conclude that for any degree k,

dp i (X,Y) < dyi(Byer i (X), Ber s (V).

Thus, Supkeyz_, C/l\B,k (X,Y) < supgez.y dm(Bver k(X), Bverk(Y)). Note that this inequality
can be strict. For instance, consider the four-point metric spaces X and'Y given in Example
3.18, we claim that

sup dpg (X,Y) =0 <1= sup du(Bvers(X), Bverp(Y)).

kEZ;O k‘EZ)Q
. . ~ . . dx oy
The non-trivial part is sSupyeyz_, dB .k (X,Y) = 0. Consider the tripod X Z Y
given by Z = {z1,...,25},
zi, 1<i<A4, vi, 1<i<4,
bx(z):={"" and by (z):=4""
T4, T =0. Yq, 1 =05.

Let Zx = (Z,¢%dx) and Zy = (Z,¢%dy). It follows from Proposition 6.2 which will be
proved in Section 6.1 and the verbose barcodes of X andY computed on page 20 that

* Bvero(Zx) = {(0,0),(0,2), (0,00)} u {(0,1)}* = Bver,o(Zy);
® Byer1(Zx (1, 1)} w{(2,2)}° = Bver,1(Zv);
(2,
(2,

)} BVer 2(ZY)
)} BVer S(ZY)
= Bverk(Zy) for k=4

Because dy(Bver k(Zx), Bver,k(Zy)) = 0 for all k, we obtain dy (X,Y) = 0. This implies
that supgez_, dpk (X,Y) = 0.

{
{
{

(Zx)
® Bver2(Zx)
® Bver3(Zx)

(Zx) =

b BVer k ZX
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5.2 Pullback Stability Theorem

In this section, we prove that the pullback interleaving distance c’i\I and the pullback bottle-
neck distance dp are stable under the Gromov-Hausdorff distance dgp (cf. Theorem 3) and
that they provide a better lower-bound estimate of dgy in comparison with the standard
bottleneck distance dp (cf. Theorem 1).

The following proposition establishes that &\I is stable. See page 39 for the proof.

Proposition 5.6 (Stability of Pullback Interleaving Distance). Let (X,dx) and (Y, dy) be
two finite metric spaces. Then,

~

dy (X7Y) <2 dGH(Xv Y)

Corollary 1.2 and Proposition 5.6 together yield the stability of JB. In addition, we prove
that dp is an improvement over dp, when both are regarded as lower bounds of the dgp
between metric spaces:

Theorem 3 (Pullback stability theorem). Let (X,dx) and (Y,dy) be two finite metric
spaces. Then, for any k € Z>o,

dp (Boonk(X), Boon (V) < dpi (X,Y) < di (X,Y) < 2-dau(X,Y). (1)
Proof. We only need to prove dp (Bconk(X), Beonk(Y)) < c’l\B’k (X,Y). For any tripod
XX 7 Y det Zy i— (Z,¢%dx) and Zy := (Z,¢%dy). By Proposition 1.3 and

the fact that concise barcodes can be obtained from the corresponding verbose barcode minus
all the diagonal points, we have that Boon k(X) = Boonk(Zx) and Beonk(Y) = Boonk(Zy).
Incorporating Proposition 4.9, we deduce:

dB (Bconk(X), Beconk(Y)) = dB (Beonk(Zx), Beonk(Zy)) < dv (Bver,k(Zx ), Bver,k(Zy)) -
O

The proof of Proposition 5.6. In order to prove Proposition 5.6, we first establish the
stability of the interleaving distance di between Vietoris-Rips FCCs by showing that df is
stable under the max norm between the two distance functions over the same underlying
set. Recall the definition of the distortion of a map from page 10.

Proposition 5.7. Let X be a finite set of cardinality n. Let dy and ds be two distance
functions on X, and let €1 and {2 be the filtration functions induced by dy and dy respectively.
Then,

[ loo=ldafloo] < i ((C+(VR(X)), 1), (C(VR(X)), &) < wnin,  dis(f) < da—da|eo-

Proof. Claim 1: |l1 — l2]|c = |d1 — dalleo and ||41]/e0 = |d1] -

When X is an one-point space, this is trivial to prove. Now assume that X has at least two
points and suppose that |d; — da|o = |d1 (21, 22) — d2(x1, z2)| for some 1,22 € X. Then,

161 = lalloo = [l1([z1, 22]) — Lo([21, 22])| = |d1 (21, 72) — da(w1, 22)| = |[d1 — d2c0-
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Conversely, for any n-chain o = [z, ...,z,] in X, we have
|61(0) — la(0)| = |diam; (o) — diams(0)| < ||d1 — d2]s0-
Taking da = 0, the trivial distance function, we obtain |[¢1]e = ||d1]|co-
Claim 2: Consider any bijection f : X — X, and let d be a metric on X. Define do f as

the composition d o (f, f), and denote X := (X,d o f). Let £ and ? represent the filtration
functions induced by d and d o f, respectively. Then ¢ = £ o f.

Clearly, f induces a chain isomorphism f : Cx(VR(X)) = C4(VR(X)). Then X is a metric
space, whose filtration function for the Vietoris-Rips FCC is given by

(Z i U,) = maxdlamX(aZ) max diamx (f(03)),

Ai#0
where o1, ..., 0, are simplices. Since f(0;) = oj, for some simplex o,, we have
<ZZ:1 i O’z> =/ (ZZ; i sz> = nrlﬁmdl&rn;daJ ) = r)\n%(dlamx =7 (Z i Uz> .

Let f: X — X be any bijection. By Claim 1 and Claim 2, we have
[r = €20 flloo = 02 = €5 o5 = |dy — dp © flop = dis(f)-
Therefore, by Theorem 7, we have
di ((Cx(VR(X)),£1), (Cx(VR(X)), ¥2)) = inf b — 4
H(CLVRON)A). (CVRE)) ) = il (6=t ]

< min  |di —d20 fllo
x5 x
= min dis(f) < |d1 — da]|eo-

bij.
i X—X

On the other hand, for any f € Iso(C4(VR(X))), we have ||f3 o f|lcc = |f2]. Thus, by
Claim 1,

di ((Cx(VR(X)),41), (Cx(VR(X)),¥l2)) = inf by —4
L(CHVRO0) ). (CuVROO) ) = it = oo ],
> [[l1lee = l2]lo| = oo — d2flcc]. T
Proof of Proposition 5.6. Suppose R : X Px Z o Y is a finite tripod between X

and Y. By Proposition 5.7, we obtain
di ((C+(VR(2)),£7%) , (C+(VR(2)) ,£7Y)) < ¢k dx — ¢¥dy [0 = dis(R).

We finish the proof, by taking infimum over all finite tripods R in the above inequality and
applying the fact that 2 - dgp(X,Y) = infgnite g dis(R), by Remark 2.1. O
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Example 5.8 (Strictness of the inequalities in Proposition 5.7). Let X = {a,b,c}. Consider
pseudo-metrics do,dy and da on X, given in Figure 6. We calculate the following quantities
for do and dy:

1. {|ldolloo = lldafloo] = 1;
2. di ((C+(VR(X, do)), Cs (VR(X, dy))) = 1.
8. Milpgection f:(X,do)—(X,dy) As(f) = 1;
4. |do —difeo = 2.
Similarly, we compute for di and da:
1 ldrlloo = lld2]loo| = 0;
2. dr ((C«(VR(X,d1)), Cu(VR(X,d2))) = 1;
8. Milpiiection f:(X,d1)—(X,d) A8(f) = 1;
4 |ldi —d2]ow = 1.

a a
[ ]
7\ /\
/N /N
a // \\ // \\
/ \ / \
/N / \ / \
QR 2 2 2 2
0 1 \ ,

, / \ / \
/ N / \ ! \
. N ’ \ ’ \
be---1---‘ec be--—-1--—-ec be---0---ec

Figure 6: Pseudo-metrics dy, dy, da.

5.3 Tightness and Strictness of the Pullback Stability Theorem

We study some examples for Theorem 3 and see that both inequalities in this theorem are
tight, and they can be strict too.

Example 5.9. Recall the 3-point metric spaces X1 and Xo from Figure 1, and assume that
a <b<c fori=1,2. Computing each of the distances appearing in Theorem 3, we obtain:

sup di (Bconk(X1), Beonk(X2)) | sup dp g (X1, X2) | 2 dan(X1, Xo)

k‘EZ;O kEZ;O

0 |01 —02| ’61—62’

The first and third columns in the above table arise from straightforward calculations. For

¢ ¢
the second column, notice that for any tripod X, e 7 s Xy with card(Z) = m + 3

for some non-negative integer m, we have

Bverm+1(Z1) = {(c1,c1)}  and  Bverm+1(Z2) = {(c2,c2)},
where Zy := (Z,¢pTdx,) and Zy := (Z, ¢p5dx,). In particular, JB,erl (Z1,Z2) = |c1 —cal, for
any tripod X, P Z 2 Xo. Thus, supyey_ JB,k (X1, X2) =|e1 — cal.
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Example 5.10. Let X,Y,Z, and W be metric spaces each consisting of 4 points where the
respective metric are depicted in Figure 7, together with the verbose barcodes of each of these
metric spaces. Among these spaces, X andY have been studied in Example 3.18. The space
Z is the complete graph on 4 wvertices with edge length 1, and W is the cycle graph on 4
vertices with edge length 1. Both Z and W are equipped with the graph distance.

///'I\\\ 1 //\
// : \\ 1 . // \\ 1 - A ,i77 1 77/\.
2 ' 2 5 Y T I
;2 F 29 2 1< 1 |1 2 1
/ I 1 \ // ’ N N 1 1 ' | s N
.7777:777,::. ’// \\\\ I// N \\ v A :
1 e 1 -] --- f---1---%| e--1---"e
X Y Z W
Bvero | (0,1)%,(0,2),(0,00) | (0,1)%,(0,2),(0,00) | (0,1)3,(0,00) | (0,1)3,(0,00)
Bvyer1 (1,1),(2,2)? (2,2)3 (1,1)% (1,2),(2,2)?
Bver,2 (2,2) (2,2) (1,1) (2,2)

Figure 7: Verbose barcodes of 4-point metric spaces X,Y, Z and W.

From Figure 8, we notice that the pair of metric spaces (X,Y) is such that

sup dg (Boon,e(X), Beonk(Y)) = sup dpy (X,Y) =0<1 =2 deu(X,Y),

kEZ)(} kEZ;O

which establishes that C/Z\B between non-isometric spaces can be zero. To see that 6?1371 (X,Y) =
0, consider pullback spaces Zx = X u{xg} where xg is a duplicate of the top vertexr in X
and Zy =Y w {yo} where yo is a duplicate of an arbitrary point from Y, and verify that
Bveri1(Zx) = Bver1(Zy) = {(1,1),(2,2)°}. The pair (X,Y) shows the tightness of dp < dp.

The pair (Z,W) is such that

1 .
sup ds(Bconk(Z), Boonx(W)) = 5 < 1= sup dg(Z,W) =2 -deu(Z,W),
kEZ;Q kEZ;o

which gives another example of &\B and C/Z\I providing better bounds for dgu in comparison
with the standard bottleneck distance dg.

Below is another example in which the stability of JB improves that of dp:

Example 5.11. Let X be the one-point metric space. Let Y = A, (€) be the n-point metric
space where all points are at distance € > 0 from each other, for n = 2. Then,

2 deu(X,Y) = e

dx Py

For any tripod X Z Y, we have

o Bver(Zx) consists of only copies of (0,0) in all degrees;
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dB(BCon,O(‘)7 BCon,O(')) XY Z W C/l\B,’O (', ) XY Z W
X 0 0 1 1 X 0 0 1 1
Y 0 1 1 Y 0 1 1
Z 0 0 Z 0 0
W 0 W 0
d(Boona (), Beona () | X Y Z W e, () | X Y Zz W
X 0 0 0 3 X 0 0 1 1
Y 0 0 3 Y 0 1 1
Z 0 3 A 0 1
W 0 W 0
2-deu(,) | X Y Z W
X 0 1 1 1
Y 0 1 1
Z 0 1
147 0

Figure 8: The bottleneck distance dg between concise barcodes, the pullback bottleneck dis-
tance dB, the pullback interleaving distance dI and the Gromov-Hausdorff distance between
spaces.

o Bver(Zy) consists of copies of (0,0), (0,€) and (e,€), and Bvero(Zy) contains copies
of (0,¢€),

It is not hard to verify that

sup dm (Bver,k(Zx ), Bverk(Zy)) = €
k€Z>0

for any tripod. Thus, supyez_, JB,k (X,Y) = €. In addition, we have the following table

sup dB (BCon,k(X)a BCon,k’(Y>) sup C/l\B,k (X> Y) 2- dGH(Xv Y)
kEZ;o k6220

€ €

[\lleY

Via a similar argument and by invoking the fact that diam(Y') - (1,1) € Byer card(v)—2(Zy)
for any pullback space Zy of Y, we generalize Example 5.11 to the following proposition:

Proposition 5.12. Let X be the one-point metric space, and Y be any finite metric space.
Then,

sup dp i (X,Y) = di (X,Y) = diam(Y) = 2 - dau(X, ).
kEZ;o

5.4 Variations of the Pullback Interleaving/Bottleneck Distance

In previous subsections, we introduced the pullback interleaving distance &\1 and the pullback
bottleneck distance dg based on the notion of tripod. To highlight the role of tripods and

JoCG 15(2), 258-328, 2024 299


http://jocg.org/
http://creativecommons.org/licenses/by/3.0/

Journal of Computational Geometry jocg.org

facilitate comparisons with other variants, we sometimes write
dI = dI and dBn = dB,

respectively. Given a degree k, we will use dg to denote dg between degree-k concise
barcodes.

We introduce two variants of the pullback interleaving/bottleneck distance, mirroring the
equivalent definitions of the Gromov-Hausdorff distance (see Section 2). In the first variant,
we employ correspondences between metric spaces, instead of tripods, and we denote the
resulting distances as c/l\lcor and Jgor, as defined in Definition 5.13. In the second variant, we
define the distances J}\/I *P and (%/I P utilizing maps between the underlying metric spaces, as
specified in Definition 5.14. These new formulations are beneficial in terms of computational
efficiency, which we will discuss in more detail in Section 6.2.1.

To simplify our terminology, we will use the following terminology:

e ‘pullback interleaving-type distances’ refers to all versions of pullback interleaving
distances.

e ‘pullback bottleneck-type distances’ refers to all versions of pullback bottleneck
distances.

e ‘pullback distances’ refers to all pullback interleaving-type distances and pullback
bottleneck-type distances.

We show that pullback distances are all stable under the Gromov-Hausdorff distance, and
they improve upon the stability of the bottleneck distance between the concise barcodes.
Moreover, they satisfy the relation below.

Theorem 9. The several variants of pullback interleaving and bottleneck distances satisfy
the following relations:

(/j’II‘ri < C’l\ICor < C’i}\/[ap < 2. dGH
W % %

i X M.
supdpi < sup c/i»]g}c < sup dgokr <  supdy Zp
k k ’ k ’ k '

where ‘s’ indicates that (1) ‘<’ always holds and (2) there exist examples for which the
inequality is strict.

Moreover, the above table remains valid if we fix a degree k and replace the last row with

dpy, 5 A} < dg < dp3?-

Recall from Section 2 that the Gromov-Hausdorff distance has several equivalent definitions:
e using maps:

1
don(X,Y) = 5 inf max{dis(f), dis(g),codis(f, 9)};
gY—-X
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e using correspondences:

1
X, Y)== inf i ;
don(X,Y) 2 Rei}lir(lX,Y) dis(R);
e using tripods:
1 . .
den(X.Y) = 5 inf dis((Z, ¢x, dy))-
Px Py
X«———7—»Y

Let R € X x Y be a correspondence between metric spaces X and Y, and let 7x and my
be the two projection maps onto X and Y, respectively. We equip R with the respective
pullback metrics induced by 7wx and 7y, and denote

Rx := (R,m%dx) and Ry := (R,7mydy). (10)

Definition 5.13. For two finite metric spaces X and Y, we define the pullback inter-
leaving distance induced by correspondences (and VR FCCs) between X and Y to
be

dC°T (X, Y) := min {dy (C+(VR(Rx)), C«(VR(Ry))) | Rc X x Y a correspondence}
where Ry := (R, m%dx) and Ry := (R, my-dy).

For any degree k € Z=q, we define the pullback bottleneck distance induced by corre-
spondences (and degree-k verbose barcodes) between X and Y to be

CZ(Bj?,; (X,Y) := min {dm (Bver k(Rx), Bverk(Ry)) | R< X x Y a correspondence} .

For two maps f: X - Y and g: Y — X, define a multiset arising in the use of the graphs
of f and g
G(f,9) = {(z, f(x)) [z e X} u{(9(y),y) [y e Y} (11)

For simplicity, write G := G(f, g). Note that G is a correspondence between X and Y. Let
wx and my be the two projection maps from G onto X and Y, respectively. We equip G
with the respective pullback metrics induced by mx and 7wy, and denote

Gx = (G,7%dx) and Gy :=(G,nydy). (12)
Definition 5.14. For two finite metric spaces X and Y, we define the pullback interleav-
ing distance induced by maps (and VR FCCs) between X andY to be
Ay (X,Y) := min {d; (C«(VR(Gx)), C«(VR(Gy))) | f: X = Y,g9:Y — X,G = G(f,9)},
where Gx 1= (G,m%dx) and Gy := (G, n3-dy).

For any degree k € Z=g, we define the pullback bottleneck distance induced by maps
(and degree-k verbose barcodes) between X and Y to be

«i“Bf‘;;p (X,Y) := min {dy (Bver,k (Gx ), Bver k(Gy)) | [ : X =Y, 9:Y - X, G =G(f,9)},
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Proof of Theorem 9. We first prove that all the following inequalities hold for every degree
k:

drr Y dCer @ dpep ¢ 2-dan
4V (5)V/ (6)V/
7 o8 9 a
L dp Q dgy €

Inequalities (4) and (7) have been established in Corollary 1.2 and Theorem 3, respectively.
Inequalities (5) and (6) follow directly from the definitions of the pullback distances and
the isometry theorem between the interleaving distance and the bottleneck distance (see
Theorem 2).

For (1), consider any two finite metric spaces X and Y. Note that any correspondence
R c X x Y induces a tripod of the form

TX Y

X R Y

where Ry = (R,m%dx) and Ry = (R, 7y dy). Therefore, we have
di™ < dy (C4+(VR(Rx)), C+(VR(Ry))).

Taking the infimum over all correspondences R yields C?Irri < c/l\Icor. Inequality (8) can be
established similarly.

For (2), note that for any f: X > Y and g: Y — X, let G := G(f,g), and 7x, 7y be the
projection from G to X, Y, respectively. Let Gx = (G, 7% dx) and Gy = (G, 7{dy). Since
G is a correspondence between X and Y, we have

AP < di (C4(VR(Gx)), Cx(VR(GY))).
Since the maps f: X — Y and g : Y — X are arbitrary, we conclude that CTIC‘“ < c/ljl\4 .
Inequality (9) can be established similarly.

For (3), using the above notation f, g and G, we apply Proposition 5.7 to obtain that
'™ < di (C4(VR(Gx)), C«(VR(Gy))) < dis(G) = max{dis(f), dis(g), codis(f, g)}.

Taking the infimum over all maps f: X — Y and ¢g: Y — X yields J}\/[ap < 2-dgu-

Thus, we have proved all inequalities (1)-(9). By taking the supremum over all degrees k,
we obtain the desired inequalities

C’i’II‘ri < C/i\ICor < C’i}\/[ap < 2. dGH
(COV GOV 6"V

(7) i
supdpy, < supdg) < supdgy < sup &1];4 W,
k k k koo

To finish proving the proposition, it remains to establish examples such that inequalities (4')-
(7') are strict. Such examples will be presented in Proposition 6.11 and Remark 6.13. O
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5.4.1 Pseudo-metrics Based on Pullback Distances

It is worth noticing that none of di™, (’l\lcor, and c?}\/[ *P satisfy the triangle inequality; see
Corollary 6.12. Nevertheless, we demonstrate below that all of them can be converted
into pseudo-metrics. Moreover, utilizing ideas in [26, Section 6.2], we show that these new
functions retain the favorable properties of the original pullback interleaving-type distances,
such as the stability under the Gromov-Hausdorff distance.

Given any non-negative and symmetric function wx : X x X — R, the following induced
function defines a pseudo-metric on X:

n—1

dx(z,2') := inf Z wx (T4, Tig1).

p— — !
=T, Tn =" 1=

Indeed, for any sequences o : ¥ = xg,..., 7, = 2’ and B : 2’ = yo,...,ym = 2", we have a
sequence T = xq,...,Tn =2 = 0,...,Ym = =" between z and z”. Thus,

—_

n -1

— m
dx(z,2") < Z wx (T, Tiy1) + Z wx (Y5, Yj+1)-
i=0 7=0

By taking the infimum over all o and 3, we obtain
dx(z,2") < dx(z,2") + dx (2, 2").

Additionally, by considering the sequence x = g, 1 = z’, we see that dx < wx.

Denote the collection of all finite metric spaces by X. Then we apply the above procedure
to convert the different variants of the pullback interleaving-type distances into different
pseudo-metrics between finite metric spaces, as follows:

Definition 5.15. For each C/Z\ID, where o = Tri, Cor or Map, define

n—1

AP (X,Y) := inf Ddr (X, Xiga).
X=X0,., Xn=Y =0

Proposition 5.16. We have di™ < d¥°" < cﬂwap < 2-dgH.

Proof. The first two inequalities are derived directly from (;l;m < Jgor < ci}w * The last one
follows immediately from the facts that ci}v[ L C/l}v[ P and a?iw < 2dgy (cf. Theorem 9
). O

Remark 5.17. For pullback bottleneck-type distances, we will see in Section 6.2.2 that when
k=0, dBfé) = dg$ = c?]\g/{ o and they all satisfy the triangle inequality.

It is still an open question whether J]”_D, induced by positive-degree verbose barcodes satisfies
the triangle inequality, where o = Tri, Cor or Map. FEwven if it fails, we can transform dp
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into a pseudo-metric in a way similar to the above discussion. That is, we define (for k >0)

n—1

iy (X,Y) = inf D diy g (X Xiga).
X=Xg,...Xn=Y =0

Similarly as before, we note that dg satisfies the triangle inequality and the Gromov-Hausdorff
stability dp < 2 - dgh.

6 Computation of the Pullback Bottleneck Distance

In Section 6.1 we study verbose barcodes under pullbacks, by working out the relation
between the verbose barcode of a finite metric space (X, dx) and the verbose barcode of
a pullback space (Z,¢%dx) induced by a surjective map ¢x : Z — X. In Section 6.2,
we discuss the computability of pullback distances and, in particular, pullback bottleneck
distances.

6.1 Verbose Barcodes under Pullbacks

Let (X, dx) be a finite metric space with X := {x1,...,z,}. Recall from page 1 that for any
surjection ¢ : Z — X, the pullback (pseudo-metric) space (induced by ¢) is defined as
the pair (Z, ¢*dx ), where ¢*dx is the pullback of the distance function dx. In other words,
for any z1,29 € Z,

(¢"dx) (21, 22) := dx (dx(21), dx(22)) -
For each z € Z, the point ¢x(z) € X is called the parent of z.

Definition 6.1 (Pullback barcodes). For any surjective map ¢x : Z — X, we call the
degree-k verbose barcode of (Z,¢%dx) a degree-k pullback barcode of X .

6.1.1 Inductive Formula for Pullback Barcodes

We start with the case when the pullback space repeats only one point from the original
space. For any multiset A and any integer [ > 1, we recall from Equation (2) that Pj(A)
denotes the set consisting of sub-multisets of A each with cardinality [.

Proposition 6.2. Assume X := {z1,...,x,} is a pseudo-metric space and Z = X u {z}.
Suppose ¢ : Z — X is such that z — x; for some j = 1,...,n and is the identity otherwise.
Then,

Bver,0(Z) = Bver,o(X) b {(diam({x;})) - (1,1)} = Bver,o(X) 1 {(0,0)},
and for k =1,
Bverk(Z) = Bver(X) u {diam({z;, x5y, ..., 25, }) - (1,1) s x5, € X —{x;},VI=1,...,k}
= Bver,,(X) v {diam({z;} 1 8) - (1,1) : B € Pu(X\{z;})} .

Remark 6.3. Fach finite pullback space (see page /) Z of X can be regarded as a multiset
Xud{zj,, ..., zj,} equipped with the metric inherited from X for some m = 0 and j; < --- <
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Jm- Indeed, assume Z := X 1u{z1, ..., zm} for some auxiliary points z1, . . ., 2y and consider a
surjection ¢ : Z — X such that x — x forx € X. Letdyz := ¢*dx be the pullback metric on Z
under the map ¢. If ((21,...,2m)) = (xj,,...,Tj,,), then the points {xj,,...,x;,} uniquely
determines the map ¢ and thus uniquely determine the pullback metric on Z. Therefore, Z
can be identified with X v {x;,...,xj,}.

Before proving the Proposition 6.2, we apply it to show the following result:

Proposition 1.3 (Initial formula for pullback barcodes). Let k = 0 and m > 1, and let X
be a finite pseudo-metric space. For {x; ,...,x;,.} < X for some ji < --- < jp, consider
the multiset Z = X u{x;,...,xj,}. Then, for k>0,

Bverk(Z) = Byer p(X) U || L] {diam({z;,,,} v B;) - (1, 1)} (3)

m—1
0 R (X\ (a0t )

In particular, Byer,0(Z) = Byer,o(X) U uﬁal{diam({xﬁﬂ}) (1,1)} = Byer,0(X) L {(0,0)}™.

Proof. We prove the statement by induction on m. When m = 1, the statement follows
immediately from Proposition 6.2. Now suppose that the statement is true for Z’ := X o
{le, e ,ajjmfl}, for m > 2. By applying Proposition 6.2 and the induction hypothesis, we
obtain:

Bveri(Z) = BVer,k(Z/) L {diam({:z:jm} up)-(1,1): B e Py ((X\{:rjm}) L {$j1, . ,$jm71})}
m—2

= BVer,k(X) o |_| {diam({xji‘Fl} U Bl> : (1> 1) : Bi € Py ((X\{sz+1}) U {le’ s 7xji})}
=0

L {diam({:z:jm} U Bm—1) - (1,1) : Br—1 € Py ((X\{:njm}) L {:L'jl, e mjm_l})}

m—1
= Byer,k(X) U |_| {diam({xjiﬂ} uBi) - (1,1): 5 € Py ((X\{acjiﬂ}) uA{xj,. .. ,a:jg)} .

1=0

Remark 6.4. Equation (3) in Proposition 1.3 implies the following combinatorial equality:
for any 1 < k <n —2, the cardinality of Byer x(Z) satisfies

n—14+m\ (n-1 +mz]1 t+n—1
k+1 ) \k+1) = k ’
where the left-hand side follows from Example 3.12 and the right hand is given by Proposition
1.5.

Proof of Proposition 6.2. Fix a degree k = 0. For notational simplicity, let ¢ := 0kZ .1 and
0:= 1% Let

s {{[z,xj,azil,...,a:ik]:xil e X —{z;},Vi=1,...,k},
{[z 251}, k=0.

x>

=
’

JoCG 15(2), 258-328, 2024 305


http://jocg.org/
http://creativecommons.org/licenses/by/3.0/

Journal of Computational Geometry jocg.org

and notice that A is an orthogonal subset of Ci1(VR (Z)). As in page 17, for a k-simplex ~
we denote its j-th face by facej(y) for j = 0,..., k. For instance, if v = [z, zj, xi,, ..., zi | €
A, then facei(y) = [z, 24,,...,2;,] is the simplex obtained by removing the vertex z;.

Claim 1: For any v € A, £(vy) = £(facei (7)) = £(0v).

The first equality follows from the fact that dz(z,z;) = dx(z;,z;) < dx(z;,z),Vr e X:

U(facer () = ([, Tiyy - - - Tiy])
<L ([z, 25,5, ..., 24,])
= max {dZ(Z,»Tj),mlaXdZ(Zaxil)anllfl%,XdX(%”xil/)}
< max {mlaxdz(z,xil),nll%xdx(xil, xil,)} =L ([z, iy, 24,]) -

For the second equality, note that for any [ = 2,...,k + 1, we have

¢ (facer(v)) < £(y) = L(face1 (7).

Incorporating the equality ¢(facei (7)) = £ ([2, ziy, ..., %5, ]) = £ ([xj, 24y, ..., x4, ]), We have

may  ( (facei(7)) | = (facer (7).

Claim 2: The set 0A is orthogonal.

For any linear combination ¢ := >} 4 Ay (07) of elements in 0A where the coefficients A,
come from the base field F, we want to show that /(c) = maxy_ xo¢(07y). The ‘<’ follows
from the definition of filtration functions. It remains to prove ‘=’.

To prove this, write
c= Z Ay (0) = 2 Ay (facei (7)) + =,
yeA yeA
where * is a linear combination of simplices that have z; has a vertex. Since x;, # z; for
every [, zj is not a vertex of face;(y) for any ~. Therefore, >, . 4 Ay (face1(7)) is a linear
combination of simplices that do not have x; as a vertex, and thus is orthogonal to the *
term. Therefore,

‘ <Z Ay (67)) = max {e (2 Ay (faceﬂy))) ,z(*)}

yeA yeA

>0 (Z A, (face; w)))

yeA

> f
g%f (facei (7))

= . laim 1
g\rwlzgéﬁ (0v). (by Claim 1)
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Thus, 0A is an orthogonal subset of Cx(VR (Z)).

Claim 3: Let ((01,...,0m),(a1,...,;)) be a singular value decomposition (cf. Definition
3.8) of the map d|c, , (vr(x)) : Cr+1(VR (X)) — Ker o, where

. n ) n—1
m = dim (Cg41 (VR (X))) = <k N 2> and r = dim (Im a|0k+1(VR(X))) = <k‘ + 1)'

Then {ai,...,a,} U dA is an orthogonal basis for Im 0.

By Example 3.12, we have r + card(0A) = (ZH) + ("N = (1%1) = dim(Im d). Thus, to
show that {aq, ..., a,} 1 dA is an orthogonal basis, it suffices to show that {aq,...,a,} LudA
is orthogonal. Since both {a1,...,a,} and 0A are orthogonal, by Lemma 3.2, it remains to
show that {a1,...,a,} and 0A are orthogonal to each other.

Let o and y be non-zero linear combinations of elements in {«, . .., a,} and dA, respectively.

We want to prove
(o + ) = max{{(a), £(7)}.

When ¢(«) # £(7), apply Lemma 3.1. When ¢(a) = £(7y), since ‘<’ is trivial, we only need
to show ‘>’. Because simplices in a do not contain the vertex z, if [z, z;,,...,2;, ] is in v, it
must also be in a + . By Claim 1 and Claim 2, we see that £(y) is equal to a term in the
form of ¢ ([z, xi,, ..., xi.]). Therefore,

ﬁ(a + 7) = g([zvril? s 73:%]) = g(’)/) = max{g(a)7£(7>}'

This finishes the proof of Claim 3.

In what follows, we use subscripts to indicate the degree of A. Then {o1,...,0m,} U Ak U
(9kZ '+ 9Ak12, which is orthogonal. The orthogonality arises because, for any v € Ay o, 5,€Z oY
has a dominating® term face; (7) as established by Claim 1, that is absent from {071, ..., o, } L
Aj11. This absence can be understood because (1) each face; () incorporates z as a vertex,
in contrast to the simplices in {oy,...,0,,} which are contained in X, and (2) unlike the
simplices in Ay1, no face; () includes z;.

In addition, {o1,...,0m} U Ags1 L OF, 5 Ak is an orthogonal basis for Ci41(VR (Z)), since
its cardinality matches the dimension of Cr1(VR(Z)): (,1,) + (ngl) + (Z;}) = (Zi%)

Thus, we have the following singular value decomposition for 8,62 e

Crs1 (VR (2)) - <{Jr+1,...,am}uakZ+QAk+2, {01,...,UT}|_|A;€+1)

N |

Cu(VR (2)) : 0 ({al,...,ar} Uo7, Apia, )

4A dominating term is a simplex o that appears as a summand in the linear combination expressing 0y
in terms of simplices and satisfies £(0) = maxx, %0 £(07).
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By the definition of verbose barcodes, we have

Bverk(Z) ={(¢(c;),€(03)) i =1,...,r} u{(€(07),€(7)) : 7 € Aps1}
=Bver i (X) u {diam({z, 2z, ..., 2. }) - (1,1) 12, € X — {a;} ,VI=1,... k}

(X) (
_ {Bver,k(X) U {diam({z;}) - (1, 1)}, K=o,
Byer s (X) U {diam({z;} U B) - (1,1) : B € Po(X\{2;))}, k> 1.

6.1.2 Explicit Formula for Pullback Barcodes

Proposition 1.3 shows that the pullback barcodes are obtained from the verbose barcodes of
the underlying metric space X by adding certain diagonal points. In degree 0, these extra
diagonal points can only be copies of (0,0), and we can determine their exact multiplicity.
One may ask whether there exists a more explicit formula for the extra diagonal points and
their multiplicity in positive degrees. In this subsection, we answer this question.

By Remark 6.3, for a pullback space Z = Xu{z;,,...,z;,. }, if we order points in {x;,,...,x;,.}
suitably, we can regard Z as X u{z1}™ u{xe}™ 1w {x,}™, where my,ma,...,my, € N.
It follows that pullback spaces Z of X are in one-to-one correspondence with vectors
m:= (m1,ma,...,my) € N*. We call m the pullback vector associated with Z.

Let n,k,p € Z=1 be such that p < k+1 < n. Let m := (mq,...,m,). We introduce
the following notation: for any I, := [i1,...,ip] with 1 < i3 < -+ < i, < n, letting
m(Ip) := (M, ...,m;,), we define the following multiplicity function

pr((1p)) := ) > (m’;j 1) (mlzj 1) (m’;;j 1) <TZ:>

q=1 W1,yewg=1
wi+Fwg+(p—g)=k+1

See Section A.1 for some examples of py(1m(1p)).

Proposition 1.4 (Explicit formula for pullback barcodes). Let Z := X v {x1}™ -+ U
{xn}™, where each mj = 0 is the multiplicity of the extra copies of xj in Z. Then, for any
degree k,

BVer,k(Z) = BVer,k(X) o |_| {diam({xi17$i27 cee 7xip}) : (17 1)}#k(m(lp)) .

1<p<k+1
1<ip<--<ip<sn

In particular, the multiplicity of diam({x;}) - (1,1) is (m , for each j.

ey
Proof. Recall Equation (3) and its graphical explanation given in Figure 2. Fix a degree
k>0. Let 1 <p<k+1. We first consider the case of (1,2,...,p) and count the number
of copies of a := diam(z1,...,zp) - (1,1).
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Take any 1 < ¢ < p. Starting from step ¢ = my + --- + my—1 and continuing until step
t=mq+ -+ mg_1 +myg — 1, we obtain one copy of a for each copy of a multiset of the
following form:

A:={z1,...,01,%2,...,%2,...,%g,...,Lg, Lg+1,---+Tp},
—_—
w1=1 wa=1 wg=1
where w1 + - +ws+(p—q) =k + 1.
During these steps, we are picking points from the red-colored and blue-colored parts below:
L1, 2,y Ty ovey Ty Tlyeeey L1y T2y ee ey, T2y wnny Tgyenn, Ty
—_— Y—
mi mo

Therefore, the number of multisets in the form of A is

Z (m1 + 1> (mg + 1) (mq_l + 1> <mq>
W1,e.wg=1 w1 w2 Wg—1 Wy
w1+-twe+(p—q)=k+1

Thus, the total number of copies of a is

p

my + 1 mo + 1 Mmg—1 + 1 m B
XX (M) (e (M) - b,
q=1 W1 yeenywg =1 1 2 q—1 q
w1+ Fwe+(p—q)=k+1

It is clear that the above result also holds for general 1 < i; < --- <4, < n. In other words,
the total number of copies of diam({z;,,...,x;,}) - (1,1) is pp(m([i1, ..., ip])). O
6.2 Discussion on the Computation of Pullback Distances

In Section 6.2.1, we reformulate all pullback distances with pullback vectors, and discuss
the computability of the pullback distances through these reformulations.

In Section 6.2.2, we prove Proposition 1.5, which provides a precise formula for computing
the pullback bottleneck distance (in all three settings) in degree 0. This formula dictates
that when computing 6?1370 bars in barcodes should only be matched with other bars or with
the origin (0, 0), distinguishing it from the standard bottleneck distance where bars can be
matched to any point along the diagonal.

6.2.1 Reformulations of Pullback Distances Using Pullback Vectors

Given any vector m = (mq, ..., my) € N* we construct a pullback space
n
X(m):=Xu U{mj}mj
j=1

equipped with the pseudo metric induced from X. In Proposition 6.5, we reformulate the
pullback distances in terms of pullback vectors.

In order to state the proposition, we introduce the following notation:
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e For any m € N and 7/ € N, let X (17, /) denote the set of all n x n/ binary matrices
M such that the sum of the i-th row of M equals m; and the sum of the j-th column
of M equals m , for all 4 and j.

e Let Xow be the set of n x n’ binary matrices in which each row contains exactly one
entry equal to 1.

e Let X, be the set of n x n/ binary matrices in which each column contains exactly
one entry equal to 1.

e For any two matrices of the same size M and M’, define M v M’ as the matrix obtained
by taking the element-wise maximum of M and M’. By Xiow Vv Xeol, denote the set of
all matrices M v M’ with M € X, and M’ € X.

e Given any m € N” define mi + 1 := (mp +1L,ma +1,...,m, +1).

Proposition 6.5 (Pullback distances reformulation). Let X and Y be two finite metric
spaces with cardinality n and n', respectively. Then, all pullback distances can be written in
the form of

di (X,Y) = o 0E L di(Cx(VR(X (1)), C(VR(Y (7))

&%,k (X7 Y) = (7 rlrir/l)fe{m dM (BVer,k’ (X(’Iﬁ)), BVer,k’ (Y(m/)))v

where
(1) for & = Tri, My i= { (70, ) € N* 5 N | i + 11 = 7' + 1] }

(2) for o = Cor, Mo := { () € N* x NV | X7t + 1, + 1) # &}

(3) foro = Map, Myrap := {(m,m’) eNM x NV | X(17+ 1, + 1) A (Ko v Xeol) # @},

Remark 6.6. In the definition of Moy, the condition X(m + 1,m' + 1) # & can be
characterized by direct constraints on the vectors m,m’ (see (13)), following from the Gale—
Ryser Theorem [19, 29[, as we now describe.

For any m = (mq,...,my,) € N*, denote by ‘i := (m(l), e ) vector obtained by
rearranging the entries of m in nonincreasing order, i.e., m( ) e CZ My
Define the conjugate of a nonincreasingly ordered vector m € N* as m* := (mf,m3,...,m}),
where

mj = card({i € {1,...,n} | m; = k}),
if 1 <k <mq. If k> mq, we set mj := 0.

Given m € N™ and ' € N" | we say that m is majored by mi/, written m < 1/, if

k

k
Z m; < Z m;  for all k,
i=1

=1

where we assume m; = 0 for i >n and m; =0 fori>n'.
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By the Gale-Ryser Theorem, we have

Xm+1,m +1)# P <« |m+1| =@ +1|1 and 'm+1 < 4\ +1)*. (13)

Unlike My and Mcor, it remains an open question whether Myiap admits a formulation in
terms of direct constraints on m and m/

Remark 6.7 (Analysis of computational complexity of computing pullback distances.). Let
X and Y be two finite metric spaces with cardinality n and n', respectively. Without loss
of generality, assume n = n'. By Proposition 6.5, the brute-force algorithms for computing
pullback distances between X and Y have the following complezity upper bounds (view k as
a constant):

(a) for d§ ACOY O (n2" - (2n)3(+D)) = O(n2n+3k+3);

(b) for dr: O (n2n SHZ3 @m0 ) = 0 (o),
(c) for dyiP: O (16" (2n)3*+1) = O(16n+3);

(@) for d'*: O (167 Y323 (2n)20+D) = O (16™039).

Here O(+) is the big O notation. To establish complezity bounds for computing pullback bot-
tleneck distances, we begin by separately estimating the cardinality of My and the complezity
of computing the distance dy.

For any non-negative integer i, the number of vectors with n non-negative integer entries
summing to i equals the number of ways to distribute i indistinguishable balls into n dis-
tinguishable boxes. This is given by ("JrZ 1)(: (”+f_1)), which we will use to estimate the
cardinality of M.

Note that for (m,m’) € Mcor, we have |M| < n' —1 and |M/|| < n— 1. This follows
because each m; + 1 equals a row sum in an n x n' binary matriz and is therefore at most
n', and similarly, m + 1 < n. Consequently, we obtain the bound

/

card(Meor) < n™ ()" = O(n"). (14)

For any (m,m’) € Mytap < Mcor, we have [N < n' —1 and |7|| < n—1, along with
the additional constraints |m|l; < n' and |m'|1 < n. The latter follows from the fact that
| + 11 = |71 + n equals the total number of 1s in a matriz of the form F v F', where
F e Xow and F' € X.y. Since each row of F' and each column of F' contain at most one
entry equal to 1, the total number of 1s in F v F' does not exceed n' + n. This implies
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M| < ', and similarly, |7V|1 < n. Thus, we obtain the following bound on card(Myap):

’

ity < 53 (") (1)
QHPREaY
0( 2n—1 )

no\ 2
=0 (n ( 1 > ) = 0(16"). (by Stirling’s approzimation) (15)

~

V2t

In order to bound the complexity of computing the matching distance

dM (BVer,k(X (T?L)), BVer,k(Y(m/)))a

we first observe the following bound on the cardinality of the involved verbose barcode

card(Bnn(X() = (70N TY) <0 (il £ ) <0 (547) . g

and similarly for card(Byer (Y (m'))). Combining Equations (14), (15), and (16), along
with the fact that the matching distance can be computed in cubic time [}, Section 4.2/
relative to the mput size, we complete the proof of the complexity bound for Items (a) and
(c), i.e., for dy ‘Zp and dg‘}: , respectively.

For d; M and c?lcor, the idea is similar except that one needs to add up the complexity of
computing the matching distance in each degree.

For tripods, we estimate the complexity of computing pullback distances by bounding the
Lo-norm of the pullback vectors, which in turn provides an upper bound on the distance
computation. Fix a positive integer N and define

A = { (7, 7) € N s N | a7+ 1 = |13 + 11, il o, 57 < N |-

Then, the cardinality satisfies card(MMY.) < n™ (n)N = O(n?M).

Reformulating pullback distances via pullback vectors offers a potential advantage of more
efficient computation of these distances when approached using brute-force. This is because
the set My is “smaller” than the set of tripods”: each tripod only produces one element in
Mryi, but each pair (m,m') € My induces multiple tripods, as explained in the proof of
Proposition 6.5 on page 56. The same phenomenon applies to correspondences and maps. In
other words, the sets My, Mcor, and Myiap are “smaller” than the respective sets of tripods,
correspondences, and maps. To elaborate on this point, consider the following comparisons:

5We use “smaller” informally here, since their cardinalities could still be the same.
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e The number of pairs of maps (f, g) between X and Y is

/

n"™ (n')" = O(n*") > O(16™) = card(Mytap)-

e The number of correspondences R between X and Y is at least
9 _ 2= _ pro=1n _ 9(27%) > O(n®") = card(Mcor).
Proof of Proposition 6.5. It suffices to establish the results for the pullback interleaving
distances, as the case of pullback bottleneck distances follows from a similar argument.

To proceed, let {x1,...,z,} and {y1, ...,y } denote the underlying point sets of X and Y,
respectively.

Case (1): given any tripod X ox Z o Y, let

m; 1= card(gb;(l(xi)) —1 and m; = card(gﬁ;l(yj)) -1

for every x; € X and y; € Y. These vectors m := (mq,...,my) and m' := (mf,...,m),)
satisfy |m + 1|1 = card(Z) = |m/ + 1||; and induce isometries (see page 9) X (M) =~ Zx and

Y (m') = Zy, leading to

A< min  di(CL(VR(X (11))), Ci (VR(Y (171))))-

(n’i,n’i’)eDﬁT“

Conversely, given any (m,m’)) € My and for each bijection f : X(m) — Y ('), we
TFyOf

construct a tripod X —Z =X (m) Y such that Zx and Zy are isometric
to X(m) and Y (), respectively. Here mx : X(m) — X and my : Y(m') —> Y are the
projection maps.

Case (2): for the ‘<’ direction, it suffices to show that for any correspondence R c X x Y,
there exists (M, m') € Mo, such that Rx and Ry (defined in Equation (10)) are isometric
to X (m) and Y (m'), respectively. A sufficient condition for Ry =~ X (m) and Ry =~ Y (m)
is that

m; + 1 = card(my! (z;)) and my+ 1= card(my ! (y;)), (17)

where mx and 7wy are the projections from R to X and Y, respectively. Conversely, it suffices
to show that every such pair (17, m’) determines a corresponding R satisfying Condition (17).

Given any correspondence R < X x Y. Define

m; = card(my (v;)) — 1, and my = card(my ! (y5)) — 1.

Next, define the binary matrix M by setting M;; = 1 if and only if (z;,y;) € R. Then
M satisfies the prescribed row and column sums. As a consequence, it follows that M €
X(m + 1,m’ + 1), ensuring that this set is nonempty. Consequently, (m,m’) € Moo, and
satisfies Condition (17).

Conversely, given any (m,m') € Mcor, there exists a corresponding binary matrix M €
X (m +1,m' + 1), which induces a correspondence R satisfying Condition (17).
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Case (3): Given twomaps f: X > Y and g: Y — X, let G := G(f, g) denote the union of
their graphs, as defined in Equation (11). For the ‘<’ direction, it suffices to show that for
any pair of maps f : X > Y and g: Y — X, there exists (m,m’) € Mo such that Gy and
Gy (defined in Equation (12)) are isometric to X (m) and Y (m/), respectively. A sufficient
condition for Gy ~ X (m) and Gy = Y(m') is

m; + 1 = card(ry! (z;)) and mj+1 = card(my " (y5)), (18)

where mx and 7y denote the projections from G onto X and Y, respectively. Conversely,
it suffices to show that every such pair (m,m’) determines a pair of maps f : X — Y and
g :Y — X such that the union of their graphs satisfies Condition (18).

Given any pair of maps f: X — Y and g : Y — X, let G := G(f, g) be the union of the
graphs of f and g, inducing a correspondence between X and Y. We define

m; = card(my (7;)) — 1, and m’; 1= card(my ! (y5)) — 1.

Next, define the binary matrices F' and F’ by setting F;; = 1 if and only if f(z;) = y; and
Fl’] =1 if and only if g(y;) = x;. Then, define M := F v F' € X0 v Xeol. Since M satisfies
the prescribed row and column sums, it follows that M € X(m + 1,7/ + 1). Consequently,
(m,m') € Mrap and satisfies Condition (18).

Conversely, given any (1m,m') € MMrap, there exists a corresponding binary matrix M e
Xm+1,m 4+ 1) N (Xow V Xeol). Suppose M = F v F’ for some F € Xyon and F' € X).
Then, F' induces a map f : X — Y defined by f(x;) = y; if and only if Fj; = 1, and
similarly, F” induces a map g : Y — X. It follows that the union of the graphs of f and g
satisfies Condition (18), completing the proof. O

6.2.2 The Case of Degree Zero
In this subsection, we prove Proposition 1.5. Recall from Section 4.2 the matching distance

dyi: for any A, B HOO,

dyi(A, B) = min {majc la —¢(a)|w: A % Ba bijection} .
ae

Before discussing how to compute the degree-0 pullback bottleneck distance, let us identify
a special property of the matching distance:

Fact 6.8. Let A :={a; = - - = a,} and B := {by = --- = by} be two multisets of n real
numbers each. Then,

dy(A, B) = bij?:ljélIl—»Bm?XMi — f(ay)| = mzax|ai — by

Proof. For any pair of real numbers a > o’ and b > b/, notice that their differences satisfy
the so-called bottleneck Monge property (see [5, Section 4.1]):

max{|a — b'|,|a’ — b} = max{|a — b, |a" — V'|}. (19)
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Consider any bijection f : A — B and assume there exist ¢ < j and 7 < j’ such that
f(a;) = by and f(aj) = by. We define a new bijection f: A — B such that f(a;) = by,
f(a;) = bj and f = f otherwise. It follows from Equation (19) that dis(f) < dis(f). Repeat
this process which stops when we obtain a bijection g : a; — b; for every i. Thus, g is the
optimal bijection. O

Proposition 1.5 (Pullback bottleneck distance in degree 0). Let X and Y be two finite
metric spaces such that card(X) = n < n’ = card(Y). Suppose the death time of finite-length
degree-0 bars of X and Y are given by the sequences a1 = -++ = an—1 and by = -+ = by,
respectively. Then,

1<i<n—1 n<i<n/—1

C/l\B,’()(X,Y):HlaX{ max |a; —b;|, max bi}.

Proof. By Proposition 6.5, C/l\B,O (X,Y) can be reformulated using pullback vectors as:

dpo(X,Y) =  min  dy(Bvero(X(11)), Byero(Y (1)), (20)

(M, )My

where My 1= {(Tﬁ, m) e N* x N | |+ 1]y = | + 1”1}. By Proposition 1.3, we have

Bver.o(X (110)) = Byer,o(X) L {0,071 and  Byero(Y (111)) = Byer,o(Y) L {(0,0)}I™

(21)
Combining Equation (20) and Equation (21), we have
dpo (X,Y) = min  dy (Bvero(X) U (0,00}, Brero(Y) 1 {(0,00})

m+n=m'4+n’

By the given assumption, we have Byer0(X) = {(0,a1),...,(0,a,-1)}u{(0,0)} and Byero(Y) =
{(0,b1),...,(0,b,7—1)} L {(0,00)}. Together with Fact 6.8, we have

dp o (X,Y)
- mi/réN dy <{(O7 OO)? (07 al)? SRR (07 an—l)} U {(07 0)}m7 {(07 OO), (07 bl)? SRR (07 bn’—l)} o {(O’ O)}m/>

m-‘rn’:m'-‘rn’
= miHN dM<{CL1,.. s Ay — 1, , 0} {bl,..., n' 1,0,...,0})

m,m’e —_————

m+n=m/+n’ m m/
:dM<{a1,.. an1,0,.., 0}, {bl,...,bn,,l})
:max{ max |a; —b;|, max bi}. O

1<i<n—1 n<is<n/—1

Example 6.9. Let X, ({0,1},d°) be a metric space consisting of two points, where

d(0,1) =1+e. Itis not hard to verify that Bcoon,o(Xe) = {(0,1 +€), (0, +00)}, and thus,

’dB(BCOmO(Xe)v BCon,O(XO)) min { 2 1+6} < % = dGH(X€7X0)
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where the inequality is strict when € > 1. However, for any € = 0,

~ €
3dBo (Xe, Xo) = 5= don(Xe, Xo)-

Thus, in this example, JB between degree-0 barcodes have a stronger distinguishing power
than dg.

Proposition 1.5 implies the following corollary:
Corollary 6.10. (1) c/lg% = Jg‘g = cf%/{%p.

(2) The pullback bottleneck distance between degree-0 verbose barcodes satisfies the triangle
inequality.

Proof. Let X and Y be finite metric spaces with cardinality nx and ny, respectively. As
before, consider the death times of finite-length bars in the degree-0 barcodes of X and Y
as ay = -+ = apy—1 and by = -+ = by, _1, respectively. For any N > max{nx,ny}, define

o = {ay,...,any_1,0 0, . 0} and N {al,...,bny_l,&...,_(/)}.

N—nx N-—ny
We have seen in Proposition 1.5 that
di (X,Y) = [ = Y|, YN = max{ny,ny}.
Via a similar discussion, we have

dyg? (X,Y) = amxtny — gnxtny |

and thus dll\g/[%p (X,Y) is equal to dgrb (X,Y). Because 31131% < CTCBT?Or < dy o, we must have
that all three of them are equal. So Item (1) holds.

Let Z be a finite metric space of ny many points. Assume that the death times of

finite-length bars in the degree-0 barcodes of Z are ¢y > --- > ¢y,—1. For any N >
max{ny,ny,nz}, define v := {c1,...,¢n,-1,0 0, . 0} Then, we have

R

N— ny

dpo (X, Z) = o™ =V < o = 8o + |18~ =V | = do (X,Y) + dpo (V. Z) .

This proves Item (2). O

6.2.3 An Important Example of Ultra-Metric Spaces

We demonstrate that all three pullback interleaving-type distances violate the triangle in-
equality by considering the three five-point ultra-metric spaces depicted in Figure 9.

Proposition 6.11. Let X, Y and W be given as in Figure 9. Then,
(1) for the pair (X, W) or (W)Y), c/l}Tri = cilcor = %\/Iap =0;
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r1 X2 T3 T4 T Y Y2 Y3 Ya Ys w1 w2 W3 w4 Ws
X Y

1 T2 X3 T4 Ts Y Y2 Ys Y4+ Ys wp w2 w3 wyg Ws
z1 /0 1 2 4 4 yv1 /0 1 4 4 4 w; /0 1 2 3 4
o | 1 0 2 4 4 2|1 0 4 4 4 wy | 1 0 2 3 4
T3 | 2 2 0 4 4 y3| 4 4 0 3 3 wsg | 2 2 0 3 4
z4 | 4 4 4 0 3 yal 4 4 3 0 2 wyg | 3 3 3 0 4
zs \4 4 4 3 0 ys \4 4 3 2 0 ws \ 4 4 4 4 0

Figure 9: First row: three 5-point ultra-metric spaces denoted as X, Y and W, respectively.
Second row: distance matrices of the ultra-metric spaces X, Y and W, respectively. In
each matrix, the (7, j)-th element is the distance between the i-th and j-th elements in the
corresponding metric space.

(2) for the pair (X,Y), JITYi = c/Z\ICOY = &}\/Iap =1.
Proposition 6.11 implies the following corollary:

Corollary 6.12. The triangle inequality does not hold for (jlm’ c/l\lcor, and %\/Iap.

Proof. Consider X, Y, and W as depicted in Figure 9. Proposition 6.11 implies that
A (X,Y) =1>0+0=di" (X, W) +df" (W,Y).

The same is true for chor and c/Z}v{ &P O

Proof of Proposition 6.11 (1). By Theorem 9, we always have c/l»II‘ri < (jlcor < @/Iap. Thus,

to prove the statement, it suffices to show that @/[ *® = 0. By Proposition 6.5, this is
equivalent to finding pullback vectors (1, ') € Myap such that di between the VR FCCs
of the corresponding pullback spaces is 0.

For (X, W), consider
i = (0,0,0,2,3) and ' = (0,0,0,3,2).

Recall the definition of My from Proposition 6.5. Note that (17, m') € Myap, since there
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exists F' v F' in X(m + 1,m’ + 1), given by

0 00 01 00 0O00O
00010 00 00O
F=]100 01 0|eXow and F'=[0 0 0 0 0|eXaq.
00010 00101
0 00 01 11010

Let Z := X(m) and Z' := W (nY') be the pullback spaces of X and W, respectively. We
claim that

@ (Cu(VR(Z)), CoVR(Z) = maxx  dt (Breni(2). Bras(2) =01

Since (1, 111') € Mtap, we deduce from the above claim that dy™ between X and W is also
zero. The claim follows by computing the verbose barcodes of Z and Z’ via Theorem 5 and
Proposition 1.4. For brevity, we have omitted the details. Interested readers may refer to
[32, Section 5.7 & Section A.1].

For (Y, W), consider
i = (0,0,0,1,4) and 7/ = (0,0,4,0, 1),

Note that (73, M) € Mytap, since there exists F' v F in X (m + 1,7 + 1), given by

00100 000 O00O
00100 00 00O
F=]100 10 0|leXo and F'=[0 0 0 0 0|eXq.
00001 00100
00100 11011

Apply a similar argument as in the previous case to deduce that %\/{ *® between Y and W is
ZETO.

Proof of Proposition 6.11 (2). For the pair (X,Y), to show dt = dCor = gM

suffices to prove

=1, it

(a) dY™ (X,Y) < 1; and
(b) d"(X,Y) > 1.
Item (a) can be obtained by considering pullback vectors
m=m'=(0,0,0,1,4).

With a similar argument as in the proof of Proposition 6.11 (1), we have (m,m') € Mutap.
Let Z := X(m) and Z’ := Y () be the pullback spaces of X and Y, respectively. We can
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compute the verbose barcodes of Z and Z’ from Theorem 5 and Proposition 1.4, and check
that

cﬂv[ap (X,Y) < di(C«(VR(2)),C«(VR(Z))) = , Jax dy(Br(Z),Bp(Z")) = 1.

:07 20ty

For Item (b), note that the statement is equivalent to showing that
A (X,Y) # 0. (22)

The proof of Equation (22) is not included in this section due to its technical nature. In-
terested readers can find more details in Section A.2. To summarize, the proof involves
solving Diophantine equations, which are polynomial equations in two or more unknowns
with integer coefficients, such that the only solutions of interest are the integer ones. The
reason for this is that df™ (X,Y) = 0 if and only if there exist pullback vectors (i, 77')
such that X (m) and Y (m') have the same verbose barcodes in all degrees. And the latter
is equivalent to the existence of solutions for equations given by matching the multiplicities
of bars in the verbose barcodes.

Remark 6.13. For the pair (X,Y) and for any k = 1,2,3, we claim that %AZP is zero. It

then follows that cﬁr}f and c’l\g"ér are also zero. The claim can be proved by considering the
following pullback vectors:

e Fork =1: m = (1,1,0,0,3),m" = (0,3,0,1,1). Note that (1, m') € Mprap, since
there exists F' v F' in X(m + 1,m/ + 1), given by

01000 0000 1
01000 00100
F=]0100 0[eXw and FF=|0 0 0 0 0]eX,.
00010 00000
0000 1 11010

e For k=2 and3: m =(0,0,0,1,4),m = (0,1,4,0,0). With a similar argument as in
the proof of Proposition 6.11 (1), we see that (m,m') is in Mytap.

e For k> 3: m=m"= (1,1,1,1,1). Note that (m,n) € My, since there exists
Fv F inX(m+1,m +1), given by

1 0000 01000
01000 00100
001 0 0]leXow and F'=[0 0 0 1 0]|eX,.
00010 00001
00001 1 0000
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A Appendix

A.1 Understanding the Multiplicity Function s (173(1p))

We present some examples to help understand the notation py(7i(1p)) introduced in Section
6.1.2.

First consider the case when k = 1. There are only three possible cases:
e p =1, in which situation we must have ¢ = 1 and w; = 2;
e p =2 and q =1, in which situation we must have w; = 1;
e p =2 and ¢ = 2, in which situation we must have wi; = wy = 1.

Thus, we have

mony = 3 (7)< (5)

w1=
o m; m; m;
pa (([in,ia])) = ) < 1“) + ) ( ”H) ( 22> = MMy + My +my,.  (23)
wi=1 wi=wo=1 w1 w2

From the above, it is clear that when k = 1, Proposition 1.4 reduces to the following:

Bver1(Z) = Byern(X)u | | {dx (2p, q) - (1,1)}mematmotma) (0 0)32 (%)

1<p<qg<n

For k = 2, we have
o) = 3 (Z) - @)

= () ("))« ()

= (may + 1) (my, + 1222 4 (24)

One more example of p4(m(I,)) is when p = k + 1. In this case, we have

il =5 5 () () (e ) ()

=1 wi,...,wg=1
w1+ Fwg=q

+
Z mgy + 1) (mg, + 1) ... (my,_, + 1)my,. (25)
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Remark A.1. The functions {ui(-)}r satisfy the following recursive relation:

k‘ 217"') )) Mk— 1( ([Zl,...7ip_1]))
_le Z (mil + 1> <miq1 + 1> <m1q>
Wi ,wq>1 q=1 W1y wg =1 w1 Wg—1 Wy
w1+ Fwg+

(p—q)=k+1 w1+ Fwe+(p—1—q)=k

Z <m¢1 + 1) (miql + 1) <m2q>
q=p w1, Wq>1 w1 wqfl wq

Wit wg—k+1

Z <mi1 + 1) (mipl + 1) <m,p>
W1, wp=1 w1 wp_l wp

wi+-Fwp=k+1

n 1=

A.2 Proof of Equation (22)

We establish an important Lemma that provides a necessary condition for pullback interleaving-
type distances to be zero (see Lemma A.2). This lemma allows us to restrict our attention
to pullback vectors (m,m’) that are a certain type of permutation of one another.

For any integer n > 2, let S,_1 be the group of all permutations of the set 1,...,n — 1.
Let 0 € S,,—1 be a permutation with the property that o(1) = 1. Define X, to be the
ultra-metric space such that ux(x;, x;41) := o(i) for all i = 1,...,n — 1, and ux(z;, z;) :=

max;—; j—10(l) for all 1 <i < j <n. Denote

Up = {(Xos,ux) | o€ Sp_1, 0(1) =1}.

Lemma A.2. Let X, X’ be in U, and m,m' € N*. Let Z := X(m) and Z' := X'(nV) be
the pullback spaces of X and X', respectively. Then,

(1) Bverk(Z) and Byer(Z') have the same number of (1,1) for both k = 1,2, and
(2) Byerx(Z) and Byer (Z') have the same number of (0,0) for all k =0,1,...,n—3,
if and only if
(I) (m1,m2) and (m},mb) differ by a permutation, and
(II) (ms,...,my) and (m5,...,m}) differ by a permutation.
Moreover, if these conditions are satisfied, the multiplicity of (0,0) (or (1,1) respectively) in
Bver(Z) and Byer k(Z") matches for k =3,...,n+ |m|; — 2.
Proof. We first prove that Items (1) and (2) imply Items (I) and (II).

It follows from Proposition 1.4 and Equations (23) and (24) that the multiplicities of (1, 1)
in Byerx(Z) for k = 1,2 are:

o k=1: up(m([1,2]) = (m1 +1)(me +1) — 1,
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o k=2 po(m([1,2])) = (mq + 1)(mg + 1)tm2=2 4 1,
Similarly, we have the multiplicities of (1,1) in Byer x(Z’) for k = 1,2:
o k= 1 (/([1,2) = () + D(m) + 1) — 1
o k=2 po(m([1,2]) = (m] + 1)(m + 1)™Fr2=2 4 .
Thus, for Item (1) to hold, the following system of equations is satisfied

(mi+1)(me+1)—1=(m) +1)(my+1) -1

! !
my+my—2

(m1 + 1)(mg + 1)2H202=2 4 1 = (] + 1)(mf + 1) ™12 —= + 1.
Because my + 1, my + 1 > 0 are non-zero, the above equations can be simplified to

(my1+1)(me +1) = (m} + 1)(m) + 1)
my + mg = m} + mj.

As a consequence, we can infer that (my +1,mg + 1) and (m} + 1, m), + 1) are permutations
of each other, which implies that (m1,m2) and (m}, m}) are also permutations of each other.

By Proposition 1.3 and Proposition 1.4, for any k = 0,...,n — 3, the multiplicities of (0, 0)

in the verbose barcodes Byer k(Z) and Byer i (Z') are Zp (,ﬁpl) and Zp (,ﬁpl), respectively.

Thus, for Item (2) to hold, m and m/ need to satisfy the following (n — 2) equations:

3 (77;;:) _ ; (”;;9> Zp] (nnip2> - ; (nﬂi;?2>'

p

It is clear that the above system of equations is equivalent to the system of equations

[l = [, - g = 7 2,
where | - |z4+1 denotes the (k + 1)-norm of a vector.
Let Z := (mg,...,my) € N2 and ' := (mj},...,m}) € N*"2. Because (my,ms) and

(m}, m}) are permutations of each other, we have

2k >k k >1k k k
121550 = lally — [ omayma) 32y = 1y 5y = 10my, ma) iy = 12135

for any k, i.e. the following (n — 2) equations hold:

121 = 121, 1212 = 122, - -, [Zln—2 = |Z/[n—2. (26)

Let f(z) := ]—[?:_12@— zi)— H?:_E(SL‘—ZD. Then the system of equations (26) guarantees that

n—2
f(x) = 0. This follows from Newton’s identities, which say that power sums {2?2_12 zf}k )
and symmetric polynomials {(zl + o+ zZp_2), <21<j1<j2<n72 zjlzj2> ooy (21 Zn_g)} de-

termine each other. Because these symmetric polynomials determine f(z), the power sums
also determine f(x).
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Thus, Z and Z’ differ by a permutation, which implies that (msg,...,m,) and (mj,...,m})
differ by a permutation. Therefore, we have proved that Items (I) and (II) hold.

For the other direction, it is straightforward to verify that Items (I) and (II) imply Items

(1) and (2).

Moreover, if Items (I) and (II) are satisfied, the following is true for any k = 3, ..., n+|ml; —
2: The multiplicities of (0,0) and (1, 1) in Byerx(Z) and Byer k(Z’) match. This equivalence
is due to the preservation of the multiplicity of (0,0) in By (Z) under permutations and
the multiplicity of (1,1) being a symmetric function in m; and ma. O]

Let X and Y be given as in Figure 9. We apply Lemma A.2 to show d}m (X,Y) #0, ie.
Equation (22).

Proof of ‘d}rﬂ (X,Y) # 0. It suffices to show that there exist no pullback vectors m € N°
for X and ni/ € N° for Y such that

— =/ —
021]?2{3 dM (BVer k(X (m))a BVer,k(Y(m ))) =0.

In other words,
Bver k(X (M) = Byer k(Y (110)), Yk =0,...,3.

We prove these equalities by contradiction. Assume such 17,7/ € N° exist. Then they must
satisfy a certain system of Diophantine equations.

Because of Lemma A.2, the pullback vectors 17, m’ € N® satisfies the following properties:
(I) (mq,ms) and (m/, m}) differ by a permutation, and
(IT) (ms3,mq, ms) and (mh, mly, mf) differ by a permutation.

Let Z := X(m) and Z' := Y (m’) be the pullback spaces of X and Y, respectively.

Conditions (I) and (II) guarantee that Byer x(Z) and Byer 1(Z’) contain the same number of
(0,0) and (1,1) for all K =0,...,n — 2. Given that the total cardinalities of Bye,(Z) and
Bver,k(Z') are equal, matching the multiplicities of (2,2) and (3, 3) in both barcodes implies
that the multiplicity of (4,4) will also match. Thus, it remains to match the multiplicities
of (2,2) and (3,3) in Bverx(Z) and Byer i (Z').

For degree 1, the multiplicity of (a,a) in BVer,l(Z) is:
o a=2 p(m([1,3])) + p (m([2,3])) +
o a=3: pui(m([4,5])).
And the multiplicity of (a,a) in Byer1(Z') is:
o a =2 (n'([4,5]));
3,4]

5
o a=3: pa(m/([3,4
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Applying Equation (23), we want m and m’ to satisfy:

ms + 1) —1+(m2+1)(m3+1):(mg+1)(mg+1)—1
my+1) — 1+ (mh + 1)(ms + 1) =(mg + 1)(ms + 1) — 1.

(m1 + 1)(
(m + 1)(
To simplify the equations, we define

Ci=(mi+1,...,ms+1) and { := (mi+1,...,m§+1).
Then the above equations can be rewritten as:

GG+ GG =G (27)
34 + (3¢5 =CaGs. (28)

For degree 2, it follows from Proposition 1.4 that the multiplicity of (a,a) in Byer2(2) is:
o a=2 pp(m([1,3])) + p2(m([2,3])) + p2(m([1, 2, 3]));
o a=3: pa(m([4,5])).
And the multiplicity of (a,a) in Byer2(Z') is:
o a=2: pa(n'([4,5]));
o a=3: pz(mi/([3,4])) + p2(m’([3,5])) + p2(mi/([3,4,5])).
Applying Equation (24) and (25) and substituting ¢ and ¢’ for m and 17/, we obtain:
GG = 2) + GBS = 2) + 1+ Gty — 1 =G (955 — 2) (20)
GG =) + GRS -2 + 1+ GGG -1 =G5S -2 (30)

Let us assume
Q= C?nﬁ = C477 = C5'
By Equation (28) and Item (II), we have

CaGs = G3(Ch + ¢5) = Cals + Ci4Cs = C3(C + ¢5) + CaGs
= By + G =af+ By +ay
= (¢ =af + ay.
There are three possibilities for the multiset {C}, (£}: {«, 8}, {a, v}, {8, ~}. Because a, 8,7 >
0, the first two choices will yield a contradiction. Thus, {(},(t} = {8,~}. This implies

¢b=a=_Cand By =af + ay.
Going back to Equation (27), we obtain that
(G+O)a=GG = GH+aa=fy = G+a=T =54y

where we applied the fact that all variables involved are non-zero.

Assume £ := (3. So far, we have shown that E and 5’ must be of the following forms:
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o {=(6&.8+7—&a,B,7) for some &, a, B, € Zs, satisfying Ay = aff + ay;

e (' is of one of the following four: (, B+v—&&a,B,7),&8+~v—&a,vy,B) or
(6+7_§7§7a77aﬂ)'

Applying Equation (30), we obtain:

0 =ChCH(HESE — 2) + (SCH(HES —2) + 1+ BCUGE — 1~ GuGs (935 — 2)
—a¢h(%5% —2) + agh(P3E —2) + 1+ afy — 1 - By (82 - 2)

(a—4)a(6+72)+a(/32+v2) +afy — 2185 | 9gy

(a74)6'y+2a(52+72) +aBy — w + 287

_aB38y+82+9%) _ By(B+y)
2 2

_ a(ﬁv+(ﬁ+v)22)—ﬁv(ﬁ+v)

_apy
L.

contradicts the fact that o, 5, > 0.

Therefore, we have proved that there exists no 5, f’ € Z5>1a i.e. there are no m,m’ € N°, such
that
Byer (X (1)) = Byer (Y (1)), Vk =0,...,3.

Consequently, we conclude that JIM # 0, thus completing the proof.

As an additional remark, it is noteworthy that not all conditions were utilized in our argu-
ment. Specifically, we did not utilize Equation (29) and equations that match the multiplic-
ities of (2,2) and (3, 3) in degree 3. O
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