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EPHEMERAL PERSISTENCE FEATURES AND
THE STABILITY OF FILTERED CHAIN COMPLEXES∗

Facundo Mémoli† and Ling Zhou‡

Abstract. We strengthen the usual stability theorem for Vietoris-Rips (VR) persistent
homology of finite metric spaces by building upon constructions due to Usher and Zhang
in the context of filtered chain complexes. The information present at the level of filtered
chain complexes includes points with zero persistence which provide additional information
to that present at homology level. The resulting invariant, called verbose barcode, which
has a stronger discriminating power than the usual barcode, is proved to be stable under
certain metrics that are sensitive to these ephemeral points. In some situations, we provide
ways to compute such metrics between verbose barcodes. We also exhibit several examples
of finite metric spaces with identical (standard) VR barcodes yet with different verbose VR
barcodes thus confirming that these ephemeral points strengthen the standard VR barcode.

1 Introduction

In topological data analysis, persistent homology is one of the main tools utilized for extract-
ing and analyzing multiscale geometric and topological information from metric spaces.

Typically, the persistent homology pipeline (as induced by the Vietoris-Rips filtration) is
explained via the diagram:

Metric Spaces Ñ Simplicial Filtrations Ñ Persistence Modules

where, from left to right, the second map is homology with field coefficients. Throughout
the paper, we fix a base field F. We restrict our considerations to finite metric spaces, finite-
dimensional simplicial complexes, and finite-dimensional chain complexes. Specifically, in
this paper, for any chain complex pC˚, Bq, the total dimension dimpC˚q “

ř

kě0 dimpCkq is
finite.

Pairs of birth and death times of topological features (such as connected components, loops,
voids, and so on) give rise to the barcode, also called the persistence diagram, of a given
metric space [15, 6]. The so-called bottleneck distance dB between the persistent homology
barcodes arising from the Vietoris-Rips filtration of metric spaces provides a polynomial time
computable lower bound for the Gromov-Hausdorff distance dGH between the underlying
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metric spaces. However, this bound is not tight, in general (cf. Example 6.9). A version of
this theorem restricted to the case of finite metric spaces states:

Theorem 1 (Stability Theorem for dB, [10, 12]). Let X and Y be two finite metric spaces.
Let BkpXq (resp. BkpY q) denote the barcode of the persistence module Hk pVR‚pXqq (resp.
Hk pVR‚pY qq). Then, for any degree k P Zě0,

dBpBkpXq,BkpY qq ď 2 ¨ dGHpX,Y q.

In this paper, with the goal of refining the standard stability result alluded to above, we
concentrate on the, usually implicit but conceptually important, intermediate step which
assigns a filtered chain complex (FCC) to a given simplicial filtration:

Metric Spaces Ñ Simplicial Filtrations Ñ FCCs Ñ Persistence Modules.

Related work on FCCs. An FCC is an ascending sequence of chain complexes connected
by monomorphisms. For instance, an FCC induced by a simplicial filtration tXtutPR can be
represented by the following commutative diagram: for any t ď t1,

C˚pXtq : ¨ ¨ ¨ Ck`1pXtq CkpXtq ¨ ¨ ¨

C˚pXt1q : ¨ ¨ ¨ Ck`1pXt1q CkpXt1q ¨ ¨ ¨

Bk`2 Bk`1 Bk

Bk`2 Bk`1 Bk

,

where each Xt is a simplical complex and C˚pXtq denotes the simplical chain complex of
Xt.

Studies of the decomposition of FCCs in several different settings can be found in [31, 14,
25, 8, 7]. We follow the convention of Usher and Zhang [31], where they study a notion
of Floer-type complexes as a generalization of FCCs and prove a stability result for the
usual bottleneck distance between concise barcodes of Floer-type complexes. In particular,
they studied FCCs in detail and considered the notion of verbose barcode BVer,k of FCCs,
which consists of the standard barcode (which the authors call concise barcode and denote
as BCon,k :“ Bk) together with additional ephemeral bars, i.e. bars of length 0.

They also proved that every FCC decomposes into the direct sum of indecomposables Epa, a`
L, kq, which they called elementary FCCs, of the following form (see Definition 3.16): if
L P r0,8q and a P R, then Epa, a` L, kq is given by

t ă a : ¨ ¨ ¨ Ñ 0 0 0 0 Ñ ¨ ¨ ¨

t P ra, a` Lq : ¨ ¨ ¨ Ñ 0 0 Fx 0 Ñ ¨ ¨ ¨

t P ra` L,8q : ¨ ¨ ¨ Ñ 0 Fy Fx 0 Ñ ¨ ¨ ¨ ,

Bk`2“0 Bk`1“0

“

Bk“0

Bk`2“0 Bk`1“0 Bk“0

“

Bk`2“0 Bk`1: y ÞÑx Bk“0
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where Fx denotes the vector space generated by x. If L “ 8, then Epa,8, kq (with the
convention that a`8 “ 8) is given by

t ă a : ¨ ¨ ¨ Ñ 0 0 0 0 Ñ ¨ ¨ ¨

t P ra,8q : ¨ ¨ ¨ Ñ 0 0 Fx 0 Ñ ¨ ¨ ¨

Bk`2“0 Bk`1“0

“

Bk“0

Bk`2“0 Bk`1“0 Bk“0

The degree-l verbose barcode of the elementary FCC Epa, a ` L, kq is tpa, a` Lqu, where
each pair pa, a` Lq is called a bar and L is its length, for l “ k and is empty for l ‰ k.

The concise barcode of an FCC is defined as the collection of non-ephemeral bars, i.e. bars
corresponding to elementary FCCs with L ‰ 0 in its decomposition, which agrees with the
standard barcode. Indeed, the k-th persistent homology of the elementary FCC Epa, a`L, kq
is the interval persistence module associated with the interval ra, a` Lq, for L P r0,8s. In
particular, HkpEpa, a, kqq is the trivial persistence module.

In real calculations, barcodes are often computed for simplexwise filtrations first (i.e., sim-
plices are assumed to enter the filtration one at a time), in which case all elementary FCCs
correspond to intervals with positive length. This implies that, although not outputted,
verbose barcodes are computed in many persistence algorithms. For VR FCCs, we made a
small modification of the software Ripser introduced by Bauer (see [1]) to extract verbose
barcodes of finite metric spaces.

In [8], Chachólski et al. studied invariants for tame parametrized chain complexes, which
are a generalization of filtered chain complexes obtained by allowing maps between chain
complexes to be non-injective. In the finite-dimensional case, their notions of Betti diagram
and minimal Betti diagram for filtered chain complexes respectively boil down to the verbose
barcode and concise barcodes introduced in [31]. In a subsequent paper [7], the authors
introduced an algorithm for decomposing filtered chain complexes into indecomposables.
Giunti and Landi reported [20] having independently explored ideas similar to the ones in
our paper.

When a filtered chain complex arises from a simplicial filtration, its verbose barcode can
also be obtained through the usual matrix reduction procedure applied to the boundary
matrix of the underlying simplicial filtration. In this simplicial setting, in [17, 28, 18, 30]
the authors study problems related to the reconstruction of simplicial complexes embedded
in Rd via verbose barcodes (which they call “augmented persistence diagrams").

Overview of our results. One drawback of the bottleneck stability result described in
Theorem 1 is that one asks for optimal matchings between the concise (i.e. standard)
barcodes BCon,kpXq and BCon,kpY q for each individual degree k independently.

With the goal of finding a coherent or simultaneous matching of barcodes across all degrees at
once, we study the interleaving distance dI between FCCs (see Definition 4.1) and establish
an isometry theorem between dI and the matching distance dM between the verbose barcodes
(see Definition 4.7):
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Theorem 2 (Isometry theorem). For any two filtered chain complexes pC˚, BC , ℓCq and
pD˚, BD, ℓDq,

sup
kPZě0

dM pBVer,kpC˚q,BVer,kpD˚qq “ dI ppC˚, BC , ℓCq , pD˚, BD, ℓDqq .

To prove that dM ď dI (see Section 4.3.2), we adapt ideas implicit in [31, Proposition 9.3]
which the authors applied to establish the stability of Floer -type complexes (on the same
underlying chain complex). For the other direction, dM ě dI (see Section 4.3.2), we employ
an approach similar to the one used to demonstrate that the standard bottleneck distance
between concise barcodes is upper bounded by the interleaving distance between persistent
modules, cf. [23, Theorem 3.4].

In contrast to dB between concise barcodes, dM between verbose barcodes of VR FCCs is
not stable under the Gromov-Hausdorff distance between metric spaces. Indeed, dM is only
finite if the two underlying metric spaces have the same cardinality. We remedy this issue
in Section 5.2 by incorporating the notion of tripods as in [26].

Let pX, dXq be a metric space, Z a set and ϕX : Z ↠ X a surjective map. We equip Z
with the pullback vectors ϕ˚XdX of the distance function dX and call the pair pZ, ϕ˚XdXq the
pullback (pseudo-metric) space (induced by ϕX). A tripod between two sets X and Y is a
pair of surjections from a common set Z to X and Y respectively, which will be expressed
by a tuple pZ, ϕX , ϕY q or a diagram

X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y.

Given a degree k, we define the pullback bottleneck distance (induced by degree-k verbose
barcodes) between two finite metric spaces X and Y to be the infimum of the matching
distance between the degree-k verbose barcodes of the VR FCCs induced by the respective

pullbacks pZ, ϕ˚XdXq and pZ, ϕ˚Y dY q, where the infimum is taken over finite tripods X
ϕX

↞ÝÝÝÝ

Z
ϕY

ÝÝÝÝ↠ Y . We denote the resulting quantity by pdB,k; see Definition 5.3. When it is not
necessary to specify a particular degree k, we will write pdB instead of pdB,k.

Similarly, we define the pullback interleaving distance (induced by VR FCCs) between metric
spaces, and denote it by pdI (see Definition 5.2).

Remark 1.1 (Terminology). We point out the following regarding the use of the term ‘dis-
tance’ when referring to pdB,k and pdI:

(1) pdB,0 satisfies the triangle inequality Corollary 6.10.

(2) For k ą 0, the question of whether pdB,k satisfies the triangle inequality is still open.

(3) pdI does not satisfy the triangle inequality; see Section 5.4.1 for details.

Due to Items (2) and (3), the term ‘distance’ is being abused through the use of the ter-
minology ‘pullback bottleneck distance’ and ‘pullback interleaving distance’. We do so for
consistency with Item (1) and due to the fact that in Section 5.4.1 we provide a way to
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modify pdI and pdB so that they do satisfy the triangle inequality (while still being Gromov-
Hausdorff stable), thus making them pseudo-metrics between metric spaces.

In general, the pullback bottleneck distance pdB (or the pullback interleaving distance pdI)
depends on the underlying metric spaces, rather than solely on the verbose barcodes (or
FCCs). However, we prove that pdB,0 depends only on the barcodes; see Proposition 1.5.

It follows from Theorem 2 that we immediately have the following:

Corollary 1.2. Let pX, dXq and pY, dY q be two finite metric spaces. Then,

sup
k

inf
pZ,ϕX ,ϕY q

dM pBVer,kpZXq,BVer,kpZY qq inf
pZ,ϕX ,ϕY q

sup
k
dM pBVer,kpZXq,BVer,kpZY qq

sup
k

pdB,k pX,Y q pdI pX,Y q .

ď

= =

In the theorem below, we show that the pullback bottleneck distance pdB is stable under
the Gromov-Hausdorff distance dGH, and that the bottleneck distance dB between degree-k
concise barcodes is never larger than pdB,k. We show in several examples below and in Section
5.3 that, between degree-k concise barcodes, pdB,k can be strictly larger than dB. Thus, the
stability of pdB provides a better lower-bound estimate of dGH, compared with the standard
bottleneck distance dB (cf. Theorem 1). See Section 5.2 for the proof of Theorem 3.

Theorem 3 (Pullback stability theorem). Let pX, dXq and pY, dY q be two finite metric
spaces. Then, for any k P Zě0,

dB pBCon,kpXq,BCon,kpY qq ď pdB,k pX,Y q ď pdI pX,Y q ď 2 ¨ dGHpX,Y q. (1)

See Figure 1 for a pair of 3-point metric spaces for which the bottleneck distance dB between
their concise barcodes fails to distinguish them, but the pullback bottleneck distance pdB
induced by verbose barcodes succeeds at telling them apart.

In Section 5.4, we introduce two variants of the pullback interleaving/bottleneck distance (see
Definition 5.13 and 5.14), which offer advantages in terms of computational efficiency (see
Section 6.2.1). We refer to all variations of pullback interleaving and bottleneck distances
as ‘pullback distances ’. We show that all pullback distances are stable under the Gromov-
Hausdorff distance dGH between metric spaces and they provide better lower bounds for dGH

than the bottleneck distance between the concise barcodes; see Theorem 9.

In order to have a more concrete understanding of the pullback bottleneck distance and in
order to explore the possibility of computing it, we study the relation between the verbose
barcode of a pullback space pZ, ϕ˚XdXq with the verbose barcode of the original space X. We
conclude that the verbose barcodes of Z and X only differ on some distinguished diagonal
points; see Proposition 1.3 below and its proof in Section 6.1.1.
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a b

c1

X1

a b
c2

X2

BVer,0 p0, aq, p0, bq, p0,8q p0, aq, p0, bq, p0,8q

BVer,1 pc1, c1q pc2, c2q

supkPZě0
dB pBCon,kpX1q,BCon,kpX2qq supkPZě0

pdB,k pX1, X2q 2 ¨ dGHpX1, X2q

0 |c1 ´ c2| |c1 ´ c2|

Figure 1: First table: Three-point metric spaces X1 and X2 together with their verbose
barcodes. Here a ď b ď ci for i “ 1, 2. Second table: the bottleneck distance between con-
cise barcodes, the pullback bottleneck distance and twice of the Gromov-Hausdorff distance
between X1 and X2. See Example 5.9.

We now set up some notation about multisets1. Recall that a multiset consists of a set X
together with a multiplicity function mX : X Ñ Zě0. The support of a multiset is defined as
supppX,mXq :“ tx P X | mXpxq ą 0u. In this paper, we will adopt the following notation
to denote multisets: for an element x P X, and for a non-negative integer m, xm will be
understood to mean that x has multiplicity m i.e. mXpxq “ m. So that, for example,
when we write tx41, x2, x

21
3 u we mean the multiset where X “ tx1, x2, x3u and mXpx1q “ 4,

mXpx2q “ 1, mXpx3q “ 21. For convenience, for a non-negative integer m, by txum we will
denote the multiset containing exactly m copies of x. In other words, txum “ txmu.

For a multiset A, we define its cardinality, cardpAq, as the sum of multiplicities of its
elements. A sub-multiset A1 of A, denoted A1 Ă A, is a multiset whose support is a subset
of the support of A and whose elements have multiplicities satisfying mA1paq ď mApaq for
all a P A1. For any l ě 1, we let

PlpAq :“
␣

A1 Ă A : cardpA1q “ l
(

, (2)

that is, PlpAq consists of sub-multisets of A each with cardinality l. Let P0pAq “ H.

Proposition 1.3 (Initial formula for pullback barcodes). Let k ě 0 and m ě 1, and let X
be a finite pseudo-metric space. For txj1 , . . . , xjmu Ă X for some j1 ď ¨ ¨ ¨ ď jm, consider
the multiset Z “ X \ txj1 , . . . , xjmu. Then, for k ě 0,

BVer,kpZq “ BVer,kpXq \

m´1
ğ

i“0

ğ

βiPPkppXztxji`1
uq\txj1 ,...,xjiuq

␣

diamptxji`1u \ βiq ¨ p1, 1q
(

. (3)

In particular, BVer,0pZq “ BVer,0pXq\
Ům´1
i“0 tdiamptxji`1uq ¨ p1, 1qu “ BVer,0pXq\ tp0, 0qum.

1We use the notation t¨u for multisets as well when its meaning is clear from the content.
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Because the concise barcode can be obtained from the verbose barcode by excluding all
diagonal points, the above proposition interestingly implies that BCon,kpZq “ BCon,kpXq for
any degree k.

To better understand Equation (3) in the case when k ě 1, we give a graphical explanation
in Figure 2. Let pX, dXq be a finite metric space with X “ tx1, . . . , xnu. Each finite pullback
space pZ, ϕ˚XdXq of X can be regarded as a multiset X \ txj1 , . . . , xjmu equipped with the
pullback pseudo-metric ϕ˚XdX induced from dX , for some m ě 0 and 1 ď j1 ď ¨ ¨ ¨ ď jm ď n;
see Remark 6.3. In other words, the extra points in Z are ‘repeats’ of the points in X. We
will call each point in X the parent of its repeated copies. More specifically, for each z P Z,
the point ϕXpzq P X will be called the parent of z. We identify Z with

X \

!

x1, . . . , x1
loooomoooon

m1

, . . . , xn, . . . , xn
loooomoooon

mn

)

,

where each mj ě 0 is the multiplicity of the extra copies of xj in Z and m1`¨ ¨ ¨`mn “ m.
We call m⃗ :“ pm1, . . . ,mnq the pullback vector associated with Z.

i “ 0 :

“X
hkkkkkkkikkkkkkkj

x1, x2, . . . , xn,

m1
hkkkkkkkikkkkkkkj

x1, x1, . . . , x1,

m2
hkkkkkkkikkkkkkkj

x2, x2, . . . , x2, . . . ,

mn
hkkkkkkkikkkkkkkj

xn, xn, . . . , xn

i “ m1 ´ 1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

i “ m1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

i “ m1 ` ¨ ¨ ¨ `mn´1 : x1, x2, . . . , xn, x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn

Figure 2: Using the notation from Equation (3), for each i (i.e., for each row), the point
xji`1 is colored blue. For each i, multiset βi in Equation (3) ranges over all k-element sub-
multisets of the red-colored multiset. Notice that each red-colored multiset consists of every
point before xji`1 (from left to right) excluding the parent of xji`1 .

In Section 6.1.2, we prove the following proposition which provides an explicit formula both
for the coordinates of the extra diagonal points and for their multiplicity in all degrees (see
page 51 for the notation µkpm⃗pIpqq). As above, we let X “ tx1, . . . , xnu.

Proposition 1.4 (Explicit formula for pullback barcodes). Let Z :“ X \ tx1u
m1 \ ¨ ¨ ¨ \

txnu
mn , where each mj ě 0 is the multiplicity of the extra copies of xj in Z. Then, for any

degree k,

BVer,kpZq “ BVer,kpXq \
ğ

1ďpďk`1
1ďi1ă¨¨¨ăipďn

␣

diamptxi1 , xi2 , . . . , xipuq ¨ p1, 1q
(µkpm⃗pIpqq .

In particular, the multiplicity of diamptxjuq ¨ p1, 1q is
`mj

k`1

˘

, for each j.

We examine the relationship between pdB and dB, and obtain an interpretation of pdB in terms
of matchings of points in the barcodes. To compute dB, one looks for an optimal matching
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where points from a barcode can be matched to any points on the diagonal. However, in
the computation of pdB, points are only allowed to be matched to verbose barcodes and a
particular multiset supported on the diagonal, where the choice of these diagonal points
depends on the metric structure of the two underlying metric spaces.

In degree 0, since the verbose barcode of any pullback space Z of X only differs from
the verbose barcode of X in multiple copies of the point p0, 0q, the distance pdB is indeed
computing an optimal matching between concise barcodes which only allows bars to be
matched to other bars or to the origin p0, 0q (see Figure 3). Given that all degree-0 bars
originate at 0, we derive the following explicit formula for computing the distance pdB for
degree-0 (see Section 6.2.2 for the proof):

Proposition 1.5 (Pullback bottleneck distance in degree 0). Let X and Y be two finite
metric spaces such that cardpXq “ n ď n1 “ cardpY q. Suppose the death time of finite-length
degree-0 bars of X and Y are given by the sequences a1 ě ¨ ¨ ¨ ě an´1 and b1 ě ¨ ¨ ¨ ě bn1´1,
respectively. Then,

pdB,0 pX,Y q “ max

"

max
1ďiďn´1

|ai ´ bi|, max
nďiďn1´1

bi

*

.

aX1 : X2 :

BVer,0 “ BCon,0 tp0, aq, p0,8qu tp0,8qu

p0, aq

p0,8q

dB “ a
2

birth

death

p0, aq

p0,8q

pdB “ a

birth

death

Figure 3: Top: X1 a two-point space, X2 the one-point space, and their 0-th verbose (or
concise) barcode. Bottom: visualization of dB and pdB, where in both figures the point p0,8q

is matched with p0,8q and the distance between points is measured using the max norm.

For positive degrees, the situation becomes more complicated because, in addition to the
point p0, 0q, other choices of diagonal points need to be considered, as evidenced by the
formula for pullback barcodes in Proposition 1.3. Although we cannot obtain a formula
as simple as that for the degree-0 case, the pullback distances can be simplified utilizing
pullback vectors. See Section 6.2.1 for details, where we also analyze the time complexity
for brute-force algorithms for pullback distances.

In Section 6.2.3, we present an important example involving certain five-point ultra-metric
spaces. This example illustrates both the strictness of some inequalities in Theorem 9 and
the failure of the triangle inequality of the pullback interleaving distances (see Corollary
6.12).
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1.1 Organization of the Paper

In Section 3, we recall the notions of filtered chain complexes, verbose barcodes and concise
barcodes. For the case of Vietoris-Rips FCCs, we characterize verbose barcodes of ultra-
metric spaces, cf. Theorem 5, and study the relation between isometry of metric spaces as
well as filtered chain isomorphism and filtered homotopy equivalence of FCCs in Section 3.3.
In Section 4, we study the interleaving distance between FCCs and the matching distance
between verbose barcodes, and we establish an isometry theorem for these two notions of
distances, i.e. Theorem 2. Starting from Section 5, we specifically focus on the case of
Vietoris-Rips FCCs and define pdB and pdI via tripods of metric spaces in Section 5.1. In
addition, we establish a Gromov-Hausdorff stability for them by proving Theorem 3 in Sec-
tion 5.2. Examples are provided in Section 5.3 to demonstrate that both inequalities in
Theorem 3 can be strict. In Section 5.4, we introduce two variants of the pullback interleav-
ing/bottleneck distance. In Section 6.1, we establish relations between the verbose barcodes
of the pullback of a metric space and those of the original space, by proving Proposition 1.3
and Proposition 1.4. In Section 6.2, we study the interpretation and computability of the
pullback distances. We prove Proposition 1.5 in Section 6.2.2.

2 Preliminaries

In this section, we recall some backgrounds on (pseudo-)metric spaces, Vietoris-Rips com-
plexes and the Gromov-Hausdorff distance.

Given a set X, a metric dX on X is a function dX : X ˆ X Ñ r0,`8q such that for any
x, y, z P X, the following axioms hold:

• dXpx, yq ě 0 and dXpx, yq “ 0 if and only if x “ y;

• (Symmetry) dXpx, yq “ dXpy, xq;

• (Triangle inequality) dXpx, zq ď dXpx, yq ` dXpy, zq.

A metric space is a pair pX, dXq where X is a set and dX is a metric on X.

An ultra-metric dX on X is a metric dX on X satisfying the strong triangle inequality:
dXpx, zq ď maxtdXpx, yq, dXpy, zqu for all x, y, z P X. A pseudo-metric dX on X is a
function dX : X ˆ X Ñ r0,`8q satisfying the axioms for a metric, except that in the
first axiom different points are allowed to have distance 0. Given two pseudo-metric spaces
pX, dXq and pY, dY q, a map f : pX, dXq Ñ pY, dY q is said to be distance-preserving if
dXpx, x

1q “ dY pfpxq, fpx
1qq for all x, x1 P X. A bijective distance-preserving map is called

an isometry. Two pseudo-metric spaces X and Y are isometric, denoted X – Y , if there
exists an isometry between them.

Given a finite pseudo-metric space pX, dXq and ϵ ě 0, the ϵ-Vietoris–Rips complex VRϵpXq

is the simplicial complex with vertex set X, where

a finite subset σ Ă X is a simplex of VRϵpXq ðñ diampσq ď ϵ.

Here diamp¨q denotes the diameter of a subset of X. Let

VRpXq :“ VRdiampXqpXq,
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which is the full complex onX. For each k P Zě0, we denote by CkpVR pXqq the free F-vector
space generated by k-simplices in VRpXq, and let C˚pVRpXqq be the free simplicial chain
complex induced by VRpXq over coefficients in F, with the standard simplicial boundary
operator BX . Notice that up to homotopy equivalence the simplicial complex VRpXq only
depends on the cardinality of X, so does the chain complex pC˚pVRpXqq, BXq.

The Hausdorff distance between two subspaces X and Y of a metric space Z is

dZHpX,Y q :“ inf
␣

r ą 0 : X Ď B̄pY, rq and Y Ď B̄pX, rq
(

.

For metric spaces pX, dXq and pY, dY q, recall from [16, 21] that the Gromov-Hausdorff dis-
tance between them is the infimum of r ą 0 for which there exist a metric space Z and two
distance preserving maps ψX : X Ñ Z and ψY : Y Ñ Z such that dZHpψXpXq, ψY pY qq ă r,
i.e.,

dGHpX,Y q :“ inf
Z,ψX ,ψY

dZHpψXpXq, ψY pY qq.

Reformulation of dGH using maps. The distortion of a map φ : X Ñ Y is defined to be

dispφq :“ sup
x,x1PX

|dXpx, x
1q ´ dY pφpxq, φpx

1qq|.

For maps φ : X Ñ Y and ψ : Y Ñ X, their co-distortion is defined to be

codispφ,ψq :“ sup
xPX,yPY

|dXpx, ψpyqq ´ dY pφpxq, yq|.

It follows from [22, Theorem 2.1] that

dGHpX,Y q “ inf
φ:XÑY
ψ:YÑX

1
2 maxtdispφq, dispψq, codispφ,ψqu. (4)

Reformulation of dGH using correspondences. A correspondence between X and Y is a
subset R of XˆY such that for any x P X there exists at least one y P Y such that px, yq P R
and for any y P Y there exists at least one x P X such that px, yq P R. The distortion of a
correspondence R between X and Y is defined to be:

dispRq :“ sup
px,yq,px1,y1qPR

ˇ

ˇdXpx, x
1q ´ dY py, y

1q
ˇ

ˇ .

Let RpX,Y q denote the collection of all correspondences between X and Y . It follows from
[3, Theorem 7.3.25] that

dGHpX,Y q “ 1
2 inf
RPRpX,Y q

dispRq. (5)

Reformulation of dGH using tripods. A parametrization of a set X is a set Z together with
a surjective map ϕ : Z ↠ X. A tripod between two sets X and Y is a pair of surjections
from another set Z to X and Y respectively, expressed by the diagram (cf. [26])

X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y.
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The distortion of a tripod pZ, ϕX , ϕY q between X and Y is defined to be:

disppZ, ϕX , ϕY qq :“ sup
z,z1PZ

ˇ

ˇdXpϕXpzq, ϕXpz
1qq ´ dY pϕY pzq, ϕY pz

1qq
ˇ

ˇ .

It follows from [3, Section 7.3.3] that

dGHpX,Y q “ 1
2 inf

X
ϕX

↞ÝÝÝÝZ
ϕY

ÝÝÝÝ↠Y

disppZ, ϕX , ϕY qq. (6)

Remark 2.1. Notice that for finite metric spaces X and Y , as given by Equation (6), the
Gromov-Hausdorff distance dGHpX,Y q can be computed by only considering finite tripods.
To see this, consider a possibly infinite tripod pZ, ϕX , ϕY q. Define Z 1 “ tpϕXpzq, ϕY pzqq |

z P Zu Ă X ˆ Y , which is finite given that both X and Y are finite. It is straightforward
to verify that dispZ 1q “ dispZq. Therefore, for computing dGHpX,Y q via Equation (6), any
tripod between X and Y can be replaced by a finite tripod whose underlying set has cardinality
no greater than cardpXq ¨ cardpY q.

3 Filtered Chain Complexes (FCCs)

In this section, we recall from [31] the notion of filtered chain complexes (in short, FCCs)
together with the construction of verbose barcodes and concise barcodes for FCCs.

3.1 Filtered Chain Complexes

Let F be a fixed field. A non-Archimedean normed vector space over F is any pair pC, ℓq
where C is a finite-dimensional vector space over F endowed with a filtration function
ℓ : C Ñ R\ t´8u defined as a map satisfying the following axioms:

(i) ℓpxq “ ´8 if and only if x “ 0;

(ii) For any 0 ‰ λ P F and x P C, ℓpλxq “ ℓpxq;

(iii) For any x and y in C, ℓpx` yq ď max tℓpxq, ℓpyqu .

A finite collection px1, . . . , xrq of elements of C is said to be orthogonal if, for all λ1, . . . , λr
in F,

ℓ

˜

r
ÿ

i“1

λixi

¸

“ max
λi‰0

ℓpxiq.

An orthogonalizable F-space pC, ℓq is a finite-dimensional non-Archimedean normed vec-
tor space over F such that there exists an orthogonal basis for C. Two subspaces are V,W
of C are said to be orthogonal if for all x P V and y PW , ℓpx` yq “ maxtℓpxq, ℓpyqu.

Below, we introduce a couple of lemmas regarding filtration functions and the orthogonality
of subspaces, which will be referenced in later sections.

Lemma 3.1. For any x, y P C such that ℓpxq ‰ ℓpyq, we have ℓpx` yq “ maxtℓpxq, ℓpyqu.
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Proof. Given that ℓpxq “ ℓp´xq, it follows that ℓpyq “ ℓppy ` xq ` p´xqq ď maxtℓpy `

xq, ℓpxqu. Therefore, if ℓpyq ą ℓpxq it must be that ℓpyq ď ℓpy`xq. This implies maxtℓpxq, ℓpyqu ď
ℓpx` yq. A similar argument applies if ℓpyq ă ℓpxq.

Lemma 3.2 (Lemma 2.9, [31]). Let pC, ℓq be a non-Archimedean normed vector space over
F. Then,

• For subspaces U, V and W of C, if U and V are orthogonal and U ‘ V and W are
orthogonal, then U and V ‘W are orthogonal.

• If U and V are orthogonal subspaces of C, and if pu1, . . . , urq and pv1, . . . , vsq are
orthogonal collections of elements of U and V , respectively, then pu1, . . . , ur, v1, . . . , vsq
is orthogonal in U ‘ V.

Definition 3.3 (Filtered chain complex). A filtered chain complex (FCC) over F is a
finite-dimensional chain complex pC˚ “ ‘kPZCk, BCq over F together with a function ℓC :
C˚ Ñ R\t´8u such that each pCk, ℓC |Ck

q is an orthogonalizable F-space, and ℓC ˝BC ď ℓC .

A morphism of FCCs from pC˚, BC , ℓCq to pD˚, BD, ℓDq is a chain map Φ˚ : C˚ Ñ D˚

that is filtration preserving, i.e. ℓD ˝ Φ˚ ď ℓC .

Example 3.4 (Vietoris-Rips FCC). For a finite pseudo-metric space pX, dXq, we denote
by pC˚pVRpXqq, BXq the chain complex of the simplicial complex VRpXq (see Section 2).
Define a filtration function ℓX : C˚pVRpXqq Ñ R\ t´8u by

ℓX

˜

r
ÿ

i“1

λiσi

¸

:“ max
λi‰0

tdiampσiqu ,

where the σi are simplices, and ℓXp0q :“ ´8. Then
`

C˚pVRpXqq, BX , ℓX
˘

is an FCC, and
the set of simplices is an orthogonal basis for it.

Definition 3.5 (Filtered homotopy equivalent). Two chain maps Φ˚,Ψ˚ : C˚ Ñ D˚ are
called filtered chain homotopic if they are filtration preserving and there exists a filtration
preserving chain map K : C˚ Ñ D˚`1 such that Φ˚ ´Ψ˚ “ BCK `KBD.

We say that pC˚, BC , ℓCq and pD˚, BD, ℓDq are filtered homotopy equivalent (or f.h.e.)
if there exist filtration preserving chain maps Φ˚ : C˚ Ñ D˚ and Ψ˚ : D˚ Ñ C˚ such
that Ψ˚ ˝ Φ˚ is filtered chain homotopic to the identity IdC while Φ˚ ˝ Ψ˚ is filtered chain
homotopic to IdD.

Definition 3.6 (Filtered chain isomorphism). Two FCCs pC˚, BC , ℓCq and pD˚, BD, ℓDq are
said to be filtered chain isomorphic (or f.c.i.) if there exists a chain isomorphism

Φ˚ : pC˚, BCq
–
ÝÑ pD˚, BDq such that ℓD ˝ Φ˚ “ ℓC ,

denoted by pC˚, BC , ℓCq – pD˚, BD, ℓDq, or C˚ – D˚ for simplicity.

Remark 3.7. Let FCC denote the category whose objects are FCCs and morphisms are
given in Definition 3.3. Then the filtered chain isomorphism relation coincides with the
isomorphism in the category FCC.
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Dual of a FCC. Given a non-Archimedean normed vector space pC, ℓq, the dual space
C˚ becomes a non-Archimedean normed vector space if equipped with the dual filtration
function ℓ˚ : C˚ Ñ R\ t´8u given by

ℓ˚pϕq :“ supt´ℓpxq | x P C, ϕpxq ‰ 0u.

By [31, Proposition 2.20], if py1, . . . , ynq is an orthogonal ordered basis for pC, ℓq, then the
dual basis py˚1 , . . . , y˚nq is an orthogonal ordered basis for pC˚, ℓ˚q such that ℓ˚py˚i q “ ´ℓpyiq
for i “ 1, . . . ,m.

3.2 Verbose and Concise Barcodes

In this section, we recall the definition of verbose barcode and concise barcode from [31].

Definition 3.8 (Singular value decomposition). Let pC, ℓCq and pD, ℓDq be two orthogonal-
izable F-spaces, and let A : C Ñ D be a linear map with rank r. A (unsorted) singular
value decomposition of A is a choice of orthogonal ordered bases py1, . . . , ynq for C and
px1, . . . , xmq for D such that:

• pyr`1, . . . , ynq is an orthogonal ordered basis for KerA;

• px1, . . . , xrq is an orthogonal ordered basis for ImA;

• Ayi “ xi for i “ 1, . . . , r.

If ppy1, . . . , ynq, px1, . . . , xmqq is such that ℓCpy1q ´ ℓCpx1q ě ¨ ¨ ¨ ě ℓCpyrq ´ ℓCpxrq, we call
ppy1, . . . , ynq, px1, . . . , xmqq a sorted singular value decomposition.

The existence of a singular value decomposition for linear maps between finite-dimensional
orthogonalizable F-spaces is guaranteed by [31, Theorem 3.4].

Definition 3.9 (Verbose barcode and concise barcode). Let pC˚, BC , ℓCq be an FCC over F
and for each k P Z write Bk “ BC |Ck

. Given any k P Z choose a singular value decomposition
ppy1, . . . , ynq, px1, . . . , xmqq for the F-linear map Bk`1 : Ck`1 Ñ Ker Bk and let r denote the
rank of Bk`1. Then the degree-k verbose barcode of pC˚, BC , ℓCq is the multiset BVer,k of
elements of Rˆ pR\ t8uq consisting of

(i) a pair pℓpxiq, ℓpyiqq for each i “ 1, . . . , r “ rankpBk`1q; and

(ii) a pair pℓpxiq,8q for each i “ r ` 1, . . . ,m “ dimpKer Bkq.

These pairs are also called bars. The first (resp. second) entry in a bar is called the birth
time (resp. death time) of that bar. The length of a bar, i.e., ℓpyiq ´ ℓpxiq ě 0 or 8, is
called its life time (or also called persistence). The concise barcode of pC˚, BC , ℓCq is
the submultiset of the verbose barcode consisting of those elements where ℓpyiq ´ ℓpxiq ą 0.

It is shown in [31, Theorem 7.1] that each degree-k verbose barcode is independent of the
choice of the singular value decomposition of Bk`1.

Remark 3.10. In the case of Vietoris-Rips FCCs (see Example 3.4), the concise barcode is
equivalent to the classical persistent homology barcode [31, page 6].
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Remark 3.11. Let X be a finite metric space. The degree-0 verbose barcode BVer,0 and
the degree-0 concise barcode BCon,0 of the Vietoris-Rips FCC pC˚pVRpXqq, BX , ℓ

Xq are the
same. Notice that this is not necessarily true for pseudo-metric spaces, in which case verbose
barcode may contain several copies of p0, 0q.

The following theorem states that one can construct an orthogonal ordered basis for the
target space when given any orthogonal ordered basis for the source space. This theorem
will be applied in later sections to prove the stability of verbose barcodes; see Section 4.3.1.

Theorem 4 (Theorem 3.5, [31]). Let pC, ℓCq and pD, ℓDq be two orthogonalizable spaces,
let A : pC, ℓCq Ñ pD, ℓDq be a linear map and let py1, . . . , ynq be an orthogonal ordered basis
for C. Then one may algorithmically construct an orthogonal ordered basis py11, . . . , y

1
nq for

C such that

• If Ayi “ 0, then y1i “ yi;

• ℓCpy
1
iq “ ℓCpyiq and ℓDpAy1iq ď ℓpAyiq, for any i;

• The set tAy1i : Ay
1
i ‰ 0u is orthogonal in D.

Example 3.12 (Verbose barcodes of Vietoris-Rips FCCs). Recall from Example 3.4 the
notion of Vietoris-Rips FCC. Let X be a finite pseudo-metric space of n points. Note that
VRpXq has trivial homology groups HkpVRpXqq “ 0 for each k ě 1, i.e. Ker Bk “ Im Bk`1.
Thus, the following sequence is exact at each degree except for 0, where Ck :“ CkpVR pXqq

for k ě 0:

Cn “ 0 Cn´1 ¨ ¨ ¨ C1 C0 0
Bn`1“0 Bn“0 Bn´1 B1 B0

The cardinality of k-verbose barcodes (with multiplicity) of pC˚pVRpXqq, BX , ℓ
Xq is

cardpBVer,kpXqq “ dimpKer Bkq “

$

’

&

’

%

n, k “ 0,
`

n´1
k`1

˘

, for 1 ď k ď n´ 2,
0, for k ě n´ 1.

Indeed, because B0 “ 0, we have cardpBVer,0pXqq “ dimpC0q “ n. For 1 ď k ď n ´ 2, we
prove by induction that cardpBVer,kpXqq “

`

n´1
k`1

˘

. First, when k “ 1 we have

dimpIm B1q “ dimpKer B0q ´ dimpH0q “ dimpC0q ´ dimpH0q “ n´ 1,

and thus,

cardpBVer,1pXqq “ dimpC1q ´ dimpIm B1q “

ˆ

n

2

˙

´ pn´ 1q “

ˆ

n´ 1

2

˙

.

Suppose that cardpBVer,k´1pXqq “ dimpKer Bk´1q “
`

n´1
k

˘

. Then, for degree k we have
ˆ

n

k ` 1

˙

“ dimpCkq “ dimpKer Bkq ` dimpIm Bkq “ cardpBVer,kpXqq ` dimpKer Bk´1q,

implying that

cardpBVer,kpXqq “

ˆ

n

k ` 1

˙

´ cardpBVer,k´1pXqq “

ˆ

n

k ` 1

˙

´

ˆ

n´ 1

k

˙

“

ˆ

n´ 1

k ` 1

˙

.
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3.2.1 Verbose Barcodes of Ultra-Metric Spaces

In Theorem 5 we provide a complete characterization of the verbose barcodes of a finite
ultra-metric space pX,uXq. The statement of the theorem uses a special ordering of the
points described in [27, Proposition 4.19] which we now recall.

Let pX,uXq be an ultra-metric space of n points. We order the points in X following the
procedure described in the proof of [27, Proposition 4.19]. In order to produce one such
ordering x1 ă x2 ă ¨ ¨ ¨ ă xn of X:

• Pick an arbitrary point x1 P X;

• Find x2 P X ´ tx1u such that uXpx1, x2q “ minxPX´tx1u uXpx1, xq;

• Find x3 P X ´ tx1, x2u such that uXpx2, x3q “ minxPX´tx1,x2u uXpx2, xq;
. . . . . .

• Find xi P X ´ tx1, . . . , xi´1u such that uXpxi´1, xiq “ minxPX´tx1,...,xi´1u
uXpxi´1, xq;

. . . . . .

• Finish when pn´ 1q points are found, and label the remaining point in X as xn.

Note that this ordering is not unique. We will refer to any such order as a self-consistent
order on X.2

For the rest of this subsection, we assume that, given an ultra-metric space pX,uXq, the
finite set X consists of points x1 ă ¨ ¨ ¨ ă xn ordered as above.

Theorem 5 (Verbose barcodes of ultra-metric spaces). For any degree k ě 1, we have

BVer,kpXq “
ğ

2ďi1ăi2ă¨¨¨ăik`1ďn

␣

uX
`

xi1´1, xik`1

˘

¨ p1, 1q
(

“

n´1
ğ

j´i“k`1

n´k´1
ğ

i“1

tuXpxi, xjq ¨ p1, 1qu
pj´i´2

k´1 q . (7)

We represent the multiplicity of points in BVer,kpXq via a matrix whose pi, jq-th element
is the multiplicity of the point uXpxi, xjq ¨ p1, 1q. Then, Equation (7) can be expressed as
follows: for any k ě 1, the non-zero part of the multiplicity matrix is

x1 . . . xk`1 xk`2 xk`3 . . . xn
¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

x1
`

k´1
k´1

˘ `

k
k´1

˘

. . .
`

n´3
k´1

˘

x2
`

k´1
k´1

˘

. . .
`

n´4
k´1

˘

. . . . . . . . .

xn´k´1

`

k´1
k´1

˘

. . .
xn

.

2The key property of any such order is that it permits immediately reading off the usual degree-0 VR
barcodes from the ultra-metric space structure; see Proposition 3.13 for details.
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It can be derived from [24, Corollary 2.13] that ultra-metric spaces only have non-trivial
concise barcodes in degree 0. Furthermore, the 0-th barcode of a finite ultra-metric space is
given by the following proposition.

Proposition 3.13 ([27, Proposition 4.19]). The degree-0 verbose (or concise) barcode for
the Vietoris-Rips FCC of pX,uXq is

tp0, uXpxi, xi`1qq : i “ 1, . . . , n´ 1u \ tp0,8qu .

To prove Theorem 5, we first show the following simple lemma.

Lemma 3.14. The following hold:

(1) For any i ă j, uXpxi, xjq “ max tuXpxi, xi`1q, uXpxi`1, xjqu “ maxiďlďj´1 tuXpxl, xl`1qu .

(2) For any i1 ă i2 ă ¨ ¨ ¨ ă ik, diam ptxi1 , xi2 , . . . , xikuq “ uXpxi1 , xikq.

Proof. For the first equality of Part (1), the inequality ‘ď’ is true because uX is an ultra-
metric. It remains to show ‘ě’. Recall that xi`1 P X´tx1, . . . , xiu is such that uXpxi, xi`1q “

minxPX´tx1,...,xiu uXpxi, xq. Since j ą i, we have xj P X ´ tx1, . . . , xiu, and thus

uXpxi, xi`1q ď uXpxi, xjq.

Since uX is an ultra-metric, it follows from the above inequality that

uXpxi`1, xjq ď max tuXpxi, xi`1q, uXpxi, xjqu “ uXpxi, xjq.

Therefore, we have max tuXpxi, xi`1q, uXpxi`1, xjqu “ uXpxi, xjq.

The equality uXpxi, xjq “ maxiďlďj´1 tuXpxl, xl`1qu can be shown by induction on j ´ i.

Part (2) follows directly from the second equality of Part (1). Indeed, for any i1 ă i2 ă

¨ ¨ ¨ ă ik, applying Part (1) for each pair il1 ă il1`1, we obtain

diam ptxi1 , xi2 , . . . , xikuq “ max
i1ďlďik´1

tuXpxl, xl`1qu “ uXpxi1 , xikq.

Remark 3.15. The ordered multiset tuXpxi, xi`1qu
n´1
i“1 consists of the death times of finite-

length bars in degree 0. One immediate consequence of Lemma 3.14 is that one can recover
the ultra-metric uX from tuXpxi, xi`1qu

n´1
i“1 . Let ũX : X ˆX Ñ R be defined as:

ũXpxi, xjq “

$

’

&

’

%

0, i “ j

maxiďlďj´1 tuXpxl, xl`1qu , i ă j

ũXpxj , xiq, i ą j.

Then, ũX “ uX .

We now prove Theorem 5.
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Proof of Theorem 5. Fix a degree k ě 1. For notational simplicity, let B :“ BXk`1 and
ℓ :“ ℓX . We use r¨s to denote simplices which are ordered lists of vertices, and we call the
first vertex appearing in a simplex its leading vertex. Here the order on the vertices is the
one described above Theorem 5.

For a k-simplex γ “ rγ0, . . . , γks, we denote its j-th face by facejpγq for j “ 0, . . . , k. In
other words, facejpγq is a pk ´ 1q-simplex obtained by removing the j-th vertex γj of γ.

Claim 1: For any pk ` 1q-simplex γ “ rxi1´1, xi1 , xi2 , . . . , xik`1
s with 2 ď i1 ă i2 ă ¨ ¨ ¨ ă

ik`1 ď n and any j “ 1, . . . , k ´ 1,

ℓpγq “ uXpxi1´1, xik`1
q “ ℓ pfacejpγqq “ ℓpBγq.

The first and second equalities follow from Lemma 3.14 Part (2) directly, by which we also
have ℓ pface0pγqq “ uXpxi1 , xik`1

q and ℓ pfacekpγqq “ uXpxi1 , xikq. Moreover, this implies
that

ℓ pface0pγqq , ℓ pfacekpγqq ď ℓ pfacejpγqq

for every j “ 1, . . . , k ´ 1. Because simplices are orthogonal, we have

ℓpBγq “ max
j“0,...,k`1

ℓpfacejpγqq “ ℓpfacejpγqq.

Claim 2: Let A :“
␣

rxi1´1, xi1 , xi2 , . . . , xik`1
s | 2 ď i1 ă i2 ă ¨ ¨ ¨ ă ik`1 ď n

(

, whose cardi-
nality is

`

n´1
k`1

˘

. Then, BA is orthogonal.

For any linear combination c :“
ř

γPA λγ pBγq of elements in BA where the coefficients λγ
come from the base field F, we want to show that ℓ pcq “ maxλγ‰0 ℓ pBγq. The ‘ď’ follows
from the definition of filtration functions. It remains to prove ‘ě’.

To prove this, consider all simplices that achieve the maximum maxλγ‰0 ℓpBγq. Out of these
simplices, we select the simplex γ̄ “ rxi1´1, xi1 , xi2 , . . . , xik`1

s which has the smallest leading
vertex according to the given self-consistent order. The choice of γ̄ may not be unique.

Note that the 1-st face of γ̄, denoted as face1pγ̄q “ rxi1´1, xi2 , . . . , xik`1
s, cannot be cancelled

out by other terms in the linear combination
ř

γPA λγ pBγq . Consider another γ1 that also
achieves the maximum maxλγ‰0 ℓpBγq. For any j ě 2, the j-th face of γ1 will start with two
consecutive vertices, and thus cannot be rxi1´1, xi2 , . . . , xik`1

s given that i2 ´ pi1 ´ 1q ą 2.
Hence, if rxi1´1, xi2 , . . . , xik`1

s were the j1-th face of γ1 for some j1, j1 can only be 0 or 1.
Since γ1 ‰ γ̄, j1 cannot be 1. If j1 “ 0, then γ1 “ rxi1´2, xi1´1, xi2 , . . . , xik`1

s has a leading
vertex smaller than xi1´1. This contradicts the definition of γ̄ as having the smallest leading
vertex. Therefore, we have ℓpcq ě ℓpface1pγ̄qq. Incorporating Claim 1, we obtain

ℓpcq ě ℓpface1pγ̄qq “ ℓpγ̄q “ ℓpBγ̄q “ max
λγ‰0

ℓpBγq.

Thus, Claim 2 holds.
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Claim 3: Let B :“ trxi1´1, xi1 , xi2 , . . . , xik s | 2 ď i1 ă i2 ă ¨ ¨ ¨ ă ik ď nu , whose cardinality
is
`

n´1
k

˘

. Then, BA\B is an orthogonal basis for CkpVR pXqq whose dimension is
`

n
k`1

˘

.

First, notice that the cardinality of BA\B matches the dimension of CkpVR pXqq:
ˆ

n´ 1

k ` 1

˙

`

ˆ

n´ 1

k

˙

“

ˆ

n

k ` 1

˙

.

Thus, to show that BA\B is an orthogonal basis for CkpVR pXqq, it suffices to show BA\B
is an orthogonal subset. Since both BA and B are orthogonal subsets, by Lemma 3.2, it
remains to show that BA and B are orthogonal to each other.

Let c and c1 be non-zero linear combinations of elements in BA and B, respectively. We
want to prove ℓpc ` c1q “ maxtℓpcq, ℓpc1qu. When ℓpcq ‰ ℓpc1q, apply Lemma 3.1. When
ℓpcq “ ℓpc1q, since ‘ď’ is trivial, we only need to show ‘ě’. assume c “

ř

γPA λγ pBγq and let
γ be a simplex from the summands of c that achieves the maximum ℓpcq “ maxλγ‰0 ℓpBγq.
By Claim 1, we know ℓpcq “ ℓpγq “ ℓpface1pγqq. By noting that face1pγq is not in the span
of B, we conclude that ℓpc` c1q ě ℓpface1pγqq “ ℓpcq “ ℓpc1q.

Thus, Claim 3 holds.

In summary, we have proved that the following gives orthogonal bases for the boundary
operators:

Ck`1 :
´

␣

Brxi1´1, xi1 , . . . , xik`2
s
(

,
␣

rxi1´1, xi1 , . . . , xik`1
s
(

¯

Ck : 0
´

␣

Brxi1´1, xi1 , . . . , xik`1
s
(

, trxi1´1, xi1 , . . . , xiksu
¯

Ck´1 : 0 . . . .

Bk`1 0

Bk 0

By the definition of verbose barcodes, we have

BVer,kpXq “ tpℓ pBγq , ℓ pγqquγPA

“
␣`

ℓ
`

Brxi1´1, xi1 , . . . , xik`1
s
˘

, ℓ
`

rxi1´1, xi1 , . . . , xik`1
s
˘˘(

2ďi1ăi2ă¨¨¨ăik`1ďn

“
ğ

2ďi1ăi2ă¨¨¨ăik`1ďn

␣

uX
`

xi1´1, xik`1

˘

¨ p1, 1q
(

“

n´k
ğ

i“2

n
ğ

j“i`k

tuXpxi´1, xjq ¨ p1, 1qu
pj´i´1

k´1 q .

“

n´1
ğ

j´i“k`1

n´k´1
ğ

i“1

tuXpxi, xjq ¨ p1, 1qu
pj´i´2

k´1 q .
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3.3 Decomposition of FCCs

In this section, we recall from [31], that the collection of verbose barcodes is a complete
invariant of FCCs, and that the collection of concise barcodes is an invariant up to filtered
homotopy equivalence. In addition, for the case of Vietoris-Rips FCCs, we verify that
isometry implies filtered chain isomorphism while the inverse is not true.

Definition 3.16 (Elementary FCCs). For a P R, L P r0,8s and k P Z, we define the
elementary FCC, denoted by Epa, a` L, kq, to be the FCC pE˚, BE , ℓEq given as follows:

• If L “ 8, then Em :“

#

F, m “ k

0, otherwise
, BE :“ 0 and ℓpλq :“ a for each 0 ‰ λ P Ek “ F.

• If L P r0,8q, then Em :“

$

’

&

’

%

Fx, m “ k

Fy, m “ k ` 1

0, otherwise
with BE : y ÞÑ x, x ÞÑ 0, ℓE : y ÞÑ

a` L, x ÞÑ a such that tx, yu is an orthogonal basis.

By noting that ppyq, pxqq forms a singular value decomposition for Bk`1, we conclude that the
degree-k verbose barcode of Epa, a`L, kq is tpa, a` Lqu with the convention that a`8 “ 8.
For l ‰ k, it is clear that the degree-l verbose barcode of Epa, a`L, kq is empty. The following
proposition shows that each FCC can be decomposed as the direct sum of some elementary
FCCs.

Proposition 3.17 (Proposition 7.4, [31]). Let pC˚, BC , ℓCq be a FCC, and denote by BVer,k

the degree-k verbose barcode of pC˚, BC , ℓCq. Then there is a filtered chain isomorphism

pC˚, BC , ℓCq –
à

kPZ

à

pa,a`LqPBVer,k

Epa, a` L, kq.

Theorem 6 (Theorem A & B, [31]). Two FCCs pC˚, BC , ℓCq and pD˚, BD, ℓDq are

(i) filtered chain isomorphic to each other if and only if they have identical verbose barcodes
in all degrees;

(ii) filtered homotopy equivalent to each other if and only if they have identical concise
barcodes in all degrees.

Example 3.18 (f.h.e. but not f.c.i.). Let X and Y be (ultra-)metric spaces of 4 points
given in Figure 4. The FCCs

`

C˚pVRpXqq, BX , ℓX
˘

and
`

C˚pVRpY qq, BY , ℓY
˘

arising from
Vietoris-Rips complexes have the same concise barcodes but different verbose barcodes.

In Figure 4, the ultra-metric spaces X “ tx1 ă x2 ă x3 ă x4u and Y “ ty1 ă y2 ă

y3 ă y4u are ordered according to respective self-consistent orders (see page 15). Then
we can apply Theorem 5 to obtain the barcodes of the two metric spaces. The diagram
below applies to both X and Y , so we will use the following compressed notation. First,
letting a sequence of indices i0i1 . . . ik denote the corresponding simplex rxi0 , xi1 , . . . , xiks (or
ryi0 , yi1 , . . . , yiks, resp.) and applying the diagram on page 18, we have the following singular
value decompositions for B2 and B1:

http://jocg.org/
http://creativecommons.org/licenses/by/3.0/


JoCG 15(2), 258–328, 2024 277

Journal of Computational Geometry jocg.org

x4

x2x1

x3

22
2
1

1 1

x1

x2

x3

x4

1

2

y4

y1 y2

y3

2
2 2

2

1

1

y1

y2

y3

y4

1

1

2

Figure 4: Top: the ultra-metric space X and its dendrogram representation; Bottom: the
ultra-metric space Y and its dendrogram representation. In the dendrogram representations,
the distance between two points is defined as the first time when the two points are merged
together. For example, dXpx1, x2q “ 1 and dXpx1, x4q “ 2.

C2 :
´

tBp1234qu , t123, 124, 234u
¯

C1 : 0
´

tBp123q, Bp124q, Bp234qu , t12, 23, 34u
¯

C0 : 0
´

tBp12q, Bp23q, Bp34qu
¯

.

B2 0

B1 0

Then the barcodes of the two metric spaces are given as follows.

• The verbose barcodes for X are

BVer,kpXq “

$

’

’

’

’

&

’

’

’

’

%

tp0, 1q, p0, 1q, p0, 2q, p0,8qu , k “ 0

tp1, 1q, p2, 2q, p2, 2qu , k “ 1

tp2, 2qu , k “ 2

H, otherwise.
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• The verbose barcodes for Y are

BVer,kpY q “

$

’

’

’

’

&

’

’

’

’

%

tp0, 1q, p0, 1q, p0, 2q, p0,8qu , k “ 0

tp2, 2q, p2, 2q, p2, 2qu , k “ 1

tp2, 2qu , k “ 2

H, otherwise.

• The concise barcodes for X and Y are

BCon,kpXq “ BCon,kpY q “

#

tp0, 1q, p0, 1q, p0, 2q, p0,8qu , k “ 0

H, otherwise.

Recall from Example 3.4 the notation for Vietoris-Rips FCCs. Let pX, dXq and pY, dY q
be two finite pseudo-metric spaces. It is clear that the chain complexes C˚pVRpXqq and
C˚pVRpY qq are chain isomorphic if and only if |X| “ |Y |. In addition, if |X| “ |Y | holds,
then any bijection f : X Ñ Y induces a chain isomorphism

f˚ : C˚pVRpXqq
–
ÝÑ C˚pVRpY qq.

Below, we show that the respective Vietoris-Rips FCCs of two isometric pseudo-metric spaces
are filtered chain isomorphic.

Proposition 3.19 (Isometry implies f.c.i.). Let pX, dXq and pY, dY q be two finite pseudo-
metric spaces. If pX, dXq and pY, dY q are isometric, then FCCs

`

C˚pVRpXqq, BX , ℓX
˘

and
`

C˚pVRpY qq, BY , ℓY
˘

are filtered chain isomorphic.

Proof. Suppose pX, dXq and pY, dY q are isometric. Then there exists a bijective map ϕ :
pX, dXq Ñ pY, dY q such that dXpx, x1q “ dY pϕpxq, ϕpx

1qq for all x, x1 P X. Clearly, ϕ induces
a chain isomorphism Φ˚ : C˚pVRpXqq Ñ C˚pVRpY qq such that each k-simplex rx1, . . . , xks
in VRpXq is mapped to rϕpx1q, . . . , ϕpxkqs in VRpY q. Since ϕ is distance-preserving, we
have that ℓY ˝ Φ˚ “ ℓX . Thus, Φ˚ is a filtered chain isomorphism.

However, the converse of Proposition 3.19 is not true.

Example 3.20 (f.c.i. but not isometric). Let X and Y be the ultra-metric spaces (each
consisting of 5 points) depicted in Figure 5. These spaces are extensions of those presented
in Example 3.18, obtained by adding the points x5 and y5 to X and Y , respectively. The
distance matrices for X and Y are respectively:

¨

˚

˚

˚

˚

˝

0 1 1 2 2
1 0 1 2 2
1 1 0 2 2
2 2 2 0 0.5
2 2 2 0.5 0

˛

‹

‹

‹

‹

‚

and

¨

˚

˚

˚

˚

˝

0 1 2 2 2
1 0 2 2 2
2 2 0 1 1
2 2 1 0 0.5
2 2 1 0.5 0

˛

‹

‹

‹

‹

‚

.
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x2

x3

x4
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0.5
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y1 y2

y3
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2
2

2

1

1

0.5
1
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y1
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y3

y4

y5

0.5

1

1

2

Figure 5: Top: the ultra-metric space X and its dendrogram representation; Bottom: the
ultra-metric space Y and its dendrogram representation.

We apply Theorem 5 to compute the verbose barcodes of the two spaces and see that they are
equal:

BVer,kpXq “ BVer,kpY q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

tp0, 0.5q, p0, 1q, p0, 1q, p0, 2q, p0,8qu , k “ 0

tp1, 1q, p2, 2q, p2, 2q, p2, 2q, p2, 2q, p2, 2qu , k “ 1

tp2, 2q, p2, 2q, p2, 2q, p2, 2qu , k “ 2

tp2, 2qu , k “ 3

H, otherwise.

4 Isometry Theorem (dI “ dM)

In TDA, it is well-known that, under mild conditions (e.g. q-tameness, see [11]), a certain
isometry theorem holds: the interleaving distance between persistence modules is equal to
the bottleneck distance between their concise barcodes (cf. [13, 9, 13]). In our notation,
this means that for any degree k and any two FCCs pC˚, BC , ℓCq and pD˚, BD, ℓDq,

dB pBCon,kpC˚q,BCon,kpD˚qq “ dI pHk ˝ pC˚, BC , ℓCq ,Hk ˝ pD˚, BD, ℓDqq .

In this section, we prove an analogous isometry theorem for the verbose barcode: the inter-
leaving distance dI between filtered chain complexes is equal to the matching distance dM
between their respective verbose barcodes:
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Theorem 2 (Isometry theorem). For any two filtered chain complexes pC˚, BC , ℓCq and
pD˚, BD, ℓDq,

sup
kPZě0

dM pBVer,kpC˚q,BVer,kpD˚qq “ dI ppC˚, BC , ℓCq , pD˚, BD, ℓDqq .

4.1 Interleaving Distance dI between FCCs

An FCC pC˚, BC , ℓCq can be viewed as a functor from the poset category pR,ďq to the
category of chain complexes:

t ÞÑ ℓ´1
C pttuq and pt ď sq ÞÑ

`

ℓ´1
C pttuq ãÑ ℓ´1

C ptsuq
˘

where ℓ´1
C p¨q represents the preimage.

We review the general notion of interleaving distance given by [2, Definition 3.1 & 3.2]. For
a given category C, two functors V,W : pR,ďq Ñ C are said to be δ-interleaved if these
exist families of morphisms tft : Vt Ñ Wt`δutPR and tgt : Wt Ñ Vt`δutPR such that the
following diagrams commute for all t ď t1:

Vt Vt1

Wt`δ Wt1`δ

ft

vt,t1

ft1

wt`δ,t1`δ

Vt`δ Vt1`δ

Wt Wt1

vt`δ,t1`δ

gt

wt,t1

gt1

and

Vt Vt`2δ

Wt`δ

ft

vt,t`2δ

gt`δ

Vt`δ

Wt Wt`2δ.

ft`δgt

wt,t`2δ

Definition 4.1 (Interleaving Distance). The interleaving distance between two functors
V,W : pR,ďq Ñ C is

dIpV,Wq :“ inf tδ ě 0 : V and W are δ-interleavedu .

Here we follow the convention that infH “ `8.

Remark 4.2. The concept of δ-interleaving can be reformulated using the following con-
structions described in [31]. Given an FCC pC˚, BC , ℓCq and λ P R, let Cλ˚ denote the
subspace of C˚ spanned by x P C˚ such that ℓCpxq ď λ, i.e.

Cλ˚ :“ ℓ´1
C pr´8, λsq Ă C˚.

Because of the property ℓC ˝ BC ď ℓC , Cλ˚ , together with the restrictions of BC and ℓC ,
constitutes an FCC denoted by pCλ˚ , BC , ℓCq. For real numbers λ ď λ1, the inclusion iλ

1

λ :
Cλ˚ Ñ Cλ

1

˚ naturally gives rise to a chain map from pCλ˚ , BC , ℓCq to pCλ
1

˚ , BC , ℓCq that is
filtration preserving.

For δ ą 0, a δ-interleaving between two FCCs pC˚, BC , ℓCq and pD˚, BD, ℓDq is a pair pΦ˚,Ψ˚q

of chain maps Φ˚ : C˚ Ñ D˚ and Ψ˚ : D˚ Ñ C˚ such that
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• ℓD ˝ Φ˚ ď ℓC ` δ;

• ℓC ˝Ψ˚ ď ℓD ` δ;

• For each λ P R, the compositions Ψλ`δ
˚ ˝Φλ˚ : Cλ˚ Ñ Cλ`2δ

˚ and Φλ`δ˚ ˝Ψλ
˚ : Dλ

˚ Ñ Dλ`2δ
˚

are equal to the respective inclusions.

This reformulation is inspired by [31, Definition A.1], but it differs from the one in that
paper. Indeed, our definition is more stringent in that it demands equality between the
aforementioned maps whereas the one in [31, Definition A.1] only requires the compositions
Φλ`δ˚ ˝ Ψλ

˚ and Φλ`δ˚ ˝ Ψλ
˚, depending on the context, to either be chain homotopic to the

inclusions or to induce the same maps on homology as the inclusions.

Proposition 4.3. Let pC˚, BC , ℓCq and pD˚, BD, ℓDq be two FCCs. Then,

dI ppC˚, BC , ℓCq, pD˚, BD, ℓDqq ă 8 ðñ pC˚, BCq – pD˚, BDq.

In particular, if dI ppC˚, BC , ℓCq, pD˚, BD, ℓDqq ă 8, then any δ-interleaving pΦ˚,Ψ˚q between
pC˚, BC , ℓCq and pD˚, BD, ℓDq is such that Ψ˚ ˝ Φ˚ “ IdC and Φ˚ ˝Ψ˚ “ IdD.

Proof. Because dI ppC˚, BC , ℓCq, pD˚, BD, ℓDqq ă 8, there is a δ-interleaving pΦ˚,Ψ˚q be-
tween pC˚, BC , ℓCq and pD˚, BD, ℓDq, for some δ ą 0. Let λ ą 0 be large enough. Then we
have Ψ˚ ˝ Φ˚ “ IdC , as chain maps, because of the following commutative diagram:

pC˚, BC , ℓCq
λ “ pC˚, BC , ℓCq pC˚, BC , ℓCq

λ`2δ “ pC˚, BC , ℓCq

pD˚, BD, ℓDq
λ`δ “ pD˚, BD, ℓDq.

Φ˚

“

Ψ˚

And similarly, Φ˚ ˝Ψ˚ “ IdD. Thus, pC˚, BCq – pD˚, BDq.

Conversely, suppose that pC˚, BCq – pD˚, BDq, via chain maps Φ˚ : C˚ Ñ D˚ and Ψ˚ : D˚ Ñ

C˚. It is clear that pΦ˚,Ψ˚q forms a δ-interleaving between pC˚, BC , ℓCq and pD˚, BD, ℓDq,
for δ :“ max t}ℓC ´ ℓD ˝ Φ˚}8, }ℓD ´ ℓC ˝Ψ˚}8u . Because both C˚ and D˚ are finite-
dimensional, their filtration functions are bounded above, which implies that δ ă 8.

Proposition 4.4. If two FCCs pC˚, BC , ℓCq and pD˚, BD, ℓDq are filtered chain isomorphic
(see Definition 3.6), then dI ppC˚, BC , ℓCq, pD˚, BD, ℓDqq “ 0.

Because of Proposition 4.3, the interleaving distance between FCCs is only interesting when
we consider the case when two FCCs have the same underlying chain complexes. Let pC˚, BCq
be a finite-dimensional non-zero chain complex over F, and let IsoppC˚, BCqq be the set of
chain isomorphisms on pC˚, BCq.

Theorem 7. Let pC˚, BCq be a non-zero chain complex over F and let ℓ1, ℓ2 : C˚ Ñ R\t´8u

be two filtration functions such that both pC˚, BC , ℓ1q and pC˚, BC , ℓ2q are FCCs. Then,

dI ppC˚, BC , ℓ1q, pC˚, BC , ℓ2qq “ inf
Φ˚PIsopC˚,BCq

}ℓ1 ´ ℓ2 ˝ Φ˚}8.
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Here we follow the convention p´8q ´ p´8q “ 0 when computing }ℓ1 ´ ℓ2}8. When ℓ1 is
the trivial filtration function, we have

dI ppC˚, BC , ℓ1q, pC˚, BC , ℓ2qq “ }ℓ2}8.

Proof. For any Φ˚ P IsoppC˚, BCqq, we check directly that pΦ˚,Φ
´1
˚ q forms a δ-interleaving

between pC˚, BC , ℓ1q and pC˚, BC , ℓ2q, for

δ “ max
␣

}ℓ1 ´ ℓ2 ˝ Φ˚}8, }ℓ1 ˝ Φ
´1
˚ ´ ℓ2}8

(

“ }ℓ1 ´ ℓ2 ˝ Φ˚}8.

Thus,
dI ppC˚, BC , ℓ1q , pC˚, BC , ℓ2qq ď inf

Φ˚PIsopC˚,BCq
}ℓ1 ´ ℓ2 ˝ Φ˚}8.

Conversely, it follows from Proposition 4.3 that dI ppC˚, BC , ℓ1q, pC˚, BC , ℓ2qq ă 8, and that
each δ-interleaving pΦ˚,Ψ˚q between pC˚, BC , ℓ1q and pC˚, BC , ℓ2q satisfies Φ˚ P IsoppC˚, BCqq.
Moreover, we have }ℓ1 ´ ℓ2 ˝ Φ˚}8 ď δ. By minimizing over δ and pΦ˚,Ψ˚q, we obtain

dI ppC˚, BC , ℓ1q , pC˚, BC , ℓ2qq ě inf
Φ˚PIsopC˚,BCq

}ℓ1 ´ ℓ2 ˝ Φ˚}8.

We immediately obtain the following corollary:

Corollary 4.5. Let pC˚, BCq be a non-zero chain complex over F and let ℓ1, ℓ2 : C˚ Ñ

R\ t´8u be two filtration functions such that both pC˚, BC , ℓ1q and pC˚, BC , ℓ2q are FCCs.
Then,

|}ℓ1}8 ´ }ℓ2}8| ď dI ppC˚, BC , ℓ1q, pC˚, BC , ℓ2qq ď }ℓ1 ´ ℓ2}8.

Proof. The first inequality follows from }ℓ1´ℓ2˝Φ˚}8 ě |}ℓ1}8 ´ }ℓ2 ˝ Φ˚}8| “ |}ℓ1}8 ´ }ℓ2}8|,
for every chain isomorphism ϕ˚. The second inequality follows by taking Φ˚ to be the iden-
tity map.

Example 4.6 (dI between Elementary FCCs). Recall the notion of elementary FCCs from
Definition 3.16. Let a and b be two real numbers. We claim that

dI pEpa, a, kq, Epb, b, lqq “

#

|a´ b|, k “ l

8, k ‰ l.

When k “ l, the chain complexes underlying Epa, a, kq and Epb, b, kq are isomorphic. In
Epa, a, kq, let x and y be the generators of degrees k and k`1, respectively. Correspondingly,
let x1 and y1 be the generators for Epb, b, kq. Any chain isomorphism Φ˚ from Epa, a, kq to
Epb, b, kq can be represented as Φpxq “ λx1 and Φpyq “ λ1y1 for some non-zero λ, λ1 P F.
Thus, we have

}ℓa ´ ℓb ˝ Φ˚}8 “ max
␣

|ℓapxq ´ ℓbpλxq|, |ℓapyq ´ ℓbpλ
1yq|

(

“ |a´ b|.

For the case k ‰ l, since the underlying chain complexes of Epa, a, kq and Epb, b, lq are not
isomorphic to each other, we have dI pEpa, a, kq, Epb, b, lqq “ 8.
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4.2 Matching Distance dM between Verbose Barcodes

Let H :“ tpp, qq : 0 ď p ă q ď 8u, and let ∆ :“ tpr, rq : r P Rě0 \ t`8uu. We denote
H :“ H \∆ the extended real upper plane. Let d8 be the metric on H inherited from the
l8-metric: for p, q, p1, q1 P Rě0 \ t8u,

d8ppp, qq, pp1, q1qq :“ }pp, qq ´ pp1, q1q}8 “

$

’

&

’

%

max t|p´ p1|, |q ´ q1|u , q, q1 ă 8,
|p´ p1|, q “ q1 “ 8,
8, otherwise.

It follows that the distance from a point pp, qq to the diagonal ∆ is
1

2
pq ´ pq.

We will often consider multisets of points in the extended real upper plane. Let ∆8, H8, and
H8 represent multisets where each point from ∆, H, and H, respectively, is included with
countably infinite multiplicity. These multisets are equipped with the metric d8, inherited
from their respective underlying sets.

Let A and B be multisets with supports A and B, and multiplicity functions mA and mB,
respectively. Define the sets consisting of “labeled” elements in A and B by

Ã :“ tpx, iq : x P A, 1 ď i ď mApxqu and B̃ :“ tpy, jq : y P B, 1 ď j ď mBpyqu.

We define the concept of map from the multiset A to the multiset B as that of a map
ϕ : Ã Ñ B̃ between the corresponding “labeled” sets Ã and B̃ and, for simplicity, we will
then just write ϕ : AÑ B. If ϕ is bijective, it is called a bijection between the corresponding
multisets.

Let pZ, dZq be a metric space, and let A and B be multisets supported on Z. For any map
ϕ : AÑ B, we define its cost as

costZpϕq :“ sup
aPA

dZpa, ϕpaqq.

Definition 4.7 (The Matching Distance dM). Let A and B be two non-empty multisets
supported on H. The matching distance between A and B is

dMpA,Bq :“ inf
!

costHpϕq : A
ϕ
ÝÑ B a bijection

)

“ inf

"

sup
aPA

}a´ ϕpaq}8 : A
ϕ
ÝÑ B a bijection

*

,

where dMpA,Bq “ 8 if cardpAq ‰ cardpBq.

Definition 4.8 (The Bottleneck Distance dB). Let A and B be two finite non-empty mul-
tisets supported on H. The bottleneck distance between A and B is

dBpA,Bq :“ dMpA\∆8, B \∆8q.

Theorem 8 ([9, 23]). Let V and W be persistence modules whose vector spaces are finite-
dimensional. Then,

dIpV,Wq “ dBpBpVq,BpWqq,

where dIpV,Wq is defined in Definition 4.1 with C “ Vec and Bp¨q denotes the barcode of a
persistence module.
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It follows from the following proposition that the matching distance between verbose bar-
codes is larger than or equal to the bottleneck distance between concise barcodes.

Proposition 4.9. Let A and B be finite multisets supported on H. Let A0 and B0 be finite
multisets supported on the diagonal ∆ such that cardpAYA0q “ cardpB YB0q. Then,

dBpA,Bq ď dMpAYA0, B YB0q.

Proof. In this proof, we denote costHp¨q by costp¨q. By the respective definitions of dB and
dM, we have

(i) dBpA,Bq “ inf

"

costpϕ̄q : AY∆8 ϕ̄
ÝÑ B Y∆8 a bijection

*

;

(ii) dMpAYA0, B YB0q “ inf
!

costpϕq : AYA0
ϕ
ÝÑ B YB0 a bijection

)

.

For each 0 ď r ď 8, consider the multiset tpr, rqu8 and notice that

∆8 “
ğ

rPr0,8s

tpr, rqu8.

Since A0 and B0 are finite, for every r there exists at least one bijection

fr : tpr, rqu
8zA0 Ñ tpr, rqu8zB0.

Moreover, we have

costpfrq “ }pr, rq ´ frppr, rqq}8 “ }pr, rq ´ pr, rq}8 “ 0.

Together, the maps tfr : r P r0,8su induce a bijection

f : ∆8zA0 Ñ ∆8zB0,

with costpfq “ suprPr0,8s costpfrq “ 0.

Let ϕ : AYA0 Ñ B YB0 be any bijection. Observe that

AY∆8 “ AY pA0 \ p∆8zA0qq “ pAYA0q \ p∆8zA0q

and, similarly,
B Y∆8 “ pB YB0q \ p∆8zB0q.

Thus, the bijections ϕ : A Y A0 Ñ B Y B0 and f : ∆8zA0 Ñ ∆8zB0 together define a
bijection ϕ̄ : AY∆8 Ñ B Y∆8. Moreover, because costpfq “ 0, we have

dMpAY∆8, B Y∆8q ď costpϕ̄q “ maxtcostpϕq, costpfqu “ costpϕq.

Letting ϕ run through all bijections from AYA0 to B YB0, we obtain that (i) ď (ii).

The corollary below follows directly from Proposition 4.9:
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Corollary 4.10. Given two FCCs pC˚, BC , ℓCq and pD˚, BD, ℓDq and any dimension k, we
have

dB pBCon,kpC˚q,BCon,kpD˚qq ď dM pBVer,kpC˚q,BVer,kpD˚qq .

At the end of this section, we show that chain isomorphisms induce permutations of verbose
barcodes. Given a finite-dimensional FCC pC˚, BC , ℓCq, let BVer be its verbose barcode. We
write ℓ “ ℓC and B “ BVer for notational simplicity.

Lemma 4.11. Let pC˚, BCq be a non-zero chain complex over F and let ℓ : C˚ Ñ R\t´8u

be a filtration function such that pC˚, BC , ℓq is an FCC. Then, for any Φ˚ P IsoppC˚, BCqq,

1. pC˚, BC , ℓ ˝ Φ˚q is a filtered chain complex, cf. Definition 3.3.

2. pC˚, BC , ℓq and pC˚, BC , ℓ˝Φ˚q are filtered chain isomorphic, via the chain isomorphism
Φ´1
˚ .

Proof. Part (2) follows directly from Part (1), since Φ´1
˚ is a chain isomorphism such that

pℓ ˝ Φ˚q ˝ Φ
´1
˚ “ ℓ.

It then remains to show in Part (1) that ℓ ˝ Φ˚ is a filtration function. This holds because
for any x, y P C˚ and 0 ‰ λ P F,

• ℓpΦ˚pxqq “ ´8 ðñ Φ˚pxq “ 0 ðñ x “ 0;

• ℓpΦ˚pλxqq “ ℓpΦ˚pxqq;

• ℓpΦ˚px` yqq “ ℓpΦ˚pxq ` Φ˚pyqq ď max tℓpΦ˚pxqq, ℓpΦ˚pyqqu.

In addition, because Φ˚ is chain map and ℓ is a filtration function, we have

ℓ ˝ Φ˚ ˝ BC “ ℓ ˝ BC ˝ Φ˚ ď ℓ ˝ Φ˚.

Because pC˚, BC , ℓq and pC˚, BC , ℓ ˝ Φ˚q are filtered chain isomorphic, they have the same
verbose barcode B. Recall from Definition 3.9 that for each dimension k, the degree-k
verbose barcode Bk is given by a singular value decomposition ppy1, . . . , ynq, px1, . . . , xmqq of
the linear map Bk`1 : Ck`1 Ñ Ker Bk (see Definition 3.8). In other words, py1, . . . , ynq and
px1, . . . , xmq are orthogonal ordered bases for Ck`1 and Ker Bk, respectively, such that for
r “ rankpBk`1q,

• pyr`1, . . . , ynq is an orthogonal ordered basis for Ker Bk`1;

• px1, . . . , xrq is an orthogonal ordered basis for Im Bk`1;

• Bk`1yi “ xi for i “ 1, . . . , r.

• ℓpy1q ´ ℓpx1q ě ¨ ¨ ¨ ě ℓpyrq ´ ℓpxrq.

Since Φ˚ is a chain isomorphism, we have Φk`1pCk`1q “ Ck`1. In addition,

y P ΦkpKer Bkq ðñ ΦkpBkyq “ 0 ðñ Bky “ 0 ðñ y P Ker Bk.
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Thus, ΦkpKer Bkq “ Ker Bk, and similarly Φk`1pKer Bk`1q “ Ker Bk`1. Also, it follows from

y P Φk`1pIm Bk`1q ðñ y “ Φk`1pBk`1xq “ Bk`1pΦk`1xq ðñ y P Im Bk`1

that Φk`1pIm Bk`1q “ Im Bk`1.

Proposition 4.12. Denote ỹi “ Φ´1
k`1pyiq and x̃j “ Φ´1

k pxjq for each i “ 1, . . . , n and
j “ 1, . . . ,m. Then ppỹ1, . . . , ỹnq, px̃1, . . . , x̃mqq forms a singular value decomposition of
Bk`1 : Ck`1 Ñ Ker Bk in the filtered chain complex pC˚, BC , ℓ ˝ Φ˚q.

Proof. The proof, while essentially a straightforward list of validated axioms, is included
here to assist readers in understanding the mechanics of singular value decompositions in
non-Archimedean normed vector spaces.

First note that pỹ1, . . . , ỹnq and px̃1, . . . , x̃mq are orthogonal ordered bases for Φk`1pCk`1q “

Ck`1 and ΦkpKer Bkq “ Ker Bk, respectively. Moreover, for r “ rankpBk`1q,

• pỹr`1, . . . , ỹnq is an orthogonal ordered basis for Φk`1pKer Bk`1q “ Ker Bk`1;

• px̃1, . . . , x̃rq is an orthogonal ordered basis for Φk`1pIm Bk`1q “ Im Bk`1;

• Bk`1ỹi “ x̃i for i “ 1, . . . , r.

• ℓ ˝ Φ˚pỹ1q ´ ℓ ˝ Φ˚px̃1q ě ¨ ¨ ¨ ě ℓ ˝ Φ˚pỹrq ´ ℓ ˝ Φ˚px̃rq.

Comparing dB and dM with the Hausdorff Distance dH. Recall the Hausdorff distance
dH from page 10.

Proposition 4.13. For any A,B Ă H8,

dHpA,Bq ď dMpA,Bq.

As a result, for two finite metric spaces X and Y and degree k ě 0, we have

• dHpBCon,kpXq \∆8,BCon,kpY q \∆8q ď dBpBCon,kpXq,BCon,kpY qq; and

• dHpBVer,kpXq,BVer,kpY qq ď dMpBVer,kpXq,BVer,kpY qq.

Proof. For any bijiection ϕ : AÑ B and for any a P A, we have

d8pa,Bq ď }a´ ϕpaq}8 and d8pϕpaq, Aq ď }a´ ϕpaq}8.

It then follows that

max

"

max
aPA

d8pa,Bq, max
ϕpaqPB

d8pϕpaq, Aq

*

ď min

"

max
aPA

}a´ ϕpaq}8 : A
ϕ
ÝÑ B a bijiection

*

,

i.e. dHpA,Bq ď dMpA,Bq.

We use the notation dB, dH, and dM to refer to the distances dBpBCon,kpXq,BCon,kpY qq,
dHpBVer,kpXq,BVer,kpY qq, and dMpBVer,kpXq,BVer,kpY qq, respectively. While we have shown
that both dB and dH provide lower bounds for dM, Example 4.14 illustrates that there is no
ordering between dB and dH.
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Example 4.14. Consider the metric spaces X and Y from Example 3.18 together with their
verbose barcodes in degree 1. It is clear that

dHpBVer,1pXq,BVer,1pY qq “ 1 ą 0 “ dBpBCon,1pXq,BCon,1pY qq.

Consider the same X, and let Y 1 be the metric space obtained by changing the length of
the bottom edge of Y in Figure 4 from 1 to 2. One can easily verify that BCon,0pXq “

tp0, 1q2, p0, 2q, p0,8qu and BCon,0pY
1q “ tp0, 1q, p0, 2q2, p0,8qu. In this case, we have

dHpBVer,0pXq,BVer,0pY
1qq “ 0 ă 1 “ dBpBCon,0pXq,BCon,0pY

1qq.

For any A “ ta1, . . . , anu Ă H8 and m⃗ P Nn, let Apm⃗q :“ tami`1
i uni“1 Ă H8.

Proposition 4.15. For any finite A “ ta1, . . . , anu, B “ tb1, . . . , bn1u Ă H8, we have

dHpA,Bq “ inf
pm⃗,m⃗1qPNnˆNn1

}m⃗}1`n“}m⃗1}1`n1

dMpApm⃗q, Bpm⃗1qq.

Proof. The ‘ď’ direction follows from Proposition 4.13 and the fact that dH does not depend
on the multiplicities of points: for any pm⃗, m⃗1q P Nn ˆ Nn1 ,

dHpA,Bq “ dHpApm⃗q, Bpm⃗1qq ď dMpApm⃗q, Bpm⃗1qq.

We now prove the inverse inequality ‘ě’. For each a, let ϕpaq P B be any one of the closest
points in B to a. This gives us a bijection between multisets

ϕ : AÑ tϕpa1q, . . . , ϕpanqu with ai ÞÑ ϕpaiq.

Similarly, we have a bijection between multisets φ : B Ñ tφpb1q, . . . , φpbn1qu such that each
φpbq is one of the closest point in A to b.

For each i, define mi :“ cardpφ´1paiqq ` 1 and let m⃗ “ pm1, . . . ,mnq. For each j, define
m1
j :“ cardpϕ´1pbjqq ` 1 and let m⃗1 :“ pm1

1, . . . ,m
1
n1q. Then ϕ \ φ´1 defines a bijection

between multisets

Apm⃗q “ A\ tφpb1q, . . . , φpbn1qu
ϕ\φ´1

ÝÝÝÝÑ Bpm⃗1q “ tϕpa1q, . . . , ϕpanqu \B.

Therefore, we have

inf
pm⃗,m⃗1qPNnˆNn1

}m⃗}1`n“}m⃗1}1`n1

dMpApm⃗q, Bpm⃗1qq ďdMpApm⃗q, Bpm⃗1qq

“ max
aPApm⃗q

d8pa, pϕ\ φ´1qpaqq

“max

"

max
aPA

}a´ ϕpaq}8, max
aPtφpb1q,...,φpbn1 qu

}φpbiq ´ bi}8

*

“max

"

max
aPA

d8pa,Bq,max
bPB

d8pA, bq

*

“dHpA,Bq.
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4.3 Proof of the Isometry Theorem

In this section, we prove the isometry theorem. If two FCCs have non-isomorphic underlying
chain complexes, then dI between the two FCCs is 8, and so is the dM between their verbose
barcodes. Thus, it remains to show that when two FCCs have the same underlying chain
complexes, dM between their verbose barcodes is equal to the interleaving distance between
the two FCCs.

Theorem 2 (Isometry theorem). For any two filtered chain complexes pC˚, BC , ℓCq and
pD˚, BD, ℓDq,

sup
kPZě0

dM pBVer,kpC˚q,BVer,kpD˚qq “ dI ppC˚, BC , ℓCq , pD˚, BD, ℓDqq .

4.3.1 The Inequality dM ď dI

In this section, we prove the inequality dM ď dI. First, we state here a lemma proved by
Usher and Zhang in [31], along with a sketch of the proof given in their paper.

Lemma 4.16 (Lemma 9.2, [31]). Let pC, ℓCq and pD, ℓDq be two orthogonalizable F-spaces,
let A : pC, ℓCq Ñ pD, ℓDq be a linear map with the singular value decomposition ppy1, . . . , ynq,
px1, . . . , xmqq and let ℓ1D be another filtration function on D such that pD, ℓ1Dq is orthogonaliz-
able. For any δ ě }ℓD´ℓ

1
D}8, there is a singular value decomposition ppy11, . . . , y

1
nq, px

1
1, . . . , x

1
mqq

for the map A : pC, ℓCq Ñ pD, ℓ1Dq such that

• ℓCpy
1
iq “ ℓCpyiq, for i “ 1, . . . , n;

• |ℓ1Dpx
1
iq ´ ℓDpxiq| ď δ, for i “ 1, . . . , r :“ rankpAq.

Lemma 4.17. Let pC˚, BCq be a finite-dimensional non-zero chain complex over F and let
ℓ1, ℓ2 : C˚ Ñ R\t´8u be two filtration functions such that both pC˚, BC , ℓ1q and pC˚, BC , ℓ2q
are FCCs. Denote by B1

Ver and B2
Ver the verbose barcodes of pC˚, BC , ℓ1q and pC˚, BC , ℓ2q,

respectively. Then, we have

dM
`

B1
Ver,B2

Ver

˘

“ sup
kPZě0

dM
`

B1
Ver,k,B2

Ver,k

˘

ď }ℓ1 ´ ℓ2}8.

Proof. Even though [31, Proposition 9.3] states a weaker result, their proof, which we provide
for completeness, permits establishing the claim.

Fix an integer k P Zě0 and a δ ě }ℓ1´ ℓ2}8. We want to show that dM
´

B1
Ver,k,B2

Ver,k

¯

ď δ.

Let r :“ rankpAq, and let ppy1, . . . , ynq, px1, . . . , xmqq be a singular value decomposition for
B :“ Bk`1 : pCk`1, ℓ1q Ñ pKer Bk, ℓ1q. Then we follow the following steps to construct a
singular value decomposition for Bk`1 : pCk`1, ℓ2q Ñ pKer Bk, ℓ2q.

1. Apply Lemma 4.16 to obtain ppy11, . . . , y
1
nq, px

1
1, . . . , x

1
mqq, a singular value decomposi-

tion for B : pCk`1, ℓ1q Ñ pKer Bk, ℓ2q such that

• ℓ1py
1
iq “ ℓ1pyiq, for i “ 1, . . . , n;

• |ℓ2px
1
iq ´ ℓ1pxiq| ď δ, for i “ 1, . . . , r.
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2. The dual elements ppx1˚1 , . . . , x
1˚
mq, py

1˚
1 , . . . , y

1˚
n qq form a singular value decomposition

for the adjoint map B˚ : ppKer Bkq
˚, ℓ˚2q Ñ pC˚

k`1, ℓ
˚
1q, cf. page 13.

3. Apply Lemma 4.16 to obtain ppξ1, . . . , ξmq, pη1, . . . , ηnqq, a singular value decomposi-
tion for B˚ : ppKer Bkq

˚, ℓ˚2q Ñ pC˚
k`1, ℓ

˚
2q such that

• ℓ˚2pξiq “ ℓ˚2px
1˚
i q, for i “ 1, . . . ,m;

• |ℓ˚2pηiq ´ ℓ˚1py
1˚
i q| ď δ, for i “ 1, . . . , r.

4. The dual elements ppη˚1 , . . . , η
˚
nq, pξ

˚
1 , . . . , ξ

˚
mqq form a singular value decomposition

for the map B˚˚ : pC˚˚
k`1, ℓ

˚˚
2 q Ñ ppKer Bkq

˚˚, ℓ˚˚2 q, i.e. the map B : pCk`1, ℓ2q Ñ

pKer Bk, ℓ2q.

Next we define a bijection between the finite-length bars in B1
Ver,k and B2

Ver,k by

f : pℓ1pxiq, ℓ1pyiqq ÞÑ pℓ2pξ
˚
i q, ℓ2pη

˚
i qq,@i “ 1, . . . , r,

and check that max1ďiďr }pℓ1pxiq, ℓ1pyiqq ´ pℓ2pξ
˚
i q, ℓ2pη

˚
i qq}8 ď δ. Indeed, for 1 ď i ď r,

|ℓ2pξ
˚
i q ´ ℓ1pxiq| ď |ℓ2pξ

˚
i q ` ℓ˚2px

1˚
i q| ` | ´ ℓ˚2px

1˚
i q ´ ℓ1pxiq| (by triangle inequality),

ď | ´ ℓ˚2pξiq ` ℓ˚2px
1˚
i q| ` |ℓ2px

1
iq ´ ℓ1pxiq| (by the property of ℓ˚2),

ď 0` δ “ δ

and similarly,

|ℓ2pη
˚
i q ´ ℓ1pyiq| “ | ´ ℓ˚2pηiq ´ ℓ1py

1
iq| “ | ´ ℓ˚2pηiq ` ℓ˚1py

1˚
i q| ď δ.

Then, it remains to build a bijection f between infinite-length bars in B1
Ver,k and B2

Ver,k such
that the difference between the birth time of a bar with the birth time of its image under
f is controlled by δ. Let V1 and V2 be an ℓ1-orthogonal complement and ℓ2-orthogonal
complement of Im Bk`1 inside Ker Bk, respectively. For j “ 1, 2, let πj : Ker Bk Ñ Vj be the
ℓj-orthogonal projection associated with the decomposition Ker Bk “ Im Bk`1 ‘ Vj .

Notice that π1|V2 : V2 Ñ V1 is a linear isomorphism, whose inverse is π2|V1 : V1 Ñ V2.
In addition, given the ℓ1-orthogonal ordered basis pxr`1, . . . , xmq for V1, we have an ℓ2-
orthogonal ordered basis pπ2|V1pxr`1q, . . . , π2|V1pxmqq for V2. Define a bijection between the
infinite-length bars in B1

Ver,k and B2
Ver,k as

f : pℓ1pxiq,8q ÞÑ pℓ2pπ2|V1pxiqq,8q,@i “ r ` 1, . . . ,m,

and check that maxr`1ďiďm }pℓ1pxiq,8q´ pℓ2pπ2|V1pxiqq,8q}8 ď δ. This holds because, for
r ` 1 ď i ď m,

ℓ2pπ2|V1pxiqq ď ℓ2pxiq ď ℓ1pxiq ` δ,

and
ℓ1pxiq “ ℓ1pπ1|V2pπ2|V1pxiqqq ď ℓ1pπ2|V1pxiqq ď ℓ2pπ2|V1pxiqq ` δ.

Proposition 4.18. With the same notation as in Lemma 4.17, we have

dM
`

B1
Ver,B2

Ver

˘

ď dI ppC˚, BC , ℓ1q , pC˚, BC , ℓ2qq .
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Proof. Given any Φ˚ P IsopC˚, BCq, it follows from Proposition 4.12 that B2
Ver “ BpC˚,BC ,ℓ2˝Φ˚q

Ver

the verbose barcodes of pC˚, BC , ℓ2 ˝ Φ˚q. Together with Lemma 4.17, we have

dM
`

B1
Ver,B2

Ver

˘

“ dM

´

B1
Ver,B

pC˚,BC ,ℓ2˝Φ˚q

Ver

¯

ď }ℓ1 ´ ℓ2 ˝ Φ˚}8,

for every Φ˚ P IsopC˚, BCq. Therefore,

dM
`

B1
Ver,B2

Ver

˘

ď min
Φ˚PIsopC˚,BCq

}ℓ1 ´ ℓ2 ˝ Φ˚}8 “ dI ppC˚, BC , ℓ1q , pC˚, BC , ℓ2qq ,

where the equality follows from Theorem 7.

4.3.2 The Inequality dM ě dI

Next, we establish the reverse inequality dM ě dI via an idea similar to the one employed in
demonstrating that the standard bottleneck distance between concise barcodes is at most
the interleaving distance between persistent modules, cf. [23, Theorem 3.4].

Proof of Theorem 2 “dM ě dI”. The proof is trivial if pC˚, BC , ℓCq and pD˚, BD, ℓDq have
non-isomorphic underlying chain complexes. We now consider the case when the chain
complexes pC˚, BCq and pD˚, BDq are isomorphic, and we assume without loss of generality
that pD˚, BDq “ pC˚, BCq and write ℓ1 :“ ℓC , ℓ2 :“ ℓD.

Take some δ ą 0 such that δ ą dM

´

B1
Ver,k,B2

Ver,k

¯

for all degree k P Zě0. Recall that

dM
`

B1
Ver,k,B2

Ver,k

˘

“ inf

#

max
aPB1

Ver,k

}a´ fkpaq}8 | B1
Ver,k

fk
ÝÑ B2

Ver,k a bijection

+

.

Thus, for each k, there is a bijection fk : B1
Ver,k Ñ B2

Ver,k such that

max
aPB1

Ver,k

}a´ fkpaq}8 ď δ. (8)

For a P B1
Ver,k Ă H8, we assume that a “ pa1, a2q. Also, we write b “ fkpaq and assume that

b “ pb1, b2q. Next, we construct an isomorphism between the following elementary FCCs
(see Definition 3.16):

hk : Epa1, a2, kq Ñ Epb1, b2, kq.

Notice that a2 and b2 are either both finite or both infinite, otherwise the left-hand side of
Equation (8) is equal to 8, which contradicts with δ ă 8.

Case (1): a2 “ b2 “ 8. Then Epa1, a2, kq and Epb1, b2, kq have the same underlying chain
complex:

. . . 0 Fxk 0 . . . ,
Bk“0

and the filtration functions are given by ℓ1pxkq “ a1 and ℓ2pxkq “ b1, respectively. The
following defines a chain isomorphism

hk : Epa1,8, kq Ñ Epb1,8, kq with xk ÞÑ xk.
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Case (2): a2, b2 ă 8. Then Epa1, a2, kq and Epb1, b2, kq have the same underlying chain
complex:

. . . 0 Fyk`1 Fxk 0 . . . ,
Bk`1pyk`1q“xk Bk“0

and the filtration functions are given by ℓ1pxkq “ a1, ℓ1pyk`1q “ a2 and ℓ2pxkq “ b1,
ℓ2pyk`1q “ b2, respectively. The following defines a chain isomorphism

hk : Epa1, a2, kq Ñ Epb1, b2, kq with xk ÞÑ xk, yk`1 ÞÑ yk`1.

In either case, it is straightforward to check that hk satisfies the following condition

}ℓ1 ´ ℓ2 ˝ hk}8 ď max t|a1 ´ b2, a1 ´ b2|u “ }a´ fpaq}8 ď δ.

We write hk,a whenever it is necessary to emphasize that hk depends on a.

Recall from Proposition 3.17 that we have the following decomposition of FCCs

pC˚, BC , ℓ1q –
à

kPZě0

à

aPB1
Ver,k

Epa1, a2, kq and pC˚, BC , ℓ2q –
à

kPZě0

à

bPB2
Ver,k

Epb1, b2, kq.

Let h :“
À

kPZě0

À

aPB1
Ver,k

hk,a : pC˚, BC , ℓ1q Ñ pC˚, BC , ℓ2q, which is then a chain isomor-
phism such that

}ℓ1 ´ ℓ2 ˝ h}8 “ max
kPZě0

max
aPB1

Ver,k

}ℓ1 ´ ℓ2 ˝ hk,a}8 ď δ.

It then follows from Theorem 7 that

dI ppC˚, BC , ℓ1q , pC˚, BC , ℓ2qq “ min
Φ˚PIsopC˚,BCq

}ℓ1 ´ ℓ2 ˝ Φ˚}8 ď }ℓ1 ´ ℓ2 ˝ h}8 ď δ.

Since δ is arbitrary, we obtain the desired inequality dI ď dM.

5 Vietoris-Rips FCCs and an Improved Stability Result

In this section, we study the Vietoris-Rips FCC of metric spaces. Recall from Example 3.4
that given a finite pseudo-metric space pX, dXq,

`

C˚pVRpXqq, BX , ℓX
˘

denotes the filtered
chain complex arising from Vietoris-Rips complexes of X. To simplify notation, we will
omit the differential map BX and the filtration function. We use C˚pVRpXqq to refer to the
Vietoris-Rips filtered chain complex pC˚pVRpXqq, BX , ℓXq.

The matching distance between the verbose barcodes of two Vietoris-Rips FCCs of finite
metric spaces is infinite if the underlying metric spaces have different cardinality. As a
consequence, the matching distance between verbose barcodes of Vietoris-Rips FCCs is not
stable under the Gromov-Hausdorff distance dGH, since dGH between any two bounded
metric spaces is always finite.

We overcome the above problem by incorporating the notion of tripods. Recall from Section
2 the distortion dispRq of a tripod R and how the Gromov-Hausdorff distance can be obtained
via finding the infimum of dispRq over all tripods R.
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In Section 5.1, through tripods, we can pull back two metric spaces X and Y (with possibly
different cardinalities) into a common space Z, and then compare (via the matching distance)
the barcodes of the FCCs induced by the respective pullbacks; see Definition 5.3. For each
degree k, we call the resulting distance the pullback bottleneck distance and denote it by
pdB,k pX,Y q. We apply the same strategy to define what we call the pullback interleaving
distance, written as pdI pX,Y q: use tripods to pull back spaces to a common space and
compare the interleaving distance between the FCCs induced by the respective pullbacks;
see Definition 5.2.

In Section 5.2, we prove the following stability results to show that the pullback bottleneck
distance is stable under dGH, and that its stability improves the standard stability result of
the bottleneck distance between concise barcodes (cf. Theorem 1):

Theorem 3 (Pullback stability theorem). Let pX, dXq and pY, dY q be two finite metric
spaces. Then, for any k P Zě0,

dB pBCon,kpXq,BCon,kpY qq ď pdB,k pX,Y q ď pdI pX,Y q ď 2 ¨ dGHpX,Y q. (1)

In Section 5.3, we present examples to demonstrate that both inequalities in Theorem 3
can be tight and strict. In Section 5.4, we study two variants of the pullback interleav-
ing/bottleneck distance.

5.1 Pullback Interleaving Distance and Pullback Bottleneck Distance

In this section, we introduce our construction of the pullback interleaving distance and the
pullback bottleneck distance between metric spaces, and study some basic properties of these
two notions.

Let pX, dXq be a finite metric space, and let ϕ : Z ↠ X be a finite parametrization of X.
We denote by ϕ˚dX the pullback pseudo-metric3 on Z induced by ϕ given as follows: for
any z, z1 P Z,

ϕ˚dZpz, z
1q :“ dXpϕpzq, ϕpz

1qq.

For brevity, we often write the pulled-back pseudo-metric space as

ZX :“ pZ, ϕ˚dXq. (9)

Given a simplex σ “ rz0, . . . , zns in C˚pVR pZqq, we write

ϕpσq :“

#

rϕpz0q, . . . , ϕpznqs, if ϕpziq ‰ ϕpzjq for any i ‰ j,
0, otherwise.

Let C˚pVRpZXqq denote the Vietoris-Rips FCC of the pseudo-metric space ZX . It is not
hard to see that ϕ induces a surjective chain map

ϕ : C˚pVRpZXqq ↠ C˚pVRpXqq.

3The map ϕ does not need to be surjective to define the pullback pseudo-metric.
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Remark 5.1. We have ℓX˝ϕ ď ℓZX , where the inequality can be strict in general. Indeed, if ϕ
is not injective, there exist z1, z2 P Z such that ϕpz1q “ ϕpz2q “ x P X. Then ϕprz1, z2sq “ 0
and

ℓX ˝ ϕprz1, z2sq “ ´8 ă 0 “ ℓZX prz1, z2sq.

On the other hand, we always have }ℓZX }8 “ diampZ, ϕ˚dXq “ diampX, dXq “ }ℓX}8.

Via the notions of tripod and Vietoris-Rips filtered chain complexes, we construct the pull-
back interleaving distance as follows:

Definition 5.2 (Pullback interleaving distance). For two finite metric spaces X and Y ,
we define the pullback interleaving distance (induced by the Vietoris-Rips FCCs)
between X and Y to be

pdI pX,Y q :“ inf

"

dI pC˚pVRpZXqq,C˚pVRpZY qqq | X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y a finite tripod
*

,

where ZX :“ pZ, ϕ˚XdXq and ZY :“ pZ, ϕ˚Y dY q.

With a similar idea and again invoking tripods, we refine the standard bottleneck distance
and introduce a new notion of distance between verbose barcodes:

Definition 5.3 (Pullback bottleneck distance). Let k P Zě0. For two finite metric spaces X
and Y , the pullback bottleneck distance (induced by the degree-k verbose barcodes)
between X and Y is defined to be

pdB,k pX,Y q :“ inf

"

dM pBVer,kpZXq,BVer,kpZY qq | X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y a finite tripod
*

,

where ZX :“ pZ, ϕ˚XdXq and ZY :“ pZ, ϕ˚Y dY q.

Remark 5.4 (Infima are minima in Definition 5.2 and 5.3). Applying Proposition 1.3,

we observe that for any finite tripod X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y , dM pBVer,kpZXq,BVer,kpZY qq
takes values in the finite set t|a ´ b| | a P Im dX , b P Im dY u \ t8u. In other words,
dM pBVer,kpZXq,BVer,kpZY qq is a finite-set valued function as a function defined on (finite)
tripods. Consequently, the infimum in the definition of pdB,k pX,Y q is indeed a minimum.

A similar argument applies to the pullback interleaving distance, implying that the infimum
in the definition of pdI pX,Y q is indeed a minimum.

We have the following relation between the pullback interleaving distance and the pullback
bottleneck distance, which is an immediate consequence of Theorem 2:

Corollary 1.2. Let pX, dXq and pY, dY q be two finite metric spaces. Then,

sup
k

inf
pZ,ϕX ,ϕY q

dM pBVer,kpZXq,BVer,kpZY qq inf
pZ,ϕX ,ϕY q

sup
k
dM pBVer,kpZXq,BVer,kpZY qq

sup
k

pdB,k pX,Y q pdI pX,Y q .

ď

= =
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Similarly to Remark 5.4, one can check that the suprema in the LHS and RHS above are
both maxima.

Proof of Proposition 1.2. By the isometry between dM and dI, we have

sup
kPZě0

pdB,k pX,Y q

“ sup
kPZě0

inf

"

dM pBVer,kpZXq,BVer,kpZY qq | X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y a finite tripod
*

ď inf

#

sup
kPZě0

dM pBVer,kpZXq,BVer,kpZY qq | X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y a finite tripod

+

“ inf

"

dI pC˚pVRpZXqq,C˚pVRpZY qqq | X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y a finite tripod
*

“pdI pX,Y q .

Remark 5.5 (pdB ď dM). Let two finite metric spaces X and Y have the same cardinality
(in which case the dM of verbose barcodes is finite). Considering any surjective set map

X
f

ÝÝÝ↠ Y and the resulting tripod X
idX

↞ÝÝÝÝ X
f

ÝÝÝ↠ Y , we conclude that for any degree k,

pdB,k pX,Y q ď dMpBVer,kpXq,BVer,kpY qq.

Thus, supkPZě0
pdB,k pX,Y q ď supkPZě0

dMpBVer,kpXq,BVer,kpY qq. Note that this inequality
can be strict. For instance, consider the four-point metric spaces X and Y given in Example
3.18, we claim that

sup
kPZě0

pdB,k pX,Y q “ 0 ă 1 “ sup
kPZě0

dMpBVer,kpXq,BVer,kpY qq.

The non-trivial part is supkPZě0
pdB,k pX,Y q “ 0. Consider the tripod X

ϕX
↞ÝÝÝÝ Z

ϕY
ÝÝÝÝ↠ Y

given by Z “ tz1, . . . , z5u,

ϕXpziq :“

#

xi, 1 ď i ď 4,
x4, i “ 5.

and ϕY pziq :“

#

yi, 1 ď i ď 4,
y4, i “ 5.

Let ZX :“ pZ, ϕ˚XdXq and ZY :“ pZ, ϕ˚Y dY q. It follows from Proposition 6.2 which will be
proved in Section 6.1 and the verbose barcodes of X and Y computed on page 20 that

• BVer,0pZXq “ tp0, 0q, p0, 2q, p0,8qu \ tp0, 1qu2 “ BVer,0pZY q;

• BVer,1pZXq “ tp1, 1qu \ tp2, 2qu5 “ BVer,1pZY q;

• BVer,2pZXq “ tp2, 2qu4 “ BVer,2pZY q;

• BVer,3pZXq “ tp2, 2qu “ BVer,3pZY q;

• BVer,kpZXq “ H “ BVer,kpZY q for k ě 4.

Because dMpBVer,kpZXq,BVer,kpZY qq “ 0 for all k, we obtain pdI pX,Y q “ 0. This implies
that supkPZě0

pdB,k pX,Y q “ 0.
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5.2 Pullback Stability Theorem

In this section, we prove that the pullback interleaving distance pdI and the pullback bottle-
neck distance pdB are stable under the Gromov-Hausdorff distance dGH (cf. Theorem 3) and
that they provide a better lower-bound estimate of dGH in comparison with the standard
bottleneck distance dB (cf. Theorem 1).

The following proposition establishes that pdI is stable. See page 39 for the proof.

Proposition 5.6 (Stability of Pullback Interleaving Distance). Let pX, dXq and pY, dY q be
two finite metric spaces. Then,

pdI pX,Y q ď 2 ¨ dGHpX,Y q.

Corollary 1.2 and Proposition 5.6 together yield the stability of pdB. In addition, we prove
that pdB is an improvement over dB, when both are regarded as lower bounds of the dGH

between metric spaces:

Theorem 3 (Pullback stability theorem). Let pX, dXq and pY, dY q be two finite metric
spaces. Then, for any k P Zě0,

dB pBCon,kpXq,BCon,kpY qq ď pdB,k pX,Y q ď pdI pX,Y q ď 2 ¨ dGHpX,Y q. (1)

Proof. We only need to prove dB pBCon,kpXq,BCon,kpY qq ď pdB,k pX,Y q. For any tripod

X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y , let ZX :“ pZ, ϕ˚XdXq and ZY :“ pZ, ϕ˚Y dY q. By Proposition 1.3 and
the fact that concise barcodes can be obtained from the corresponding verbose barcode minus
all the diagonal points, we have that BCon,kpXq “ BCon,kpZXq and BCon,kpY q “ BCon,kpZY q.
Incorporating Proposition 4.9, we deduce:

dB pBCon,kpXq,BCon,kpY qq “ dB pBCon,kpZXq,BCon,kpZY qq ď dM pBVer,kpZXq,BVer,kpZY qq .

The proof of Proposition 5.6. In order to prove Proposition 5.6, we first establish the
stability of the interleaving distance dI between Vietoris-Rips FCCs by showing that dI is
stable under the max norm between the two distance functions over the same underlying
set. Recall the definition of the distortion of a map from page 10.

Proposition 5.7. Let X be a finite set of cardinality n. Let d1 and d2 be two distance
functions on X, and let ℓ1 and ℓ2 be the filtration functions induced by d1 and d2 respectively.
Then,

|}d1}8´}d2}8| ď dI ppC˚pVRpXqq, ℓ1q, pC˚pVRpXqq, ℓ2qq ď min
bijectionf :XÑX

dispfq ď }d1´d2}8.

Proof. Claim 1: }ℓ1 ´ ℓ2}8 “ }d1 ´ d2}8 and }ℓ1}8 “ }d1}8.

When X is an one-point space, this is trivial to prove. Now assume that X has at least two
points and suppose that }d1 ´ d2}8 “ |d1px1, x2q ´ d2px1, x2q| for some x1, x2 P X. Then,

}ℓ1 ´ ℓ2}8 ě |ℓ1prx1, x2sq ´ ℓ2prx1, x2sq| “ |d1px1, x2q ´ d2px1, x2q| “ }d1 ´ d2}8.
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Conversely, for any n-chain σ “ rx0, . . . , xns in X, we have

|ℓ1pσq ´ ℓ2pσq| “ | diam1pσq ´ diam2pσq| ď }d1 ´ d2}8.

Taking d2 “ 0, the trivial distance function, we obtain }ℓ1}8 “ }d1}8.

Claim 2: Consider any bijection f : X Ñ X, and let d be a metric on X. Define d ˝ f as
the composition d ˝ pf, fq, and denote X̃ :“ pX, d ˝ fq. Let ℓ and ℓ̃ represent the filtration
functions induced by d and d ˝ f , respectively. Then ℓ̃ “ ℓ ˝ f.

Clearly, f induces a chain isomorphism f : C˚pVRpXqq
–
ÝÑ C˚pVRpXqq. Then X̃ is a metric

space, whose filtration function for the Vietoris-Rips FCC is given by

ℓ̃

˜

r
ÿ

i“1

λiσi

¸

“ max
λi‰0

diamX̃pσiq “ max
λi‰0

diamXpfpσiqq,

where σ1, . . . , σr are simplices. Since fpσiq “ σji for some simplex σji , we have

ℓ ˝ f

˜

r
ÿ

i“1

λiσi

¸

“ ℓ

˜

r
ÿ

i“1

λiσji

¸

“ max
λi‰0

diamXpσjiq “ max
λi‰0

diamXpfpσiqq “ ℓ̃

˜

r
ÿ

i“1

λiσi

¸

.

Let f : X Ñ X be any bijection. By Claim 1 and Claim 2, we have

}ℓ1 ´ ℓ2 ˝ f}8 “ }ℓ1 ´ ℓpX,d2˝fq}8 “ }d1 ´ d2 ˝ f}8 “ dispfq.

Therefore, by Theorem 7, we have

dI ppC˚pVRpXqq, ℓ1q, pC˚pVRpXqq, ℓ2qq “ inf
fPIsopC˚pVRpXqqq

}ℓ1 ´ ℓ2 ˝ f}8

ď min
f :X

bij.
ÝÝÑX

}d1 ´ d2 ˝ f}8

“ min
f :X

bij.
ÝÝÑX

dispfq ď }d1 ´ d2}8.

On the other hand, for any f P IsopC˚pVRpXqqq, we have }ℓ2 ˝ f}8 “ }ℓ2}8. Thus, by
Claim 1,

dI ppC˚pVRpXqq, ℓ1q, pC˚pVRpXqq, ℓ2qq “ inf
fPIsopC˚pVRpXqqq

}ℓ1 ´ ℓ2 ˝ f}8

ě
ˇ

ˇ}ℓ1}8 ´ }ℓ2}8
ˇ

ˇ “ |}d1}8 ´ }d2}8|.

Proof of Proposition 5.6. Suppose R : X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y is a finite tripod between X
and Y . By Proposition 5.7, we obtain

dI
``

C˚pVR pZqq , ℓZX
˘

,
`

C˚pVR pZqq , ℓZY
˘˘

ď }ϕ˚XdX ´ ϕ˚Y dY }8 “ dispRq.

We finish the proof, by taking infimum over all finite tripods R in the above inequality and
applying the fact that 2 ¨ dGHpX,Y q “ inffinite R dispRq, by Remark 2.1.
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Example 5.8 (Strictness of the inequalities in Proposition 5.7). Let X “ ta, b, cu. Consider
pseudo-metrics d0, d1 and d2 on X, given in Figure 6. We calculate the following quantities
for d0 and d1:

1. |}d0}8 ´ }d1}8| “ 1;

2. dI ppC˚pVRpX, d0qq,C˚pVRpX, d1qqq “ 1.

3. minbijectionf :pX,d0qÑpX,d1q dispfq “ 1;

4. }d0 ´ d1}8 “ 2.

Similarly, we compute for d1 and d2:

1. |}d1}8 ´ }d2}8| “ 0;

2. dI ppC˚pVRpX, d1qq,C˚pVRpX, d2qqq “ 1;

3. minbijectionf :pX,d1qÑpX,d2q dispfq “ 1;

4. }d1 ´ d2}8 “ 1.

a

b c

0 1

1

a

b c

22

1

a

b c

22

0

Figure 6: Pseudo-metrics d0, d1, d2.

5.3 Tightness and Strictness of the Pullback Stability Theorem

We study some examples for Theorem 3 and see that both inequalities in this theorem are
tight, and they can be strict too.

Example 5.9. Recall the 3-point metric spaces X1 and X2 from Figure 1, and assume that
a ď b ď ci for i “ 1, 2. Computing each of the distances appearing in Theorem 3, we obtain:

sup
kPZě0

dB pBCon,kpX1q,BCon,kpX2qq sup
kPZě0

pdB,k pX1, X2q 2 ¨ dGHpX1, X2q

0 |c1 ´ c2| |c1 ´ c2|

The first and third columns in the above table arise from straightforward calculations. For

the second column, notice that for any tripod X1

ϕ1
↞ÝÝÝ Z

ϕ2
ÝÝÝ↠ X2 with cardpZq “ m ` 3

for some non-negative integer m, we have

BVer,m`1pZ1q “ tpc1, c1qu and BVer,m`1pZ2q “ tpc2, c2qu,

where Z1 :“ pZ, ϕ˚1dX1q and Z2 :“ pZ, ϕ˚2dX2q. In particular, pdB,m`1 pZ1, Z2q “ |c1´ c2|, for

any tripod X1

ϕ1
↞ÝÝÝ Z

ϕ2
ÝÝÝ↠ X2. Thus, supkPZě0

pdB,k pX1, X2q “ |c1 ´ c2|.
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Example 5.10. Let X,Y, Z, and W be metric spaces each consisting of 4 points where the
respective metric are depicted in Figure 7, together with the verbose barcodes of each of these
metric spaces. Among these spaces, X and Y have been studied in Example 3.18. The space
Z is the complete graph on 4 vertices with edge length 1, and W is the cycle graph on 4
vertices with edge length 1. Both Z and W are equipped with the graph distance.

22
2
1

1 1

X

2
2 2

2

1

1

Y

1
1 1

1

1

1

Z

1

1

1

1 22

W

BVer,0 p0, 1q2, p0, 2q, p0,8q p0, 1q2, p0, 2q, p0,8q p0, 1q3, p0,8q p0, 1q3, p0,8q

BVer,1 p1, 1q, p2, 2q2 p2, 2q3 p1, 1q3 p1, 2q, p2, 2q2

BVer,2 p2, 2q p2, 2q p1, 1q p2, 2q

Figure 7: Verbose barcodes of 4-point metric spaces X,Y, Z and W .

From Figure 8, we notice that the pair of metric spaces pX,Y q is such that

sup
kPZě0

dBpBCon,kpXq,BCon,kpY qq “ sup
kPZě0

pdB,k pX,Y q “ 0 ă 1 “ 2 ¨ dGHpX,Y q,

which establishes that pdB between non-isometric spaces can be zero. To see that pdB,1 pX,Y q “

0, consider pullback spaces ZX :“ X \ tx0u where x0 is a duplicate of the top vertex in X
and ZY “ Y \ ty0u where y0 is a duplicate of an arbitrary point from Y , and verify that
BVer,1pZXq “ BVer,1pZY q “ tp1, 1q, p2, 2q5u. The pair pX,Y q shows the tightness of dB ď pdB.

The pair pZ,W q is such that

sup
kPZě0

dBpBCon,kpZq,BCon,kpW qq “
1

2
ă 1 “ sup

kPZě0

pdB,k pZ,W q “ 2 ¨ dGHpZ,W q,

which gives another example of pdB and pdI providing better bounds for dGH in comparison
with the standard bottleneck distance dB.

Below is another example in which the stability of pdB improves that of dB:

Example 5.11. Let X be the one-point metric space. Let Y “ ∆npϵq be the n-point metric
space where all points are at distance ϵ ą 0 from each other, for n ě 2. Then,

2 ¨ dGHpX,Y q “ ϵ.

For any tripod X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y, we have

• BVerpZXq consists of only copies of p0, 0q in all degrees;
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dBpBCon,0p¨q,BCon,0p¨qq X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 0
W 0

pdB,0 p¨, ¨q X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 0
W 0

dBpBCon,1p¨q,BCon,1p¨qq X Y Z W

X 0 0 0 1
2

Y 0 0 1
2

Z 0 1
2

W 0

pdB,1 p¨, ¨q X Y Z W

X 0 0 1 1
Y 0 1 1
Z 0 1
W 0

2 ¨ dGHp¨, ¨q X Y Z W

X 0 1 1 1
Y 0 1 1
Z 0 1
W 0

Figure 8: The bottleneck distance dB between concise barcodes, the pullback bottleneck dis-
tance pdB, the pullback interleaving distance pdI and the Gromov-Hausdorff distance between
spaces.

• BVerpZY q consists of copies of p0, 0q, p0, ϵq and pϵ, ϵq, and BVer,0pZY q contains copies
of p0, ϵq,

It is not hard to verify that

sup
kPZě0

dM pBVer,kpZXq,BVer,kpZY qq “ ϵ

for any tripod. Thus, supkPZě0
pdB,k pX,Y q “ ϵ. In addition, we have the following table

sup
kPZě0

dB pBCon,kpXq,BCon,kpY qq sup
kPZě0

pdB,k pX,Y q 2 ¨ dGHpX,Y q

ϵ
2 ϵ ϵ

Via a similar argument and by invoking the fact that diampY q ¨ p1, 1q P BVer,cardpY q´2pZY q
for any pullback space ZY of Y , we generalize Example 5.11 to the following proposition:

Proposition 5.12. Let X be the one-point metric space, and Y be any finite metric space.
Then,

sup
kPZě0

pdB,k pX,Y q “ pdI pX,Y q “ diampY q “ 2 ¨ dGHpX,Y q.

5.4 Variations of the Pullback Interleaving/Bottleneck Distance

In previous subsections, we introduced the pullback interleaving distance pdI and the pullback
bottleneck distance pdB based on the notion of tripod. To highlight the role of tripods and
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facilitate comparisons with other variants, we sometimes write

pdTriI :“ pdI and pdTriB :“ pdB,

respectively. Given a degree k, we will use dB,k to denote dB between degree-k concise
barcodes.

We introduce two variants of the pullback interleaving/bottleneck distance, mirroring the
equivalent definitions of the Gromov-Hausdorff distance (see Section 2). In the first variant,
we employ correspondences between metric spaces, instead of tripods, and we denote the
resulting distances as pdCor

I and pdCor
B , as defined in Definition 5.13. In the second variant, we

define the distances pdMap
I and pdMap

B utilizing maps between the underlying metric spaces, as
specified in Definition 5.14. These new formulations are beneficial in terms of computational
efficiency, which we will discuss in more detail in Section 6.2.1.

To simplify our terminology, we will use the following terminology:

• ‘pullback interleaving-type distances’ refers to all versions of pullback interleaving
distances.

• ‘pullback bottleneck-type distances’ refers to all versions of pullback bottleneck
distances.

• ‘pullback distances’ refers to all pullback interleaving-type distances and pullback
bottleneck-type distances.

We show that pullback distances are all stable under the Gromov-Hausdorff distance, and
they improve upon the stability of the bottleneck distance between the concise barcodes.
Moreover, they satisfy the relation below.

Theorem 9. The several variants of pullback interleaving and bottleneck distances satisfy
the following relations:

pdTriI
pdCor
I

pdMap
I 2 ¨ dGH

sup
k
dB,k sup

k

pdTriB,k sup
k

pdCor
B,k sup

k

pdMap
B,k

ď ď ň

ň ď

ň

ď

ň ň

where ‘ň’ indicates that (1) ‘ď’ always holds and (2) there exist examples for which the
inequality is strict.

Moreover, the above table remains valid if we fix a degree k and replace the last row with
dB,k ň pdTriB,k ď

pdCor
B,k ď pdMap

B,k .

Recall from Section 2 that the Gromov-Hausdorff distance has several equivalent definitions:

• using maps:

dGHpX,Y q “
1

2
inf

f :XÑY
g:YÑX

maxtdispfq, dispgq, codispf, gqu;
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• using correspondences:

dGHpX,Y q “
1

2
inf

RPRpX,Y q
dispRq;

• using tripods:

dGHpX,Y q “
1

2
inf

X
ϕX

↞ÝÝÝÝZ
ϕY

ÝÝÝÝ↠Y

disppZ, ϕX , ϕY qq.

Let R Ă X ˆ Y be a correspondence between metric spaces X and Y , and let πX and πY
be the two projection maps onto X and Y , respectively. We equip R with the respective
pullback metrics induced by πX and πY , and denote

RX :“ pR, π˚XdXq and RY :“ pR, π˚Y dY q. (10)

Definition 5.13. For two finite metric spaces X and Y , we define the pullback inter-
leaving distance induced by correspondences (and VR FCCs) between X and Y to
be

d̂Cor
I pX,Y q :“ min tdI pC˚pVRpRXqq,C˚pVRpRY qqq | R Ă X ˆ Y a correspondenceu ,

where RX :“ pR, π˚XdXq and RY :“ pR, π˚Y dY q.

For any degree k P Zě0, we define the pullback bottleneck distance induced by corre-
spondences (and degree-k verbose barcodes) between X and Y to be

d̂Cor
B,k pX,Y q :“ min tdM pBVer,kpRXq,BVer,kpRY qq | R Ă X ˆ Y a correspondenceu .

For two maps f : X Ñ Y and g : Y Ñ X, define a multiset arising in the use of the graphs
of f and g

Gpf, gq :“ tpx, fpxqq | x P Xu Y tpgpyq, yq | y P Y u. (11)

For simplicity, write G :“ Gpf, gq. Note that G is a correspondence between X and Y . Let
πX and πY be the two projection maps from G onto X and Y , respectively. We equip G
with the respective pullback metrics induced by πX and πY , and denote

GX :“ pG, π˚XdXq and GY :“ pG, π˚Y dY q. (12)

Definition 5.14. For two finite metric spaces X and Y , we define the pullback interleav-
ing distance induced by maps (and VR FCCs) between X and Y to be

d̂Map
I pX,Y q :“ min tdI pC˚pVRpGXqq,C˚pVRpGY qqq | f : X Ñ Y, g : Y Ñ X,G “ Gpf, gqu ,

where GX :“ pG, π˚XdXq and GY :“ pG, π˚Y dY q.

For any degree k P Zě0, we define the pullback bottleneck distance induced by maps
(and degree-k verbose barcodes) between X and Y to be

d̂Map
B,k pX,Y q :“ min tdM pBVer,kpGXq,BVer,kpGY qq | f : X Ñ Y, g : Y Ñ X,G “ Gpf, gqu ,
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Proof of Theorem 9. We first prove that all the following inequalities hold for every degree
k:

pdTriI
pdCor
I

pdMap
I 2 ¨ dGH

dB,k pdTriB,k
pdCor
B,k

pdMap
B,k ,

ď
p1q

ď
p2q

ď
p3q

ď
p7q

ď
p8q

ďp4q

ď
p9q

ďp5q ďp6q

Inequalities (4) and (7) have been established in Corollary 1.2 and Theorem 3, respectively.
Inequalities (5) and (6) follow directly from the definitions of the pullback distances and
the isometry theorem between the interleaving distance and the bottleneck distance (see
Theorem 2).

For (1), consider any two finite metric spaces X and Y . Note that any correspondence
R Ă X ˆ Y induces a tripod of the form

X
πX

↞ÝÝÝÝ R
πY

ÝÝÝÝ↠ Y

where RX “ pR, π˚XdXq and RY “ pR, π˚Y dY q. Therefore, we have

pdTriI ď dI pC˚pVRpRXqq,C˚pVRpRY qqq .

Taking the infimum over all correspondences R yields pdTriI ď pdCor
I . Inequality (8) can be

established similarly.

For (2), note that for any f : X Ñ Y and g : Y Ñ X, let G :“ Gpf, gq, and πX , πY be the
projection from G to X, Y , respectively. Let GX “ pG, π˚XdXq and GY “ pG, π˚Y dY q. Since
G is a correspondence between X and Y , we have

pdCor
I ď dI pC˚pVRpGXqq,C˚pVRpGY qqq .

Since the maps f : X Ñ Y and g : Y Ñ X are arbitrary, we conclude that pdCor
I ď pdMap

I .
Inequality (9) can be established similarly.

For (3), using the above notation f, g and G, we apply Proposition 5.7 to obtain that

pdMap
I ď dI pC˚pVRpGXqq,C˚pVRpGY qqq ď dispGq “ maxtdispfq, dispgq, codispf, gqu.

Taking the infimum over all maps f : X Ñ Y and g : Y Ñ X yields pdMap
I ď 2 ¨ dGH.

Thus, we have proved all inequalities (1)-(9). By taking the supremum over all degrees k,
we obtain the desired inequalities

pdTriI
pdCor
I

pdMap
I 2 ¨ dGH

sup
k
dB,k sup

k

pdTriB,k sup
k

pdCor
B,k sup

k

pdMap
B,k ,

ď ď ď

ď
p71q

ď

ďp41q

ď

ďp51q ďp61q

To finish proving the proposition, it remains to establish examples such that inequalities (41)-
(71) are strict. Such examples will be presented in Proposition 6.11 and Remark 6.13.
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5.4.1 Pseudo-metrics Based on Pullback Distances

It is worth noticing that none of pdTriI , pdCor
I , and pdMap

I satisfy the triangle inequality; see
Corollary 6.12. Nevertheless, we demonstrate below that all of them can be converted
into pseudo-metrics. Moreover, utilizing ideas in [26, Section 6.2], we show that these new
functions retain the favorable properties of the original pullback interleaving-type distances,
such as the stability under the Gromov-Hausdorff distance.

Given any non-negative and symmetric function ωX : X ˆ X Ñ R, the following induced
function defines a pseudo-metric on X:

dXpx, x
1q :“ inf

x“x0,...,xn“x1

n´1
ÿ

i“0

ωXpxi, xi`1q.

Indeed, for any sequences α : x “ x0, . . . , xn “ x1 and β : x1 “ y0, . . . , ym “ x2, we have a
sequence x “ x0, . . . , xn “ x1 “ y0, . . . , ym “ x2 between x and x2. Thus,

dXpx, x
2q ď

n´1
ÿ

i“0

ωXpxi, xi`1q `

m´1
ÿ

j“0

ωXpyj , yj`1q.

By taking the infimum over all α and β, we obtain

dXpx, x
2q ď dXpx, x

1q ` dXpx
1, x2q.

Additionally, by considering the sequence x “ x0, x1 “ x1, we see that dX ď ωX .

Denote the collection of all finite metric spaces by X. Then we apply the above procedure
to convert the different variants of the pullback interleaving-type distances into different
pseudo-metrics between finite metric spaces, as follows:

Definition 5.15. For each pd˝
I , where ˝ “ Tri,Cor or Map, define

d̃˝
I pX,Y q :“ inf

XiPX
X“X0,...,Xn“Y

n´1
ÿ

i“0

d̂˝
I pXi, Xi`1q .

Proposition 5.16. We have d̃TriI ď d̃Cor
I ď d̃Map

I ď 2 ¨ dGH.

Proof. The first two inequalities are derived directly from pdTriI ď pdCor
I ď pdMap

I . The last one
follows immediately from the facts that d̃Map

I ď pdMap
I and pdMap

I ď 2dGH (cf. Theorem 9
).

Remark 5.17. For pullback bottleneck-type distances, we will see in Section 6.2.2 that when
k “ 0, pdTriB,0 “

pdCor
B,0 “ pdMap

B,0 and they all satisfy the triangle inequality.

It is still an open question whether pd˝
B induced by positive-degree verbose barcodes satisfies

the triangle inequality, where ˝ “ Tri,Cor or Map. Even if it fails, we can transform pd˝
B
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into a pseudo-metric in a way similar to the above discussion. That is, we define (for k ą 0)

d̃˝
B,k pX,Y q :“ inf

XiPX
X“X0,...,Xn“Y

n´1
ÿ

i“0

d̂˝
B,k pXi, Xi`1q .

Similarly as before, we note that d̃B satisfies the triangle inequality and the Gromov-Hausdorff
stability d̃˝

B ď 2 ¨ dGH.

6 Computation of the Pullback Bottleneck Distance

In Section 6.1 we study verbose barcodes under pullbacks, by working out the relation
between the verbose barcode of a finite metric space pX, dXq and the verbose barcode of
a pullback space pZ, ϕ˚XdXq induced by a surjective map ϕX : Z ↠ X. In Section 6.2,
we discuss the computability of pullback distances and, in particular, pullback bottleneck
distances.

6.1 Verbose Barcodes under Pullbacks

Let pX, dXq be a finite metric space with X :“ tx1, . . . , xnu. Recall from page 1 that for any
surjection ϕ : Z ↠ X, the pullback (pseudo-metric) space (induced by ϕ) is defined as
the pair pZ, ϕ˚dXq, where ϕ˚dX is the pullback of the distance function dX . In other words,
for any z1, z2 P Z,

pϕ˚dXqpz1, z2q :“ dX pϕXpz1q, ϕXpz2qq .

For each z P Z, the point ϕXpzq P X is called the parent of z.

Definition 6.1 (Pullback barcodes). For any surjective map ϕX : Z ↠ X, we call the
degree-k verbose barcode of pZ, ϕ˚XdXq a degree-k pullback barcode of X.

6.1.1 Inductive Formula for Pullback Barcodes

We start with the case when the pullback space repeats only one point from the original
space. For any multiset A and any integer l ě 1, we recall from Equation (2) that PlpAq
denotes the set consisting of sub-multisets of A each with cardinality l.

Proposition 6.2. Assume X :“ tx1, . . . , xnu is a pseudo-metric space and Z “ X \ tzu.
Suppose ϕ : Z ↠ X is such that z ÞÑ xj for some j “ 1, . . . , n and is the identity otherwise.
Then,

BVer,0pZq “ BVer,0pXq \ tpdiamptxjuqq ¨ p1, 1qu “ BVer,0pXq \ tp0, 0qu,

and for k ě 1,

BVer,kpZq “ BVer,kpXq \ tdiamptxj , xi1 , . . . , xikuq ¨ p1, 1q : xil P X ´ txju ,@l “ 1, . . . , ku

“ BVer,kpXq \ tdiamptxju \ βq ¨ p1, 1q : β P PkpXztxjuqu .

Remark 6.3. Each finite pullback space (see page 4) Z of X can be regarded as a multiset
X\txj1 , . . . , xjmu equipped with the metric inherited from X for some m ě 0 and j1 ď ¨ ¨ ¨ ď
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jm. Indeed, assume Z :“ X\tz1, . . . , zmu for some auxiliary points z1, . . . , zm and consider a
surjection ϕ : Z ↠ X such that x ÞÑ x for x P X. Let dZ :“ ϕ˚dX be the pullback metric on Z
under the map ϕ. If ϕppz1, . . . , zmqq “ pxj1 , . . . , xjmq, then the points txj1 , . . . , xjmu uniquely
determines the map ϕ and thus uniquely determine the pullback metric on Z. Therefore, Z
can be identified with X \ txj1 , . . . , xjmu.

Before proving the Proposition 6.2, we apply it to show the following result:

Proposition 1.3 (Initial formula for pullback barcodes). Let k ě 0 and m ě 1, and let X
be a finite pseudo-metric space. For txj1 , . . . , xjmu Ă X for some j1 ď ¨ ¨ ¨ ď jm, consider
the multiset Z “ X \ txj1 , . . . , xjmu. Then, for k ě 0,

BVer,kpZq “ BVer,kpXq \

m´1
ğ

i“0

ğ

βiPPkppXztxji`1
uq\txj1 ,...,xjiuq

␣

diamptxji`1u \ βiq ¨ p1, 1q
(

. (3)

In particular, BVer,0pZq “ BVer,0pXq\
Ům´1
i“0 tdiamptxji`1uq ¨ p1, 1qu “ BVer,0pXq\ tp0, 0qum.

Proof. We prove the statement by induction on m. When m “ 1, the statement follows
immediately from Proposition 6.2. Now suppose that the statement is true for Z 1 :“ X \
␣

xj1 , . . . , xjm´1

(

, for m ě 2. By applying Proposition 6.2 and the induction hypothesis, we
obtain:

BVer,kpZq “ BVer,kpZ
1q \

␣

diamptxjmu \ βq ¨ p1, 1q : β P Pk
`

pXztxjmuq \
␣

xj1 , . . . , xjm´1

(˘(

“ BVer,kpXq \

m´2
ğ

i“0

␣

diamptxji`1u \ βiq ¨ p1, 1q : βi P Pk
`

pXztxji`1uq \ txj1 , . . . , xjiu
˘(

\
␣

diamptxjmu \ βm´1q ¨ p1, 1q : βm´1 P Pk
`

pXztxjmuq \
␣

xj1 , . . . , xjm´1

(˘(

“ BVer,kpXq \

m´1
ğ

i“0

␣

diamptxji`1u \ βiq ¨ p1, 1q : βi P Pk
`

pXztxji`1uq \ txj1 , . . . , xjiu
˘(

.

Remark 6.4. Equation (3) in Proposition 1.3 implies the following combinatorial equality:
for any 1 ď k ď n´ 2, the cardinality of BVer,kpZq satisfies

ˆ

n´ 1`m

k ` 1

˙

“

ˆ

n´ 1

k ` 1

˙

`

m´1
ÿ

i“0

ˆ

i` n´ 1

k

˙

,

where the left-hand side follows from Example 3.12 and the right hand is given by Proposition
1.3.

Proof of Proposition 6.2. Fix a degree k ě 0. For notational simplicity, let B :“ BZk`1 and
ℓ :“ ℓZ . Let

A :“

#

trz, xj , xi1 , . . . , xiks : xil P X ´ txju ,@l “ 1, . . . , ku , k ě 1

trz, xjsu , k “ 0.
,
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and notice that A is an orthogonal subset of Ck`1pVR pZqq. As in page 17, for a k-simplex γ
we denote its j-th face by facejpγq for j “ 0, . . . , k. For instance, if γ “ rz, xj , xi1 , . . . , xiks P
A, then face1pγq “ rz, xi1 , . . . , xiks is the simplex obtained by removing the vertex xj .

Claim 1: For any γ P A, ℓpγq “ ℓpface1pγqq “ ℓpBγq.

The first equality follows from the fact that dZpz, xjq “ dXpxj , xjq ď dXpxj , xq,@x P X:

ℓpface1pγqq “ ℓ prz, xi1 , . . . , xiksq

ď ℓ prz, xj , xi1 , . . . , xiksq

“ max

"

dZpz, xjq,max
l
dZpz, xilq,max

l,l1
dXpxil , xil1 q

*

ď max

"

max
l
dZpz, xilq,max

l,l1
dXpxil , xil1 q

*

“ ℓ prz, xi1 , . . . , xiksq .

For the second equality, note that for any l “ 2, . . . , k ` 1, we have

ℓ pfacelpγqq ď ℓpγq “ ℓpface1pγqq.

Incorporating the equality ℓpface1pγqq “ ℓ prz, xi1 , . . . , xiksq “ ℓ prxj , xi1 , . . . , xiksq, we have

ℓ pBγq “ max
!

ℓ prxj , xi1 , . . . , xiksq , max
l“1,...,k`1

ℓ pfacelpγqq
)

“ ℓpface1pγqq.

Claim 2: The set BA is orthogonal.

For any linear combination c :“
ř

γPA λγ pBγq of elements in BA where the coefficients λγ
come from the base field F, we want to show that ℓ pcq “ maxλγ‰0 ℓ pBγq. The ‘ď’ follows
from the definition of filtration functions. It remains to prove ‘ě’.

To prove this, write
c “

ÿ

γPA

λγ pBγq “
ÿ

γPA

λγ pface1pγqq ` ˚,

where ˚ is a linear combination of simplices that have xj has a vertex. Since xil ‰ xj for
every l, xj is not a vertex of face1pγq for any γ. Therefore,

ř

γPA λγ pface1pγqq is a linear
combination of simplices that do not have xj as a vertex, and thus is orthogonal to the ˚

term. Therefore,

ℓ

˜

ÿ

γPA

λγ pBγq

¸

“ max

#

ℓ

˜

ÿ

γPA

λγ pface1pγqq

¸

, ℓp˚q

+

ě ℓ

˜

ÿ

γPA

λγ pface1pγqq

¸

ě max
λγ‰0

ℓ pface1pγqq

“ max
λγ‰0

ℓ pBγq . (by Claim 1)

http://jocg.org/
http://creativecommons.org/licenses/by/3.0/


JoCG 15(2), 258–328, 2024 307

Journal of Computational Geometry jocg.org

Thus, BA is an orthogonal subset of CkpVR pZqq.

Claim 3: Let ppσ1, . . . , σmq , pα1, . . . , αrqq be a singular value decomposition (cf. Definition
3.8) of the map B|Ck`1pVRpXqq : Ck`1pVR pXqq Ñ Ker BXk , where

m “ dim pCk`1pVR pXqqq “

ˆ

n

k ` 2

˙

and r “ dim
`

Im B|Ck`1pVRpXqq

˘

“

ˆ

n´ 1

k ` 1

˙

.

Then tα1, . . . , αru \ BA is an orthogonal basis for Im B.

By Example 3.12, we have r ` cardpBAq “
`

n´1
k`1

˘

`
`

n´1
k

˘

“
`

n
k`1

˘

“ dimpIm Bq. Thus, to
show that tα1, . . . , αru\BA is an orthogonal basis, it suffices to show that tα1, . . . , αru\BA
is orthogonal. Since both tα1, . . . , αru and BA are orthogonal, by Lemma 3.2, it remains to
show that tα1, . . . , αru and BA are orthogonal to each other.

Let α and γ be non-zero linear combinations of elements in tα1, . . . , αru and BA, respectively.
We want to prove

ℓpα` γq “ maxtℓpαq, ℓpγqu.

When ℓpαq ‰ ℓpγq, apply Lemma 3.1. When ℓpαq “ ℓpγq, since ‘ď’ is trivial, we only need
to show ‘ě’. Because simplices in α do not contain the vertex z, if rz, xi1 , . . . , xiks is in γ, it
must also be in α ` γ. By Claim 1 and Claim 2, we see that ℓpγq is equal to a term in the
form of ℓ prz, xi1 , . . . , xiksq. Therefore,

ℓpα` γq ě ℓprz, xi1 , . . . , xiksq ě ℓpγq “ maxtℓpαq, ℓpγqu.

This finishes the proof of Claim 3.

In what follows, we use subscripts to indicate the degree of A. Then tσ1, . . . , σmu \Ak`1 \

BZk`2Ak`2, which is orthogonal. The orthogonality arises because, for any γ P Ak`2, BZk`2γ
has a dominating4 term face1pγq as established by Claim 1, that is absent from tσ1, . . . , σmu\
Ak`1. This absence can be understood because (1) each face1pγq incorporates z as a vertex,
in contrast to the simplices in tσ1, . . . , σmu which are contained in X, and (2) unlike the
simplices in Ak`1, no face1pγq includes xj .

In addition, tσ1, . . . , σmu\Ak`1\BZk`2Ak`2 is an orthogonal basis for Ck`1pVR pZqq, since
its cardinality matches the dimension of Ck`1pVR pZqq:

`

n
k`2

˘

`
`

n´1
k

˘

`
`

n´1
k`1

˘

“
`

n`1
k`2

˘

.

Thus, we have the following singular value decomposition for BZk`1 :

Ck`1pVR pZqq :
´

tσr`1, . . . , σmu \ BZk`2Ak`2, tσ1, . . . , σru \Ak`1

¯

CkpVR pZqq : 0
´

tα1, . . . , αru \ BZk`1Ak`1, . . .
¯

.

BZk`1 0

4A dominating term is a simplex σ that appears as a summand in the linear combination expressing Bγ
in terms of simplices and satisfies ℓpσq “ maxλγ‰0 ℓpBγq.
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By the definition of verbose barcodes, we have

BVer,kpZq “ tpℓpαiq, ℓpσiqq : i “ 1, . . . , ru \ tpℓpBγq, ℓpγqq : γ P Ak`1u

“BVer,kpXq \ tdiamptz, xi1 , . . . , xikuq ¨ p1, 1q : xil P X ´ txju ,@l “ 1, . . . , ku

“

#

BVer,kpXq \ tdiamptxjuq ¨ p1, 1qu, k “ 0,
BVer,kpXq \ tdiamptxj , xi1 , . . . , xikuq ¨ p1, 1q : xil P X ´ txju ,@l “ 1, . . . , ku , k ě 1.

“

#

BVer,kpXq \ tdiamptxjuq ¨ p1, 1qu, k “ 0,
BVer,kpXq \ tdiamptxju \ βq ¨ p1, 1q : β P PkpXztxjuqu , k ě 1.

6.1.2 Explicit Formula for Pullback Barcodes

Proposition 1.3 shows that the pullback barcodes are obtained from the verbose barcodes of
the underlying metric space X by adding certain diagonal points. In degree 0, these extra
diagonal points can only be copies of p0, 0q, and we can determine their exact multiplicity.
One may ask whether there exists a more explicit formula for the extra diagonal points and
their multiplicity in positive degrees. In this subsection, we answer this question.

By Remark 6.3, for a pullback space Z “ X\txj1 , . . . , xjmu, if we order points in txj1 , . . . , xjmu
suitably, we can regard Z as X\tx1u

m1\tx2u
m2\¨ ¨ ¨\txnu

mn , where m1,m2, . . . ,mn P N.
It follows that pullback spaces Z of X are in one-to-one correspondence with vectors
m⃗ :“ pm1,m2, . . . ,mnq P Nn. We call m⃗ the pullback vector associated with Z.

Let n, k, p P Zě1 be such that p ď k ` 1 ď n. Let m⃗ :“ pm1, . . . ,mnq. We introduce
the following notation: for any Ip :“ ri1, . . . , ips with 1 ď i1 ă ¨ ¨ ¨ ă ip ď n, letting
m⃗pIpq :“ pmi1 , . . . ,mipq, we define the following multiplicity function

µkpm⃗pIpqq :“

p
ÿ

q“1

ÿ

ω1,...,ωqě1
ω1`¨¨¨`ωq`pp´qq“k`1

ˆ

mi1 ` 1

ω1

˙ˆ

mi2 ` 1

ω2

˙

. . .

ˆ

miq´1 ` 1

ωq´1

˙ˆ

miq

ωq

˙

.

See Section A.1 for some examples of µkpm⃗pIpqq.

Proposition 1.4 (Explicit formula for pullback barcodes). Let Z :“ X \ tx1u
m1 \ ¨ ¨ ¨ \

txnu
mn , where each mj ě 0 is the multiplicity of the extra copies of xj in Z. Then, for any

degree k,

BVer,kpZq “ BVer,kpXq \
ğ

1ďpďk`1
1ďi1ă¨¨¨ăipďn

␣

diamptxi1 , xi2 , . . . , xipuq ¨ p1, 1q
(µkpm⃗pIpqq .

In particular, the multiplicity of diamptxjuq ¨ p1, 1q is
`mj

k`1

˘

, for each j.

Proof. Recall Equation (3) and its graphical explanation given in Figure 2. Fix a degree
k ě 0. Let 1 ď p ď k ` 1. We first consider the case of p1, 2, . . . , pq and count the number
of copies of a :“ diampx1, . . . , xpq ¨ p1, 1q.

http://jocg.org/
http://creativecommons.org/licenses/by/3.0/


JoCG 15(2), 258–328, 2024 309

Journal of Computational Geometry jocg.org

Take any 1 ď q ď p. Starting from step i “ m1 ` ¨ ¨ ¨ ` mq´1 and continuing until step
i “ m1 ` ¨ ¨ ¨ `mq´1 `mq ´ 1, we obtain one copy of a for each copy of a multiset of the
following form:

A :“ tx1, . . . , x1
loooomoooon

ω1ě1

, x2, . . . , x2
loooomoooon

ω2ě1

, . . . , xq, . . . , xq
loooomoooon

ωqě1

, xq`1, . . . , xpu,

where ω1 ` ¨ ¨ ¨ ` ωq ` pp´ qq “ k ` 1.

During these steps, we are picking points from the red-colored and blue-colored parts below:

x1, x2, . . . , xq, . . . , xn, x1, . . . , x1
loooomoooon

m1

, x2, . . . , x2
loooomoooon

m2

, . . . , xq, . . . , xq.

Therefore, the number of multisets in the form of A is
ÿ

ω1,...,ωqě1
ω1`¨¨¨`ωq`pp´qq“k`1

ˆ

m1 ` 1

ω1

˙ˆ

m2 ` 1

ω2

˙

. . .

ˆ

mq´1 ` 1

ωq´1

˙ˆ

mq

ωq

˙

.

Thus, the total number of copies of a is
p
ÿ

q“1

ÿ

ω1,...,ωqě1
ω1`¨¨¨`ωq`pp´qq“k`1

ˆ

m1 ` 1

ω1

˙ˆ

m2 ` 1

ω2

˙

. . .

ˆ

mq´1 ` 1

ωq´1

˙ˆ

mq

ωq

˙

“ µkpm⃗pr1, . . . , psqq.

It is clear that the above result also holds for general 1 ď i1 ă ¨ ¨ ¨ ă ip ď n. In other words,
the total number of copies of diamptxi1 , . . . , xipuq ¨ p1, 1q is µkpm⃗pri1, . . . , ipsqq.

6.2 Discussion on the Computation of Pullback Distances

In Section 6.2.1, we reformulate all pullback distances with pullback vectors, and discuss
the computability of the pullback distances through these reformulations.

In Section 6.2.2, we prove Proposition 1.5, which provides a precise formula for computing
the pullback bottleneck distance (in all three settings) in degree 0. This formula dictates
that when computing pdB,0 bars in barcodes should only be matched with other bars or with
the origin p0, 0q, distinguishing it from the standard bottleneck distance where bars can be
matched to any point along the diagonal.

6.2.1 Reformulations of Pullback Distances Using Pullback Vectors

Given any vector m⃗ “ pm1, . . . ,mnq P Nn, we construct a pullback space

Xpm⃗q :“ X \

n
ğ

j“1

txju
mj

equipped with the pseudo metric induced from X. In Proposition 6.5, we reformulate the
pullback distances in terms of pullback vectors.

In order to state the proposition, we introduce the following notation:
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• For any m⃗ P Nn and m⃗1 P Nn1 , let X pm⃗, m⃗1q denote the set of all nˆn1 binary matrices
M such that the sum of the i-th row of M equals mi and the sum of the j-th column
of M equals m1

j , for all i and j.

• Let Xrow be the set of nˆ n1 binary matrices in which each row contains exactly one
entry equal to 1.

• Let Xcol be the set of n ˆ n1 binary matrices in which each column contains exactly
one entry equal to 1.

• For any two matrices of the same size M and M 1, define M_M 1 as the matrix obtained
by taking the element-wise maximum of M and M 1. By Xrow _Xcol, denote the set of
all matrices M _M 1 with M P Xrow and M 1 P Xcol.

• Given any m⃗ P Nn, define m⃗` 1 :“ pm1 ` 1,m2 ` 1, . . . ,mn ` 1q.

Proposition 6.5 (Pullback distances reformulation). Let X and Y be two finite metric
spaces with cardinality n and n1, respectively. Then, all pullback distances can be written in
the form of

d̂˝
I pX,Y q “ inf

pm⃗,m⃗1qPM˝

dIpC˚pVRpXpm⃗qqq,C˚pVRpY pm⃗1qqqq

d̂˝
B,k pX,Y q “ inf

pm⃗,m⃗1qPM˝

dMpBVer,kpXpm⃗qq,BVer,kpY pm⃗1qqq,

where

(1) for ˝ “ Tri, MTri :“
!

pm⃗, m⃗1q P Nn ˆ Nn1

| }m⃗` 1}1 “ }m⃗1 ` 1}1

)

;

(2) for ˝ “ Cor, MCor :“
!

pm⃗, m⃗1q P Nn ˆ Nn1

| X pm⃗` 1, m⃗1 ` 1q ‰ H

)

;

(3) for ˝ “ Map, MMap :“
!

pm⃗, m⃗1q P Nn ˆ Nn1

| X pm⃗` 1, m⃗1 ` 1q X pXrow _ Xcolq ‰ H

)

.

Remark 6.6. In the definition of MCor, the condition X pm⃗ ` 1, m⃗1 ` 1q ‰ H can be
characterized by direct constraints on the vectors m⃗, m⃗1 (see (13)), following from the Gale–
Ryser Theorem [19, 29], as we now describe.

For any m⃗ “ pm1, . . . ,mnq P Nn, denote by Óm⃗ :“
`

mp1q, . . . ,mpnq

˘

the vector obtained by
rearranging the entries of m⃗ in nonincreasing order, i.e., mp1q ě mp2q ě ¨ ¨ ¨ ě mpnq.

Define the conjugate of a nonincreasingly ordered vector m⃗ P Nn as m⃗˚ :“ pm˚
1 ,m

˚
2 , . . . ,m

˚
nq,

where
m˚
k :“ cardpti P t1, . . . , nu | mi ě kuq,

if 1 ď k ď m1. If k ą m1, we set m˚
k :“ 0.

Given m⃗ P Nn and m⃗1 P Nn1 , we say that m⃗ is majored by m⃗1, written m⃗ ă m⃗1, if

k
ÿ

i“1

mi ď

k
ÿ

i“1

m1
i for all k,

where we assume mi “ 0 for i ą n and m1
i “ 0 for i ą n1.
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By the Gale–Ryser Theorem, we have

X pm⃗` 1, m⃗1 ` 1q ‰ H ðñ }m⃗` 1}1 “ }m⃗1 ` 1}1 and Óm⃗` 1 ă pÓm⃗1 ` 1q˚. (13)

Unlike MTri and MCor, it remains an open question whether MMap admits a formulation in
terms of direct constraints on m⃗ and m⃗1.

Remark 6.7 (Analysis of computational complexity of computing pullback distances.). Let
X and Y be two finite metric spaces with cardinality n and n1, respectively. Without loss
of generality, assume n ě n1. By Proposition 6.5, the brute-force algorithms for computing
pullback distances between X and Y have the following complexity upper bounds (view k as
a constant):

(a) for pdCor
B,k : O

`

n2n ¨ p2nq3pk`1q
˘

“ Opn2n`3k`3q;

(b) for pdCor
I : O

´

n2n ¨
řn´2
k“0p2nq

3pk`1q
¯

“ O
`

n5n´3
˘

;

(c) for pdMap
B,k : O

`

16n ¨ p2nq3pk`1q
˘

“ Op16nn3k`3q;

(d) for pdMap
I : O

´

16n ¨
řn´2
k“0p2nq

3pk`1q
¯

“ O
`

16nn3n´3
˘

.

Here Op¨q is the big O notation. To establish complexity bounds for computing pullback bot-
tleneck distances, we begin by separately estimating the cardinality of M˝ and the complexity
of computing the distance dM.

For any non-negative integer i, the number of vectors with n non-negative integer entries
summing to i equals the number of ways to distribute i indistinguishable balls into n dis-
tinguishable boxes. This is given by

`

n`i´1
n´1

˘

p“
`

n`i´1
i

˘

q, which we will use to estimate the
cardinality of M˝.

Note that for pm⃗, m⃗1q P MCor, we have }m⃗}8 ď n1 ´ 1 and }m⃗1}8 ď n ´ 1. This follows
because each mi ` 1 equals a row sum in an n ˆ n1 binary matrix and is therefore at most
n1, and similarly, m1

j ` 1 ď n. Consequently, we obtain the bound

cardpMCorq ď nn
1

pn1qn “ Opn2nq. (14)

For any pm⃗, m⃗1q P MMap Ă MCor, we have }m⃗}8 ď n1 ´ 1 and }m⃗1}8 ď n ´ 1, along with
the additional constraints }m⃗}1 ď n1 and }m⃗1}1 ď n. The latter follows from the fact that
}m⃗ ` 1}1 “ }m⃗}1 ` n equals the total number of 1s in a matrix of the form F _ F 1, where
F P Xrow and F 1 P Xcol. Since each row of F and each column of F 1 contain at most one
entry equal to 1, the total number of 1s in F _ F 1 does not exceed n1 ` n. This implies
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}m⃗}1 ď n1, and similarly, }m⃗1}1 ď n. Thus, we obtain the following bound on cardpMMapq:

cardpMMapq ď

n1
ÿ

i“0

ˆ

n` i´ 1

i

˙

¨

ˆ

n1 ` pn` i´ n1q ´ 1

pn` i´ n1q

˙

“

n1
ÿ

i“0

ˆ

n` i´ 1

i

˙

¨

ˆ

n` i´ 1

n1 ´ 1

˙

“O

˜

n

ˆ

2n´ 1

n

˙2
¸

“O

˜

n

ˆ

4n
?
2πn

˙2
¸

“ Op16nq. (by Stirling’s approximation) (15)

In order to bound the complexity of computing the matching distance

dMpBVer,kpXpm⃗qq,BVer,kpY pm⃗1qqq,

we first observe the following bound on the cardinality of the involved verbose barcode

cardpBVer,kpXpm⃗qqq “

ˆ

}m⃗}1 ` n´ 1

k ` 1

˙

“ O
´

p}m⃗}1 ` nqk`1
¯

“ O
´

nk`1
¯

, (16)

and similarly for cardpBVer,kpY pm⃗1qqq. Combining Equations (14), (15), and (16), along
with the fact that the matching distance can be computed in cubic time [4, Section 4.2]
relative to the input size, we complete the proof of the complexity bound for Items (a) and
(c), i.e., for pdMap

B,k and pdCorB,k , respectively.

For pdMap
I and pdCor

I , the idea is similar except that one needs to add up the complexity of
computing the matching distance in each degree.

For tripods, we estimate the complexity of computing pullback distances by bounding the
ℓ8-norm of the pullback vectors, which in turn provides an upper bound on the distance
computation. Fix a positive integer N and define

MN
Tri “

!

pm⃗, m⃗1q P Nn ˆ Nn
1

| }m⃗` 1}1 “ }m⃗1 ` 1}1, }m⃗}8, }m⃗
1}8 ď N

)

.

Then, the cardinality satisfies cardpMN
Triq ď nN pn1qN “ Opn2N q.

Reformulating pullback distances via pullback vectors offers a potential advantage of more
efficient computation of these distances when approached using brute-force. This is because
the set MTri is “smaller” than the set of tripods5: each tripod only produces one element in
MTri, but each pair pm⃗, m⃗1q P MTri induces multiple tripods, as explained in the proof of
Proposition 6.5 on page 56. The same phenomenon applies to correspondences and maps. In
other words, the sets MTri,MCor, and MMap are “smaller” than the respective sets of tripods,
correspondences, and maps. To elaborate on this point, consider the following comparisons:

5We use “smaller” informally here, since their cardinalities could still be the same.
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• The number of pairs of maps pf, gq between X and Y is

nn
1

pn1qn “ Opn2nq ą Op16nq “ cardpMMapq.

• The number of correspondences R between X and Y is at least

2nn
1

´ n2pn´1qn1

´ n12pn
1´1qn “ Op2n

2
q ą Opn2nq “ cardpMCorq.

Proof of Proposition 6.5. It suffices to establish the results for the pullback interleaving
distances, as the case of pullback bottleneck distances follows from a similar argument.

To proceed, let tx1, . . . , xnu and ty1, . . . , yn1u denote the underlying point sets of X and Y ,
respectively.

Case (1): given any tripod X
ϕX

↞ÝÝÝÝ Z
ϕY

ÝÝÝÝ↠ Y , let

mi :“ cardpϕ´1
X pxiqq ´ 1 and m1

j :“ cardpϕ´1
Y pyjqq ´ 1

for every xi P X and yj P Y . These vectors m⃗ :“ pm1, . . . ,mnq and m⃗1 :“ pm1
1, . . . ,m

1
n1q

satisfy }m⃗` 1}1 “ cardpZq “ }m⃗1 ` 1}1 and induce isometries (see page 9) Xpm⃗q – ZX and
Y pm⃗1q – ZY , leading to

pdTriI ď min
pm⃗,m⃗1qPMTri

dIpC˚pVRpXpm⃗qqq,C˚pVRpY pm⃗1qqqq.

Conversely, given any pm⃗, m⃗1qq P MTri and for each bijection f : Xpm⃗q Ñ Y pm⃗1q, we

construct a tripod X
πX

↞ÝÝÝÝ Z :“ Xpm⃗q
πY ˝f

ÝÝÝÝÝ↠ Y such that ZX and ZY are isometric
to Xpm⃗q and Y pm⃗1q, respectively. Here πX : Xpm⃗q Ñ X and πY : Y pm⃗1q Ñ Y are the
projection maps.

Case (2): for the ‘ď’ direction, it suffices to show that for any correspondence R Ă X ˆ Y ,
there exists pm⃗, m⃗1q P MCor such that RX and RY (defined in Equation (10)) are isometric
to Xpm⃗q and Y pm⃗1q, respectively. A sufficient condition for RX – Xpm⃗q and RY – Y pm⃗1q

is that
mi ` 1 “ cardpπ´1

X pxiqq and m1
j ` 1 “ cardpπ´1

Y pyjqq, (17)

where πX and πY are the projections from R to X and Y , respectively. Conversely, it suffices
to show that every such pair pm⃗, m⃗1q determines a corresponding R satisfying Condition (17).

Given any correspondence R Ă X ˆ Y . Define

mi :“ cardpπ´1
X pxiqq ´ 1, and m1

j :“ cardpπ´1
Y pyjqq ´ 1.

Next, define the binary matrix M by setting Mij “ 1 if and only if pxi, yjq P R. Then
M satisfies the prescribed row and column sums. As a consequence, it follows that M P

X pm⃗ ` 1, m⃗1 ` 1q, ensuring that this set is nonempty. Consequently, pm⃗, m⃗1q P MCor and
satisfies Condition (17).

Conversely, given any pm⃗, m⃗1q P MCor, there exists a corresponding binary matrix M P

X pm⃗` 1, m⃗1 ` 1q, which induces a correspondence R satisfying Condition (17).
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Case (3): Given two maps f : X Ñ Y and g : Y Ñ X, let G :“ Gpf, gq denote the union of
their graphs, as defined in Equation (11). For the ‘ď’ direction, it suffices to show that for
any pair of maps f : X Ñ Y and g : Y Ñ X, there exists pm⃗, m⃗1q P MCor such that GX and
GY (defined in Equation (12)) are isometric to Xpm⃗q and Y pm⃗1q, respectively. A sufficient
condition for GX – Xpm⃗q and GY – Y pm⃗1q is

mi ` 1 “ cardpπ´1
X pxiqq and m1

j ` 1 “ cardpπ´1
Y pyjqq, (18)

where πX and πY denote the projections from G onto X and Y , respectively. Conversely,
it suffices to show that every such pair pm⃗, m⃗1q determines a pair of maps f : X Ñ Y and
g : Y Ñ X such that the union of their graphs satisfies Condition (18).

Given any pair of maps f : X Ñ Y and g : Y Ñ X, let G :“ Gpf, gq be the union of the
graphs of f and g, inducing a correspondence between X and Y . We define

mi :“ cardpπ´1
X pxiqq ´ 1, and m1

j :“ cardpπ´1
Y pyjqq ´ 1.

Next, define the binary matrices F and F 1 by setting Fij “ 1 if and only if fpxiq “ yj and
F 1
ij “ 1 if and only if gpyjq “ xi. Then, define M :“ F _F 1 P Xrow _Xcol. Since M satisfies

the prescribed row and column sums, it follows that M P X pm⃗` 1, m⃗1 ` 1q. Consequently,
pm⃗, m⃗1q P MMap and satisfies Condition (18).

Conversely, given any pm⃗, m⃗1q P MMap, there exists a corresponding binary matrix M P

X pm⃗ ` 1, m⃗1 ` 1q X pXrow _ Xcolq. Suppose M “ F _ F 1 for some F P Xrow and F 1 P Xcol.
Then, F induces a map f : X Ñ Y defined by fpxiq “ yj if and only if Fij “ 1, and
similarly, F 1 induces a map g : Y Ñ X. It follows that the union of the graphs of f and g
satisfies Condition (18), completing the proof.

6.2.2 The Case of Degree Zero

In this subsection, we prove Proposition 1.5. Recall from Section 4.2 the matching distance
dM: for any A,B Ă H8,

dMpA,Bq “ min

"

max
aPA

}a´ ϕpaq}8 : A
ϕ
ÝÑ B a bijection

*

.

Before discussing how to compute the degree-0 pullback bottleneck distance, let us identify
a special property of the matching distance:

Fact 6.8. Let A :“ ta1 ě ¨ ¨ ¨ ě anu and B :“ tb1 ě ¨ ¨ ¨ ě bnu be two multisets of n real
numbers each. Then,

dMpA,Bq “ min
bij f :AÑB

max
i

|ai ´ fpaiq| “ max
i

|ai ´ bi|.

Proof. For any pair of real numbers a ě a1 and b ě b1, notice that their differences satisfy
the so-called bottleneck Monge property (see [5, Section 4.1]):

maxt|a´ b1|, |a1 ´ b|u ě maxt|a´ b|, |a1 ´ b1|u. (19)

http://jocg.org/
http://creativecommons.org/licenses/by/3.0/


JoCG 15(2), 258–328, 2024 315

Journal of Computational Geometry jocg.org

Consider any bijection f : A Ñ B and assume there exist i ă j and i1 ă j1 such that
fpaiq “ bj1 and fpajq “ bi1 . We define a new bijection f̃ : A Ñ B such that f̃paiq “ bi1 ,
f̃pajq “ bj1 and f̃ “ f otherwise. It follows from Equation (19) that dispf̃q ď dispfq. Repeat
this process which stops when we obtain a bijection g : ai ÞÑ bi for every i. Thus, g is the
optimal bijection.

Proposition 1.5 (Pullback bottleneck distance in degree 0). Let X and Y be two finite
metric spaces such that cardpXq “ n ď n1 “ cardpY q. Suppose the death time of finite-length
degree-0 bars of X and Y are given by the sequences a1 ě ¨ ¨ ¨ ě an´1 and b1 ě ¨ ¨ ¨ ě bn1´1,
respectively. Then,

pdB,0 pX,Y q “ max

"

max
1ďiďn´1

|ai ´ bi|, max
nďiďn1´1

bi

*

.

Proof. By Proposition 6.5, pdB,0 pX,Y q can be reformulated using pullback vectors as:

pdB,0 pX,Y q “ min
pm⃗,m⃗1qPMTri

dMpBVer,0pXpm⃗qq,BVer,0pY pm⃗1qqq, (20)

where MTri :“
!

pm⃗, m⃗1q P Nn ˆ Nn1

| }m⃗` 1}1 “ }m⃗1 ` 1}1

)

. By Proposition 1.3, we have

BVer,0pXpm⃗qq “ BVer,0pXq \ tp0, 0qu}m⃗}1 and BVer,0pY pm⃗1qq “ BVer,0pY q \ tp0, 0qu}m⃗
1}1 .
(21)

Combining Equation (20) and Equation (21), we have

pdB,0 pX,Y q “ min
m,m1PN

m`n“m1`n1

dM

´

BVer,0pXq \ tp0, 0qum,BVer,0pY q \ tp0, 0qum
1
¯

.

By the given assumption, we have BVer,0pXq “ tp0, a1q, . . . , p0, an´1qu\tp0,8qu and BVer,0pY q “

tp0, b1q, . . . , p0, bn1´1qu \ tp0,8qu. Together with Fact 6.8, we have

pdB,0 pX,Y q

“ min
m,m1PN

m`n“m1`n1

dM

´

tp0,8q, p0, a1q, . . . , p0, an´1qu \ tp0, 0qum, tp0,8q, p0, b1q, . . . , p0, bn1´1qu \ tp0, 0qum
1
¯

“ min
m,m1PN

m`n“m1`n1

dM

´

ta1, . . . , an´1, 0, . . . , 0
loomoon

m

u, tb1, . . . , bn1´1, 0, . . . , 0
loomoon

m1

u

¯

“ dM

´

ta1, . . . , an´1, 0, . . . , 0
loomoon

n´n1

u, tb1, . . . , bn1´1u

¯

“ max

"

max
1ďiďn´1

|ai ´ bi|, max
nďiďn1´1

bi

*

.

Example 6.9. Let Xϵ :“ pt0, 1u , dϵq be a metric space consisting of two points, where
dϵp0, 1q “ 1` ϵ. It is not hard to verify that BCon,0pXϵq “ tp0, 1` ϵq, p0,`8qu, and thus,

1
2dBpBCon,0pXϵq,BCon,0pX0qq “ min

␣

ϵ
2 ,

1`ϵ
4

(

ď ϵ
2 “ dGHpXϵ, X0q.
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where the inequality is strict when ϵ ą 1. However, for any ϵ ě 0,

1
2
pdB,0 pXϵ, X0q “

ϵ

2
“ dGHpXϵ, X0q.

Thus, in this example, pdB between degree-0 barcodes have a stronger distinguishing power
than dB.

Proposition 1.5 implies the following corollary:

Corollary 6.10. (1) pdTriB,0 “
pdCor
B,0 “ pdMap

B,0 .

(2) The pullback bottleneck distance between degree-0 verbose barcodes satisfies the triangle
inequality.

Proof. Let X and Y be finite metric spaces with cardinality nX and nY , respectively. As
before, consider the death times of finite-length bars in the degree-0 barcodes of X and Y
as a1 ě ¨ ¨ ¨ ě anX´1 and b1 ě ¨ ¨ ¨ ě bnY ´1, respectively. For any N ě maxtnX , nY u, define

αN :“ ta1, . . . , anX´1, 0, . . . , 0
loomoon

N´nX

u and βN :“ ta1, . . . , bnY ´1, 0, . . . , 0
loomoon

N´nY

u.

We have seen in Proposition 1.5 that

d̂TriB,0 pX,Y q “ }αN ´ βN}8, @N ě maxtnX , nY u.

Via a similar discussion, we have

d̂Map
B,0 pX,Y q “ }αnX`nY ´ βnX`nY }8,

and thus d̂Map
B,0 pX,Y q is equal to d̂TriB,0 pX,Y q. Because pdTriB,0 ď pdCor

B,0 ď pdMap
B,0 , we must have

that all three of them are equal. So Item (1) holds.

Let Z be a finite metric space of nZ many points. Assume that the death times of
finite-length bars in the degree-0 barcodes of Z are c1 ě ¨ ¨ ¨ ě cnZ´1. For any N ě

maxtnX , nY , nZu, define γN :“ tc1, . . . , cnZ´1, 0, . . . , 0
loomoon

N´nZ

u. Then, we have

pdB,0 pX,Zq “ }αN ´ γN}8 ď }αN ´ βN}8 ` }βN ´ γN}8 “ pdB,0 pX,Y q ` pdB,0 pY,Zq .

This proves Item (2).

6.2.3 An Important Example of Ultra-Metric Spaces

We demonstrate that all three pullback interleaving-type distances violate the triangle in-
equality by considering the three five-point ultra-metric spaces depicted in Figure 9.

Proposition 6.11. Let X, Y and W be given as in Figure 9. Then,

(1) for the pair pX,W q or pW,Y q, pdTriI “ pdCor
I “ pdMap

I “ 0;
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Figure 9: First row: three 5-point ultra-metric spaces denoted as X, Y andW , respectively.
Second row: distance matrices of the ultra-metric spaces X, Y and W , respectively. In
each matrix, the pi, jq-th element is the distance between the i-th and j-th elements in the
corresponding metric space.

(2) for the pair pX,Y q, pdTriI “ pdCor
I “ pdMap

I “ 1.

Proposition 6.11 implies the following corollary:

Corollary 6.12. The triangle inequality does not hold for pdTriI , pdCor
I , and pdMap

I .

Proof. Consider X, Y , and W as depicted in Figure 9. Proposition 6.11 implies that

d̂TriI pX,Y q “ 1 ą 0` 0 “ d̂TriI pX,W q ` d̂TriI pW,Y q .

The same is true for pdCor
I and pdMap

I .

Proof of Proposition 6.11 (1). By Theorem 9, we always have pdTriI ď pdCor
I ď pdMap

I . Thus,
to prove the statement, it suffices to show that pdMap

I “ 0. By Proposition 6.5, this is
equivalent to finding pullback vectors pm⃗, m⃗1q P MMap such that dI between the VR FCCs
of the corresponding pullback spaces is 0.

For pX,W q, consider

m⃗ “ p0, 0, 0, 2, 3q and m⃗1 “ p0, 0, 0, 3, 2q.

Recall the definition of MMap from Proposition 6.5. Note that pm⃗, m⃗1q P MMap, since there
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exists F _ F 1 in X pm⃗` 1, m⃗1 ` 1q, given by

F “

¨

˚

˚

˚

˚

˝

0 0 0 0 1
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

P Xrow and F 1 “

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 1
1 1 0 1 0

˛

‹

‹

‹

‹

‚

P Xcol.

Let Z :“ Xpm⃗q and Z 1 :“ W pm⃗1q be the pullback spaces of X and W , respectively. We
claim that

dI
`

C˚pVRpZqq,C˚pVRpZ
1qq
˘

“ max
k“0,...,cardpZq´2

dM
`

BVer,kpZq,BVer,kpZ
1q
˘

“ 0.

Since pm⃗, m⃗1q P MMap, we deduce from the above claim that pdMap
I between X and W is also

zero. The claim follows by computing the verbose barcodes of Z and Z 1 via Theorem 5 and
Proposition 1.4. For brevity, we have omitted the details. Interested readers may refer to
[32, Section 5.7 & Section A.1].

For pY,W q, consider
m⃗ “ p0, 0, 0, 1, 4q and m⃗1 “ p0, 0, 4, 0, 1q,

Note that pm⃗, m⃗1q P MMap, since there exists F _ F 1 in X pm⃗` 1, m⃗1 ` 1q, given by

F “

¨

˚

˚

˚

˚

˝

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 1 0 0

˛

‹

‹

‹

‹

‚

P Xrow and F 1 “

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
1 1 0 1 1

˛

‹

‹

‹

‹

‚

P Xcol.

Apply a similar argument as in the previous case to deduce that pdMap
I between Y and W is

zero.

Proof of Proposition 6.11 (2). For the pair pX,Y q, to show pdTriI “ pdCor
I “ pdMap

I “ 1, it
suffices to prove

(a) d̂Map
I pX,Y q ď 1; and

(b) d̂TriI pX,Y q ě 1.

Item (a) can be obtained by considering pullback vectors

m⃗ “ m⃗1 “ p0, 0, 0, 1, 4q.

With a similar argument as in the proof of Proposition 6.11 (1), we have pm⃗, m⃗1q P MMap.
Let Z :“ Xpm⃗q and Z 1 :“ Y pm⃗1q be the pullback spaces of X and Y , respectively. We can
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compute the verbose barcodes of Z and Z 1 from Theorem 5 and Proposition 1.4, and check
that

d̂Map
I pX,Y q ď dIpC˚pVRpZqq,C˚pVRpZ 1qqq “ max

k“0,1,...,8
dMpBkpZq,BkpZ 1qq “ 1.

For Item (b), note that the statement is equivalent to showing that

d̂TriI pX,Y q ‰ 0. (22)

The proof of Equation (22) is not included in this section due to its technical nature. In-
terested readers can find more details in Section A.2. To summarize, the proof involves
solving Diophantine equations, which are polynomial equations in two or more unknowns
with integer coefficients, such that the only solutions of interest are the integer ones. The
reason for this is that d̂TriI pX,Y q “ 0 if and only if there exist pullback vectors pm⃗, m⃗1q

such that Xpm⃗q and Y pm⃗1q have the same verbose barcodes in all degrees. And the latter
is equivalent to the existence of solutions for equations given by matching the multiplicities
of bars in the verbose barcodes.

Remark 6.13. For the pair pX,Y q and for any k “ 1, 2, 3, we claim that pdMap
B,k is zero. It

then follows that pdTriB,k and pdCor
B,k are also zero. The claim can be proved by considering the

following pullback vectors:

• For k “ 1: m⃗ “ p1, 1, 0, 0, 3q, m⃗1 “ p0, 3, 0, 1, 1q. Note that pm⃗, m⃗1q P MMap, since
there exists F _ F 1 in X pm⃗` 1, m⃗1 ` 1q, given by

F “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

P Xrow and F 1 “

¨

˚

˚

˚

˚

˝

0 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 1 0

˛

‹

‹

‹

‹

‚

P Xcol.

• For k “ 2 and 3: m⃗ “ p0, 0, 0, 1, 4q, m⃗1 “ p0, 1, 4, 0, 0q. With a similar argument as in
the proof of Proposition 6.11 (1), we see that pm⃗, m⃗1q is in MMap.

• For k ą 3: m⃗ “ m⃗1 “ p1, 1, 1, 1, 1q. Note that pm⃗, m⃗1q P MMap, since there exists
F _ F 1 in X pm⃗` 1, m⃗1 ` 1q, given by

F “

¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

P Xrow and F 1 “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

˛

‹

‹

‹

‹

‚

P Xcol.
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A Appendix

A.1 Understanding the Multiplicity Function µkpm⃗pIpqq

We present some examples to help understand the notation µkpm⃗pIpqq introduced in Section
6.1.2.

First consider the case when k “ 1. There are only three possible cases:

• p “ 1, in which situation we must have q “ 1 and ω1 “ 2;

• p “ 2 and q “ 1, in which situation we must have ω1 “ 1;

• p “ 2 and q “ 2, in which situation we must have ω1 “ ω2 “ 1.

Thus, we have

µ1pm⃗prisqq “
ÿ

ω1“2

ˆ

mi

ω1

˙

“

ˆ

mi

2

˙

.

µ1pm⃗pri1, i2sqq “
ÿ

ω1“1

ˆ

mi1

1

˙

`
ÿ

ω1“ω2“1

ˆ

mi1`1

ω1

˙ˆ

mi2

ω2

˙

“ mi1mi2 `mi1 `mi2 . (23)

From the above, it is clear that when k “ 1, Proposition 1.4 reduces to the following:

BVer,1pZq “ BVer,1pXq \
ğ

1ďpăqďn

tdXpxp, xqq ¨ p1, 1qu
pmpmq`mp`mqq \ tp0, 0qu

ř

p p
mp
2 q .

For k “ 2, we have

µ2pm⃗prisqq “
ÿ

ω1“3

ˆ

mi

ω1

˙

“

ˆ

mi

3

˙

.

µ2pm⃗pri1, i2sqq “

ˆ

mi1

2

˙

`

ˆ

mi1 ` 1

1

˙ˆ

mi2

2

˙

`

ˆ

mi1 ` 1

2

˙ˆ

mi2

1

˙

“pmi1 ` 1qpmi2 ` 1q
mi1

`mi2
´2

2 ` 1. (24)

One more example of µkpm⃗pIpqq is when p “ k ` 1. In this case, we have

µkpm⃗pri1, . . . , ik`1sq “

k`1
ÿ

q“1

ÿ

ω1,...,ωqě1
ω1`¨¨¨`ωq“q

ˆ

mi1 ` 1

ω1

˙ˆ

mi2 ` 1

ω2

˙

. . .

ˆ

miq´1 ` 1

ωq´1

˙ˆ

miq

ωq

˙

“

k`1
ÿ

q“1

pmi1 ` 1qpmi2 ` 1q . . . pmiq´1 ` 1qmiq . (25)
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Remark A.1. The functions tµkp¨quk satisfy the following recursive relation:

µkpm⃗pri1, . . . , ipsqq ´ µk´1pm⃗pri1, . . . , ip´1sqq

“

¨

˚

˚

˝

p
ÿ

q“1

ÿ

ω1,...,ωqě1
ω1`¨¨¨`ωq`pp´qq“k`1

´

p´1
ÿ

q“1

ÿ

ω1,...,ωqě1
ω1`¨¨¨`ωq`pp´1´qq“k

˛

‹

‹

‚

ˆ

mi1 ` 1

ω1

˙

. . .

ˆ

miq´1 ` 1

ωq´1

˙ˆ

miq

ωq

˙

“
ÿ

q“p

ÿ

ω1,...,ωqě1
ω1`¨¨¨`ωq“k`1

ˆ

mi1 ` 1

ω1

˙

. . .

ˆ

miq´1 ` 1

ωq´1

˙ˆ

miq

ωq

˙

“
ÿ

ω1,...,ωpě1
ω1`¨¨¨`ωp“k`1

ˆ

mi1 ` 1

ω1

˙

. . .

ˆ

mip´1 ` 1

ωp´1

˙ˆ

mip

ωp

˙

.

A.2 Proof of Equation (22)

We establish an important Lemma that provides a necessary condition for pullback interleaving-
type distances to be zero (see Lemma A.2). This lemma allows us to restrict our attention
to pullback vectors pm⃗, m⃗1q that are a certain type of permutation of one another.

For any integer n ě 2, let Sn´1 be the group of all permutations of the set 1, . . . , n´ 1.
Let σ P Sn´1 be a permutation with the property that σp1q “ 1. Define Xσ to be the
ultra-metric space such that uXpxi, xi`1q :“ σpiq for all i “ 1, . . . , n´ 1, and uXpxi, xjq :“
maxl“i,...,j´1 σplq for all 1 ď i ă j ď n. Denote

Un :“ tpXσ, uXq | σ P Sn´1, σp1q “ 1u .

Lemma A.2. Let X,X 1 be in Un, and m⃗, m⃗1 P Nn. Let Z :“ Xpm⃗q and Z 1 :“ X 1pm⃗1q be
the pullback spaces of X and X 1, respectively. Then,

(1) BVer,kpZq and BVer,kpZ
1q have the same number of p1, 1q for both k “ 1, 2, and

(2) BVer,kpZq and BVer,kpZ
1q have the same number of p0, 0q for all k “ 0, 1, . . . , n´ 3,

if and only if

(I) pm1,m2q and pm1
1,m

1
2q differ by a permutation, and

(II) pm3, . . . ,mnq and pm1
3, . . . ,m

1
nq differ by a permutation.

Moreover, if these conditions are satisfied, the multiplicity of p0, 0q (or p1, 1q respectively) in
BVer,kpZq and BVer,kpZ

1q matches for k “ 3, . . . , n` }m⃗}1 ´ 2.

Proof. We first prove that Items (1) and (2) imply Items (I) and (II).

It follows from Proposition 1.4 and Equations (23) and (24) that the multiplicities of p1, 1q
in BVer,kpZq for k “ 1, 2 are:

• k “ 1: µ1pm⃗pr1, 2sqq “ pm1 ` 1qpm2 ` 1q ´ 1;
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• k “ 2: µ2pm⃗pr1, 2sqq “ pm1 ` 1qpm2 ` 1qm1`m2´2
2 ` 1.

Similarly, we have the multiplicities of p1, 1q in BVer,kpZ
1q for k “ 1, 2:

• k “ 1: µ1pm⃗1pr1, 2sqq “ pm1
1 ` 1qpm1

2 ` 1q ´ 1;

• k “ 2: µ2pm⃗1pr1, 2sqq “ pm1
1 ` 1qpm1

2 ` 1q
m1

1`m
1
2´2

2 ` 1.

Thus, for Item (1) to hold, the following system of equations is satisfied

pm1 ` 1qpm2 ` 1q ´ 1 “ pm1
1 ` 1qpm1

2 ` 1q ´ 1

pm1 ` 1qpm2 ` 1qm1`m2´2
2 ` 1 “ pm1

1 ` 1qpm1
2 ` 1q

m1
1`m

1
2´2

2 ` 1.

Because m1 ` 1,m2 ` 1 ą 0 are non-zero, the above equations can be simplified to

pm1 ` 1qpm2 ` 1q “ pm1
1 ` 1qpm1

2 ` 1q

m1 `m2 “ m1
1 `m1

2.

As a consequence, we can infer that pm1` 1,m2` 1q and pm1
1` 1,m1

2` 1q are permutations
of each other, which implies that pm1,m2q and pm1

1,m
1
2q are also permutations of each other.

By Proposition 1.3 and Proposition 1.4, for any k “ 0, . . . , n´ 3, the multiplicities of p0, 0q
in the verbose barcodes BVer,kpZq and BVer,kpZ

1q are
ř

p

`mp

k`1

˘

and
ř

p

`m1
p

k`1

˘

, respectively.
Thus, for Item (2) to hold, m⃗ and m⃗1 need to satisfy the following pn´ 2q equations:

ÿ

p

ˆ

mp

1

˙

“
ÿ

p

ˆ

m1
p

1

˙

, . . . ,
ÿ

p

ˆ

mp

n´ 2

˙

“
ÿ

p

ˆ

m1
p

n´ 2

˙

.

It is clear that the above system of equations is equivalent to the system of equations

}m⃗}1 “ }m⃗1}1, . . . , }m⃗}n´2 “ }m⃗1}n´2,

where } ¨ }k`1 denotes the pk ` 1q-norm of a vector.

Let z⃗ :“ pm3, . . . ,mnq P Nn´2 and z⃗1 :“ pm1
3, . . . ,m

1
nq P Nn´2. Because pm1,m2q and

pm1
1,m

1
2q are permutations of each other, we have

}z⃗}k`1
k`1 “ }m⃗}

k`1
k`1 ´ }pm1,m2q}

k`1
k`1 “ }m⃗1}

k`1
k`1 ´ }pm1

1,m
1
2q}

k`1
k`1 “ }z⃗1}k`1

k`1

for any k, i.e. the following pn´ 2q equations hold:

}z⃗}1 “ }z⃗1}1, }z⃗}2 “ }z⃗1}2, . . . , }z⃗}n´2 “ }z⃗1}n´2. (26)

Let fpxq :“
śn´2
i“1 px´ziq´

śn´2
i“1 px´z

1
iq. Then the system of equations (26) guarantees that

fpxq ” 0. This follows from Newton’s identities, which say that power sums
!

řn´2
j“1 z

k
j

)n´2

k“1

and symmetric polynomials
!

pz1 ` ¨ ¨ ¨ ` zn´2q ,
´

ř

1ďj1ăj2ďn´2 zj1zj2

¯

, . . . , pz1 . . . zn´2q

)

de-
termine each other. Because these symmetric polynomials determine fpxq, the power sums
also determine fpxq.
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Thus, z⃗ and z⃗1 differ by a permutation, which implies that pm3, . . . ,mnq and pm1
3, . . . ,m

1
nq

differ by a permutation. Therefore, we have proved that Items (I) and (II) hold.

For the other direction, it is straightforward to verify that Items (I) and (II) imply Items
(1) and (2).

Moreover, if Items (I) and (II) are satisfied, the following is true for any k “ 3, . . . , n`}m⃗}1´

2: The multiplicities of p0, 0q and p1, 1q in BVer,kpZq and BVer,kpZ
1q match. This equivalence

is due to the preservation of the multiplicity of p0, 0q in BVer,kpZq under permutations and
the multiplicity of p1, 1q being a symmetric function in m1 and m2.

Let X and Y be given as in Figure 9. We apply Lemma A.2 to show d̂TriI pX,Y q ‰ 0, i.e.
Equation (22).

Proof of ‘d̂TriI pX,Y q ‰ 0’. It suffices to show that there exist no pullback vectors m⃗ P N5

for X and m⃗1 P N5 for Y such that

max
0ďkď3

dMpBVer,kpXpm⃗qq,BVer,kpY pm⃗1qqq “ 0.

In other words,
BVer,kpXpm⃗qq “ BVer,kpY pm⃗1qq, @k “ 0, . . . , 3.

We prove these equalities by contradiction. Assume such m⃗, m⃗1 P N5 exist. Then they must
satisfy a certain system of Diophantine equations.

Because of Lemma A.2, the pullback vectors m⃗, m⃗1 P N5 satisfies the following properties:

(I) pm1,m2q and pm1
1,m

1
2q differ by a permutation, and

(II) pm3,m4,m5q and pm1
3,m

1
4,m

1
5q differ by a permutation.

Let Z :“ Xpm⃗q and Z 1 :“ Y pm⃗1q be the pullback spaces of X and Y , respectively.

Conditions (I) and (II) guarantee that BVer,kpZq and BVer,kpZ
1q contain the same number of

p0, 0q and p1, 1q for all k “ 0, . . . , n ´ 2. Given that the total cardinalities of BVer,kpZq and
BVer,kpZ

1q are equal, matching the multiplicities of p2, 2q and p3, 3q in both barcodes implies
that the multiplicity of p4, 4q will also match. Thus, it remains to match the multiplicities
of p2, 2q and p3, 3q in BVer,kpZq and BVer,kpZ

1q.

For degree 1, the multiplicity of pa, aq in BVer,1pZq is:

• a “ 2: µ1pm⃗pr1, 3sqq ` µ1pm⃗pr2, 3sqq ` 1;

• a “ 3: µ1pm⃗pr4, 5sqq.

And the multiplicity of pa, aq in BVer,1pZ
1q is:

• a “ 2: µ1pm⃗1pr4, 5sqq;

• a “ 3: µ1pm⃗1pr3, 4sqq ` µ1pm⃗
1pr3, 5sqq ` 1.
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Applying Equation (23), we want m⃗ and m⃗1 to satisfy:

pm1 ` 1qpm3 ` 1q ´ 1` pm2 ` 1qpm3 ` 1q “pm1
4 ` 1qpm1

5 ` 1q ´ 1

pm1
3 ` 1qpm1

4 ` 1q ´ 1` pm1
3 ` 1qpm1

5 ` 1q “pm4 ` 1qpm5 ` 1q ´ 1.

To simplify the equations, we define

ζ⃗ :“ pm1 ` 1, . . . ,m5 ` 1q and ζ⃗ 1 :“ pm1
1 ` 1, . . . ,m1

5 ` 1q.

Then the above equations can be rewritten as:

ζ1ζ3 ` ζ2ζ3 “ζ
1
4ζ

1
5 (27)

ζ 13ζ
1
4 ` ζ 13ζ

1
5 “ζ4ζ5. (28)

For degree 2, it follows from Proposition 1.4 that the multiplicity of pa, aq in BVer,2pZq is:

• a “ 2: µ2pm⃗pr1, 3sqq ` µ2pm⃗pr2, 3sqq ` µ2pm⃗pr1, 2, 3sqq;

• a “ 3: µ2pm⃗pr4, 5sqq.

And the multiplicity of pa, aq in BVer,2pZ
1q is:

• a “ 2: µ2pm⃗1pr4, 5sqq;

• a “ 3: µ2pm⃗1pr3, 4sqq ` µ2pm⃗
1pr3, 5sqq ` µ2pm⃗

1pr3, 4, 5sqq.

Applying Equation (24) and (25) and substituting ζ⃗ and ζ⃗ 1 for m⃗ and m⃗1, we obtain:

ζ1ζ3p
ζ1`ζ3

2 ´ 2q ` ζ2ζ3p
ζ2`ζ3

2 ´ 2q ` 1` ζ1ζ2ζ3 ´ 1 “ζ 14ζ
1
5p
ζ14`ζ

1
5

2 ´ 2q (29)

ζ 13ζ
1
4p
ζ13`ζ

1
4

2 ´ 2q ` ζ 13ζ
1
5p
ζ13`ζ

1
5

2 ´ 2q ` 1` ζ 13ζ
1
4ζ

1
5 ´ 1 “ζ4ζ5p

ζ4`ζ5
2 ´ 2q. (30)

Let us assume
α :“ ζ3, β :“ ζ4, γ :“ ζ5.

By Equation (28) and Item (II), we have

ζ4ζ5 “ ζ 13pζ
1
4 ` ζ 15q ùñ ζ4ζ5 ` ζ 14ζ

1
5 “ ζ 13pζ

1
4 ` ζ 15q ` ζ 14ζ

1
5

ùñ βγ ` ζ 14ζ
1
5 “ αβ ` βγ ` αγ

ùñ ζ 14ζ
1
5 “ αβ ` αγ.

There are three possibilities for the multiset tζ 14, ζ 15u: tα, βu, tα, γu, tβ, γu. Because α, β, γ ą

0, the first two choices will yield a contradiction. Thus, tζ 14, ζ 15u “ tβ, γu. This implies

ζ 13 “ α “ ζ3 and βγ “ αβ ` αγ.

Going back to Equation (27), we obtain that

pζ1 ` ζ2qζ3 “ ζ 14ζ
1
5 ùñ pζ1 ` ζ2qα “ βγ ùñ ζ1 ` ζ2 “

βγ

α
“ β ` γ,

where we applied the fact that all variables involved are non-zero.

Assume ξ :“ ζ1. So far, we have shown that ζ⃗ and ζ⃗ 1 must be of the following forms:
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• ζ⃗ “ pξ, β ` γ ´ ξ, α, β, γq for some ξ, α, β, γ P Zě1 satisfying βγ “ αβ ` αγ;

• ζ⃗ 1 is of one of the following four: ζ⃗, pβ ` γ ´ ξ, ξ, α, β, γq, pξ, β ` γ ´ ξ, α, γ, βq or
pβ ` γ ´ ξ, ξ, α, γ, βq.

Applying Equation (30), we obtain:

0 “ζ 13ζ
1
4p
ζ13`ζ

1
4

2 ´ 2q ` ζ 13ζ
1
5p
ζ13`ζ

1
5

2 ´ 2q ` 1` ζ 13ζ
1
4ζ

1
5 ´ 1´ ζ4ζ5p

ζ4`ζ5
2 ´ 2q

“αζ 14p
α`ζ14
2 ´ 2q ` αζ 15p

α`ζ15
2 ´ 2q ` 1` αβγ ´ 1´ βγpβ`γ2 ´ 2q

“
pα´4qαpβ`γq`αpβ2`γ2q

2 ` αβγ ´
βγpβ`γq

2 ` 2βγ

“
pα´4qβγ`αpβ2`γ2q

2 ` αβγ ´
βγpβ`γq

2 ` 2βγ

“
αp3βγ`β2`γ2q

2 ´
βγpβ`γq

2

“
αpβγ`pβ`γq2q´βγpβ`γq

2

“
αβγ
2 .

contradicts the fact that α, β, γ ą 0.

Therefore, we have proved that there exists no ζ⃗, ζ⃗ 1 P Z5
ě1, i.e. there are no m⃗, m⃗1 P N5, such

that
BVer,kpXpm⃗qq “ BVer,kpY pm⃗1qq, @k “ 0, . . . , 3.

Consequently, we conclude that pdTriI ‰ 0, thus completing the proof.

As an additional remark, it is noteworthy that not all conditions were utilized in our argu-
ment. Specifically, we did not utilize Equation (29) and equations that match the multiplic-
ities of p2, 2q and p3, 3q in degree 3.
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