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Centrifugal pendulum vibration absorbers (CPVAs) are essentially collections of pendu-
lums attached to a rotor or rotating component or components within a mechanical system
for the purpose of mitigating the typical torsional surging that is inherent to internal com-
bustion engines and electric motors. The dynamic stability and performance of CPVAs
are highly dependent on the motion path defined for their pendulous masses. Assem-
blies of absorbers are tuned by adjusting these paths such that the pendulums respond
to problematic orders (multiples of average rotation speed) in a way that smooths the
rotational accelerations arising from combustion or other non-uniform rotational accel-
eration events. For most motion paths, pendulum tuning indeed shifts as a function of the
pendulum response amplitude. For a given motion path, the tuning shift that occurs as
pendulum amplitude varies produces potentially undesirable dynamic instabilities. Large
amplitude pendulum motion that mitigates a high percentage of torsional oscillation while
avoiding instabilities brought on by tuning shift introduces complexity and hazards into
CPVA design processes. Therefore, identifying pendulum paths whose tuning order does
not shift as the pendulum amplitude varies, so-called tautochronic paths, may greatly sim-
plify engineering design processes for generating high-performing CPVAs. To illustrate
this new approach and results, a tautochronic cut-out shape producing constant period
system motion is obtained for a simplified problem involving a mass sliding in the cut-out
of a larger mass that is free to translate horizontally without friction in a constant gravita-
tional field, where the translating base mass replaces the rotating rotor in the centrifugal

field.
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1 Introduction

Automotive Original Equipment Manufacturer (AOEMsS) prior-
itize vehicle comfort and a desirable overall driving experience in
new vehicle design. As a result, car companies are highly moti-
vated to identify technologies and techniques to control unwanted
vibrations. Centrifugal pendulum vibration absorbers (CPVAs) are
now commonly leveraged to address engine generated torsional vi-
bration [1-4]. In typical vehicle CPVA designs, a major challenge
is the tuning of pendulums within an absorber assembly by iden-
tifying the precise hinge geometries to generate an assembly of
pendulums that do not over-respond (and therefore clatter) while at
the same time correcting driveline torsional vibration to designated
amplitudes [5,6].

Pendulums are order-tuned, meaning their geometry is chosen
so that the pendulums respond at a natural frequency that is a spe-
cific multiple of average driveline rotation speed. The intuition
for order tuning is motivated by considering a simple pendulum in
gravity (conceptualized as a mass-less rod connecting a pendulum
mass m to a pivot point). The small amplitude undamped reso-
nance of a simple pendulum occurs when a driving force excites
the pendulum at a frequency equal to \/ﬁ , where g is the accel-
eration due to gravity, and [/ is the length of the pendulum rod.
By replacing gravitational acceleration g by a centrifugal acceler-
ation term, sz, where w is the rotor rotation speed (in radians
per second) and R is the distance from a rotor center to the pivot
point of a mass-less pendulum rod of length /, a correct estimate of

the natural frequency of a pendulum is generated as w+/R/I. The
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pendulum tuning order, \/R_/l , is a positive integer that depends on
its installed geometry, and when properly designed to the order of
the driveline disturbance, can enable torsional vibration correction
at all rotation speeds w.

An unfortunate reality is that pendulum natural frequencies will
typically shift as a function of their swing amplitudes. This shift-
ing resonance complicates pendulum design. In this article, we
investigate the design of tautochronic pendulums, meaning pendu-
lums that move such that their natural frequencies do not shift as a
function of their amplitude of motion. We expect such designs will
become increasingly important in improving the stability and per-
formance of a Centrifugal Pendulum Vibration Absorbers (CPVAs)
since the nonlinear effects of shifting resonances are mitigated.

CPVAs are passive devices which are used to reduce engine-
order torsional vibrations in rotating machines [7]. The dynamic
stability and performance of these devices are highly dependent
upon the motion path defined for their pendulous masses. We
specifically investigate a class of paths that are tautochronic, which
implies that their resonance does not vary as the pendulum ampli-
tude grows. In [7], a tautochronic path is derived for a pendulum
sliding within a cut-out of a larger mass. The larger mass rolls
on frictionless roller bearings. In this paper the tautochronic path
for the same problem is obtained through an alternative approach.
Sabatini [8] investigated the period of a class of dynamic systems
that includes both pendulum motion in a CPVA and pendulum mo-
tion in our simplified prototype gravity pendulum. His work led
to a general condition that must hold for a tautochronic pendulum
path. We show that this condition enforces an equivalence between
a nonlinear oscillator and a simple harmonic oscillator, which has
the same period of motion for all initial conditions (and hence all
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amplitudes of motion).

This paper expands on the work of Sabatini [8], in which a
mathematical condition for tautochronicity is identified for a class
of differential equations that includes those that arise in the mod-
eling of the motion of a pendulum in a centrifugal field. The
approach is based on a transformation from the physical coordi-
nate to a standard Hamiltonian system. We show that transforming
a nonlinear oscillator made tautochronic through path modification
actually transforms the nonlinear oscillator into a simple harmonic
oscillator. To illustrate the new approach and results, the technique
is applied to the simplified problem of determining the cut-out
shape that produces tautochronic motion for a mass sliding in the
cut-out of a larger mass that is free to translate horizontally with-
out friction. In the simplified problem, centrifugal acceleration is
replaced by constant gravitational acceleration and rotation of the
rotor inertia is replaced by the translation of the large base mass.

2 Tautochronic Condition

Sabatini in [8,9] presented a method for deriving the tau-
tochronic condition for a class of nonlinear quadratic oscillators
with the following form,

Lv'+p(s)$2+q(s) =0, (1)

where s is a physical position coordinate of the oscillator, p(s)
and ¢(s) are smooth odd functions of the coordinate s, and p(s)
has positive leading coefficient. According to [10], these types of
oscillators have the following form of Lagrangian £

L= %m(s)jz —V(s), 2)

where the system mass m(s) is position-dependent and V(s) is
the system potential energy. In both the centrifugal and gravitation
fields, a pendulum vibration absorber system has this same form of
Lagrangian and equation of motion (EOM) as that shown in Equa-
tion (1) and (2). Specifically, the oscillator coefficients p(s) and
q(s) in this physical problem depend on the instantaneous radius
of curvature p(s) of the absorber mass path, which is assumed to
vary as a function of arc-length and thus accommodates a broad
range of motion paths including non-circular paths. Similarly, the
position-dependent system mass m(s) results from the fact that the
center of rotation (rotor) and the center of path curvature for the ab-
sorber mass do not share the same point (in general), and therefore,
even for a circular path, the radial position of the absorber mass
from the center of the rotor varies as a function of the absorbers
arc-length displacement. With this general path formulation, we
specifically seek the path curvature p(s) for the absorber mass path
that results in a tautochronic free vibration response of the entire
system involving absorber and base mass motion. Following the
work of [9], the tautochronic path curvature can be identified with
the help of a transformation that transforms Equation (1) into its
Hamiltonian form. This coordinate transformation is specifically
outlined in the following theorem and then subsequently applied to
a pendulum vibration absorber in a uniform gravity field.

2.1
lator.

Motion Path Modification to a Simple Harmonic Oscil-

Theorem 1. Let s be a function of t satisfying s(0) = sg, $(0) = S,
and

§+p(s)i® +q(s) =0, (3)

where ' -’ indicates differentiation in t. Suppose s € (sy,sr),
—00 < 57 < 0 < s < o0 and that p is a bounded, integrable

unction on (sy, sy ). Let
1

P(s) = J;: p(x) dx and ®(s) = J: exp P(x) dx, (4)
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and let u(t) = ®©(s(t)); then the initial value problem for s in (3)
is equivalent to an initial value problem for u(t) given by u(0) =
D(sp), 1(0) = D’ (s0)$0 and

i+ h(u) =0, (5)

where h(u) = @' (s) - q(s). When the transformation ® : s — u
produces a differential equation of the form indicated in (5) such
that the coefficient h(u(s)) = ®'(s) - g(s) = w% - u, where w%, is
a positive constant, then both s(t) and u(t) must be periodic func-
tions with constant period T = 2n[wy, for all possible initial con-
ditions so and $o. That is, the oscillator’s motion is tautochronic.

Proof. For
u(t) = @(s(1)), ©)

it follows that
i = @' (s)3, )
i = @ (5)§% + D (5)3, 8)

where @’ (s) = du/ds and @' (s) = d>u/ds*. Then ii + h(u) can
be divided by @’ (s) (because @’ (s) # 0 for all s) and rewritten as

[PV B(@(s)
5+ ( > (s) )s + > (s) = ©)]
S'+p(s)s'2+q(s) = 0, (10)

the last equality following from (3). The initial conditions on u,
u(0) = ®(sg), t(0) = ®’(sg)Sg, are an immediate consequence
of (6) and (7). This shows that the initial value problem (5) is
equivalent to the initial value problem (3).

Next, consider the polar phase plane for the initial value problem
u(0) = @(s(0)), 11(0) = ®(sp) and equation (5). Specifically let

u=I(t)cosW(r) and u =T'(¢)sin¥(r). (11)

Then the original initial value problem can be written as two first-
order differential equations for the polar amplitude I'(¢) and the
polar angle ¥(¢),

I'(¢) = sin®(¢)|=h [[(¢) cos ¥(1)] + T(¢) cos ¥(1) |, (12)

[T(¢) cos P(£)] cos W(r) — ['(¢) sin® ¥(¢)
I'(t) '

Wy =" (13)

From equation (11), it follows that ['(0) = (1(0)2 + 1#(0)%)/2.
Observe that if
o
— =0, 14
o (14)

then provided u(t) (and therefore s(z)) is periodic, the solution
period T is given by

2n
T =J (1/¥) a¥,
¥=0

(15)

which is independent of the choice of #(0) and w(0), so that the
solution u(t) has a period of oscillation that is tautochronic. The
expression 1/W¥(¢) is an instantaneous frequency of oscillation in
the sense that it represents the instantaneous rate of change of the
phase angle V.
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Using Equation (13), the tautochronic condition (Equation (14))
implies that

uh(u) — u>h (u) =0, (16)
where 1/ (u) = dh/du. If u = 0, then the tautochronic condition
(16) is satisfied trivially. When u # 0, the equation can be divided
by u, and it follows that

dh du
—=—, 17
T amn
which implies that
Inh(u) =Inu +C, (18)
so that
elnh(u) — elnueC,
and consequently,
h(u) = w%lu (19)

for some positive constant w% = ¢C. Therefore, the tautochronic
condition in (16) implies that i + w%u = 0, which indicates u
undergoes a simple harmonic oscillation with constant period of
motion T = 27/w;,. This implies that the nonlinear initial value
problem in Equation (3) must also be tautochronic with the same

period of motion for all amplitudes of periodic motion. O

2.2 Application of the Tautochronic Condition. To identify
the tautochronic path for an absorber system, the isochronous con-
dition in Equation (16) needs to be expressed in physical coordi-
nates. This is accomplished by substituting the coordinate trans-
formation u = ®(s), which leads to an equation in physical coor-
dinates involving the transformation and the oscillator coefficients
p(s) and ¢q(s), as well as the following derivatives, @’ (s) and
q’(s). Lastly, a derivative of the isochronous condition results in
an equivalent condition that only depends on p(s) and ¢(s) and
their derivatives, and thus eliminates the transformation from this
condition altogether, enabling a direct application of this in the
absorber problem.

To start, we have

h(u) = q(@" (u))eP (@ (), (20)

which after computing a derivative with respect to u, results in

_ 0gq(@~(w) 00 (u)) P @ ()

M= e Tw) o

OP(@ ! (u)) 00~ (u))
(D~ 1(u))) ou

q(@ ' (w)eP@ ) a1y

By using the derivative defined by Equation (7), the following form
for A’ (u) is obtained

W(u)=q (@) + (@ ' W)p@tw). 22

Now by substituting Equations (20) and (22) in Equation (16),
we have

g (@7 () +q((@~ () p((@! (u))))
—i(q<<o—1(u>>)ep<‘1’“<“)>)=o. 23)
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We know from the transformation defined by Equation (6) that
@~ l(u) = s, and therefore the following isochronous condition
from [8] can be derived in terms of the physical coordinate s,

o =q()®'(s) = ¢"(5)P(s) = D(s)p(s)q(s), 24

where

o(s) =0, (25)

is required for the nonlinear oscillator in Equation (1) to exhibit
tautochronic motion (i.e., free vibration response that is of constant
period).

Notice that Equation (24) involves the transformation ®(s) and
its derivative @’ (), which depend on the integrals shown in Equa-
tion (4). Since o (s) = 0, it follows that o’ (s) must also be identi-
cally zero.

(s)  D(s) ,

(=40 g5 ~ i d )
- 40P (5) = g (o)
- a5 =0, 26
(Recall @'(s) # 0 for all 5.) Ultimately, as ‘;’)((f)) = p(s) and
S £ 0, we have
q" (5) +p'(s)q(s) + p(s)g’(s) =0, 27

which is an equivalent tautochronic condition that now conve-
niently depends explicitly on the position-dependent coefficients
p(s) and g(s), and thus eliminates the transformation ®(s) and its
related integrals involving p(s) (as observed in Equation (24)).
Specifically, when applied in the pendulum absorber problem,
Equation (27) results in a differential equation in terms of the
radius of curvature p(s) that can now be directly solved for the
tautochronic motion path that results in a tautochronic free vibra-
tion response of the pendulum and base mass. In the following
sections, we investigate the application of the new isochronous
condition (Equation (27)) to identify a system tautochronic mo-
tion path for a pendulum vibration absorber in a uniform gravity
field and then further compare the properties of this tautochronic
response in the physical coordinates versus the transformed coor-
dinates u.

3 Pendulum Vibration Absorber in Gravity Field

Figure 1 shows a pendulum vibration absorber system in a uni-
form gravity field, which consists of a pendulous mass m that can
slide along path cutouts prescribed within a base mass M that is
free to translate horizontally (without friction) in a uniform gravity
field. The system has two degrees of freedom S and U, which
are the arc-length position of the pendulum mass S and the hor-
izontal motion of the base mass U. Mass m is assumed to start
at the vertex with an initial speed in the horizontal direction. An
arbitrary pendulum path is assumed for the pendulum mass and
is parameterized using the local tangent angle ¢, which can vary
as a function of its arc-length position S, and thus accommodates
circular and non-circular paths in the formulation. We assume that
the vertex occurs at S = 0.
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Fig. 1
field.

Pendulum vibration absorber system in a gravity

3.1 Dynamic Model. For the gravity problem shown in Fig-
ure 1, the system kinetic energy 7 is

1 s . 1.
T= Em(U2 + 82 +2US cos ¢(S)) + EMUZ, (28)

and the system potential energy is V = mgY (S), where Y (S) is the
vertical height of the absorber mass relative to the zero potential
line (corresponding with S = 0). Then, the system Lagrangian
L =T -V is the following

1 . o I
L= Em(Uz +8% +2US cos ¢(S)) + EMUZ —mgY(S), (29)
and the system total energy C, =T +V is
I oy . 1.
C, = 5m(U2 +82 4+ 208 cos ¢(S)) + 5MU2 +mgY(S), (30)

where C, is the total energy constant that depends on the system
initial conditions and cos ¢(S) results from the dot product (i - &)
between the local horizontal and path tangent unit vectors (see
Figure 1). Furthermore, the system linear momentum C,, is

orT . ) .
Cy= 30 =mU +mS cos ¢(S) + MU,

(3D
where C,, is also a constant of motion depending on the system
starting conditions. One can eliminate the U dependence in the
total energy (Equation (30)) by solving Equation (31) for U, and
then substituting the result into Equation (30). Then, the EOM
governing the pendulum motion S can be obtained after computing
a time derivative of the resulting energy equation (i.e., C, = 0),

’(1 +e)sing(S)

S(M)S 0 Lo, 3
1 + e sin” ¢(S)

p(1 +esin® ¢(S))

where p = dS/d¢ is the local radius of curvature of the pendulum
path and € = m/M is an inertia ratio consisting of the pendulum
mass divided by the base mass 2. In addition, the following sub-
stitutions have been made in obtaining Equation (32), specifically
C,, = 0 (conservation of linear momentum) and dY /dS = sin ¢(S)
(see path geometry in Figure 1).

Equation (32) is then non-dimensionalized using the following
scheme,

s=S8/po, p=p/po, and T =wot,

2Note that the commonly used small parameter € in perturbation studies is used
here since the pendulum mass is usually much smaller than the base mass in applica-
tions (i.e., € << 1). However, it is important to note that we don’t assume small €

in any of these derivations and therefore a unique system tautochrone exists for any
pendulum to base mass ratio.
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where specifically the dependent coordinate S and the radius of
curvature p are non-dimensionalized by the initial radius of cur-
vature pg and the independent coordinate time ¢ is scaled by the
small amplitude natural frequency wg = +/g/pp. This results in
the following non-dimensional EOM for the absorber motion s,

)s'2+ ((1 +€)sin¢

. €COoS ¢ sin ¢
s+
(p'(¢)(1 + esin? ®)

where the non-dimensional time 7 results in the following time
derivative substitutions in Equation (32),

) =0, (33)

l+esin2¢

O=w(). O =wj()’, where () =d()/dr.

Lastly, following a change in dependent variable from s to ¢, the
oscillator in Equation (33) can be put into the standard form (see
Equation (1)) for application of the isochronous condition. Specif-
ically, this change in dependent variable results in the following
substitutions in Equation (33),

r o =gt " _ @ 72 —
s'=p¢" and s = d¢¢ +p¢",
which results in
¢ +p(9)¢” +q(¢) =0, (34)
where the position-dependent coefficients p(¢) and g(¢) are
1 dp(¢)  ecos(¢)sin(¢4)
= s 35
P9) p(¢) d¢ * 1 + esin?(¢) G
and
(1 +€)sin(¢)
q9(¢) = ——————, (36)
p(9)(1+esin’(¢))
respectively.

3.2 Tautochronic Path for the Pendulum Mass. In this sec-
tion, we apply the isochronous condition defined by the Equa-
tion (27) to the pendulum vibration absorber in a gravity field.
This is accomplished after substituting the oscillator coefficients
p(¢#) and g(¢) (Equation (35) and (36)) and their derivatives (with
respect to ¢) into Equation (27). This results in the following first-
order differential equation for the non-dimensional path curvature
(), specifically

+sin ¢ (1 +€+3ecos? ¢) p(9) =0,
(37)

cos¢>(1 +esin2¢) dfj_(;)

Equation (37) can be solved in closed-form, which results in the
following solution for the tautochronic path curvature
_ C cos
)= — 0 (38)
(1 + esin? q))

where the constant of integration C =1 is selected so that p = po
at the path vertex ¢ = 0, where py is the initial radius of curvature
of the path. Equation (38) prescribes the motion path that the
pendulum mass should follow to ensure the system will execute
tautochronic free vibration when set in motion. In this example,
the motion path is specified via the path radius of curvature and
specifically indicates how the curvature should vary as a function
of the pendulum position ¢(S). Moreover, the tautochronic path
curvature in Equation (38) is the same as that derived in [11],
which was obtained using the calculus of variations. This verifies
the isochronous condition and further demonstrates the utility of
this technique, which after obtaining the EOM and coefficients p
and g, it directly produces a differential equation in terms of the
general path variable to be solved for the tautochronic path.
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3.3 Investigation of the Period of Oscillation for the Tau-
tochronic Path. In this section we investigate the period of os-
cillation for the gravity problem through a comparison of the in-
stantaneous frequency of the pendulum response in both physical
coordinates ¢ and transformed coordinates u. Specifically, we will
acquire the explicit form of the transformation u = ®(¢) and h(u)
for a pendulum vibration absorber in a gravity field. Of particu-
lar interest is the resulting period of motion of the system defined
by Equation (34). For this purpose, first we represent this oscil-
lator in polar coordinates to give insight into the instantaneous
frequency of oscillation, which can be obtained from the polar an-
gle response. Next, we use the transformation u = ®(¢) to verify
the simple harmonic oscillator form of this system when expressed
in the u coordinates. Lastly, we simulate both oscillators in polar
coordinates to compare their instantaneous frequency of oscillation
during free vibration, which is ¥ (for the u-coordinates) and y (for
the ¢-coordinates). Of course the simple harmonic system in the
u coordinates will have a constant frequency of oscillation that is
independent of amplitude (i.e., initial conditions). However, the
physical system in the ¢ coordinates is a nonlinear oscillator, but
has properties similar to that of a linear oscillator. Specifically, it
has a instantaneous frequency that varies over an oscillation period,
but the mean of this variation is equal to the frequency of the u
response and is therefore constant and independent of amplitude.

To accomplish this, the tautochronic motion path defined in
Equation (38) is used to identify explicit oscillator coefficients p (¢)
and g(¢). First, we express the physical system response in polar
coordinates, using ¢ = R(t)cos((t)) and ¢ = R(z) sin(y (1)),
where R(?) is the amplitude and y (¢) is the polar angle. This
enables us to express the EOM in Equation (34) as two first-order
differential equations for the polar amplitude R(7) and phase angle
Y (t), which are

R(1) = sin d/(t)(R(t) cos (1) — q)—pRz(t) sindu(), (39

“R(1) sin® ¢ (1) (1 + pR(1) cos u,[/(t))—q cos (1)

R(?) > (40)

g(n) =

where p and ¢ (see Equation (35) and (36)) are evaluated
using ¢ = R(t)cos(y(r)), specifically p [R(¢)cos(y(2))] and
q [R(t)cos(¥(¢))]. In Equation (40), it can be further verified
that in physical coordinates, the instantaneous frequency is not
independent of amplitude, dyy/dR # 0. However, as will be fur-
ther emphasized with simulations, the system response in physical
coordinates still executes a constant period free vibration that is
independent of amplitude.

For comparison, we derive the transformation u = ®(¢) and the
oscillator in u# coordinates. This can be accomplished using Equa-
tion (4) with the explicit oscillator coefficient p(¢) (Equation (35))
evaluated with the tautochronic path curvature (Equation (38)),
which following two integration steps results in

[
P(¢) = J p(x)dx =logcos¢ — %log(l + € — ecos? @), (41)
0

and
sin ¢
\1+e sin® ¢

As expected, transforming the oscillator in Equation (34) using
u = ®(¢), results in the following simple harmonic oscillator

4
u = B(0) =J PO gy = 42)
0

i+ (l+eu=0, 43)

where h(u) = (1 + €)u. Specifically, this is a linear oscillator with
a constant natural frequency w,, where

1+e, (44)

wp =

Journal of Vibration and Acoustics

Fig. 2 Phase plane portrait for the tautochronic nonlin-
ear system in physical coordinate ¢.

-1 -0.5 0 0.5 1
U

Fig. 3 Phase plane portrait for the tautochronic linear
system in u.

which is non-dimensional as a result of the dependent and inde-
pendent variable scaling outlined in Section 3.1. In accordance
with the theorem (see Section 2.1), the isochronous condition in
u-coordinates (see Equation (16)) can be immediately verified,
specifically after substituting 2(u) = (1 + €)u and its derivative
W (u)=(1+e).

Simulation results showing the system response in the phase
plane is shown for the physical coordinate ¢ in Figure 2 and for the
u coordinate in Figure 3. These results show how the transforma-
tion u = ®(¢) nonlinearly stretches the amplitude of the simple har-
monic oscillator. Furthermore, Figure 4 shows a comparison of the
instantaneous frequency of oscillation over three cycles for both os-
cillators when € = 0.30. Specifically, the instantaneous frequency
is the time rate of change of the polar angles, i and ¥, which cor-
responds to the ¢ and u phase planes, respectively. The system in
physical coordinates is simulated for two different initial conditions
including (¢(0), ¢(0)) = (1.5,0) and (¢(0), $(0)) = (1,0), which
in polar coordinates corresponds to (R(0),¥(0)) = (1.5,0) and
(R(0),¥(0)) = (1,0), respectively. Using these initial conditions,
Equation (34) and Equations (39)-(40) are used for simulating the
physical coordinate responses shown in Figure 2 and 4, respec-
tively. On the other hand, Equation (43) and Equations (12)-(13)
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Fig. 4 Instantaneous frequency of both oscillators over
three periods of oscillation for ¢ = 0.3.

are used for simulating the linear oscillator response (u coordi-
nates). Furthermore, the coordinate transformation u = ®(¢) in
Equation (42), is used to obtain the corresponding initial conditions
for the two phase plane trajectories shown in Figure 3, which are
(u(0),#(0)) = (0.87,0), (u(0),u(0)) = (0.7,0), and in polar co-
ordinates, is (I"(0), ¥(0)) = (0.87,0) and (I"(0), ¥(0)) = (0.7,0).

As expected, Figure 4 shows that the instantaneous frequency
corresponding to the linear oscillator in u-coordinates is constant
¥ = /1 + € for both starting conditions. In addition, as depicted
in the figure, the frequency of oscillation does vary for the system
in physical coordinates. Specifically, the instantaneous frequency
varies both with starting amplitude and during a period of oscil-
lation, which are expected characteristics of a nonlinear oscillator.
However, it can be further observed that the average frequency over
a period of motion is constant (equal to the frequency of the u sys-
tem response) and independent of amplitude, which is an intriguing
feature of this nonlinear tautochronic oscillator. These free vibra-
tion characteristics demonstrate the utility of a pendulum vibration
absorber motion path that uses a system tautochrone. A system
tautochrone is found to enable constant period free vibration of
the nonlinear pendulum response, which can facilitate precise tun-
ing of the pendulum across all amplitudes of operation and thus
eliminate nonlinear detuning related performance issues including
reduced vibration attenuation and problematic bifurcations that can
occur in the system response.

4 Conclusion

Theorem (1) presents a transformation that transforms a class
of quadratic nonlinear oscillators which represent the dynamics
of pendulum vibration absorber into a simple harmonic oscillator.
Consequently, we showed that the initial value problem for the
system in physical coordinates, s, is equivalent to an initial value
problem in the transformed coordinate, . Then, stemming from
the transformed system, an isochronous condition is derived which
comprises the transformation and position dependent coefficients,
p and g. Applying the condition to the system leads to a differen-
tial equation which solving it culminates in the tautochronic path
for the cutout shape. We presented an equivalent isochronous con-
dition that explicitly depends on position dependent coefficients of
the nonlinear oscillator and eliminates dependence on the trans-
formation. Then the novel condition is applied to the pendulum
vibration absorber problem in a gravity field and ultimately, derived
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a tautochronic path curvature.

Finally, we conducted an investigation on the period of oscilla-
tion to comprehend different aspects of the proposed transformation
and the path. For this purpose, we explored the system through an-
alyzing the instantaneous frequency of oscillation, amplitude and
phase plane portraits for the system in both physical and trans-
formed coordinates. The results show that for the tautochronic
system, the period of the system in physical coordinates, executes
the same period of oscillation as the system in the transformed
coordinates. Therefore, the free vibration in physical coordinates
remarkably shows response characteristics that resembles that of
a linear oscillator and thus demonstrates the utility of a system
tautochrone motion path to pendulum vibration absorber design,
which can facilitate precise tuning of the pendulum across all am-
plitudes of operation, and thus help in mitigating common perfor-
mance issues related to the nonlinearity in the system. Future work
will investigate the forced vibration response characteristics of this
system tautochrone and the bounds on which this tautochronic non-
linear oscillator exhibits linear system response characteristics in-
cluding the sensitivity of these dynamics to small changes in the
physical system (such as errors in the path geometry, system inertia
ratio €, and other relevant system design parameters).
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