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Centrifugal pendulum vibration absorbers (CPVAs) are essentially collections of pendu-
lums attached to a rotor or rotating component or components within a mechanical system
for the purpose of mitigating the typical torsional surging that is inherent to internal com-
bustion engines and electric motors. The dynamic stability and performance of CPVAs
are highly dependent on the motion path defined for their pendulous masses. Assem-
blies of absorbers are tuned by adjusting these paths such that the pendulums respond
to problematic orders (multiples of average rotation speed) in a way that smooths the
rotational accelerations arising from combustion or other non-uniform rotational accel-
eration events. For most motion paths, pendulum tuning indeed shifts as a function of the
pendulum response amplitude. For a given motion path, the tuning shift that occurs as
pendulum amplitude varies produces potentially undesirable dynamic instabilities. Large
amplitude pendulum motion that mitigates a high percentage of torsional oscillation while
avoiding instabilities brought on by tuning shift introduces complexity and hazards into
CPVA design processes. Therefore, identifying pendulum paths whose tuning order does
not shift as the pendulum amplitude varies, so-called tautochronic paths, may greatly sim-
plify engineering design processes for generating high-performing CPVAs. To illustrate
this new approach and results, a tautochronic cut-out shape producing constant period
system motion is obtained for a simplified problem involving a mass sliding in the cut-out
of a larger mass that is free to translate horizontally without friction in a constant gravita-
tional field, where the translating base mass replaces the rotating rotor in the centrifugal
field.
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1 Introduction1

Automotive Original Equipment Manufacturer (AOEMs) prior-2
itize vehicle comfort and a desirable overall driving experience in3
new vehicle design. As a result, car companies are highly moti-4
vated to identify technologies and techniques to control unwanted5
vibrations. Centrifugal pendulum vibration absorbers (CPVAs) are6
now commonly leveraged to address engine generated torsional vi-7
bration [1–4]. In typical vehicle CPVA designs, a major challenge8
is the tuning of pendulums within an absorber assembly by iden-9
tifying the precise hinge geometries to generate an assembly of10
pendulums that do not over-respond (and therefore clatter) while at11
the same time correcting driveline torsional vibration to designated12
amplitudes [5,6].13

Pendulums are order-tuned, meaning their geometry is chosen14
so that the pendulums respond at a natural frequency that is a spe-15
cific multiple of average driveline rotation speed. The intuition16
for order tuning is motivated by considering a simple pendulum in17
gravity (conceptualized as a mass-less rod connecting a pendulum18
mass 𝑚 to a pivot point). The small amplitude undamped reso-19
nance of a simple pendulum occurs when a driving force excites20

the pendulum at a frequency equal to
√︁
𝑔/𝑙, where 𝑔 is the accel-21

eration due to gravity, and 𝑙 is the length of the pendulum rod.22
By replacing gravitational acceleration 𝑔 by a centrifugal acceler-23
ation term, 𝑅𝜔2, where 𝜔 is the rotor rotation speed (in radians24
per second) and 𝑅 is the distance from a rotor center to the pivot25
point of a mass-less pendulum rod of length 𝑙, a correct estimate of26

the natural frequency of a pendulum is generated as 𝜔
√︁
𝑅/𝑙. The27

1Corresponding Author.
Version 1.18, June 3, 2025

pendulum tuning order,
√︁
𝑅/𝑙, is a positive integer that depends on 28

its installed geometry, and when properly designed to the order of 29
the driveline disturbance, can enable torsional vibration correction 30
at all rotation speeds 𝜔. 31

An unfortunate reality is that pendulum natural frequencies will 32
typically shift as a function of their swing amplitudes. This shift- 33
ing resonance complicates pendulum design. In this article, we 34
investigate the design of tautochronic pendulums, meaning pendu- 35
lums that move such that their natural frequencies do not shift as a 36
function of their amplitude of motion. We expect such designs will 37
become increasingly important in improving the stability and per- 38
formance of a Centrifugal Pendulum Vibration Absorbers (CPVAs) 39
since the nonlinear effects of shifting resonances are mitigated. 40

CPVAs are passive devices which are used to reduce engine- 41
order torsional vibrations in rotating machines [7]. The dynamic 42
stability and performance of these devices are highly dependent 43
upon the motion path defined for their pendulous masses. We 44
specifically investigate a class of paths that are tautochronic, which 45
implies that their resonance does not vary as the pendulum ampli- 46
tude grows. In [7], a tautochronic path is derived for a pendulum 47
sliding within a cut-out of a larger mass. The larger mass rolls 48
on frictionless roller bearings. In this paper the tautochronic path 49
for the same problem is obtained through an alternative approach. 50
Sabatini [8] investigated the period of a class of dynamic systems 51
that includes both pendulum motion in a CPVA and pendulum mo- 52
tion in our simplified prototype gravity pendulum. His work led 53
to a general condition that must hold for a tautochronic pendulum 54
path. We show that this condition enforces an equivalence between 55
a nonlinear oscillator and a simple harmonic oscillator, which has 56
the same period of motion for all initial conditions (and hence all 57
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amplitudes of motion).58
This paper expands on the work of Sabatini [8], in which a59

mathematical condition for tautochronicity is identified for a class60
of differential equations that includes those that arise in the mod-61
eling of the motion of a pendulum in a centrifugal field. The62
approach is based on a transformation from the physical coordi-63
nate to a standard Hamiltonian system. We show that transforming64
a nonlinear oscillator made tautochronic through path modification65
actually transforms the nonlinear oscillator into a simple harmonic66
oscillator. To illustrate the new approach and results, the technique67
is applied to the simplified problem of determining the cut-out68
shape that produces tautochronic motion for a mass sliding in the69
cut-out of a larger mass that is free to translate horizontally with-70
out friction. In the simplified problem, centrifugal acceleration is71
replaced by constant gravitational acceleration and rotation of the72
rotor inertia is replaced by the translation of the large base mass.73

2 Tautochronic Condition74

Sabatini in [8,9] presented a method for deriving the tau-75
tochronic condition for a class of nonlinear quadratic oscillators76
with the following form,77

𝑠 + 𝑝(𝑠) 𝑠̇2 + 𝑞(𝑠) = 0, (1)78

where 𝑠 is a physical position coordinate of the oscillator, 𝑝(𝑠)79
and 𝑞(𝑠) are smooth odd functions of the coordinate 𝑠, and 𝑝(𝑠)80
has positive leading coefficient. According to [10], these types of81
oscillators have the following form of Lagrangian L82

L =
1
2
𝑚(𝑠) 𝑠̇2 −𝑉 (𝑠), (2)83

where the system mass 𝑚(𝑠) is position-dependent and 𝑉 (𝑠) is84
the system potential energy. In both the centrifugal and gravitation85
fields, a pendulum vibration absorber system has this same form of86
Lagrangian and equation of motion (EOM) as that shown in Equa-87
tion (1) and (2). Specifically, the oscillator coefficients 𝑝(𝑠) and88
𝑞(𝑠) in this physical problem depend on the instantaneous radius89
of curvature 𝜌(𝑠) of the absorber mass path, which is assumed to90
vary as a function of arc-length and thus accommodates a broad91
range of motion paths including non-circular paths. Similarly, the92
position-dependent system mass 𝑚(𝑠) results from the fact that the93
center of rotation (rotor) and the center of path curvature for the ab-94
sorber mass do not share the same point (in general), and therefore,95
even for a circular path, the radial position of the absorber mass96
from the center of the rotor varies as a function of the absorbers97
arc-length displacement. With this general path formulation, we98
specifically seek the path curvature 𝜌(𝑠) for the absorber mass path99
that results in a tautochronic free vibration response of the entire100
system involving absorber and base mass motion. Following the101
work of [9], the tautochronic path curvature can be identified with102
the help of a transformation that transforms Equation (1) into its103
Hamiltonian form. This coordinate transformation is specifically104
outlined in the following theorem and then subsequently applied to105
a pendulum vibration absorber in a uniform gravity field.106

2.1 Motion Path Modification to a Simple Harmonic Oscil-107
lator.108

Theorem 1. Let 𝑠 be a function of 𝑡 satisfying 𝑠(0) = 𝑠0, 𝑠̇(0) = 𝑠̇0,109
and110

𝑠 + 𝑝(𝑠) 𝑠̇2 + 𝑞(𝑠) = 0, (3)111

where ′ · ′ indicates differentiation in 𝑡. Suppose 𝑠 ∈ (𝑠𝑙 , 𝑠𝑟 ),112
−∞ ≤ 𝑠𝑙 < 0 < 𝑠𝑟 ≤ ∞ and that 𝑝 is a bounded, integrable113
function on (𝑠𝑙 , 𝑠𝑟 ). Let114

𝑃(𝑠) =
∫ 𝑠

0
𝑝(𝑥) 𝑑𝑥 and Φ(𝑠) =

∫ 𝑠

0
exp 𝑃(𝑥) 𝑑𝑥, (4)115

and let 𝑢(𝑡) ≡ Φ(𝑠(𝑡)); then the initial value problem for 𝑠 in (3) 116
is equivalent to an initial value problem for 𝑢(𝑡) given by 𝑢(0) = 117
Φ(𝑠0), 𝑢̇(0) = Φ′ (𝑠0) 𝑠̇0 and 118

𝑢 + ℎ(𝑢) = 0, (5) 119

where ℎ(𝑢) = Φ′ (𝑠) · 𝑞(𝑠). When the transformation Φ : 𝑠 → 𝑢 120
produces a differential equation of the form indicated in (5) such 121
that the coefficient ℎ(𝑢(𝑠)) = Φ′ (𝑠) · 𝑞(𝑠) = 𝜔2

𝑛 · 𝑢, where 𝜔2
𝑛 is 122

a positive constant, then both 𝑠(𝑡) and 𝑢(𝑡) must be periodic func- 123
tions with constant period 𝑇 = 2𝜋/𝜔𝑛 for all possible initial con- 124
ditions 𝑠0 and 𝑠̇0. That is, the oscillator’s motion is tautochronic. 125

126

Proof. For 127

𝑢(𝑡) ≡ Φ(𝑠(𝑡)), (6) 128

it follows that 129

𝑢̇ = Φ′ (𝑠) 𝑠̇, (7) 130

𝑢 = Φ′′ (𝑠) 𝑠̇2 +Φ′ (𝑠)𝑠, (8) 131

where Φ′ (𝑠) = 𝑑𝑢/𝑑𝑠 and Φ′′ (𝑠) = 𝑑2𝑢/𝑑𝑠2. Then 𝑢 + ℎ(𝑢) can 132
be divided by Φ′ (𝑠) (because Φ′ (𝑠) ≠ 0 for all 𝑠) and rewritten as 133

𝑠 +
(︃
Φ′′ (𝑠)
Φ′ (𝑠)

)︃
𝑠̇2 + ℎ(Φ(𝑠))

Φ′ (𝑠) = (9) 134

𝑠 + 𝑝(𝑠) 𝑠̇2 + 𝑞(𝑠) = 0, (10) 135

the last equality following from (3). The initial conditions on 𝑢, 136
𝑢(0) = Φ(𝑠0), 𝑢̇(0) = Φ′ (𝑠0) 𝑠̇0, are an immediate consequence 137
of (6) and (7). This shows that the initial value problem (5) is 138
equivalent to the initial value problem (3). 139

Next, consider the polar phase plane for the initial value problem 140
𝑢(0) = Φ(𝑠(0)), 𝑢̇(0) = Φ(𝑠0) and equation (5). Specifically let 141

𝑢 = Γ(𝑡) cosΨ(𝑡) and 𝑢̇ = Γ(𝑡) sinΨ(𝑡). (11) 142

Then the original initial value problem can be written as two first- 143
order differential equations for the polar amplitude Γ(𝑡) and the 144
polar angle Ψ(𝑡), 145

Γ̇(𝑡) = sinΨ(𝑡)
(︃
−ℎ [Γ(𝑡) cosΨ(𝑡)] + Γ(𝑡) cosΨ(𝑡)

)︃
, (12) 146

Ψ̇(𝑡) = −ℎ [Γ(𝑡) cosΨ(𝑡)] cosΨ(𝑡) − Γ(𝑡) sin2 Ψ(𝑡)
Γ(𝑡) . (13) 147

From equation (11), it follows that Γ(0) = (𝑢(0)2 + 𝑢̇(0)2)1/2. 148
Observe that if 149

𝜕Ψ̇

𝜕Γ
= 0, (14) 150

then provided 𝑢(𝑡) (and therefore 𝑠(𝑡)) is periodic, the solution 151
period 𝑇 is given by 152

𝑇 =

∫ 2𝜋

Ψ=0

(︁
1/Ψ̇

)︁
𝑑Ψ, (15) 153

which is independent of the choice of 𝑢(0) and 𝑢̇(0), so that the 154
solution 𝑢(𝑡) has a period of oscillation that is tautochronic. The 155
expression 1/Ψ̇(𝑡) is an instantaneous frequency of oscillation in 156
the sense that it represents the instantaneous rate of change of the 157
phase angle Ψ. 158
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Using Equation (13), the tautochronic condition (Equation (14))159
implies that160

𝑢ℎ(𝑢) − 𝑢2ℎ′ (𝑢) = 0, (16)161

where ℎ′ (𝑢) = 𝑑ℎ/𝑑𝑢. If 𝑢 = 0, then the tautochronic condition162
(16) is satisfied trivially. When 𝑢 ≠ 0, the equation can be divided163
by u, and it follows that164

𝑑ℎ

ℎ
=

𝑑𝑢

𝑢
, (17)165

which implies that166

ln ℎ(𝑢) = ln 𝑢 + 𝐶, (18)167

so that168

𝑒ln ℎ (𝑢) = 𝑒ln𝑢𝑒𝐶 ,169

and consequently,170

ℎ(𝑢) = 𝜔2
𝑛𝑢 (19)171

for some positive constant 𝜔2
𝑛 = 𝑒𝐶 . Therefore, the tautochronic172

condition in (16) implies that 𝑢 + 𝜔2
𝑛𝑢 = 0, which indicates 𝑢173

undergoes a simple harmonic oscillation with constant period of174
motion 𝑇 = 2𝜋/𝜔𝑛. This implies that the nonlinear initial value175
problem in Equation (3) must also be tautochronic with the same176
period of motion for all amplitudes of periodic motion. □177

2.2 Application of the Tautochronic Condition. To identify178
the tautochronic path for an absorber system, the isochronous con-179
dition in Equation (16) needs to be expressed in physical coordi-180
nates. This is accomplished by substituting the coordinate trans-181
formation 𝑢 = Φ(𝑠), which leads to an equation in physical coor-182
dinates involving the transformation and the oscillator coefficients183
𝑝(𝑠) and 𝑞(𝑠), as well as the following derivatives, Φ′ (𝑠) and184
𝑞′ (𝑠). Lastly, a derivative of the isochronous condition results in185
an equivalent condition that only depends on 𝑝(𝑠) and 𝑞(𝑠) and186
their derivatives, and thus eliminates the transformation from this187
condition altogether, enabling a direct application of this in the188
absorber problem.189

To start, we have190

ℎ(𝑢) = 𝑞(Φ−1 (𝑢))𝑒𝑃 (Φ−1 (𝑢) ) , (20)191

which after computing a derivative with respect to 𝑢, results in192

ℎ′ (𝑢) = 𝜕𝑞(Φ−1 (𝑢))
𝜕 (Φ−1 (𝑢)))

𝜕Φ−1 (𝑢))
𝜕𝑢

𝑒𝑃 (Φ−1 (𝑢) )193

+ 𝜕𝑃(Φ−1 (𝑢))
𝜕 (Φ−1 (𝑢)))

𝜕Φ−1 (𝑢))
𝜕𝑢

𝑞(Φ−1 (𝑢))𝑒𝑃 (Φ−1 (𝑢) ) . (21)194

By using the derivative defined by Equation (7), the following form195
for ℎ′ (𝑢) is obtained196

ℎ′ (𝑢) = 𝑞′ (Φ−1 (𝑢)) + 𝑞(Φ−1 (𝑢))𝑝(Φ−1 (𝑢)). (22)197

Now by substituting Equations (20) and (22) in Equation (16),198
we have199 (︃

𝑞′ (Φ−1 (𝑢)) + 𝑞((Φ−1 (𝑢)))𝑝((Φ−1 (𝑢)))
)︃

200

− 1
𝑢

(︃
𝑞((Φ−1 (𝑢)))𝑒𝑃 (Φ−1 (𝑢) )

)︃
= 0. (23)201

We know from the transformation defined by Equation (6) that 202
Φ−1 (𝑢) = 𝑠, and therefore the following isochronous condition 203
from [8] can be derived in terms of the physical coordinate 𝑠, 204

𝜎 = 𝑞(𝑠)Φ′ (𝑠) − 𝑞′ (𝑠)Φ(𝑠) −Φ(𝑠)𝑝(𝑠)𝑞(𝑠), (24) 205

where 206

𝜎(𝑠) = 0, (25) 207

is required for the nonlinear oscillator in Equation (1) to exhibit 208
tautochronic motion (i.e., free vibration response that is of constant 209
period). 210

Notice that Equation (24) involves the transformation Φ(𝑠) and 211
its derivative Φ′ (𝑠), which depend on the integrals shown in Equa- 212
tion (4). Since 𝜎(𝑠) ≡ 0, it follows that 𝜎′ (𝑠) must also be identi- 213
cally zero. 214

𝜎′ (𝑠) = 𝑞(𝑠)Φ
′′ (𝑠)

Φ′ (𝑠) − Φ(𝑠)
Φ′ (𝑠) 𝑞

′′ (𝑠) 215

− 𝑞(𝑠)𝑝(𝑠) − Φ(𝑠)
Φ′ (𝑠) 𝑞

′ (𝑠)𝑝(𝑠) 216

− Φ(𝑠)
Φ′ (𝑠) 𝑞(𝑠)𝑝

′ (𝑠) = 0. (26) 217

(Recall Φ′ (𝑠) ≠ 0 for all 𝑠.) Ultimately, as Φ′′ (𝑠)
Φ′ (𝑠) = 𝑝(𝑠) and 218

Φ(𝑠)
Φ′ (𝑠) ≠ 0, we have 219

𝑞′′ (𝑠) + 𝑝′ (𝑠)𝑞(𝑠) + 𝑝(𝑠)𝑞′ (𝑠) = 0, (27) 220

which is an equivalent tautochronic condition that now conve- 221
niently depends explicitly on the position-dependent coefficients 222
𝑝(𝑠) and 𝑞(𝑠), and thus eliminates the transformation Φ(𝑠) and its 223
related integrals involving 𝑝(𝑠) (as observed in Equation (24)). 224
Specifically, when applied in the pendulum absorber problem, 225
Equation (27) results in a differential equation in terms of the 226
radius of curvature 𝜌(𝑠) that can now be directly solved for the 227
tautochronic motion path that results in a tautochronic free vibra- 228
tion response of the pendulum and base mass. In the following 229
sections, we investigate the application of the new isochronous 230
condition (Equation (27)) to identify a system tautochronic mo- 231
tion path for a pendulum vibration absorber in a uniform gravity 232
field and then further compare the properties of this tautochronic 233
response in the physical coordinates versus the transformed coor- 234
dinates 𝑢. 235

3 Pendulum Vibration Absorber in Gravity Field 236

Figure 1 shows a pendulum vibration absorber system in a uni- 237
form gravity field, which consists of a pendulous mass 𝑚 that can 238
slide along path cutouts prescribed within a base mass 𝑀 that is 239
free to translate horizontally (without friction) in a uniform gravity 240
field. The system has two degrees of freedom 𝑆 and 𝑈, which 241
are the arc-length position of the pendulum mass 𝑆 and the hor- 242
izontal motion of the base mass 𝑈. Mass 𝑚 is assumed to start 243
at the vertex with an initial speed in the horizontal direction. An 244
arbitrary pendulum path is assumed for the pendulum mass and 245
is parameterized using the local tangent angle 𝜙, which can vary 246
as a function of its arc-length position 𝑆, and thus accommodates 247
circular and non-circular paths in the formulation. We assume that 248
the vertex occurs at 𝑆 = 0. 249
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Fig. 1 Pendulum vibration absorber system in a gravity
field.

3.1 Dynamic Model. For the gravity problem shown in Fig-250
ure 1, the system kinetic energy 𝑇 is251

𝑇 =
1
2
𝑚(𝑈̇2 + 𝑆̇2 + 2𝑈̇𝑆̇ cos 𝜙(𝑆)) + 1

2
𝑀𝑈̇2, (28)252

and the system potential energy is 𝑉 = 𝑚𝑔𝑌 (𝑆), where 𝑌 (𝑆) is the253
vertical height of the absorber mass relative to the zero potential254
line (corresponding with 𝑆 = 0). Then, the system Lagrangian255
L = 𝑇 −𝑉 is the following256

L =
1
2
𝑚(𝑈̇2 + 𝑆̇2 + 2𝑈̇𝑆̇ cos 𝜙(𝑆)) + 1

2
𝑀𝑈̇2 − 𝑚𝑔𝑌 (𝑆), (29)257

and the system total energy 𝐶𝑒 = 𝑇 +𝑉 is258

𝐶𝑒 =
1
2
𝑚(𝑈̇2 + 𝑆̇2 + 2𝑈̇𝑆̇ cos 𝜙(𝑆)) + 1

2
𝑀𝑈̇2 + 𝑚𝑔𝑌 (𝑆), (30)259

where 𝐶𝑒 is the total energy constant that depends on the system260
initial conditions and cos 𝜙(𝑆) results from the dot product (𝑖 · 𝑒𝑠)261
between the local horizontal and path tangent unit vectors (see262
Figure 1). Furthermore, the system linear momentum 𝐶𝑢 is263

𝐶𝑢 =
𝜕𝑇

𝜕𝑈̇
= 𝑚𝑈̇ + 𝑚𝑆̇ cos 𝜙(𝑆) + 𝑀𝑈̇, (31)264

where 𝐶𝑢 is also a constant of motion depending on the system265
starting conditions. One can eliminate the 𝑈 dependence in the266
total energy (Equation (30)) by solving Equation (31) for 𝑈̇, and267
then substituting the result into Equation (30). Then, the EOM268
governing the pendulum motion 𝑆 can be obtained after computing269
a time derivative of the resulting energy equation (i.e., 𝐶̇𝑒 = 0),270

𝑆 + 𝜖

(︄
cos 𝜙(𝑆) sin 𝜙(𝑆)
𝜌
(︁
1 + 𝜖 sin2 𝜙(𝑆)

)︁ )︄ 𝑆̇2 + 𝑔
(1 + 𝜖) sin 𝜙(𝑆)
1 + 𝜖 sin2 𝜙(𝑆)

= 0, (32)271

where 𝜌 = 𝑑𝑆/𝑑𝜙 is the local radius of curvature of the pendulum272
path and 𝜖 = 𝑚/𝑀 is an inertia ratio consisting of the pendulum273
mass divided by the base mass 2. In addition, the following sub-274
stitutions have been made in obtaining Equation (32), specifically275
𝐶̇𝑢 = 0 (conservation of linear momentum) and 𝑑𝑌/𝑑𝑆 = sin 𝜙(𝑆)276
(see path geometry in Figure 1).277

Equation (32) is then non-dimensionalized using the following
scheme,

𝑠 = 𝑆/𝜌0, 𝜌̄ = 𝜌/𝜌0, and 𝜏 = 𝜔0𝑡,

2Note that the commonly used small parameter 𝜖 in perturbation studies is used
here since the pendulum mass is usually much smaller than the base mass in applica-
tions (i.e., 𝜖 << 1). However, it is important to note that we don’t assume small 𝜖
in any of these derivations and therefore a unique system tautochrone exists for any
pendulum to base mass ratio.

where specifically the dependent coordinate 𝑆 and the radius of 278
curvature 𝜌 are non-dimensionalized by the initial radius of cur- 279
vature 𝜌0 and the independent coordinate time 𝑡 is scaled by the 280

small amplitude natural frequency 𝜔0 =
√︁
𝑔/𝜌0. This results in 281

the following non-dimensional EOM for the absorber motion 𝑠, 282

𝑠′′ +
(︄

𝜖 cos 𝜙 sin 𝜙
𝜌̄(𝜙)

(︁
1 + 𝜖 sin2 𝜙

)︁ )︄𝑠′2 +
(︃
(1 + 𝜖) sin 𝜙
1 + 𝜖 sin2 𝜙

)︃
= 0, (33) 283

where the non-dimensional time 𝜏 results in the following time
derivative substitutions in Equation (32),

̇( ) = 𝜔0 ( )′ , ̈( ) = 𝜔2
0 ( )

′′, where ( )′ = 𝑑 ( )/𝑑𝜏.

Lastly, following a change in dependent variable from 𝑠 to 𝜙, the
oscillator in Equation (33) can be put into the standard form (see
Equation (1)) for application of the isochronous condition. Specif-
ically, this change in dependent variable results in the following
substitutions in Equation (33),

𝑠′ = 𝜌̄𝜙′ and 𝑠′′ =
𝑑𝜌̄

𝑑𝜙
𝜙′2 + 𝜌̄𝜙′′,

which results in 284

𝜙′′ + 𝑝(𝜙)𝜙′2 + 𝑞(𝜙) = 0, (34) 285

where the position-dependent coefficients 𝑝(𝜙) and 𝑞(𝜙) are 286

𝑝(𝜙) = 1
𝜌(𝜙)

𝑑𝜌(𝜙)
𝑑𝜙

+ 𝜖 cos(𝜙) sin(𝜙)
1 + 𝜖 sin2 (𝜙)

, (35) 287

and 288

𝑞(𝜙) = (1 + 𝜖) sin(𝜙)
𝜌(𝜙) (1 + 𝜖 sin2 (𝜙))

, (36) 289

respectively. 290

3.2 Tautochronic Path for the Pendulum Mass. In this sec- 291
tion, we apply the isochronous condition defined by the Equa- 292
tion (27) to the pendulum vibration absorber in a gravity field. 293
This is accomplished after substituting the oscillator coefficients 294
𝑝(𝜙) and 𝑞(𝜙) (Equation (35) and (36)) and their derivatives (with 295
respect to 𝜙) into Equation (27). This results in the following first- 296
order differential equation for the non-dimensional path curvature 297
𝜌̄(𝜙), specifically 298

cos 𝜙
(︂
1 + 𝜖 sin2 𝜙

)︂ 𝑑𝜌̄(𝜙)
𝑑𝜙

+ sin 𝜙
(︂
1 + 𝜖 + 3𝜖 cos2 𝜙

)︂
𝜌̄(𝜙) = 0,

(37) 299
Equation (37) can be solved in closed-form, which results in the 300
following solution for the tautochronic path curvature 301

𝜌̄(𝜙) = 𝐶 cos 𝜙(︂
1 + 𝜖 sin2 𝜙

)︂2 , (38) 302

where the constant of integration 𝐶 = 1 is selected so that 𝜌 = 𝜌0 303
at the path vertex 𝜙 = 0, where 𝜌0 is the initial radius of curvature 304
of the path. Equation (38) prescribes the motion path that the 305
pendulum mass should follow to ensure the system will execute 306
tautochronic free vibration when set in motion. In this example, 307
the motion path is specified via the path radius of curvature and 308
specifically indicates how the curvature should vary as a function 309
of the pendulum position 𝜙(𝑆). Moreover, the tautochronic path 310
curvature in Equation (38) is the same as that derived in [11], 311
which was obtained using the calculus of variations. This verifies 312
the isochronous condition and further demonstrates the utility of 313
this technique, which after obtaining the EOM and coefficients 𝑝 314
and 𝑞, it directly produces a differential equation in terms of the 315
general path variable to be solved for the tautochronic path. 316
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3.3 Investigation of the Period of Oscillation for the Tau-317
tochronic Path. In this section we investigate the period of os-318
cillation for the gravity problem through a comparison of the in-319
stantaneous frequency of the pendulum response in both physical320
coordinates 𝜙 and transformed coordinates 𝑢. Specifically, we will321
acquire the explicit form of the transformation 𝑢 = Φ(𝜙) and ℎ(𝑢)322
for a pendulum vibration absorber in a gravity field. Of particu-323
lar interest is the resulting period of motion of the system defined324
by Equation (34). For this purpose, first we represent this oscil-325
lator in polar coordinates to give insight into the instantaneous326
frequency of oscillation, which can be obtained from the polar an-327
gle response. Next, we use the transformation 𝑢 = Φ(𝜙) to verify328
the simple harmonic oscillator form of this system when expressed329
in the 𝑢 coordinates. Lastly, we simulate both oscillators in polar330
coordinates to compare their instantaneous frequency of oscillation331
during free vibration, which is Ψ̇ (for the 𝑢-coordinates) and 𝜓̇ (for332
the 𝜙-coordinates). Of course the simple harmonic system in the333
𝑢 coordinates will have a constant frequency of oscillation that is334
independent of amplitude (i.e., initial conditions). However, the335
physical system in the 𝜙 coordinates is a nonlinear oscillator, but336
has properties similar to that of a linear oscillator. Specifically, it337
has a instantaneous frequency that varies over an oscillation period,338
but the mean of this variation is equal to the frequency of the 𝑢339
response and is therefore constant and independent of amplitude.340

To accomplish this, the tautochronic motion path defined in341
Equation (38) is used to identify explicit oscillator coefficients 𝑝(𝜙)342
and 𝑞(𝜙). First, we express the physical system response in polar343
coordinates, using 𝜙 = 𝑅(𝑡) cos(𝜓(𝑡)) and 𝜙̇ = 𝑅(𝑡) sin(𝜓(𝑡)),344
where 𝑅(𝑡) is the amplitude and 𝜓(𝑡) is the polar angle. This345
enables us to express the EOM in Equation (34) as two first-order346
differential equations for the polar amplitude 𝑅(𝑡) and phase angle347
𝜓(𝑡), which are348

𝑅̇(𝑡) = sin𝜓(𝑡)
(︂
𝑅(𝑡) cos𝜓(𝑡) − 𝑞

)︂
−𝑝𝑅2 (𝑡) sin3 𝜓(𝑡), (39)349

𝜓̇(𝑡) =
−𝑅(𝑡) sin2 𝜓(𝑡)

(︂
1 + 𝑝𝑅(𝑡) cos𝜓(𝑡)

)︂
−𝑞 cos𝜓(𝑡)

𝑅(𝑡) , (40)350

where 𝑝 and 𝑞 (see Equation (35) and (36)) are evaluated351
using 𝜙 = 𝑅(𝑡) cos(𝜓(𝑡)), specifically 𝑝 [𝑅(𝑡) cos(𝜓(𝑡))] and352
𝑞 [𝑅(𝑡) cos(𝜓(𝑡))]. In Equation (40), it can be further verified353
that in physical coordinates, the instantaneous frequency is not354
independent of amplitude, 𝑑𝜓̇/𝑑𝑅 ≠ 0. However, as will be fur-355
ther emphasized with simulations, the system response in physical356
coordinates still executes a constant period free vibration that is357
independent of amplitude.358

For comparison, we derive the transformation 𝑢 = Φ(𝜙) and the359
oscillator in 𝑢 coordinates. This can be accomplished using Equa-360
tion (4) with the explicit oscillator coefficient 𝑝(𝜙) (Equation (35))361
evaluated with the tautochronic path curvature (Equation (38)),362
which following two integration steps results in363

𝑃(𝜙) =
∫ 𝜙

0
𝑝(𝑥) 𝑑𝑥 = log cos 𝜙 − 3

2
log (1 + 𝜖 − 𝜖 cos2 𝜙), (41)364

and365

𝑢 = Φ(𝜙) =
∫ 𝜙

0
𝑒𝑃 (𝑥 ) 𝑑𝑥 =

sin 𝜙√︂
1 + 𝜖 sin2 𝜙

. (42)366

As expected, transforming the oscillator in Equation (34) using367
𝑢 = Φ(𝜙), results in the following simple harmonic oscillator368

𝑢 + (1 + 𝜖)𝑢 = 0, (43)369

where ℎ(𝑢) = (1 + 𝜖)𝑢. Specifically, this is a linear oscillator with370
a constant natural frequency 𝜔𝑛, where371

𝜔𝑛 =
√

1 + 𝜖, (44)372

Fig. 2 Phase plane portrait for the tautochronic nonlin-
ear system in physical coordinate φ.

Fig. 3 Phase plane portrait for the tautochronic linear
system in u .

which is non-dimensional as a result of the dependent and inde- 373
pendent variable scaling outlined in Section 3.1. In accordance 374
with the theorem (see Section 2.1), the isochronous condition in 375
𝑢-coordinates (see Equation (16)) can be immediately verified, 376
specifically after substituting ℎ(𝑢) = (1 + 𝜖)𝑢 and its derivative 377
ℎ′ (𝑢) = (1 + 𝜖). 378

Simulation results showing the system response in the phase 379
plane is shown for the physical coordinate 𝜙 in Figure 2 and for the 380
𝑢 coordinate in Figure 3. These results show how the transforma- 381
tion 𝑢 = Φ(𝜙) nonlinearly stretches the amplitude of the simple har- 382
monic oscillator. Furthermore, Figure 4 shows a comparison of the 383
instantaneous frequency of oscillation over three cycles for both os- 384
cillators when 𝜖 = 0.30. Specifically, the instantaneous frequency 385
is the time rate of change of the polar angles, 𝜓̇ and Ψ̇, which cor- 386
responds to the 𝜙 and 𝑢 phase planes, respectively. The system in 387
physical coordinates is simulated for two different initial conditions 388
including (𝜙(0), 𝜙̇(0)) = (1.5, 0) and (𝜙(0), 𝜙̇(0)) = (1, 0), which 389
in polar coordinates corresponds to (𝑅(0), 𝜓(0)) = (1.5, 0) and 390
(𝑅(0), 𝜓(0)) = (1, 0), respectively. Using these initial conditions, 391
Equation (34) and Equations (39)-(40) are used for simulating the 392
physical coordinate responses shown in Figure 2 and 4, respec- 393
tively. On the other hand, Equation (43) and Equations (12)-(13) 394
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Fig. 4 Instantaneous frequency of both oscillators over
three periods of oscillation for ϵ = 0.3.

are used for simulating the linear oscillator response (𝑢 coordi-395
nates). Furthermore, the coordinate transformation 𝑢 = Φ(𝜙) in396
Equation (42), is used to obtain the corresponding initial conditions397
for the two phase plane trajectories shown in Figure 3, which are398
(𝑢(0), 𝑢̇(0)) = (0.87, 0), (𝑢(0), 𝑢̇(0)) = (0.7, 0), and in polar co-399
ordinates, is (Γ(0),Ψ(0)) = (0.87, 0) and (Γ(0),Ψ(0)) = (0.7, 0).400

As expected, Figure 4 shows that the instantaneous frequency401
corresponding to the linear oscillator in 𝑢-coordinates is constant402
Ψ̇ =

√
1 + 𝜖 for both starting conditions. In addition, as depicted403

in the figure, the frequency of oscillation does vary for the system404
in physical coordinates. Specifically, the instantaneous frequency405
varies both with starting amplitude and during a period of oscil-406
lation, which are expected characteristics of a nonlinear oscillator.407
However, it can be further observed that the average frequency over408
a period of motion is constant (equal to the frequency of the 𝑢 sys-409
tem response) and independent of amplitude, which is an intriguing410
feature of this nonlinear tautochronic oscillator. These free vibra-411
tion characteristics demonstrate the utility of a pendulum vibration412
absorber motion path that uses a system tautochrone. A system413
tautochrone is found to enable constant period free vibration of414
the nonlinear pendulum response, which can facilitate precise tun-415
ing of the pendulum across all amplitudes of operation and thus416
eliminate nonlinear detuning related performance issues including417
reduced vibration attenuation and problematic bifurcations that can418
occur in the system response.419

4 Conclusion420

Theorem (1) presents a transformation that transforms a class421
of quadratic nonlinear oscillators which represent the dynamics422
of pendulum vibration absorber into a simple harmonic oscillator.423
Consequently, we showed that the initial value problem for the424
system in physical coordinates, 𝑠, is equivalent to an initial value425
problem in the transformed coordinate, 𝑢. Then, stemming from426
the transformed system, an isochronous condition is derived which427
comprises the transformation and position dependent coefficients,428
𝑝 and 𝑞. Applying the condition to the system leads to a differen-429
tial equation which solving it culminates in the tautochronic path430
for the cutout shape. We presented an equivalent isochronous con-431
dition that explicitly depends on position dependent coefficients of432
the nonlinear oscillator and eliminates dependence on the trans-433
formation. Then the novel condition is applied to the pendulum434
vibration absorber problem in a gravity field and ultimately, derived435

a tautochronic path curvature. 436
Finally, we conducted an investigation on the period of oscilla- 437

tion to comprehend different aspects of the proposed transformation 438
and the path. For this purpose, we explored the system through an- 439
alyzing the instantaneous frequency of oscillation, amplitude and 440
phase plane portraits for the system in both physical and trans- 441
formed coordinates. The results show that for the tautochronic 442
system, the period of the system in physical coordinates, executes 443
the same period of oscillation as the system in the transformed 444
coordinates. Therefore, the free vibration in physical coordinates 445
remarkably shows response characteristics that resembles that of 446
a linear oscillator and thus demonstrates the utility of a system 447
tautochrone motion path to pendulum vibration absorber design, 448
which can facilitate precise tuning of the pendulum across all am- 449
plitudes of operation, and thus help in mitigating common perfor- 450
mance issues related to the nonlinearity in the system. Future work 451
will investigate the forced vibration response characteristics of this 452
system tautochrone and the bounds on which this tautochronic non- 453
linear oscillator exhibits linear system response characteristics in- 454
cluding the sensitivity of these dynamics to small changes in the 455
physical system (such as errors in the path geometry, system inertia 456
ratio 𝜖 , and other relevant system design parameters). 457

Acknowledgment 458

This material is based upon work supported by the National 459
Science Foundation under Grant No. 2347632. Any opinions, 460
findings, and conclusions or recommendations expressed in this 461
material are those of the author(s) and do not necessarily reflect 462
the views of the National Science Foundation. 463

References 464

[1] Cronin, D. L., 1992, “Shake reduction in an automobile engine by means of 465
crankshaft-mounted pendulums,” Mechanism and Machine Theory, 27(5), pp. 466
517–533. 467

[2] Kooy, A., 2014, “Isolation is the Key,” Schaeffler Technologies GmbH & 468
Co.(Ed.), Solving the Powertrain Puzzle, Springer Fachmedien Wiesbaden, pp. 469
78–93. 470

[3] Monroe, R. J. and Shaw, S. W., 2013, “Nonlinear transient dynamics of pen- 471
dulum torsional vibration absorbers—part I: theory,” Journal of Vibration and 472
Acoustics, 135(1), p. 011017. 473

[4] Monroe, R. J. and Shaw, S. W., 2013, “Nonlinear transient dynamics of pen- 474
dulum torsional vibration absorbers—Part II: Experimental results,” Journal of 475
Vibration and Acoustics, 135(1), p. 011018. 476

[5] Shaw, S. W. and Geist, B., 2010, “Tuning for performance and stability in 477
systems of nearly tautochronic torsional vibration absorbers,” . 478

[6] Geist, B., Ramakrishnan, V., Attibele, P., and Resh, W., 2018, “Precision require- 479
ments for the bifilar hinge slots of a centrifugal pendulum vibration absorber,” 480
Precision Engineering, 52, pp. 1–14. 481

[7] Monroe, R. J., Shaw, S. W., Haddow, A. H., and Geist, B. K., 2011, “Accounting 482
for roller dynamics in the design of bifilar torsional vibration absorbers,” . 483

[8] Sabatini, M., 2004, “On the period function of x + f (x) x 2+ g (x)= 0,” Journal 484
of Differential Equations, 196(1), pp. 151–168. 485

[9] Sabatini, M., 1999, “On the period function of Liénard systems,” journal of 486
differential equations, 152(2), pp. 467–487. 487

[10] Kovacic, I. and Rand, R., 2013, “About a class of nonlinear oscillators with 488
amplitude-independent frequency,” Nonlinear Dynamics, 74, pp. 455–465. 489

[11] Monroe, R. J., Geist, B. K., and Shaw, S. W., 2024, “Stability and performance 490
benefits of system tautochrones for vibration control,” Journal of Mathematical 491
Analysis and Applications, 531(1), p. 127777. 492

6 / Valadbeigi: VIB-24-1168 Transactions of the ASME



List of Figures
1 Pendulum vibration absorber system in a gravity field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Phase plane portrait for the tautochronic nonlinear system in physical coordinate 𝜙. . . . . . . . . . . . . . . . . . . . . 5
3 Phase plane portrait for the tautochronic linear system in 𝑢. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Instantaneous frequency of both oscillators over three periods of oscillation for 𝜖 = 0.3. . . . . . . . . . . . . . . . . . . 6

List of Tables

Journal of Vibration and Acoustics Valadbeigi: VIB-24-1168 / 7

,


	1 Introduction
	2 Tautochronic Condition
	2.1 Motion Path Modification to a Simple Harmonic Oscillator
	2.2 Application of the Tautochronic Condition

	3 Pendulum Vibration Absorber in Gravity Field
	3.1 Dynamic Model
	3.2 Tautochronic Path for the Pendulum Mass
	3.3 Investigation of the Period of Oscillation for the Tautochronic Path

	4 Conclusion
	Acknowledgment
	References
	List of Figures
	List of Tables

