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Abstract
The gene expression landscape across different tissues and developmental stages
reflects their biological functions and evolutionary patterns. Integrative and com-
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still very limited in sorghum, which limits the discovery of the genetic basis under-
lying complex agricultural traits in sorghum. We characterized the genome-wide
expression landscape for sorghum using 873 RNA-sequencing (RNA-seq) datasets
representing 19 tissues. Our integrative analysis of these RNA-seq data provides the
most comprehensive transcriptomic atlas for sorghum, which will be valuable for
Assigned to Associate Editor Nils Stein. the sorghum research community for functional characterizations of sorghum genes.

L . Based on the transcriptome atlas, we identified 595 housekeeping genes (HKGs)
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sis pathways, which indicated that photosynthesis and microtubule-based movement

play important roles in starch synthesis. The global transcriptome atlas of sorghum
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1 | INTRODUCTION

Sorghum (Sorghum bicolor) is an economically important
and dual-purpose crop for both food and bioenergy. It
gains growing attention mainly due to its high tolerance to
drought and high temperatures. Its genome was assembled
using sorghum line BTx623 in 2009, and the assembly was
improved later with 34,211 annotated genes (McCormick
et al., 2018; Paterson et al., 2009). To improve sorghum
yield and local adaptation, genomics-enabled crop breeding
approaches have been used to facilitate sorghum selection
efficiency (Boyles et al., 2019). For example, a genomics
resource has demonstrated its capacity for trait discovery
to improve the understanding of the genetic architecture of
complex traits (Varshney et al., 2021). Additional functional
genomics resources are needed to expand the understanding
of the molecular basis of important traits in sorghum to main-
tain its sustainable role to meet possible food shortages in the
next decades.

The RNA-seq technique has been widely used to explore
gene expression and their functions under biological phenom-
ena in various plants (Conesa et al., 2016; Stark et al., 2019),
including sorghum (Boyles et al., 2019). Large-scale publicly
available RNA-seq data provide an opportunity to compre-
hensively characterize the expressional landscape at different
dimensions. Multiple studies have shown housekeeping genes
(HKGs), ubiquitously expressed in all situations, have evolved
slowly, while narrowly expressed genes or tissue-specific
expression genes (TEGs) have experienced fast evolution (J.
Yang et al., 2005; L. Zhang & Li, 2004). In addition, gene
expression is also associated with the fitness landscape, the
relationship between genotypes and the reproductive success,
of protein-coding genes (Wu et al., 2022). TEGs would benefit
the understanding of the molecular basis for a specific tissue

generated by this study provides an important functional genomics resource for trait

discovery and insight into starch synthesis regulation in sorghum.

Plain Language Summary

To characterize the genome-wide gene expression landscape and provide functional
genomics resources for future gene mining for complex traits, we comprehensively
analyzed large-scale RNA-seq data from different tissues. We built an atlas of
sorghum gene/IncRNA expression and identified housekeeping and tissue-specific
expression genes. We observed that gene expression patterns were closely related to
gene features and selection pressure. The co-expression network showed that photo-
synthesis and microtubule-based movement play important roles in starch synthesis.
The global transcriptome atlas provides an important functional genomics resource

for trait discovery and insight into starch synthesis regulation in sorghum.

formation and provide a gene resource for modifying a cer-
tain tissue using genetic engineering approaches (S.-J. Xiao
et al., 2010). It has been demonstrated that it can improve
the genomics prediction accuracy when integrating TEGs into
the genome prediction model for genomic selection breeding
(Fang et al., 2020). In mammals, genotype-tissue expression
projects were characterized by integrating large-scale gene
expression profiling to gain insight into the transcriptional
landscape and identify regulatory elements (Ardlie et al.,
2015; Liu et al., 2022; Teng et al., 2024). Thus far, a large
amount of RNA-Seq data for sorghum has been generated;
however, no efforts have been made to characterize the expres-
sion landscape in sorghum. The resources also provided an
opportunity to comprehensively characterize the long noncod-
ing RNA (IncRNA) and alternative splicing (AS) (Sun et al.,
2020). This knowledge would benefit the discovery of the
genomic basis underlying complex and important agricultural
traits in sorghum.

Co-expression analysis, which is based on the hypothe-
sis that functionally related genes have similar expression
patterns, has been widely used to identify genes in a spe-
cific pathway or provide candidate genes for complex traits
(Montenegro, 2022; Sarkar et al., 2014; Y. Zhang et al,,
2022). Integrating with specific conditions or phenotypes, the
identified trait-associated co-expression modules can provide
insights into the related pathways or molecular basis of the
trait (Hartl et al., 2021; van Dam et al., 2018). In sorghum,
co-expression networks were previously used to dissect the
biological mechanism of sorghum stem composition (Hennet
et al., 2020; X. Xiao et al., 2023). A co-expression database,
PlantNexus, was built to facilitate the co-expression analysis
for sorghum (Zhou et al., 2022). However, the starch synthesis
pathway, the most important nutrition pathway in sorghum,
was not studied using the approach of the co-expression
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network based on large-scale expression data. Quantitative
trait loci (QTLs) were identified in the germplasm popula-
tion to characterize the natural variation of sorghum seeds’
starch content (Ayalew et al., 2022; Rhodes et al., 2017; Zhou
et al., 2022), but the underlying regulatory mechanisms and
pathways were not fully understood (Q. Xiao et al., 2022).
Photosynthesis-related genes were proposed to be promising
candidates underlying the starch associations (Ayalew et al.,
2022; B. Chen et al., 2019; Rhodes et al., 2017; Q. Xiao et al.,
2022), while it remained to be determined in sorghum. Thus
far, several starch synthesis pathway genes have been identi-
fied (Campbell et al., 2016; Hill et al., 2012; Ke et al., 2022).
However, the related regulatory pathways remain underex-
plored due to the nature of complexity in the metabolism.
Lack of such knowledge limited the identification of other
starch biosynthesis genes for sorghum nutrient improvement.

In this study, we retrieved 873 transcriptomic datasets rep-
resenting 19 different tissues (roots, shoots, leaves, seeds,
etc.) to characterize the global gene expression landscape and
identify possible regulatory pathways of starch synthesis in
sorghum. With the systematic analysis, we identified IncRNA,
595 HKGs, and 2080 TEGs. Further analysis showed that
broadly expressed genes and HKGs tend to express at rela-
tively high levels and experience intense selection. Reversely,
narrow-expressed genes and TEGs are relatively low in
expression while evolving fast. We further constructed a
transcriptome-wide co-expression network (TW-CEN) that
allowed the identification of gene-guided starch synthesis
pathways and prioritized candidate genes for further explo-
ration. Our study provides a valuable functional genomics
resource for the sorghum community and greatly enhances
our understanding of the regulatory basis of starch synthesis
in sorghum.

2 | DATA AND METHODS

2.1 | RNA-seq data and processing

In total, 873 RNA-seq datasets were downloaded from the
National Center for Biotechnology Information’s (NCBI)
Sequence Read Archive (SRA) (Table S1). Raw data were
converted to FASTQ format using the Fastq-dump function
in the SRA Toolkit 3.0.1 (https://github.com/ncbi/sra-tools).
Data quality was checked using the FastQC 0.11.9 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-
quality reads and adapters were filtered using Trimmomatic
version 0.38 (Bolger et al., 2014). After filtration, the reads
were aligned on the sorghum reference genome (version 3.1)
with STAR (version 2.6.0) (Dobin et al., 2013; McCormick
et al., 2018; Paterson et al., 2009). The reference genome
and annotation were downloaded from Phytozome 13 (https://
phytozome.jgi.doe.gov) (Goodstein et al., 2012). The expres-

Core Ideas

e Large-scale transcriptome data were analyzed to
characterize the sorghum gene and long noncoding
RNA expression landscape.

* Housekeeping and tissue-specific genes were iden-
tified.

* The co-expression network was constructed to
identify the regulatory network of the starch syn-
thesis pathway.

sion level (transcript per million [TPM]) of genes was
quantified using StringTie (version 1.3.4) (M. Pertea et al.,
2015). Samples with a high map rate (>60%) and gene expres-
sion of at least five samples were kept, and gene expression
was transferred by log, (TPM+-2) for further analysis.

2.2 | IncRNA identification and expression
To identify the novel transcripts and IncRNA, each tran-
scriptome was assembled, and GTF files were merged using
StringTie (version 1.3.4) (M. Pertea et al., 2015). Comparison
with reference annotation was performed using the Gffcom-
pare package (G. Pertea & Pertea, 2020). Transcripts with
class codes i, u, X, y, and p were identified as potential
IncRNA. Further, the coding potential was referred to using
Coding Potential Calculator 2 (Kang et al., 2017). The inter-
proscan package was used to identify the potential protein
domains with the Pfam argument in -appl option (Quevillon
et al., 2005). The annotated IncRNA gff was used to refer to
the IncRNA expression using StringTie (version 1.3.4) (M.
Pertea et al., 2015).

2.3 | Alternative splicing

The rMATSs package was used to identify AS with the statoff
options (Shen et al., 2014) and five basic AS events: alterna-
tive 5’ splice sites (AS5SS), alternative 3’ splice sites (A3SS),
mutually exclusive exons (MXE), retained intron (RI), and
skipped exon (SE).

2.4 | Clustering analysis and tissue
relationship

Principal component analysis (PCA) was performed using the
prcomp function in R (4.1.2). The relationship was visualized
using a hierarchical clustering cut tree, which was made using
the dendextend package.
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2.5 | Housekeeping gene and
tissue-specificity

The HKGs were identified using the method used in a pre-
vious study (Machado et al., 2020), only genes that met all
the following three thresholds were identified as HKGs. The
method details are as follows:

1. Gene expresses in all tissues or samples and TPM > 1.
2. Genes with MFC — CoV scores falling in the first quartile
were classified as HKGs:

MFC = max (TPM ) /min (TPM

all—tissues al]—tissues)

CoV =sd (TPM /mean (TPM

a]l—tissues) all—tissues)

MEFEC — CoV score = MFC — CoV

where MFC is the ratio of the maximum to the minimum
of the gene expression and is calculated by dividing the
largest by the smallest TPM value.

CoV was computed by taking the standard deviation
divided by the mean expression of a gene.

3. Gene’s tissue-specificity index z was calculated based
on previous studies (Kryuchkova-Mostacci & Robinson-
Rechavi, 2017; Yanai et al., 2005). The 7 score ranged
from O (broad expression) to 1 (tissue-specific expression).
When 7 scales <0.35, the corresponding genes were iden-
tified as HKGs. The formula was used to calculate the 7
scale:

Zio (=% Xi

b x[ -
n—1 max(x;)

where x; is the expression of the gene in tissue i, and n is the
number of tissues.

2.6 | Tissue-specific expression gene
identification

TEGs were identified using tissue-specific expression scores
(TS_score). TS_score for each gene was calculated based on a
method proposed in a previous study (R. Y. Yang et al., 2018),
but without considering the alternative event. The method is
as follows:

XPgt )

N E
2 omEw;E (S, % logz_Expg,-

N
Z,— ny; %k W;

TS Score,, =

where TS_Score, ; is the tissue-specific score for gene g in
tissue t; Exp, ; is the median TPM gene expression value for
gene g in tissue t; Exp,; is the median TPM gene expres-
sion value for gene g in tissue i; log, (Exp, /Exp, ;) is the log,
transformed gene g expression ratio in between tissues t and
i; and w; is a weight for tissue i to adjust for the global gene
expression similarity between tissue i and other tissues. It was
calculated as I/ZjN Cor;j, where Cor; ; is the Spearman rank
correlation coefficient between tissues i and j. When a corre-
lation coefficient (Cori’j) is less than 0.4, it is set to 0, so that
only highly correlated tissues contribute to the weight.

S, is a binary flag and set to 1 only when the gene expres-
sion difference is statistically significant (p < 0.01). The
significance is assessed using the linear model function with
the rlm function in the MASS package (Venables & Ripley,
2002).

Here, n; is also weighted to indicate the similarity of tissues
1 and t using the correlation between two tissues (Spearman).
n; = 1 — r, where r is the correlation coefficient. With the #;
flag, highly similar tissues would reduce their contribution to
the tissue-specificity calculation for the target.

When a gene with a TS_score >3 for a target tissue, the gene
was identified as a tissue-biased expressed gene for the target
tissue. If a gene is only expressed in tissue t, the TS_score was
assigned as the maximum one in the dataset.

2.7 | Evolutionary pressures: dN/dS

The orthofinder package (v2.5.4) (Emms & Kelly, 2019)
was used to identify the orthologous group in 10 grass
species as follows: Zea mays (Schnable et al., 2009), Brachy-
podium distachyon (International Brachypodium Initiative,
2010), Leersia perrieri (Stein et al., 2018), Hordeum vulgare
(International Barley Genome Sequencing Consortium et al.,
2012), Oryza barthii (Stein et al., 2018), Setaria italica (G.
Zhang et al., 2012), Oryza sativa (Sasaki, 2005), Aegilops
tauschii (Luo etal.,2017), Pearl millet (Varshney et al., 2017),
and sorghum (McCormick et al., 2018; Paterson et al., 2009).
The protein sequence and CDS (coding sequence) file for
all the species except for sorghum were downloaded from
Ensembl (Hubbard et al., 2002), and sorghum genome data
were downloaded from Phytozome 13 (Goodstein et al., 2012;
Paterson et al., 2009). The alignment was performed using
the clustalw?2 package (version 2.1) (Larkin et al., 2007). The
alignment and CDS were merged into the PAML codon for-
mat (Suyama et al., 2006). The dN/dS (w) was calculated using
the codeML function from the PAML package (4.9) (Z. Yang,
2007).
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2.8 | Co-expression network analysis

The row expression matrix was filtered using the goodSam-
plesGenes function with verbose = 3 from WGCNA (1.71) to
build expression network (Langfelder & Horvath, 2008). Soft
threshold was identified using the pickSoftThreshold function
in the WGCNA. Module was identified using the cutree-
Dynamic function with deepSplit = 4 from the WGCNA.
Modules were further merged based on similarity <0.25.
The Hub gene for each module was identified using the
chooseTopHubInEachModule function in the WGCNA. The
co-expression network was visualized for topological overlap
matrix (TOM) > 0.06 using the GGNET package.

2.9 | Gene enrichment analysis

Gene Ontology (GO) annotation for the sorghum gene
was downloaded from the Phytozome 13 (Goodstein et al.,
2012). Genes without GO term annotation were annotated
using the closest orthologous gene from rice (http://rice.
plantbiology.msu.edu). GO enrichment analysis was con-
ducted using the topGO (4.2) package (version 2.46.0) in
R with the “weight01” algorithm and “fisher” statistic; the
overrepresented GO terms were identified using p < 0.01.

3 | RESULTS AND DISCUSSION

3.1 | Building a comprehensive gene
expression dataset in sorghum

To explore the transcriptome-wide expression landscape
in sorghum, we comprehensively analyzed 873 RNA-seq
datasets retrieved from the NCBI. The RNA-seq datasets cov-
ered 19 different sorghum tissues and seed compartments
(Figure la,b; Table S1). After filtering, a total of ~16.84
billion reads (an average mapping rate of 87.72%) were
uniquely mapped to the sorghum reference genome (RTx623,
v3.1) using STAR (Dobin et al., 2013; McCormick et al.,
2018; Paterson et al., 2009). The uniquely mapped read
rates of different RNA-seq datasets range from 14.91% to
97.53% (Figure S1), and 29 datasets with a low uniquely map
rate (<60%) were excluded from downstream analysis (Figure
S1). The gene expression level per gene was quantified as
TPM using Stringtie (M. Pertea et al., 2015). After filtering,
we generated a gene expression profile with 31,541 genes
across 844 RNA-seq datasets.

3.2 |
splicing

Transcripts, IncRNA, and alternative

To quantify the transcript using our diverse transcriptome
dataset, 844 GTF were merged and compared with refer-
ence annotation, resulting in 71,816 transcripts, including

47,196 reference annotated transcripts. 41,434 loci of the
71,816 loci were novel identification/transcript. From those
transcripts, 42,973 IncRNA transcripts were identified for
36,848 IncRNA, with an average exon number of 1.56. In
total, 77.88% (33,467) of the IncRNA were identified in the
intergenic region (Table S2).

In total, 66,750 AS events were identified for 15,163 genes,
which accounts for 53.56% of multiexonic genes. Separately,
we identified 3037 A3SS from 2211 genes, 1927 A5SS from
1433 genes, 6173 MXE from 3620 genes, 2664 RI from 2025
genes, and 52,949 SE from 14,194. Sobic.001G326900 with
72 AS events represented the gene with highest AS events
(Table S3). Although with different AS landscape, SE is
dominant AS event in all tissues (Figure S2).

3.3 | Tissue differentiation causes different
gene expression profiles

PCA was conducted to identify the drivers of expression
variations across samples. Despite the heterogeneity among
the RNA-seq datasets from different experiments, we still
observed that RNA-seq datasets were clustered by tissue, and
some were completely separate from other tissues, which indi-
cates the high quality of the expression data and robustness of
our analysis pipeline (Figure 1c,d). For example, in the PCA
of coding gene expression, the first PC mainly explains the
difference between vegetative and reproductive tissues, and
the second PC captures the difference between above-ground
tissues and roots (Figure lc). However, we also observed
a mixture among tissues or loose clusters for some tissues.
For example, RNA-seq datasets from seedlings were divided
into two clusters and clustered with leaf and shoot datasets,
separately (Figure 1c), which may result from differences in
sampling or tissue definition in different studies (Figure S3).
In the present study, we keep seedlings as independent tis-
sues. The PCA of percent spliced in for AS events also showed
extended tissue-specific features (Figure le; Figure S4).

To further assess if gene expression profiles could repre-
sent the tissue relationship, we built a hierarchical clustering
cut tree among tissues using tissue expression profiles, which
were an average of all log,(TPM+1) from the same tissue.
We found that tissues were mainly clustered based on the
similarity of tissue biological function, and five tissue clus-
ters were identified in the present study (Figure 1f). For
example, the expression profiles from developing seeds and
endosperm were clustered together (Figure 1f). The results
indicated that functionally related tissues tend to have simi-
lar gene expression patterns. Interestingly, we observed that
the gene expression profiles from roots were closely related
to those from shoots (Figure 1f). This result was supported
by a close relationship between roots and shoots in cotton in
coordinating nitrogen usage (J. Chen et al., 2020; Hatrick &
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FIGURE 1 Characterization of transcriptome data and expression across tissues in sorghum. (a) Cartoon illustration of developing sorghum

plants and tissues. The three plants represent three developmental stages: seedling, flowering, and mature stages. Labeled tissues were represented by

the RNA-seq dataset. (b) The counts of RNA-seq dataset across 19 tissues. (c) Principal component analysis of global gene expression patterns.

Tissues were indicated with the different colored dots as indexed beside the panel. Unknown tissue RNA-seq datasets were labeled as other. (d)

Principal component analysis of global long noncoding RNA (IncRNA) expression patterns. Color same as in (c). (e) Principal component analysis

of percent spliced in (PSI) of alternative splicing. Color same as in (c). (d) Transcriptome-wide gene expression based-phylogenetic tree for tissue

similarity. The five colors mean five different clusters corresponding to five different biological function units. PC, principal component.

Bowling, 1973). Pollen forms a single cluster that is sepa-
rated from all other tested tissues (Figure le), which may be
caused by special transcriptome features of the reproductive
cells. The above results showed that tissue differentiation is
a major factor of transcriptome differentiation. Overall, the
results indicate that the tissues could be well represented by
transcriptomic profiles.

3.4 | Gene expression landscape: Expression
breadth and tissue specificity

As shown above, the differences in gene expression across
tissues were observed. Next, we characterized the genome-
wide gene expression landscape across the 19 tissues by
quantifying gene expression breadth (described as narrow
to broad expression) using the tissue-specific expression
index (z) (Figure S5), expression abundance (log,(TPM+1)),
HKGs, and TEGs. Comparing to coding genes, IncRNA
showed lower expression (log2(TPM+1) = 1.44) (Figure 2a)

and higher tissue specificity (r = 0.94) (Figure 2b). Mean-
while, IncRNA (742 basepair) was shorter than coding genes
(Figure 2c). The 7 has a significant negative correlation with
expression level for gene (r = —0.40, p < 0.01) and IncRNA
(r = =0.75, p < 0.01) (Figure 3a; Figure S6). Genes with
7 < 0.35 and expression variability across tissues located
in the lower 25 quantiles were identified as HKGs, which
were constitutively and stably expressed across 19 tissues
(Machado et al., 2020; Yanai et al., 2005). Based on the cri-
teria, we identified 595 HKGs, with an average 7 of 0.20
(Figure 3b; Table S4). GO enrichment analysis showed that
GO terms associated with basic cell biological activities were
highly enriched, such as translation (p = 1.3 x 1071%), mRNA
splicing, via spliceosome (p = 5.3 x 107*) in the biolog-
ical process GO Term, few binding proteins in molecular
function GO Term, and eight cellular component GO Terms
(Figure 3c).

With a modified method from a previous study (see Sec-
tion 2) (R. Y. Yang et al., 2018), we also identified a total
of 2648 TEGs, representing 6.08% of sorghum genes (Table
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FIGURE 2 Comparison between long noncoding RNA (IncRNA) and coding genes. (a) The comparison of expression between IncRNA and

coding gene. (b) The tissue-specific comparison of IncRNA and coding gene. (c) The length of IncRNA and coding gene. Figure shows x axis range

from 0 to 1500 base pairs. TPM, transcript per million.

S5), for 19 tested tissues. For each tissue, the number of TEG
ranges from 8 (floral) to 823 (pollen); the highest number
of TEGs for pollen may be related to its specific tissue fea-
ture ensuring successful reproduction. The expression levels
of TEGs among tissues are significantly different (Figure S7).
For example, TEGs for pollen maintain the highest expression
levels, while apical TEGs have the lowest expression lev-
els (Figure S7). GO enrichment analysis showed TEGs were
mainly associated with tissue development or related tissue
biological functions (Table S6). For example, GO terms for
TEGs in seeds were highly enriched in reproduction (p = 2.9
x 10719), embryonic development (p = 4.0 x 10~%), post-
embryonic development (p = 1.4 x 10~7), nutrient reservoir
activity (p = 1.7 x 10™*) and monolayer-surrounded lipid
storage body (p = 3.3x 107°) (Figure 3d). The identifica-
tion of TEGs would be beneficial for us to understand tissue
development and the molecular basis of tissue-related traits in
sorghum, and it also provides gene resources for genetic engi-
neering specific tissues with minimal interference from other
tissues.

The comparison of 7 also showed a significant difference
(p < 22 x 10719, Wilcox test) between HKGs (median,
7 = 0.20) and TEGs (median, = = 0.91) (Figure 3b).
Although the HKGs (Log,(TPM+1) = 7.98) were
expressed significantly higher (p < 2.2 x 107'%) than
TEGs (Log,(TPM+1) = 5.32) (Figure 3e), the variation in
the expression of TEGs (standard deviation = 3.55) was much
larger than HKGs (standard deviation = 1.76) (Figure 3e).
The results indicate that broadly expressed genes (with high
7 score) and HKGs tend to have higher expression levels
than narrowly expressed genes on average. This finding
was consistent with previous studies in humans (Bentz
et al.,, 2019; Vinogradov, 2004). Interestingly, the highest
expressed gene (Sobic.008G043200, log,(TPM+1) = 19.90)
was specifically expressed in pollen, and it has the high-
est 7 (r = 0.97) in our dataset (Figure 3a). The varying
expression of TEGs may be associated with tissue-specific
methylation or chromatin accessibility (Pan et al., 2021).
The regulation of gene spatial expression needs to be further
explored in the future using Chromatin Immunoprecipitation
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FIGURE 3 Gene expression landscape. (a) Correlation between gene expression tissue specificity and gene expression levels. The red point

means the highest expressed gene in our dataset and with a high tissue-specific score. (b) Tissue specificity score and the comparison among all

genes (All), tissue-specific expression genes (TEGs), and housekeeping genes (HKGs). (c) Gene Ontology (GO) enrichment analysis for

housekeeping genes. BP means biological process; MF means molecular function; CC means cellular component. (d) GO enrichment analysis for

seed-specific expressed genes. (e) Gene expression comparison among all genes, TEGs, and HKGs. TPM, transcript per million.

sequencing (ChIP-seq) (Park, 2009), chromatin accessibility
(Klemm et al., 2019), and DNA methylation (Moore et al.,
2013).

3.5 | Gene expression landscape associated
with evolutionary gene features

In mammalian studies, short or compact genes tend to express
at high levels (Grishkevich & Yanai, 2014). However, our
results showed that gene/IncRNA length was significantly
negatively correlated with 7 (p = —0.44, p < 2.2 x 10710)
for gene and (p = —0.38, p < 2.2 x 107!) for IncRNA
(Figure 4a; Figure S8), but significantly positively correlated
with expression levels (p = 0.22, p < 2.2 x 107'9) for gene
and (p = 054, p < 2.2 X 10719) for IncRNA (Figure 4b;
Figure S8). Although the correlation between protein length
and expression landscape was diminished, it is still signifi-

cant statistically (for expression level, p =0.11 and p < 2.2 X
1071%; for 7, p = —0.27; p < 2.2 x 10719). More specifically,
the gene length of HKGs (median, 4233 bp) is significantly
(p < 22 x 10716, Wilcox test) longer than that of TEGs
(median, 2218 bp). As such, the protein length for HKGs
(median, 374 bp) was significantly (p = 6.85 x 10~%) longer
than TEGs (median, 366 bp). The difference in the association
between gene length and expression between mammals and
plants was also discussed in a previous study (H. Yang, 2009).
We also observed that intron content (bp) was positively cor-
related (p = 0.23, p < 2.2 x 107!%) with gene expression
level, but negatively correlated (p = —0.44, p < 2.2 x 1071¢)
with 7, implying the positive impact of intron content on gene
expression.

Different expression landscape genes undergo different
selection pressures during the divergence of sorghum from
other species. To characterize the divergence and gene
expression landscape, we analyzed the relationship between
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The relationship among gene expression, gene features, and selective pressure. The correlations between gene expression and gene

length (a), gene expression tissue specificity and gene length (b), gene expression and selective pressure (c), gene expression tissue specificity and

selective pressure (d). The y axis was log10 transferred dN/dS. (e) Selective pressure (dN/dS) across 19 tissues using tissue-specific expression genes.

To see the variation of dN/dS, the y axis only show from O to 1, the full range figure was showed in Figure S10a. (f) Non-synonymous substitutions

(dN) across 19 tissues using tissue-specific expression genes. To see the variation of dN/dS, the y axis only show from O to 1, the full range figure

was showed in Figure S10a. (g) Synonymous substitutions (dS) across 19 tissues using tissue-specific expression genes. TPM, transcript per million.

selection pressure as calculated by dN/dS (the ratio of
non-synonymous to synonymous substitutions, known as
) and gene expression landscapes. Our result showed a
significant negative correlation (p = —0.30, p < 2.2 X
1071©) between @ and gene expression levels, while a pos-
itive correlation (p = 0.20, p < 2.2 x 107'%) between
o and 7 (Figure 4c.d). Not surprisingly, HKGs experi-
enced an intensified purifying selection (p < 2.2 x 10710)
(median, @ = 0.09) than TEGs (median, ® = 0.15)
(Figure S9). We identified 33 positively selected genes
(w > 1) in TEGs but did not identify positively selected
genes in HKGs, which implies the major cause of spe-
ciation from TEGs rather than HKGs. In addition, we
identified the significant difference (p < 2.2 x 10~'°) between
HKGs and TEGs for dN and dS (Figure 4f; Figure S10a). For
example, the ratio (0.46) of dN between HKGs (0.05) and
TEGs (0.12) was much lower than that (0.72) of dS between
HKGs (0.63) and TEGs (0.87) (Figure 4g; Figure S10a), indi-
cating that the non-synonymous sites of HKGs experienced
more intense selection than TEGs. In support of the finding,
similar results were also observed in other species (J. Yang
et al., 2005; L. Zhang & Li, 2004). We further analyzed the
selective pressure among tissues, the tissue-selection pres-
sure was represented using dN/dS of the TEGs. The dN/dS

ratios showed significant (p = 2.1 X 107°, Kruskal-Wallis test)
differences among tissues (Figure 4e--g; Figure S10a). Specif-
ically, the microspore showed the highest @ (0.25); whereas,
leaf mesophyll has the lowest @ (0.12). Our results showed
a large variation in @ among tissues, an intensified selection
pressure for HKGs rather than TEGs, and a higher selec-
tion pressure for reproductive-related tissues than vegetable
tissues in sorghum (Figure S10b).

3.6 | Global co-expression network of
sorghum genes

Gene co-expression suggests likely co-regulatory relation-
ships or similar molecular functions for the genes. To gain
a global view of the co-expression profiles and provide
guides for trait gene discovery in sorghum, we built a TW-
CEN using hierarchical clustering of dissimilarity among the
TOM with 22,545 filtered genes from 844 RNA-seq datasets.
Those genes passed the filtering of goodSamplesGenes from
the WGCNA package (Langfelder & Horvath, 2008). A
soft threshold of 6 was identified and used to build TW-
CEN (Figure S11). The 22,545 genes were initially grouped
into 88 modules. After merging those modules with high
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cutHeight = 0.25 in mergeCloseModules, respectively. (b) The module size of the Transcriptome-wide co-expression network (TW-CEN). The bar

color corresponds to the module color in (a). (c) Global co-expression network visualized using ggnet2 based on topological overlap matrix

(TOM) > 0.06. The colors represent the corresponding module as shown in (b), and each node means a gene. (d) The heatmap of eigengene across

tested tissues. The eigengene scores within the tissue were averaged with a median. (e) The relationship of connectivity and expression landscape

using different TOM scores as the thresholds. (f) The correlation of connectivity and selection pressure (dN/dS) using different TOM scores as the

thresholds.

similarity in expression profiles (<0.25) to condense clusters
into more meaningful modules, it was consolidated into 35
modules with a large variation in sizes ranging from 38 (light-
pink3) to 6176 genes (skybluel) (Figure 5a,b). The global
weighted co-expression network was visualized in network
format based on TOM > 0.06, and it contains 17,895 nodes
and 28,081,248 edges (Figure 5c). Eigengenes and tissue
relationship analysis showed that the Darkolivegreen module
genes were highly expressed in pollen (Figure 5d), implying

that the genes within the model were likely related to the func-
tion specific to pollen development. With the same approach,
modules, including cyan, thistle2, blue2, and skyblue2, were
identified to be highly expressed within seed-related tissues
or compartments (Figure 5d). To explore the potential bio-
logical function for each module, we performed GO term
enrichment analysis for each of them. For each module, one
GO term (thistlel module) to 51 GO terms (skybluel mod-
ule) were enriched (Table S7; Figure S12). For example, the
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GO terms enriched for the lavenderblush3 module are mainly
involved in the RNA-related pathways and the GO terms
enriched for the saddlebrown module are mainly engaged
in stress response (Table S7). The results suggested simi-
lar functions of those co-expressed genes within the same
module.

In total, we identified 34 within-module hub genes for
all modules except for the “gray” module using the choose-
TopHubInEachModule function from the WGCNA package
(Table S8). We noticed that seven of the hub genes do
not have function annotation in the genome annotation file
(Table S9). Considering the function-related genes tend to
co-express, we identified the co-express genes for hub genes
based on a correlation coefficient greater than 0.50 to anno-
tate those uncharacterized genes. The enriched GO term
for the co-express genes of each of the seven hub genes
suggests their potential functions (Table S9). For example,
the top GO terms from GO domains for Sobic.003G016400
(thistle2 module) were enriched in translation (biological pro-
cess, p = 1.20 X 10~'h, ADP binding (molecular function,
p= 1.40)(10‘17), and nucleosomes (cellular component, 2.70
x 10712) (Table S9).

To understand the relationship between gene expression
landscape and co-expression network, we analyzed the rela-
tionship between the connectivity of co-expressed genes,
represented using the co-expressed gene number of a gene
based on the specific threshold of correlation coefficients of
co-expression, and the expression landscape. We observed
that connectivity was significantly positively correlated with
expression level (p = 0.17, p < 0.01) and 7 (p = 0.19,
p < 0.01) at 0.1 and the relationship between them was not
impacted by the threshold (Figure 5e; Figure S13), indicat-
ing that high-expressed gene and narrow-expressed genes
tend to have more co-express genes. Interestingly, the con-
nectivity was highly negatively correlated with roots (—0.16)
and endosperm (—0.13) (Figure S14), indicating the highly
expressed genes in roots and endosperm tend to have low con-
nectivity. Considering the potential impact on other genes’
expression of high-connectivity genes, we reasoned that they
experienced higher selection pressure than low-connectivity
genes. We further analyzed the correlation between selection
pressure (w = dN/dS) and connectivity, and the result showed
a weak but significant negative correlation (p = —0.06,
p < 0.01: at co-expression coefficient 0.1) between gene
connectivity and selection pressure (w) (Figure 5f), which
supports the hypothesis that high-connectivity genes tend
to experience more intense purifying selection. This result
was supported by similar observations in various plant
species such as Arabidopsis thaliana, Glycine max, O. sativa,
Populus spp., Solanum lycopersicum, Vitis spp., Z. mays,
and Populus tremula (Mihler et al., 2017; Masalia et al.,
2017).

3.7 | Starch pathway genes co-expression
networks

Starch is the major content and nutrition in sorghum seed;
however, the related regulatory network and pathways were
poorly understood. To identify the potential regulation net-
work in sorghum, we built a Starch Synthesis Pathway
Co-Expression Network (SSP-CEN) using 102 starch biosyn-
thesis pathway genes in sorghum, as guide genes, that have
been characterized in a previous publication (Campbell et al.,
2016) (Figure 6a,b). After analysis, the 102 starch biosyn-
thesis pathway genes were distributed in 13 modules from
TW-CEN. We noticed that 30.19% (32) of starch pathway
genes fell in the skybluel module, and 22.64% (24) of starch
pathway genes were clustered into the brown module. Both
modules represent a total of 52.83% (56) reported starch
pathway genes, indicating that the two modules were likely
important for starch synthesis. The 102 starch pathway genes
exhibited varying expression patterns across the tested tissues,
and they can be clustered into four categories based on the
clustering analysis (Figure 6a). Overall, genes from Category
1 are lowly expressed in most of the tissues, and the other three
were highly expressed in the tissues, particularly seed-related
tissues. For example, Sobic.010G022600 (SbWx) encodes
glucose-6-phosphate isomerase that is highly expressed in
seed compartment endosperms, while Sobic.004G163700
(SbSBEII) encoding starch synthase 2 and Sobic.010G093400
(8bSSIa) encoding starch branching enzyme were specifi-
cally expressed in the endosperm (Figure 6a). Category 2
genes were expressed in most of the tissues, but the expression
level was relatively low in reproductive tissues. In contrast,
category 3 genes were highly expressed in most of the tissues
except for pollen and microspore. Two genes in this cate-
gory (SbSH2.1: Sobic.002G160400 and Sobic.003G230500,
encode glucose-1-phosphate adenylyltransferase) were pref-
erentially expressed in seed and endosperm (Figure 6a),
suggesting the tissue-specific function in starch biosynthesis.
Category 4 genes were broadly expressed in all tested tis-
sues at a relatively higher level than the other three categories
(Figure 6a). A large variation in spatial expression patterns in
various tissues for the genes indicated a more complex regu-
latory network for starch synthesis that happened in multiple
tissues, including reproductive and vegetable tissues. A sim-
ilar pattern was also observed in rice and maize (Fu & Xue,
2010; Q. Xiao et al., 2021), suggesting a possible conserved
regulatory mechanism across cereal crops.

Here, SSP-CEN was built with a correlation coefficient
greater than 0.70. However, only 23 (21.70%) starch pathway
genes were present in SSP-CEN, such as Sobic.010G047700
(starch synthases, SbSSI), Sobic.004G238600 (starch syn-
thases 2, SSIIb), Sobic.006G066800 (starch branching, ShS-
bella), and Sobic.006G221000 (starch synthases 3, SbSSIII).
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FIGURE 6 Co-expression network of starch synthesis pathway. (a) Expression heatmap of 102 starch pathway genes across 19 tissues. (b)

Co-expression network of the starch pathway based on the correlation coefficient > 0.70. The colors represent the co-expression modules. (c) Gene

Ontology (GO) enrichment analysis of co-expressed genes in Starch Synthesis Pathway Co-Expression Network (SSP-CEN). BP means biological

process; MF means molecular function; CC means cellular component. (d) The co-expression network of seed expression starch pathway genes. (e)

GO enrichment analysis of co-expressed genes in seed starch synthesis co-expression network (SSS-CEN).

These genes are clustered in six modules, the majority (14)
of which are in category 4 (Figure 6a; Figure S15). In total,
4158 genes were identified to be co-expressed with the afore-
mentioned 23 guide genes, and these genes were used to build
starch biosynthesis-associated SSP-CEN (Figure 6b). To gain
insights into the potentially related pathways, GO enrichment
analysis was performed for the 4158 genes, and it shows
that 39 GO terms, including 11 biological process terms, 17
molecular function terms, and 11 cellular component terms,
are significantly enriched (p < 0.01) (Figure 6¢). The mul-
tiple photosynthesis-related GO terms were enriched, those
terms include photosynthesis, light harvesting, photosystem II
oxygen-evolving complex, photosystem I reaction center, and
photosystems I and II (Figure 6¢), implying the importance of
photosynthesis for starch biosynthesis in sorghum (Fiinfgeld
et al., 2021; Pfister & Zeeman, 2016).

To analyze the seed starch synthesis co-expression, we
further narrowed SSP-CEN down to seed starch synthesis
co-expression network (SSS-CEN) (Figure 6d) using
four starch biosynthesis genes (glycosyltransferase:

Sobic.010G144400; SPHCTI: Sobic.004G212300; SbSTP7:
Sobic.002G201900;  ShINT3: Sobic.002G035200) that
were preferentially expressed in seed-related tissues (seed,
endosperm, and pericarp) (Figure 6a). In total, the SSS-CEN
contains 1261 co-expressed genes (Figure 6d). All of the
co-expressed genes were clustered into 11 modules, and
the majority are from modules brown (575), skybluel
(440), magenta (93), bisque4 (63), and darkturquoise (62)
(Figure 6d). GO enrichment analysis for SSS-CEN showed
that the photosynthesis-related terms were significantly
enriched, implying the ability of the seed to photosynthesis
(Figure 6e). Interestingly, cellular components movement-
related terms were highly enriched for SSS-CEN, such as
microtubule-based movement, microtubule cytoskeleton
organization, microtubule binding, microtubule motor activ-
ity, and kinesin complex. Our results suggested that part of
the seed starch was synthesized in the seed.

Twelve GO terms, including the photosynthesis and matter-
movement-related terms, were significantly enriched for
both starch synthesis networks (Figure 6c.e). The role of

d ‘T 'PT0T ‘TLEEOV6T

//:sdny woiy papeoyt

ssdny) suonipuo)) pue sud | o 39S “[§707/90/€0] U0 A1eaqry auruQ KA ‘X snid ANsIoAtun smo s Aq 84T Z3dY/Z001 01/10p/w0o" Kot

1o}/ w00" a1

IPU0d-puE-S

QSUAIIT SUOWIIO)) AATEAI) d[qear[dde iy Aq pauIdA0S oIe SA[OIIE () SN JO SN 10§ AIRIQIT dUIUQ) AI[IA UO (



130f 16 The Plant Genome .0

HUET AL.

microtubule-based movements, significantly enriched in both
starch synthesis co-expression networks (Figure 6c.e), in
starch synthesis, was rarely studied in previous studies. In the
future, developing metabolic datasets and methods to con-
nect photosynthesis (source) with seed starch content (sink)
is needed to facilitate molecular design breeding in sorghum.

3.8 | IncRNA associated with seed starch
synthesis

To identify the potential IncRNA associated with starch syn-
thesis, we examined the correlation of expression between
seed starch synthesis genes and IncRNA. Eleven and
one IncRNA were co-expressed with Sobic.001G083900:
SbPHO1 and Sobic.004G212300: SbHCT1 based on correla-
tion coefficient r > 0.75 (Table S10). The highest correlated
IncRNA (MSTRG.29733) is localized on chromosome 1
and enrichedly expressed in seed component tissues, such
as endosperm (Figure S16). The high correlation between
IncRNA and mRNA implies the function of IncRNA in reg-
ulating starch content in sorghum seed. However, the fine
regulating landscape for starch synthesis and accumulation
in sorghum seed needs the single-cell transcriptome and
functional genomics (Rich-Griffin et al., 2020).

3.9 | Co-expression gene of seed starch
synthesis not colocalized with seed starch QTL
for in sorghum

Based on the Guilty-By-Association (GBA) principle, we
expected that many co-expression genes in SSP-CEN regulate
seed starch contents and also overlap with seed starch content
QTLs. To do this, we retrieved a total of 46 seed starch content
QTLs that were compiled from previous publications (Table
S11). We identified 721 out of the 4158 co-expression genes,
including 21 starch synthesis pathway genes, overlapping with
QTL or 5669 genes around QTL (250 kb) windows (Table
S11). We tested whether the overlap randomly happened using
the y° test, and the results showed no significant (p = 0.30,
;(2 test) enrichment was observed. However, the result may
be caused by the global co-expression network of starch syn-
thesis and seed-specific starch content QTLs. Nonetheless,
we still checked the overlap number (228) of genes between
SSS-CEN and seed starch content QTLs. We observed the
co-expression genes within SSS-CEN were still not signif-
icantly (p = 0.25, 4 test) enriched in QTL regions. The
functional variants are needed for a QTL gene to cause the
natural variation, while co-expression networks can only iden-
tify similar expressing genes, however, the functional variants
were not necessary for co-expression. A previous study in
humans showed that the co-expression was non-related to the

genetic architecture of neuropsychiatric disease risk (Hartl
etal., 2021).

4 | CONCLUSIONS

In this study, we integrated large-scale publicly available
RNA-seq data to depict the landscape of transcription-wide
transcript expression in sorghum. The dataset and the results
provide a valuable genomic resource for sorghum biologi-
cal and trait discovery. Identification and characterization of
IncRNA, HKGs, and TEGs here provide insight into sorghum
tissue developmental biology and chances for genetic modifi-
cation of the specific tissues in sorghum. The transcriptome
landscape can be integrated with genome-wide association
studies to jointly dissect the genetic architecture of complex
traits. The co-expression network helps identify regulatory
pathways controlling complex traits. As exemplified by starch
synthesis, we reveal that photosynthesis and IncRNA were
tightly associated with starch synthesis. Our transcriptome
dataset provides a valuable genomics resource to facilitate
sorghum genomics-enabled breeding and trait discovery in
sorghum to meet the increasing demands of food for humans.
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