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Abstract
The gene expression landscape across different tissues and developmental stages

reflects their biological functions and evolutionary patterns. Integrative and com-

prehensive analyses of all transcriptomic data in an organism are instrumental to

obtaining a comprehensive picture of gene expression landscape. Such studies are

still very limited in sorghum, which limits the discovery of the genetic basis under-

lying complex agricultural traits in sorghum. We characterized the genome-wide

expression landscape for sorghum using 873 RNA-sequencing (RNA-seq) datasets

representing 19 tissues. Our integrative analysis of these RNA-seq data provides the

most comprehensive transcriptomic atlas for sorghum, which will be valuable for

the sorghum research community for functional characterizations of sorghum genes.

Based on the transcriptome atlas, we identified 595 housekeeping genes (HKGs)

and 2080 tissue-specific expression genes (TEGs) for the 19 tissues. We identi-

fied different gene features between HKGs and TEGs, and we found that HKGs

have experienced stronger selective constraints than TEGs. Furthermore, we built a

transcriptome-wide co-expression network (TW-CEN) comprising 35 modules with

each module enriched in specific Gene Ontology terms. High-connectivity genes in

TW-CEN tend to express at high levels while undergoing intensive selective pressure.

We also built global and seed-preferential co-expression networks of starch synthe-

sis pathways, which indicated that photosynthesis and microtubule-based movement

play important roles in starch synthesis. The global transcriptome atlas of sorghum
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generated by this study provides an important functional genomics resource for trait

discovery and insight into starch synthesis regulation in sorghum.

Plain Language Summary
To characterize the genome-wide gene expression landscape and provide functional

genomics resources for future gene mining for complex traits, we comprehensively

analyzed large-scale RNA-seq data from different tissues. We built an atlas of

sorghum gene/lncRNA expression and identified housekeeping and tissue-specific

expression genes. We observed that gene expression patterns were closely related to

gene features and selection pressure. The co-expression network showed that photo-

synthesis and microtubule-based movement play important roles in starch synthesis.

The global transcriptome atlas provides an important functional genomics resource

for trait discovery and insight into starch synthesis regulation in sorghum.

1 INTRODUCTION

Sorghum (Sorghum bicolor) is an economically important

and dual-purpose crop for both food and bioenergy. It

gains growing attention mainly due to its high tolerance to

drought and high temperatures. Its genome was assembled

using sorghum line BTx623 in 2009, and the assembly was

improved later with 34,211 annotated genes (McCormick

et al., 2018; Paterson et al., 2009). To improve sorghum

yield and local adaptation, genomics-enabled crop breeding

approaches have been used to facilitate sorghum selection

efficiency (Boyles et al., 2019). For example, a genomics

resource has demonstrated its capacity for trait discovery

to improve the understanding of the genetic architecture of

complex traits (Varshney et al., 2021). Additional functional

genomics resources are needed to expand the understanding

of the molecular basis of important traits in sorghum to main-

tain its sustainable role to meet possible food shortages in the

next decades.

The RNA-seq technique has been widely used to explore

gene expression and their functions under biological phenom-

ena in various plants (Conesa et al., 2016; Stark et al., 2019),

including sorghum (Boyles et al., 2019). Large-scale publicly

available RNA-seq data provide an opportunity to compre-

hensively characterize the expressional landscape at different

dimensions. Multiple studies have shown housekeeping genes

(HKGs), ubiquitously expressed in all situations, have evolved

slowly, while narrowly expressed genes or tissue-specific

expression genes (TEGs) have experienced fast evolution (J.

Yang et al., 2005; L. Zhang & Li, 2004). In addition, gene

expression is also associated with the fitness landscape, the

relationship between genotypes and the reproductive success,

of protein-coding genes (Wu et al., 2022). TEGs would benefit

the understanding of the molecular basis for a specific tissue

formation and provide a gene resource for modifying a cer-

tain tissue using genetic engineering approaches (S.-J. Xiao

et al., 2010). It has been demonstrated that it can improve

the genomics prediction accuracy when integrating TEGs into

the genome prediction model for genomic selection breeding

(Fang et al., 2020). In mammals, genotype-tissue expression

projects were characterized by integrating large-scale gene

expression profiling to gain insight into the transcriptional

landscape and identify regulatory elements (Ardlie et al.,

2015; Liu et al., 2022; Teng et al., 2024). Thus far, a large

amount of RNA-Seq data for sorghum has been generated;

however, no efforts have been made to characterize the expres-

sion landscape in sorghum. The resources also provided an

opportunity to comprehensively characterize the long noncod-

ing RNA (lncRNA) and alternative splicing (AS) (Sun et al.,

2020). This knowledge would benefit the discovery of the

genomic basis underlying complex and important agricultural

traits in sorghum.

Co-expression analysis, which is based on the hypothe-

sis that functionally related genes have similar expression

patterns, has been widely used to identify genes in a spe-

cific pathway or provide candidate genes for complex traits

(Montenegro, 2022; Sarkar et al., 2014; Y. Zhang et al.,

2022). Integrating with specific conditions or phenotypes, the

identified trait-associated co-expression modules can provide

insights into the related pathways or molecular basis of the

trait (Hartl et al., 2021; van Dam et al., 2018). In sorghum,

co-expression networks were previously used to dissect the

biological mechanism of sorghum stem composition (Hennet

et al., 2020; X. Xiao et al., 2023). A co-expression database,

PlantNexus, was built to facilitate the co-expression analysis

for sorghum (Zhou et al., 2022). However, the starch synthesis

pathway, the most important nutrition pathway in sorghum,

was not studied using the approach of the co-expression
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network based on large-scale expression data. Quantitative

trait loci (QTLs) were identified in the germplasm popula-

tion to characterize the natural variation of sorghum seeds’

starch content (Ayalew et al., 2022; Rhodes et al., 2017; Zhou

et al., 2022), but the underlying regulatory mechanisms and

pathways were not fully understood (Q. Xiao et al., 2022).

Photosynthesis-related genes were proposed to be promising

candidates underlying the starch associations (Ayalew et al.,

2022; B. Chen et al., 2019; Rhodes et al., 2017; Q. Xiao et al.,

2022), while it remained to be determined in sorghum. Thus

far, several starch synthesis pathway genes have been identi-

fied (Campbell et al., 2016; Hill et al., 2012; Ke et al., 2022).

However, the related regulatory pathways remain underex-

plored due to the nature of complexity in the metabolism.

Lack of such knowledge limited the identification of other

starch biosynthesis genes for sorghum nutrient improvement.

In this study, we retrieved 873 transcriptomic datasets rep-

resenting 19 different tissues (roots, shoots, leaves, seeds,

etc.) to characterize the global gene expression landscape and

identify possible regulatory pathways of starch synthesis in

sorghum. With the systematic analysis, we identified lncRNA,

595 HKGs, and 2080 TEGs. Further analysis showed that

broadly expressed genes and HKGs tend to express at rela-

tively high levels and experience intense selection. Reversely,

narrow-expressed genes and TEGs are relatively low in

expression while evolving fast. We further constructed a

transcriptome-wide co-expression network (TW-CEN) that

allowed the identification of gene-guided starch synthesis

pathways and prioritized candidate genes for further explo-

ration. Our study provides a valuable functional genomics

resource for the sorghum community and greatly enhances

our understanding of the regulatory basis of starch synthesis

in sorghum.

2 DATA AND METHODS

2.1 RNA-seq data and processing

In total, 873 RNA-seq datasets were downloaded from the

National Center for Biotechnology Information’s (NCBI)

Sequence Read Archive (SRA) (Table S1). Raw data were

converted to FASTQ format using the Fastq-dump function

in the SRA Toolkit 3.0.1 (https://github.com/ncbi/sra-tools).

Data quality was checked using the FastQC 0.11.9 (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-

quality reads and adapters were filtered using Trimmomatic

version 0.38 (Bolger et al., 2014). After filtration, the reads

were aligned on the sorghum reference genome (version 3.1)

with STAR (version 2.6.0) (Dobin et al., 2013; McCormick

et al., 2018; Paterson et al., 2009). The reference genome

and annotation were downloaded from Phytozome 13 (https://

phytozome.jgi.doe.gov) (Goodstein et al., 2012). The expres-

Core Ideas
∙ Large-scale transcriptome data were analyzed to

characterize the sorghum gene and long noncoding

RNA expression landscape.

∙ Housekeeping and tissue-specific genes were iden-

tified.

∙ The co-expression network was constructed to

identify the regulatory network of the starch syn-

thesis pathway.

sion level (transcript per million [TPM]) of genes was

quantified using StringTie (version 1.3.4) (M. Pertea et al.,

2015). Samples with a high map rate (>60%) and gene expres-

sion of at least five samples were kept, and gene expression

was transferred by log2(TPM+2) for further analysis.

2.2 lncRNA identification and expression

To identify the novel transcripts and lncRNA, each tran-

scriptome was assembled, and GTF files were merged using

StringTie (version 1.3.4) (M. Pertea et al., 2015). Comparison

with reference annotation was performed using the Gffcom-

pare package (G. Pertea & Pertea, 2020). Transcripts with

class codes i, u, x, y, and p were identified as potential

lncRNA. Further, the coding potential was referred to using

Coding Potential Calculator 2 (Kang et al., 2017). The inter-

proscan package was used to identify the potential protein

domains with the Pfam argument in -appl option (Quevillon

et al., 2005). The annotated lncRNA gff was used to refer to

the lncRNA expression using StringTie (version 1.3.4) (M.

Pertea et al., 2015).

2.3 Alternative splicing

The rMATs package was used to identify AS with the statoff

options (Shen et al., 2014) and five basic AS events: alterna-

tive 5′ splice sites (A5SS), alternative 3′ splice sites (A3SS),

mutually exclusive exons (MXE), retained intron (RI), and

skipped exon (SE).

2.4 Clustering analysis and tissue
relationship

Principal component analysis (PCA) was performed using the

prcomp function in R (4.1.2). The relationship was visualized

using a hierarchical clustering cut tree, which was made using

the dendextend package.
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2.5 Housekeeping gene and
tissue-specificity

The HKGs were identified using the method used in a pre-

vious study (Machado et al., 2020), only genes that met all

the following three thresholds were identified as HKGs. The

method details are as follows:

1. Gene expresses in all tissues or samples and TPM > 1.

2. Genes with MFC − CoV scores falling in the first quartile

were classified as HKGs:

MFC = max
(
TPMall−tissues

)
∕min

(
TPMall−tissues

)

CoV = sd
(
TPMall−tissues

)
∕mean

(
TPMall−tissues

)

MFC − CoV score = MFC − CoV

where MFC is the ratio of the maximum to the minimum

of the gene expression and is calculated by dividing the

largest by the smallest TPM value.

CoV was computed by taking the standard deviation

divided by the mean expression of a gene.

3. Gene’s tissue-specificity index τ was calculated based

on previous studies (Kryuchkova-Mostacci & Robinson-

Rechavi, 2017; Yanai et al., 2005). The τ score ranged

from 0 (broad expression) to 1 (tissue-specific expression).

When τ scales <0.35, the corresponding genes were iden-

tified as HKGs. The formula was used to calculate the τ
scale:

𝜏 =
∑𝑛

𝑖=1 (1 − 𝑥̂𝑖)
𝑛 − 1

; 𝑥̂𝑖 =
𝑥𝑖

𝑚𝑎𝑥(𝑥𝑖)

where xi is the expression of the gene in tissue i, and n is the

number of tissues.

2.6 Tissue-specific expression gene
identification

TEGs were identified using tissue-specific expression scores

(TS_score). TS_score for each gene was calculated based on a

method proposed in a previous study (R. Y. Yang et al., 2018),

but without considering the alternative event. The method is

as follows:

𝑇𝑆_𝑆𝑐𝑜𝑟𝑒𝑔,𝑡 =

∑𝑁

𝑖
𝑛𝑖 ∗ 𝑤𝑖 ∗ (𝑆𝑔,𝑖 ∗ 𝑙𝑜𝑔2

𝐸𝑥𝑝𝑔,𝑡

𝐸𝑥𝑝𝑔,𝑖
)

∑𝑁

𝑖
𝑛𝑡,𝑖 ∗ 𝑤𝑖

where TS_Scoreg,t is the tissue-specific score for gene g in

tissue t; Expg,t is the median TPM gene expression value for

gene g in tissue t; Expg,i is the median TPM gene expres-

sion value for gene g in tissue i; log2(Expg,t/Expg,i) is the log2

transformed gene g expression ratio in between tissues t and

i; and wi is a weight for tissue i to adjust for the global gene

expression similarity between tissue i and other tissues. It was

calculated as 1/
∑𝑁

j Cori,j, where Cori,j is the Spearman rank

correlation coefficient between tissues i and j. When a corre-

lation coefficient (Cori,j) is less than 0.4, it is set to 0, so that

only highly correlated tissues contribute to the weight.

Sg,i is a binary flag and set to 1 only when the gene expres-

sion difference is statistically significant (p < 0.01). The

significance is assessed using the linear model function with

the rlm function in the MASS package (Venables & Ripley,

2002).

Here, ni is also weighted to indicate the similarity of tissues

i and t using the correlation between two tissues (Spearman).

ni = 1 − r, where r is the correlation coefficient. With the ni

flag, highly similar tissues would reduce their contribution to

the tissue-specificity calculation for the target.

When a gene with a TS_score>3 for a target tissue, the gene

was identified as a tissue-biased expressed gene for the target

tissue. If a gene is only expressed in tissue t, the TS_score was

assigned as the maximum one in the dataset.

2.7 Evolutionary pressures: dN/dS

The orthofinder package (v2.5.4) (Emms & Kelly, 2019)

was used to identify the orthologous group in 10 grass

species as follows: Zea mays (Schnable et al., 2009), Brachy-
podium distachyon (International Brachypodium Initiative,

2010), Leersia perrieri (Stein et al., 2018), Hordeum vulgare
(International Barley Genome Sequencing Consortium et al.,

2012), Oryza barthii (Stein et al., 2018), Setaria italica (G.

Zhang et al., 2012), Oryza sativa (Sasaki, 2005), Aegilops
tauschii (Luo et al., 2017),Pearl millet (Varshney et al., 2017),

and sorghum (McCormick et al., 2018; Paterson et al., 2009).

The protein sequence and CDS (coding sequence) file for

all the species except for sorghum were downloaded from

Ensembl (Hubbard et al., 2002), and sorghum genome data

were downloaded from Phytozome 13 (Goodstein et al., 2012;

Paterson et al., 2009). The alignment was performed using

the clustalw2 package (version 2.1) (Larkin et al., 2007). The

alignment and CDS were merged into the PAML codon for-

mat (Suyama et al., 2006). The dN/dS (ω) was calculated using

the codeML function from the PAML package (4.9) (Z. Yang,

2007).
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2.8 Co-expression network analysis

The row expression matrix was filtered using the goodSam-

plesGenes function with verbose = 3 from WGCNA (1.71) to

build expression network (Langfelder & Horvath, 2008). Soft

threshold was identified using the pickSoftThreshold function

in the WGCNA. Module was identified using the cutree-
Dynamic function with deepSplit = 4 from the WGCNA.

Modules were further merged based on similarity <0.25.

The Hub gene for each module was identified using the

chooseTopHubInEachModule function in the WGCNA. The

co-expression network was visualized for topological overlap

matrix (TOM) > 0.06 using the GGNET package.

2.9 Gene enrichment analysis

Gene Ontology (GO) annotation for the sorghum gene

was downloaded from the Phytozome 13 (Goodstein et al.,

2012). Genes without GO term annotation were annotated

using the closest orthologous gene from rice (http://rice.

plantbiology.msu.edu). GO enrichment analysis was con-

ducted using the topGO (4.2) package (version 2.46.0) in

R with the “weight01” algorithm and “fisher” statistic; the

overrepresented GO terms were identified using p < 0.01.

3 RESULTS AND DISCUSSION

3.1 Building a comprehensive gene
expression dataset in sorghum

To explore the transcriptome-wide expression landscape

in sorghum, we comprehensively analyzed 873 RNA-seq

datasets retrieved from the NCBI. The RNA-seq datasets cov-

ered 19 different sorghum tissues and seed compartments

(Figure 1a,b; Table S1). After filtering, a total of ∼16.84

billion reads (an average mapping rate of 87.72%) were

uniquely mapped to the sorghum reference genome (RTx623,

v3.1) using STAR (Dobin et al., 2013; McCormick et al.,

2018; Paterson et al., 2009). The uniquely mapped read

rates of different RNA-seq datasets range from 14.91% to

97.53% (Figure S1), and 29 datasets with a low uniquely map

rate (<60%) were excluded from downstream analysis (Figure

S1). The gene expression level per gene was quantified as

TPM using Stringtie (M. Pertea et al., 2015). After filtering,

we generated a gene expression profile with 31,541 genes

across 844 RNA-seq datasets.

3.2 Transcripts, lncRNA, and alternative
splicing

To quantify the transcript using our diverse transcriptome

dataset, 844 GTF were merged and compared with refer-

ence annotation, resulting in 71,816 transcripts, including

47,196 reference annotated transcripts. 41,434 loci of the

71,816 loci were novel identification/transcript. From those

transcripts, 42,973 lncRNA transcripts were identified for

36,848 lncRNA, with an average exon number of 1.56. In

total, 77.88% (33,467) of the lncRNA were identified in the

intergenic region (Table S2).

In total, 66,750 AS events were identified for 15,163 genes,

which accounts for 53.56% of multiexonic genes. Separately,

we identified 3037 A3SS from 2211 genes, 1927 A5SS from

1433 genes, 6173 MXE from 3620 genes, 2664 RI from 2025

genes, and 52,949 SE from 14,194. Sobic.001G326900 with

72 AS events represented the gene with highest AS events

(Table S3). Although with different AS landscape, SE is

dominant AS event in all tissues (Figure S2).

3.3 Tissue differentiation causes different
gene expression profiles

PCA was conducted to identify the drivers of expression

variations across samples. Despite the heterogeneity among

the RNA-seq datasets from different experiments, we still

observed that RNA-seq datasets were clustered by tissue, and

some were completely separate from other tissues, which indi-

cates the high quality of the expression data and robustness of

our analysis pipeline (Figure 1c,d). For example, in the PCA

of coding gene expression, the first PC mainly explains the

difference between vegetative and reproductive tissues, and

the second PC captures the difference between above-ground

tissues and roots (Figure 1c). However, we also observed

a mixture among tissues or loose clusters for some tissues.

For example, RNA-seq datasets from seedlings were divided

into two clusters and clustered with leaf and shoot datasets,

separately (Figure 1c), which may result from differences in

sampling or tissue definition in different studies (Figure S3).

In the present study, we keep seedlings as independent tis-

sues. The PCA of percent spliced in for AS events also showed

extended tissue-specific features (Figure 1e; Figure S4).

To further assess if gene expression profiles could repre-

sent the tissue relationship, we built a hierarchical clustering

cut tree among tissues using tissue expression profiles, which

were an average of all log2(TPM+1) from the same tissue.

We found that tissues were mainly clustered based on the

similarity of tissue biological function, and five tissue clus-

ters were identified in the present study (Figure 1f). For

example, the expression profiles from developing seeds and

endosperm were clustered together (Figure 1f). The results

indicated that functionally related tissues tend to have simi-

lar gene expression patterns. Interestingly, we observed that

the gene expression profiles from roots were closely related

to those from shoots (Figure 1f). This result was supported

by a close relationship between roots and shoots in cotton in

coordinating nitrogen usage (J. Chen et al., 2020; Hatrick &
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F IGURE 1 Characterization of transcriptome data and expression across tissues in sorghum. (a) Cartoon illustration of developing sorghum

plants and tissues. The three plants represent three developmental stages: seedling, flowering, and mature stages. Labeled tissues were represented by

the RNA-seq dataset. (b) The counts of RNA-seq dataset across 19 tissues. (c) Principal component analysis of global gene expression patterns.

Tissues were indicated with the different colored dots as indexed beside the panel. Unknown tissue RNA-seq datasets were labeled as other. (d)

Principal component analysis of global long noncoding RNA (lncRNA) expression patterns. Color same as in (c). (e) Principal component analysis

of percent spliced in (PSI) of alternative splicing. Color same as in (c). (d) Transcriptome-wide gene expression based-phylogenetic tree for tissue

similarity. The five colors mean five different clusters corresponding to five different biological function units. PC, principal component.

Bowling, 1973). Pollen forms a single cluster that is sepa-

rated from all other tested tissues (Figure 1e), which may be

caused by special transcriptome features of the reproductive

cells. The above results showed that tissue differentiation is

a major factor of transcriptome differentiation. Overall, the

results indicate that the tissues could be well represented by

transcriptomic profiles.

3.4 Gene expression landscape: Expression
breadth and tissue specificity

As shown above, the differences in gene expression across

tissues were observed. Next, we characterized the genome-

wide gene expression landscape across the 19 tissues by

quantifying gene expression breadth (described as narrow

to broad expression) using the tissue-specific expression

index (τ) (Figure S5), expression abundance (log2(TPM+1)),

HKGs, and TEGs. Comparing to coding genes, lncRNA

showed lower expression (log2(TPM+1) = 1.44) (Figure 2a)

and higher tissue specificity (τ = 0.94) (Figure 2b). Mean-

while, lncRNA (742 basepair) was shorter than coding genes

(Figure 2c). The τ has a significant negative correlation with

expression level for gene (r = −0.40, p < 0.01) and lncRNA

(r = −0.75, p < 0.01) (Figure 3a; Figure S6). Genes with

τ < 0.35 and expression variability across tissues located

in the lower 25 quantiles were identified as HKGs, which

were constitutively and stably expressed across 19 tissues

(Machado et al., 2020; Yanai et al., 2005). Based on the cri-

teria, we identified 595 HKGs, with an average τ of 0.20

(Figure 3b; Table S4). GO enrichment analysis showed that

GO terms associated with basic cell biological activities were

highly enriched, such as translation (p = 1.3 × 10−10), mRNA

splicing, via spliceosome (p = 5.3 × 10−4) in the biolog-

ical process GO Term, few binding proteins in molecular

function GO Term, and eight cellular component GO Terms

(Figure 3c).

With a modified method from a previous study (see Sec-

tion 2) (R. Y. Yang et al., 2018), we also identified a total

of 2648 TEGs, representing 6.08% of sorghum genes (Table
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7 of 16 HU ET AL.The Plant Genome

F IGURE 2 Comparison between long noncoding RNA (lncRNA) and coding genes. (a) The comparison of expression between lncRNA and

coding gene. (b) The tissue-specific comparison of lncRNA and coding gene. (c) The length of lncRNA and coding gene. Figure shows x axis range

from 0 to 1500 base pairs. TPM, transcript per million.

S5), for 19 tested tissues. For each tissue, the number of TEG

ranges from 8 (floral) to 823 (pollen); the highest number

of TEGs for pollen may be related to its specific tissue fea-

ture ensuring successful reproduction. The expression levels

of TEGs among tissues are significantly different (Figure S7).

For example, TEGs for pollen maintain the highest expression

levels, while apical TEGs have the lowest expression lev-

els (Figure S7). GO enrichment analysis showed TEGs were

mainly associated with tissue development or related tissue

biological functions (Table S6). For example, GO terms for

TEGs in seeds were highly enriched in reproduction (p = 2.9

× 10−10), embryonic development (p = 4.0 × 10−8), post-

embryonic development (p = 1.4 × 10−7), nutrient reservoir

activity (p = 1.7 × 10−4) and monolayer-surrounded lipid

storage body (p = 3.3× 10−9) (Figure 3d). The identifica-

tion of TEGs would be beneficial for us to understand tissue

development and the molecular basis of tissue-related traits in

sorghum, and it also provides gene resources for genetic engi-

neering specific tissues with minimal interference from other

tissues.

The comparison of τ also showed a significant difference

(p < 2.2 × 10−16, Wilcox test) between HKGs (median,

τ = 0.20) and TEGs (median, τ = 0.91) (Figure 3b).

Although the HKGs (Log2(TPM+1) = 7.98) were

expressed significantly higher (p < 2.2 × 10−16) than

TEGs (Log2(TPM+1) = 5.32) (Figure 3e), the variation in

the expression of TEGs (standard deviation = 3.55) was much

larger than HKGs (standard deviation = 1.76) (Figure 3e).

The results indicate that broadly expressed genes (with high

τ score) and HKGs tend to have higher expression levels

than narrowly expressed genes on average. This finding

was consistent with previous studies in humans (Bentz

et al., 2019; Vinogradov, 2004). Interestingly, the highest

expressed gene (Sobic.008G043200, log2(TPM+1) = 19.90)

was specifically expressed in pollen, and it has the high-

est τ (τ = 0.97) in our dataset (Figure 3a). The varying

expression of TEGs may be associated with tissue-specific

methylation or chromatin accessibility (Pan et al., 2021).

The regulation of gene spatial expression needs to be further

explored in the future using Chromatin Immunoprecipitation
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HU ET AL. 8 of 16The Plant Genome

F IGURE 3 Gene expression landscape. (a) Correlation between gene expression tissue specificity and gene expression levels. The red point

means the highest expressed gene in our dataset and with a high tissue-specific score. (b) Tissue specificity score and the comparison among all

genes (All), tissue-specific expression genes (TEGs), and housekeeping genes (HKGs). (c) Gene Ontology (GO) enrichment analysis for

housekeeping genes. BP means biological process; MF means molecular function; CC means cellular component. (d) GO enrichment analysis for

seed-specific expressed genes. (e) Gene expression comparison among all genes, TEGs, and HKGs. TPM, transcript per million.

sequencing (ChIP-seq) (Park, 2009), chromatin accessibility

(Klemm et al., 2019), and DNA methylation (Moore et al.,

2013).

3.5 Gene expression landscape associated
with evolutionary gene features

In mammalian studies, short or compact genes tend to express

at high levels (Grishkevich & Yanai, 2014). However, our

results showed that gene/lncRNA length was significantly

negatively correlated with τ (ρ = −0.44, p < 2.2 × 10−16)

for gene and (ρ = −0.38, p < 2.2 × 10−16) for lncRNA

(Figure 4a; Figure S8), but significantly positively correlated

with expression levels (ρ = 0.22, p < 2.2 × 10−16) for gene

and (ρ = 0.54, p < 2.2 × 10−16) for lncRNA (Figure 4b;

Figure S8). Although the correlation between protein length

and expression landscape was diminished, it is still signifi-

cant statistically (for expression level, ρ = 0.11 and p < 2.2 ×
10−16; for τ, ρ = −0.27; p < 2.2 × 10−16). More specifically,

the gene length of HKGs (median, 4233 bp) is significantly

(p < 2.2 × 10−16, Wilcox test) longer than that of TEGs

(median, 2218 bp). As such, the protein length for HKGs

(median, 374 bp) was significantly (p = 6.85 × 10−3) longer

than TEGs (median, 366 bp). The difference in the association

between gene length and expression between mammals and

plants was also discussed in a previous study (H. Yang, 2009).

We also observed that intron content (bp) was positively cor-

related (ρ = 0.23, p < 2.2 × 10−16) with gene expression

level, but negatively correlated (ρ = −0.44, p < 2.2 × 10−16)

with τ, implying the positive impact of intron content on gene

expression.

Different expression landscape genes undergo different

selection pressures during the divergence of sorghum from

other species. To characterize the divergence and gene

expression landscape, we analyzed the relationship between
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9 of 16 HU ET AL.The Plant Genome

F IGURE 4 The relationship among gene expression, gene features, and selective pressure. The correlations between gene expression and gene

length (a), gene expression tissue specificity and gene length (b), gene expression and selective pressure (c), gene expression tissue specificity and

selective pressure (d). The y axis was log10 transferred dN/dS. (e) Selective pressure (dN/dS) across 19 tissues using tissue-specific expression genes.

To see the variation of dN/dS, the y axis only show from 0 to 1, the full range figure was showed in Figure S10a. (f) Non-synonymous substitutions

(dN) across 19 tissues using tissue-specific expression genes. To see the variation of dN/dS, the y axis only show from 0 to 1, the full range figure

was showed in Figure S10a. (g) Synonymous substitutions (dS) across 19 tissues using tissue-specific expression genes. TPM, transcript per million.

selection pressure as calculated by dN/dS (the ratio of

non-synonymous to synonymous substitutions, known as

ω) and gene expression landscapes. Our result showed a

significant negative correlation (ρ = −0.30, p < 2.2 ×
10−16) between ω and gene expression levels, while a pos-

itive correlation (ρ = 0.20, p < 2.2 × 10−16) between

ω and τ (Figure 4c,d). Not surprisingly, HKGs experi-

enced an intensified purifying selection (p < 2.2 × 10−16)

(median, ω = 0.09) than TEGs (median, ω = 0.15)

(Figure S9). We identified 33 positively selected genes

(ω > 1) in TEGs but did not identify positively selected

genes in HKGs, which implies the major cause of spe-

ciation from TEGs rather than HKGs. In addition, we

identified the significant difference (p< 2.2 × 10−16) between

HKGs and TEGs for dN and dS (Figure 4f; Figure S10a). For

example, the ratio (0.46) of dN between HKGs (0.05) and

TEGs (0.12) was much lower than that (0.72) of dS between

HKGs (0.63) and TEGs (0.87) (Figure 4g; Figure S10a), indi-

cating that the non-synonymous sites of HKGs experienced

more intense selection than TEGs. In support of the finding,

similar results were also observed in other species (J. Yang

et al., 2005; L. Zhang & Li, 2004). We further analyzed the

selective pressure among tissues, the tissue-selection pres-

sure was represented using dN/dS of the TEGs. The dN/dS

ratios showed significant (p= 2.1× 10−6, Kruskal-Wallis test)

differences among tissues (Figure 4e--g; Figure S10a). Specif-

ically, the microspore showed the highest ω (0.25); whereas,

leaf mesophyll has the lowest ω (0.12). Our results showed

a large variation in ω among tissues, an intensified selection

pressure for HKGs rather than TEGs, and a higher selec-

tion pressure for reproductive-related tissues than vegetable

tissues in sorghum (Figure S10b).

3.6 Global co-expression network of
sorghum genes

Gene co-expression suggests likely co-regulatory relation-

ships or similar molecular functions for the genes. To gain

a global view of the co-expression profiles and provide

guides for trait gene discovery in sorghum, we built a TW-

CEN using hierarchical clustering of dissimilarity among the

TOM with 22,545 filtered genes from 844 RNA-seq datasets.

Those genes passed the filtering of goodSamplesGenes from

the WGCNA package (Langfelder & Horvath, 2008). A

soft threshold of 6 was identified and used to build TW-

CEN (Figure S11). The 22,545 genes were initially grouped

into 88 modules. After merging those modules with high
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HU ET AL. 10 of 16The Plant Genome

F IGURE 5 Transcriptome-wide co-expression network. (a) The module detection for 22,545 genes and merged dynamic tree. The first and

second rows below the dendrogram mean modules were identified using THE dynamicTreeCut method and the merged dynamic tree using a

cutHeight = 0.25 in mergeCloseModules, respectively. (b) The module size of the Transcriptome-wide co-expression network (TW-CEN). The bar

color corresponds to the module color in (a). (c) Global co-expression network visualized using ggnet2 based on topological overlap matrix

(TOM) > 0.06. The colors represent the corresponding module as shown in (b), and each node means a gene. (d) The heatmap of eigengene across

tested tissues. The eigengene scores within the tissue were averaged with a median. (e) The relationship of connectivity and expression landscape

using different TOM scores as the thresholds. (f) The correlation of connectivity and selection pressure (dN/dS) using different TOM scores as the

thresholds.

similarity in expression profiles (<0.25) to condense clusters

into more meaningful modules, it was consolidated into 35

modules with a large variation in sizes ranging from 38 (light-

pink3) to 6176 genes (skyblue1) (Figure 5a,b). The global

weighted co-expression network was visualized in network

format based on TOM > 0.06, and it contains 17,895 nodes

and 28,081,248 edges (Figure 5c). Eigengenes and tissue

relationship analysis showed that the Darkolivegreen module

genes were highly expressed in pollen (Figure 5d), implying

that the genes within the model were likely related to the func-

tion specific to pollen development. With the same approach,

modules, including cyan, thistle2, blue2, and skyblue2, were

identified to be highly expressed within seed-related tissues

or compartments (Figure 5d). To explore the potential bio-

logical function for each module, we performed GO term

enrichment analysis for each of them. For each module, one

GO term (thistle1 module) to 51 GO terms (skyblue1 mod-

ule) were enriched (Table S7; Figure S12). For example, the
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11 of 16 HU ET AL.The Plant Genome

GO terms enriched for the lavenderblush3 module are mainly

involved in the RNA-related pathways and the GO terms

enriched for the saddlebrown module are mainly engaged

in stress response (Table S7). The results suggested simi-

lar functions of those co-expressed genes within the same

module.

In total, we identified 34 within-module hub genes for

all modules except for the “gray” module using the choose-
TopHubInEachModule function from the WGCNA package

(Table S8). We noticed that seven of the hub genes do

not have function annotation in the genome annotation file

(Table S9). Considering the function-related genes tend to

co-express, we identified the co-express genes for hub genes

based on a correlation coefficient greater than 0.50 to anno-

tate those uncharacterized genes. The enriched GO term

for the co-express genes of each of the seven hub genes

suggests their potential functions (Table S9). For example,

the top GO terms from GO domains for Sobic.003G016400

(thistle2 module) were enriched in translation (biological pro-

cess, p = 1.20 × 10−11), ADP binding (molecular function,

p = 1.40×10−17), and nucleosomes (cellular component, 2.70

× 10−12) (Table S9).

To understand the relationship between gene expression

landscape and co-expression network, we analyzed the rela-

tionship between the connectivity of co-expressed genes,

represented using the co-expressed gene number of a gene

based on the specific threshold of correlation coefficients of

co-expression, and the expression landscape. We observed

that connectivity was significantly positively correlated with

expression level (ρ = 0.17, p < 0.01) and τ (ρ = 0.19,

p < 0.01) at 0.1 and the relationship between them was not

impacted by the threshold (Figure 5e; Figure S13), indicat-

ing that high-expressed gene and narrow-expressed genes

tend to have more co-express genes. Interestingly, the con-

nectivity was highly negatively correlated with roots (−0.16)

and endosperm (−0.13) (Figure S14), indicating the highly

expressed genes in roots and endosperm tend to have low con-

nectivity. Considering the potential impact on other genes’

expression of high-connectivity genes, we reasoned that they

experienced higher selection pressure than low-connectivity

genes. We further analyzed the correlation between selection

pressure (ω = dN/dS) and connectivity, and the result showed

a weak but significant negative correlation (ρ = −0.06,

p < 0.01: at co-expression coefficient 0.1) between gene

connectivity and selection pressure (ω) (Figure 5f), which

supports the hypothesis that high-connectivity genes tend

to experience more intense purifying selection. This result

was supported by similar observations in various plant

species such as Arabidopsis thaliana, Glycine max, O. sativa,

Populus spp., Solanum lycopersicum, Vitis spp., Z. mays,
and Populus tremula (Mähler et al., 2017; Masalia et al.,

2017).

3.7 Starch pathway genes co-expression
networks

Starch is the major content and nutrition in sorghum seed;

however, the related regulatory network and pathways were

poorly understood. To identify the potential regulation net-

work in sorghum, we built a Starch Synthesis Pathway

Co-Expression Network (SSP-CEN) using 102 starch biosyn-

thesis pathway genes in sorghum, as guide genes, that have

been characterized in a previous publication (Campbell et al.,

2016) (Figure 6a,b). After analysis, the 102 starch biosyn-

thesis pathway genes were distributed in 13 modules from

TW-CEN. We noticed that 30.19% (32) of starch pathway

genes fell in the skyblue1 module, and 22.64% (24) of starch

pathway genes were clustered into the brown module. Both

modules represent a total of 52.83% (56) reported starch

pathway genes, indicating that the two modules were likely

important for starch synthesis. The 102 starch pathway genes

exhibited varying expression patterns across the tested tissues,

and they can be clustered into four categories based on the

clustering analysis (Figure 6a). Overall, genes from Category

1 are lowly expressed in most of the tissues, and the other three

were highly expressed in the tissues, particularly seed-related

tissues. For example, Sobic.010G022600 (SbWx) encodes

glucose-6-phosphate isomerase that is highly expressed in

seed compartment endosperms, while Sobic.004G163700
(SbSBEII) encoding starch synthase 2 and Sobic.010G093400
(SbSSIIa) encoding starch branching enzyme were specifi-

cally expressed in the endosperm (Figure 6a). Category 2

genes were expressed in most of the tissues, but the expression

level was relatively low in reproductive tissues. In contrast,

category 3 genes were highly expressed in most of the tissues

except for pollen and microspore. Two genes in this cate-

gory (SbSH2.1: Sobic.002G160400 and Sobic.003G230500,

encode glucose-1-phosphate adenylyltransferase) were pref-

erentially expressed in seed and endosperm (Figure 6a),

suggesting the tissue-specific function in starch biosynthesis.

Category 4 genes were broadly expressed in all tested tis-

sues at a relatively higher level than the other three categories

(Figure 6a). A large variation in spatial expression patterns in

various tissues for the genes indicated a more complex regu-

latory network for starch synthesis that happened in multiple

tissues, including reproductive and vegetable tissues. A sim-

ilar pattern was also observed in rice and maize (Fu & Xue,

2010; Q. Xiao et al., 2021), suggesting a possible conserved

regulatory mechanism across cereal crops.

Here, SSP-CEN was built with a correlation coefficient

greater than 0.70. However, only 23 (21.70%) starch pathway

genes were present in SSP-CEN, such as Sobic.010G047700
(starch synthases, SbSSI), Sobic.004G238600 (starch syn-

thases 2, SSIIb), Sobic.006G066800 (starch branching, SbS-
beIIa), and Sobic.006G221000 (starch synthases 3, SbSSIII).
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HU ET AL. 12 of 16The Plant Genome

F IGURE 6 Co-expression network of starch synthesis pathway. (a) Expression heatmap of 102 starch pathway genes across 19 tissues. (b)

Co-expression network of the starch pathway based on the correlation coefficient > 0.70. The colors represent the co-expression modules. (c) Gene

Ontology (GO) enrichment analysis of co-expressed genes in Starch Synthesis Pathway Co-Expression Network (SSP-CEN). BP means biological

process; MF means molecular function; CC means cellular component. (d) The co-expression network of seed expression starch pathway genes. (e)

GO enrichment analysis of co-expressed genes in seed starch synthesis co-expression network (SSS-CEN).

These genes are clustered in six modules, the majority (14)

of which are in category 4 (Figure 6a; Figure S15). In total,

4158 genes were identified to be co-expressed with the afore-

mentioned 23 guide genes, and these genes were used to build

starch biosynthesis-associated SSP-CEN (Figure 6b). To gain

insights into the potentially related pathways, GO enrichment

analysis was performed for the 4158 genes, and it shows

that 39 GO terms, including 11 biological process terms, 17

molecular function terms, and 11 cellular component terms,

are significantly enriched (p < 0.01) (Figure 6c). The mul-

tiple photosynthesis-related GO terms were enriched, those

terms include photosynthesis, light harvesting, photosystem II

oxygen-evolving complex, photosystem I reaction center, and

photosystems I and II (Figure 6c), implying the importance of

photosynthesis for starch biosynthesis in sorghum (Fünfgeld

et al., 2021; Pfister & Zeeman, 2016).

To analyze the seed starch synthesis co-expression, we

further narrowed SSP-CEN down to seed starch synthesis

co-expression network (SSS-CEN) (Figure 6d) using

four starch biosynthesis genes (glycosyltransferase:

Sobic.010G144400; SbHCT1: Sobic.004G212300; SbSTP7:

Sobic.002G201900; SbINT3: Sobic.002G035200) that

were preferentially expressed in seed-related tissues (seed,

endosperm, and pericarp) (Figure 6a). In total, the SSS-CEN

contains 1261 co-expressed genes (Figure 6d). All of the

co-expressed genes were clustered into 11 modules, and

the majority are from modules brown (575), skyblue1

(440), magenta (93), bisque4 (63), and darkturquoise (62)

(Figure 6d). GO enrichment analysis for SSS-CEN showed

that the photosynthesis-related terms were significantly

enriched, implying the ability of the seed to photosynthesis

(Figure 6e). Interestingly, cellular components movement-

related terms were highly enriched for SSS-CEN, such as

microtubule-based movement, microtubule cytoskeleton

organization, microtubule binding, microtubule motor activ-

ity, and kinesin complex. Our results suggested that part of

the seed starch was synthesized in the seed.

Twelve GO terms, including the photosynthesis and matter-

movement-related terms, were significantly enriched for

both starch synthesis networks (Figure 6c,e). The role of

 19403372, 2024, 2, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20448 by Saint Louis U

niversity Pius X
ii, W

iley O
nline Library on [03/06/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



13 of 16 HU ET AL.The Plant Genome

microtubule-based movements, significantly enriched in both

starch synthesis co-expression networks (Figure 6c,e), in

starch synthesis, was rarely studied in previous studies. In the

future, developing metabolic datasets and methods to con-

nect photosynthesis (source) with seed starch content (sink)

is needed to facilitate molecular design breeding in sorghum.

3.8 lncRNA associated with seed starch
synthesis

To identify the potential lncRNA associated with starch syn-

thesis, we examined the correlation of expression between

seed starch synthesis genes and lncRNA. Eleven and

one lncRNA were co-expressed with Sobic.001G083900:

SbPHO1 and Sobic.004G212300: SbHCT1 based on correla-

tion coefficient r > 0.75 (Table S10). The highest correlated

lncRNA (MSTRG.29733) is localized on chromosome 1

and enrichedly expressed in seed component tissues, such

as endosperm (Figure S16). The high correlation between

lncRNA and mRNA implies the function of lncRNA in reg-

ulating starch content in sorghum seed. However, the fine

regulating landscape for starch synthesis and accumulation

in sorghum seed needs the single-cell transcriptome and

functional genomics (Rich-Griffin et al., 2020).

3.9 Co-expression gene of seed starch
synthesis not colocalized with seed starch QTL
for in sorghum

Based on the Guilty-By-Association (GBA) principle, we

expected that many co-expression genes in SSP-CEN regulate

seed starch contents and also overlap with seed starch content

QTLs. To do this, we retrieved a total of 46 seed starch content

QTLs that were compiled from previous publications (Table

S11). We identified 721 out of the 4158 co-expression genes,

including 21 starch synthesis pathway genes, overlapping with

QTL or 5669 genes around QTL (±250 kb) windows (Table

S11). We tested whether the overlap randomly happened using

the χ2 test, and the results showed no significant (p = 0.30,

χ2 test) enrichment was observed. However, the result may

be caused by the global co-expression network of starch syn-

thesis and seed-specific starch content QTLs. Nonetheless,

we still checked the overlap number (228) of genes between

SSS-CEN and seed starch content QTLs. We observed the

co-expression genes within SSS-CEN were still not signif-

icantly (p = 0.25, χ2 test) enriched in QTL regions. The

functional variants are needed for a QTL gene to cause the

natural variation, while co-expression networks can only iden-

tify similar expressing genes, however, the functional variants

were not necessary for co-expression. A previous study in

humans showed that the co-expression was non-related to the

genetic architecture of neuropsychiatric disease risk (Hartl

et al., 2021).

4 CONCLUSIONS

In this study, we integrated large-scale publicly available

RNA-seq data to depict the landscape of transcription-wide

transcript expression in sorghum. The dataset and the results

provide a valuable genomic resource for sorghum biologi-

cal and trait discovery. Identification and characterization of

lncRNA, HKGs, and TEGs here provide insight into sorghum

tissue developmental biology and chances for genetic modifi-

cation of the specific tissues in sorghum. The transcriptome

landscape can be integrated with genome-wide association

studies to jointly dissect the genetic architecture of complex

traits. The co-expression network helps identify regulatory

pathways controlling complex traits. As exemplified by starch

synthesis, we reveal that photosynthesis and lncRNA were

tightly associated with starch synthesis. Our transcriptome

dataset provides a valuable genomics resource to facilitate

sorghum genomics-enabled breeding and trait discovery in

sorghum to meet the increasing demands of food for humans.
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