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ABSTRACT
In recent years, diversifiedmeasurements reflect the systemdynamics from amore comprehensive perspec-
tive in systemmodeling and analysis, such as scalars, waveform signals, images, and structured point clouds.
To handle suchmultimodal structured high-dimensional (SHD) data, combining a large amount of data from
multiple sites is necessary (i) to reduce the inherent population bias from a single site and (ii) to increase
the model accuracy. However, impeded by data management policies and storage costs, data could not
be easily shared or directly exchanged among different sites. Instead of simplifying or facilitating the data
query process, we propose a federated multiple tensor-on-tensor regression (FedMTOT) framework to train
the individual system model locally using (i) its own data and (ii) data features (not data itself ) from other
sites. Specifically, federated computation is executed based on alternating direction method of multipliers
(ADMM) to satisfy data-sharing requirements, while the individual model at each site can still benefit from
feature knowledge from other sites to improve its own model accuracy. Finally, two simulations and two
case studies validate the superiority of the proposed FedMTOT framework.
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1. Introduction

Complex systems generate multimodal data in various forms,
such as scalars, waveform signals, images, and video signals.
Such datasets are often collected by advanced sensing tech-
nologies, such as high sampling frequency sensors and high-
resolution cameras that produce structured high-dimensional
(SHD) data containing abundant system information. Data col-
lected by one type of instrument is often referred as a data
mode and the full dataset is called multimodal dataset (Gaw,
Yousefi, andGahrooei 2022). For example,NOx Storage Catalyst
(NSC) is an emission control system, in which multiple sensors
are installed to monitor both the combustion and the exhaust
gas after the treatment process. By predicting the normalized
relative fuel ratio of the NSC system from multichannel oper-
ation signals, engineers can test whether the system satisfies the
environmental requirements (Gahrooei et al. 2021). As another
example, electronic health records (EHR) are comprehensive
repositories of diverse healthcare data sourced from various
healthcare providers and medical devices. They encompass a
wide range of information such as patients’ diagnoses, labo-
ratory test results, and medication usage. EHRs play a crucial
role in supporting biomedical and clinical research, providing
valuable data for analysis and investigation (Liu et al. 2022).

Many statistical approaches have been proposed to model
such multimodal SHD data and benefited numerous applica-
tions, includingmanufacturing processes (Shi 2023; Zhang et al.
2023), structural health monitoring (Gordan et al. 2022), and
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neuroimaging data analysis (Zhou, Li, and Zhu 2013; Zhao,
Reisi Gahrooei, and Gaw 2022). Particularly, SHD regression
approaches are designed for developing predictive models that
estimate an output given a set of inputs. For example, tradi-
tional regression methods, including penalized ordinary least
square regression, have been applied to SHDdata by considering
each observation within an SHD data (e.g., each pixel within
an image) as a covariate. However, these methods ignore the
dependence among covariates. Consequently, they may result
in severe overfitting and inaccurate predictions (Gahrooei et al.
2021). Principal component regression and partial least square
regression methods have been used to reduce the data dimen-
sion, but they fail to fully exploit the spatial or temporal structure
within the SHD data. In addition, functional regression models
gained popularity in modeling waveform signals due to their
capacity in capturing nonlinear correlation structure and built-
in data reduction functionality. However, they require domain
knowledge to create basis functions and are often very difficult
and expensive to be extended to SHD data beyond waveform
signals (Luo and Qi 2017; Gahrooei et al. 2021).

Recently, multi-dimensional analysis (a.k.a., tensor analy-
sis) has been widely studied and showed promising results in
many applications, such as process monitoring and modeling
(Yan, Paynabar, and Shi 2015), neurological disorders (Zhou,
Li, and Zhu 2013), network analysis (Orús 2019), and over-
lay error estimation in semiconductor industry (Zhong et al.
2023). Particularly, tensor analysis has been used in developing
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Figure 1. Each site m stores its own multimodal structured high-dimensional data and constructs a predictive model with coefficient sets
{
Bm
k

}
based on K input data

sources
{
Xm
k

}
and one responseYm .

SHD regression modeling frameworks and involves multiple
variations depending on the forms of inputs and output. For
example, Zhao et al. (2012) and Fang, Paynabar, and Gebraeel
(2019) estimated a scalar response given a tensor input. Yan,
Paynabar, and Pacella (2019) predicted a tensor response from
a set of scalar inputs. Furthermore, Lock (2018) used tensor
analysis to propose a tensor-on-tensor regression that efficiently
predicted a tensor output using a tensor input. However, this
method only involves a single input and requires that the input
and output hold the same rank, which is not appropriate in situ-
ations where multimodal input data is available. To overcome
these limitations, Gahrooei et al. (2021) developed a multiple
tensor-on-tensor (MTOT) regression, which provides a unified
regression framework that estimates a scalar, curve, image, or
structured point cloud output based on a multimodal set of
SHD input variables (see Figure 1). The popularity of tensors
formodelingmultimodal SHDdatasets relates to their capability
of representing various data forms without breaking the data
structure into vectors and preserving their inner correlation
structure (Gahrooei et al. 2021; Lee et al. 2023).

Multimodal SHD datasets are often collected in a decentral-
ized way. This involves various individual sites independently
generating and storing similar datasets, which are then used
locally to create local models, a process illustrated in Figure 2
(left). However, this approach of in-silo data modeling, where
the modeling is done in isolation without incorporating or con-
sidering external data, limits the generalizability of the models.
While one approach to address this limitation is that all sites
share their datasets with a global server to create a global model
as represented in Figure 2 (left), a few challenges make this
approach unfavorable. First, data owners may not be willing to
share their data due to data management concerns. Second, the
demand to upload and store a vast amount of data to the global
server incurs high costs. Even if the data transmission is feasible,
training a model with moderately large, pooled dataset usually
results in significant storage costs. To address these challenges
and driven by the growing demand for scalability, resilience,
and data-sharing compliance, federated data analysis (FeDA)
frameworks have been proposed lately.

FeDA became a promising modeling paradigm for collabo-
ratively extracting knowledge and conducting analysis without
direct data sharing (Kontar et al. 2021). Consequently, local
datasets are not required to be transferred to a global server; and
the global server has no burden to store and to process immense
amounts of data. In light of this novel paradigm, various
techniques including FedAvg (Brendan McMahan et al. 2016),
FedProx (Li et al. 2018), FedDyn (Acar et al. 2021), FedSplit
(Pathak and Wainwright 2020), and FedLin (Yue, Kontar, and
Gómez 2022) are developed. Specifically, Federated Averaging
(FedAvg) is a practical method for federated learning based on
iterative model averaging, in which a global server creates a
global model by aggregating gradients of locally trained models
in an iterative approach (BrendanMcMahan et al. 2016). FedAvg
degrades significantly when data across individual sites are
heterogenous (McMahan et al. 2017). FedProx adds a quadratic
regularizer term to the local objective, which enables to train the
global model with heterogenous data (Li et al. 2018). Although
FedProx can partially alleviate heterogeneity, it is inconsistent
with local and global stationary solutions (Kontar et al. 2021).
Similarly, FedDyn designed a dynamic regularization to address
heterogeneity and to align gradients under partial participation
(Acar et al. 2021). FedSplit applies Peaceman-Rachford splitting
to formulate a constrained optimization problem (Pathak and
Wainwright 2020). Recently, Yue, Kontar, and Gómez (2022)
proposed a federated treatment for linear regression by adopting
a hierarchical modeling approach. While these methods have
demonstrated the benefits of FeDA, they are not designed
for tensor data. Recently, federated tensor decomposition
techniques have been proposed to handle tensor data via passing
features extracted from tenor decomposition. Feng et al. (2020)
developed a privacy-preserving tensor decomposition method,
which leverages properties of homomorphic encryption. Wang
et al. (2022) proposed a personalized federated learning
framework named TDPFed, in which tensorized local model
and tensorized linear (or convolutional) layers are used to
reduce the communication cost. However, these methods are
for unsupervised learning and are not designed for multimodal
SHD data.
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Figure 2. Overview: (left) conventional MTOTmodels where participating sites directly share their data to a server which creates anMTOTmodel based on the pooled data;
(right) the proposed FedMTOT framework and associated federated models, where each site constructs a site-specific MTOT model and shares the model features with an
aggregator.

The goal of this article is to model multimodal SHD data dis-
tributed across multiple sites without directly sharing data with
a centralized entity by proposing a federatedmultiple tensor-on-
tensor regression (FedMTOT) framework. As shown in Figure 2
(right), a MTOT model is established for each individual sitem
based on K sources of multimodal SHD inputs and the corre-
sponding output. Here, all the data are assumed to have the low-
rank structure. To reduce themodeling costs and follow the data
sharing constraints, we adopt Tucker decomposition to extract
latent features ofmodel parameters (i.e., core tensor, input bases,
and output bases) that are transmitted to the aggregator instead
of the raw data. Under the decentralized setting, input bases
will be first learned from input tensors via the alternating direc-
tion method of multipliers (ADMM). Then, given input bases,
the remaining features for regression coefficients are estimated
iteratively in a federated fashion. Under the proposed federated
framework as shown in Figure 1(c), we can construct personal-
ized models at individual sites and an aggregated model by the
aggregator.

The rest of the article is organized as follows: Section 2 intro-
duces the notations and tensor algebra. Section 3 first discusses
the problem background and MTOT models trained by pooled
rawdata. Tohandle challenges fromdistributed data, we propose
the federated multiple tensor-on-tensor regression framework
and discuss the hyperparameter settings. In Section 4, two sets
of simulations are conducted to explore the robustness and
applicability of the proposed framework. The first simulation
study considers a combination of two imageswith different sizes,
while the second one considers a combination of a functional
curve and an image. In each simulation study, we compare
federated models, that is, aggregated model and personalized
models, with nonfederatedmodels and FedAvg in terms of stan-
dardized prediction mean square errors (SPME) for response
prediction or the inverse of the signal to noise ratio (ISNR) for
image denoising. Two case studies are considered in Section 5.
One case study is to predict the normalized relative fuel ratio
from operating signals, and the other is to test the denoising

performance of the federated approach. Section 6 concludes the
article.

2. Notations and Tensor Algebra

In this section, we introduce the notations and basic tensor
algebra used in this article. Throughout the article, a letter
denotes a scalar, for example, r and R; a boldface letter denotes a
vector (e.g., r) or a matrix (e.g., R); a calligraphic letter denotes
a tensor, for example, R. For example, an order-n tensor is
denoted by R ∈ R

I1×...×In , where Ii is the dimension of the
ith mode of tensor R. The mode-i unfolding (matricization)
of tensor R is R(i) ∈ R

Ii×I−i , whose columns are the mode-
i fibers of the corresponding tensor R, and I−i = I1 × I2 ×
. . . × Ii−1 × Ii+1 × . . . × In. A more general matricization
of tensor R ∈ R

P1×...×PL×Q1×...×QD can be defined as fol-
lows: R ∈ R

P×Q
(
P = ∏L

l=1Pl;Q = ∏D
d=1Qd

)
with R

(
p, q

) =
Rp1...pLq1...qD , where p = 1 + ∑l

j=1
∑j

i=1Pi
(
pi − 1

)
, and q =

1 + ∑d
j=1

∑j
i=1Qi

(
qi − 1

)
. The tensor concatenation along the

first mode is denoted by ⊕. For example, the concatenation of
tensor R1 ∈ R

M×P1×...×PL and tensor R2 ∈ R
N×P1×...×PL is

Rconcate ∈ R
(M+N)×P1×...×PL , that is,Rconcate = R1 ⊕ R2.

The Frobenius norm of a tensor R equals to the Frobenius
norm of any unfolded format of R, that is, ||R||2F = ∣∣∣∣R(i)

∣∣∣∣2
F

with i = 1, . . . , n. Themode-i product of a tensorR1 by amatrix
R2 ∈ R

M×Ii is defined asR1 ×i R2 ∈ R
I1×...×Ii−1×M×Ii+1×...×In .

The contraction product (Einstein product) of two tensors
R1 ∈ R

P1×...×PL and R2 ∈ R
P1×...×PL×Q1×...×QD is denoted

as R1 ∗ R2 ∈ R
Q1×...×QD . The Tucker decomposition of

a tensor R ∈ R
P1×...×PL×Q1×...×QD decomposes the tensor

into a core tensor C ∈ R
P̃1×...×P̃L×Q̃1×...×Q̃D , a set of bases

Ul ∈ R
Pl×P̃l , (l = 1, . . . , L), and Vd ∈ R

Qd×Q̃d , (d = 1, . . . ,D),
that is,R = C ×1U1 ×2 . . .×LUL ×L+1V1 ×L+2 . . .×L+DVD.
The matricized version of this decomposition is written as R =(
UL

⊗
. . .

⊗
U1

)
C

(
VD

⊗
. . .

⊗
V1

)T , where C ∈ R
P̃×Q̃ is
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the unfolded core tensor C with P̃ = ∏L
l=1P̃l and Q̃ = ∏D

d=1Q̃d,
and R is the general matricization ofR (Kolda and Bader 2009).

3. FederatedMultiple Tensor-on-Tensor Regression
Framework

We consider M sites that collaborate to construct a regression
model given decentralized SHD data. We assume each site has
access to K sources of SHD data as inputs to predict an output
tensor; all the data have the low-rank structure; and a specific
source of input data (the same data modality) follows the same
distribution across different sites.We denote the kth input tensor
in the mth site by Xm

k ∈ R
Nm
s ×Pk,1×...×Pk,Lk , and the output

tensor by Ym ∈ R
Nm
s ×Q1×...×QD , where Nm

s is the sample size,
Pk,lk (lk = 1, . . . , Lk) is the dimension of the lkth mode of the
tensor Xm

k and Qd (d = 1, . . . ,D) is the dimension of the dth
mode of Ym.

3.1. Background:MTOT for Global and Local Model
Construction

Intuitively, each site (m = 1, . . . ,M) may train a local model in
silo based on the available data in their own database using the
MTOT method proposed in Gahrooei et al. (2021) as follows:

Ym =
∑K

k=1
Xm
k ∗Bl,m

k +Em,m = 1, . . . ,M; k = 1, . . . ,K, (1)

where Bl,m
k ∈ R

Pk,1×...×Pk,Lk×Q1×...×QD is the tensor of local
model regression coefficient for the mth site, and Em ∈
R
Nm
s ×Q1×...×QD is the error tensor for the mth site. The

model parameters can be estimated by the individual site
using the estimation procedure discussed in Gahrooei et al.
(2021). However, this approach results in models that may lack
generalizability, particularly when Nm

s is small compared to
number of model parameters.

An alternative approach to create a generalizable regression
model is to pool all raw data, that is,

{
Xm
k

}
and {Ym}, from

all individual sites to a global server to train a global model by
using the method proposed in Gahrooei et al. (2021):

Y =
∑K

k=1
Xk∗Bg

k + E , (2)

where Y = Y1 ⊕ . . . ⊕ Ym ⊕ . . . ⊕ YM , Xk = X 1
k ⊕ . . . ⊕

Xm
k ⊕ . . . ⊕ XM

k , E ∈ R
Ns×Q1×...×QD with Ns = ∑M

m=1Nm
s is

an error tensor whose elements are from a random process, and
Bg
k ∈ R

Pk,1×...×Pk,Lk×Q1×...×QD is the tensor of global regression
coefficient to be estimated.However, the individual sitesmay not
bewilling to share the rawdatawith a global server, whichmakes
the estimation procedure impossible.

3.2. Federated Regression Framework

To balance the generalization and personalization as well as
ensuring compliance with data-sharing constraints, we propose
a federated multiple tensor-on-tensor (FedMTOT) regression
framework to conduct regression analysis between a structured
high-dimensional (SHD) response and a set of multimodal
input variables. Specifically, an aggregator moderates the model

generation process by communicating with all individual sites
to receive and send regression model features. At the end of the
process, each individual site establishes a personalized model
with the regression coefficient Bm

k whose low-dimensional
embedding is as follows:

Bm
k = Cmk ×1Um

k,1×2 . . .×LkU
m
k,Lk×Lk+1Vm

1 ×Lk+2 . . .×Lk+DVm
D ,
(3)

where Cmk ∈ R
P̃k,1×...×P̃k,Lk×Q̃1×...×Q̃D is a core tensor with

P̃k,lk � Pk,lk (lk = 1, . . . , Lk; k = 1, . . . ,K) and Q̃d � Qd

(d = 1, . . . ,D);
{
Um
k,lk ∈ R

Pk,lk×P̃k,lk
}
is a set of bases that span

the kth input space; and
{
Vm
d ∈ R

Qd×Q̃d
}
is a set of bases that

span the dth output space. Please note that
{
P̃k,lk

}
and

{
Q̃d

}
are

the ranks associated with this Tucker low-dimensional embed-
dings.

Besides, the aggregator constructs an aggregated model with
the regression coefficientBk whose low-dimensional embedding
is as follows:

Bk = Ck×1Uk,1×2 . . .×Lk Uk,Lk ×Lk+1V1×Lk+2 . . .×Lk+DVD,
(4)

where Ck ∈ R
P̃k,1×...×P̃k,Lk×Q̃1×...×Q̃D , Uk,lk ∈ R

Pk,lk×P̃k,lk , and
Vd ∈ R

Qd×Q̃d are the aggregated model features constructed
based on the communications with all individual sites.

Under the proposed framework, each individual site con-
structs its personalized model, that is, (3), instead of sharing the
raw data, and transmits model features (i.e., site-specific core
tensor

{
Cmk

}
, site-specific input bases

{
Um
k,lk

}
, and site-specific

output bases
{
Vm
d
}
) to an aggregator. These site-specific features

will then be combined by the aggregator to construct an aggre-
gated model (4) with corresponding features (i.e., aggregated
core tensor {Ck}, aggregated input bases

{
Uk,lk

}
, aggregated out-

put bases {Vd}). The aggregated features will then be broadcast
back to each individual site. Each site then uses the aggre-
gated features to update their site-specific features. Therefore,
our proposed FedMTOT constructs both personalized models at
individual sites and an aggregated model by the aggregator. The
personalized models benefit from the information in other sites
through the aggregated model, which improves their generaliz-
ability compared to the models constructed in silo.

In general, each site can potentially estimate the core ten-
sors and the input and output bases together using an alterna-
tive approach. However, this approach may have a high com-
putational complexity. As an alternative approach, estimating
the input bases separately first and fixing them when estimat-
ing the core tensors and the output bases reduces the com-
putational complexity of the estimation process with adequate
model accuracy (Yan, Paynabar, andPacella 2019;Gahrooei et al.
2021). Therefore, we propose a two-step federated estimation
procedure as shown in Algorithm 1. First, learning the site-
specific and aggregated input bases; and second, learning the
site-specific and aggregated output bases and core tensors.

Under the proposed federated framework, both Steps 2 and 3
can be conducted using consensus ADMM, which decomposes
the federatedmodel construction problem into two parts, that is,
(i) the site-specific optimization, and (ii) the aggregated optimiza-
tion. The solution of Steps 2 and 3 in Algorithm 1 are explained
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Algorithm 1 Federated Multiple Tensor-on-Tensor Regression
Algorithm.
1: Inputs: {Ym} and {

Xm
k

}
stored at individual sites only.

2: Input Basis Learning:
Estimate

{
Uk,lk

}
and

{
Um
k,lk

}
. (Algorithm 2 in Section 3.2.1)

3: Output Basis and Core Tensor Learning:
Given

{
Uk,lk

}
, estimate {Vd},

{
Vm
d
}
, {Ck}, and

{
Cmk

}
. (Algo-

rithm 4 in Section 3.2.2)

in detail in Algorithm 2 of Section 3.2.1 and Algorithm 4 of
Section 3.2.2, respectively. Besides, we discuss the selection of
involved hyperparameters and Tucker ranks in Section 3.3 and
provided the convergence analysis in Part V of supplementary
materials.

3.2.1. Learning the Site-Specific and Aggregated Input Bases
This section discusses the estimation procedure of the site-
specific and aggregated input bases, that is,

{
Uk,lk

}
and

{
Um
k,lk

}
,

directly from the input data located in each site. For this purpose,
the aggregator and all sites collaborate to solve the following
master optimization problem:

min{
Um
k,i,lk

}
,
{
Uk,lk

} {∑M
m=1

∑K
k=1

∑Nm
s

i=1∣∣∣∣∣∣Xm
k,i − Dm

k,i ×1 Um
k,i,1 ×2 Um

k,i,2 ×3 . . . ×Lk Um
k,i,Lk

∣∣∣∣∣∣2
F

+λu
2

∑K
k=1

∑Lk
lk=1

∣∣∣∣∣∣IP̃k − UT
k,lkUk,lk

∣∣∣∣∣∣2
F

}
,

subject to Uk,lk = Um
k,i,lk ,∀lk,∀k,∀m,∀i ∈ {

1, . . . ,Nm
s

}
,

(5)

where
{
Dm

k,i ∈ R
P̃k,1×...×P̃k,lk

}
are site-specific input core tensors,{

Um
k,i,lk ∈ R

Pk,lk×P̃k,lk
}
are site-specific input bases correspond-

ing to the ith sampleXm
k,i at themth site, λu is a hyperparameter,

IP̃k is an identity matrix of dimension P̃k × P̃k, and Xm
k,i ∈

R
Pk,1×...×Pk,lk is the ith sample of Xm

k . Here, Xm
k,i has one mode

less thanXm
k . The first term in the objective function of (5) min-

imizes the overall error of inputs reconstruction by summing
over all the samples and sites. The second term in the objective
function of (5) aims to restrict the space of possible bases in the
coefficient decomposition which can alleviate the identifiabil-
ity and uniqueness issues related to the tensor decomposition
(Gahrooei et al. 2021). The constraint Uk,lk = Um

k,i,lk ensures
that the individual sites and the aggregator eventually achieve
the same set of bases. If all the data were centralized, one could
directly solve (5) by replacing Um

k,i,lk with Uk,lk and performing
Tucker decomposition on all the input data. Nevertheless, this
is not possible under the data sharing constraint because all the
data is not accessible by other entities when solving the problem.
Therefore, the problem will be solved locally by each individual
site and then by the aggregator in an iterative fashion until a
consensus is achieved according to the constraintUk,lk = Um

k,i,lk .
Under the federated framework, each individual site min-

imizes
∑K

k=1
∑Nm

s
i=1

∣∣∣∣∣∣Xm
k,i − Dm

k,i ×1 Um
k,i,1 ×2 Um

k,i,2 ×3 . . . ×Lk

Um
k,i,Lk

∣∣∣∣∣∣2
F

based on its own data
{
Xm
k,i

}
parallelly. Then,

the aggregator works on its task to minimize
∑K

k=1
∑Lk

lk=1∣∣∣∣∣∣IP̃k − UT
k,lkUk,lk

∣∣∣∣∣∣2
F
based on the transferred features and by

imposing the equality constraintUk,lk = Um
k,i,lk to further update

its aggregated input bases. Next, the aggregator broadcasts
the aggregated input bases to all individual sites. Here, the
equality constraint Uk,lk = Um

k,i,lk is the only bridge to
communicate feature information among individual sites and
the aggregator, which achieves the goal of avoiding data sharing
but encouraging the collaboration.

In order to solve (5) and to achieve a closed-form solution, we
first use the term

∣∣∣∣∣∣IP̃k − UAT
k,lkU

B
k,lk

∣∣∣∣∣∣2
F
with equality constraints

UB
k,lk = UA

k,lk to replace the quadratic term
∣∣∣∣∣∣IP̃k − UT

k,lkUk,lk

∣∣∣∣∣∣2
F
.

That is, we write (5) as follows:

min{
Um
k,i,lk

}
,
{
UA
k,lk

}
,
{
UB
k,lk

} {∑M
m=1

∑K
k=1

∑Nm
s

i=1∣∣∣∣∣∣Xm
k,i − Dm

k,i ×1 Um
k,i,1 ×2 Um

k,i,2 ×3 . . . ×Lk Um
k,i,Lk

∣∣∣∣∣∣2
F

+λu
2

∑K
k=1

∑Lk
lk=1

∣∣∣∣∣∣IP̃k − UAT
k,lkU

B
k,lk

∣∣∣∣∣∣2
F

}
,

subject to UB
k,lk = UA

k,lk ,U
A
k,lk = Um

k,i,lk ,∀lk,∀k,∀m,∀i
∈ {

1, . . . ,Nm
s

}
,

(6)

where
{
UA
k,lk

}
and

{
UB
k,lk

}
are duplicated aggregated input bases.

Please note that the equality constraintUB
k,lk = UA

k,lk only assists
to provide the closed-form solution. Since UA

k,lk and UB
k,lk play

the same role, we selectUA
k,lk to be transferred to individual sites

where the equality constraint UA
k,lk = Um

k,i,lk allows individual
sites and the aggregator to reach a consensus over several iter-
ations and communications. To solve (6), we use an ADMM
algorithm and write the augmented Lagrangian function LU of
(6) as follows:

LU = ∑M
m=1

∑K
k=1

∑Nm
s

i=1∣∣∣∣∣∣Xm
k,i − Dm

k,i ×1 Um
k,i,1 ×2 Um

k,i,2 ×3 . . . ×Lk Um
k,i,Lk

∣∣∣∣∣∣2
F

+λu
2

∑K
k=1

∑Lk
lk=1

∣∣∣∣∣∣IP̃k − UAT
k,lkU

B
k,lk

∣∣∣∣∣∣2
F

+∑M
m=1

∑K
k=1

∑Nm
s

i=1
∑Lk

lk=1

(
WmT

k,i,lk

(
UA
k,lk − Um

k,i,lk

)
+ρu

2

∣∣∣∣∣∣UA
k,lk − Um

k,i,lk

∣∣∣∣∣∣2
F

)
+ ∑K

k=1
∑Lk

lk=1(
STk,lk

(
UB
k,lk − UA

k,lk

)
+ μu

2

∣∣∣∣∣∣UB
k,lk − UA

k,lk

∣∣∣∣∣∣2
F

)
,

(7)

where Wm
k,i,lk and Sk,lk are the site-specific and aggregated

Lagrangian multipliers, respectively. Although Wm
k,i,lk and Sk,lk

are all Lagrangian multipliers, they play different roles in the
optimization. Specifically, Wm

k,i,lk assists Um
k,i,lk to integrate the

feature information from UA
k,lk ; while Sk,lk helps the aggregator

to handle the equality constraintUB
k,lk = UA

k,lk . The penalty terms
that are multiplied by parameter ρu and μu help LU to enhance
the convergence property within the federated framework.

In the following sections, wewill discuss how to distribute the
problemofminimizing (7) to individual sites and the aggregator,
and how to solve this problem.
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3.2.1.1 Site-Specific Optimization. Under the proposed fed-
erated framework, each individual site m updates site-specific
input core tensors

{
Dm

k,i

}
and the input bases

{
Um
k,i,lk

}
by solving

the following subproblem (the objective function is a subpart of
(7)), assuming that the aggregated feature UA

k,lk is known (i.e.,
provided by the aggregator):

min{
Dm

k,i

}
,
{
Um
k,i,lk

}{∣∣∣∣∣∣Xm
k,i − Dm

k,i ×1 Um
k,i,1 ×2 Um

k,i,2 ×3 . . . ×Lk Um
k,i,Lk

∣∣∣∣∣∣2
F

+WmT
k,i,lk

(
UA
k,lk − Um

k,i,lk

)
+ ρu

2

∣∣∣∣∣∣UA
k,lk − Um

k,i,lk

∣∣∣∣∣∣2
F

}
,

(8)
by using the alternative least square approach. Notably, although{
Dm

k,i

}
are estimated when performing the Tucker decompo-

sition on
{
Xm
k,i

}
, they are not used in estimating the model

parameters
{
Bm
k

}
. More specifically, the site-specific input core

tensors
{
Dm

k,i

}
is first estimated given the input bases

{
Um
k,lk

}
as

follows:

Dm
k,i = Xm

k,i ×1
(
UmT
k,i,1U

m
k,i,1

)−1
UmT
k,i,1

×2 . . . ×Lk

(
UmT
k,i,LkU

m
k,i,Lk

)−1
UmT
k,i,Lk ,∀k,∀i.

(9)

Here,
{
Um
k,i,lk

}
are orthonormal and nonsingular.When

{
Um
k,i,lk

}
become orthonormal, (9) is equivalent toDm

k,i = Xm
k,i×1UmT

k,i,1×2

UmT
k,i,2 ×3 . . . ×Lk UmT

k,i,Lk .
Next, given the raw data Xm

k,i, the site-specific input core
tensor Dm

k,i, the site-specific Lagrangian multipler Wm
k,i,lk , and

other site-specific input bases
{
Um
k,i,l′k

} (
l′k �= lk

)
, the individual

site can obtain a closed-form solution for Um
k,i,lk as follows:

Um
k,i,lk =

(
ρuUA

k,lk + Wm
k,i,lk + 2Xm

k,i(lk)R
mT
k,i

)
(
2Rm

k,iR
mT
k,i + ρuIP̃k

)−1
,

(10)

whereDm
k,i(lk) is the mode-lk matricization ofDm

k,i, R
m
k,i = Dm

k,i(lk)(
Um
k,i,l+k

⊗
Um
k,i,l−k

)T
, Um

k,i,l+k
= Um

k,i,Lk
⊗

. . .
⊗

Um
k,i,(lk+1), and

Um
k,i,l−k

= Um
k,i,(lk−1)

⊗
. . .

⊗
Um
k,i,1. If the input is a functional

curve, that is, Lk = 1, we have Um
k,i,1 =

(
2XmT

k,i D
m
k,i + Wm

k,i,1

+ρuUA
k,1

) (
2DmT

k,i D
m
k,i + ρuIP̃k

)−1
. The details of the derivation

can be found in Part II of supplementary materials.
Once individual sites solve (8), they send their updated site-

specific features togetherwith the site-specific Lagrangianmulti-
pliers (which have not been updated) to the aggregator. After the
aggregator solves the aggregated optimization, individual sitem
receives the updated aggregated features and then updates their
site-specific Lagrangian multipliers to adjust the gap between
site-specific and aggregated input bases:

Wm
k,i,lk ← Wm

k,i,lk + ρu
(
UA
k,lk − Um

k,i,lk

)
,∀k,∀lk,∀i,∀m. (11)

Please note that the site-specific Lagrangian multipliers are not
updated immediately after solving (8) but updated after indi-
vidual sites receive the updated aggregated features from the
aggregator. It is because such a design not only follows the
ADMM convention, but also can save computation resources by
only updating Lagrangian multipliers once after individual sites
and the aggregator has completed their own tasks at one run.

3.2.1.2 Aggregated Optimization. By pooling all site-specific
input bases

{
Um
k,lk

}
and Lagrangian multipliers

{
Wm

k,i,lk

}
from

all individual sites, the aggregator estimates the aggregated input
bases

{
UA
k,lk

}
,
{
UB
k,lk

}
and the Lagrangian multipliers

{
STk,lk

}
by minimizing (7), in an iterative manner. First, assuming UB

k,lk
and STk,lk are given, UA

k,lk is estimated by solving the following
subproblem:

minUA
k,lk

{
λu
2

∣∣∣∣∣∣IP̃k − UAT
k,lkU

B
k,lk

∣∣∣∣∣∣2
F

+∑M
m=1

∑Nm
s

i=1

(
WmT

k,i,lk

(
UA
k,lk − Um

k,i,lk

)
+ ρu

2

∣∣∣∣∣∣UA
k,lk − Um

k,i,lk

∣∣∣∣∣∣2
F

)

+STk,lk
(
UB
k,lk − UA

k,lk

)
+ μu

2

∣∣∣∣∣∣UB
k,lk − UA

k,lk

∣∣∣∣∣∣2
F

}
,

(12)
which has a closed-form solution as follows:

UA
k,lk =

(
λuUB

k,lkU
BT
k,lk + (

MNm
s ρu + μu

)
IP̃k

)−1

(
(λu + μu)UB

k,lk + Sk,lk + ∑M
m=1

∑Nm
s

i=1(
ρuUm

k,i,lk − Wm
k,i,lk

))
.

(13)

Next, assuming UA
k,lk and STk,lk are given, UB

k,lk is estimated by
solving the following minimization problem:

minUB
k,lk

{
λu
2

∣∣∣∣∣∣IP̃k − UAT
k,lkU

B
k,lk

∣∣∣∣∣∣2
F

+ STk,lk
(
UB
k,lk − UA

k,lk

)
+μu

2

∣∣∣∣∣∣UB
k,lk − UA

k,lk

∣∣∣∣∣∣2
F

}
,

(14)
which results in the following closed-form solution:

UB
k,lk =

(
λuUA

k,lkU
AT
k,lk + μuIP̃k

)−1 (
(λu + μu)UA

k,lk − Sk,lk
)
.

(15)
Finally, the aggregated Lagrangian multipliers are updated

by the aggregator to adjust the gap between the duplicated
aggregated input bases as follows:

Sk,lk ← Sk,lk + μu
(
UB
k,lk − UA

k,lk

)
,∀k,∀lk. (16)

To summarize, the entire algorithm for updating input bases
is shown in Algorithm 2 and Figure 3 of Part I in supplemen-
tary materials. The aggregator and individual sites repeat this
procedure until the minimization problem of (7) converges.
During the procedure, the aggregated input bases and the site-
specific ones reach a consensus without directly accessing the
raw data. The degree to which the aggregated and site-specific
bases match, depends on the stopping criteria used in the algo-
rithm that is explained next.

The stopping criteria for the convergence include whether
the iteration number reaches the predefined maximal value,
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Algorithm 2 Input Basis Learning.

1: Inputs:
{
Xm
k,i

}
.

2: Initialize Um
k,i,lk , W

m
k,i,lk using Tucker decomposition of{

Xm
k,i

}
, ∀k,∀lk,∀i,∀m.

3: Initialize UB
k,lk = UA

k,lk = Sk,lk = U1
k,1,lk , ∀k,∀l.

4: Loop
5: Update

{
Dm

k,i

}
using (9), ∀i,∀k,∀m.

6: For k ∈ {1, . . . ,K} , lk ∈ {1, . . . , Lk}
7: Update Um

k,i,lk using (10), ∀i,∀m.
8: UpdateUA

k,lk using (13) and updateU
B
k,lk using (15).

9: Update Sk,lk using (16).
10: UpdateWm

k,i,lk using (11), ∀i,∀m.
11: End for
12: End Until Convergence

ruAm ≤ εr , ruBA ≤ εr , suAm ≤ εs, suBA ≤ εs, and
∑M

m=1
∑K

k=1
∑Nm

s
i=1∣∣∣∣∣∣Xm

k,i − Dm
k,i ×1 Um

k,i,1 ×2 Um
k,i,2 ×3 . . . ×Lk Um

k,i,Lk

∣∣∣∣∣∣2
F

≤ εX ,

where ruAm = ∑M
m=1

∑K
k=1

∑Nm
s

i=1
∑Lk

lk=1

∣∣∣∣∣∣UA
k,lk − Um

k,i,lk

∣∣∣∣∣∣2
F
and

ruBA = ∑K
k=1

∑Lk
lk=1

∣∣∣∣∣∣UB
k,lk − UA

k,lk

∣∣∣∣∣∣2
F
evaluate the satisfaction

of the equality constraints UB
k,lk = UA

k,lk ,U
A
k,lk = Um

k,i,lk in (6);

suAm = ∑M
m=1

∑K
k=1

∑Nm
s

i=1
∑Lk

lk=1

∣∣∣∣∣∣Um(t+1)
k,i,lk − Um(t)

k,i,lk

∣∣∣∣∣∣2
F
and suBA =∑K

k=1
∑Lk

lk=1

∣∣∣∣∣∣UA(t+1)
k,lk − UA(t)

k,lk

∣∣∣∣∣∣2
F

with t representing the tth
iteration monitor the algorithm convergence; the last criterion
evaluates data fitness; and εX , εr , εs are predefined thresholds
depending on the availability of computation resources and the
accuracy requirement for data fitting.

3.2.2. Federated Core Tensor and Output Basis Learning
This section discusses the estimation of the core tensors and the
output tensors assuming that the site-specific and the aggregated
input bases are known or estimated through the procedure dis-
cussed in Section 4.1. Given

{
Uk,lk

}
obtained from Algorithm 2,

the aggregator coordinates with all individual sites to update
core tensors and output bases by solving the following master
optimization problem:

min{
Vm
d

}
,
{
Cm
k

}
,{Vd},{Ck}

{∑M
m=1

∣∣∣∣∣∣Ym − ∑K
k=1Xm

k ∗Bm
k

∣∣∣∣∣∣2
F

+λv
2

∑D
d=1

∣∣∣∣∣∣IQ̃ − Vd
TVd

∣∣∣∣∣∣2
F

+ μv
2

∑M
m=1

∑D
d=1

∣∣∣∣Vd − Vm
d
∣∣∣∣2
F

+∑M
m=1

∑K
k=1

γc
2
∣∣∣∣Cm

k − Ck
∣∣∣∣2
F

}
,

subject to Bm
k = Cmk ×1 Uk,1 ×2 . . . ×Lk Uk,Lk ×Lk+1 Vm

1×Lk+2 . . . ×Lk+D Vm
D ,

(17)
where λv,μv, γc are hyperparameters, and IQ̃ is an identity
matrix of dimension Q̃× Q̃. Please note that unlike Section 4.1,
we need to share the site-specific core tensors

{
Cmk

}
with the

aggregator to enhance the collaboration and eventually the
generalizability of the models.

By employing the federated ADMM framework similar
to the discussion in the previous section, individual site m

handles
∣∣∣∣∣∣Ym − ∑K

k=1Xm
k ∗ Bm

k

∣∣∣∣∣∣2
F
and the aggregator handles

the orthogonality term
∑D

d=1

∣∣∣∣∣∣IQ̃ − Vd
TVd

∣∣∣∣∣∣2
F
. To reserve the

modeling flexibility, we allow the deviation of site-specific
output bases and core tensors from the aggregated ones.
That is, we consider proximity penalties

∣∣∣∣Vd − Vm
d
∣∣∣∣2
F and∣∣∣∣Cm

k − Ck
∣∣∣∣2
F instead of equality constraints. This will allow the

models at each individual site to be more flexible and deviate
from the aggregated model.

When solving (17), we first introduce duplicated aggregated
output bases

{
VA
d
}
and

{
VB
d
}
and rewrite (17) as follows:

min{
Vm
d

}
,
{
Cm
k

}
,
{
VA
d
}
,
{
VB
d
}
,{Ck}

{∑M
m=1

∣∣∣∣∣∣Ym − ∑K
k=1Xm

k ∗Bm
k

∣∣∣∣∣∣2
F

+μv
2

∑M
m=1

∑D
d=1

∣∣∣∣VA
d − Vm

d
∣∣∣∣2
F + λv

2
∑D

d=1

∣∣∣∣∣∣IQ̃ − VAT
d VB

d

∣∣∣∣∣∣2
F

+∑M
m=1

∑K
k=1

γc
2
∣∣∣∣Cm

k − Ck
∣∣∣∣2
F

}
,

subject toBm
k = Cmk ×1 Uk,1 ×2 . . . ×Lk Uk,Lk ×Lk+1 Vm

1
×Lk+2 . . . ×Lk+D Vm

D ,VB
d = VA

d ,∀d,
(18)

where λv is a hyperparameter. Accordingly, the augmented
Lagrangian function LV can be written as

LV = ∑M
m=1

∣∣∣∣∣∣Ym − ∑K
k=1Xm

k ∗Bm
k

∣∣∣∣∣∣2
F

+μv
2

∑M
m=1

∑D
d=1

∣∣∣∣VA
d − Vm

d
∣∣∣∣2
F

+λv
2

∑D
d=1

∣∣∣∣∣∣IQ̃ − VAT
d VB

d

∣∣∣∣∣∣2
F

+∑D
d=1

(
HT

d
(
VA
d − VB

d
) + ρv

2
∣∣∣∣VA

d − VB
d
∣∣∣∣2
F

)
+∑M

m=1
∑K

k=1
γc
2
∣∣∣∣Cm

k − Ck
∣∣∣∣2
F ,

(19)

where Hd is the aggregated Lagrangian multipliers, and ρv is
a hyperparameter. In the following sections, we distribute the
optimization of (19) into individual sites and the aggregator and
further discuss its solutions.

3.2.2.1 Site-Specific Optimization. Assuming that the aggre-
gator provides VA

d and VB
d , each individual site estimates the

site-specific core tensors and output bases by minimizing (19).
Specifically, by following the ADMM framework, the output
bases Vm

d are estimated by solving the following subproblem:

min
Vm
d

{∣∣∣∣
∣∣∣∣Ym −

∑K

k=1
Xm
k ∗Bm

k

∣∣∣∣
∣∣∣∣
2

F
+ μv

2
∣∣∣∣VA

d − Vm
d
∣∣∣∣2
F

}
. (20)

Given aggregated input bases
{
Uk,lk

}
, the raw data Ym,

{
Xm
k

}
,

site-specific core tensors
{
Cmk

}
, and remaining site-specific out-

put bases
{
Vm
d′
} (

d′ �= d
)
, site m can set the gradient of (20) to

be zero and update Vm
d as follows:

Vm
d =

(
μvVA

d + 2Ym
(d+1)A

mT
) (

2AmAmT + μvIQ̃
)−1

. (21)

where Am = ∑K
k=1Am

k , A
m
k = Cm

k(Lk+d)
(
Vm
d+

⊗
Vm
d−

⊗
Zm
k
)T ,

Vm
d+ = Vm

D
⊗

. . .
⊗

Vm
d+1, V

m
d− = Vm

d−1
⊗

. . .
⊗

Vm
1 , and

Zm
k = Xm

k(1)
(
Uk,Lk

⊗
. . .

⊗
Uk,1

)
. The derivation details are

summarized in Part III of supplementary materials.
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By rewriting (20) regarding Cmk , we can get the following
subproblem for updating Cmk :

argmin
vec(Cm

k )

{∣∣∣∣∣∣vec (
Ym

(1)

)
− ∑K

r=1,r �=k
(
Vm
D

⊗
. . .

⊗
Vm
1

⊗
Zm
r
)

vec
(
Cmr

) − (
Vm
D

⊗
. . .

⊗
Vm
1

⊗
Zm
k
)
vec

(
Cmk

)∣∣∣∣2
F

+ γv
2
∣∣∣∣Ck − Cm

k
∣∣∣∣2
F

}
.

(22)
By setting the gradient of (22) to be zero, we update Cmk as
follows:

vec
(
Cmk

) =
(
2
(
Vm
D

⊗
. . .

⊗
Vm
1

⊗
Zm
k
)T

(
Vm
D

⊗
. . .

⊗
Vm
1

⊗
Zm
k
) + γvIQ̃

)−1
(γvvec (Ck)

+2
(
Vm
D

⊗
. . .

⊗
Vm
1

⊗
Zm
k
)T (

vec
(
Ym

(1)

)
−∑K

r=1,r �=k
(
Vm
D

⊗
. . .

⊗
Vm
1

⊗
Zm
r
)
vec

(
Cmr

)))
.

(23)

After individual sites update their site-specific core tensor
and output bases, they will send their site features to the aggre-
gator.

3.2.2.2 Aggregated Optimization. By initializing aggregated
output bases

{
VA
d
}
,
{
VB
d
}
, and their aggregated Lagrangianmul-

tipliers {Hd} using personalized output bases, the aggregator
adopts ADMM to handle the equality constraint VB

d = VA
d

to update VA
d , V

B
d , and Hd as summarized in Algorithm 3.

Specifically, VA
d (VB

d ) can be updated via (19) by assuming that
other variables are given. The derivation details can be found in
Part IV of supplementary materials.

Algorithm 3 Update Aggregated Output Bases.
1: Initialize VB

d = VA
d = Hd = V1

d, ∀d.
2: Loop
3: VA

d =
(
λvVB

dV
BT
d + (Mμv + ρv) IQ̃

)−1

(
(λv + ρv)VB

d + μv
∑M

m=1Vm
d − Hd

)
.

4: VB
d =

(
λvVA

dV
AT
d + ρvIQ̃

)−1 (
(λv + ρv)VA

d + Hd
)
.

5: Hd ← Hd + ρv
(
VA
d − VB

d
)
.

6: End Until Convergence

Apart from updating aggregated output bases, the aggregator
pools all site-specific core tensors

{
Cmk

}
, the aggregated core

tensor {Ck} and then update the aggregated core tensor Ck by
assuming that other terms are given from (19):

min
Ck

{∑M

m=1

γc
2

∣∣∣∣Cm
k − Ck

∣∣∣∣2
F

}
(24)

By setting the gradient of (24) to be zero, we get

Ck = 1
M

∑M

m=1
Cm
k . (25)

The entire algorithm for output basis and core tensor learning is
summarized in Algorithm 4 and Figure 1.

The stopping criteria for this algorithm include whether
the iteration number reaches the predefined maximal value,
rvAm ≤ εr , rvBA ≤ εr , svAm ≤ εs, svBA ≤ εs, and

∑M
m=1

Algorithm 4 Update Core Tensors and Output Bases.
1: Inputs: {Ym}, {Xm

k
}
, and

{
Uk,lk

}
.

2: Initialize Vm
d andHm

d using Tucker decomposition of Ym,
∀m.

3: Initialize VB
d = VA

d = Hd = V1
d, ∀d.

4: Loop
5: For k ∈ {1, . . . ,K}
6: Loop
8: Form ∈ {1, . . . ,M}
9: For d ∈ {1, . . . ,D}
10: Update Vm

d using (21).
11: Algorithm 3.
12: End for
13: Update Cmk using (23).
14: End For
16: Update Ck using (25).
19: End Until Convergence
20: End for
21: End Until Convergence

∣∣∣∣∣∣Ym − ∑K
k=1Xm

k ∗ Bm
k

∣∣∣∣∣∣2
F

≤ εY , where rvAm = ∑M
m=1

∑D
d=1∣∣∣∣VA

d − Vm
d
∣∣∣∣2
F controls the deviation of site-specific features

from the aggregate features; rvBA = ∑D
d=1

∣∣∣∣VB
d − VA

d
∣∣∣∣2
F

evaluates the satisfaction level of the equality constraint
VB
d = VA

d in (18); svAm = ∑M
m=1

∑D
d=1

∣∣∣∣∣∣Vm(t+1)
d − Vm(t)

d

∣∣∣∣∣∣2
F

and svBA = ∑D
d=1

∣∣∣∣∣∣VA(t+1)
d − VA(t)

d

∣∣∣∣∣∣2
F
with t representing the

tth iteration help to monitor the algorithm convergence; the
last criterion evaluates the model fitness; and εY , εr , εs are
predefined thresholds determined by computation capability
and fitness requirement.

3.3. Determining Hyperparameters and Tucker Ranks

In the proposed federated framework, tuning a set of hyperpa-
rameters (i.e., λu, λv, ρu, ρv, and μu) are essential. The hyper-
parameters λu and λv are tied to the orthonormality constraints,
while ρu, ρv, and μu are associated with the Lagrangian mul-
tipliers. We conduct empirical experiments for selecting these
values to ensure feasible solutions. Alternatively, we can initialize
these values and incrementally adjust them across algorithm
iterations, enhancing the solution’s feasibility as suggested by
Lee et al. (2023). Additionally, the hyperparameters μv and
γc regulate proximity penalties, maintaining the local models’
alignment with the aggregated model while allowing for neces-
sary flexibility. High values for these hyperparameters promote
uniformity in estimating site-specificmodels, which is beneficial
when sites are homogeneous. Conversely, smaller values afford
more flexibility, enabling deviation when individual sites have
heterogeneous models. Thus, these hyperparameters should be
chosen based on domain expertise and empirical experimen-
tation tailored to the specific application (Konyar and Reisi
Gahrooei 2023).

Next, we determine how to select the Tucker ranks under
each hyperparameter setting. Specifically, each individual site
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will first apply singular value decomposition (SVD) to the
matricizated raw data Ym

(d+1) and
{
Xm
k,i,(lk)

}
. Based on the top-r

singular values which explain most of the variance (e.g., 80%),
we determine the Tucker ranks

{
P̃k,lk

}
and

{
Q̃d

}
and then

share the estimated ranks to the aggregator. Based on the values
of estimated Tucker ranks, the aggregator will first rank them
from the lowest to the highest and then communicate with all
individual sites to test each rank set in sequence. Specifically,
the aggregator will assign each rank set to all individual sites
and then start the proposed federated framework. After the
algorithm stops, each individual site calculates the following
Akaike Information Criterion AICm (Roy and Michailidis 2022;
Lee et al. 2023) and then sends it back to the aggregator:

AICm = 2
∑K

k=1
∑Lk

lk=1lk + 2
∑D

d=1

d − 2
∑Nm

s
i=1

∣∣∣∣∣∣Ym − ∑K
k=1Xm

k ∗Bm
k

∣∣∣∣∣∣2
F
.

(27)

The aggregator sums up all AICm, that is, AIC = ∑M
m=1AICm,

and selects the rank set which results in the lowestAIC. Thus, for
each hyperparameter setting, we can determine its correspond-
ing best Tucker rank set.

By selecting the lowest AIC from the hyperparameter setting
and associated best Tucker rank set, we finalize the selection of
both hyperparameters and Tucker ranks.

4. Performance Evaluation Using Simulation Studies

In this section, we conduct two sets of simulation studies to
evaluate the performance of the proposed method, considering
two scenarios: (i) the inputs are a functional curve and an image,
and (ii) the inputs are two images. Using the proposed frame-
work, we obtain two types of models: aggregated model (3), and
personalized models (4). Specifically, we first run Algorithm 2
to learn input bases, that is, site-specific input bases

{
Um
k,i,lk

}
and aggregated input bases

{
Uk,lk

}
. Since we have the equality

constraint Uk,lk = Um
k,i,lk in (6),

{
Um
k,i,lk

}
and

{
Uk,lk

}
share the

same information, which does not require for further person-
alization among individual sites. However, for (17), we allow
the deviations of site-specific features (i.e.,

{
Cmk

}
, and

{
Vm
d
}
)

from the aggregated features (i.e., {Ck}, and {Vd}) by adding
penalty terms (instead of equality constraints) to capture the
heterogeneity among sites (Li et al. 2018). When Algorithm 4
converges after T iterations, we obtain the aggregated model
with parameter tensors {Bk} constructed from the aggregated
features. Then, to emphasize the differences among individual
sites and achieve a better local fitting, we further personalize
output bases

{
Vm
d
}
and core tensors

{
Cmk

}
at each site by running

an additional site-specific optimization in Section 3.2.2.1, which
results in personalized output bases

{
Vm
d
}
and core tensors

{
Cmk

}
locally. Finally, each site constructs a personalized model based
on these personalized features.

We consider three types of models as benchmarks: (i) local
models (1), that is, models trained locally using MTOT based
on data from each individual site; (ii) a global model (2), that
is, a model trained using MTOT based on the pooled data from
all individual sites; and (iii) FedAvg (Brendan McMahan et al.
2016). The core concept of FedAvg is to average the individual

features from each individual site, producing an aggregated
feature at the aggregator level. However, this approach is not
inherently designed for regression modeling for multimodal
high-dimensional data sources. To gauge its efficacy, we adapted
its central principle: each individual site updates its features by
running MTOT independently, but subsequently sends their
own features to the aggregator every ψ local updates (ψ =
5 in simulations). The aggregator then computes the average
of these features and dispatches them back to the sites. These
averaged features as used by individual sites to continue their
local updates. Specifically, it is expected that the global model
outperforms others since it learns model from the pooled raw
data (Kim et al. 2017). The standardized predictionmean square
error (SPME) is used as the evaluation metric, which is defined
by SPME =

∣∣∣∣∣∣Y − Ŷ
∣∣∣∣∣∣
F
/ ||Y||F .

4.1. Simulation Setting

We simulate waveform surfaces Ym based on two input tensors,
Xm
1 ∈ R

Nm
s ×P1,1×...×P1,L1 and Xm

2 ∈ R
Nm
s ×P2,1×...×P2,L2 , where

Nm
s is the sample size of themth site. Accordingly, we have

Ym = ∑2
k=1Xm

k ∗Bm
k + τEm,

Bm
k = Cmk ×1 Um

k,1 ×2 . . . ×Lk Um
k,Lk ×Lk+1 Vm

1 ×Lk+2 . . .

×Lk+DVm
D ,

where τ is the noise level, and Em is the error tensor. More
simulation details can be found in Part VI of supplementary
materials.

In Scenario 1, we assume that each individual site has Nm
s =

80 samples. The input is a combination of two types of images,
that is, Xm

1,i ∈ R
80×25×20, Xm

2,i ∈ R
80×20×15, and the output is

Ym ∈ R
80×15×15.We set P̃1,1 = P̃1,2 = 6, P̃2,1 = P̃2,2 = 5, Q̃1 =

Q̃2 = 5. It implies that Cm1 ∈ R
6×6×5×5 and Cm2 ∈ R

5×5×5×5. In
Scenario 2, we generate a response from a functional curve and
an image signal. Assuming that each individual site has Nm

s =
60 samples, we simulate Xm

1,i ∈ R
60×20, Xm

2,i ∈ R
60×20×15, and

Ym ∈ R
60×15×15 with P̃1,1 = 20, P̃2,1 = P̃2,2 = 6, Q̃1 = Q̃2 = 5,

which implies that Cm1 ∈ R
20×5×5 and Cm2 ∈ R

6×6×5×5.
Besides, we randomly select 80% of data in each individual

site for model training and use the remaining data for perfor-
mance testing. We train the model using the training set and
then calculate the SPME based on the test data.We replicate this
process 30 times for each experimental setting to compute the
mean and standard deviation of the performance metric.

4.2. Performance Evaluation: Impact of Noise

To test the model robustness, we evaluate the model perfor-
mance under varying noise levels, that is, τ to be four levels
as 0.0001, 0.001, 0.01, and 0.1. Here, we keep models across
different sites to be homogeneous, that is, the distributions of{
Bm
k

}
are the same among individual sites. The SPME results

are reported in Table 1 (Scenario 1) andTable 2 (Scenario 2). The
visualizations are provided in Figure 4 of Part I in supplementary
materials. As it is presented in the tables, the personalized,
aggregated, and globalmodels significantly outperform the local
models andmodels developed by FedAvg. Besides, personalized
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Table 1. Testing errors in scenario 1 under different noise levels.

τ Personalized Aggregated Local Global FedAvg

0.0001 3.63E-4 (2.92E-8) 3.63E-4 (2.92E-8) 1.51E-1 (6.59E-3) 1.81E-4 (7.29E-9) 1.84E0 (3.53E-3)
0.001 1.51E-3 (4.08E-9) 1.51E-4 (4.14E-9) 1.38E-1 (5.74E-3) 7.53E-4 (1.03E-9) 1.85E0 (4.35E-3)
0.01 1.42E-2 (8.98E-8) 1.42E-2 (8.51E-8) 1.55E-1 (8.79E-3) 7.08E-3 (1.95E-8) 1.85E0 (3.45E-3)
0.1 1.45E-1 (8.68E-6) 1.45E-1 (8.85E-6) 2.99E-1 (3.32E-3) 7.22E-2 (2.16E-6) 1.84E0 (3.51E-3)

NOTE: Variance in the bracket.

Table 2. Testing errors in scenario 2 under different noise levels.

τ Personalized Aggregated Local Global FedAvg

0.0001 8.26E-4 (2.71E-7) 9.43E-4 (2.77E-7) 2.12E0 (2.89E-2) 4.01E-4 (6.94E-8) 1.87E0 (6.61E-3)
0.001 1.67E-3 (2.31E-8) 1.75E-3 (4.00E-8) 2.12E0 (4.08E-2) 8.25E-4 (6.03E-9) 2.90E0 (1.97E-3)
0.01 1.52E-2 (1.72E-7) 1.52E-2 (1.77E-7) 2.09E0 (2.74E-2) 7.55E-3 (4.48E-8) 3.91E0 (8.35E-4)
0.1 1.50E-1 (1.46E-5) 1.50E-1 (1.49E-5) 2.10E0 (3.46E-2) 7.44E-2 (4.29E-6) 1.87E0 (4.15E-3)

NOTE: Variance in the bracket

and aggregated models achieve a comparable prediction accu-
racy compared to the global model under relatively low noise
levels. For example, as it is reported in Table 1, when τ = 0.01,
the mean SPME of the personalized and aggregated model are
0.0142 and 0.0142, respectively, which are significantly smaller
than the mean SPME of the local model (0.155). This example
further demonstrates the benefit of collaboration in model con-
struction.

Moreover, federated models have a stable performance
under relatively low noise levels. However, when the noise
level increases, the global model achieves better performance
compared to the federated models. This superior performance
is because the global model pools all raw data directly and
learn from the raw data while the federated models learn
the information of transferred features. The increasing noise
disturbs the information transmission and poses a challenge for
federated models, which exhibits the importance of sample size
to model robustness.

4.3. Performance Evaluation: Impact of Number of Sites
andModel Heterogeneity

To assess the impact of number of sites andmodel heterogeneity,
where the distributions of

{
Bm
k

}
vary across different sites, we

evaluate the model performance in both homogeneous and
heterogeneous settings across M sites (M = 2, 3, 4) under the
noise level τ = 0.0001. In the homogeneous setting,

{
Bm
k

}
is

generated following Section 4.2. For the heterogeneous setting,
we use

{
Cmk

}
from Section 4.2 as an initial value. To this, we

add an additional random value drawn from a distribution
of 0.001 ∗ N (0, 1). This random addition to the initial value
introduces heterogeneity to

{
Bm
k

}
across different sites. Tables 3

and 4 provide a summary of the SPME results for Scenarios 1
and 2. Both personalized and aggregated models still present
comparable performance to the global model, and they signif-
icantly outperform the local model and the model constructed
by FedAvg.

In the homogeneous settings, we observe that both person-
alized and aggregated models offer the similar prediction accu-
racy for Scenario 1 under different site numbers. However, for
Scenario 2, the personalized model outperforms the aggregated
model. For example, as it is reported in Table 4, when M = 4,
the mean SPME of the personalized and aggregated model is

8.06×10−4 and 2.91×10−3, respectively. This result underscores
the significance of personalization, particularly when the system
uses multimodal input types. Specifically, in Scenario 2, the
inputs are a functional curve and an image, whereas Scenario
1 uses has two different-sized images.

In the heterogeneous setting, we find that the personalized
model achieves much better performance than aggregated
model, local model, and FedAvg, which further magnifies
the necessity of personalization when model heterogeneity
exists. For instance, when M = 2, the mean SPME of
the personalized and aggregated model is 2.05 × 10−2 and
2.94 × 10−2, respectively, when models are heterogeneous
across sites, while the mean SPME is the same

(
3.63 × 10−4)

under the homogeneous setting. Moreover, Figure 5 in Part I of
supplementary materials illustrates the performance metrics
for each site across a range of site number M. While the
personalized approach generally outperforms the aggregated
model, the extent of performance enhancement is inconsistent
across various sites. This variation could be attributed to the level
of model heterogeneity, wherein the addition of new involved
sites might exert either beneficial or detrimental effects on the
model construction.

Since the local model has obviously worse performance and
the aggregated model achieves the comparable result as the
personalized model, we only show the personalized model and
the globalmodel in Figure 6 of Part I in supplementarymaterials
to have a closer comparison. As it is shown from Figure 6,
when the number of sites increases, the performance fluctuation
of the global model is smaller than the personalized model. It
further demonstrates the importance of sample size for model
construction.

5. Case Studies

In this section, we conduct two case studies. The first case is
to predict relative fuel ratio from operating signals in vehicle
catalyst system. The second one is to evaluate the performance
of the proposed method in collaborative image recovery.

5.1. Case I: Catalyst Stoichiometry Prediction

In this section, we consider that smart vehicles collaborate in the
processing of sensor data to assist in safe navigation, pollution
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Table 3. Testing errors in scenario 1 under varying site numbers.

M Model heterogeneity Personalized Aggregated Local Global FedAvg

2 Homogeneous 3.63E-4 (2.92E-8) 3.63E-4 (2.92E-8) 1.51E-1 (6.59E-3) 1.81E-4 (7.29E-9) 1.84E0 (3.53E-3)
Heterogeneous 2.05E-2 (4.30E-5) 2.94E-2 (1.17E-4) 1.62E-1 (7.45E-3) 1.78E-2 (5.17E-5) 1.84E0 (4.07E-3)

3 Homogeneous 5.67E-4 (7.47E-8) 5.66E-4 (7.47E-8) 2.34E-1 (1.07E-2) 1.88E-4 (8.27E-9) 2.90E0 (2.34E-3)
Heterogeneous 3.87E-2 (1.06E-4) 5.56E-2 (1.55E-4) 2.90E-1 (1.10E-2) 2.14E-2 (2.63E-5) 2.90E0 (2.10E-3)

4 Homogeneous 5.28E-4 (3.29E-8) 5.28E-4 (3.29E-8) 3.18E-1 (1.08E-2) 1.32E-4 (2.04E-9) 3.94E0 (6.37E-4)
Heterogeneous 4.39E-2 (1.56E-4) 6.35E-2 (2.75E-4) 3.68E-1 (1.94E-2) 1.83E-2 (2.37E-5) 3.95E0 (5.43E-4)

NOTE: Variance in the bracket

Table 4. Testing errors in scenario 2 under varying site numbers. (variance in the bracket).

M Model heterogeneity Personalized Aggregated Local Global FedAvg

2 Homogeneous 8.26E-4 (2.71E-7) 9.43E-4 (2.77E-7) 2.12E0 (2.89E-2) 4.01E-4 (6.94E-8) 1.87E0 (6.61E-3)
Heterogeneous 2.90E-2 (4.98E-4) 4.36E-2 (4.39E-4) 2.12E0 (3.26E-2) 2.65E-2 (1.36E-4) 1.89E0 (2.65E-3)

3 Homogeneous 4.02E-4 (9.80E-9) 1.29E-3 (4.72E-8) 3.2E0 (1.14E-1) 1.18E-4 (1.40E-9) 1.87E0 (3.87E-3)
Heterogeneous 3.44E-2 (1.46E-4) 5.88E-2 (2.01E-4) 3.15E0 (9.98E-2) 2.44E-2 (3.84E-5) 2.90E0 (1.65E-3)

4 Homogeneous 8.06E-4 (9.24E-8) 2.91E-3 (2.97E-7) 4.34E0 (1.11E-1) 1.80E-4 (6.79E-9) 1.88E0 (4.93E-3)
Heterogeneous 4.98E-2 (2.04E-4) 8.80E-2 (3.51E-4) 4.37E0 (1.14E-1) 2.59E-2 (4.52E-5) 3.91E0 (6.22E-4)

Table 5. SPME results for catalyst stoichiometry prediction (variance in the bracket).

Personalized Aggregated Local Global FedAvg

5.96E-1 (8.76E-4) 5.95E-1 (9.87E-4) 2.43E0 (1.20E-4) 4.04E-1 (6.20E-4) 6.25E0 (1.96E-4)

control, and traffic management. Specifically, we consider two
onboard catalyst systems from different vehicles collaborate in
the data processing, but the system owners are not willing to
share their data directly. Here, the catalyst system designed
to treat the exhaust gas produced by vehicles , that is, NOx
Storage Catalyst (NSC). The NSC process has two alternating
stages: (i) absorption, that is, NOx molecules are absorbed by
zeolites coated converter support; and (ii) regeneration: that
is, the stored NOx is reduced by catalyst when the absorber
is saturated. Typically, the optimal combustion is required to
ensure the ideal conversion rate of the catalytic converter for
the second stage. Besides, NSC only works efficiently at stoi-
chiometric status, which requires combustion in a rich-air-to-
fuel condition. To indicate whether the regeneration stage is
in good condition, we use the relative fuel ratio normalized by
stoichiometry, which is measured runtime by a sensor upstream
of the NSC. Thus, it is worth developing a generalizable model
that could provide a good estimation of the stoichiometry signal
based on the operation signals collected by onboard sensors,
such as rotational speed and inner torque.

Each system performs 171 experiments to gather 171 sample
pairs, containing five operating signals as inputs and one stoi-
chiometry signal as the model response (Gahrooei et al. 2019,
2021). Figure 7 in Part I of supplementary materials illustrates
the sample of the real data. Specifically, each system collects one
measurement for each signal every 2 sec and has 203 measure-
ments in total for each signal. For each site, we randomly select
136 samples as the training set and the remaining samples are
used for model testing. Based on the training set, we estimate
the model parameters and then calculate the SPME using the
test data.

Table 5 reports that the personalized model achieves a com-
parable performance as the global model while improving the
performance by around 68.5% compared with the local model.

Besides, since the data are collected from two real operating
systems and the systems could not be identical, the personalized
model has relatively better performance than the aggregated
model under the federated framework, which again validates the
importance of personalization in the real model construction.

5.2. Case II: Image Denoising

In this section, we conduct experiments to validate the image
denoising application of our proposed method motivated by
Zhou, Li, and Zhu (2013). In this application, we assume two
individual sites collaborate to recover two corrupted images.We
denote the kth noisy image at the mth site by Inm,k ∈ R

Pk,1×Pk,2 .
To apply our method in the image recovering application, we
perform the following procedure in each site. First, each site m
generates a set of random observation tensor (with sample size
Nm
s ), denoted as Xm

k ∈ R
Pk,1×Pk,2 , for the kth image and then

combines the weighted observation Xm
k ∗ Inm,k, k ∈ {1, 2}, and

noise τEm, Em ∼ N (0, 1), to produce Ym as follows,

Ym =
∑2

k=1
Xm
k ∗Inm,k + τEm,m = {1, 2}.

Each observation tensorXm
k is generated as follows: the core ten-

sor is generated fromN (0, 1) andbases
{
Um
k,lk

}
are learned from

the Tucker decomposition of Inm,k. GivenNs pairs of observations
and response tensors (Ym,

{
Xm
k

}
), each individual site aims to

recover the Inm,k by applying the proposed method.
The denoising problem can be formulated as a learning prob-

lem that can be solved by MTOT whose estimated parameters
are the recovered version of the clean image Ik. We denote
the kth denoised image at site m based on the global model,
local model, personalized model, aggregated model by Igk , I

l
m,k,

Ipm,k, and Iam,k, respectively. To test denoising effects, we use the
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Table 6. ISNR results for image denoising and reconstruction.

Model Personalized Global Local FedAvg Noisy
Scenario

1 1.33E-1 1.16E-1 1.10E0 2.00E0 2.59E0
2 1.74E-1 1.70E-1 1.46E0 1.91E0 2.59E0

inverse of the signal to noise ratio (ISNR), that is, ISNR =∑M
m=1

∑K
k=1

∣∣∣∣∣∣Inm,k−Ik
∣∣∣∣∣∣
F||Ik||F , to be the evaluation metric.

We consider two scenarios of different types of Inm,k as shown
in Figure 8 of Part I in supplementarymaterials. The noise level τ
is 0.00002 and 0.00003 for site 1 and 2, respectively. We assume
that each individual site has 50 and 80 samples in Scenarios 1
and 2, respectively. By applying the proposed framework and
benchmark methods, we estimate the model parameters (i.e.,
the recovered images). The ISNR results are summarized in
Table 6 and denoised images are illustrated in Figures 9 and
10 of Part I in supplementary materials. As it is reported, the
proposed personalized model significantly outperforms local
models and achieves comparable performance to the global
model in denoising images. As shown in Figures 9 and 10, local
models fail to learn the background under the red rectangular,
while the personalized model can address the issue due to the
collaboration under the proposed federated framework.

6. Conclusion

This article proposes a federated multiple tensor-on-tensor
regression (FedMTOT) framework to follow the data manage-
ment policies and decrease data storage costs. In the proposed
framework, the input bases, core tensor, and output bases from
multimodal data sources are learned iteratively in a federated
fashion to avoid direct data sharing but still maintain a similar
model performance. Finally, we use two sets of simulations
and two case studies to test the model effectiveness in both
response prediction and image denoising. Our results show that
the personalizedmodel under the federated setting outperforms
the model trained only using local data via MTOT, which
validates the superiority of the proposed framework. Several
future directions can be envisioned. First, this article assumes
all the local sites have access to all data modalities which allows
them to construct the same models to be aggregated. However,
missing data modality and samples is possible and requires
further investigations. Furthermore, the proposed method is an
offline method. However, often data is continuously generated
and can be used to improve the model. Developing the online
versions of the proposed method should be investigated in
future research. Finally, the positive and negative impact of
each involved site in collaboratively constructing an aggregated
model should be quantified as a future direction of research.

Supplementary Materials

PDF supplement: In the online supplementary materials of this article, we
provide a PDF file that contain further simulation and case study results,
detailed derivations of variable updates, and convergence analysis of the
proposed algorithm. Matlab code: We provide Matlab implementation of
the proposed algorithm for reproducing Figure 9 in this article.
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