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A B S T R A C T

We introduce Aquila-LCS, GPU and CPU optimized object-oriented, in-house codes for volumetric particle
advection and 3D Finite-Time Lyapunov Exponent (FTLE) and Finite-Size Lyapunov Exponent (FSLE) computa-
tions. The purpose is to analyze 3D Lagrangian Coherent Structures (LCS) in large Direct Numerical Simulation
(DNS) data. Our technique uses advanced search strategies for quick cell identification and efficient storage
techniques. This solver scales effectively on both GPUs (up to 62 NVIDIA V100 GPUs) and multi-core CPUs
(up to 32,768 CPU-cores), tracking up to 8-billion particles. We apply our approach to turbulent boundary
layers at different flow regimes and Reynolds numbers.
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1. Motivation and significance

The quest to find order in seemingly chaotic velocity domains of
fluid dynamics has long captivated a diverse group of researchers
and professionals. This very essence defines the realm of turbulence
research. While high-speed turbulence is vital in numerous applica-
tions, spanning both civilian and defense sectors, it introduces spe-
cific challenges across experimental and numerical domains. Yet, with
advancing computational power, executing high-fidelity simulations
within complex domains is now possible. When we have access to
top-tier data, the next challenge is leveraging the right tools to distill
wisdom from these massive datasets, which hinge on the simulation
methods chosen for fluid flow analysis.

Software tools are undeniably pivotal in this domain. When div-
ing into Computational Fluid Dynamics (CFD), we can broadly clas-
sify it into three primary segments: Reynolds-averaged Navier–Stokes
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(RANS), Large-Eddy Simulations (LES), and Direct Numerical Simu-
lation (DNS). Of these, DNS stands out as it does not necessitate
turbulence models, although one might still incorporate models such
as fluid type or molecular viscosity models in compressible flows. With
DNS data at hand, one can explore the coherent structure dynamics
either through an Eulerian or a Lagrangian lens, each offering distinct
and valuable perspectives.

Eulerian techniques present computational efficiencies, largely due
to their predictable memory access and consistent patterns [1,2]. On
the contrary, Lagrangian methodologies demand a profound compre-
hension of hardware specifics to attain satisfactory performance met-
rics. Crucially, optimal memory buffer utilization is paramount, as
is the prevention of codebase fragmentation even as one harnesses
algorithmic strengths. Recognizing the objectivity and widespread ap-
plicability of LCS [3–5], a plethora of implementation strategies can be
found in scholarly articles [6,7].
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A significant portion of these strategies is inclined toward 2D
LCS [7,8]. As an illustration, a tool was developed within the widely-
adopted Matlab framework, aptly christened ‘‘LCS Tool’’ [9]. This
tool has garnered acknowledgment in various studies as a ready-to-
use solution for 2D-LCS [10]. Being rooted in Matlab, LCS Tool’s
capabilities are confined to singular node operations, heavily leaning on
Matlab’s inherent parallel functions, which come with significant mem-
ory overheads. These limitations inspired the tool being proposed as
part of this manuscript. Concurrently, alternative strategies grounded
in the Finite Element Method (FEM) emerged [11], where authors
leveraged a discontinuous Galerkin approach to compute the FTLE
in two-dimensional problems. Given the advantages of FEM with its
adaptive mesh refinement capabilities, a method was proposed for
FTLE computation [12]. Whereas 2D/3D domains were treated, authors
used simple inviscid analytical flow solutions to model the particle
advection and tracking problem in meshes up to 261K nodes. Dauch
et al. [13] introduced a GPU-centric approach to compute LCS for
smooth-particle hydrodynamics (SPH) datasets. Although laudable in
its efficiency, it remained restricted to singular node operations and
did not present an optimized CPU-based counterpart. Their findings
showcased GPU implementation speedups ranging from 33× to 67× by
using a single NVIDIA-GTX-1080Ti to track up to 58M particles. The
hardware suggests that an optimized CPU version could have reduced
this discrepancy, pointing toward the potential for further enhancement
in hybridized computational strategies [13]. The single node nature
of the available alternatives and the evident limitations of most open-
source LCS tools to 2D scenarios led to propose Aquila-LCS, which has
been examined in up to 62-GPUs, 32,768 CPU-cores and 8-billion particles.
GPU acceleration has been used widely across fields ranging from
molecular dynamics [14], fire simulation [15], micromagnetic simu-
lator on CPU [16], and SPH [17] to wind-tunnel postprocessing [18],
each implementing domain-specific optimizations such as FFT-based
solvers, phase-field methods, discrete element methods, and clustering
algorithms. It is in these domain-specific accelerations where true
algorithmic innovation lies, which is the focal point of our manuscript.

1.1. Numerical methods

Numerical delineation of LCS, representing the manifolds created
by particle pathways in fluidic movement, can be proficiently done
using techniques such as the FTLE or its alternative, the FSLE. Even
though their operational frameworks vary, both techniques assess the
distortion of a particulate field regarding its initial state. Specifically,
FSLE measures the duration required for two particles to achieve a
defined finite separation, whereas FTLE conducts integration across
a consistent, finite duration, independent of the spacing of adjacent
particles [19,20]. Within the scope of this research, we evolve the 2D
FTLE technique delineated in Saltar et al. [10] into a more compre-
hensive 3D format, considering computational intricacies as flagged by
Haller [5]. The trajectory of a particle, originating at a time 𝑡0 and
position 𝑥0, across a set interval can be articulated through the flow
map, considering the velocity domain. The FTLE can be expressed as:

𝐹𝑇𝐿𝐸𝜏 (𝐱, 𝑡) =
1
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Here, 𝜆𝑚𝑎𝑥 symbolizes the dominant eigenvalue and 𝐶 𝑡
𝑡𝑜
(𝐱) is the right

Cauchy–Green (CG) deformation tensor at a particular spatial vector
𝐱 after particle integration to 𝑡 = 𝑡𝑜 + 𝜏. This right CG tensor, char-
acterizing the deformation dynamics of a continuum, is defined as
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. Elevated FTLE metrics spotlight potential attracting

or repelling manifold points. A forward-in-time trajectory integration
of the particle indicates a repelling structure. In contrast, tracing the
pathway backwards in time reveals attracting boundaries [4]. This
computational methodology delivers a resilient and adaptable blueprint
for dissecting intricate fluid motion patterns and identifying high shear

zones. Similarly, the FSLE is described as 1
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, where

𝛿𝑜,𝑖 is the original distance between the 𝑖th particle and a reference
particle; whereas, 𝛿𝑓,𝑖 is the final distance between the 𝑖th particle and
a reference particle.

2. Software description

In the present manuscript, our contribution is a highly scalable
software for dynamic 3D FTLE/FSLE calculations suitable for extensive
DNS datasets [21] in structured meshes (nonetheless, other unsteady
three-dimensional datasets can be employed such as those from LES),
detailing unique specifications for both GPU and CPU environments.
We emphasize the shared efficiencies and highlight performance-driven
deviations. A core feature we introduce is an innovative cell locator
mechanism optimized for constant-time cell searches.

2.1. Software architecture

The selected implementation language for Aquila-LCS is Python, as
an object-oriented and high-level implementation language. With the
purpose of achieving efficiency, good scalability and targeting multi-
core CPUs and GPUs in plain Python; additional libraries are employed.
NumPy [22] supplies a multi-dimensional array and additional func-
tionality aiming near-native performance by targeting pre-compiled
loops at the array level. We are also utilizing Numba JIT compiler [23].
Numba enables compiling Python to machine code using LLVM and
achieve speeds typically only attainable by lower-level, compiled lan-
guages such as C, C++ or FORTRAN. LLVM [24] was proposed as a
high-performance compiler and front-end, presenting both CPU and
GPU programming capabilities. Furthermore, Numba’s parallel CPU
backend also provides a higher level of abstraction over multiple
threading backends. In particular, it allows for specific selection be-
tween OpenMP [25] and TBB [26]. Due to dissimilarity in transient
Lagrangian workloads, TBB’s ability to dynamically balance workloads,
while accounting for locality and affinity, enhances the code perfor-
mance in our particular case. The implementation can just be changed
by setting a command line argument at program launch. More impor-
tantly, in designs with exotic architectures featuring hybrid core or
in certain unbalanced execution resources; TBB mitigates two limiting
scaling issues in heterogeneous systems, as follows: (i) since TBB does
not have a central queue thus removing that bottleneck, and (ii) TBB
enables workers to steal work from the back of other workers’ queue.

Both the CPU and GPU implementations are self-contained to a
single script each. Whereas this limits modularity to some extent, it
greatly simplifies usage and deployment since a single file is required
to execute any given portion of the functionality. Both implementa-
tions (code and software metadata), documentation, DNS dataset as
well as an example bash script for executing it are provided at the
Metadata section. The overall design can be seen in Fig. 1. Address-
ing efficiently particle advection’s numerical complexities is achieved
by breaking it into five core components: Data I/O, flow field in-
terpolation, cell locator, velocity derivation, and particle dynamics.
Different computational components have varied platform sensitivities.
For example, I/O is network-centric, while velocity derivation demands
both memory and computational capacity. The cell locator has posed
challenges historically, prompting our innovative method influenced by
numerical linear algebra and tree-traversal techniques. Our method,
termed Queue-Less, Multi-Level, Best-First Search (QL-MLBFS), lever-
ages coarser meshes for efficient particle location determination. Our
enhanced cell search mechanism transitions from a (𝑁𝑝𝑁

3
𝑐
) complex-

ity to a scalable (𝑁𝑝 log8
(
𝑁𝑐

)
), enabling linear scaling with particle

count. Particle velocity is deduced using a trilinear interpolation based
on its owning cell’s natural coordinates. More details about the QL-
MLBFS methodology and spatial interpolation scheme can be found in
Section 2.1.2 of Lagares & Araya [27]. This process varies in arithmetic
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intensity (0.78–3.67 FLOPs per Byte) depending on flow dynamics and
particle distribution. For precision, cells are projected to a uniform
coordinate system with stability maintained by velocity bounds. Our
interpolation approach ensures stability even in highly chaotic flow
situations.

To optimize memory use, our algorithm integrates right Cauchy–
Green (CG) tensor calculation with the FTLE eigenvalue phase. This
design necessitates minimal memory per execution thread, accommo-
dating numerous threads on GPUs and modern CPUs. Consequently,
a V100-GPU would need a fraction of the memory required with an
alternative approach on large datasets. Following CG tensor derivation,
the algorithm computes the maximum eigenvalue of the tensor. Here,
our CPU and GPU strategies differ. For the GPU version, we employ
a power iteration method, tailored for symmetric positive definite
matrices, ensuring convergence to a single dominant eigenvalue. On
the CPU, we call an optimized LAPACK routine. For the temporal
interpolation step, we have implemented a GPU technique analogous
to game development’s ‘‘triple buffering’’. This method involves pointer
swapping to limit memory copies, ensuring only one read per time step
overwrites the oldest buffer with the newest content. The interested
reader is referred to Section 2.1.3 in Lagares & Araya [27] for detailed
description of eigenvalue calculation. While our present methodology
serves our computational constraints, we recognize the potential of
advanced techniques like the QR algorithm for future exploration.

2.2. Software functionalities

Our specialized Python software has been designed to handle large
CFD data, specifically on rectilinear grids. These grids maintain a
consistent node count across each dimension throughout the entire
domain. One of the key features of our software is its ability to compute
both FTLEs and FSLEs, which represent an effective methodology to
analyze time-varying analogs of invariant manifolds (attracting and
repelling) in unsteady fluid flows.

Aquila-LCS has demonstrated almost ideal linear scaling. It can
manage particle advection data efficiently, accommodating billions
of particles (≈8 × 109) without sacrificing speed or accuracy. This is
made possible through its optimized architecture that can leverage the
parallel processing capabilities of multi-core CPUs as well as the raw
power of NVIDIA GPUs. In terms of data handling and visualization, the
software produces VTS files, which are instrumental for high-quality
visualization of the computed data, aiding in the analytical process
and providing visual context to complex fluid behaviors. The code
also stores all processed data in HDF5 files (volumetric and temporal
FTLEs/FSLEs), ensuring a streamlined storage solution that is both
compact and easy to access for further analysis or sharing.

3. Illustrative examples

Onyx, a Cray XC40/50 machine, employs Intel Broadwell and
Knights Landing CPUs, and NVIDIA P100 GPUs. It features dual socket
compute nodes with 22 cores each, simultaneous multithreading, and
128 GB of accessible RAM. Narwhal, an HPE Cray EX, can process
up to 12.8 petaflops. Each node contains two AMD EPYC 7H12 CPUs
with 128 cores and 256 threads, 256 GB of DDR4 memory, and some
nodes include V100 GPUs. The nodes are interconnected using an HPE
Slingshot 200 Gbit/s network. Anvil, a Dell EMC PowerEdge C6420-
based supercomputer at Purdue University, uses second-generation
Intel Xeon Scalable processors. It has 1008 compute nodes, each with
48 cores and 192 GB of memory, and is equipped with 56 NVIDIA
V100 GPUs. Chameleon’s A100 node, which we also tested, features
2 Intel Xeon Platinum 8380 CPUs with a total of 80 cores and 160
threads, and 4 A100 GPUs with 80 GBs of HBM 2e memory. The
node also has 512 GBs of DDR4 memory and 1.92 TBs of local NVMe
storage. In comparing CPUs and GPUs, it is important to consider
architectural differences (see Table 2 in Lagares & Araya [27]). CPUs

prioritize low latency of an individual operation thread, while GPUs
favor high-throughput by processing a larger number of work items.
Despite similar memory bandwidth when accounting for vector widths,
modern GPUs have the advantage of zero-overhead context switching
between multiple threads, contributing to their resilience to high
latency memory operations and often resulting in simpler, yet faster,
code. Fig. 2 depicts the Aquila-LCS’s strong scaling performance, which
was tested up to 32,768 CPU cores and up to 62 NVIDIA V100 GPUs
(4960 GPU SM cores or an equivalent 317,440 CUDA cores). Therefore,
the total number of CPU threads evaluated was roughly 32K, whereas
the peak number of GPU threads reached roughly 10M (GPU) threads
(2048 threads per Volta SM core arranged in blocks of 64 threads for a
total of 32 thread blocks per SM), or 310× more threads on a GPU
(GPU threads are lightweight threads compared to the heavier OS-
managed threads on CPUs). The horizontal axis represents nodes in the
computing system. It is observed an almost ‘‘ideal linear scaling’’ up to
30 nodes in some systems. Additionally, for larger numbers of nodes
some inefficiencies in the software stack or hardware resources below
the application can deteriorate the code performance with deviation
from the ideal scaling, which is very obvious in Onyx (Broadwell
processors) and Narwhal (Rome processors). Here, integration time is
the time of the particle advection loop only; whereas, the system time
is the total running time, including MPI overhead, Python runtime and
writing files. In addition, in Fig. 3 the number of nodes was fixed
(16 compute nodes), while increasing the number of particles (from
50M to over 8B particles). The most relevant aspect to describe is the
dominance of network latency in large-scale parallel file systems (PFS):
note how a powerful GPU is essentially idle when waiting for data from
the PFS, particularly for both the P100 and V100 results up to 1–2 ×108

particles, with a following linear trend. Readers are referred to pages
16–20 in Lagares & Araya [27] for an in-depth scaling performance
discussion and computational architecture assessment.

Aquila-LCS [27] has been recently tested and validated (by varying
the number of advecting particles and temporal frequency sampling)
via four DNS scenarios over spatially-developing turbulent boundary
layers (SDTBL) conducted on adiabatic/isothermal flat surfaces across
several flow regimes [21,28–30], to draw insights on flow compress-
ibility and Reynolds number interplaying on LCS. Major outcomes in
Lagares & Araya [27] were three-fold, namely: (i) isotropy enhance-
ment of attracting and repelling manifolds at higher Mach numbers,
(ii) similarly, observed increasing isotropy and FTLE disorganization at
larger Reynolds numbers, and (iii) attracting FTLE manifolds describing
inclined quasi-streamwise vortices or hairpin legs with heads of the
spanwise vortex tube located in the outer region of the boundary layer.
While a comprehensive dissection of the underlying physics is outside
the purview of this paper, a more detailed exploration focusing on
Lagrangian coherent structures in SDTBL is earmarked for an upcoming
publication.

Fig. 4 displays attracting FTLE contours in incompressible SDTBL at
low Reynolds numbers. Note that FTLE manifolds represent inclined
quasi-streamwise vortices or hairpin legs indicating the presence of
high shear.

4. Impact

The implementation introduced in this article sets a new bench-
mark in the domain of GPU-optimized particle movement computa-
tions, particularly in the context of FTLE/FSLE. By melding advanced
search strategies with computational efficiency, our approach enables
the nuanced analysis of LCS within expansive numerical datasets. Its
scalability, spanning both GPU and CPU architectures, promises to de-
mocratize access to such tools across diverse computational platforms.
Moreover, the technique’s application to turbulent boundary layer
studies not only offers deeper insights into coherent patterns but also
demonstrates remarkable storage efficiencies. As a pivot, this work will
undeniably shape future endeavors in visualizing and understanding
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Fig. 1. Aquila-LCS flow chart. Note that green segments are related to the particle advection workflow and blue segments are related to the FTLE/FSLE calculations and output
file generation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Strong scaling evaluation for the proposed particle advection scheme.

Fig. 3. Particle scaling evaluation for the proposed particle advection scheme.
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Fig. 4. Attracting material lines (FTLE contours) in low-Reynolds number boundary layers (flow from left to right).

LCS, catalyzing advancements in fluid dynamics research. It is worth

noting that Haller [5] stated that calculations required for FTLE could

be prohibitive in three-dimensions. Nonetheless, we have demonstrated

the feasibility and scalability of our approach for large-scale 3D cases.

5. Conclusions

This research introduces an optimized methodology to analyze vol-

umetric particle motion and compute FTLE/FSLE, focusing on software

design for examining LCS within expansive DNS datasets. Aquila-LCS

is programmed under CPU/GPU architectures, showing strong scaling

up to 32,768 CPU cores and up to 62 NVIDIA V100 GPUs with almost

linear scaling even when tracking 8-billion particles. By integrating

traditional search techniques and contemporary multi-tier strategies,

we have developed a unique cell-locating system that ensures swift and

efficient cell identification across varied computational architectures.

Our methodology has been effectively applied to examine turbulent

boundary layer scenarios, unveiling significant patterns in coherent

structures. The innovative cell locator mechanism, combined with our

approach to efficient particle advection, offers a breakthrough in the

domain of fluid dynamics, facilitating in-depth analyses of complex

flow patterns with robust scalability. As we have touched upon the

application of LCS in this study, a deeper exploration into the in-

tricate physics and compressibility factors in potential LCS scenarios

is reserved for subsequent research. In essence, our contribution lies

in providing an advanced tool for FTLE/FSLE calculations, underpin-

ning the pivotal role of software in turbulence research and coherent

structure investigations. The software’s versatility and efficiency make

it an indispensable resource for future fluid dynamics studies, es-

pecially when harnessing the capabilities of modern computational

infrastructures.
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