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A B S T R A C T

Remote sensing technologies and predictive models have seen significant advancements, yet issues related to 
data quality, consistency, and accuracy persist. While many studies emphasize model accuracy, the precision and 
consistency of these technologies are often overlooked. This study addresses that gap by conducting a 
comprehensive evaluation of Agroview, a cloud-based AI-driven application, assessing its performance in 
analyzing plant-level data, such as inventory, canopy height, area, and leaf density, across two citrus blocks over 
four distinct data collection dates. Agroview demonstrated consistent reliability, with low coefficients of vari
ation (CV) across key metrics. For example, tree inventory showed variations of <3 %, with CVs of 2.63 % for 
Block A and 1.56 % for Block B. Canopy height measurements exhibited CVs below 9 % for most trees, with a 
slightly higher CV of 12 % for trees over 12 ft in Block B. This analysis highlights the software’s precision and 
identifies areas for potential refinement. The findings of this study highlight the importance of precision in 
remote sensing, providing valuable insights for users and stakeholders while promoting confidence in the 
broader adoption of advanced technologies in agriculture.

Introduction

Remote sensing (RS) has emerged as an essential tool in modern 
agriculture, offering efficient, rapid, and often straightforward methods 
for collecting and interpreting data over time. It plays a critical role in 
various applications, from agricultural monitoring to environmental 
management, by providing standardized measurements on both local 
and global scales [1–3]. Remote sensing includes capturing digital rep
resentations of energy responses emitted by targets using sensors posi
tioned at a distance [4]. Since the 1960s, advancements in RS 
technology, including improvements in sensor quality and the evolution 
of platforms like unmanned aerial vehicles (UAVs), satellites, airplanes, 
and robots, have significantly enhanced data collection capabilities. 
However, despite these advancements, RS data is still susceptible to 
errors that can affect data quality, consistency, and precision over time. 
These errors may occur even under consistent data collection conditions 
due to factors such as specific timing, weather conditions, brightness, 
and variations in the sensors or their platforms [5,6].

To assess the impact of these errors, recurrent and closely spaced 
analyses are crucial. Yet, many studies that utilize temporal and con
sistency analysis tend to focus on long-term patterns, such as those 

spanning multiple years, rather than closely spaced data comparisons 
[7]. This approach is particularly common in studies analyzing trends in 
vegetation dynamics, land cover, and land use [8–10]. While long-term 
analysis provides valuable insights, it often overlooks the need for un
derstanding precision and consistency in short-term intervals, which are 
essential for real-time decision-making in agriculture.

In recent years, artificial intelligence (AI) based predictive models 
have been developed to enhance precision agriculture by offering 
innovative solutions for crop monitoring [11,12], yield prediction 
[13–15][13,14], and pest [16,17] and disease [18–20] detection. These 
models leverage large datasets and advanced algorithms to optimize 
farming practices and improve decision-making. However, most studies 
evaluating AI models in precision agriculture primarily focus on their 
accuracy in single or limited experiments or under specific conditions. 
This narrow focus limits the understanding of how these models perform 
across different scenarios and timeframes, raising concerns about their 
reliability in real-world applications. Addressing this gap is crucial for 
ensuring that these technologies can be effectively integrated into 
agricultural practices.

Agroview, a cloud-based application designed to process, analyze, 
and visualize data collected by UAVs using AI techniques, represents a 
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significant advancement in remote sensing technology for agriculture 
[21]. Developed in 2018 to enhance citrus orchard management [22], 
Agroview provides growers with rapid tools to create tree inventories, 
assess tree canopy volume, height, and leaf density, and generate 
fertility maps [23]. Since its launch, Agroview’s algorithms and models 
have undergone continuous updates and improvements. However, 
despite several studies assessing the software’s accuracy [24,25], there 
is no research validating its precision and consistency over time.

Given the challenges in remote sensing and AI-enabled predictive 
model development, such as the potential for data collection errors and 
the limited focus on precision and consistency, understanding the per
formance of software like Agroview is essential. Reliable and consistent 
results are crucial for building user confidence, identifying areas for 
further refinement, and supporting the broader adoption of advanced 
technologies in agriculture. By integrating precision and consistency 
into data analysis, these advancements can foster greater confidence 
among users and encourage wider implementation across the industry.

To address these critical gaps, this study aims to assess the precision 
and consistency of Agroview in providing detailed plant-level informa
tion, including plant inventory, canopy height and area, and leaf den
sity, within a citrus orchard over four closed data collection dates. This 
evaluation is vital for improving accuracy, enhancing user confidence, 
and supporting the broader adoption of advanced remote sensing tech
nologies in agriculture.

Material and methods

Data acquisition

Data were collected from two Valencia citrus (Citrus sinensis) or
chards located in Hendry County, Florida (26◦39′04.2″N, 81◦17′14.7″W 
and 26◦39′12.6″N, 81◦17′17.2″W) (Fig. 1a and 1b). Block A covered 50.8 
acres, while Block B covered 73.7 acres. Both fields had variations in tree 
and row spacing due to differences in tree age. For the mature trees, the 
original spacing of ~8 m between rows and ~3.7 m within rows was 
maintained. However, for the intermediate and reset trees, the spacing 
was ~1.8 m within rows.

The data were collected between October 23 and November 13, 
2023, on four closely spaced dates to minimize field variability and 
ensure consistent environmental conditions throughout the sampling 
period.

A UAV, DJI Matrice 300 RTK (Shenzhen, China), equipped with a DJI 
Zenmuse H20T (Shenzhen, China) RGB camera, was used to collect data 
on the four closely spaced dates (Table 1). Flights were strategically 
conducted around solar noon (zenith angle = 0◦) to mitigate shadow 
interference between trees. The UAV operated at a constant altitude of 
122 m (400 ft) above ground level and traveled at a consistent speed of 
16 km/h (10 mph), achieving a ground sampling distance (GSD) of 4.2 
cm per pixel. Each flight lasted approximately 30 min.

Fig. 1. Data collection over four dates for citrus (a) block A and (b) block B.
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Data processing

The collected images were uploaded to the Agroview software for 
processing and analysis. The workflow involved several key steps: 
creating an orthomosaic map, cropping the area of interest, initiating the 
generation process, and finally generating the results (Fig. 2).

Upon completion of this process, the software provided download
able data on tree inventory (including tree counts), age, height, canopy 
area, health, and leaf density. Detailed information on the criteria and 
measurements used, along with an overview of how each variable is 
defined and scored, is presented in Table 2. Agroview is capable of 
categorizing trees into two to seven groups based on their height, canopy 
size, health, and leaf density. In this study, three categories were chosen 
for analysis. Additionally, the imperial system was employed for the 
analysis and graph development, as Agroview uses this system for its 
data processing and visualization.

Statistical analysis

The results for the variables provided by Agroview (inventory, age, 
health, canopy area, height, and leaf density) were analyzed using 
descriptive statistics, including standard deviation, mean, and coeffi
cient of variation (CV). In addition, Agroview’s results from the four 
collection dates were used to construct graphs showing trends and 
changes over the collection dates.

Results and discussions

In Ampatzidis et al. [21], Agroview demonstrated its capability to 
detect and count trees with a mean absolute percentage error (MAPE) of 
2.3 %. This accuracy was achieved in a large commercial citrus orchard 
spanning 1871 acres and containing 175,977 trees, which were orga
nized into 39 blocks with varying normal and high-density spacings. 
Additionally, Agroview accurately estimated tree height with a MAPE of 
4.5 % for normal spacing and 12.93 % for high-density spacing. It also 
assessed canopy size with a MAPE of 12.9 % for normal spacing and 34.6 
% for high-density spacing. This study evaluated Agroview’s accuracy 
but did not assess its precision, which refers to how consistent the results 
would be if data were collected and analyzed multiple times, such as 
four separate instances instead of just one. This current study aims to 
explore this aspect of Agroview, focusing on its precision by examining 
how consistent the results are when data is collected and analyzed 
multiple times.

The results of the extracted values for inventory, age, height, health, 
canopy area, and leaf density analyzed over the four specified collection 
dates are summarized in Table 3 and Fig. 3. This comprehensive analysis 
offers a detailed view of Agroview’s performance over time, enabling 
users and researchers to evaluate the consistency and precision of the 
software in monitoring orchard conditions. For example, the tree count 
results from the analysis provide significant insights into Agroview’s 
performance as a high-throughput phenotyping system. For Block A, 
Agroview recorded an average of 7039 trees with a standard deviation of 
185, resulting in a CV of 2.63 %. For Block B, the average count was 
10,492 trees with a standard deviation of 163 and a CV of 1.56 %. The 
relatively low CVs for both blocks, 2.63 % for Block A and 1.56 % for 
Block B, demonstrate that Agroview’s tree count measurements are both 
accurate and precise. The CV indicates the extent of variation relative to 
the mean, and lower values suggest that the measurements are consis
tently close to the average count. This consistency is particularly 
important in high-throughput systems where large datasets are pro
cessed. The data collected over the four collection dates show that 
Agroview maintains a reliable performance across different times (no 
changes were expected in these four data collection dates). This tem
poral stability is essential for monitoring changes in orchard conditions 
and making informed decisions based on precise, long-term data. Given 
that Agroview employs UAV data for its assessments, the ability to 
maintain low variability and provide consistent counts across large areas 
highlights its effectiveness as a high-throughput phenotyping tool. This 
capability is crucial for managing extensive orchards efficiently, where 
manual counting would be impractical.

Similar low CVs are observed in other variables as well, such as tree 
canopy height and size, and leaf density (Table 3). These low CV values 
across multiple parameters further highlight Agroview’s robust perfor
mance. By demonstrating low variability in these additional variables, 
Agroview reinforces its capability to deliver precise and dependable 
information, enhancing the overall reliability of the data collected. This 
is particularly valuable for tasks that require accurate assessments of 
tree health and development over time.

Higher standard deviations and CVs were recorded for variables with 

Table 1 
Specifications of the RGB sensor used for data collection.

Sensor size 1/2.3″ CMOS (6.17 × 4.56 mm)

Effective pixels 12 M
Focal length 4.5 mm (equivalent: 24 mm)
Photo Size 4056 × 3040

Fig. 2. Workflow from uploading UAV images to generating the final results on Agroview.

Table 2 
Variables produced and extracted by Agroview.

Inventory Presents the number of trees and the number of missing trees (Gaps) 
inside the field.

Age Categorizes trees based on their age, including resets, intermediate, 
and mature trees.

Health Presents the health status of the trees and divides them into dead, at- 
risk, and healthy trees.

Height Provides the height for each tree; it can be divided into two to seven 
categories.

Canopy Estimates the size of the tree canopy; it can be divided into two to 
seven categories.

Leaf 
density

Characterizes the number of leaves in the canopy, and it is measured as 
a one-sided green leaf area per unit of ground area. It can be divided 
into two to seven categories.
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smaller sample sizes, such as the detection of tree gaps and dead trees 
(Table 3). For example, only around 250 gaps were identified in both 
fields, and the average number of dead trees was 22 for Block A and 4 for 
Block B. The number of at-risk trees was also relatively low, with 336 for 
Block A and 170 for Block B. Due to the limited amount of data for these 
variables, greater variability and differences between the four data 
collection and analysis dates were anticipated. This is because smaller 
sample sizes are more susceptible to fluctuations and inconsistencies, 
which can lead to higher standard deviations and CVs. Thus, the 
observed higher variability in these metrics is expected and reflects the 
challenges associated with analyzing data from smaller sample sizes.

Additionally, the selection of block areas in Agroview during the four 
data collection dates may influence the detection of gaps. If the 
boundaries of the blocks are not precisely delineated, some gaps may be 
located near the field edges and might not be accurately detected or 
recorded. This potential discrepancy could contribute to the observed 
variability in the data, as gaps near the boundaries may be missed or 
inconsistently identified, affecting the overall results.

In general, the categorical variables, such as inventory and age, 
present less variation over data collection dates than the numerical 
variables, such as height, canopy area, and leaf density (Fig. 3). Cate
gorical data refers to variables that can be measured on a scale con
sisting of distinct groups or categories that represent qualitative 
characteristics of the target, for example, variables such as different 
crops or varieties, flower color, and others fall into this category [26]. In 
contrast, numerical variables refer to quantitative data collected from 
the target, such as yield and weight. Although age is a categorical var
iable, it is determined by numerical factors such as tree height and 
canopy area [22]. As a result, it exhibits more variation in the data being 
evaluated than other categorical variables.

Block B, being larger in size, contains a greater number of trees and a 
higher proportion of reset trees (recently transplanted trees) compared 
to Block A. As a result, it contains a greater number of trees in the 7 to 12 
ft height category. In addition, canopy area and leaf density are typically 
lower for smaller trees [27] compared to medium and mature trees 
(Fig. 3c, 3e, and 3f). The number of dead trees is low because farmers 
typically remove trees that are dead or nearly leafless and no longer 
productive and replace them with new trees in a process known as 
resetting. This practice also minimizes the number of gaps, as observed 
in both Block A and Block B (Fig. 3a).

The variation observed in each variable across dates may be due to 
data collection or software errors or the inherent range of each variable. 
For example, in the analysis of canopy height (Fig. 3c), trees are cate
gorized into three groups: <7 ft, 7–12 ft, and >12 ft. Trees near these 

category thresholds contribute to data variability. Small differences in 
measurements, such as a canopy height of 12.1 ft or 7.1 ft (Fig. 4), can 
shift trees between categories, leading to inconsistencies in the number 
of trees classified into each group on different dates. This variability is 
not unique to canopy height but is also observed in other variables like 
canopy area and leaf density. Sensor and data collection inconsistencies 
can amplify these variations, especially when measurements are close to 
category boundaries, impacting the overall consistency of the data 
across collection dates.

Similarly, when each tree is evaluated individually, differences be
tween collection dates become apparent (Fig. 5). For example, one tree’s 
height was estimated at 9.7 ft, 12.4 ft, 10.9 ft, and 11.5 ft during the first, 
second, third, and fourth data collections, respectively (Fig. 5a, b, c, and 
d). Although these height estimates appear to vary significantly, the CV 
in this case is approximately 10 %. This relatively low CV is notable, 
particularly given that the data was captured using an RGB camera on a 
UAV flying at an altitude of 120 m. The low CV indicates that despite the 
apparent variations, the measurements are reasonably consistent and 
reliable, reflecting the effectiveness of the high-throughput system in 
maintaining accuracy under challenging conditions.

When the same variable, height, is measured over the entire block 
instead of individual trees, the CV drops to <9 % (Table 3). The 
exception is Block B, where trees taller than 12 ft height exhibit a CV of 
12 %. This drop in CV when analyzing block-wide data suggests greater 
overall consistency in measurements compared to individual assess
ments. The descriptive analysis further reveals that both blocks had a 
high frequency of trees with intermediate heights, ranging from 7 to 12 
ft. Additionally, most trees in both blocks had canopies either smaller 
than 87 ft² or larger than 133 ft². Interestingly, the highest mean leaf 
density observed was 0.73 or greater, indicating that even trees with 
smaller canopies can maintain high leaf density values (Table 3). These 
findings highlight the overall reliability and robustness of the mea
surements, particularly when analyzed on a broader scale.

Another key observation is that the inventory, which represents the 
total number of trees (with averages of 7039 for Block A and 10,492 for 
Block B), shows a variation of fewer than 200 trees, as indicated by the 
standard deviation. This variation, <3 %, is relatively minor and not 
considered significant. Furthermore, the manual methods used by 
farmers for counting trees and measuring other characteristics, such as 
height and canopy area/volume, are inherently prone to errors. These 
methods typically involve measuring poles, tapes, and manual counting 
techniques, which are more susceptible to human error and can result in 
greater variability and inaccuracies compared to sensor-based data 
collection. Previous studies, such as Ganz et al. [28], have shown that 

Table 3 
Average, standard deviation, and coefficient of variation (%) for the Agroview variables (inventory, age, health, canopy, height, and leaf density) collected over four 
dates for blocks A and B.

Average Standard Deviation Coefficient of variation

Block A Block B Block A Block B Block A Block B
Inventory Tree 7039 10,492 185 163 2.63 1.56

Gap 251 254 57 91 22.92 35.74

Age Reset 688 3269 43 250 6.3 7.6
Intermediate 3444 4509 278 366 8.1 8.1
Mature 2908 2714 142 372 4.9 13.7

Height (ft) < 7 806 5181 66 310 8.2 6.0
7 - 12.00 3784 4403 279 130 7.4 2.9
12+ 2449 909 165 109 6.8 12.0

Health Dead 23 4 20 4 88.1 91.3
At Risk 337 171 109 25 32.3 14.8
Healthy 6680 10,318 160 178 2.4 1.7

Canopy (ft²) < 87 3016 5297 251 233 8.3 4.4
87 - 133 1574 1982 95 206 6.0 10.4
133+ 2449 3214 165 284 6.8 8.8

Leaf density <0.73 688 451 182 66 26.4 14.6
0.73 - 0.87 3729 4969 426 328 11.4 6.6
0.87+ 2622 5073 429 348 16.4 6.9
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Fig. 3. Agroview’s results and temporal analysis of (a) tree inventory, (b) age, (c) health, (d) canopy area (ft²), (e) height (ft), and (f) and leaf density over four dates 
(1,2,3 and 4) for Blocks A and B.
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manual data collection often leads to higher error rates than data 
collected with sensors. In contrast, sensor-based data collection tends to 
be more precise and consistent, reducing the likelihood of such errors. 
This comparison reinforces the value of Agroview as an effective tool for 
generating precise and reliable data in citrus fields.

To minimize errors in tree inventory, Agroview provides users with 
advanced tools designed to improve measurement precision and 
streamline orchard management. One key feature is the ability to 
manually edit blocks, enabling users to add or remove trees as needed 
(Fig. 6). This functionality is crucial for maintaining precise and current 
records. By allowing users to adjust the digital representation of their 
orchards to better reflect actual conditions, this feature helps to reduce 
counting errors and improves the overall efficiency of orchard opera
tions. Improved data precision supports better decision-making and 
more effective management practices, ultimately leading to optimized 
orchard management and increased productivity.

While this study primarily focused on evaluating the precision of the 
Agroview software in analyzing orchard data, it is important to recog
nize that the sensors used in data collection can also introduce errors. 
Although sensor-related errors were not directly addressed in this study, 
their potential impact on the data quality should be considered. Sensors 
can introduce variability into the data they collect, and precisely 
measuring these errors poses significant challenges due to the lack of 
standardized methodologies. This complexity highlights the need for 
further research to isolate and quantify the sensor’s contribution to 
overall data inaccuracies. Addressing these factors can increase the 
robustness of future analyses and improve the reliability of both sensor- 
based and software-based assessments.

Nevertheless, gaps in the literature regarding post-launch 

verification of software and sensors for accuracy and precision pose 
significant challenges for meaningful comparison and discussion. 
Additionally, the methodology for analyzing errors and consistency in 
such data remains relatively underdeveloped. Addressing these gaps is 
crucial for both researchers and industry professionals, as it establishes a 
framework for evaluating the effectiveness of software and applications 
in delivering precise results to users. This study provides valuable in
sights that can guide developers in refining their products, leading to 
more reliable and user-friendly software solutions. Closing these gaps 
will not only enhance the robustness of future analyses but also support 
the creation of more precise and effective tools in the industry.

One of the key challenges in this type of study is to obtain high 
quality data that can effectively isolate the effects of external factors 
such as weather, lighting conditions, and other potential sources of 
interference, which may bias the results. In addition, the innovative 
nature of this research means that there are no similar studies to guide 
the development of a robust methodology, highlighting the need for 
careful design and validation of the data collection process.

Conclusion

This study has provided a comprehensive evaluation of the precision 
of Agroview software in analyzing orchard data, emphasizing its effec
tiveness as a high-throughput phenotyping tool. The results indicate that 
Agroview delivers accurate and reliable measurements, with low CVs 
observed in tree count, canopy height, canopy area, and leaf density. 
These findings highlight Agroview’s capacity to provide consistent data, 
which is crucial for effective orchard management and research. The 
analysis also revealed that while variability in measurements is 

Fig. 4. Examples of tree canopy heights (a and b) near maximum and minimum categories.
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Fig. 5. Variations in tree height categories across different dates (a–d).

Fig. 6. Manual editing tool of tree detection in Agroview.
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generally low, certain factors, such as the limited sample size for vari
ables like tree gaps and at-risk trees, contribute to higher CVs. Addi
tionally, the potential impact of sensor-related errors, though not 
directly addressed in this study, underscores the need for further 
research to isolate and quantify these effects.

In addition to its precision, Agroview offers significant cost efficiency 
and speed benefits. The software significantly reduces the time and 
effort required for data collection, which is typically more costly and 
subject to greater variability when performed manually. By streamlining 
the data collection process, Agroview not only enhances measurement 
accuracy but also supports more cost-effective and efficient orchard 
management. By establishing a framework for evaluating the effective
ness of software and applications, this research provides valuable in
sights for developers and users. It suggests that while Agroview is a 
robust tool for generating precise information, continued efforts to 
refine data collection and analysis methodologies will further enhance 
the reliability and utility of such systems. Ultimately, filling these gaps 
will contribute to the development of more accurate and user-friendly 
tools, supporting improved orchard management and productivity. 
Future studies could focus on developing automated error-detection 
algorithms within Agroview to proactively identify and mitigate 
sensor-related inaccuracies, thereby enhancing the software’s precision, 
reliability, and overall performance.
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Barbero, Precision farming technologies for crop protection: a meta-analysis, Smart 
Agric. Technol. 5 (2024) 100323, https://doi.org/10.1016/j.atech.2023.100323.

[17] V.A.G. da Cunha, D. Pullock, M. Ali, A.D.C. Neto, Y. Ampatzidis, C. Weldon, 
K. Kruger, A. Manrakhan, J. Qureshi, Psyllid detector: a web-based application to 
automate insect detection utilizing image processing and artificial intelligence, 
Appl. Eng. Agric. 40 (2024), https://doi.org/10.13031/aea.15826.

[18] J. Abdulridha, Y. Ampatzidis, J. Qureshi, P. Roberts, Identification and 
classification of downy mildew severity stages in watermelon utilizing aerial and 
ground remote sensing and machine learning, Front. Plant Sci. 13 (2022), https:// 
doi.org/10.3389/fpls.2022.791018.

[19] J. Hariharan, Y. Ampatzidis, J. Abdulridha, O. Batuman, An AI-based spectral data 
analysis process for recognizing unique plant biomarkers and disease features, 
Comput. Electron. Agric. 204 (2023) 107574, https://doi.org/10.1016/j. 
compag.2022.107574.

[20] J. Hariharan, J. Fuller, Y. Ampatzidis, J. Abdulridha, A. Lerwill, Finite difference 
analysis and bivariate correlation of hyperspectral data for detecting Laurel wilt 
disease and nutritional deficiency in avocado, Remote Sens. 11 (15) (2019) 1748, 
https://doi.org/10.3390/rs11151748, 2019.

[21] Y. Ampatzidis, V. Partel, L. Costa, Agroview: cloud-based application to process, 
analyze and visualize UAV-collected data for precision agriculture applications 
utilizing artificial intelligence, Comput. Electron. Agric. 174 (2020), https://doi. 
org/10.1016/j.compag.2020.105457.

[22] Y. Ampatzidis, V. Partel, UAV-based high throughput phenotyping in citrus 
utilizing multispectral imaging and artificial intelligence, Remote Sens. 11 (2019), 
https://doi.org/10.3390/rs11040410 (Basel).

[23] L. Costa, S. Kunwar, Y. Ampatzidis, U. Albrecht, Determining leaf nutrient 
concentrations in citrus trees using UAV imagery and machine learning, Precis. 
Agric. 23 (2022), https://doi.org/10.1007/s11119-021-09864-1.

[24] Y. Ampatzidis, V. Partel, B. Meyering, U. Albrecht, Citrus rootstock evaluation 
utilizing UAV-based remote sensing and artificial intelligence, Comput. Electron. 
Agric. 164 (2019), https://doi.org/10.1016/j.compag.2019.104900.

[25] L. Costa, L. Nunes, Y. Ampatzidis, A new visible band index (vNDVI) for estimating 
NDVI values on RGB images utilizing genetic algorithms, Comput. Electron. Agric. 
172 (2020) 105334, https://doi.org/10.1016/j.compag.2020.105334.

C. Trentin and Y. Ampatzidis                                                                                                                                                                                                                Smart Agricultural Technology 9 (2024) 100693 

8 

https://doi.org/10.1016/j.atech.2022.100103
https://doi.org/10.1016/j.atech.2022.100103
https://doi.org/10.1016/j.atech.2024.100441
https://doi.org/10.1016/j.atech.2024.100441
https://doi.org/10.1016/J.JAG.2017.12.014
https://doi.org/10.1016/J.JAG.2017.12.014
https://doi.org/10.1007/978-3-031-33932-5_2
https://doi.org/10.1007/978-3-031-33932-5_2
https://doi.org/10.3389/fpls.2022.958106
https://doi.org/10.3389/fpls.2022.958106
https://doi.org/10.3390/rs12193136
https://doi.org/10.3390/rs12193136
https://doi.org/10.1088/1757-899X/671/1/012046
https://doi.org/10.1016/j.compag.2020.105964
https://doi.org/10.1016/j.compag.2020.105964
https://doi.org/10.3390/RS11060724
https://doi.org/10.1016/J.RSE.2018.08.028
https://doi.org/10.3390/plants11233344
https://doi.org/10.3390/plants11233344
https://doi.org/10.1016/j.atech.2022.100104
https://doi.org/10.1016/j.atech.2022.100104
https://doi.org/10.1007/s11119-022-09906-2
https://doi.org/10.1016/j.atech.2024.100556
https://doi.org/10.1016/j.atech.2024.100556
https://doi.org/10.1016/j.atech.2022.100077
https://doi.org/10.1016/j.atech.2023.100323
https://doi.org/10.13031/aea.15826
https://doi.org/10.3389/fpls.2022.791018
https://doi.org/10.3389/fpls.2022.791018
https://doi.org/10.1016/j.compag.2022.107574
https://doi.org/10.1016/j.compag.2022.107574
https://doi.org/10.3390/rs11151748
https://doi.org/10.1016/j.compag.2020.105457
https://doi.org/10.1016/j.compag.2020.105457
https://doi.org/10.3390/rs11040410
https://doi.org/10.1007/s11119-021-09864-1
https://doi.org/10.1016/j.compag.2019.104900
https://doi.org/10.1016/j.compag.2020.105334


[26] R. Azen, C.M. Walker, Categorical Data Analysis For the Behavioral and Social 
Sciences, Categorical Data Analysis for the Behavioral and Social Sciences, 2021, 
https://doi.org/10.4324/9780429330308.

[27] R.J. Ansley, M. Mirik, B.W. Surber, S.C. Park, Canopy area and aboveground mass 
of individual redberry juniper (Juniperus pinchotii) Trees, Rangel. Ecol. Manag. 65 
(2012), https://doi.org/10.2111/REM-D-11-00112.1.
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