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Keywords: Remote sensing technologies and predictive models have seen significant advancements, yet issues related to
Artificial intelligence data quality, consistency, and accuracy persist. While many studies emphasize model accuracy, the precision and
Citrus

consistency of these technologies are often overlooked. This study addresses that gap by conducting a
comprehensive evaluation of Agroview, a cloud-based Al-driven application, assessing its performance in
analyzing plant-level data, such as inventory, canopy height, area, and leaf density, across two citrus blocks over
four distinct data collection dates. Agroview demonstrated consistent reliability, with low coefficients of vari-
ation (CV) across key metrics. For example, tree inventory showed variations of <3 %, with CVs of 2.63 % for
Block A and 1.56 % for Block B. Canopy height measurements exhibited CVs below 9 % for most trees, with a
slightly higher CV of 12 % for trees over 12 ft in Block B. This analysis highlights the software’s precision and
identifies areas for potential refinement. The findings of this study highlight the importance of precision in
remote sensing, providing valuable insights for users and stakeholders while promoting confidence in the
broader adoption of advanced technologies in agriculture.

Data analytics
Precision agriculture
Remote sensing

Introduction

Remote sensing (RS) has emerged as an essential tool in modern
agriculture, offering efficient, rapid, and often straightforward methods
for collecting and interpreting data over time. It plays a critical role in
various applications, from agricultural monitoring to environmental
management, by providing standardized measurements on both local
and global scales [1-3]. Remote sensing includes capturing digital rep-
resentations of energy responses emitted by targets using sensors posi-
tioned at a distance [4]. Since the 1960s, advancements in RS
technology, including improvements in sensor quality and the evolution
of platforms like unmanned aerial vehicles (UAVs), satellites, airplanes,
and robots, have significantly enhanced data collection capabilities.
However, despite these advancements, RS data is still susceptible to
errors that can affect data quality, consistency, and precision over time.
These errors may occur even under consistent data collection conditions
due to factors such as specific timing, weather conditions, brightness,
and variations in the sensors or their platforms [5,6].

To assess the impact of these errors, recurrent and closely spaced
analyses are crucial. Yet, many studies that utilize temporal and con-
sistency analysis tend to focus on long-term patterns, such as those
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spanning multiple years, rather than closely spaced data comparisons
[71. This approach is particularly common in studies analyzing trends in
vegetation dynamics, land cover, and land use [8-10]. While long-term
analysis provides valuable insights, it often overlooks the need for un-
derstanding precision and consistency in short-term intervals, which are
essential for real-time decision-making in agriculture.

In recent years, artificial intelligence (AI) based predictive models
have been developed to enhance precision agriculture by offering
innovative solutions for crop monitoring [11,12], yield prediction
[13-15][13,14], and pest [16,17] and disease [18-20] detection. These
models leverage large datasets and advanced algorithms to optimize
farming practices and improve decision-making. However, most studies
evaluating Al models in precision agriculture primarily focus on their
accuracy in single or limited experiments or under specific conditions.
This narrow focus limits the understanding of how these models perform
across different scenarios and timeframes, raising concerns about their
reliability in real-world applications. Addressing this gap is crucial for
ensuring that these technologies can be effectively integrated into
agricultural practices.

Agroview, a cloud-based application designed to process, analyze,
and visualize data collected by UAVs using Al techniques, represents a

Received 17 October 2024; Received in revised form 2 December 2024; Accepted 2 December 2024

Available online 7 December 2024

2772-3755/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).


mailto:i.ampatzidis@ufl.edu
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2024.100693
https://doi.org/10.1016/j.atech.2024.100693
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2024.100693&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

C. Trentin and Y. Ampatzidis

significant advancement in remote sensing technology for agriculture
[21]. Developed in 2018 to enhance citrus orchard management [22],
Agroview provides growers with rapid tools to create tree inventories,
assess tree canopy volume, height, and leaf density, and generate
fertility maps [23]. Since its launch, Agroview’s algorithms and models
have undergone continuous updates and improvements. However,
despite several studies assessing the software’s accuracy [24,25], there
is no research validating its precision and consistency over time.

Given the challenges in remote sensing and Al-enabled predictive
model development, such as the potential for data collection errors and
the limited focus on precision and consistency, understanding the per-
formance of software like Agroview is essential. Reliable and consistent
results are crucial for building user confidence, identifying areas for
further refinement, and supporting the broader adoption of advanced
technologies in agriculture. By integrating precision and consistency
into data analysis, these advancements can foster greater confidence
among users and encourage wider implementation across the industry.

To address these critical gaps, this study aims to assess the precision
and consistency of Agroview in providing detailed plant-level informa-
tion, including plant inventory, canopy height and area, and leaf den-
sity, within a citrus orchard over four closed data collection dates. This
evaluation is vital for improving accuracy, enhancing user confidence,
and supporting the broader adoption of advanced remote sensing tech-
nologies in agriculture.
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Material and methods
Data acquisition

Data were collected from two Valencia citrus (Citrus sinensis) or-
chards located in Hendry County, Florida (26°39'04.2'N, 81°17'14.7'W
and 26°39'12.6"N, 81°17'17.2"W) (Fig. 1a and 1b). Block A covered 50.8
acres, while Block B covered 73.7 acres. Both fields had variations in tree
and row spacing due to differences in tree age. For the mature trees, the
original spacing of ~8 m between rows and ~3.7 m within rows was
maintained. However, for the intermediate and reset trees, the spacing
was ~1.8 m within rows.

The data were collected between October 23 and November 13,
2023, on four closely spaced dates to minimize field variability and
ensure consistent environmental conditions throughout the sampling
period.

A UAV, DJI Matrice 300 RTK (Shenzhen, China), equipped with a DJI
Zenmuse H20T (Shenzhen, China) RGB camera, was used to collect data
on the four closely spaced dates (Table 1). Flights were strategically
conducted around solar noon (zenith angle = 0°) to mitigate shadow
interference between trees. The UAV operated at a constant altitude of
122 m (400 ft) above ground level and traveled at a consistent speed of
16 km/h (10 mph), achieving a ground sampling distance (GSD) of 4.2
cm per pixel. Each flight lasted approximately 30 min.
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Fig. 1. Data collection over four dates for citrus (a) block A and (b) block B.
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Table 1
Specifications of the RGB sensor used for data collection.
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Table 2
Variables produced and extracted by Agroview.

Sensor size 1/2.3" CMOS (6.17 x 4.56 mm)

Effective pixels 12M
Focal length 4.5 mm (equivalent: 24 mm)
Photo Size 4056 x 3040

Data processing

The collected images were uploaded to the Agroview software for
processing and analysis. The workflow involved several key steps:
creating an orthomosaic map, cropping the area of interest, initiating the
generation process, and finally generating the results (Fig. 2).

Upon completion of this process, the software provided download-
able data on tree inventory (including tree counts), age, height, canopy
area, health, and leaf density. Detailed information on the criteria and
measurements used, along with an overview of how each variable is
defined and scored, is presented in Table 2. Agroview is capable of
categorizing trees into two to seven groups based on their height, canopy
size, health, and leaf density. In this study, three categories were chosen
for analysis. Additionally, the imperial system was employed for the
analysis and graph development, as Agroview uses this system for its
data processing and visualization.

Statistical analysis

The results for the variables provided by Agroview (inventory, age,
health, canopy area, height, and leaf density) were analyzed using
descriptive statistics, including standard deviation, mean, and coeffi-
cient of variation (CV). In addition, Agroview’s results from the four
collection dates were used to construct graphs showing trends and
changes over the collection dates.

Results and discussions

In Ampatzidis et al. [21], Agroview demonstrated its capability to
detect and count trees with a mean absolute percentage error (MAPE) of
2.3 %. This accuracy was achieved in a large commercial citrus orchard
spanning 1871 acres and containing 175,977 trees, which were orga-
nized into 39 blocks with varying normal and high-density spacings.
Additionally, Agroview accurately estimated tree height with a MAPE of
4.5 % for normal spacing and 12.93 % for high-density spacing. It also
assessed canopy size with a MAPE of 12.9 % for normal spacing and 34.6
% for high-density spacing. This study evaluated Agroview’s accuracy
but did not assess its precision, which refers to how consistent the results
would be if data were collected and analyzed multiple times, such as
four separate instances instead of just one. This current study aims to
explore this aspect of Agroview, focusing on its precision by examining
how consistent the results are when data is collected and analyzed

multiple times.
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Inventory Presents the number of trees and the number of missing trees (Gaps)
inside the field.

Age Categorizes trees based on their age, including resets, intermediate,
and mature trees.

Health Presents the health status of the trees and divides them into dead, at-
risk, and healthy trees.

Height Provides the height for each tree; it can be divided into two to seven
categories.

Canopy Estimates the size of the tree canopy; it can be divided into two to
seven categories.

Leaf Characterizes the number of leaves in the canopy, and it is measured as

density a one-sided green leaf area per unit of ground area. It can be divided

into two to seven categories.

The results of the extracted values for inventory, age, height, health,
canopy area, and leaf density analyzed over the four specified collection
dates are summarized in Table 3 and Fig. 3. This comprehensive analysis
offers a detailed view of Agroview’s performance over time, enabling
users and researchers to evaluate the consistency and precision of the
software in monitoring orchard conditions. For example, the tree count
results from the analysis provide significant insights into Agroview’s
performance as a high-throughput phenotyping system. For Block A,
Agroview recorded an average of 7039 trees with a standard deviation of
185, resulting in a CV of 2.63 %. For Block B, the average count was
10,492 trees with a standard deviation of 163 and a CV of 1.56 %. The
relatively low CVs for both blocks, 2.63 % for Block A and 1.56 % for
Block B, demonstrate that Agroview’s tree count measurements are both
accurate and precise. The CV indicates the extent of variation relative to
the mean, and lower values suggest that the measurements are consis-
tently close to the average count. This consistency is particularly
important in high-throughput systems where large datasets are pro-
cessed. The data collected over the four collection dates show that
Agroview maintains a reliable performance across different times (no
changes were expected in these four data collection dates). This tem-
poral stability is essential for monitoring changes in orchard conditions
and making informed decisions based on precise, long-term data. Given
that Agroview employs UAV data for its assessments, the ability to
maintain low variability and provide consistent counts across large areas
highlights its effectiveness as a high-throughput phenotyping tool. This
capability is crucial for managing extensive orchards efficiently, where
manual counting would be impractical.

Similar low CVs are observed in other variables as well, such as tree
canopy height and size, and leaf density (Table 3). These low CV values
across multiple parameters further highlight Agroview’s robust perfor-
mance. By demonstrating low variability in these additional variables,
Agroview reinforces its capability to deliver precise and dependable
information, enhancing the overall reliability of the data collected. This
is particularly valuable for tasks that require accurate assessments of
tree health and development over time.

Higher standard deviations and CVs were recorded for variables with
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Fig. 2. Workflow from uploading UAV images to generating the final results on Agroview.



C. Trentin and Y. Ampatzidis

Table 3
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Average, standard deviation, and coefficient of variation (%) for the Agroview variables (inventory, age, health, canopy, height, and leaf density) collected over four

dates for blocks A and B.

Average Standard Deviation Coefficient of variation
Block A Block B Block A Block B Block A Block B
Inventory Tree 7039 10,492 185 163 2.63 1.56
Gap 251 254 57 91 22.92 35.74
Age Reset 688 3269 43 250 6.3 7.6
Intermediate 3444 4509 278 366 8.1 8.1
Mature 2908 2714 142 372 4.9 13.7
Height (ft) <7 806 5181 66 310 8.2 6.0
7 -12.00 3784 4403 279 130 7.4 2.9
12+ 2449 909 165 109 6.8 12.0
Health Dead 23 4 20 4 88.1 91.3
At Risk 337 171 109 25 32.3 14.8
Healthy 6680 10,318 160 178 2.4 1.7
Canopy (ft?) <87 3016 5297 251 233 8.3 4.4
87 -133 1574 1982 95 206 6.0 10.4
133+ 2449 3214 165 284 6.8 8.8
Leaf density <0.73 688 451 182 66 26.4 14.6
0.73 - 0.87 3729 4969 426 328 11.4 6.6
0.87+ 2622 5073 429 348 16.4 6.9

smaller sample sizes, such as the detection of tree gaps and dead trees
(Table 3). For example, only around 250 gaps were identified in both
fields, and the average number of dead trees was 22 for Block A and 4 for
Block B. The number of at-risk trees was also relatively low, with 336 for
Block A and 170 for Block B. Due to the limited amount of data for these
variables, greater variability and differences between the four data
collection and analysis dates were anticipated. This is because smaller
sample sizes are more susceptible to fluctuations and inconsistencies,
which can lead to higher standard deviations and CVs. Thus, the
observed higher variability in these metrics is expected and reflects the
challenges associated with analyzing data from smaller sample sizes.

Additionally, the selection of block areas in Agroview during the four
data collection dates may influence the detection of gaps. If the
boundaries of the blocks are not precisely delineated, some gaps may be
located near the field edges and might not be accurately detected or
recorded. This potential discrepancy could contribute to the observed
variability in the data, as gaps near the boundaries may be missed or
inconsistently identified, affecting the overall results.

In general, the categorical variables, such as inventory and age,
present less variation over data collection dates than the numerical
variables, such as height, canopy area, and leaf density (Fig. 3). Cate-
gorical data refers to variables that can be measured on a scale con-
sisting of distinct groups or categories that represent qualitative
characteristics of the target, for example, variables such as different
crops or varieties, flower color, and others fall into this category [26]. In
contrast, numerical variables refer to quantitative data collected from
the target, such as yield and weight. Although age is a categorical var-
iable, it is determined by numerical factors such as tree height and
canopy area [22]. As a result, it exhibits more variation in the data being
evaluated than other categorical variables.

Block B, being larger in size, contains a greater number of trees and a
higher proportion of reset trees (recently transplanted trees) compared
to Block A. As a result, it contains a greater number of trees in the 7 to 12
ft height category. In addition, canopy area and leaf density are typically
lower for smaller trees [27] compared to medium and mature trees
(Fig. 3c, 3e, and 3f). The number of dead trees is low because farmers
typically remove trees that are dead or nearly leafless and no longer
productive and replace them with new trees in a process known as
resetting. This practice also minimizes the number of gaps, as observed
in both Block A and Block B (Fig. 3a).

The variation observed in each variable across dates may be due to
data collection or software errors or the inherent range of each variable.
For example, in the analysis of canopy height (Fig. 3c), trees are cate-
gorized into three groups: <7 ft, 7-12 ft, and >12 ft. Trees near these

category thresholds contribute to data variability. Small differences in
measurements, such as a canopy height of 12.1 ft or 7.1 ft (Fig. 4), can
shift trees between categories, leading to inconsistencies in the number
of trees classified into each group on different dates. This variability is
not unique to canopy height but is also observed in other variables like
canopy area and leaf density. Sensor and data collection inconsistencies
can amplify these variations, especially when measurements are close to
category boundaries, impacting the overall consistency of the data
across collection dates.

Similarly, when each tree is evaluated individually, differences be-
tween collection dates become apparent (Fig. 5). For example, one tree’s
height was estimated at 9.7 ft, 12.4 ft, 10.9 ft, and 11.5 ft during the first,
second, third, and fourth data collections, respectively (Fig. 5a, b, ¢, and
d). Although these height estimates appear to vary significantly, the CV
in this case is approximately 10 %. This relatively low CV is notable,
particularly given that the data was captured using an RGB camera on a
UAV flying at an altitude of 120 m. The low CV indicates that despite the
apparent variations, the measurements are reasonably consistent and
reliable, reflecting the effectiveness of the high-throughput system in
maintaining accuracy under challenging conditions.

When the same variable, height, is measured over the entire block
instead of individual trees, the CV drops to <9 % (Table 3). The
exception is Block B, where trees taller than 12 ft height exhibit a CV of
12 %. This drop in CV when analyzing block-wide data suggests greater
overall consistency in measurements compared to individual assess-
ments. The descriptive analysis further reveals that both blocks had a
high frequency of trees with intermediate heights, ranging from 7 to 12
ft. Additionally, most trees in both blocks had canopies either smaller
than 87 ft? or larger than 133 ft. Interestingly, the highest mean leaf
density observed was 0.73 or greater, indicating that even trees with
smaller canopies can maintain high leaf density values (Table 3). These
findings highlight the overall reliability and robustness of the mea-
surements, particularly when analyzed on a broader scale.

Another key observation is that the inventory, which represents the
total number of trees (with averages of 7039 for Block A and 10,492 for
Block B), shows a variation of fewer than 200 trees, as indicated by the
standard deviation. This variation, <3 %, is relatively minor and not
considered significant. Furthermore, the manual methods used by
farmers for counting trees and measuring other characteristics, such as
height and canopy area/volume, are inherently prone to errors. These
methods typically involve measuring poles, tapes, and manual counting
techniques, which are more susceptible to human error and can result in
greater variability and inaccuracies compared to sensor-based data
collection. Previous studies, such as Ganz et al. [28], have shown that
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Fig. 3. Agroview’s results and temporal analysis of (a) tree inventory, (b) age, (c) health, (d) canopy area (ft2), (e) height (ft), and (f) and leaf density over four dates
(1,2,3 and 4) for Blocks A and B.
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manual data collection often leads to higher error rates than data
collected with sensors. In contrast, sensor-based data collection tends to
be more precise and consistent, reducing the likelihood of such errors.
This comparison reinforces the value of Agroview as an effective tool for
generating precise and reliable data in citrus fields.

To minimize errors in tree inventory, Agroview provides users with
advanced tools designed to improve measurement precision and
streamline orchard management. One key feature is the ability to
manually edit blocks, enabling users to add or remove trees as needed
(Fig. 6). This functionality is crucial for maintaining precise and current
records. By allowing users to adjust the digital representation of their
orchards to better reflect actual conditions, this feature helps to reduce
counting errors and improves the overall efficiency of orchard opera-
tions. Improved data precision supports better decision-making and
more effective management practices, ultimately leading to optimized
orchard management and increased productivity.

While this study primarily focused on evaluating the precision of the
Agroview software in analyzing orchard data, it is important to recog-
nize that the sensors used in data collection can also introduce errors.
Although sensor-related errors were not directly addressed in this study,
their potential impact on the data quality should be considered. Sensors
can introduce variability into the data they collect, and precisely
measuring these errors poses significant challenges due to the lack of
standardized methodologies. This complexity highlights the need for
further research to isolate and quantify the sensor’s contribution to
overall data inaccuracies. Addressing these factors can increase the
robustness of future analyses and improve the reliability of both sensor-
based and software-based assessments.

Nevertheless, gaps in the literature regarding post-launch

verification of software and sensors for accuracy and precision pose
significant challenges for meaningful comparison and discussion.
Additionally, the methodology for analyzing errors and consistency in
such data remains relatively underdeveloped. Addressing these gaps is
crucial for both researchers and industry professionals, as it establishes a
framework for evaluating the effectiveness of software and applications
in delivering precise results to users. This study provides valuable in-
sights that can guide developers in refining their products, leading to
more reliable and user-friendly software solutions. Closing these gaps
will not only enhance the robustness of future analyses but also support
the creation of more precise and effective tools in the industry.

One of the key challenges in this type of study is to obtain high
quality data that can effectively isolate the effects of external factors
such as weather, lighting conditions, and other potential sources of
interference, which may bias the results. In addition, the innovative
nature of this research means that there are no similar studies to guide
the development of a robust methodology, highlighting the need for
careful design and validation of the data collection process.

Conclusion

This study has provided a comprehensive evaluation of the precision
of Agroview software in analyzing orchard data, emphasizing its effec-
tiveness as a high-throughput phenotyping tool. The results indicate that
Agroview delivers accurate and reliable measurements, with low CVs
observed in tree count, canopy height, canopy area, and leaf density.
These findings highlight Agroview’s capacity to provide consistent data,
which is crucial for effective orchard management and research. The
analysis also revealed that while variability in measurements is
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generally low, certain factors, such as the limited sample size for vari-
ables like tree gaps and at-risk trees, contribute to higher CVs. Addi-
tionally, the potential impact of sensor-related errors, though not
directly addressed in this study, underscores the need for further
research to isolate and quantify these effects.

In addition to its precision, Agroview offers significant cost efficiency
and speed benefits. The software significantly reduces the time and
effort required for data collection, which is typically more costly and
subject to greater variability when performed manually. By streamlining
the data collection process, Agroview not only enhances measurement
accuracy but also supports more cost-effective and efficient orchard
management. By establishing a framework for evaluating the effective-
ness of software and applications, this research provides valuable in-
sights for developers and users. It suggests that while Agroview is a
robust tool for generating precise information, continued efforts to
refine data collection and analysis methodologies will further enhance
the reliability and utility of such systems. Ultimately, filling these gaps
will contribute to the development of more accurate and user-friendly
tools, supporting improved orchard management and productivity.
Future studies could focus on developing automated error-detection
algorithms within Agroview to proactively identify and mitigate
sensor-related inaccuracies, thereby enhancing the software’s precision,
reliability, and overall performance.
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