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ABSTRACT

Streamwise flow acceleration and deceleration is investigated over incompressible spatially-developing tur-

bulent boundary layers (SDTBL) subject to the combined effects of streamwise/streamline pressure gradient

(i.e. a two-dimensional curved hill under zero, adverse and favorable external pressure gradient). The selected

numerical tool is RANS (Reynolds-Averaged Navier-Stokes) plus two eddy-viscosity models: the K−ω SST

(henceforth SST) and the Spalart-Allmaras (henceforth SA) turbulence models. The evolution of three pas-

sive scalars is also scrutinized using the following molecular Prandtl or Schmidt numbers, Pr = 0.2, 0.71, and

2. The complex geometry (2D curved hill), as in Baskaran et al. (1987), has been reproduced and validated

in our previous studies, Paeres et al. (2022a,b). The combined strong adverse/favorable streamline curvature-

driven pressure gradient caused by concave/convex surface curvatures implied a horizontal ceiling in wind

tunnel experiments by Baskaran et al. (1987). In the present study, the effects of streamwise pressure gradient

are evaluated by manipulating the top surface of the RANS computational domain: zero-pressure gradient,

divergent and convergent top-wall cases. Both turbulence models have been consistent in the outcomes, ex-

cept downstream of the curved hill. It is observed that the SST model predicts slightly longer reattachment

lengths than the SA model, and stronger reversal flows. Furthermore, the presence of an external streamwise

pressure gradient does not affect the separation bubble length itself, but it does affect Cf peaks, having the

top-diverging wall case the largest impact. The presence of strong streamwise/streamline pressure gradients

breaks down the Reynolds analogy between the momentum and passive scalar fields.

KEY WORDS: Keywords: RANS, passive scalar, streamwise pressure gradient, concave/convex curvature, turbu-

lent boundary layer.

1. INTRODUCTION

Flow separation at high Reynolds numbers is one of the most challenging types of turbulent flows, and still

remains one of the major unresolved problems of fluid dynamics, according to Williams (1977). Simpson

(1989), in his well-known review of turbulent boundary layer separation, claimed “the effects of significant

wall curvature are not well described quantitatively, although most separation cases occur on curved wall.”

According to Patrick (1987), more reliable data and large-scale models are required to better define the tur-

bulence structure of the backflow region in very strong streamwise Adverse Pressure Gradient (APG), which

is responsible for boundary layer detachment. In the case of incompressible turbulent flow over a curved hill,

separation zones will occur due to the Adverse Pressure Gradient (APG) or flow deceleration caused by the
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NOMENCLATURE

()e Parameter at the boundary layer edge

()(P ) Parameter in function of pressure gradient

()w Parameter at the wall

APG Adverse Pressure Gradient

β Pressure Parameter of Clauser

Cf Skin friction coefficient, 2 ∗ (uτ/ue)
2

∆P Pressure Parameter of Patel

δ Boundary Layer

δ∗ Displacement Thickness

δt Thermal Boundary Layer

FPG Favorable Pressure Gradient

K(P ) Pressure Parameter of Launder

ν Molecular kinematic viscosity

P Static Pressure

Pr Molecular Prandtl number

RANS Reynolds-Averaged Navier-Stokes

Reθ Momentum Thickness Reynolds Number

ρ Density

SA Spalart Allmaras turbulent model

SDTBL Spatially-developing turbulent boundary layer

SST Shear Stress Transport K −ω turbulent model

τ Shear Stress

uτ Skin friction velocity,
√

τw/ρ
U Velocity

x Cartesian Coordinate (x=0 is the hill top)

ZPG Zero Pressure Gradient

presence of convex wall curvature. In spite of the significant progress performed in the last twenty years,

modeling efforts for separated flows have been hindered due to the lack of information on the mechanisms

that control the separation of the boundary layer by large-scale structures. Furthermore, how passive scalar

transport behaves under this condition also remains unknown. The turbulent transport of passive scalars is

crucial in many industrial applications of technological importance, such as in turbine-blade film cooling,

heat transfer in electronic/mechanical devices, chemicals dissolved in gases, and contaminant/humidity dis-

persed in atmospheric flow, to name a few. Furthermore, a passive scalar is defined as a diffusive contaminant

that exists in such a low concentration in a flow that it has no effect on the dynamics of the fluid motion,

Warhaft (2000). However, that low concentration of passive scalar is sufficient to cause a significant im-

pact on energy expenditures, air pollution, and the design of chemical processes. The transport phenomenon

in real-situation flows usually occurs under complicated external conditions, such as pressure gradients, fa-

vorable (FPG) and adverse (APG), complex geometry (concave/convex surface), high Reynolds numbers,

and spatially-developing turbulent boundary layers (SDTBL). The consideration of temperature is performed

based on the theory of passive scalar transport as in Li et al. (2009). Furthermore, the separation of boundary

layer flow, attributed to the presence of a sufficiently strong Adverse Pressure Gradient (APG), represents by

far the most undesirable situation in the momentum/scalar transport. The boundary layer parameters experi-

ence sudden changes due to an abrupt thickening of the rotational flow region or backflow close to the wall

(Simpson (1989)), which may cause a critical reduction in the performance of the device (e.g., pressure drag

increase in airfoils or heat transfer decrease in turbine blades). For this reason, flow separation has been the

topic of several theoretical, experimental, and numerical studies in the past few decades (Simpson (1985);

Simpson et al. (1987)), however, there is still some “terra ignota”. In the present manuscript, the influence

of combined streamwise-streamline and isolated streamline pressure gradients on the momentum and passive

scalar transport is explored via two turbulence closure models (SA and SST) for Reynolds shear stresses and

the simple, but robust, turbulent Prandtl number for wall-normal turbulent heat flux modeling. The incoming

turbulent flow conditions (upstream of the curved hill) are validated by DNS database from Lagares and Araya

(2021).

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The 2D curved hill under consideration is a reproduction of the experiments described by Baskaran et al.

(1987). The scenario involves an incoming horizontal airstream at 20 m/s passing over a simple curved pro-

tuberance of 1.284 m long with a radius, R, of 1.08 m. The protuberance’s entrance and exit had concave

surfaces of -0.40 m and -0.48 m of radius, respectively. Therefore, the normalized curvature ratios, δref/R,
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Fig. 1 Curved hill diagram. From Paeres et al. (2022a,b); reprinted by permission of the American Institute of

Aeronautics and Astronautics, Inc.

are as follows: 0.037, -0.1, and -0.083 for the convex (positive) and the concave (negative) wall curvatures,

where δref is the reference boundary layer thickness taken at the beginning of the curved hill. Figure 1 shows

an example of the geometry, which has already been validated in our previous studies Paeres et al. (2022a,b).

We are keeping the selected numerical tool RANS (Reynolds-Averaged Navier-Stokes) plus the two eddy-

viscosity models: the K − ω SST (henceforth SST) and the Spalart-Allmaras (henceforth SA) turbulence

models. Readers are referred to Paeres et al. (2022b) for a comprehensive description of the governing equa-

tion and turbulence transport approach. In addition to studying the effects of the streamwise pressure gradient

by manipulating the top surface of the RANS computational domain, this study also ventures to delve into the

effect of several molecular Prandtl numbers. These are analyzed using the following molecular Prandtl num-

bers: Pr = 0.2, 0.71, and 2, with their respective turbulent Prandtl numbers: 0.52, 0.87, and 1.319, respectively.

For the conducted analysis, it is essential to utilize curvilinear coordinates. This approach allows for a more

accurate representation of the physical phenomena occurring along the complex geometries of the wall sur-

faces. The freestream flow parameters are defined at the edge of the turbulent boundary layer (e.g., Ue, Pe, Te,

etc.), which is more appropriate for flows over wall curvatures. Consequently, the equations governing fluid

dynamics must be derived in curvilinear coordinates to capture the nuances of the flow behavior accurately.

The following elaborates on the derivation of these equations within the curvilinear coordinate framework,

highlighting the necessity of this approach for our specific analysis. Taking Bernoulli’s equation 1:

P +
ρUe

2

2
+ ρgh = const. (1)

where P is static fluid pressure, Ue is the freestream velocity, ρ is the fluid density, g is the acceleration due

to gravity, and h is the elevation of the point. Considering s as the streamwise coordinate, differentiating eq.

1 by s gives:

∂P

∂s
+ ρUe

∂Ue

∂s
+ ρg

∂h

∂s
= 0 −→

∂Ue

∂s
= −

(

1

ρUe

∂P

∂s
+

g

Ue

∂h

∂s

)

−→
∂Ue

∂s
= −

(

1

ρUe

∂P

∂s
+

g

Ue

∂h

∂s

)

(2)

And neglecting potential energy due to elevation,
∂h

∂s
≈ 0 −→

∂Ue

∂s
=

−1

ρUe

∂P

∂s
(3)

The following dimensionless pressure parameters are used in this study to evaluate the strengths of combined

streamwise/streamline pressure gradients. Launder (1965), where U∞ is freestream velocity and ν is the
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kinematic viscosity. As streamwise notation and function of pressure gradient at boundary layer edge:

K =

(

ν

U∞

2

)

∂U∞

∂x
−→ K(P ) =

(

−ν

ρUe
3

)

∂Pe

∂s
(4)

Patel (1965) defined a dimensionless pressure parameter based on the friction velocity, uτ. For our case, we

can rewrite Patel’s equation as follows but note the high similarity between Launder and Patel when both

parameters are expressed in function of pressure gradient (i.e., Equations 4 and 5). Both parameters are a

streamwise pressure gradient multiplied by a factor of viscosity over a cubed velocity. Recalling that wall-

shear stress is density times squared skin friction velocity.

∆P =

(

ν

ρuτ
3

)

∂P

∂x
−→ ∆P =

(

ν

ρuτ
3

)

∂Pe

∂s
(5)

The Clauser’s parameter β (Clauser (1954, 1956)) is defined as follows, where δ∗ is the displacement thickness

and τw is the wall shear stress.

β =

(

δ∗

τw

)

∂P

∂x
−→ β =

(

δ∗

ρu2
τ

)

∂Pe

∂s
(6)

3. COMPUTATIONAL DOMAIN AND MESH DESIGN

We are evaluating the effect of different streamwise pressure gradients over a curved hill by manipulating

the top surface, i.e. ZPG, APG, and FPG. In an earlier study (Paeres et al. (2022b)), the top surface was

horizontal, mimicking the wind-tunnel geometry as in Baskaran et al. (1987). Previously, we utilized three

different meshes which we labeled as coarse, medium, and fine. For all of them, recycled and validated inlet

profiles of velocity and temperature were incorporated to bypass unrealistic freestream inlet profiles and to

avoid an extensive inlet developing section. In the current work, we employed a similar grid point distribution

as the fine mesh case in Paeres et al. (2022b) according to the acquired knowledge from the grid independence

test process. The obtained mesh was considered as the baseline and we modified the upper boundary. The

objective is to assess the impact of streamwise pressure gradient by adjusting the upper surface of the RANS

computational domain. Consistent with our objectives, the present study investigates three additional ”cases”

which we denote as ZPG for a constant top-to-floor distance, FPG for a convergent top-wall with a ceiling

inclined at -2o, and APG for a divergent top-wall with a ceiling inclined at 10o. The ceiling inclination degrees

are relative to the horizontal and these values were chosen following as reference the work of Driver and

Seegmiller (1985). Additionally, a small adjustment was made to the new meshes, ensuring that the vertical

cell distribution was independent of the ceiling height, providing identical near-wall resolution across cases.

Figure 2 illustrates the three new meshes according to these cases.

4. RELEVANT RESULTS AND DISCUSSION

In this section, we are showing and discussing RANS results on the effect of the combined streamwise/streamline

pressure gradient over the momentum and passive scalar boundary layer. The boundary layer thickness δ vs.

x/δref , is exhibited by fig. 3(a). Based on the figure, δref = 0.04m was selected, as all solutions converge to

this value before the boundary layer thickness begins to shrink. The incoming ZPG turbulent boundary layer

shows an almost linear growing trend, which is further affected by the presence of APG (-30 < x/δref < -20)

since the flow decelerates due to the presence of the curved hill. Therefore, it can be observed a thickening

process of the boundary layer in the region -30 < x/δref < -20, followed by a sharp shrink within a very short

distance (-20 < x/δref < -15) caused by the very strong FPGs due to the first concave curvature in all cases.
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(a) ZPG (b) FPG

(c) APG (d) Near wall region close-up

Fig. 2 Schematic of the mesh configurations: (a) ZPG, (b) FPG, (c) APG, and (d) near wall region close-up at

the second concave surface.

The recovery process (growth) of δ seems to be faster under a top-converging ceiling (i.e., external FPG case)

along the convex wall curvature. Peak values of δ can be observed around x/δref ≈ 20, by the end of the

second concave curvature. Downstream of the curved hill in the flat section, there is a very strong decrease in

the boundary layer thickness for the top-diverging wall (streamwise APG). Overall and so far, both turbulence

models have been highly consistent in their outcomes, except in the second flat region located downstream of

the curved hill. The physics explanation could be linked to the severe flow distortion infringed on the incoming

turbulent boundary layer due to the combined streamwise/streamline pressure gradient effects, significantly

impacting the downstream boundary layer development. Figure 3(b) depicts the streamwise development of

the flow velocity at the boundary layer edge, Ue, for the external imposed streamwise pressure gradients, i.e.

ZPG, FPG, and APG. The variation of the freestream flow velocity clearly indicates the local edge pressure

gradient zones: the boundary layer undergoes an initial ZPG up to x/δref ≈ -40, later a strong APG (flow

deceleration) up to the middle of the first concave region, a very strong FPG up to the hilltop followed by a

very strong APG (and flow separation) up to the middle of the second concave region, and finally starts recov-

ering in the end part of the concave surface and beyond (presence of FPG or flow acceleration). Interestingly,

while external ZPG and FPG cases achieve similar values of the incoming freestream velocity, the APG case

shows lower values (approximately 20% lower). This is the reason for the strong shrinking process observed

on the δ profile in fig.3(a). Figure 4(a) shows the streamwise development of the skin friction coefficient, Cf .

As expected, the local wall shear stresses experience decreases and increases in agreement with the local edge

pressure gradient, as shown in Fig. 4(b). At the end of the convex zone, just before the second concave section,

Cf reaches a value of zero, indicating the potential location of the flow separation point over the curved hill.

The major conclusions regarding the separation flow bubble are threefold: (i) the SST model predicts slightly

longer lengths for reattachment and stronger reversal flows, as evidenced by the high (negative) Cf values,

(ii) the presence of an external streamwise pressure gradient does not seem to significantly affect the length of

the separation bubble; and (iii) the APG ceiling case tends to show largest absolute values of the skin friction

coefficient throughout the domain; however, local Cf values are notably larger in the APG case regarding the

other two cases (i.e., ZPG and FPG) downstream of the separation bubble. This is understandable considering
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(a) (b)

Fig. 3 (a) Height of boundary layer, and (b) Velocity at the edge of boundary layer. Blue line for SA model

and red line for SST model. Cases identified by symbols: APG with (•), ZPG with (▲), and FPG with (■).

(a) (b)

Fig. 4 (a) Skin friction coefficient, and (b) Streamwise Pressure Gradient at edge of boundary layer. Blue line

for SA model and red line for SST model. Cases identified by symbols: APG with (•), ZPG with (▲), and

FPG with (■).

the relatively large inclination angle infringed on the ceiling. The edge pressure gradient is exhibited by Fig.

4(b). The different pressure gradients and their strengths are clearly observed: ZPG (-60 < x/δref < -40),

moderate APG (-40 ≤ x/δref < -20), strong FPG (1st concave region), strong APG (convex region, mostly),

strong FPG (from x/δref ≈ 10 to the beginning of the 2nd concave region), moderate APG (within the 2nd

concave region), moderate FPG (20 < x/δref < 30), and ZPG for x/δref ≥ 30. It is worth highlighting the

almost linear increasing trend of the edge pressure gradient in the convex region of the curved hill. Also, note

that the APG peak does not occur at the convex zone end but slightly earlier.

Fig. 5 draws a comparison between the different pressure gradients and turbulence models for the displace-

ment thickness, δ∗, and the momentum thickness Reynolds number, Reθ. Clearly, there is a strong effect of

the pressure gradient on the momentum thickness, θ, as seen in Fig. 5(b) that persists beyond the immediate

region of the curve. This is consistent with the boundary layer thickness, δ, trend seen in Fig. 3(a). However,

this trend is not seen in the displacement thickness data, δ∗, as shown by 5(a). In the case of δ∗, the effects

of the curved surface are limited to the region immediately around it, and the flow trend following the surface

appears almost unaffected by the presence of the disruption. Additionally, there is no significant deviation in
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(a) (b)

Fig. 5 (a) Displacement Thickness (δ∗), and (b) Momentum Thickness Reynolds Number (Reθ). Blue line for

SA model and red line for SST model. Cases identified by symbols: APG with (•), ZPG with (▲), and FPG

with (■).

the results of the turbulence models until the flow reaches the back side of the curved surface. At this point,

δ∗ experiences a drastic difference in the size of the displacement boundary layer, which would indicate that

the two turbulence models cannot agree where the edge of the boundary layer should lie for the potential flow

for this region, which is present in Fig. 3(b) to a dampened extent. However, the two models then do converge

towards the displacement boundary layer thickness as it reaches a new freestream condition. There is a simi-

lar trend with Reθ, where turbulence models do not agree on the thickness of the momentum boundary layer.

Unlike with δ∗, the SA model overpredicts Reθ profiles relative to the SST model in the controversial flow

separation bubble, which indicates that the two turbulence models do not agree to the shape of the bound-

ary layer under this condition. Also unlike with δ∗, except for the adverse pressure gradient condition, the

two models do not converge to the new freestream trend. It is interesting that both models do converge to a

freestream trend for the APG condition, as one would think that this could be a weaker point for both models.

Figure 6 and 7 illustrates the alignment and divergence between the pressure gradient ceiling conditions and

turbulence models on pressure gradient parameters, appearing more starkly than the trends of the previous and

traditional flow parameters. The pressure gradient conditions result in a variation of the peak values for the

Launder parameter (K(P )), as shown in Fig. 6(a). All cases exhibit consistent trends and comparable values

overall. Even during the transition of K(P ) values, from negative to positive in the first concave region, and

from positive to negative in the convex region, the pressure gradient parameters follow a similar behavior

based on SA and SST turbulence models. Beyond the flow separation point (x/δref ≈ 10), a divergence in

the magnitude of the lowest negative values occurs for all cases. This is consistent with the trends that are

illustrated previously in this section, where the SA and SST models deviate from one another on the back side

of the curved surface. The SA model also returns to a new freestream condition sooner than the SST model

does. These behaviors are also seen in the Patel parameter (∆P ), shown in Fig. 6(b). While the peak and

trough in the first concave section are not prominent, the peaks and troughs following the convex section be-

come more pronounced. This could be attributed to ∆P using the skin friction velocity cubed; as the velocity

approaches zero, it leads to a very small division factor, explaining the pronounced and off-scale values. The

most noticeable differences in the trend of the Patel parameter stem from the two different turbulence models.

It is not coincidental that the SA model predicts more extreme peaks and troughs compared to the SST model.

As seen in Fig. 4(a), the SA model consistently predicts lower Cf values (in magnitude) than the SST model

in the second concave region most interesting differences in the trend of this parameter come from the two

different turbulence models. The SA model makes the peaks and troughs highly dependent on the pressure
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(a) (b)

Fig. 6 (a) Launder’s Pressure Parameter (K(P )), and (b) Patel’s Pressure Parameter (∆P ). Blue line for SA

model and red line for SST model. Cases identified by symbols: APG with (•), ZPG with (▲), and FPG with

(■).

Fig. 7 Clauser’s Pressure Parameter (β), blue line for SA model and red line for SST model. Cases identified

by symbols: APG with (•), ZPG with (▲), and FPG with (■).

gradient, but not so much with the SST model, where the different pressure gradient conditions affect the Pa-

tel parameter peak value minimally. This would indicate that the SST model may not be as sensitive in local

behaviors to freestream conditions as the SA model, whether or not this is correct to the exact or real behavior.

Additionally, it is clear that the SA model lags the SST model in the negative values for the first large drop in

the Patel parameter and precedes the SST model in the sharp peak. This may indicate that the SA model may

be compensating for localized errors with larger trends.

Figure 7 shows the streamwise variation of Clauser’s pressure parameter, β, along the curved hill using the

SA and SST turbulence models. ZPG conditions are relatively flat across the surface for both models, indicat-

ing minimal impact on the boundary layer. Under APG conditions (near both concave sections), both models

exhibit positive peaks in β around x/δref ≈ -20, 10, and 25. Since β also considers the wall shear stress, the

peaks are more pronounced in the neighborhood of the second concave section, and once again, the SA model

is the one with values almost off the chart. Furthermore, the SST turbulence model is well-known for its good

performance in boundary layer flows subjected to APG, with eventual separation. Near the flow separation

point (at the end of the convex section), the negative drop in β is solely dictated by dPe/ds due to how equa-

tion 6 was applied. This means that if the sign of uτ were considered, both turbulence models would switch

signs, as uτ is consistently negative in this region.
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(a) (b)

Fig. 8 Thermal boundary layer thickness for turbulent models: (a) SA, and (b) SST. Black line for Pr of air,

yellow line for high Pr, and green line for low Pr. Cases identified by symbols: APG with (•), ZPG with

(▲), and FPG with (■).

Figure 8 represents the streamwise distribution of thermal boundary layer thickness (δt), which is a mea-

sure of the distance over which the temperature gradient exists in the boundary layer, using the SA and SST

models. In the present study, the temperature field is considered a passive scalar. The thermal boundary layer

forms simultaneously with the momentum boundary layer, but the thickness depends on the thermal diffusiv-

ity of the fluid, which is governed by the Prandtl number (Pr) or better say, the Schmidt number (Sc). In both

plots, δt is shown for three different Prandtl numbers (Prair = 0.71, P rhigh = 2, P rlow = 0.2), across APG,

ZPG, and FPG flow conditions. Higher Prandtl number indicates lower passive scalar diffusivity regarding

the momentum diffusivity, resulting in a thinner passive scalar boundary layer. On the contrary, lower Prandtl

number implies lower passive scalar diffusivity than that of the momentum field, which results in a thicker

passive scalar boundary layer. Adverse pressure gradient cases show a significant increase in passive scalar

boundary layer thickness for both turbulence models, particularly around x/δref ≈ 20, corresponding to flow

deceleration and eventual flow separation. On the other hand, ZPG cases exhibit a more steady and consistent

boundary layer thickness (between turb. models). FPG cases show a marked decrease in thickness, particularly

in the high-Pr cases, as the boundary layer thins with the accelerating flow. SST model (Fig. 8 (b)) shows

more pronounced variations in thermal boundary layer thickness compared to the SA model, particularly in

regions of internal strong pressure gradients (APG and FPG, or between peak values of concave zones). This

suggests that the SST model, with its ability to more accurately capture near-wall turbulence, better resolves

the interactions between the pressure gradients and the thermal boundary layer. This is especially important

in engineering applications where accurate heat transfer predictions are critical, such as in turbomachinery

and aerodynamics. In essence, all six cases predict that the thermal boundary layer thickness is approximately

0.1 m at the start of the second concave region. Additionally, before the separation bubble forms, for cases

with the same Prandtl number (Pr), the differences in the predicted thermal boundary layer thickness due to

changes in the external pressure gradient are well below 1%. However, once the influence of the separation

bubble is present, the differences between these cases become slightly noticeable, although they do not ex-

ceed approximately 2%, which represents the maximum deviation observed. The largest difference occurred

in the predictions using the SA turbulence model with the Prlow when comparing the FPG and APG cases.

Similarly, the SA model exhibited greater variations across its cases compared to those observed in the SST

model. Generally, as expected, the thermal boundary layer height predictions followed a descending order of

FPG > ZPG > APG. The only exception was the SST turbulence model with Prlow between the ZPG and

APG cases, where negative differences were observed in regions influenced by the separation bubble. Fig-

ure 9 shows iso-contours of streamwise velocity including some streamlines. The location of the separation

bubbles is clearly visualized downstream of the hill. Whereas, the effects of the external streamwise pressure
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gradients, by manipulating the top surface, on the separated flow area are not evident; it can be inferred that

the SST model predicts a much larger zone for the bubble.

(a) Ux ZPG Potential

(b) Ux APG SA (c) Ux APG SST

(d) Ux ZPG SA (e) Ux ZPG SST

(f) Ux FPG SA (g) Ux FPG SST

Fig. 9 Iso-contours of the horizontal velocity (Ux) presented by the external ceiling condition applied (i.e.,

APG, ZPG, and FPG) and by the turbulent model used (SA and SST). Prescription of some streamlines.

5. CONCLUSIONS

We perform a numerical study of a turbulent boundary layer and passive scalar transport subject to a curved

hill and the combined effect of streamwise/streamline pressure gradient. The study was limited to a Reynolds

Averaged Navier Stokes simulation (RANS) plus two eddy-viscosity turbulence models (i.e., SST and SA).

The domain geometry was reproduced following work by Baskaran et al. Baskaran et al. (1987). The inlet
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velocity components and temperature were recycled and re-injected from a precursor ZPG simulation to avoid

a longer developing section and better control (and match with experiments) the incoming reference boundary

layer parameters. Momentum and thermal turbulent boundary layers undergo severe distortions due to the

combined effect of streamwise/streamline strong pressure gradients. Both turbulence models have been con-

sistent in the outcomes, except in the second flat zone (downstream of the curved hill). It is hypothesized that

the infringed changes on the turbulent boundary layer parameters by combined wall curvatures and external

streamwise pressure gradients are responsible for result disparities by both turbulence models downstream of

the hill. By far, the most important aspect of flow separation modeling is the ability of any turbulence model

to characterize the reattachment length. It is concluded that the SST model predicts slightly longer reattach-

ment lengths than the SA model, and stronger reversal flows given. Interestingly, the presence of an external

streamwise pressure gradient seems not to affect the separation bubble length itself, but it does affect Cf peaks,

having the APG case (top-diverging wall) the largest impact. In terms of the dimensionless pressure gradient

parameters, the SST and SA generate highly similar values. However, there have been significant differences

in the separation flow bubble, as expected. The streamwise development of the passive scalar boundary layer

thickness has shown strong dissimilarities with the momentum boundary layer thickness caused by the pres-

ence of strong pressure gradients, which annihilate the Reynolds analogy.
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