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ABSTRACT

Streamwise flow acceleration and deceleration is investigated over incompressible spatially-developing tur-
bulent boundary layers (SDTBL) subject to the combined effects of streamwise/streamline pressure gradient
(i.e. a two-dimensional curved hill under zero, adverse and favorable external pressure gradient). The selected
numerical tool is RANS (Reynolds-Averaged Navier-Stokes) plus two eddy-viscosity models: the K —w SST
(henceforth SST) and the Spalart-Allmaras (henceforth SA) turbulence models. The evolution of three pas-
sive scalars is also scrutinized using the following molecular Prandtl or Schmidt numbers, Pr=0.2, 0.71, and
2. The complex geometry (2D curved hill), as in Baskaran et al. (1987), has been reproduced and validated
in our previous studies, Paeres et al. (2022a,b). The combined strong adverse/favorable streamline curvature-
driven pressure gradient caused by concave/convex surface curvatures implied a horizontal ceiling in wind
tunnel experiments by Baskaran et al. (1987). In the present study, the effects of streamwise pressure gradient
are evaluated by manipulating the top surface of the RANS computational domain: zero-pressure gradient,
divergent and convergent top-wall cases. Both turbulence models have been consistent in the outcomes, ex-
cept downstream of the curved hill. It is observed that the SST model predicts slightly longer reattachment
lengths than the SA model, and stronger reversal flows. Furthermore, the presence of an external streamwise
pressure gradient does not affect the separation bubble length itself, but it does affect C'y peaks, having the
top-diverging wall case the largest impact. The presence of strong streamwise/streamline pressure gradients
breaks down the Reynolds analogy between the momentum and passive scalar fields.

KEY WORDS: Keywords: RANS, passive scalar, streamwise pressure gradient, concave/convex curvature, turbu-

lent boundary layer.

1. INTRODUCTION

Flow separation at high Reynolds numbers is one of the most challenging types of turbulent flows, and still
remains one of the major unresolved problems of fluid dynamics, according to Williams (1977). Simpson
(1989), in his well-known review of turbulent boundary layer separation, claimed “the effects of significant
wall curvature are not well described quantitatively, although most separation cases occur on curved wall.”
According to Patrick (1987), more reliable data and large-scale models are required to better define the tur-
bulence structure of the backflow region in very strong streamwise Adverse Pressure Gradient (APG), which
is responsible for boundary layer detachment. In the case of incompressible turbulent flow over a curved hill,
separation zones will occur due to the Adverse Pressure Gradient (APG) or flow deceleration caused by the
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NOMENCLATURE
Oe Parameter at the boundary layer edge P Static Pressure
()(py Parameter in function of pressure gradient Pr Molecular Prandtl number
()w  Parameter at the wall RANS  Reynolds-Averaged Navier-Stokes
APG  Adverse Pressure Gradient Reg Momentum Thickness Reynolds Number
B Pressure Parameter of Clauser p Density
Cy Skin friction coefficient, 2 * (u/u.)? SA Spalart Allmaras turbulent model
AP  Pressure Parameter of Patel SDTBL Spatially-developing turbulent boundary layer
) Boundary Layer SST Shear Stress Transport K — w turbulent model
oF Displacement Thickness T Shear Stress
Oy Thermal Boundary Layer U Skin friction velocity, /Ty /p
FPG  Favorable Pressure Gradient U Velocity
K py Pressure Parameter of Launder x Cartesian Coordinate (x=0 is the hill top)
v Molecular kinematic viscosity 7PG Zero Pressure Gradient

presence of convex wall curvature. In spite of the significant progress performed in the last twenty years,
modeling efforts for separated flows have been hindered due to the lack of information on the mechanisms
that control the separation of the boundary layer by large-scale structures. Furthermore, how passive scalar
transport behaves under this condition also remains unknown. The turbulent transport of passive scalars is
crucial in many industrial applications of technological importance, such as in turbine-blade film cooling,
heat transfer in electronic/mechanical devices, chemicals dissolved in gases, and contaminant/humidity dis-
persed in atmospheric flow, to name a few. Furthermore, a passive scalar is defined as a diffusive contaminant
that exists in such a low concentration in a flow that it has no effect on the dynamics of the fluid motion,
Warhaft (2000). However, that low concentration of passive scalar is sufficient to cause a significant im-
pact on energy expenditures, air pollution, and the design of chemical processes. The transport phenomenon
in real-situation flows usually occurs under complicated external conditions, such as pressure gradients, fa-
vorable (FPG) and adverse (APG), complex geometry (concave/convex surface), high Reynolds numbers,
and spatially-developing turbulent boundary layers (SDTBL). The consideration of temperature is performed
based on the theory of passive scalar transport as in Li et al. (2009). Furthermore, the separation of boundary
layer flow, attributed to the presence of a sufficiently strong Adverse Pressure Gradient (APG), represents by
far the most undesirable situation in the momentum/scalar transport. The boundary layer parameters experi-
ence sudden changes due to an abrupt thickening of the rotational flow region or backflow close to the wall
(Simpson (1989)), which may cause a critical reduction in the performance of the device (e.g., pressure drag
increase in airfoils or heat transfer decrease in turbine blades). For this reason, flow separation has been the
topic of several theoretical, experimental, and numerical studies in the past few decades (Simpson (1985);
Simpson et al. (1987)), however, there is still some “terra ignota”. In the present manuscript, the influence
of combined streamwise-streamline and isolated streamline pressure gradients on the momentum and passive
scalar transport is explored via two turbulence closure models (SA and SST) for Reynolds shear stresses and
the simple, but robust, turbulent Prandtl number for wall-normal turbulent heat flux modeling. The incoming
turbulent flow conditions (upstream of the curved hill) are validated by DNS database from Lagares and Araya
(2021).

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The 2D curved hill under consideration is a reproduction of the experiments described by Baskaran et al.
(1987). The scenario involves an incoming horizontal airstream at 20 m/s passing over a simple curved pro-
tuberance of 1.284 m long with a radius, R, of 1.08 m. The protuberance’s entrance and exit had concave
surfaces of -0.40 m and -0.48 m of radius, respectively. Therefore, the normalized curvature ratios, &,y /R,
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Fig. 1 Curved hill diagram. From Paeres et al. (2022a,b); reprinted by permission of the American Institute of
Aeronautics and Astronautics, Inc.

are as follows: 0.037, -0.1, and -0.083 for the convex (positive) and the concave (negative) wall curvatures,
where d,.. ¢ is the reference boundary layer thickness taken at the beginning of the curved hill. Figure 1 shows
an example of the geometry, which has already been validated in our previous studies Paeres et al. (2022a,b).
We are keeping the selected numerical tool RANS (Reynolds-Averaged Navier-Stokes) plus the two eddy-
viscosity models: the K — w SST (henceforth SST) and the Spalart-Allmaras (henceforth SA) turbulence
models. Readers are referred to Paeres et al. (2022b) for a comprehensive description of the governing equa-
tion and turbulence transport approach. In addition to studying the effects of the streamwise pressure gradient
by manipulating the top surface of the RANS computational domain, this study also ventures to delve into the
effect of several molecular Prandtl numbers. These are analyzed using the following molecular Prandtl num-
bers: Pr=0.2, 0.71, and 2, with their respective turbulent Prandtl numbers: 0.52, 0.87, and 1.319, respectively.

For the conducted analysis, it is essential to utilize curvilinear coordinates. This approach allows for a more
accurate representation of the physical phenomena occurring along the complex geometries of the wall sur-
faces. The freestream flow parameters are defined at the edge of the turbulent boundary layer (e.g., U, P, T,
etc.), which is more appropriate for flows over wall curvatures. Consequently, the equations governing fluid
dynamics must be derived in curvilinear coordinates to capture the nuances of the flow behavior accurately.
The following elaborates on the derivation of these equations within the curvilinear coordinate framework,
highlighting the necessity of this approach for our specific analysis. Taking Bernoulli’s equation 1:

2
P+

)
P 26 + pgh = const. (1)
where P is static fluid pressure, U, is the freestream velocity, p is the fluid density, g is the acceleration due
to gravity, and h is the elevation of the point. Considering s as the streamwise coordinate, differentiating eq.
1 by s gives:

oP | LU Oh U _ (1 0P gohy  OU._ (1 0P goh
Os Pe Os pgas N ds pU, 0s U, Os ds pU, 0s U, Os
2)
. . . 0Oh ov. —10P
And neglecting potential energy due to elevation, 55~ 0— s~ oU. Ds 3)

The following dimensionless pressure parameters are used in this study to evaluate the strengths of combined
streamwise/streamline pressure gradients. Launder (1965), where Uy, is freestream velocity and v is the
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kinematic viscosity. As streamwise notation and function of pressure gradient at boundary layer edge:
v OUs —v \ 0P,
K=|—]———|Kp=|—= 4
<Um2> Ox o (pr) ds @

Patel (1965) defined a dimensionless pressure parameter based on the friction velocity, u.. For our case, we
can rewrite Patel’s equation as follows but note the high similarity between Launder and Patel when both
parameters are expressed in function of pressure gradient (i.e., Equations 4 and 5). Both parameters are a
streamwise pressure gradient multiplied by a factor of viscosity over a cubed velocity. Recalling that wall-
shear stress is density times squared skin friction velocity.

AP:<V>8P—>AP:<V>8P€ 5)

pu”cg % puT3 0s

The Clauser’s parameter 3 (Clauser (1954, 1956)) is defined as follows, where 0™ is the displacement thickness
and T,, is the wall shear stress.
5*\ OP 5* \ 0P,
P (Tw) Ox P <DU%> s ©

3. COMPUTATIONAL DOMAIN AND MESH DESIGN

We are evaluating the effect of different streamwise pressure gradients over a curved hill by manipulating
the top surface, i.e. ZPG, APG, and FPG. In an earlier study (Paeres et al. (2022b)), the top surface was
horizontal, mimicking the wind-tunnel geometry as in Baskaran et al. (1987). Previously, we utilized three
different meshes which we labeled as coarse, medium, and fine. For all of them, recycled and validated inlet
profiles of velocity and temperature were incorporated to bypass unrealistic freestream inlet profiles and to
avoid an extensive inlet developing section. In the current work, we employed a similar grid point distribution
as the fine mesh case in Paeres et al. (2022b) according to the acquired knowledge from the grid independence
test process. The obtained mesh was considered as the baseline and we modified the upper boundary. The
objective is to assess the impact of streamwise pressure gradient by adjusting the upper surface of the RANS
computational domain. Consistent with our objectives, the present study investigates three additional “’cases”
which we denote as ZPG for a constant top-to-floor distance, FPG for a convergent top-wall with a ceiling
inclined at -2°, and APG for a divergent top-wall with a ceiling inclined at 10°. The ceiling inclination degrees
are relative to the horizontal and these values were chosen following as reference the work of Driver and
Seegmiller (1985). Additionally, a small adjustment was made to the new meshes, ensuring that the vertical
cell distribution was independent of the ceiling height, providing identical near-wall resolution across cases.
Figure 2 illustrates the three new meshes according to these cases.

4. RELEVANT RESULTS AND DISCUSSION

In this section, we are showing and discussing RANS results on the effect of the combined streamwise/streamline
pressure gradient over the momentum and passive scalar boundary layer. The boundary layer thickness & vs.
x /8¢y, is exhibited by fig. 3(a). Based on the figure, 8,.¢ = 0.04m was selected, as all solutions converge to
this value before the boundary layer thickness begins to shrink. The incoming ZPG turbulent boundary layer
shows an almost linear growing trend, which is further affected by the presence of APG (-30 < /8.5 < -20)
since the flow decelerates due to the presence of the curved hill. Therefore, it can be observed a thickening
process of the boundary layer in the region -30 < /8,y < -20, followed by a sharp shrink within a very short
distance (-20 < z/8,.5 < -15) caused by the very strong FPGs due to the first concave curvature in all cases.
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(a) ZPG (b) FPG

(¢) APG (d) Near wall region close-up

Fig. 2 Schematic of the mesh configurations: (a) ZPG, (b) FPG, (c) APG, and (d) near wall region close-up at
the second concave surface.

The recovery process (growth) of § seems to be faster under a top-converging ceiling (i.e., external FPG case)
along the convex wall curvature. Peak values of & can be observed around x/d,.; ~ 20, by the end of the
second concave curvature. Downstream of the curved hill in the flat section, there is a very strong decrease in
the boundary layer thickness for the top-diverging wall (streamwise APG). Overall and so far, both turbulence
models have been highly consistent in their outcomes, except in the second flat region located downstream of
the curved hill. The physics explanation could be linked to the severe flow distortion infringed on the incoming
turbulent boundary layer due to the combined streamwise/streamline pressure gradient effects, significantly
impacting the downstream boundary layer development. Figure 3(b) depicts the streamwise development of
the flow velocity at the boundary layer edge, U., for the external imposed streamwise pressure gradients, i.e.
ZPG, FPG, and APG. The variation of the freestream flow velocity clearly indicates the local edge pressure
gradient zones: the boundary layer undergoes an initial ZPG up to x/8,.; ~ -40, later a strong APG (flow
deceleration) up to the middle of the first concave region, a very strong FPG up to the hilltop followed by a
very strong APG (and flow separation) up to the middle of the second concave region, and finally starts recov-
ering in the end part of the concave surface and beyond (presence of FPG or flow acceleration). Interestingly,
while external ZPG and FPG cases achieve similar values of the incoming freestream velocity, the APG case
shows lower values (approximately 20% lower). This is the reason for the strong shrinking process observed
on the § profile in fig.3(a). Figure 4(a) shows the streamwise development of the skin friction coefficient, C';.
As expected, the local wall shear stresses experience decreases and increases in agreement with the local edge
pressure gradient, as shown in Fig. 4(b). At the end of the convex zone, just before the second concave section,
C'; reaches a value of zero, indicating the potential location of the flow separation point over the curved hill.
The major conclusions regarding the separation flow bubble are threefold: (i) the SST model predicts slightly
longer lengths for reattachment and stronger reversal flows, as evidenced by the high (negative) C'y values,
(ii) the presence of an external streamwise pressure gradient does not seem to significantly affect the length of
the separation bubble; and (iii) the APG ceiling case tends to show largest absolute values of the skin friction
coefficient throughout the domain; however, local C'y values are notably larger in the APG case regarding the
other two cases (i.e., ZPG and FPG) downstream of the separation bubble. This is understandable considering
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Fig. 3 (a) Height of boundary layer, and (b) Velocity at the edge of boundary layer. Blue line for SA model
and red line for SST model. Cases identified by symbols: APG with (e), ZPG with (A), and FPG with (l).
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Fig. 4 (a) Skin friction coefficient, and (b) Streamwise Pressure Gradient at edge of boundary layer. Blue line
for SA model and red line for SST model. Cases identified by symbols: APG with (e), ZPG with (A), and

FPG with (H).

(b)

the relatively large inclination angle infringed on the ceiling. The edge pressure gradient is exhibited by Fig.
4(b). The different pressure gradients and their strengths are clearly observed: ZPG (-60 < x/6,.; < -40),
moderate APG (-40 < /8,5 < -20), strong FPG (15 concave region), strong APG (convex region, mostly),
strong FPG (from /8, = 10 to the beginning of the 2" concave region), moderate APG (within the 2"%
concave region), moderate FPG (20 < x/8,.5 < 30), and ZPG for x /5, > 30. It is worth highlighting the
almost linear increasing trend of the edge pressure gradient in the convex region of the curved hill. Also, note
that the APG peak does not occur at the convex zone end but slightly earlier.

Fig. 5 draws a comparison between the different pressure gradients and turbulence models for the displace-
ment thickness, §*, and the momentum thickness Reynolds number, Reg. Clearly, there is a strong effect of
the pressure gradient on the momentum thickness, 0, as seen in Fig. 5(b) that persists beyond the immediate
region of the curve. This is consistent with the boundary layer thickness, 8, trend seen in Fig. 3(a). However,
this trend is not seen in the displacement thickness data, 6%, as shown by 5(a). In the case of 6, the effects
of the curved surface are limited to the region immediately around it, and the flow trend following the surface
appears almost unaffected by the presence of the disruption. Additionally, there is no significant deviation in
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Fig. 5 (a) Displacement Thickness (8*), and (b) Momentum Thickness Reynolds Number (Reg). Blue line for
SA model and red line for SST model. Cases identified by symbols: APG with (e), ZPG with (A), and FPG
with (H).

the results of the turbulence models until the flow reaches the back side of the curved surface. At this point,
&* experiences a drastic difference in the size of the displacement boundary layer, which would indicate that
the two turbulence models cannot agree where the edge of the boundary layer should lie for the potential flow
for this region, which is present in Fig. 3(b) to a dampened extent. However, the two models then do converge
towards the displacement boundary layer thickness as it reaches a new freestream condition. There is a simi-
lar trend with Reg, where turbulence models do not agree on the thickness of the momentum boundary layer.
Unlike with 6*, the SA model overpredicts Reg profiles relative to the SST model in the controversial flow
separation bubble, which indicates that the two turbulence models do not agree to the shape of the bound-
ary layer under this condition. Also unlike with §*, except for the adverse pressure gradient condition, the
two models do not converge to the new freestream trend. It is interesting that both models do converge to a
freestream trend for the APG condition, as one would think that this could be a weaker point for both models.

Figure 6 and 7 illustrates the alignment and divergence between the pressure gradient ceiling conditions and
turbulence models on pressure gradient parameters, appearing more starkly than the trends of the previous and
traditional flow parameters. The pressure gradient conditions result in a variation of the peak values for the
Launder parameter (K (p)), as shown in Fig. 6(a). All cases exhibit consistent trends and comparable values
overall. Even during the transition of K'(p) values, from negative to positive in the first concave region, and
from positive to negative in the convex region, the pressure gradient parameters follow a similar behavior
based on SA and SST turbulence models. Beyond the flow separation point (z/6,.¢ = 10), a divergence in
the magnitude of the lowest negative values occurs for all cases. This is consistent with the trends that are
illustrated previously in this section, where the SA and SST models deviate from one another on the back side
of the curved surface. The SA model also returns to a new freestream condition sooner than the SST model
does. These behaviors are also seen in the Patel parameter (A P), shown in Fig. 6(b). While the peak and
trough in the first concave section are not prominent, the peaks and troughs following the convex section be-
come more pronounced. This could be attributed to A P using the skin friction velocity cubed; as the velocity
approaches zero, it leads to a very small division factor, explaining the pronounced and off-scale values. The
most noticeable differences in the trend of the Patel parameter stem from the two different turbulence models.
It is not coincidental that the SA model predicts more extreme peaks and troughs compared to the SST model.
As seen in Fig. 4(a), the SA model consistently predicts lower C'y values (in magnitude) than the SST model
in the second concave region most interesting differences in the trend of this parameter come from the two
different turbulence models. The SA model makes the peaks and troughs highly dependent on the pressure
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Fig. 6 (a) Launder’s Pressure Parameter (K (p)), and (b) Patel’s Pressure Parameter (A P). Blue line for SA
model and red line for SST model. Cases identified by symbols: APG with (e), ZPG with (A), and FPG with
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Fig. 7 Clauser’s Pressure Parameter ([3), blue line for SA model and red line for SST model. Cases identified
by symbols: APG with (e), ZPG with (A), and FPG with (H).

gradient, but not so much with the SST model, where the different pressure gradient conditions affect the Pa-
tel parameter peak value minimally. This would indicate that the SST model may not be as sensitive in local
behaviors to freestream conditions as the SA model, whether or not this is correct to the exact or real behavior.
Additionally, it is clear that the SA model lags the SST model in the negative values for the first large drop in
the Patel parameter and precedes the SST model in the sharp peak. This may indicate that the SA model may
be compensating for localized errors with larger trends.

Figure 7 shows the streamwise variation of Clauser’s pressure parameter, [3, along the curved hill using the
SA and SST turbulence models. ZPG conditions are relatively flat across the surface for both models, indicat-
ing minimal impact on the boundary layer. Under APG conditions (near both concave sections), both models
exhibit positive peaks in (3 around x /5, ¢ ~-20, 10, and 25. Since 3 also considers the wall shear stress, the
peaks are more pronounced in the neighborhood of the second concave section, and once again, the SA model
is the one with values almost off the chart. Furthermore, the SST turbulence model is well-known for its good
performance in boundary layer flows subjected to APG, with eventual separation. Near the flow separation
point (at the end of the convex section), the negative drop in {3 is solely dictated by d P, /ds due to how equa-
tion 6 was applied. This means that if the sign of u. were considered, both turbulence models would switch
signs, as u. is consistently negative in this region.
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Fig. 8 Thermal boundary layer thickness for turbulent models: (a) SA, and (b) SST. Black line for Pr of air,
yellow line for high Pr, and green line for low Pr. Cases identified by symbols: APG with (e), ZPG with
(A), and FPG with (H).

Figure 8 represents the streamwise distribution of thermal boundary layer thickness (8;), which is a mea-
sure of the distance over which the temperature gradient exists in the boundary layer, using the SA and SST
models. In the present study, the temperature field is considered a passive scalar. The thermal boundary layer
forms simultaneously with the momentum boundary layer, but the thickness depends on the thermal diffusiv-
ity of the fluid, which is governed by the Prandtl number (Pr) or better say, the Schmidt number (.S..). In both
plots, &; is shown for three different Prandtl numbers (Pry;; = 0.71, Pryjgn = 2, Prioy = 0.2), across APG,
ZPG, and FPG flow conditions. Higher Prandtl number indicates lower passive scalar diffusivity regarding
the momentum diffusivity, resulting in a thinner passive scalar boundary layer. On the contrary, lower Prandtl
number implies lower passive scalar diffusivity than that of the momentum field, which results in a thicker
passive scalar boundary layer. Adverse pressure gradient cases show a significant increase in passive scalar
boundary layer thickness for both turbulence models, particularly around x/8,.. s ~ 20, corresponding to flow
deceleration and eventual flow separation. On the other hand, ZPG cases exhibit a more steady and consistent
boundary layer thickness (between turb. models). FPG cases show a marked decrease in thickness, particularly
in the high-Pr cases, as the boundary layer thins with the accelerating flow. SST model (Fig. 8 (b)) shows
more pronounced variations in thermal boundary layer thickness compared to the SA model, particularly in
regions of internal strong pressure gradients (APG and FPG, or between peak values of concave zones). This
suggests that the SST model, with its ability to more accurately capture near-wall turbulence, better resolves
the interactions between the pressure gradients and the thermal boundary layer. This is especially important
in engineering applications where accurate heat transfer predictions are critical, such as in turbomachinery
and aerodynamics. In essence, all six cases predict that the thermal boundary layer thickness is approximately
0.1 m at the start of the second concave region. Additionally, before the separation bubble forms, for cases
with the same Prandtl number (Pr), the differences in the predicted thermal boundary layer thickness due to
changes in the external pressure gradient are well below 1%. However, once the influence of the separation
bubble is present, the differences between these cases become slightly noticeable, although they do not ex-
ceed approximately 2%, which represents the maximum deviation observed. The largest difference occurred
in the predictions using the SA turbulence model with the Prj,, when comparing the FPG and APG cases.
Similarly, the SA model exhibited greater variations across its cases compared to those observed in the SST
model. Generally, as expected, the thermal boundary layer height predictions followed a descending order of
FPG > ZPG > APG. The only exception was the SST turbulence model with Pry,, between the ZPG and
APG cases, where negative differences were observed in regions influenced by the separation bubble. Fig-
ure 9 shows iso-contours of streamwise velocity including some streamlines. The location of the separation
bubbles is clearly visualized downstream of the hill. Whereas, the effects of the external streamwise pressure
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gradients, by manipulating the top surface, on the separated flow area are not evident; it can be inferred that
the SST model predicts a much larger zone for the bubble.

(a) U, ZPG Potential

(b) U, APG SA () U, APG SST

(d) U, ZPG SA (e) U, ZPG SST

() U, FPG SA (g) U, FPG SST

Fig. 9 Iso-contours of the horizontal velocity (U,) presented by the external ceiling condition applied (i.e.,
APG, ZPG, and FPG) and by the turbulent model used (SA and SST). Prescription of some streamlines.

S. CONCLUSIONS

We perform a numerical study of a turbulent boundary layer and passive scalar transport subject to a curved
hill and the combined effect of streamwise/streamline pressure gradient. The study was limited to a Reynolds
Averaged Navier Stokes simulation (RANS) plus two eddy-viscosity turbulence models (i.e., SST and SA).
The domain geometry was reproduced following work by Baskaran er al. Baskaran et al. (1987). The inlet
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velocity components and temperature were recycled and re-injected from a precursor ZPG simulation to avoid
a longer developing section and better control (and match with experiments) the incoming reference boundary
layer parameters. Momentum and thermal turbulent boundary layers undergo severe distortions due to the
combined effect of streamwise/streamline strong pressure gradients. Both turbulence models have been con-
sistent in the outcomes, except in the second flat zone (downstream of the curved hill). It is hypothesized that
the infringed changes on the turbulent boundary layer parameters by combined wall curvatures and external
streamwise pressure gradients are responsible for result disparities by both turbulence models downstream of
the hill. By far, the most important aspect of flow separation modeling is the ability of any turbulence model
to characterize the reattachment length. It is concluded that the SST model predicts slightly longer reattach-
ment lengths than the SA model, and stronger reversal flows given. Interestingly, the presence of an external
streamwise pressure gradient seems not to affect the separation bubble length itself, but it does affect C'y peaks,
having the APG case (top-diverging wall) the largest impact. In terms of the dimensionless pressure gradient
parameters, the SST and SA generate highly similar values. However, there have been significant differences
in the separation flow bubble, as expected. The streamwise development of the passive scalar boundary layer
thickness has shown strong dissimilarities with the momentum boundary layer thickness caused by the pres-
ence of strong pressure gradients, which annihilate the Reynolds analogy.
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