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ABSTRACT

This work investigates the compressibility effects on Proper Orthogonal Decomposition (POD) modes in
spatially developing zero-pressure gradient (ZPG) flat plate turbulent boundary layers using Direct Numerical
Simulation (DNS) data [1, 2]. Focusing on three different flow regimes: incompressible, subsonic (Mach 0.8),
and supersonic (Mach 1.6), while maintaining a constant Reynolds number, the analysis aims to isolate the
effect of increasing Mach numbers on turbulent structures and flow statistics. POD methods are employed
to decompose the turbulent flow field into its most energetic modes, providing insight into the changes in
coherent structures as the flow transitions from subsonic to supersonic regimes. The inclusion of multiple
Mach numbers allows a detailed comparison of flow physics across different compressibility levels. At low
Mach numbers, the flow exhibits classical incompressible behavior, while higher Mach numbers introduce
compressibility effects such as density variations and rapid energy transfer, which can significantly alter
turbulence characteristics. By analyzing the POD modes, the study explores how energy distribution among
modes evolves with compressibility. By comparing the modal dynamics across these Mach numbers, we
identify key compressibility-driven changes in the coherent structures and energy distribution, contributing
to a deeper understanding of boundary layer stability and transition phenomena in compressible flows. These
findings have significant implications for high-speed flow applications, especially in aerospace engineering,
where boundary layer behavior is critical for performance optimization.

KEY WORDS: Compressibility effect, Proper Orthogonal Decomposition (POD), Turbulent Coherent Structure,
Turbulent Boundary Layers, DNS.
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T time lag (s)
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an temporal coefficient .
. bn spatial and temporal modes
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C covariance matrix

POD  Proper Orthogonal Decomposition

DNS Direct Numerical Simulation ZPG  zero pressure gradient
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1. INTRODUCTION

Turbulence is an inherently chaotic and multi-scale phenomenon that governs fluid motion in a wide range
of engineering and natural systems. Among these, the turbulent boundary layer over a flat plate subjected
to zero-pressure gradient (ZPG) is one of the most fundamental configurations in fluid dynamics. Despite
its geometrical simplicity, the ZPG turbulent boundary layer exhibits complex behavior with flow structures
ranging from small-scale eddies to large-scale coherent motions that span significant portions of the boundary
layer. These turbulent structures are crucial to understanding heat and momentum transfer in wall-bounded
flows, and their characterization remains an area of active research [7].

The zero-pressure gradient turbulent boundary layer over a flat plate is characterized by a range of coherent
structures that evolve from the near-wall region to the outer layer of the boundary. In the near-wall region,
small-scale structures, such as low-speed streaks and quasi-streamwise vortices, dominate. These structures
are responsible for the transport of momentum and play a significant role in wall shear stress. Farther from
the wall, larger-scale turbulent motions, such as hairpin vortices and other coherent eddies, contribute to the
overall turbulence dynamics. Understanding how these turbulent structures form, evolve and interact remains
a critical challenge in boundary layer research [10].

Proper Orthogonal Decomposition (POD) is a well-established technique for analyzing turbulent flows. POD,
first introduced by Lumley [8], has been widely used to identify coherent structures in turbulent flows by
decomposing the velocity field into a set of orthogonal modes, ranked by their energy content. This technique
has been particularly useful in incompressible turbulence research, where it has revealed large-scale structures
that dominate the flow field. However, for compressible flows, additional challenges arise due to the presence
of acoustic and shock waves, making frequency-domain analyses such as Spectral Proper Orthogonal Decom-
position (SPOD) more appropriate. SPOD, developed by Towne et al. [12], is an extension of POD that allows
for the identification of coherent structures across different frequency scales over time, making it particularly
useful for flows, where frequency-dependent phenomena play a key role. SPOD has been applied in a vari-
ety of turbulent flows, from jets and wakes to wall-bounded flows, and has provided critical insights into the
dynamics of large-scale coherent motions in boundary layers.

In this study, we employ DNS data from ZPG flat plate boundary layers to perform a detailed analysis using
POD (Spectral POD will be applied in a future study and published elsewhere). The DNS approach resolves
all relevant turbulent scales without the need for empirical turbulence models, making it ideal for examining
the full spectrum of turbulent structures. The flow field is decomposed into orthogonal modes to identify the
most energetic structures and to examine their spatial and temporal coherence. The study is conducted at
three distinct streamwise locations, including the recycling plane, a critical region where boundary conditions
are periodically reset to maintain the integrity of the downstream flow. The results of this study provide
new insights into the behavior of turbulent structures in the boundary layer, with implications for improving
turbulence models and advancing our understanding of wall-bounded flows.

The POD analyses in this study are complemented by an examination of time autocorrelation functions at
different wall-normal locations (y ™). The time autocorrelation function is a fundamental tool for assessing the
temporal coherence of turbulent structures. By integrating the time autocorrelation, we can obtain the inte-
gral time scale, which provides a measure of how long turbulent eddies persist before being broken down by
smaller structures. Previous studies have shown that the near-wall region of a boundary layer is dominated by
short-lived structures, while larger, more persistent structures prevail in the outer layer. Understanding the tem-
poral and spectral properties of turbulent structures is critical for improving turbulence models, particularly
in the context of Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) approaches.
These models rely on accurate representations of the turbulent energy cascade and the interactions between
different scales of motion. The insights gained from POD and SPOD analyses can inform the development of
more accurate subgrid-scale models in LES and improved closure models in RANS.

While many studies have investigated the dynamics of ZPG turbulent boundary layers, the combined use
of DNS and POD in the present work offers a more comprehensive view of the flow field. By examining
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Table 1 DNS Cases.

Case My | Tw/Ts Reso 5t L, x Ly x L, Azt Ayt IAyS o AT
Incompressible 0 Isothermal | 302-582 | 144-261 | 458;,,; X 3.58;51 X 4.30;1 14.7,0.2/13, 8
Subsonic 0.8 1.115 309-571 | 146-253 430,01 X 30in1 X30in 14,0.18/13.4,7.8
Supersonic 1.6 1.4557 350-648 | 148-259 4301 X 30in1 X30in 14,0.2/13, 8

the spatial and temporal coherence of turbulent structures at different streamwise locations and wall-normal
distances, this study provides a detailed characterization of the energy distribution in the boundary layer.
The results of this work have significant implications for both fundamental turbulence research and practical
applications, such as aerodynamic design, where accurate predictions of turbulent boundary layer behavior are
crucial. The structure of this manuscript is as follows: The next section (section 2) outlines the methodology
used to obtain the DNS data and perform the POD analyses. We then present the results (section 3) of the time
autocorrelation analysis, followed by a detailed examination of the POD modes. The manuscript concludes
with a discussion of the implications of the findings for turbulence modeling and future research directions.

2. METHODOLOGY

In this section, DNS computational and simulation details, along with a brief background of time autocorre-
lation, and POD methods, are discussed. These tools are used to analyze the DNS data in the results section
(section 3).

2.1 DNS computational details

Unsteady three-dimensional simulations of SDTBL via DNS demand high mesh resolution to resolve even
the smallest turbulence scales. Furthermore, the dimensions of the large-scale turbulent motions dictate how
large the computational domain should be. Additionally, it requires the prescription of physically sound tur-
bulent inflow conditions to circumvent the space and time consuming laminar-transition computation. We are
employing a type of rescaling-recycling technique ([9]) as proposed by [1], and adapted to compressible flow
in [2]. The idea is to extract the flow solution (mean and fluctuating flow components) from a downstream
plane (so-called “recycle”) and to apply scaling laws to absorb the streamwise non-homogeneous condition,
to finally re-inject it at the inlet plane. In Figure 1, it can be seen the streamwise locations of the inlet and
downstream recycle plane. The reader can access more detailed information at [1, 2]. Direct simulations have
been carried out via a highly accurate, very efficient, and highly scalable flow solver. PHASTA is an open-
source, parallel, hierarchic (2"? to 5" order accurate), adaptive, stabilized (finite-element) transient analysis
tool for the solution of compressible [13] or incompressible flows (Jansen [4]). PHASTA has been extensively
validated in a suite of DNS under different external conditions [1? , 2]. Turning to boundary conditions, at
the wall the classical no-slip condition is imposed for all velocity components. An adiabatic wall condition
(T'w/T, = 1) is prescribed for the thermal field with the ratio T, /T = 1.045 and 1.115, respectively, where,
T, is the wall temperature, T, is the freestream temperature and 7. is the adiabatic temperature. The pe-
riodicity of the flow field is prescribed in lateral surfaces. Furthermore, freestream values are prescribed on
the top surface. Table 1 depicts the characteristics of the evaluated three DNS databases of flat plates in the
present study: one incompressible case and two compressible cases (M, = 0.8 and 1.6). Numerical details are
reproduced here for readers’ convenience. The time steps (At™) in wall units were approximately fixed from
0.15 to 0.4. In all cases, the number of mesh points in the streamwise, wall-normal, and spanwise direction is
440 x 60 x 80 (roughly a 2.1-million point mesh). The cases were run in 96 cores in HPE SGI 8600-Gaffney
(NAVY, DoD).

2.2 Time autocorrelation

Time autocorrelation is a key statistical tool used to analyze the temporal coherence of turbulent flow struc-
tures. It describes how the velocity (or another flow variable) at a given point in space is correlated with itself
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Fig. 1 Boundary layer schematic for the Mach 0.8 case. Iso-surfaces of instantaneous static temperature (in
red), contours of instantaneous temperature in extracted planes (flow from left to right).

over a time interval. The autocorrelation function, R(T), is defined as the correlation between a signal at a
certain time, ¢, and at a later time, t + T, where T is the time lag. In the context of turbulent flows, time auto-
correlation functions provide insight into the persistence and lifespan of turbulent eddies at different spatial
locations, particularly in boundary layers. For a fluctuating velocity component, »’(¢), the time autocorrelation
function is expressed as:

(u' (t)v' (t + 7))
(w(t)?)
where (.) denotes an ensemble average or time average for stationary turbulence. The autocorrelation function

takes a maximum value of 1 at T = 0 (where the velocity is perfectly correlated with itself) and decreases as
T increases, indicating a loss of temporal coherence.

Numerous experimental and computational studies have explored the temporal characteristics of turbulent
boundary layers through time autocorrelation analysis. Early work by Kline et al. [6] demonstrated the short-
lived nature of near-wall structures in low Reynolds number boundary layers. More recent studies by Hutchins
and Marusic [3] provided detailed measurements of autocorrelation functions at different wall-normal posi-
tions in high Reynolds number flows, showing the persistence of large-scale motions (LSMs) and very-large-
scale motions (VLSMs) in the outer layer. Additionally, DNS studies by Jiménez and Moser [5] have examined
the role of large-scale structures in temporal coherence and have provided a quantitative basis for understand-
ing the scaling of time scales in turbulent boundary layers. Overall, time autocorrelation functions offer a
detailed view of the temporal dynamics of turbulence, from the rapid, short-lived fluctuations near the wall
to the more coherent, longer-lasting structures in the outer region. By analyzing these functions at different
streamwise and wall-normal locations, researchers can gain a deeper understanding of the complex temporal
evolution of turbulent structures in boundary layers.

One of the key parameters derived from the time autocorrelation function is the integral time scale, L;, which
provides a measure of how long the turbulent structures persist. The integral time scale is obtained by inte-
grating the autocorrelation function:

L, = /Oo Ry (7) dr. )
0

The integral time scale is often used as an estimate of the eddy turnover time, or the time it takes for a turbulent
eddy to lose its coherence and break down into smaller eddies. In turbulent boundary layers, the integral time
scale varies with wall-normal distance. Near the wall, the time scales are short due to the rapid decorrelation
of near-wall streaks and vortices. In the outer regions, where large-scale motions dominate, the time scales
are significantly longer, reflecting the more persistent nature of the turbulent structures.
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2.3 Proper orthogonal decomposition (POD)

The application of POD to turbulent flows was pioneered by Lumley (1967), who introduced the idea of
decomposing turbulent flow fields into orthogonal modes. This approach has since been applied extensively
in experimental and computational fluid dynamics to analyze coherent structures in boundary layers, jets,
and wake flows. Sirovich (1987) introduced the “snapshot” POD method, which has become a standard tool
for analyzing high-dimensional flow data from DNS and LES. This method has been used to study coherent
structures in a wide range of turbulent flows, including boundary layers, channel flows, and jets. Studies by
Berkooz et al. (1993) and Holmes et al. (1996) provided further theoretical development and applications of
POD in turbulence research.

The goal of POD is to find a set of basis functions that best describe the flow, capturing the most energetic
structures in the flow field. The velocity field u(x, t), where z represents the spatial coordinates and ¢ is time,
can be decomposed as follows:

N
u(q:,t) = Zan(t)d)n(:U)v (3)
n=1

where ¢,,(z) orthogonal spatial modes (POD modes), a,,(t) are the temporal coefficients of each mode, and
N is the total number of modes. In practical applications, the “snapshot” POD method proposed by Sirovich
(1987) is often used. This method is computationally efficient, particularly for high-dimensional data from
simulations such as DNS or LES. The velocity field is sampled over time, generating a series of “snapshots,”
which are used to construct the correlation matrix. The POD modes are then obtained by solving an eigenvalue
problem for the correlation matrix. Given M snapshots of the velocity field u(x, t;), the covariance matrix is
defined as:

N

Solving the eigenvalue problem for C' yields the temporal coefficients and the spatial modes.

3. RESULT AND DISCUSSION

Fig. 2 demonstrates the non-dimensional velocity scaling of turbulent boundary layers for both incompress-
ible and compressible (Mach 0.8 and Mach 1.6) cases at three different streamwise locations, indicated by
the indices ¢ = 178, 338, 400. These indices correspond to different streamwise locations along the flat plate.
The velocity profile is presented in a non-dimensional form where u™ represents the velocity scaled by the
friction velocity 1., and 4y s the non-dimensional wall-normal coordinate defined as y™ = y\%, where v,, is
kinematic viscosity at the wall. The figure illustrates that compressibility has a limited impact on the velocity
profiles for both moderate (Mach 0.8) and high-speed (Mach 1.6) flows, suggesting that the flow remains
largely subsonic, with Mach number effects not being dominant. This observation supports the hypothesis
that the turbulent boundary layer’s scaling laws (logarithmic law of the wall) remain valid even in compress-
ible flows up to supersonic speeds. Note that at higher Mach numbers, there is a slight deviation from the
incompressible profile, particularly at larger y* due to the compressibility effect.

Fig. 3 illustrates the non-dimensional Reynolds stress components as a function of the non-dimensional wall-
normal distance, y T, for all three cases and locations. The normal Reynolds stresses, which are a key indicator
of the turbulent fluctuations, are normalized by the friction velocity and the Reynolds shear stress component
is normalized by the friction velocity squared. These normalized Reynolds stress components quantify the
intensities of the velocity fluctuations in different directions and provide insights into the turbulence struc-
ture within the boundary layer. Across all Reynolds stress components, the profiles show self-similarity in
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Fig. 2 Velocity profiles along the wall normal direction for incompressible, M = 0.8, and M =1.6 cases at three

different streamwise locations.
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Fig. 3 Reynolds stresses profiles along the wall-normal direction for incompressible, M = 0.8, and M =1.6

cases at three different streamwise locations.



TFEC-2025-56049

. . . + .
Time Autocorrelation at Different y” Locations Time Autocorrelation at Different y* Locations

Incompressible, i = 400 .
Mach = 0.8, i = 400

uu(
o
o)

=}

©

N o
» @

Autocorrelation Coefficient, R uu(r)
o
N

Autocorrelation Coefficient, R

o

0 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Wall-normal Time Units 7+ Wall-normal Time Units 7+

o

Time Autocorrelation at Different y* Locations

Mach = 1.6, i = 400 .

()
It

uu
I
®

| |
1]
o o

+

0.6

< S S S S, <
1
= W = = O =

o

+

o
o

0.4

Autocorrelation Coefficient, R

0 100 200 300 400 500 600 700 800
Wall-normal Time Units 7"

Fig. 4 Velocity time autocorrelation for incompressible, M = 0.8, and M =1.6 cases at ¢ = 400 plane.

terms of their shape and distribution, regardless of the Mach number. This suggests that the turbulent struc-
tures of the boundary layer remain largely consistent, even at higher Mach numbers, confirming Morkovin’s
hypothesis [11]: “the essential dynamics of these shear flows will follow the incompressible pattern.” The
minimal deviations between the compressible (Mach 0.8 and Mach 1.6) and incompressible cases indicate
that compressibility has a limited impact on the Reynolds stresses. The slight reductions in the shear stress
and streamwise stress at Mach 1.6 could be due to the onset of compressibility effects, but these effects are
not dominant in the boundary layer. This result is significant in confirming that the logarithmic law of the
wall and the general scaling behavior of turbulence in the boundary layer hold true, even in the presence of
compressibility effects.

Fig. 4 presents the time autocorrelation of the streamwise velocity component at different wall-normal lo-
cations in the turbulent boundary layer for three cases: incompressible flow, Mach 0.8, and Mach 1.6. The
results are presented at a specific streamwise location of ¢ = 400. The time autocorrelation function measures
the degree of correlation between velocity fluctuations at a given time and velocity fluctuations at later times,
as a function of the time separation. It provides insights into the temporal coherence of turbulent structures at
different wall-normal positions, revealing how long turbulent structures persist over time at different distances
from the wall. For the incompressible case, the autocorrelation decreases sharply as T increases, indicating
that turbulent structures quickly lose coherence over time. At the near-wall region (y* < 5), the autocorrela-
tion drops to near-zero values within approximately 100 wall-normal time units. The presence of local peaks



TFEC-2025-56049

Power Spectral Density vs Frequency at Different y* Locations
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Fig. 5 Power spectral density (PSD) of streamwise velocity fluctuation (u’) for incompressible (top-left), M =
0.8 (top-right), and M = 1.6 (bottom) cases at 7 = 400 plane.

in time-autocorrelation can be attributed to periodic events due to the recycling technique for turbulent inflow
generation. Those periodic events quickly decay beyond T+ = 200. As we move farther from the wall, the
decay is faster, showing that turbulent structures retain their coherence for a shorter time. The curves plateau
at small negative values beyond T+ = 100, indicating that velocity fluctuations become uncorrelated and
random.

For the compressible case at Mach 0.8, the autocorrelation also decays rapidly, similar to the incompressible
case. However, the decay is slightly faster, particularly at the higher ™ locations. The correlation drops to
zero in the near-wall region around 50-70 wall-normal time units. The shorter temporal coherence in this case
suggests that compressibility effects reduce temporal coherence. In the Mach 1.6 case, the decay of auto-
correlation is more pronounced compared to both incompressible and Mach 0.8 cases. High compressibility
reduces the temporal coherence of velocity fluctuations even further, especially in the near-wall region. Note
that, the time autocorrelation for the temperature field and other streamwise locations follows a similar pat-
tern and is not presented here for brevity. For all cases, near wall locations (y* = 1) show sharp initial decay,
attributed to the high-frequency, small-scale turbulent structures in the viscous sublayer. The decay is slower
at the higher ™ due to the influence of larger, more coherent structures in the outer layer.

Fig. 5 shows the power spectral density of streamwise velocity fluctuations at varying frequencies for different
yT values. The figure corresponds to all three cases at the 7 = 400 plane. The figure reveals the distribution
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plane.

of energy across scales in the turbulent flow, with frequency acting as an evaluator for eddy size (low fre-
quencies correspond to large eddies, and high frequencies to small eddies). The low-frequency range (scales
as f~1) represents large-scale energy-containing eddies that dominate turbulence in the regions near the wall.
These structures are responsible for most of the turbulent kinetic energy (TKE) and momentum transfer in
the boundary layer. In the intermediate frequency range, the power spectral density follows a scaling f—5/3,
consistent with the Kolmogorov theory of homogeneous turbulence. This indicates that the energy transfer
between scales occurs without dissipation. This range is commonly referred to as the inertial subrange, where
energy cascades from large eddies to smaller ones without significant viscous effects. The inertial range is
limited to y* = 100, suggesting that energy transfer is less efficient in the outer regions of the boundary
layer. At higher frequencies, the PSD shows a steep decay, following a scaling f~7. This region represents the
dissipation of turbulent energy into heat as a result of viscous effects. The dissipation of energy at high fre-
quencies is critical for understanding how turbulence loses energy and transitions from turbulent to laminar or
less turbulent states. These spectral distributions align with classical turbulence theory, where large structures
form near the wall and progressively break down into smaller structures through the energy cascade process.
This plot clearly illustrates the scale separation in turbulent flows and how the energy associated with differ-
ent frequencies changes with the wall-normal distance. The results here also reinforce the known hierarchy of
eddies in wall-bounded turbulent flows: large-scale motions near the wall and smaller-scale motions farther
from the wall.



TFEC-2025-56049

Fig. 6 depicts the total energy distributed between POD modes for different values of 3™ for all three cases at
the 7 = 400 location. The total energy is calculated using the streamwise velocity fluctuation, and only the first
20 modes from the POD analysis are shown here for comparison. The mode number corresponds to different
scales of turbulent structures in the flow. The lower modes (e.g., modes 1-5) represent the largest and most
energetic structures, while the higher modes correspond to smaller and less energetic structures. In all cases,
the energy decreases as the mode number increases, meaning that the largest modes contain the majority of the
flow energy. For the incompressible case, the total energy is relatively low, with the highest energy seen in the
lowest modes. The energy drop-off is more gradual across the modes compared to the compressible cases. The
highest energy contains between y* = 15-100, suggesting the dominance of large, coherent structures in the
buffer and the initial part of the log region of the boundary layer. For the subsonic Mach 0.8 case, the overall
energy levels are significantly higher than in the incompressible case, particularly in the region between y*
= 15 and 100. The energy content in the higher modes is slightly higher than in the incompressible case,
suggesting that compressibility effects introduce more energy into the smaller scales.

The supersonic case (Mach 1.6) shows the highest energy levels, especially in the first few modes. The total
energy in each mode is significantly higher compared to the other two flow conditions. There is a more pro-
nounced drop-off in energy for higher modes, suggesting that, despite the increased energy at higher Mach
numbers, large-scale structures remain the primary contributors to the flow energy. The effects of compress-
ibility are more evident here, as energy is distributed more widely across modes than in incompressible and
subsonic cases, possibly due to bulk compression or dilatation, and other high-speed phenomena contributing
to turbulent energy. Note that the large energy distribution is also observed at y* = 10 for the supersonic
case at a high mode number due to the compressibility effect. The energy distribution at other streamwise
locations as well as for the thermal field (not shown) follow a similar trend with a significant compressibility
effect observed at high Mach numbers.

4. CONCLUSION

This study has provided an in-depth analysis of the compressibility effects on POD modes over ZPG turbu-
lent boundary layers at three distinct Mach numbers: incompressible, 0.8, and 1.6. By maintaining a constant
Reynolds number, we isolated the influence of Mach number on the turbulent structures and energy distri-
bution, offering new insights into how compressibility modifies the characteristics of turbulence in boundary
layer flows. The results demonstrate that compressibility plays a significant role in redistributing energy across
different turbulence scales, with notable effects on both the spatial coherence and frequency-dependent be-
havior of the flow. One key finding is the substantial alteration in the turbulent energy content and mode
distribution as the Mach number increases. This suggests that traditional turbulence models, which assume
incompressible behavior or rely on Morkovin’s hypothesis, may not be sufficient to capture the complexities
of high-speed flows. The presence of significant high-frequency structures at higher Mach numbers also high-
lights the importance of accurately modeling compressibility effects in turbulence simulations, especially in
applications involving supersonic and hypersonic flows. Future work will focus on extending the analysis to
a broader range of Reynolds numbers and investigating the impact of different boundary conditions, such as
pressure gradients, surface roughness, and wall thermal conditions on the turbulence dynamics. The compre-
hensive understanding of compressibility effects on turbulent structures, provided by this study, marks a step
forward in addressing the challenges of predicting and modeling high-speed turbulent flows.
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