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Advanced turbulence modeling remains a cornerstone in optimizing engineering applications,

particularly in aerospace, where accurate predictions of turbulent behaviors in high-speed

flows are critical. Traditional models often fall short in complex scenarios involving high

Mach numbers and strong pressure gradients due to their inherent limitations in handling

non-linear dynamics and compressibility effects, not to mention high Reynolds number flows.

This manuscript introduces a novel approach that synergistically contrasts algebraic domain

reprojection and deep learning techniques to compare the adaptability and accuracy of

turbulence models. The proposed Algebraic Semi-Log Compressible Domain Re-Projection

Model (ASC-DRM) leverages deep learning to fine-tune model parameters and accurately

predict turbulent Reynolds stresses under varying flow conditions. Comprehensive validations

of second order statistics against Direct Numerical Simulation (DNS) data demonstrate the

model’s improved prediction capabilities across a range of Reynolds and Mach numbers. The

integration of machine learning not only refines the turbulence model predictions but also paves

the way for incorporating more complex physical phenomena into the modeling process, such

as thermal effects and chemical reactions. This research marks a significant advancement in

the field of computational fluid dynamics by providing a robust framework that significantly

enhances the predictive accuracy of turbulence models in compressible flows, thus offering

broad implications for design and optimization in aerospace and other engineering fields.

I. Nomenclature

�' = High Reynolds number case

!' = Low Reynolds number case

'X2
= compressible momentum thickness Reynolds number

"∞ = Freestream Mach number

*∞ = Freestream velocity

*+
+�

= Van Driest transform velocity in wall units

)∞ = Freestream temperature

)A = Recovery temperature

)F = Wall temperature

Dg = Friction velocity

% = Mean pressure

) = Mean temperature

: = Thermal conductivity

2? = Specific heat at constant pressure

#G = Number of nodes along the streamwise direction

#H = Number of nodes along the wall normal direction
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#I = Number of nodes along the spanwise direction

X = Boundary layer thickness

` = Dynamic molecular viscosity

aF = Wall kinematic viscosity

d = Fluid Density

f = Stress tensor

g = Shear stress

Subscript =

8=; = inlet

A42 = recycle

A<B = Root-Mean Squared
′ = Superscript denotes fluctuating components

∞ = Subscript denotes freestream quantities

II. Introduction
Turbulence modeling remains a pivotal area of study in computational fluid dynamics (CFD), especially in aerospace

engineering where the simulation of fluid flows needs to account for a wide range of speeds from subsonic to supersonic

flow regimes. Such models are critical for accurately predicting boundary layer behavior, shock-turbulent boundary layer

interactions, and aerodynamic heating-factors that are essential for the design and optimization of aerospace vehicles

[1, 2]. The inherent complexities of compressible flows, characterized by substantial variations in fluid properties

and dynamic interactions between shock waves and boundary layers, pose significant challenges for conventional

turbulence modeling techniques [3]. Among the prevalent methodologies for turbulence modeling, zero-equation

models, such as the Baldwin-Lomax model, utilize algebraic relations to estimate turbulent viscosity based on local

mean flow properties [4]. Praised for their simplicity and minimal computational demand, these models are particularly

advantageous in preliminary design phases where quick and resource-light calculations are necessary [1, 4]. However,

their oversimplified nature often limits their effectiveness in capturing more complex flow phenomena such as flow

separation, the influence of shock waves, and the effects of curvature and rotation [2, 5, 6].

In contrast, Reynolds-Averaged Navier-Stokes (RANS) methods in conjunction with eddy viscosity models provide a

more comprehensive approach by solving additional transport equations to determine Reynolds stresses. Prominent

RANS models, like the : − l SST and the Spalart-Allmaras model, are renowned for their robustness in managing

adverse pressure gradients (APG) and separating flows, commonly encountered in transonic and supersonic regimes

[6, 7]. However, the increased fidelity of RANS models comes at the expense of higher computational costs and the need

for careful calibration of model constants to align with specific flow conditions [2, 7]. This study endeavors to bridge

the gap between the straightforward, computationally efficient zero-equation models and the detailed, high-fidelity

RANS approaches. By concentrating on the subsonic to supersonic range, this paper evaluates the capacity of these

models to predict turbulent behaviors in compressible flows accurately, specifically excluding extremely high-speed

phenomena such as thermal non-equilibrium and ionization, which dominate hypersonic flows [3]. Moreover, review

paper by [8] explores the integration of machine learning techniques to refine turbulence model predictions, offering a

novel approach to enhance the predictive accuracy of these models by leveraging existing comprehensive datasets.

Recent advancements in machine learning (ML), particularly deep learning, have shown promising potential in

revolutionizing CFD and other physics-based simulations. These techniques offer novel approaches to longstanding

challenges in these fields, such as turbulence modeling, flow prediction, and multi-scale dynamics where traditional

numerical methods face strong encumbrances. One of the foundational studies by Ling et al. (2016) [9] introduced

deep neural networks to predict discrepancies in Reynolds-Averaged Navier-Stokes (RANS) simulations, addressing

traditional turbulence modeling’s deficiencies. Similarly, Thuerey et al. (2020) [10] demonstrated that convolutional

neural networks could effectively predict complex flow fields around arbitrary objects, reducing computational costs

significantly. Moreover, the work by Xu et al. (2020) [11] on using generative adversarial networks (GANs) highlighted

how ML could enhance data efficiency, a crucial advancement for resource-intensive simulations in CFD. Furthermore,

the concept of Physics-Informed Neural Networks (PINNs) introduced by Raissi et al. (2019) [12] integrates physical

laws directly into the learning process, ensuring adherence to known principles and enhancing model reliability.

This approach has been extended by recent contributions such as those by Yousif et al. (2023) [13], who developed

a deep-learning approach for reconstructing 3D turbulent flows from 2D observations, pushing the boundaries of

data-derived insights in fluid mechanics. In addition, recent emerging studies like those by Buaria and Sreenivasan
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(2023) [14] explore the capabilities of deep neural networks in forecasting small-scale dynamics of fluid turbulence,

offering deeper insights into the chaotic nature of turbulence. These studies are complemented by research into embedded

training of neural-network subgrid-scale models, as demonstrated by MacArt et al. (2021) [15], which further bridges

the gap between theoretical fluid dynamics and practical, scalable ML applications. Each of these studies underscores

the transformative potential of machine learning in fluid dynamics, setting the stage for more accurate, efficient, and

flexible simulations across various scientific and engineering disciplines. As these methodologies evolve, they promise

to reshape our understanding and capabilities within the realm of CFD and beyond. However, considerations from

generalization potential, computational cost and robustness ought to be present in every analysis made on deep learning

methodologies. The attractive nature of these methods should not cloud the potential to advance other avenues even if

by drawing inspiration from DL-based approaches. This feedback loop of information distillation can be critical to the

evolution of turbulence modeling and other crucial fields in computational physics.

Furthermore, this study extends into the application of advanced data-driven methods to overcome traditional limitations

of empirical and semi-empirical turbulence models. These methods, including deep learning and reinforcement learning,

are employed to dynamically adjust model coefficients or to propose new model forms based on direct simulation

data, promising substantial improvements in accuracy and reliability over classical models. This paper is structured

as follows: Section III outlines the numerical setup, including solver configurations and grid independence studies.

Sections IV and V present a detailed discussion on the results obtained from the computational models, emphasizing

their performance across different flow regimes. Section VI summarizes the findings and suggests future directions for

advancing turbulence modeling techniques within aerospace applications.

III. Governing Equations and Inflow/Boundary Conditions
In this study, we examine the dynamics of compressible subsonic/supersonic spatially-developing turbulent boundary

layers (SDTBL) through direct numerical simulations (DNS), applying the compressible Navier-Stokes equations under

the assumption of low Knudsen numbers and disregarding non-equilibrium effects [16]. We have also included in this

scrutiny, DNS of incompressible SDTBL for compressibility effect analysis and challenge assessment for turbulence

modeling. For clarity and reader’s convenience, we present the fundamental conservation equations for mass, momentum,

and energy (strong formulation) in Equations 1, 2, and 3, respectively.
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where d is the density; D8 is the velocity component in the 8-direction; ? is the pressure; f8 9 is the stress tensor modeled

as a linear stress-strain relationship,

f8 9 = 2`(8 9 −
2
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and (8 9 is the strain rate tensor defined as 1
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; ` represents the dynamic fluid viscosity; and @8 is the heat flux

modeled via the Fourier’s law as @8 = −^ m)
mG8

, where ^ is the thermal fluid conductivity; 4 is total energy per unit mass,

assumed to be:

4 = 2E) +
1

2
D2
8 (5)

with 2E as the specific heat at constant volume. Furthermore, the dynamic fluid viscosity is modeled to vary according

to the following power law function:

` = `∞

(

)

)∞

)0.76

(6)

The 0.76-power law variation of the dynamic fluid viscosity mirrors the well-established Sutherland’s viscosity law in its

predictive accuracy for DNS simulations, where equation 6 is more suitable for non-dimensional governing equations.
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In all cases, a molecular Prandtl number of 0.72 is assumed. Furthermore, for a perfect gas the equation of state is

employed, i.e. ? = d') where ' is the gas constant.

The governing equations of the flow are presented in their strong form; however, we apply the weak formulation in our

finite element flow solver. The DNS utilizes the PHASTA (Parallel Hierarchic Adaptive Stabilized Transient Analysis)

flow solver [17], which is based on a Finite Element approach (FEM) with a SUPG (Streamline Upwind Petrov-Galerkin)

stabilization of the convectives terms [18, 19]. In order to obtain the Galerkin weak formulation, the strong form is

multiplied by an arbitrary vector F, performing the integration over the whole domain for interior and boundary elements

and including the stabilization integral or SUPG. In short, the integrals are solved using Gauss quadrature, obtaining

a system of non-linear ordinary differential equation system. Later, the generalized-U time method is employed to

generate a non-linear system of algebraic equations. Finally, the system is linearized by the Newton method and is solved

at each Newton iteration. The numerical scheme is 2=3 order accurate in space with fully implicit time integration

(2=3 order accurate). Readers interested in the finite element approach are referred to [20, 21]. PHASTA has been

extensively validated in numerical flow simulations with high spatial/temporal resolution [22–27]

Key considerations for effective DNS of SDTBL include: (i) a sufficiently expansive computational domain to encompass

the largest scale motions (LSM); (ii) the mesh resolution must be adequate in order to capture the smallest turbulence

momentum/thermal scales (Kolmogorov and Batchelor scales), (iii) the introduction of accurate, unsteady inflow

turbulent fluctuations; and (iv) ensuring the turbulent inflow exhibits a natural power spectrum to reduce the length of

the “inlet developing section" (ideally 2-3 X8=;’s). The Dynamic Multiscale Approach (DMA) for inflow generation,

as proposed by Araya et al. [28] and adapted to compressible SDTBL [22–26], uses a modified version of the

rescaling-recycling technique by Lund et al. [29]. Our choice of inflow condition generation for compressible turbulent

layers has proven to be highly effective, achieving minimal development regions (at most 2.5X8=;4C ) and an energy

spectrum akin to fully turbulent flow [25]. The key aspect of the rescaling-recycling method is the extraction, and

scaling law application (mapping) over the flow solution (“on the fly" time-averaged and fluctuating components of

velocity, thermal, and pressure fields) from a downstream plane, to finally reintroduce the transformed instantaneous

profiles (time-averaged plus fluctuations) at the inlet of the computational domain. Our lessons learned confirm that

maintaining constant mean pressure at the inlet provides more stable and precise simulations than when re-injecting

pressure fluctuations (notice that, still, fluctuations of the density exist at the inlet plane according to the equation of

state and the fluctuating thermal field. This is consistent with works by [30] and [31], where they stated that pressure

fluctuations at the inlet are minimal relative to temperature fluctuations. The Reynolds decomposition applied to

the instantaneous parameters separates them into a time-averaged and a fluctuating component, ensuring detailed

representation of flow characteristics.

A. Favre-Averaged Equations

To extend the discussion on the dynamics of compressible supersonic turbulent boundary layers (SDTBL) by

incorporating Favre averaging into the governing equations, let’s begin with the foundation laid out by the direct

numerical simulations (DNS) and the Navier-Stokes equations. Favre averaging [32], is particularly suitable for turbulent

compressible flows as it provides a mass-weighted averaging method that preserves the conservation form of the

equations. This approach is essential when dealing with the variable density characteristic of compressible flows. We’ll

apply Favre averaging to the fundamental conservation equations for mass, momentum, and energy presented earlier,

transforming them into their Reynolds-averaged Navier-Stokes (RANS) counterparts suitable for analysis of turbulent

flows.

The Favre average of a quantity q is defined as q̃ =
dq

d
, where the overbar denotes a Reynolds average. Applying this to

the velocity components D8 and other flow variables, we can derive the Favre-averaged forms of the governing equations.

The mass conservation equation (Equation 1) remains unchanged under Favre averaging because it is linear in terms of

d and D8:
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For momentum conservation (Equation 2), applying Favre averaging yields:
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where D′′8 = D8 − D̃8 represents the Favre fluctuation component of the velocity. The term dD′′
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signifies the Reynolds
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stress tensor resulting from turbulence.

Energy conservation (Equation 3) becomes:
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where 4̃ = 2E)̃ + 1
2
D̃8 D̃8 represents the Favre-averaged total energy per unit mass, and 4′′D′′9 denotes the turbulent flux of

energy.

The expressions for the stress tensor f8 9 and heat flux @8 remain unchanged in their forms but are evaluated using the

Favre-averaged variables and include additional terms to account for the turbulent fluctuations:

f8 9 = 2`(̃8 9 −
2

3
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The Favre-averaged strain rate tensor is (̃8 9 =
1
2

(

mD̃8
mG 9

+
mD̃ 9

mG8

)

. The dynamic viscosity ` and thermal conductivity ^

follow the power law and Fourier’s law, respectively, based on Favre-averaged temperature )̃ .

In this work, we aim to assess the ability of two models to "close" the Favre-averaged Navier stokes equations.

Specifically, we aim to model dD′′
8
D′′
9

and explicitly disregard the closure problem in the similarly complex energy

equation (d4′′D′′
9
) which will be considered in a future work.

B. Postprocessing Toolkit

To address the challenges of processing extensive computational domains and extracting insights from large-scale

simulations, we have developed an in-house, scalable, out-of-core post-processing framework named Aquila, which is

Latin for “eagle." This name symbolizes our goal of enabling domain experts to ascend beyond the complexities of

low-level computational details, much like an eagle soaring above storms, while still achieving outstanding performance

and scalability across various computing environments—from laptops to workstations, and from small clusters to

large-scale facilities with both CPU and GPU capabilities. Aquila, currently transitioning from its second to third major

iteration, is illustrated in Figure 1.
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Fig. 1 Overview of the software architecture for Aquila.

Presently, Aquila leverages TensorFlow [33] as its computational backend, enabling efficient execution on CPUs and

GPUs from multiple hardware vendors. Domain decomposition is managed via MPI [34], optimizing performance

in large-scale computing settings. Aquila demonstrates robust strong scaling capabilities on both CPUs and GPUs,

as shown in Figure 2. Users can seamlessly switch between CPU and GPU targets without modifying their scripts,

thanks to the backend flexibility provided by TensorFlow. Aquila’s efficiency is evidenced by its ability to compute

mean flow and a suite of "Quantities of Interest" (QoI), which include fluid velocity, pressure, thermal fluctuations,

boundary layer characteristics, turbulent kinetic energy, various correlations, and over a million spanwise energy spectra.

The analysis is based on a dataset comprising roughly 4000 flow fields, totaling about 8.3 TB—too voluminous for

traditional in-memory processing on standard systems. Instead, Aquila cleverly manages this data on non-volatile

storage media, creating the effect of an in-memory operation through strategic asynchronous data prefetching. Overall,

Aquila’s parallel scaling efficiency exceeds 80%, with GPU implementations typically outperforming CPU setups

by a factor of two. This is particularly apparent in tasks with high computational demands, as depicted in Figure 2,

where GPUs excel in throughput-oriented tasks. The integration of an asynchronous prefetcher alone enhances total

runtime by approximately 23-24%, culminating in a combined speedup of roughly 2.48 times compared to a CPU-only

configuration without prefetching.
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Fig. 2 Depiction of Aquila’s strong scaling across different configurations: CPU-only nodes with two processes

each (top-left), threading across additional CPU cores (top-right), and GPU nodes utilizing two GPUs per node

with one MPI rank per GPU (bottom).

C. DNS Cases at Low and High Reynolds Numbers

Table 1 depicts information regarding the principal parameters of DNS databases employed in this study at

high Reynolds numbers, such as the freestream Mach number (IC stands for incompressible), the incompressible

('4\ = d∞*∞\/`) or compressible momentum thickness Reynolds number ('4X2 = d∞*∞X2/`F), domain dimensions

as a function of the inlet 99% boundary layer thickness (X8=;), and mesh resolution details are supplied. It is worth

highlighting that mesh resolution in wall units is defined based on inlet friction velocity (the largest values in the

domain). In all compressible cases, wall adiabatic conditions were assumed. Figure 3 (a) shows a computational domain

schematic, whereas fig. 3 (b) exhibits images of the DNS mesh. For the four cases considered in present study, the

number of grid points is the same: 990×250×210, indicating the grid points along the streamwise (G), wall-normal (H)

and spanwise (I) direction, respectively, totalling around 52-million points. The cases were run in 1200 CPU cores at

the Onyx supercomputer (ERDC DSRC, DoD HPC) and Narwhal supercomputer (Navy DSRC, DoD HPC), consuming

approximately 900K CPU core hours each.

Similarly

Figure 4 shows first and second order statistics for the incompressible and subsonic flat plate. The Van Driest

transformation was considered for the mean streamwise velocity (*+
+�

) at "∞ = 0.8. External DNS data from [35] at

similar Reynolds numbers is also included. As seen in fig. 4 (a), the agreement of present DNS results, including the

subsonic case (the Van Driest transformation compensates quite well density variation), is encouraging excepting in the

wake region that can be attributed to some Reynolds number dependency. Lengthy log regions are observed (about 200

wall units) in all cases due to the high Reynolds numbers resolved. Turbulence intensities and Reynolds shear stresses

(2=3 order statistics) are plotted in figure 4 (b). It can be stated that compressibility effect is almost negligible at "∞

= 0.8. Turning to higher order statistics, fig. 5 depicts skewness and flatness of streamwise velocity fluctuations, D′.

Positive values of (D in the near wall region (H+ < 10) indicate that D′ distribution are positive skew, while the contrary

occurs towards the edge of the boundary layer, as seen in fig. 5 (a). We have detected a moderate compressibility
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effect on (D close to the wall. Flatness or 4=3 order statistics profiles are exhibited by fig. 5 (b), which represents the

peakedness of a distribution, in this case of D′. Furthermore, the flatness or kurtosis is and indicator of the presence

of high-amplitude events. For a Gaussian distribution, the flatness is 3. Thus, larger values of flatness in turbulence

means the occurrence of intense, sporadic events (intermittency), leading to a distribution with heavier tails compared

to the Gaussian distribution. The flatness values higher than 3 in the linear viscous sublayer (H+ < 5) demonstrate a

non-Gaussian distribution of D′. The distribution of D′ in the log region follows a quasi-Gaussian or normal distribution

given the values of �D around 3 (also, (D ≈ 0 in that region). Figure 6 shows a comparison of present DNS results at

"∞ = 1.6 with DNS data from [36] at a slightly higher Mach number ("∞ = 2) for first and second order statistics. The

agreement in all cases is very good, major discrepancies were observed in peaks of D′+A<B distribution (∼ 5%). In terms

of the skewness and flatness distribution for supersonic cases, present Mach-1.6 DNS results almost overlap with DNS

by [36] at "∞ = 2. Readers are referred to our previous work for additional DNS validation of incompressible and high

supersonic cases [22, 25], as well as for the DNS databases at low Reynolds numbers in Table 2 ([24, 37]).

Table 1 Information of DNS databases at high Reynolds numbers.

Case Type Mach '4\ or '4X2 !G × !H × !I ΔG+,ΔH+<8=,ΔH
+
<0G ,ΔI

+

1HR Incompressible IC 2000-2400 16X8=; × 3X8=; × 3X8=; 11.5, 0.2/10, 10

2HR Subsonic 0.8 2066 − 2468 15.1X8=; × 3X8=; × 3X8=; 11.9, 0.2/11, 11

3HR Low Supersonic 1.6 2370 − 2846 14.9X8=; × 3X8=; × 3X8=; 12.7, 0.2/11, 12

4HR High Supersonic 2.86 3171 − 3743 15.1X8=; × 3X8=; × 3X8=; 12.5, 0.2/11, 11.8

Table 2 Information of DNS databases at low Reynolds numbers.

Case Type Mach '4\ or '4X2 !G × !H × !I ΔG+,ΔH+<8=,ΔH
+
<0G ,ΔI

+

1LR Incompressible IC 306 − 578 45X8=; × 3.5X8=; × 4.3X8=; 14.7, 0.2/13, 8

2LR Subsonic 0.8 309 − 570 42.8X8=; × 3.3X8=; × 4X8=; 14, 0.18/13.4, 7.8

3LR Low Supersonic 1.6 350 − 629 43.2X8=; × 3.3X8=; × 4.1X8=; 14.2, 0.19/14.4, 7.86

4LR High Supersonic 2.86 468 − 831 43.4X8=; × 3.4X8=; × 4.15X8=; 15.5, 0.2/16, 8.6
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(a)

(b)

Fig. 3 (a) Schematic of computational box, (b) DNS mesh (left) and mesh close-up in near wall region (right).

(a) (b)

Fig. 4 (a) Van Driest transformation of the mean streamwise velocity, (b) turbulence intensities and Reynolds

shear stresses for incompressible and subsonic cases, all in wall units.

9



(a) (b)

Fig. 5 (a) Skewness, (b) flatness of streamwise velocity fluctuations for incompressible and subsonic cases, all in

wall units.

(a) (b)

Fig. 6 (a) Van Driest transformation of the for mean streamwise velocity, (b) Turbulence intensities and

Reynolds shear stresses for low supersonic cases, all in wall units.
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(a) (b)

Fig. 7 (a) Skewness, (b) flatness of streamwise velocity fluctuations for low supersonic cases, all in wall units.
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IV. Inverse Formulation of the Reynolds Stresses

A. Data-Driven Turbulence Modeling

1. Neural Network Architecture

The final design of the neural network took many iterations to refine and is still likely far from optimal in many

regards. However, in this section we will explore the rationale for its design. The neural network is a feed-forward

neural network with 12 layers in a base network followed by additional, 12-layer networks per non-zero entry in the

stress tensor. The layers are grouped into 3 layer modules with residual connections and a modified softplus function.

The overall schematic can be seen in figure 8. The modified softplus incorporates an additional fixed term and can be

expressed as (along its first and second derivatives):

5 (G) = log(1 + 4G) − log(2) (12)

5 ′ (G) =
4G

(4G + 1)
(13)

5 ′′ (G) =
4G

(4G + 1)2
(14)

This activation function was chosen because the optimization procedure involved a loss function with first derivatives

of the output terms w.r.t. some of the inputs. Calculating gradients of these requires calculating second derivatives.

Initially, we explored other possible activation functions such as the ReLU and ELU, but these have either a null or

discontinous second derivative. The softplus function is infinitely differentiable (i.e., it is a C∞ function). This allows

for a second order constraint based on equation 8.

Fig. 8 NN Architecture Schematic

We also include a linear modification as part of each output path since typical output values tend to be small. This

enables the network to operate on larger values internally that are then scaled down to the actual operating range. This

was done after observing difficulties in earlier versions of the models since all of the values were fairly small and hard to

accurately discriminate since errors were "small" in magnitude. This also informed one additional linear transformation

based on knowledge of the underlying physics of the problem. For the dD′′E′′ output path, we also invert the sign of the

output by multiplying the same output scaling function by −1. This change, while subtle allows all of the outputs to be

positive internally and yielded large improvements to overall model quality as will be showcased later in the manuscript.

Our neural network models were trained using Stochastic Gradient Descent (SGD) with momentum, a method chosen

for its efficacy in handling complex datasets, as outlined in [38]. We set the momentum to 0.9 and started with a learning

rate of 0.1, linearly decaying it to 0.0001 over 100 epochs. This approach allowed for precise weight adjustments,

enhancing model convergence. Empirically, a batch size of 2048 proved optimal, significantly outperforming smaller

sizes like 32 in terms of error rates and training efficiency. The training, conducted on a Tesla V100 GPU for about 60

hours (equivalent to 50 epochs over 14.62 million training samples), demonstrated the model’s robustness. The validation

and test dataset contained 4.87 million samples, further validating the model’s performance and our optimization

strategy.
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B. Evaluation and Short-Comings of an Inverse Formulation

In this section, we will explore the individual impact of each entry in the Reynolds’s stress tensor throughout a

boundary layer for the High '4 cases in table 1. This is often as important (if not more) than global error metrics

because it sheds light on the physics of the boundary layer. As previously outlined, we will focus on four terms, three

normal and one shear stress. All of the results are "inner-scaled" which normalizes the results using viscous units using

parameters "at the wall." The first of the normal stresses, dD′′D′′, can be seen in figure 9. For all Mach numbers, DNS

and NN results show good agreement, especially in the near-wall region (H+ < 50). However, there are discrepancies

further away from the wall, especially for higher Mach numbers. The magnitude of the peak increases with Mach

number, indicating that compressibility effects enhance turbulent fluctuations. In general, the location of the main peak

is accurately captured by the DNN. The slight amount of over/undershooting is common to RANS models and it is

actually reasonable for such an early attempt at a generalized explicit model.

Fig. 9 Comparison of the dD′′D′′ term for DNS and NN output

Earlier, we mentioned an optimization related to the output of dD′′E′′ whose average in time is typically negative for

many typical flows and reference coordinate systems. This Reynolds shear stress is a primary contributor to momentum

transfer in a turbulent flow. Given the typical negative values and the activation functions throughout the network

(which are biased towards positive outputs), this term had the "toughest" time in an earlier iteration of the network

architecture where no sign information was encoded into the NN design. This can be seen in figure 10a which exhibited

wild oscillations and violent over/undershooting. Allowing the network to internally operate on positive values and

"inverting" the values as part of the aforementioned scaling operation, greatly improved the overall model quality (for all

tensor values) with a particularly notable improvement in the Reynolds shear stress dD′′E′′ as can be clearly seen in figure

10b. The peak negative values near the wall indicate the highest shear and hence the strongest momentum exchange.

The NN seems to slightly overpredict the shear stress magnitude for the highest Mach number at certain H+ positions,

indicating potential discrepancies in the NN’s ability to capture the effects of compressibility on turbulent mixing. Also,

this term tends to be the most challenging to model numerically. There is still a large margin for improvement, but in

general, the quality of the prediction is acceptable.
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(a) (b)

Fig. 10 Comparison of the dD′′E′′ term for DNS and NN output for (a) an earlier model iteration and (b) the

most recent iteration considering sign inversion as part of the model formulation

The wall-normal (dE′E′) and spanwise normal (dF′F′) Reynolds stresses, seen in figures 11 and 12, are crucial

components in the characterization of turbulence, particularly in the context of boundary layer dynamics and turbulence

modeling. These stresses not only indicate the energy distribution within a turbulent flow but also play a pivotal role in

shaping the flow’s behavior near surfaces, influencing factors such as boundary layer thickness, separation, and the

overall anisotropy of the turbulence. Such insights are vital for predicting flow patterns and designing efficient systems

in aerodynamics, environmental modeling, and industrial applications. The predictions for these values by the NN

are very accurate with small deviations. Perhaps the most notable deviation is a shift in the peak wall-normal (dE′E′)

prediction for the Mach 1.6 case. This shift is not seen for the other two cases. There are slight oscillations seen in the

spanwise normal stresses.

Fig. 11 Comparison of the dE′′E′′ term for DNS and NN output
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Fig. 12 Comparison of the dF′′F′′ term for DNS and NN output

The study’s findings reveal that a neural network, when equipped with a physics-informed loss function, shows

adeptness at capturing the overarching patterns of Reynolds stress components in turbulent flows across a spectrum of

Mach numbers. This is an encouraging step forward, suggesting that the integration of physics into the training process

aids in aligning the neural network’s output with the complex realities of fluid dynamics. Despite these promising

results, it’s clear that the model’s precision is not consistently maintained across the entire range of Mach numbers and

at different distances from the wall. This variability hints at the possibility that the physics-informed loss function might

still be in its infancy, needing additional enhancement to fully grasp and replicate the intricacies of high-speed flows and

the dynamics occurring away from the wall’s influence. A noticeable divergence in the model’s predictions emerges as

the Mach numbers climb, pointing to an underrepresentation of compressibility effects—which intensify when the flow’s

velocity nears or surpasses the sonic threshold. The root of this inadequacy could lie in a deficiency within the neural

network’s training data, a limitation inherent to the network’s structure, or a gap in the design of the physics-informed

loss function itself. However, it’s not all ambiguity. The neural network demonstrates a commendable synchronization

with direct numerical simulation (DNS) outputs in the regions close to the wall. This suggests that the network has

effectively internalized the wall functions, likely a direct consequence of the stringent physical constraints enforced by

the wall boundary conditions that are well represented within the physics-informed loss function. Challenges do arise,

however, in the middle portion of the boundary layer. Here, the task of accurately capturing the larger-scale eddies

becomes more pronounced, and the neural network is pushed to extrapolate beyond the confines of its training data, a

task fraught with complexity and a higher propensity for errors. In summary, the neural network’s capacity to predict

turbulent stresses, while promising, signals a need for further refinement. Advancements could come from enriching the

training datasets to more fully encompass the turbulent scales and effects of compressibility or from iterating on the

neural network’s architecture and the physics-informed loss function. Such improvements are essential to ensure that

the model is not just an academic exercise but a robust, reliable tool in the nuanced world of fluid dynamics simulations.

The major shortcomings of using such a deep neural network for turbulence modeling are the amount of data

required for training, the amount of trial and error required and the amount of computational resources required for

training and inference (evaluating the model once it is trained).

V. Algebraic Turbulence Modeling
Algebraic turbulence models, also known as zero-equation models, do not involve solving transport equations for

turbulence quantities like the : − n or : −l models do. Instead, they utilize algebraic relations to estimate the turbulent

eddy viscosity based on the local mean flow properties. While algebraic models are computationally less demanding,

their simplicity has historically been a limitation in complex flows where the history and transport of turbulent eddies

significantly affect the flow dynamics. For instance, these models generally fail to capture the effects of flow curvature,

rotation, and rapid strain rates adequately [2]. Nevertheless, algebraic models remain popular in certain applications due

to their straightforward implementation and lower computational overhead compared to full differential equation-based

models. They are particularly useful in cases where the flow is well-bounded and where high accuracy is not the primary

concern. Here, we aim to set the first stone in a robust, algebraic model capable of estimating the Reynolds stresses

based at varying Reynolds and Mach numbers with parameters tuned on incompressible data at a fixed Reynolds number

15



via domain reprojection and context-aware scaling to account for compressibility and Reynolds number dependencies.

The model being considered does require fitting parameters and can be considered a machine-learning approach albeit

a very shallow and computationally "cheap" alternative to the deep neural network previously discussed. Although

developing an algebraic model does require a significant amount of effort and domain-specific knowledge, the end result

is far more compact and computationally efficient.

A. Domain Re-Projection of a Function

Domain reprojection involves transforming the domain of a function from one interval to another, maintaining the

function’s core characteristics while adapting its input range. This process is instrumental in fields such as computational

mathematics, signal processing, and data science, where it is often necessary to adapt the domain of data or functions to

a standard range for analysis, comparison, or graphical representation.

Consider a function 5 : � → R, where � ⊆ R is the original domain of 5 . Domain reprojection aims to transform 5

such that it operates over a new domain � ⊆ R. To achieve this, we define a bijective mapping 6 : � → � that relates

every element of � to a unique element of �. The function 5 can then be composed with 6 to yield a new function

5 ◦ 6 : � → R, which is effectively 5 with its domain reprojected to �.

To establish a general framework for domain reprojection, consider the need to map a function defined on an arbitrary

domain [0, 1] to a new domain [2, 3]. The mapping function 6(G), defined on [2, 3], that projects G to [0, 1] can be

represented as a linear transformation:

6(G) =

(

1 − 0

3 − 2

)

G +

(

0 −
1 − 0

3 − 2
2

)

. (15)

This formula is derived from the requirement that 6(2) = 0 and 6(3) = 1, ensuring that the endpoints of the new domain

[2, 3] correspond precisely to the endpoints of the original domain [0, 1].

For instance, to reproject the domain of a function 5 defined on the interval [0, 1] into the interval [2, 3], we seek a

function 6 : [2, 3] → [0, 1] such that 5 (6(G)) is well-defined for G ∈ [2, 3]. The linear mapping function 6(G) can be

calculated as follows:

6(G) =

(

1 − 0

3 − 2

)

G +

(

0 −
1 − 0

3 − 2
2

)

,

=
1 − 0

3 − 2
G +

(

0 −
1 − 0

3 − 2
2

)

.

This maps any G from the new domain [2, 3] to the corresponding value in the original domain [0, 1], enabling the

function 5 to operate over the new domain as 5
(

1−0
3−2

G +
(

0 − 1−0
3−2

2
))

.

Through domain reprojection, functions can be adapted to operate within a desired range, facilitating easier

integration and comparison across different systems and scales. This method is especially useful in scenarios requiring

data normalization or when interfacing computational models with user interfaces that require specific input ranges.

B. Incompressible to Compressible Context-Aware Rescaling

Compressibility effects are critical aspects of fluid dynamics, particularly in high-speed flows where the Mach

number, which quantifies the ratio of flow velocity to the speed of sound, becomes significant. The Mach number

succinctly captures the degree to which a fluid flow might exhibit compressibility phenomena, influencing various flow

characteristics such as density variations and acoustic properties. From an extensive analysis of our Direct Numerical

Simulation (DNS) database, we have observed that in iso-Reynolds number flows, the magnitude of the Reynolds

stresses, when scaled internally, increases proportionally with the Mach number. This relationship highlights the impact

of compressibility on turbulent stresses, which are not typically apparent in incompressible flow analyses.

1. Global vs. Localized Compressibility Effects

While the Mach number serves as a global parameter that provides a broad indication of compressibility effects, it

does not adequately address localized flow phenomena. Localized effects, such as shock waves or rapid changes in flow

direction, necessitate a more nuanced approach to model adaptation and calibration.
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2. Development of a Context-Aware Scaling Term

To refine the transition from incompressible to compressible modeling within our turbulence models, we have

developed a scaling term that better accounts for local variations in compressibility. Inspired by Morkovin’s hypothesis

[39], which posits that at moderate freestream Mach numbers below the hypersonic flow regime ("∞ < 5), flow

dilatation is negligible, thus compressibility effects on turbulence can be accounted for via mean variations of fluid

properties, such as fluid density. Morkovin’s Hypothesis is applicable under conditions where the flow is adiabatic and

the temperature variations are small. Consequently, we propose a context-aware scaling factor, V1, defined as:

V1 =

[

1

"∞ + 1 + tanh(−10"∞)

d

d∞

]−1

(16)

This scaling factor, V1, is designed to adjust the predictions from incompressible turbulence models to align with

compressible flow conditions. The formula incorporates both the freestream Mach number and the ratio of local to

freestream density, allowing the model to dynamically adjust based on the flow’s compressibility level.

3. Application and Effectiveness

The term V1 effectively compensates for compressibility effects by modifying the turbulence model outputs according

to the local Mach number and density variations. This compensation is valid as long as the Reynolds number of the flow

remains approximately equivalent to that used in the calibration of the incompressible data. By applying this scaling,

the model becomes more flexible and can accurately predict turbulent behaviors in a variety of compressible flow

conditions. This context-aware approach ensures that our turbulence models remain robust and accurate across a broad

range of flow conditions, enhancing their utility in aerospace applications where compressibility cannot be neglected.

C. Reynolds Number Dependency Rescaling

The Reynolds number fundamentally characterizes the ratio of inertial forces to viscous forces within a fluid flow

and is a pivotal factor in turbulence modeling. In aerodynamic simulations where variations in both the Reynolds

number and compressibility—often quantified by the Mach number—are significant, accurately accounting for these

effects is crucial for reliable model predictions.

The rescaling factor V2 introduced herein is designed to dynamically adjust turbulence models to variations in the

Reynolds number, especially under conditions where Mach number effects are pronounced. The formula for V2 utilizes

a hyperbolic tangent function modulated by the Mach number ("∞), which facilitates a smooth transition between two

regimes:

• The lower Mach number regime, where the influence of the reference inner-scaled velocity (D+
ref

) predominates,

suggesting flow conditions approaching incompressibility.

• The higher Mach number regime, where the actual inner-scaled velocity (D+∞) becomes more significant, indicating

notable compressibility effects.

The rescaling factor is mathematically expressed as:

V2 =

[

(1 − tanh(10"∞))

(

D+
ref

D+∞

)

+ tanh(10"∞)
D+∞

D+
ref

]

(17)

Here, the term (1 − tanh(10"∞)) diminishes as "∞ increases, thus reducing the emphasis on the incompressible

reference velocity and elevating the role of the compressible actual velocity. Conversely, tanh(10"∞) escalates with

"∞, augmenting the model’s responsiveness to changes in flow compressibility. This dualistic modulation ensures that

V2 can effectively adapt the influence of Reynolds number variations based on the degree of compressibility, thereby

aiding in maintaining the accuracy of turbulence predictions across varying aerodynamic conditions. D+∞ is the inner

scaled, freestream velocity and the D+
ref

is the inner-scaled freestream velocity of the Low '4 incompressible case used

to calibrate the model.

The utilization of hyperbolic tangent functions ensures a smooth and bounded transition between these regimes,

preventing abrupt shifts in model behavior, which could lead to numerical instabilities or unrealistic predictions. By

incorporating both D+
ref

and D+∞ into the scaling, V2 allows the turbulence model to dynamically reflect true physical

effects of Reynolds number variations and Mach number influences on the turbulent boundary layer.

This method, while computationally efficient, also ensures robustness of the turbulence model across a broad

spectrum of flow conditions, making it particularly valuable in high-fidelity simulations of aerospace vehicles where

both high Reynolds numbers and significant Mach numbers are often encountered.
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D. Algebraic Semi-Log Compressible Domain Re-Projection Model (ASC-DRM)

The Algebraic Semi-Log Compressible Domain Re-Projection Model (ASC-DRM) is designed to integrate the core

aspects of compressibility and Reynolds number dependency into a unified algebraic framework. This model addresses

the need for an efficient yet accurate prediction of turbulent stresses in compressible flows at varying Reynolds numbers.

1. Model Formulation

The ASC-DRM utilizes a novel approach by combining semi-logarithmic transformations with domain reprojection

techniques to capture the nonlinear effects of both the Mach number and Reynolds number variations on turbulence.

The semi-logarithmic form helps in stabilizing the model over a wide range of flow conditions, enhancing its robustness

and accuracy. The primary equation of the model is given by:

dD′′
8
D′′
9
≈ V1V2

[

=
∑

:=0

U8, 9 · ln

(

q

(

m*

mH
+
m+

mG
+ 1

) :
)]

(18)

where:

• dD′′
8
D′′
9

represents the Reynolds stress tensor, crucial for capturing turbulence-induced momentum transfer.

• V1 and V2 are scaling factors derived from the context-aware rescaling and Reynolds number dependency sections,

respectively, adjusting the model to account for local compressibility and varying flow conditions.

• U8, 9 are model coefficients that need to be calibrated based on experimental or high-fidelity DNS data. In this

work, they are calibrated using the High Re, incompressible case outlined in table 1.

• q is a function that represents the interaction between velocity gradients in the flow, with m*
mH

and m+
mG

indicative of

shear and strain rates, respectively.

• : is an index that extends from 0 to =, allowing for the inclusion of higher-order effects in a controlled manner.

2. Interpretation and Implementation

The semi-logarithmic term in the ASC-DRM captures the essential physics of turbulent mixing and momentum

diffusion, particularly in complex flow fields where compressibility and high Reynolds number effects are pronounced.

By logarithmically scaling the velocity gradients, the model effectively accounts for the exponential increase in turbulence

intensity with shear and strain, which are common in supersonic flows.

The inclusion of V1 and V2 as multiplicative factors ensures that the model’s output is finely adjusted for local

compressibility effects and Reynolds number variations, thereby aligning the algebraic predictions with empirical

observations. This approach not only enhances the fidelity of turbulence modeling in aerospace applications but also

preserves computational efficiency, making the ASC-DRM particularly suitable for preliminary design evaluations and

real-time simulations where resource constraints are significant.

E. Model Calibration and Validation

Calibrating the ASC-DRM involves determining the coefficients U8, 9 , which may vary depending on the specific

flow configuration and conditions. Calibration is typically performed using a combination of DNS data, experimental

measurements, and optimization techniques to minimize the deviation between the model predictions and actual

observed values. Validation of the model is crucial and is carried out by comparing its predictions against high-fidelity

DNS datasets not used during the calibration process. Successful validation across a range of conditions would confirm

the model’s robustness and its capability to generalize well, thereby solidifying its utility in practical engineering

applications. In this section, we used the cases outlined in tables 1 and 2.

1. Model Results Visualization

Figure 13 and 14 depict the model results compared with DNS data for incompressible and compressible cases,

respectively, when visualized against ASC-DRM’s domain input without re-projection. These figures illustrate how the

algebraic turbulence model adapts across different fluid regimes by comparing normalized Reynolds stress outputs

against various non-dimensionalized shear rates. In Figure 13 (Incompressible Cases), the model results overlay DNS

data across a spectrum of shear rates, showcasing the model’s capability to replicate DNS trends in incompressible

flow regimes. The Reynolds stresses are plotted against a combination of shear and strain rate dimensions, normalized

by friction velocity, which highlights the sensitivity of turbulence characteristics to changes in the flow’s dynamic
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properties. The graph shows a peak in Reynolds stresses at intermediate shear rates, indicating regions of high turbulence

production. The model’s predictions closely follow the DNS data, especially in the middle range of shear rates, but start

to diverge as the shear rate increases. This divergence could be attributed to the model’s simplified treatment of complex

turbulent interactions which are more pronounced at higher shear rates. Figure 14 (Compressible Cases) extends this

analysis into compressible flow regimes. Here, the increased complexity due to compressibility is evident from the

wider spread of data points and the model’s varied success in capturing DNS trends. The graph plots Reynolds stresses

against the same normalized shear and strain rate dimensions as in the incompressible cases but includes the effects

of density variations typical of compressible flows. It is observed that the model struggles to accurately predict the

peak stresses and tends to underestimate the stresses at higher shear rates. This underestimation could be due to the

model’s inability to fully account for the additional compressibility effects on turbulence, such as density fluctuations

and shock-induced turbulence, which are not as prevalent or absent in incompressible flows. Both figures collectively

demonstrate the strengths and limitations of the ASC-DRM. While the model performs adequately across a broad

range of conditions, its performance is notably better in incompressible flows than in compressible ones. The errors in

compressible flow predictions underscore the need for incorporating more comprehensive physics-based adjustments or

empirical corrections to better handle the complexities introduced by compressibility. These visual comparisons are

critical for validating the algebraic model’s applicability to real-world scenarios and for guiding future enhancements to

improve its accuracy and reliability in predicting turbulent flows across various aerospace applications.

Fig. 13 Model Results and DNS when visualized against ASC-DRM’s domain input without re-projection

(Incompressible Cases); HR refers to High Reynolds; LR refers to Low Reynolds
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Fig. 14 Model Results and DNS when visualized against ASC-DRM’s domain input without re-projection

(Compressible Cases); HR refers to High Reynolds; LR refers to Low Reynolds.

Figures 15 and 16 show ASC-DRM predictions for D′D′ and dD′′D′′ against DNS baselines for incompressible and

compressible cases, respectively. These figures highlight the model’s performance in capturing the Reynolds stress

component D′D′. In Figure 15, the model predictions for incompressible flow conditions exhibit a good agreement with

the DNS data across a broad range of wall-normal distances (H+), particularly capturing the peak turbulence intensity

accurately. The peak represents the maximum turbulence production zone, which is critical for accurate turbulence

modeling. The model’s ability to match the DNS data at lower H+ values indicates effective representation of near-wall

turbulence dynamics. However, the model slightly underpredicts the stress levels at higher H+, suggesting a limitation

in capturing the decay of turbulence in the outer region of the boundary layer. This underprediction might be due to

the model’s simplified handling of turbulence dissipation processes, which are more pronounced away from the wall.

In Figure 16, representing compressible cases, we observe a different trend. The model exhibits a more pronounced

discrepancy with the DNS data, especially at higher Mach numbers. The curves for different Mach numbers ("∞ = 1.6

and "∞ = 2.86) diverge more from the DNS results than in incompressible flows, particularly in the peak and outer

layer regions. This deviation is indicative of the model’s reduced capability to adapt to the altered turbulence mechanics

influenced by compressibility effects such as variable density and temperature gradients. The model’s performance in

compressible flow cases also reveals an underestimation of peak turbulence levels and a shift in the location of the peak

towards lower H+ values. These trends could result from an inadequate modeling of compressible mixing layers, where

the dynamics are significantly influenced by changes in fluid properties due to compression and expansion. Overall,

these figures underscore the necessity for further refinement in the ASC-DRM, particularly enhancing its ability to

handle the complex interplay of turbulence production, dissipation, and diffusion in compressible flows. Additional

model tuning, possibly through the incorporation of additional compressibility correction factors or more advanced

turbulence closure terms, could improve prediction accuracy, making the model more reliable across different flow

regimes.
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Fig. 15 ASC-DRM Predictions for D′D′ and DNS Baselines (Incompressible Cases)

Fig. 16 ASC-DRM Predictions for dD′′D′′ and DNS Baselines (Compressible Cases)

Figure 17 presents the relative error for dD′′D′′ with respect to DNS baselines, illustrating the discrepancies between

predicted and actual turbulence stresses. This figure provides a quantitative assessment of the model’s error distribution

across a range of H+ values for various flow conditions characterized by different Mach numbers and Reynolds number
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categories (Low Reynolds, LR, and High Reynolds, HR). The graph reveals several key trends: At lower H+ values, the

relative error is quite high across all cases, reflecting challenges in accurately modeling near-wall turbulence, where the

effects of viscosity are significant. This is particularly noticeable for cases with higher Mach numbers (M16 and M28),

where compressibility effects add additional complexity to the flow, impacting the turbulence kinetic energy and its

dissipation. As H+ increases, the relative error generally decreases, indicating better model performance in the fully

turbulent region away from the immediate influence of the wall. However, the error remains elevated in the transition

region, where the flow shifts from a viscous sublayer to a fully turbulent state. This indicates potential deficiencies in

the model’s handling of the transition mechanisms and the interaction between viscous and convective forces, which

are critical for accurate turbulence modeling. For high Reynolds cases (HR), the relative error is generally lower

compared to low Reynolds (LR) cases, particularly in the higher H+ range. This suggests that the model performs better

under conditions of higher turbulent intensity and energy cascade, where the inertial forces dominate and the model’s

assumptions about turbulence isotropy and homogeneity become more applicable. Interestingly, the error spikes again

for certain high Mach number cases in the moderate H+ range, suggesting that the model may not fully capture the

specific dynamics of compressible turbulence, such as variable density effects, which can significantly influence the

turbulence structure and its development. Overall, these observations highlight the importance of refining the turbulence

model to better capture both the near-wall physics and the effects of compressibility, especially in high-speed flows.

Enhancements could include more sophisticated treatment of the near-wall region, perhaps by integrating wall-function

approaches or modifying the turbulence production and dissipation terms to account for the additional complexities

introduced by high Mach numbers. Further calibration and validation with a wider range of DNS datasets, especially

focusing on transitional flows and different wall boundary conditions, could help to reduce these discrepancies and

improve the model’s predictive capabilities. All in all, it is worth highlighting that the relative error could be misleading

at very small values of the quantity of interest being observed (true for all variables in this work) since small values

could lead to high percentage deviations even in the face of small absolute differences.

Fig. 17 Relative Error for dD′′D′′ w.r.t. DNS Baselines

Figures 18 and 19 provide insights into the model’s capability to predict the vertical velocity fluctuations E′E′

and dE′′E′′ for incompressible and compressible flows, respectively. In Figure 18, the ASC-DRM’s predictions for

incompressible cases show a strong alignment with the DNS baselines in the low to mid-range of H+ values, capturing

the peak and overall shape of the E′E′ profile accurately. This agreement indicates that the model effectively captures
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the dynamics within the viscous sublayer and buffer layer where the turbulence is heavily influenced by wall effects.

However, as H+ increases, the model predictions deviate from the DNS data, underscoring potential limitations in

capturing the decay of turbulence intensity in the outer layer of the boundary layer. In Figure 19 for compressible

cases, the ASC-DRM demonstrates varied performance across different Mach numbers. At lower Mach numbers (M08

and M16), the model closely follows the DNS data in the near-wall region but begins to diverge in the log-law and

outer regions, particularly underestimating the turbulence levels. This underestimation becomes more pronounced

at higher Mach numbers (M26 and M28), suggesting that the model may not adequately account for the increased

compressibility effects, such as density fluctuations and changes in thermodynamic properties, which significantly affect

the vertical velocity fluctuations. The discrepancies highlighted in Figure 19 are particularly evident in the mid to

high H+ range, where the model underpredicts the peak of dE′′E′′ and fails to capture the correct decay rate. These

errors could be attributed to the model’s simplified approach to compressibility, which might not fully incorporate

the complex interactions between turbulent structures and variable density and pressure fields in high-speed flows.

Overall, these observations suggest that while the ASC-DRM is capable of providing reasonable predictions for vertical

velocity fluctuations in both incompressible and compressible environments, enhancements are necessary to improve

its accuracy in high Mach number flows. Future model developments could focus on integrating more sophisticated

compressibility corrections and enhancing the treatment of turbulence anisotropy and inhomogeneity to better predict

the behavior of vertical velocity fluctuations across a wider range of flow conditions.

Fig. 18 ASC-DRM Predictions for E′E′ and DNS Baselines (Incompressible Cases)
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Fig. 19 ASC-DRM Predictions for dE′′E′′ and DNS Baselines (Compressible Cases)

Figure 20 focuses on the relative error for dE′′E′′, evaluating the model’s accuracy in predicting this particular

component of Reynolds stress. The graph illustrates the error trends across a range of Reynolds and Mach numbers,

offering a comprehensive view of the model’s performance under varying aerodynamic conditions. The relative error is

notably high near the wall (low H+ values), especially for high Mach number flows (M16 and M28), where it exceeds 60%

in some cases. This substantial error near the wall suggests the model’s challenges in accurately capturing the effects of

compressibility and heat transfer on turbulence in the near-wall region. Such discrepancies likely arise from the model’s

simplified treatment of complex thermophysical interactions and boundary layer physics, which are more pronounced

in compressible flows due to variable density and temperature gradients. As H+ increases, the relative error generally

decreases, reaching a minimum in the log-law region, which indicates that the model performs better in predicting

the more homogeneous, fully turbulent parts of the flow. However, the error remains significant, particularly for cases

under higher Mach numbers, reflecting ongoing difficulties in addressing the full impact of compressibility effects on

turbulence statistics. For lower Mach numbers (M0 and M08), the error is less pronounced, suggesting that the model’s

assumptions and simplifications are more valid under conditions closer to incompressibility. Nonetheless, the error peaks

again in the outer layer, highlighting potential inaccuracies in the model’s handling of turbulence decay and the influence

of the free stream on the boundary layer. Interestingly, the trend of error reduction with increasing Reynolds numbers

suggests that the model may be capturing the correct scaling effects, though it still lacks precision, particularly at high

Reynolds numbers where the turbulence is more intense and the flow structures are more complex. This indicates a need

for further refinement in the model’s treatment of scale-resolving phenomena and possibly incorporating scale-adaptive

capabilities to better handle high Reynolds number flows. Overall, Figure 20 underscores the necessity for advancements

in turbulence modeling, especially in enhancing the accuracy of predictions in compressible flows across a wide range of

operating conditions. Future model developments could focus on integrating more detailed physics-based formulations

or employing data-driven techniques to improve fidelity in the near-wall region and at high Mach numbers.
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Fig. 20 Relative Error for dE′′E′′ w.r.t. DNS Baselines

Figures 21 and 22 showcase ASC-DRM predictions for the shear stress component D′E′ and dD′′E′′ in incompressible

and compressible cases, respectively. These figures are critical as they highlight the model’s ability to predict one of the

most crucial terms in the streamwise momentum balance, which significantly influences the overall turbulence structure

and momentum transfer in boundary layer flows. In Figure 21, depicting incompressible cases, the model predictions

align closely with DNS data at lower H+ values, indicating an accurate representation of shear stress near the wall. This

is important as accurate shear stress predictions near the wall are crucial for correct boundary layer development and for

predicting drag. However, the model predictions diverge from DNS data as H+ increases, particularly underestimating the

peak shear stress. This underestimation highlights potential deficiencies in the model’s treatment of turbulence dynamics

away from the wall, where the interactions between turbulent eddies and the mean flow become more complex. Figure

22 extends this analysis into compressible flow regimes. Here, the model’s performance varies with the Mach number,

showing a reasonable prediction for lower Mach numbers but deviating significantly at higher Mach numbers. Notably,

the peak of dD′′E′′ is underestimated in high Mach number cases, and the location of this peak is shifted towards lower

H+ values. This shift and underestimation could result from inadequate modeling of the compressibility effects that alter

turbulence characteristics, such as changes in density and viscosity, which are not as prevalent in incompressible flows.

The discrepancies in both figures, especially in compressible cases, underscore the need to enhance the modeling of

shear stress components. These components are vital for accurately capturing the momentum transfer essential for

predicting flow separation, secondary flow structures, and overall aerodynamic performance. Improving the model’s

ability to predict these components accurately across all flow regimes, particularly in the face of varying compressibility,

is crucial. Future enhancements could include integrating more advanced turbulence models that specifically address the

non-linear effects and variable properties encountered in high-speed flows, thus refining the predictions of momentum

transfer and shear stress distribution. Overall, these observations stress the importance of accurately modeling shear

stress not only as a fundamental component of turbulence modeling but also for its significant impact on the streamwise

momentum balance, which is critical for designing and optimizing aerodynamic systems in both incompressible and

compressible environments.
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Fig. 21 ASC-DRM Predictions for D′E′ and DNS Baselines (Incompressible Cases)

Fig. 22 ASC-DRM Predictions for dD′′E′′ and DNS Baselines (Compressible Cases)

Figure 23 details the relative error in predicting the shear stress component, offering a critical view of the model’s

performance in different flow regimes. This figure is crucial as it quantifies the discrepancies between the model

predictions and DNS baselines for the shear stress component, which is pivotal in the streamwise momentum balance

and significantly influences turbulence transport and energy production within boundary layers. The relative error is
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plotted across a range of H+ values for various Mach numbers and Reynolds number categories. At lower H+ values, the

error is generally high, peaking particularly for higher Mach number cases. This initial high error indicates the model’s

difficulty in accurately capturing the intense shear at the wall, which is critical for determining the correct momentum

transfer and turbulence generation in boundary layers. Such inaccuracies at this region can have profound implications

on the prediction of wall shear stress, which in turn affects the overall drag calculations and near-wall flow physics. As

H+ increases, moving away from the wall into the buffer and log-law regions, the relative error decreases substantially

across all cases, suggesting that the model performs better in regions where the flow becomes fully turbulent and the

direct influence of wall effects diminishes. However, the error profile exhibits a minimum before increasing again

towards the outer layer of the boundary layer, particularly at low to moderate Mach numbers. This increase in error

towards the outer layer might indicate limitations in the model’s ability to handle the decay of turbulence and the

interaction with the freestream, which becomes more significant at higher Reynolds numbers and lower Mach numbers.

The trends observed across different Mach numbers also suggest that the model’s formulation may not be adequately

compensating for the effects of compressibility on the shear stress distribution. At higher Mach numbers (M16, M28),

the relative error is more variable and generally higher, highlighting the challenges in modeling compressible turbulence

where density fluctuations and compressibility effects influence the turbulence structure and its interaction with the

mean flow. Overall, the insights provided by Figure 23 underscore the importance of refining the shear stress predictions

within turbulence models, particularly in terms of enhancing the accuracy at both low and high H+ values and across a

range of flow conditions. Improving the prediction of this crucial component not only aids in better understanding of the

flow physics but also enhances the model’s utility in practical applications where accurate shear stress predictions are

essential for the design and analysis of aerodynamic surfaces.

Fig. 23 Relative Error for dD′′E′′ w.r.t. DNS Baselines

Figure 24 illustrates ASC-DRM predictions for the gradient of the Reynolds shear stress, m
mH

(

dD′′E′′
)

, alongside

DNS baselines, providing a deeper insight into the spatial variability of shear stresses predicted by the model. This

gradient is critical as it directly contributes to the turbulent production term in the momentum equations, influencing the

turbulence energy redistribution and its dissipation throughout the boundary layer. The figure shows that the model

captures the general trend observed in DNS data for lower Mach numbers (M0 and M08), with the gradient nearing

zero in the outer boundary layer as expected, indicating diminished shear interaction with the freestream. This correct

prediction of near-zero gradient at higher H+ values is crucial for accurately simulating the boundary layer growth and
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its interaction with the external flow, a key aspect in aerodynamic surface analyses. However, significant discrepancies

arise, particularly at higher Mach numbers ("∞ = 1.6 and "∞ = 2.86) and at lower H+ positions. In these cases, the

model predicts more pronounced gradients than observed in DNS, suggesting an overestimation of the shear stress

variations near the wall. This could result from the model’s limitations in accurately capturing the compressibility effects

on turbulence, which are more pronounced at high speeds and in near-wall regions where the flow is subjected to strong

gradients due to shock waves and compressive heating. Furthermore, the differences in gradient magnitude between

the model predictions and DNS data also highlight the potential inadequacies in the model’s treatment of the viscous

sublayer and buffer layer. Properly capturing the shear stress gradient in these regions is essential for predicting the

onset of turbulence and the subsequent transition to a fully turbulent flow, both of which are vital for designing effective

flow control and drag reduction strategies. In the context of streamwise momentum balance, an accurate representation

of m
mH

(

dD′′E′′
)

is indispensable for correctly predicting the flow acceleration or deceleration due to turbulent stresses.

Incorrect predictions here could lead to errors in calculating force distributions on aerodynamic surfaces, potentially

resulting in suboptimal design and performance inefficiencies. Overall, while the model shows promise in capturing the

broader trends of shear stress gradients, these results underscore the need for enhanced modeling techniques that more

precisely account for the complex physics in compressible, turbulent boundary layers, particularly in terms of shear

stress distribution and its derivatives. Future improvements should focus on refining the turbulence closure models or

incorporating scale-resolving simulations that can better handle the inherent non-linearities and variable properties

encountered in high-speed aerodynamics.

Fig. 24 ASC-DRM Predictions for m
mH

(

dD′′E′′
)

and DNS Baselines

2. Global Error Analysis

Table 3 summarizes the global relative error metrics for the model across different flow conditions and Mach

numbers, specifically focusing on the turbulent stress components dD′′D′′, dD′′E′′, and dE′′E′′ for 5 ≤ H+ ≤ 100. This

table provides a concise overview of the model’s overall accuracy in various testing scenarios. The results elucidate the

influence of the Reynolds number and Mach number on the model’s accuracy in predicting turbulent behaviors.

For the incompressible cases, the low Reynolds number (LR) data shows considerable error, especially in predicting

dD′′D′′ with a 12% discrepancy, indicating that the model may struggle to accurately capture turbulence intensity

at lower Reynolds numbers. However, at high Reynolds numbers (HR), the error significantly decreases across all

components, with errors less than 3%, demonstrating the model’s enhanced performance in more dynamically intense
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flow environments.

At a moderate compressibility level ("∞ = 0.8), errors remain notable in the LR scenario—22% for dD′′D′′ and

10% for dE′′E′′. These higher error values suggest that the model may not fully account for the compressibility effects

inherent at even moderate Mach numbers when operating at lower Reynolds numbers. However, the HR setup shows a

reduction in error, although it is slightly higher compared to the incompressible flow, illustrating additional challenges

posed by compressibility.

As the Mach number increases to 1.6 and 2.86, particularly at LR, the errors markedly increase, reaching as high as

29% for dD′′E′′ at "∞ = 1.6. This trend highlights a growing deficiency in the model’s ability to handle increased

compressibility effects associated with higher Mach numbers at lower Reynolds numbers. In contrast, the HR data

at "∞ = 2.86 shows significantly improved accuracy, reinforcing the model’s capability to adapt to higher dynamic

environments, albeit with some remaining errors. This said, the large relative errors seem confined mostly to "∞ = 1.6.

This could suggest a model deficiency near the transonic regime which could be explored in a future work.

The overall trend of reduced error rates at higher Reynolds numbers across all Mach numbers suggests that the

model has a strong foundational approach but exhibits sensitivity to the operational Reynolds number. This sensitivity

emphasizes the need for careful consideration of the model’s application scope, particularly in scenarios involving lower

Reynolds numbers combined with moderate to high Mach numbers.

These observations underscore the necessity for ongoing enhancements to the model, particularly in strengthening

its predictive accuracy at lower Reynolds numbers and across varying degrees of compressibility. Future improvements

might focus on refining the model’s sensitivity to Reynolds number effects and incorporating additional physics-based or

empirically-derived corrections to better capture the complexities of compressible turbulence. In summary, the model

does exhibit a reasonable level of global accuracy for an algebraic model and a good ability to generalize beyond its

calibration data with the incorporated parameters.

Table 3 Global Relative Error for 5 ≤ H+ ≤ 100 (recall that for the incompressible cases, d: ′′: ′′ = : ′: ′)

dD′′D′′ dD′′E′′ dE′′E′′

Incomp. (LR) 31% 32% 23%

Incomp. (HR) 0.9% 1.5% 2.1%

"∞ = 0.8 (LR) 22% 6.6% 10%

"∞ = 0.8 (HR) 2.58% 7.2% 9.0%

"∞ = 1.6 (LR) 19% 29% 26%

"∞ = 1.6 (HR) 23% 23% 24%

"∞ = 2.86 (LR) 10% 14% 10%

"∞ = 2.86 (HR) 7.9% 6.6% 5.5%

F. Future Directions: Incorporating Streamline Curvature and Pressure Gradient Effects

As we continue to refine and enhance the Algebraic Semi-Log Compressible Domain Re-Projection Model (ASC-

DRM), one of the primary challenges that remains is the accurate representation of streamline curvature and pressure

gradient effects. These factors are particularly significant in complex aerodynamic flows, such as those encountered

around aircraft wings and fuselage, where they can substantially influence the turbulence characteristics and overall flow

behavior.

1. Challenges Posed by Streamline Curvature and Pressure Gradients

Streamline curvature and pressure gradients play crucial roles in the development and behavior of boundary layers.

Positive curvature and favorable pressure gradients can stabilize the flow and delay transition to turbulence, whereas

negative curvature and adverse pressure gradients can promote earlier transition and increase the likelihood of flow

separation [40]. Current turbulence models, including the ASC-DRM, often struggle to capture these effects accurately

due to their complex, nonlinear influence on the flow field.

29



2. Proposed Enhancements to the ASC-DRM

To address these challenges, future versions of the ASC-DRM will incorporate additional scaling terms specifically

designed to account for the effects of streamline curvature and pressure gradients. These terms will adjust the turbulence

model outputs based on the local curvature of the streamlines and the prevailing pressure gradients, thereby enhancing

the model’s ability to predict flow phenomena under a wider range of aerodynamic conditions.

3. Methodological Approach

The development of these new scaling terms will involve both theoretical and empirical approaches:

1) Theoretical Development: Derivation of expressions for curvature and pressure gradient scaling based on

theoretical fluid dynamics principles and existing research in the field [41, 42].

2) Empirical Calibration: Calibration of the new model parameters using high-fidelity DNS and experimental

data, ensuring that the enhanced model aligns closely with observed flow behaviors.

4. Implementation and Validation

Once developed, the enhanced model will be implemented within the existing ASC-DRM framework and validated

against a series of benchmark problems that specifically test the model’s capability to handle flows with significant

curvature and pressure gradient effects. This validation will include comparison with experimental data and results

from high-resolution numerical simulations.

5. Impact and Implications

Incorporating these enhancements will significantly broaden the applicability and accuracy of the ASC-DRM,

making it a more robust tool for predicting turbulent flows in aerospace engineering. This advancement will be

particularly beneficial in the design and analysis of next-generation aerospace vehicles, where accurate prediction of

complex flow phenomena is critical for achieving optimal performance and efficiency.

VI. Conclusions
This study has successfully demonstrated the effectiveness of integrating algebraic domain reprojection with deep

learning to enhance turbulence modeling for compressible flows. The developed Algebraic Semi-Log Compressible

Domain Re-Projection Model (ASC-DRM) represents a significant leap forward in the field of computational fluid

dynamics, providing a robust tool that captures the complex dynamics of turbulent flows across various operating

conditions.

The incorporation of deep learning techniques for parameter tuning and model validation has allowed the ASC-DRM

to achieve high levels of accuracy, as evidenced by extensive validation against DNS data. The model effectively

addresses the challenges posed by compressibility and high Reynolds numbers, areas where traditional turbulence

models often falter. Moreover, the application of domain reprojection techniques has enabled the ASC-DRM to adapt to

different flow regimes seamlessly, making it a versatile tool for a wide range of engineering applications.

Future research will focus on further refining the model by integrating additional physical phenomena such as

heat transfer and chemical kinetics, which are vital for more comprehensive simulations in aerospace and combustion

engineering. Efforts will also be directed towards improving the scalability and efficiency of the model, ensuring its

applicability in real-time simulation environments. The ultimate goal is to develop a universally applicable turbulence

model that can predict flow behaviors with high precision, aiding in the design and optimization of next-generation

engineering systems.
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