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A B S T R A C T

Studies in the collective motility of organisms use a range of analytical approaches to formulate continuous
kinetic models of collective dynamics from rules or equations describing agent interactions. However, the
derivation of these kinetic models often relies on Boltzmann’s ‘‘molecular chaos’’ hypothesis, which assumes
that correlations between individuals are short-lived. While this assumption is often the simplest way to derive
tractable models, it is often not valid in practice due to the high levels of cooperation and self-organization
present in biological systems. In this work, we illustrated this point by considering a general Boltzmann-type
kinetic model for the alignment of self-propelled rods where rod reorientation occurs upon binary collisions.
We examine the accuracy of the kinetic model by comparing numerical solutions of the continuous equations
to an agent-based model that implements the underlying rules governing microscopic alignment. Even for the
simplest case considered, our comparison demonstrates that the kinetic model fails to replicate the discrete
dynamics due to the formation of rod clusters that violate statistical independence. Additionally, we show
that introducing noise to limit cluster formation helps improve the agreement between the analytical model
and agent simulations but does not restore the agreement completely. These results highlight the need to both
develop and disseminate improved moment-closure methods for modeling biological and active matter systems.
1. Introduction

Self-propelled rods are a fascinating class of active matter seen
across both living and non-living systems [1–7]. Due to their shape,
such systems are intrinsically capable of collective behavior through
realignments of rods due to physical collisions [8,9] or longer-ranged
ydrodynamic interactions when in a fluid [2,10]. These interactions
lead to the emergence of macroscopic collective motion such as flock-
ing, clustering, phase changes, and vortexes. Two notable biological
examples of collective motion in self-propelled rods are the dynamics
of rod-shaped gliding bacteria such as the soil bacterium Myxococcus
xanthus [11–13], and the behavior of groups of cellular cytoskeletal
ods (such as F-actin [4] or microtubules [5]) driven by molecular
otors deposited on the surface. Collisions between M. xanthus cells
ften result in the head of the colliding cell reorienting along the length
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of the cell that was struck (see Fig. 1) [6]. Reorientation itself occurs
on a characteristic time scale related to the ratio of the cell length
to cell velocity. Microtubule collisions on a 2D surface also exhibit
asymmetric realignments upon collision, with the additional possibility
of the colliding microtubule stalling until the struck microtubule has
passed [5].

Due to the interest surrounding systems of self-propelled rods, re-
searchers have developed various methods of modeling them. A popular
approach to studying the emergent behavior of these systems is by
deriving a probabilistic description [9,14–23]. A number of heuristic
mean-field models based on the notion of the mean nematic director
have been considered in [15,16,24–27]. Since rod reorientation takes
place only when rods collide, a more accurate approach consists in
https://doi.org/10.1016/j.mbs.2024.109266
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Fig. 1. An example of asymmetric alignment during the collision of two M. xanthus cells due to cell–substrate forces.
Source: Adapted from [6].
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racing rod collisions as they naturally occur and updating the kinetic
istribution function accordingly.
A common starting point for such derivations is an application of

oltzmann framework that originated in the kinetic theory of gases.
he framework is based on 4 key elements: (i) the geometry (shape) of
nteracting particles; (ii) the type of interactions, that determines how
article states change in collisions; (iii) the proper asymptotic regime
n the model parameters; and (iv) the assumption of ‘‘molecular chaos’’,
hat is the absence of two-particle correlations. Importantly, the validity
f hypothesis (iv) depends on the geometry of interacting particles and
he type of interactions.
This modeling approach for self-propelled particles aligning through

ollisions has been taken up by several authors [14,17,21,23,28–30].
n Bertin et al. (2006) [14], authors consider spherically shaped cells
hat experience polar alignment with some amount of noise in the
ost-collisional orientations. Their model is based on the zero-order
pproximation of the interaction operator, which amounts to treating
erms of order 𝑁𝑙2

𝐿2 as negligible, where 𝑁 represents the number of
particles, 𝑙 denotes the particle size (radius), and 𝐿 signifies a macro-
scopic length scale. This approximation signifies an asymptotic regime
where variations in the kinetic function across distances comparable
to the particle size can be disregarded, reminiscent of the classical
Boltzmann equation. Under these conditions and hypothesis (iv), the
authors derived a kinetic equation for the distribution of cells and a
reduced hydrodynamic-type model for the first few moments of the cell
density distribution, assuming that the macroscopic motion is slow.

Cells of more realistic shape (rod-shaped cells) were considered
in Hittmeir et al. (2021) [17]. The authors built a kinetic model in
which a pair of colliding co-oriented cells (rods with angle difference
|𝜃1 − 𝜃2| < 𝜋∕2) change their orientation to their average alignment;
otherwise (|𝜃1 − 𝜃2| > 𝜋∕2) both colliding cells reverse their direction
of motion. This complex interaction consists of a partial polar alignment
and a partial reversal. Again, the kinetic model is obtained using the
zero-order approximation of the interaction operator and the molecular
chaos assumption. For special sets of cell orientations, the authors
identify the corresponding set of equilibrium distributions and derive a
hydrodynamic-type model in the limit 𝑁𝑙

𝐿 → ∞.
Over the last decade, the validity of Boltzmann formalism has come

nto question. Evidence has shown that in some biological systems, this
odeling approach is not enough to reproduce the observed system
ynamics due to either weak binary interactions when stronger, multi-
article interactions are needed [30], or due to rapid cluster formation
hat violates the molecular chaos hypothesis [21,28,29]. These latter
tudies suggest that biologically-relevant phenomena reliant on cluster
 𝑁

2 
ormation, such as the transitions from unordered to collective mo-
ion [18,31,32], may not be accurately modeled with Boltzmann-type
quations. However, results from Thüroff et al. (2013) [28] suggest that
Boltzmann approach can be appropriate for systems that align weakly
r gradually over time.
In this paper, we present a refined kinetic model that offers a more

recise representation of cell interactions, taking into account both
he nature of these interactions and the specific asymptotic regime
overning the interaction operator. Furthermore, we examine the com-
atibility between these assumptions and the underlying hypothesis of
olecular chaos.
We assume that cells are rod-shaped and when a given cell strikes
second cell, it instantly turns around its ‘‘head’’ (the tip of the rod
n the direction of motion) to match a second cell’s orientation. Thus,
n our model, the re-orientations are truly nematic and also asymmetric,
n agreement with empirical observations of myxobacteria alignment,
ig. 1. For the asymptotic parameter regime, our model goes beyond
he zero-order approximation used in the above-mentioned papers, by
ncluding the next-order correction. In fact, if one takes the values of
odel parameters from typical experiments with myxobacteria, one
an see that the second-order correction term (in a non-dimensional
quation) can be as large as 0.1 and, thus, is not negligible. We
erive our main kinetic equation for the nematic alignment under
hese assumptions (Section 2, Eq. (12)). In Section 3, we reduce this
eneral kinetic equation to a system of numerically tractable PDEs by
ssuming only a finite number of orientations are present. The system
urns out to be conservative and of the hyperbolic type. We then use a
ax–Friedrichs numerical algorithm, specifically designed to treat such
ystems, to obtain the numerical solutions.
Additionally, in Section 3 we perform a comparative study of the

umerical solutions of the PDEs with the agent-based simulations to
etermine the validity of the molecular chaos assumption. Our main
inding here is that, unless an appreciable amount of noise is added to
he model, the molecular chaos assumption does not hold. We show
hat even in simple cases the agent model exhibits cluster formation,
ith the rate of clustering increasing with the number of cells for the
symptotic regime considered.
As previously discussed, these results do not come as a complete sur-

rise; instead, they validate the criticisms directed towards the Boltz-
ann framework when applied to scenarios involving self-propelled,
od-shaped cells engaged in asymmetric nematic alignment.

. Derivation of kinetic equation

Our goal is to derive a tractable kinetic description of a system of

self-propelled rods in of length 𝑙 moving at constant speed 𝑣 in 2
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Fig. 2. Geometry of the collision scheme considered in our model. 𝑃1 is the set of
heads of rods with orientation 𝜃1 that will hit the side of the rod with orientation 𝜃
having its head at 𝐱, at time 𝑡, when it moves for 𝛥𝑡 units of time. Likewise, a rod
with orientation 𝜃 at 𝐱 at time 𝑡 will hit the side of a rod with orientation 𝜃1 having
its head in 𝑃2 at time 𝑡. 𝑃1 is formed by vectors 𝑙𝐞(𝜃) and 𝑣 𝛥𝑡(𝐞(𝜃1)−𝐞(𝜃)). 𝑃2 is formed
by vectors 𝑙𝐞(𝜃1) and 𝑣 𝛥𝑡(𝐞(𝜃1) − 𝐞(𝜃)).

dimensions, starting from a microscopic description of collisions. Let
𝑓 (𝐱, 𝜃, 𝑡) be the probability a rod with orientation 𝜃 has its head located
at 𝐱 ∈ 𝛺 = [0, 𝐿] × [0, 𝐿] at time 𝑡. We will next derive a kinetic
equation for 𝑓 by finding an expression for the change in 𝑓 over a
single time step of size 𝛥𝑡. To this end, we make several assumptions
about rod collisions. First, we assume that collisions are binary events,
with the striking rod reorienting to match the struck rod’s orientation
modulo 𝜋. This results in the nematic alignment of rods. Motivated
by M. xanthus dynamics, we further assume that reorientation occurs
through the head of the rod. Since we assume binary collisions, we will
make use of the 2-particle distribution function 𝑓2(𝐱, 𝜃, 𝐱1, 𝜃1, 𝑡) to help
calculate collision events.

Denote by 𝛥𝑓 the change of 𝑓 along the trajectory:

𝛥𝑓 (𝐱, 𝜃, 𝑡) = 𝑓 (𝐱 + 𝑣𝐞(𝜃) 𝛥𝑡, 𝜃, 𝑡 + 𝛥𝑡) − 𝑓 (𝐱, 𝜃, 𝑡),

with 𝑁𝛥𝑓 representing the change in the number of rods with a given
location and orientation. In the absence of collisions, the change is
zero. If a collision occurred it could result in the gain or loss of rods
of orientation 𝜃. The associated geometry of rods for gain and loss is
determined by fixing a spatial location 𝐱 and considering two cases
using two (non-interacting) rods with orientations 𝜃 and 𝜃1 and heads
at 𝐱. We then look at the sets of collisions in the next 𝑑𝑡 time that will
result in either a gain of a rod with orientation 𝜃 (due to a collision
with a 𝜃-rod) or an equivalent loss (due to the 𝜃-rod colliding). This
yields two regions 𝑃1(𝐱, 𝜃, 𝜃1) and 𝑃2(𝐱, 𝜃, 𝜃1) where another rod could
be located to cause a collision (see Fig. 2).

We can now use this setup to derive the change 𝛥𝑓 .

𝛥𝑓 (𝐱, 𝜃, 𝑡) = − (𝑁 − 1)∫

𝜋

−𝜋 ∫𝑃2(𝐱,𝜃,𝜃1)
𝑓2(𝐱, 𝜃, 𝐱1, 𝜃1, 𝑡) 𝑑𝐱1𝑑𝜃1

+ (𝑁 − 1)∫

𝜃+𝜋∕2

𝜃−𝜋∕2 ∫𝑃1(𝐱,𝜃,𝜃1)
𝑓2(𝐱, 𝜃1, 𝐱1, 𝜃, 𝑡) 𝑑𝐱1𝑑𝜃1

+ (𝑁 − 1)∫

𝜃+𝜋∕2

𝜃−𝜋∕2 ∫𝑃1(𝐱,𝜃+𝜋,𝜃1)
𝑓2(𝐱, 𝜃1, 𝐱1, 𝜃 + 𝜋, 𝑡) 𝑑𝐱1𝑑𝜃1

(1)

o get a closed-form equation for 𝑓 we employ a commonly used
ssumption that 2-particle distribution 𝑓2(𝐱, 𝜃, 𝐱1, 𝜃1, 𝑡) can be written as
he product of the marginal distributions 𝑓 (𝐱, 𝜃, 𝑡) and 𝑓 (𝐱1, 𝜃1, 𝑡), i.e.

2(𝐱, 𝜃, 𝐱1, 𝜃1, 𝑡) = 𝑓 (𝐱, 𝜃, 𝑡)𝑓 (𝐱1, 𝜃1, 𝑡), (2)

or all pairs (𝐱, 𝜃) and (𝐱1, 𝜃1). This first-order moment closure is known
s statistical independence, or molecular chaos, as it implies that the
resence of one rod does not affect the probability of finding the other
t the given position and orientation. Next, we write the integral terms
sing a Taylor expansion in 𝐱1

2
(𝐱1, 𝜃1, 𝑡) = 𝑓 (𝐱, 𝜃1, 𝑡) + 𝛁𝐱𝑓 (𝐱, 𝜃1, 𝑡) ⋅ (𝐱1 − 𝐱) + 𝑂(|𝐱1 − 𝐱| ), (3)

3 
o that only an integral over 𝜃1 remains. Note that |𝐱1 − 𝐱| = 𝑂(𝑙) since
two rods must be close to enable collision. A geometric computation
shows that the regions 𝑃1 and 𝑃2 where collisions can take place have
rea |𝑃1| = |𝑃2| = 𝑙𝑣 𝛥𝑡| sin(𝜃 − 𝜃1)|. Substituting the Taylor expansion
nto the expression for 𝛥𝑓 and using the areas of 𝑃1, 𝑃2 with the
integrals

∫𝑃2(𝐱,𝜃,𝜃1)
(𝐱1 − 𝐱) 𝑑𝐱1 =

𝑙2𝑣 𝛥𝑡
2

| sin(𝜃 − 𝜃1)| 𝐞(𝜃1) + 𝑂(𝑙3𝑣 𝛥𝑡), (4)

and

∫𝑃1(𝐱,𝜃,𝜃1)
(𝐱1 − 𝐱) 𝑑𝐱1 =

𝑙2𝑣 𝛥𝑡
2

| sin(𝜃 − 𝜃1)| 𝐞(𝜃) + 𝑂(𝑙3𝑣 𝛥𝑡), (5)

we obtain

𝛥𝑓 (𝐱, 𝜃, 𝑡) = (𝑁 − 1)𝑙𝑣 𝛥𝑡∫

𝜃+𝜋∕2

𝜃−𝜋∕2
| sin(𝜃 − 𝜃1)|𝑓 (𝐱, 𝜃 + 𝜋, 𝑡)𝑓 (𝐱, 𝜃1, 𝑡) 𝑑𝜃1

− (𝑁 − 1)𝑙𝑣 𝛥𝑡∫

𝜃+𝜋∕2

𝜃−𝜋∕2
| sin(𝜃 − 𝜃1)|𝑓 (𝐱, 𝜃, 𝑡)𝑓 (𝐱, 𝜃1 + 𝜋, 𝑡) 𝑑𝜃1

+
(𝑁 − 1)𝑙2𝑣 𝛥𝑡

2 ∫

𝜃+𝜋∕2

𝜃−𝜋∕2
| sin(𝜃 − 𝜃1)|𝑓 (𝐱, 𝜃1, 𝑡)

(

𝐞(𝜃) ⋅ 𝛁𝐱𝑓 (𝐱, 𝜃, 𝑡) + 𝐞(𝜃 + 𝜋)

⋅𝛁𝐱𝑓 (𝐱, 𝜃 + 𝜋, 𝑡)
)

𝑑𝜃1

−
(𝑁 − 1)𝑙2𝑣 𝛥𝑡

2 ∫

𝜃+𝜋∕2

𝜃−𝜋∕2
| sin(𝜃 − 𝜃1)|𝑓 (𝐱, 𝜃, 𝑡)

(

𝐞(𝜃1) ⋅ 𝛁𝐱𝑓 (𝐱, 𝜃1, 𝑡)

+𝐞(𝜃1 + 𝜋) ⋅ 𝛁𝐱𝑓 (𝐱, 𝜃1 + 𝜋, 𝑡)
)

𝑑𝜃1
+ 𝑂(𝑁𝑙3𝑣 𝛥𝑡max |𝑓 |max |𝛁2

𝐱𝑓 |) + 𝑂(𝑁𝑙2 𝛥𝑡2).

(6)

ividing the equation above by 𝛥𝑡 and letting 𝛥𝑡 → 0, we obtain the
inetic equation

𝑡𝑓 +𝑣𝐞(𝜃) ⋅𝛁𝐱𝑓 = (𝑁 −1)𝑙𝑣𝑄0 +
(𝑁 − 1)𝑙2𝑣

2
𝑄1 +𝑂

(

𝑁𝑙3𝑣max |𝑓 |max |𝛁2
𝐱𝑓 |

)

,

(7)

where

𝑄0 = ∫

𝜃+𝜋∕2

𝜃−𝜋∕2
| sin(𝜃 − 𝜃1)|

(

𝑓 (𝐱, 𝜃 + 𝜋, 𝑡)𝑓 (𝐱, 𝜃1, 𝑡) − 𝑓 (𝐱, 𝜃, 𝑡)𝑓 (𝐱, 𝜃1 + 𝜋, 𝑡)
)

𝑑𝜃1,

(8)

and

𝑄1 = ∫

𝜃+𝜋∕2

𝜃−𝜋∕2
| sin(𝜃 − 𝜃1)|𝑓 (𝐱, 𝜃1, 𝑡)𝐞(𝜃) ⋅ 𝛁𝐱 (𝑓 (𝐱, 𝜃, 𝑡) − 𝑓 (𝐱, 𝜃 + 𝜋, 𝑡)) 𝑑𝜃1

− ∫

𝜃+𝜋∕2

𝜃−𝜋∕2
| sin(𝜃 − 𝜃1)|𝑓 (𝐱, 𝜃, 𝑡)𝐞(𝜃1) ⋅ 𝛁𝐱(𝑓 (𝐱, 𝜃1, 𝑡) − 𝑓 (𝐱, 𝜃1 + 𝜋)) 𝑑𝜃1.

(9)

n deriving the 𝑄1 term we used the identity 𝐞(𝜃 + 𝜋) = −𝐞(𝜃).
We nondimensionalize Eq. (7) by setting 𝜏 = 𝐿∕𝑣 and rescaling the

variables using

𝐱̂ = 𝐱∕𝐿, 𝑡 = 𝑡∕𝜏, 𝑓 (𝐱̂, 𝜃, 𝑡) = 𝐿2𝑓 (𝐱̂𝐿, 𝜃, 𝑡𝜏). (10)

Dropping hats, the resulting scaled kinetic equation is

𝜕𝑡𝑓 + 𝐞(𝜃) ⋅ 𝛁𝐱𝑓 =
(𝑁 − 1)𝑙

𝐿
𝑄0 +

(𝑁 − 1)𝑙2

2𝐿2
𝑄1 + 𝑂

(

𝑁𝑙3

𝐿3

)

, (11)

where we assumed that the variations in the kinetic density 𝑓 are
bounded, that is max |𝑓 |max |𝛁2

𝐱𝑓 | ≤ 𝐶. For a typical experiment with
𝑁 = 1000 M. xanthus bacteria (𝑙 = 5 μm) on a domain of size 𝐿 =
103 μm, we have parameter values 𝑁𝑙

𝐿 = 5, 𝑁𝑙2

𝐿2 = 0.025, and 𝑁𝑙3

𝐿3 =
0.000125. Thus, when 𝐶 is of order 1, a reasonable approximation is
keeping only the first two terms on the right-hand side. We set 𝜅 = 𝑁𝑙2

2𝐿2 .
The parameter 𝜅 is related to the mean free path 𝑑 and rod length 𝑙 by

𝜅 ≤ 𝑙 .

2𝑑
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See (A.1) of the Appendix for details. The binary collision assumption
fails if 𝑑 is of order 𝑙 or smaller, meaning that 𝜅 should be small. In
the numerical simulations in the subsequent sections, we will restrict
𝜅 < 0.5. The resulting kinetic equation becomes

𝜕𝑡𝑓 + 𝐞(𝜃) ⋅ 𝛁𝐱𝑓 = 2𝜅𝐿
𝑙

𝑄0(𝑓 ) + 𝜅𝑄1(𝑓 ). (12)

In the model of alignment that we consider in this paper, a rod after
n interaction assumes the orientation of the rod it collides with. The
et of orientations 𝜃𝑖, 𝜃𝑖 + 𝜋, 𝑖 = 1,… , 𝑘, if present initially, will be
preserved by the dynamics of transport and collision. In such situations,
the kinetic density 𝑓 is determined by the set of 2𝑘 densities of the
corresponding orientations, and Eq. (12) can be written as a system
f 2𝑘 partial differential equations for the orientation densities. An
xample of such a system is considered in the following sections.

. Numerical solutions and results from agent-based simulations
or case study

In the absence of correlations in the underlying system, kinetic
quations derived from Boltzmann’s hypothesis should accurately
odel the system’s evolution in time. However, the presence of cor-
elations can cause discrepancies to appear. Here we will test the
ccuracy of our kinetic equation by comparing the behavior of nu-
erical solutions to agent-based simulations of the underlying system.
e will use a test case to demonstrate that even for simple setups,
he microscopic rules of collision lead to a buildup of orientational
orrelations, causing the correlation-free model to underestimate the
ffects of rod-rod interactions. While this test case does not capture
he complexity present in many physical systems, it is enough to
emonstrate the need to account for correlations between rods when
odeling active matter systems such as bacterial communities.

.1. A model with two orientations

Consider Eq. (12) for distributions with 𝑛 fixed orientations
(𝐱, 𝜃, 𝑡) =

∑𝑛
𝑖=1 𝜌𝑖(𝐱, 𝑡)𝛿(𝜃−𝜃𝑖), 𝐱 = [𝑥, 𝑦]𝑇 . This substitution will result in

system of 𝑛 PDEs in two spatial dimensions. This system is typically
on-conservative, making it more difficult to solve numerically over
ong periods of time. To illustrate our point about the growth of
orrelations, we will focus on a reduced case with two orientation
ngles 𝜃1 and 𝜃2 where |𝜃2 − 𝜃1| ≤ 𝜋∕2. Then there is no nematic
lignment and, thus, the term 𝑄0(𝑓 ) vanishes. Additionally, as we will
how, the system of two PDEs can be written in a conservative form
nder certain assumptions about the initial distribution of orientations.
his makes accurate numerical solutions easier to obtain. Substituting
(𝐱, 𝜃, 𝑡) = 𝜌1(𝐱, 𝑡)𝛿(𝜃− 𝜃1) + 𝜌2(𝐱, 𝑡)𝛿(𝜃− 𝜃2) into (12) yields a system for

𝝆 = (𝜌1, 𝜌2) of the form

𝜕𝑡𝝆 + 𝐴(𝝆)𝜕𝑥𝝆 + 𝐵(𝝆)𝜕𝑦𝝆 = 0 (13)

where the matrices 𝐴 and 𝐵 are given by

𝐴 =

[

cos(𝜃1) + 𝜅| sin(𝜃2 − 𝜃1)| cos(𝜃2)𝜌2 −𝜅| sin(𝜃2 − 𝜃1)| cos(𝜃1)𝜌1
−𝜅| sin(𝜃2 − 𝜃1)| cos(𝜃2)𝜌2 cos(𝜃2) + 𝜅| sin(𝜃2 − 𝜃1)| cos(𝜃1)𝜌1

]

,

𝐵 =

[

sin(𝜃1) + 𝜅| sin(𝜃2 − 𝜃1)| sin(𝜃2)𝜌2 −𝜅| sin(𝜃2 − 𝜃1)| sin(𝜃1)𝜌1
−𝜅| sin(𝜃2 − 𝜃1)| sin(𝜃2)𝜌2 sin(𝜃2) + 𝜅| sin(𝜃2 − 𝜃1)| sin(𝜃1)𝜌1

]

.

To simplify these kinetic equations to a form easily analyzed, we
make two assumptions: that all densities vary only in the spatial
direction 𝑥 so the problem is effectively 1D with 𝜌(𝐱, 𝑡) = 𝜌(𝑥, 𝑡), and
that 𝜃1 = 𝜋

4 , 𝜃2 = 3𝜋
4 so the system can be put into conservation form.

n this setting, the system (13) is simply

𝜕𝑡𝜌1 +

√

2
2

𝜕𝑥
(

𝜌1
[

1 − 𝜅𝜌2
])

= 0

𝜕 𝜌 −

√

2
𝜕

(

𝜌
[

1 − 𝜅𝜌
])

= 0.

(14)
𝑡 2 2 𝑥 2 1 E

4 
We restrict our analysis to the regime 0 < 𝜅 < 0.5 to enforce the mean
free path of rods is greater than the rod length 𝑙 (see Appendix A).
We will consider a test case with two opposing waves of rods over a
constant background density. Each wave is a Gaussian moving over a
uniform background density of rods. The initial conditions for 𝜌1 and
𝜌2 are of the form

𝜌𝑖(𝑥, 0) = 𝑎𝑖 +
𝑏𝑖

√

2𝜋𝜎𝑖
𝑒−(𝑥−𝑐𝑖)

2∕(2𝜎2𝑖 ) (15)

with the constraints ∫ 1
0 ∫ 1

0 𝜌1(𝑥, 0) + 𝜌2(𝑥, 0)𝑑𝑥𝑑𝑦 = 1 from conservation
and an enforced constraint 𝑎𝑖∕𝑏𝑖 = 𝑟𝑖 for the ratio of background
cells to the cells forming the waves. The final parameters 𝑐𝑖 and 𝜎𝑖
then control the location and width of the waves. Additionally, the
maximum amplitude 𝑎𝑖+𝑏𝑖∕(

√

2𝜋𝜎𝑖) set below the bound established in
Appendix B. As time evolves, the linear factor 1− 𝜅𝜌𝑖 inside the spatial
derivative will decrease both the left-and right-moving waves’ speeds
when they interact. Finally, we set 𝑐1 = 0.25, 𝑐2 = 0.75, 𝜎1 = 𝜎2 = 0.0625,
and 𝑟𝑖 = 7 so the two waves’ peaks will move towards each other and
meet at 𝑥 = 0.5. We numerically solve the system (14) using the method
described in Appendix C.

3.2. Agent-based model setup

For the agent-based model, we set the domain size to 𝐿 = 400, the
velocity to 𝑣 =

√

2. Each rod 𝑖 = 1,… , 𝑁 followed the equations of
motion
𝑑𝐱𝑖
𝑑𝑡

= 𝑣[cos(𝜃𝑖), sin(𝜃𝑖)]𝑇

𝑑𝜃𝑖
𝑑𝑡

= (𝜃𝑘 − 𝜃𝑖)𝛿(𝑡 − 𝑇𝑖,𝑘).
(16)

where 𝛿(𝑡) is the Delta distribution and 𝑇𝑖,𝑘 denotes the times when
the 𝑖th rod collides with another rod 𝑘 and reorients. The 𝑥-coordinate
of the initial location of each rod was determined through random
sampling of the initial density profiles 𝜌𝑖(𝑥, 0) defined in Eq. (15). The
𝑦-coordinates were drawn from a uniform distribution 𝑈 (0, 𝐿) to match
the assumption in the simplified PDE model (14). Collisions between
rods were determined by in a manner consistent with the schematic in
Fig. 2 as follows.

The path traveled by rod 𝑖 was parameterized by 𝛤𝑖(𝑠) = 𝐱𝑖(𝑡) +
𝑠𝑣𝐞(𝜃𝑖). Two non-parallel paths intersect when 𝛤𝑖(𝑠1) = 𝛤𝑘(𝑠2), where
𝑠1 = (𝐱𝑘(𝑡) − 𝐱𝑖(𝑡)) ⋅ 𝐞(𝜃𝑘 + 𝜋∕2) and 𝑠2 = (𝐱𝑖(𝑡) − 𝐱𝑘(𝑡)) ⋅ 𝐞(𝜃𝑖 + 𝜋∕2). This
ntersection corresponds to rod 𝑖 colliding with rod 𝑘 if

1. 0 ≤ 𝑠1 ≤ 𝛥𝑡 (the collision happens in 𝛥𝑡 time)
2. 𝑠2 < 𝑠1 (rod 𝑘 arrives first)
3. ‖𝛤𝑘(𝑠1) − 𝛤𝑖(𝑠1)‖ ≤ 𝑙 (the tail of rod 𝑘 has not passed the point
where the paths cross).

If a collision is detected, rod 𝑖 undergoes a reorientation to angle 𝜃𝑘 at
time 𝑡+𝛥𝑡∕2. While this is an approximation to the actual collision time,
t can be made rigorous by restricted the mean-free path of rods to be
reater than the rod length 𝑙 so that 𝑡 + 𝛥𝑡∕2 is the average collision
ime. This has a physical argument based on the physical timescale of
eorientation 𝑙∕𝑣 (see Appendix A). We confirmed this approximation
as valid by comparing it with simulations where a reorientation
ccurred exactly at time 𝑠1 and found no significant difference in the
ensity distributions produced by the simulations. We also enforced
ollisions were binary by enforcing that a rod that would collide with
ultiple rods in a single time step only reoriented once upon the first
ollision. Lastly, we used the mean free path restriction to take time
teps of 𝛥𝑡 = 𝑙∕𝑣 in the simulation, reducing computational time.
The simulations are deterministic after initial rod positions are

ampled, so we combined 1000 simulations to smooth fluctuations and
ecover the mean behavior. It is worth noting that the systems (13)
nd (14) describe the evolution of the underlying ensemble average.
ach realization of the agent-based model is a single member of the
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Fig. 3. (A) Numerical solution of the kinetic equations for 𝜅 = 0.1. (B) Density profile for agent-based simulations for 𝜅 = 0.1 with 𝑁 = 2856 rods. (C) Density profile for agent-based
simulations for 𝜅 = 0.1 with 𝑁 = 45700 rods. (Inset) The discrepancy at the final time between the kinetic model density profile and the density profile from agent simulations for
various numbers of rods. The results indicate that the agent simulations show much greater changes in the density profile and do not converge to the kinetic model in the limit
𝑁 → ∞, 𝑙 → 0.
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ensemble, so to reasonably compare the agent simulations to the an-
alytical system, we must average over different realizations. While an
individual realization does not necessarily have a uniform distribution
in the 𝑦-direction (and in fact does not usually have a profile in the 𝑥-
direction that closely matches the analytic solution), after performing
this averaging, the agent density profile in the 𝑦-direction closely
resembles a uniform distribution as measured via the Kolmogorov–
Smirnov test and Kullback–Leibler divergence (see Appendix D for
details). Since the solutions of system (14) vary spatially only in the
-direction, we compared them to agent-based simulations by looking
nly at the 𝑥-coordinates of simulated rods. We then constructed a 1D
ernel density estimate (KDE) using these values. The resulting density
rofiles were then scaled to probability densities on 𝑥 ∈ [0, 1] so they
ould be compared to the density profiles obtained from numerically
olving the kinetic equations.

.3. Discrepancy between agent-based model and kinetic equations due to
luster formation

Our agent-based simulations deviate from the numerical solutions of
he kinetic equations, with the latter exhibiting a far less pronounced
hange in the density profile shape (Fig. 3 A&B). The peaks of the den-
ity profiles for both orientations slow down slightly as they approach
ach other, but the slowdown and the increase in the peak density
re much greater in the agent framework. If this discrepancy is due
o not being near the limit 𝑁 → ∞, 𝑙 → 0 with 𝜅 held constant,
ncreasing the number of simulated rods while keeping 𝜅 ∝ 𝑁𝑙2 fixed
hould theoretically improve the agreement. However, we see that this
s not the case (Fig. 3C). The simulations using higher numbers of rods
howed greater discrepancies. This suggests the disagreement is due
o one or more flaws in the assumptions used to derive the kinetic
quations.
The key assumption used in deriving the Boltzmann-type equation

as the statistical independence of the joint probability distribution (2).
his allowed us to express the probability that a pair of rods would have
spatial configuration leading to a collision in terms of the probability
f each rod individually occupying the corresponding spatial region.
his assumption is invalid if there are correlations between rods. Such
orrelations appear in clusters of aligned rods since they have a high
hance of having similar orientations due to collisions. Our collision
cheme results in both rods possessing the same orientation, so cluster
ormation is possible and would be a violation of our assumption of
tatistical independence.
For our purposes a cluster of rods was defined as a group of 𝑘 cells

t spatial locations 𝐱1,… , 𝐱𝑘 with min𝑗≠𝑖 ‖𝐱𝑖 − 𝐱𝑗‖ ≤ 𝜖 for all 1 ≤ 𝑖 ≤ 𝑘.
o measure the clustering present in our agent simulations, we used
ATLAB’s dbscan algorithm to group rods. The minimum distance

3 𝑙. This
etween the heads of rods was picked to be 𝜖 = 𝑙∕2 + 𝑣𝛥𝑡 = 2

5 
alue provided a reasonable upper bound that would capture groups
f rods that were co-aligned due to collisions. We then measured the
roportion of rods in clusters of size 𝑘 ≥ 4 (Fig. 4A). As expected,
lusters grew over time in our agent simulations, with the rate of
rowth increasing with 𝜅 for fixed 𝑁 . This increase in 𝜅 corresponds to
greater rod length, increasing the chance of collisions between rods.

.4. Quantifying loss of statistical independence

Since cluster formation is linked to a loss of statistical indepen-
ence [21,28,29], we next quantified the extent of this loss. Observing
rod with orientation 𝜃1 would decrease the probability of a nearby
od having orientation 𝜃2. This is typically captured using two-particle
r higher correlation functions. If the system is spatially homogeneous
r can be approximated as such, then there are several ingenious ways
o calculate these quantities [33–35]. Such an approach is commonly
sed to analyze systems near the onset of polar or nematic order. In
ur case, we are far from spatial homogeneity, so we use a different
pproach.
In our work, we directly calculated metrics from agent simulation

ata related to the quantity 𝑓2(𝑥1, 𝜃1, 𝑥2, 𝜃2, 𝑡) − 𝑓 (𝑥1, 𝜃1, 𝑡)𝑓 (𝑥2, 𝜃2, 𝑡) to
ee if a loss of independence is present. We first divided our domain

= [0, 𝐿] × [0, 𝐿] into 22𝑚 square subregions 𝛺𝑖𝑗 , 𝑖, 𝑗 = 1,… , 2𝑚

ith side length 𝐿∕2𝑚. Since subregions should be large enough to
ontain small clusters of rods, we set 𝑚 = 5 so that 𝐿∕2𝑚 = 12.5.
e pooled all rods appearing in 𝛺𝑖𝑗 across 1000 simulations with
ifferent initial agent locations 𝐱𝑖(0). Then we calculated coarse-grained
pproximations of the joint and marginal distributions conditioned on
ods being in 𝛺𝑖𝑗

𝑖𝑗
2 (𝜃1, 𝜃2, 𝑡) =

# pairs of rods with orientations (𝜃1, 𝜃2) in box 𝑖𝑗
# pairs of rods in box 𝑖𝑗

𝑓 𝑖𝑗 (𝜃1, 𝑡) =
#rods with orientation 𝜃1 in box 𝑖𝑗

#rods in box 𝑖𝑗

𝑓 𝑖𝑗 (𝜃2, 𝑡) =
# rods with orientation 𝜃2 in box 𝑖𝑗

# rods in box 𝑖𝑗

. (17)

To measure the loss of statistical independence based on orientations
in 𝛺𝑖𝑗 at time 𝑡, we chose Pearson’s correlation coefficient calculated
from the estimates of the conditional joint and marginal

𝑟𝑖𝑗𝜃1𝜃2 (𝑡) =

(

∑

𝑚,𝑛=1,2 𝜃𝑛𝜃𝑚𝑓
𝑖𝑗
2 (𝜃𝑛, 𝜃𝑚, 𝑡)

)

−𝑀2

∑

𝑛=1,2(𝜃𝑛 −𝑀)2𝑓 𝑖𝑗 (𝜃𝑛, 𝑡)
(18)

here 𝑀 the mean orientation calculated from 𝑓 𝑖𝑗 (𝜃1, 𝑡) and 𝑓 𝑖𝑗 (𝜃2, 𝑡).
Averaging over all subregions then gives us an average correlation 𝑟𝜃1𝜃2 .

As shown in Fig. 4B, the metric 𝑟𝜃1𝜃2 (𝑡) shows similar trends over
time to the cluster formation. The loss of statistical independence

increases over time, with higher values of 𝜅 showing a greater loss
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Fig. 4. (A) The percentage of rods in clusters with more than 4 rods over time. This quantity grows over time as rods collide and co-orient. (B) The loss of statistical independence
measured via a local orientation correlation coefficient 𝑟𝜃1𝜃2 (𝑡). Here, the correlations growing over time indicate that it becomes rarer to see nearby rods having different orientations,
e.g. cluster formation. (C) Snapshots of an agent simulation at the end of a simulation. The snapshot is taken at the center of the domain where the two waves interact.
Fig. 5. (A) The total number of collisions experienced on average per rod over time for 𝜅 = 0.001 (blue), 𝜅 = 0.01 (orange), and 𝜅 = 0.1 (purple). (B) The fraction of rods in
clusters with more than 4 rods versus the mean number of collisions experienced per rod by time 𝑡. This is plotted for 𝜅 = 0.001 (blue), 𝜅 = 0.01 (orange), and 𝜅 = 0.1 (purple) (C)
he orientational correlation coefficient 𝑟𝜃1𝜃2 (𝑡) between nearby pairs of rods versus the mean number of collisions experienced per rod by time 𝑡. Both figures show some data
ollapse when compared to Fig. 3, especially for low mean rod collisions per rod.
a
m
s

2

or fixed 𝑁 . This reflects the fact that the chance of finding a pair of
ods close together with different orientations is lowered from what is
xpected if statistical independence holds.
Since cluster formation results from the co-alignment between rods

pon collision, it is natural to see if the increase in cluster growth with
igher values of 𝜅 is due to a greater number of collisions. Calculating
he mean number of collisions per rod by time 𝑡 shows that the number
oes increase as 𝜅 increases (Fig. 5A). Furthermore, there is strong
vidence of data collapse when plotting both the proportion of rods
n clusters (Fig. 5B) and the loss of statistical independence versus the
umulative number of collisions per rod (Fig. 5C). There is a slight
ifference in the rescaled curve for 𝜅 = 0.1 compared to the other two
urves. This results from some rods starting in clusters at 𝑡 = 0 at higher
ensities. The reasons for the deviation in the rescaled 𝑟𝜃1𝜃2 cure for
= 0.1 is less clear but could result from cluster–cluster interactions
nce most rods reside in such clusters. The rescaling is based on rod–rod
ollisions, so cluster–cluster interactions might not fully be accounted
or.

.5. Improving agreement between agent simulations and kinetic equations
y inhibiting cluster formation

While the results of our simulations have indicated close links
etween cluster formation, loss of independence, and the discrepancy
etween the equations and agent simulations, they have not shown a
trict cause and effect. To illustrate that clustering is the main cause
f the discrepancy, we introduce diffusion in 𝑦-direction into our agent
imulations. The addition of this noise will cause rods forming a cluster
o slowly drift apart at a rate dependent on the noise strength. This
6 
ddition will not impact the test case we considered for the kinetic
odel. Since initial conditions are constant in the 𝑦-direction, the
ystem given in (14) will remain unchanged by the vertical diffusion.

We implemented the same sets of agent simulations as before (𝑁 =
856, 𝜅 = 0.1) with the addition of different levels of noise 𝜎. Agent
rods step in the 𝑦-direction a random distance drawn from a normal
distribution𝑁(0, 𝜎) every 𝛥𝑡 = 𝑙∕𝑣. Since agent simulations are run with
unscaled variables, we nondimensionalize the noise by using the scaling
𝜎 → 𝜎∕(𝑙∕

√

2) in order to compare the strength of the noise to the rod
length 𝑙. The results of these simulations show that the addition of noise
in the 𝑦-direction improves agreement between the agent simulations
and the kinetic equations, with the former now resembling the latter
for a sufficient level of noise (Fig. 6A). Increasing the noise strength
from zero reduces the measured discrepancy between the kinetic and
agent density profiles (Fig. 6B) and decreases the proportion of rods
in clusters (Fig. 6C). However, the discrepancy is reduced only up
to a point. Once the strength of the scaled noise exceeds roughly 1
(corresponding to the standard deviation of the normal distribution
equaling the projection of a rod in the 𝑦-direction), the discrepancy
increases slightly before plateauing. A close analysis of the simulation
average showed that this discrepancy results from rods in the uniform
background being added to the leading front of a wave by rods in the
opposing wave (Movie 1). Why this is the case is unclear; however, the
reduction in clustering slows down at around the same level of noise. It
is possible that there are some aspects of rod correlations that the added
diffusion does not affect. For example, our collision scheme results in
both rods having similar x-coordinates. The addition of vertical diffu-
sion does not change this either. Therefore, successive collisions result
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Fig. 6. (A) Density profile for agent-based simulations with 𝑦-directional scaled noise of 1.06 for 𝜅 = 0.1 with 𝑁 = 2856 rods. A scaled noise level of 1 corresponds to an agent rod’s
ertical movement over time 𝛥𝑡 = 𝑙∕𝑣 being distributed normally as 𝑦(𝑡+𝑑𝑡) − 𝑦(𝑡) ∼ 𝑁(𝑙 sin(𝜃𝑖), 𝑙 sin(𝜃𝑖)) = 𝑁(𝑙∕

√

2, 𝑙∕
√

2) in between collisions, or equivalently to a vertical diffusion
oefficient of 𝑙2∕4. (B) Percentage of rods in clusters with more than 4 rods versus noise in 𝑦-direction. Increasing the noise in the vertical direction decreases the proportion of
ods in larger clusters (C) Discrepancy between the kinetic model and the agent-based simulations for different levels of white noise in the 𝑦-direction. The discrepancy initially
rops sharply but then increases slightly once the strength of the noise increases past 1, the length of a rod projected in the 𝑦-direction. Snapshots of agent simulations near noise
evels of 0, 1, and 2 are shown on the right. The snapshots are taken at the final time in the center of the domain ([150, 250] × [150, 250]) where the two waves interact.
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n more rods sharing similar x-coordinates, and potentially forming
ertical bands of rods regardless of vertical diffusion.

. Discussion

In this paper, we developed a kinetic model for the alignment of
elf-propelled hard rods where collisions result in asymmetric align-
ent. Using this model, we showed Boltzmann formalism severely
nderestimates the change in rod density profiles when two opposing
aves of rods interact. We explicitly measured the loss of statisti-
al independence that invalidates the classic assumption of molecular
haos Boltzmann-type equations rely on. Such a loss corresponds to the
ormation of rod clusters due to alignment from binary rod collisions.
ur results mirror those in other studies [21,28], however, we have
uilt upon these works by showing that mechanisms that destroy or
nhibit cluster formation help restore agreement between the kinetic
odel and agent-based implementations of the microscopic alignment
ules. As this discrepancy occurs even in the simple setup we consider,
ur work highlights the need to extend current methodologies beyond
oltzmann-type kinetic equations in order to accurately capture the
roperties of active matter in biological systems.
Boltzmann’s hypothesis can be justified when the mean free path is

arge compared to the range of local interactions, however, this is rarely
7 
atisfied at realistic densities when ordered motion is established [36].
dditionally, several studies have indicated that rapid cluster formation
an lead to a strong violation of the molecular chaos assumption needed
n the Boltzmann approach [21,28]. While gradual alignment results
n a better match, in principle any collision rule between particles
esulting in alignment can cause correlations to appear. Such collisions
re prevalent in collective dynamics at the cellular level due to a low
eynolds number, where cells must actively exert energy to maintain
heir motion. This is in contrast to Boltzmann gas dynamics, where
ollisions are assumed to be non-elastic and conserve momentum,
esulting in particles simply bouncing off each other. In addition to
iolations of Boltzmann’s hypothesis, the assumption of binary inter-
ctions used in such models is not enough to reproduce the observed
ynamics in some biological systems [30]. Binary interactions can
imply be too weak to produce the alignment seen experimentally,
ven when corrections are made to account phenomenologically for
orrelations. These breakdowns of Boltzmann-type models suggest they
re an overly-simplistic approach to modeling the emergence or sta-
ility of collective alignment. The emergence of local order almost
y definition involves the breakdown of statistical independence and
he growth of correlations as agents align and start moving together,
iolating Boltzmann’s hypothesis.
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There are several ways to extend kinetic models to incorporate
orientational correlations. Perhaps the simplest is to explicitly extend
the kinetic model to explicitly include equations for clusters of various
sizes. Gain and loss terms for these additional equations are then the
natural result of collisions among clusters and rods [37,38]. Peruani
et al. (2010) developed a framework where cluster size was explicitly
tracked in a hierarchy of equations, while Weber et al. (2013) [38] con-
sidered a simplified framework with two reaction equations for clusters
and single cells. Another set of approaches for incorporating correla-
tions involves direct modifications to the moment closure method. A
simple example is replacing the joint distribution 𝑓2(𝑥1, 𝜃1, 𝑥2, 𝜃2, 𝑡) with
(𝜃2 − 𝜃1)𝑓 (𝑥1, 𝜃1, 𝑡)𝑓 (𝑥2, 𝜃2, 𝑡), where 𝜒(𝜃2 − 𝜃1) is a phenomenological
erm accounting for correlations between different angles [30]. More
ophisticated methods involve higher-order moment closures of the
BGKY hierarchy [6,39,40] using the so-called cluster expansion that
xplicitly incorporates the evolution of the joint distribution 𝑓2 [41].
Such an approach was used by Chou and Ihle for Vicsek-style models
to extend beyond mean-field theory [42]. With the rapid advancement
of biological studies in the last decades, developing and applying
new analytical models to understand active matter in biology is of
crucial importance. Creating a tractable class of models that can capture
correlations or non-binary interactions would provide a cornerstone for
this young field.
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Appendix A. Mean free path

The mean free path (MFP) is defined as the average distance that
a rod moves between collisions. This distance can be computed as
the product of the speed 𝑣 and the time 𝜏 a rod moves between re-
orientations. To estimate 𝜏, we first compute the number of rods with

orientation 𝐞(𝜃) = (cos 𝜃, sin 𝜃) that will collide with a given rod (rod

8 
1) in the time [𝑡∗, 𝑡∗ + 𝛥𝑡], were 𝑡∗ marks the last change in rod 1’s
rientation. Without loss of generality, we consider rod 1 as moving
orizontally to the right, as in Fig. 7. Suppose that a coordinate system
s chosen so that the rod is at rest. Then the velocity of rods with
rientation 𝜃 is described by the vector 𝐰 = 𝑣(cos 𝜃−1, sin 𝜃). The heads
of the rods that rod 1 can collide with are located in a parallelogram 𝑃
formed by vectors 𝐰 𝛥𝑡 and 𝑙𝐞(𝜃). The area of this parallelogram equals
| sin𝜑(𝜃)|𝑣𝑙 𝛥𝑡. Using that 𝑁𝑓 (𝑥, 𝜃, 𝑡∗) is the local number of rods with a
given orientation, we estimate the number of collisions with 𝜃-oriented
rods in time 𝛥𝑡 as 𝑣𝑙𝑁𝑓 (𝑥, 𝜃, 𝑡∗)| sin𝜑(𝜃)| 𝛥𝑡, which is maximized at
= 𝜋∕2. Thus, the number of collisions over all orientations in 𝛥𝑡 time

can be estimated as

𝑣𝑙𝑁 𝛥𝑡∫ 𝑓 (𝑥, 𝜃, 𝑡∗) 𝑑𝜃 ≤ 𝑛(𝑥, 𝑡∗)𝑣𝑙 𝛥𝑡,

where 𝑛(𝑥, 𝑡∗) is the local rod number density. From this, we obtain
an upper bound for the frequency of collisions as 𝑛(𝑥, 𝑡∗)𝑣𝑙. The time
between collisions and the MFP are then bounded by

𝜏 ≥ 1
𝑛(𝑥, 𝑡∗)𝑣𝑙

, 𝑑 ≥ 1
𝑛(𝑥, 𝑡∗)𝑙

.

Note that both 𝜏 and the MFP 𝑑 are local quantities depending on 𝑥.
For the model we consider in this paper, we restrict the MFP to

𝑑 ≥ 𝑙. The rationale behind this is physics-based. When two rods collide,
there is a characteristic time scale for reorientation to occur given by
𝜏𝜃 = 𝑙∕𝑣 [7]. Therefore it makes sense to restrict the mean time between
collisions 𝜏 to the regime 𝜏 ≥ 𝜏𝜃 = 𝑙∕𝑣. This naturally yields 𝑑 ≥ 𝑙.

Our assumption that 𝑑 ≥ 𝑙 puts a restriction on the local density of
the form 𝑛(𝑥, 𝑡∗)𝑙2 ≤ 1, and subsequently on the parameter 𝜅 of the form

𝜅 = 𝑁𝑙2

2𝐿2
≤ 1

2
𝑙2 max

𝑥
𝑛(𝑥, 𝑡∗) ≤ 1

2
. (A.1)

Here we use that 𝑁∕𝐿2 is a lower bound on the maximum of 𝑛(𝑥, 𝑡∗).
Note that we cannot have 𝜅 = 0 without the local density being
identically 0.

Appendix B. Domain of hyperbolicity of system of Eqs. (14)

Here we will determine conditions under which system (14) is
hyperbolic. The system is given by

𝜕𝑡𝜌1 +

√

2
2

𝜕𝑥
[

𝜌1(1 − 𝜅𝜌2)
]

= 0

𝑡𝜌2 −

√

2
2

𝜕𝑥
[

𝜌2(1 − 𝜅𝜌1)
]

= 0,

(B.1)

where 𝜅 = 𝑁𝑙2

2𝐿2
. Denote the column vector 𝑈 = (𝜌1, 𝜌2)𝑇 and column

of the fluxes 𝐹 (𝑈 ) =
√

2
2 (𝜌1 − 𝜅𝜌1𝜌2,−𝜌2 + 𝜅𝜌1𝜌2)𝑇 . Then the system of

equations is expressed as

𝜕𝑡𝑈 + 𝜕𝑥𝐹 (𝑈 ) = 0.

he system is hyperbolic if the eigenvalues of the gradient matrix

𝑈𝐹 (𝑈 ) =

√

2
2

[

1 − 𝜅𝜌2 −𝜅𝜌1
𝜅𝜌2 −1 + 𝜅𝜌1

]

re real. The eigenvalues equal

± = 1

2
√

2

(

𝜅(𝜌1 − 𝜌2) ±
√

𝜅2(𝜌1 − 𝜌2)2 + 4 − 4𝜅(𝜌1 + 𝜌2)
)

.

hus, the system is hyperbolic whenever
2(𝜌1 − 𝜌2)2 + 4 − 4𝜅(𝜌1 + 𝜌2) ≥ 0

ith a sufficient condition

(𝜌1 + 𝜌2) ≤ 1.

Since (A.1) implies 𝜅 < 0.5, our kinetic model (14) must be restricted
to cases where the sum of the maximum density profiles for 𝜌1 and 𝜌2
total less than 2.

https://github.com/pmurphy12/Boltzmann-breakdown-code
https://github.com/pmurphy12/Boltzmann-breakdown-code
https://github.com/pmurphy12/Boltzmann-breakdown-code
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Fig. 7. Vector geometry used in the estimation of the MFP. (A) Rod at 𝐱 where 𝐞(𝜃) = (cos 𝜃, sin 𝜃) moves with velocity 𝑣𝐞(𝜃). In the reference coordinates of a horizontally moving
rod with velocity (𝑣, 0), the rod velocity is 𝐰. (B) a rod moving horizontally to the right, during time interval [𝑡∗ , 𝑡∗ + 𝛥𝑡] can collide with a rod which has orientation 𝐞(𝜃) whose
center is located in the parallelogram P, formed by vectors 𝐰 𝛥𝑡 and 𝑙𝐞(𝜃). The area of the parallelogram equals | sin𝜑|𝑣𝑙 𝛥𝑡.
Fig. 8. Kernel density estimates using rods from agent simulations in 2D space. (A) Initial rod positions taken from 1000 simulations. (B) Initial rod positions taken from the
equivalent of 105 simulations. (C) Final rod positions take from the 1000 simulations used in (A).
f
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Appendix C. Numerical methods

We express the system in (14) in flux form

𝑡𝑈 = −𝜕𝑥𝐹 , (C.1)

ith 𝑈 = (𝜌1, 𝜌2)𝑇 and 𝐹 (𝑈 ) =
√

2
2 (𝜌1 − 𝜅𝜌1𝜌2,−𝜌2 + 𝜅𝜌1𝜌2)𝑇 . Next, we

discretize the equation in space using the Lax–Friedrichs method [43]
and use the Heun time-stepping in time

𝑈̃𝑛
𝑖 = 𝑈𝑛

𝑖 − 𝛥𝑡𝑅𝐻𝑆(𝑈𝑛
𝑖 ),

𝑈𝑛+1
𝑖 = 𝑈𝑛

𝑖 + 𝛥𝑡
2

(

𝑅𝐻𝑆(𝑈𝑛
𝑖 ) + 𝑅𝐻𝑆(𝑈̃𝑛

𝑖 )
)

and define

𝑅𝐻𝑆(𝑈𝑖) = −
𝐹𝑖+1∕2 − 𝐹𝑖−1∕2

𝛥𝑥
ith

̂𝑖+1∕2 =
𝐹 (𝑈𝑖+1) + 𝐹 (𝑈𝑖)

2
− 𝐾

2
(𝑈𝑖+1 − 𝑈𝑖)

where 𝐾 = cos(𝜃1)(1 + 𝜅| sin(𝜃2 − 𝜃1)|) is the upper bound on the speed
f propagation given 𝜌1, 𝜌2 < 1. Therefore, the CFL condition for the
cheme above is 𝐾𝛥𝑡∕𝛥𝑥 < 1, and the additional diffusion introduced
y the scheme is proportional to 𝐷 = 𝐾𝛥𝑥∕2. The scheme is first order
in space and second order in time, but we found that it was sufficient
for our simulations. For the results presented in the body of the paper,
we chose a mesh size that gave 𝐾𝛥𝑡∕𝛥𝑥 = 0.0024 and 𝐷 = 0.15. We
compared the numerical solutions this mesh gave to one with a new
spatial discretization 10 times smaller (𝛥𝑥∕10). For this mesh, 𝐾𝛥𝑡∕𝛥𝑥 =
0.024 and 𝐷 = 0.015, lowering the effective diffusion by a factor of 10.
Additionally, the difference between the density profiles with the two
different meshes (measured via the 𝐿2 norm) was 6.55×10−4, indicating
the effect from the numerical diffusion is minimal and cannot account
 n

9 
for the fact that the final discrepancy in Fig. 6 does not vanish. This
can also be seen from the profiles themselves. Numerical diffusion will
cause the peaks of the profiles to decrease, but this is not observed
(Fig. 3A).

Appendix D. Averaging agent-based simulations

It is not immediately clear if the average agent-based simulations
yields a distribution uniform in the 𝑦-direction as assumed in the
analytical model (14). We tested uniformity in the 𝑦-direction us-
ing the Kolmogorov–Smirnov (KS) test and the continuous version of
Kullback–Leibler (KL) divergence. All tests below were done with all
rods regardless of orientation.

Fig. 8 below shows a kernel density estimate (KDE) of the com-
bined initial rod positions with 𝜅 = 0.1 in three cases: the initial
conditions over all 1000 simulations (2856000 rods), initial conditions
corresponding to 105 simulations (2.856 × 108 rod positions), and the
inal distribution of rods at the end of the simulations (2856000 rods).
n all three cases, there was some variability in the 𝑦-direction, with
the initial conditions from 105 simulations appearing the most uniform,
and the final rod positions from 1000 simulations appearing the least
uniform. Since one of the predictions of the analytical model is that
uniformity in the 𝑦-direction should be conserved, this indicated two
possibilities. Either uniform initial conditions in the 𝑦-direction are un-
stable, or the analytical model is failing to match the agent simulations.
Since the agent simulations run on the microscopic rules the analytical
model was derived from, the latter would suggest this disagreement is
another way in which the Boltzmann hypothesis is failing.

The rejection rates from the KS test for each of the three sets of
rod positions are given in Table D.1 below. For each, the 𝑥-direction
as divided into bins of equal size, and the KS test was performed on
he rods in each bin. Each test resulted in either an acceptance of the
ull hypothesis (that the distribution is uniform in the 𝑦-direction) or
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Table D.1
Results of the Kolmogorov-Smirnov test on the distribution of rods in the 𝑦-direction
with various bin sizes for the 𝑥-direction. The distribution of rods in the 𝑦-direction
was compared to a uniform distribution.
KS Test 400 bins 40 bins 4 bins 1 bin

IC 103 sims 6.25% 7.50% 0% 0%
IC 105 sims 4.76% 5.13% 0% 0%
FC 103 sims 8.25% 45% 75% 0%

Table D.2
Measurements of the Kullback-Leibler divergence on the distribution of rods in the
𝑦-direction. The KL divergence was measured for two initial conditions with 103 and
05 rods and for the final distribution of rods from the initial conditions with 103 rods

IC 103 sims IC 105 sims FC 103 sims

Average KL divergence 6 × 10−5 3 × 10−6 1.5 × 10−3

a rejection. All tests were done at standard level of rejection 𝛼 = 0.05.
IC indicates initial conditions, FC indicates final conditions at the end
of the simulation.

The rates of rejection were slightly lower for the finest and coarsest
bin sizes, but in all cases the results are the same when all rod positions
are considered together. The null hypothesis is not rejected, indicating
the distribution is close to uniform in the 𝑦-direction when all rods are
considered together or when the rods are grouped into bins with small
widths. Since the final rod positions averaged over 1000 simulations
appeared the least uniform, the final KS test with all rods was redone
at 𝛼 = 0.1 and 𝛼 = 0.2, corresponding to a stricter test condition. In
oth cases the KS test again did not reject the null hypothesis.
For the KL divergence, the KDE from each of the three cases was
easured against a uniform distribution at each value of 𝑥 where the

KDE was calculated. The values of the divergence where then averaged
over 𝑥 to get an average. The results are presented in Table D.2 below.
In all three cases, the divergence is quite low, indicated that from an
entropic viewpoint, the KDEs resemble uniform distributions in the
𝑦-direction.

From the KDEs, the KS test, and the KL divergence, we concluded
the distribution of rod positions in the 𝑦-direction is not perfectly
uniform, but does resemble a uniform distribution.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mbs.2024.109266.

References

[1] F.J. Ndlec, T. Surrey, A.C. Maggs, S. Leibler, Self-organization of microtubules
and motors, Nature 389 (6648) (1997) 305–308.

[2] Ingmar H. Riedel, Karsten Kruse, Jonathon Howard, A self-organized vortex array
of hydrodynamically entrained sperm cells, Science 309 (5732) (2005) 300–303.

[3] Vijay Narayan, Sriram Ramaswamy, Narayanan Menon, Long-lived giant num-
ber fluctuations in a swarming granular nematic, Science 317 (5834) (2007)
105–108.

[4] Volker Schaller, Christoph Weber, Christine Semmrich, Erwin Frey, Andreas R.
Bausch, Polar patterns of driven filaments, Nature 467 (7311) (2010) 73–77.

[5] Yutaka Sumino, Ken H. Nagai, Yuji Shitaka, Dan Tanaka, Kenichi Yoshikawa,
Hugues Chaté, Kazuhiro Oiwa, Large-scale vortex lattice emerging from
collectively moving microtubules, Nature 483 (7390) (2012) 448–452.

[6] Rajesh Balagam, Douglas B. Litwin, Fabian Czerwinski, Mingzhai Sun, Heidi B.
Kaplan, Joshua W. Shaevitz, Oleg A. Igoshin, Myxococcus xanthus gliding motors
are elastically coupled to the substrate as predicted by the focal adhesion model
of gliding motility, PLoS Comput. Biol. 10 (5) (2014) e1003619.

[7] Rajesh Balagam, Oleg A. Igoshin, Mechanism for collective cell alignment in
myxococcus xanthus bacteria, PLoS Comput. Biol. 11 (8) (2015) e1004474.

[8] Aparna Baskaran, M. Cristina Marchetti, Hydrodynamics of self-propelled hard
rods, Phys. Rev. E 77 (1) (2008) 011920.

[9] Aparna Baskaran, M. Cristina Marchetti, Enhanced diffusion and ordering of
self-propelled rods, Phys. Rev. Lett. 101 (26) (2008) 268101.
10 
[10] Aparna Baskaran, M. Cristina Marchetti, Statistical mechanics and hydrody-
namics of bacterial suspensions, Proc. Natl. Acad. Sci. USA 106 (37) (2009)
15567–15572.

[11] Dale Kaiser, Coupling cell movement to multicellular development in
myxobacteria, Nat. Rev. Microbiol. 1 (1) (2003) 45–54.

[12] Yilin Wu, Yi Jiang, Dale Kaiser, Mark Alber, Social interactions in myxobacterial
swarming, PLoS Comput. Biol. 3 (12) (2007) e253.

[13] Shashi Thutupalli, Mingzhai Sun, Filiz Bunyak, Kannappan Palaniappan,
Joshua W. Shaevitz, Directional reversals enable myxococcus xanthus cells to
produce collective one-dimensional streams during fruiting-body formation, J.
R. Soc. Interface 12 (109) (2015) 20150049.

[14] E. Bertin, M. Droz, G. Grégoire, Boltzmann and hydrodynamic description for
self-propelled particles, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 74 (2006).

[15] Pierre Degond, Angelika Manhart, Hui Yu, An age-structured continuum model
for myxobacteria, Math. Models Methods Appl. Sci. 28 (09) (2018) 1737–1770.

[16] Pierre Degond, Sébastien Motsch, Continuum limit of self-driven particles with
orientation interaction, Math. Models Methods Appl. Sci. 18 (supp01) (2008)
1193–1215.

[17] Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser, Kinetic
modelling of colonies of myxobacteria, Kinet. Relat. Models 14 (1) (2021) 1–24.

[18] Fernando Peruani, Andreas Deutsch, Markus Bär, Nonequilibrium clustering of
self-propelled rods, Phys. Rev. E 74 (3) (2006) 030904.

[19] Thomas Ihle, Kinetic theory of flocking: Derivation of hydrodynamic equations,
Phys. Rev. E 83 (3) (2011) 030901, Publisher: American Physical Society.

[20] François Bolley, José A. Cañizo, José A. Carrillo, Mean-field limit for the
stochastic Vicsek model, Appl. Math. Lett. 25 (3) (2012) 339–343.

[21] Timo Hanke, Christoph A. Weber, Erwin Frey, Understanding collective dynamics
of soft active colloids by binary scattering, Phys. Rev. E 88 (5) (2013) 052309,
Publisher: American Physical Society.

[22] A. Peshkov, E. Bertin, F. Ginelli, H. Chaté, Boltzmann–Ginzburg–Landau ap-
proach for continuous descriptions of generic Vicsek-like models, Eur. Phys. J.
Spec. Top. 223 (7) (2014) 1315–1344.

[23] Misha Perepelitsa, Ilya Timofeyev, Patrick Murphy, Oleg A. Igoshin, Mean-field
model for nematic alignment of self-propelled rods, Phys. Rev. E 106 (3) (2022)
034613, Publisher: American Physical Society.

[24] Fernando Peruani, Andreas Deutsch, Markus Bär, A mean-field theory for self-
propelled particles interacting by velocity alignment mechanisms, Eur. Phys. J.
Spec. Top. 157 (2008) 111–122.

[25] F. Ginelli, F. Peruani, M. Bär, H. Chaté, Large-scale collective properties of
self-propelled rods, Phys. Rev. Lett. 104 (2010).

[26] Pierre Degond, Tong Yang, Diffusion in a continuum model of self-propelled
particles with alignment interaction, Math. Models Methods Appl. Sci. 20
(supp01) (2010) 1459–1490.

[27] Pierre Degond, Angelika Manhart, Hui Yu, A continuum model for nematic
alignment of self-propelled particles, Discrete Contin. Dyn. Syst. - B 22 (4) (2017)
1295.

[28] Florian Thüroff, Christoph A. Weber, Erwin Frey, Critical assessment of the
Boltzmann approach to active systems, Phys. Rev. Lett. 111 (19) (2013) 190601,
Publisher: American Physical Society.

[29] T. Ihle, Towards a quantitative kinetic theory of polar active matter, Eur. Phys.
J. Spec. Top. 223 (7) (2014) 1293–1314.

[30] Ryo Suzuki, Christoph A. Weber, Erwin Frey, Andreas R. Bausch, Polar pattern
formation in driven filament systems requires non-binary particle collisions, Nat.
Phys. 11 (10) (2015) 839–843, Number: 10 Publisher: Nature Publishing Group.

[31] Fernando Peruani, Jörn Starruß, Vladimir Jakovljevic, Lotte Søgaard-Andersen,
Andreas Deutsch, Markus Bär, Collective motion and nonequilibrium cluster
formation in colonies of gliding bacteria, Phys. Rev. Lett. 108 (9) (2012) 098102,
Publisher: American Physical Society.

[32] Christoph A. Weber, Volker Schaller, Andreas R. Bausch, Erwin Frey, Nucleation-
induced transition to collective motion in active systems, Phys. Rev. E 86 (3)
(2012) 030901, Publisher: American Physical Society.

[33] Julian Jeggle, Joakim Stenhammar, Raphael Wittkowski, Pair-distribution func-
tion of active Brownian spheres in two spatial dimensions: Simulation results
and analytic representation, J. Chem. Phys. 152 (19) (2020) 194903.

[34] Rüdiger Kürsten, Sven Stroteich, Martín Zumaya Hernández, Thomas Ihle,
Multiple particle correlation analysis of many-particle systems: formalism and
application to active matter, Phys. Rev. Lett. 124 (8) (2020) 088002.

[35] Rüdiger Kürsten, Thomas Ihle, Quantitative kinetic theory of flocking with
three-particle closure, Phys. Rev. E 104 (3) (2021-09-03) 034604.

[36] Len Pismen, Active matter within and around us: From self-propelled particles
to flocks and living forms, The Frontiers Collection, Springer International
Publishing, Cham, 2021.

[37] F. Peruani, L. Schimansky-Geier, M. Bär, Cluster dynamics and cluster size
distributions in systems of self-propelled particles, Eur. Phys. J. Spec. Top. 191
(1) (2010) 173–185.

[38] Christoph A. Weber, Florian Thüroff, Erwin Frey, Role of particle conservation
in self-propelled particle systems, New J. Phys. 15 (4) (2013) 045014, Publisher:
IOP Publishing.

[39] N.N. Bogoliubov, Kinetic equations, J. Phys. USSR 10 (1946) 265–274.
[40] Harold Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math.

2 (1949) 331–407.

https://doi.org/10.1016/j.mbs.2024.109266
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb1
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb1
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb1
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb2
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb2
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb2
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb3
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb3
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb3
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb3
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb3
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb4
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb4
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb4
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb5
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb5
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb5
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb5
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb5
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb6
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb6
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb6
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb6
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb6
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb6
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb6
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb7
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb7
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb7
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb8
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb8
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb8
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb9
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb9
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb9
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb10
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb10
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb10
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb10
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb10
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb11
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb11
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb11
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb12
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb12
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb12
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb13
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb13
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb13
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb13
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb13
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb13
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb13
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb14
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb14
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb14
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb15
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb15
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb15
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb16
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb16
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb16
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb16
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb16
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb17
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb17
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb17
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb18
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb18
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb18
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb19
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb19
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb19
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb20
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb20
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb20
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb21
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb21
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb21
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb21
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb21
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb22
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb22
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb22
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb22
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb22
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb23
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb23
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb23
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb23
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb23
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb24
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb24
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb24
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb24
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb24
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb25
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb25
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb25
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb26
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb26
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb26
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb26
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb26
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb27
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb27
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb27
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb27
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb27
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb28
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb28
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb28
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb28
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb28
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb29
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb29
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb29
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb30
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb30
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb30
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb30
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb30
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb31
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb31
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb31
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb31
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb31
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb31
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb31
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb32
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb32
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb32
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb32
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb32
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb33
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb33
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb33
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb33
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb33
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb34
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb34
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb34
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb34
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb34
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb35
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb35
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb35
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb36
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb36
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb36
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb36
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb36
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb37
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb37
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb37
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb37
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb37
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb38
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb38
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb38
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb38
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb38
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb39
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb40
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb40
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb40


P. Murphy et al. Mathematical Biosciences 376 (2024) 109266 
[41] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag,
New York, 1988.

[42] Yen-Liang Chou, Thomas Ihle, Active matter beyond mean-field: Ring-kinetic
theory for self-propelled particles, Phys. Rev. E 91 (2) (2015) 022103, Publisher:
American Physical Society.
11 
[43] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge
University Press, 2002.

http://refhub.elsevier.com/S0025-5564(24)00126-3/sb41
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb41
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb41
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb42
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb42
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb42
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb42
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb42
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb43
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb43
http://refhub.elsevier.com/S0025-5564(24)00126-3/sb43

	Breakdown of Boltzmann-type models for the alignment of self-propelled rods
	Introduction
	Derivation of kinetic equation
	Numerical solutions and results from agent-based simulations for case study
	A model with two orientations
	Agent-based model setup
	Discrepancy between agent-based model and kinetic equations due to cluster formation
	Quantifying loss of statistical independence
	Improving agreement between agent simulations and kinetic equations by inhibiting cluster formation

	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Research data availability
	Acknowledgments
	Appendix A. Mean free path
	Appendix B. Domain of hyperbolicity of system of Eqs. Model4:2anglessim
	Appendix C. Numerical Methods
	Appendix D. Averaging Agent-Based Simulations
	Appendix E. Supplementary data
	References


