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ARTICLE INFO ABSTRACT
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Studies in the collective motility of organisms use a range of analytical approaches to formulate continuous
kinetic models of collective dynamics from rules or equations describing agent interactions. However, the
derivation of these kinetic models often relies on Boltzmann’s “molecular chaos” hypothesis, which assumes
that correlations between individuals are short-lived. While this assumption is often the simplest way to derive
tractable models, it is often not valid in practice due to the high levels of cooperation and self-organization
present in biological systems. In this work, we illustrated this point by considering a general Boltzmann-type
kinetic model for the alignment of self-propelled rods where rod reorientation occurs upon binary collisions.
We examine the accuracy of the kinetic model by comparing numerical solutions of the continuous equations
to an agent-based model that implements the underlying rules governing microscopic alignment. Even for the
simplest case considered, our comparison demonstrates that the kinetic model fails to replicate the discrete
dynamics due to the formation of rod clusters that violate statistical independence. Additionally, we show
that introducing noise to limit cluster formation helps improve the agreement between the analytical model
and agent simulations but does not restore the agreement completely. These results highlight the need to both
develop and disseminate improved moment-closure methods for modeling biological and active matter systems.
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1. Introduction of the cell that was struck (see Fig. 1) [6]. Reorientation itself occurs
on a characteristic time scale related to the ratio of the cell length
to cell velocity. Microtubule collisions on a 2D surface also exhibit
asymmetric realignments upon collision, with the additional possibility

of the colliding microtubule stalling until the struck microtubule has

Self-propelled rods are a fascinating class of active matter seen
across both living and non-living systems [1-7]. Due to their shape,
such systems are intrinsically capable of collective behavior through
realignments of rods due to physical collisions [8,9] or longer-ranged

hydrodynamic interactions when in a fluid [2,10]. These interactions
lead to the emergence of macroscopic collective motion such as flock-
ing, clustering, phase changes, and vortexes. Two notable biological
examples of collective motion in self-propelled rods are the dynamics
of rod-shaped gliding bacteria such as the soil bacterium Myxococcus
xanthus [11-13], and the behavior of groups of cellular cytoskeletal
rods (such as F-actin [4] or microtubules [5]) driven by molecular
motors deposited on the surface. Collisions between M. xanthus cells
often result in the head of the colliding cell reorienting along the length

passed [5].

Due to the interest surrounding systems of self-propelled rods, re-
searchers have developed various methods of modeling them. A popular
approach to studying the emergent behavior of these systems is by
deriving a probabilistic description [9,14-23]. A number of heuristic
mean-field models based on the notion of the mean nematic director
have been considered in [15,16,24-27]. Since rod reorientation takes
place only when rods collide, a more accurate approach consists in
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Fig. 1. An example of asymmetric alignment during the collision of two M. xanthus cells due to cell-substrate forces.

Source: Adapted from [6].

tracing rod collisions as they naturally occur and updating the kinetic
distribution function accordingly.

A common starting point for such derivations is an application of
Boltzmann framework that originated in the kinetic theory of gases.
The framework is based on 4 key elements: (i) the geometry (shape) of
interacting particles; (ii) the type of interactions, that determines how
particle states change in collisions; (iii) the proper asymptotic regime
in the model parameters; and (iv) the assumption of “molecular chaos”,
that is the absence of two-particle correlations. Importantly, the validity
of hypothesis (iv) depends on the geometry of interacting particles and
the type of interactions.

This modeling approach for self-propelled particles aligning through
collisions has been taken up by several authors [14,17,21,23,28-30].
In Bertin et al. (2006) [14], authors consider spherically shaped cells
that experience polar alignment with some amount of noise in the
post-collisional orientations. Their model is based on the zero-order
approximation of the interaction operator, which amounts to treating
terms of order NL—IZZ as negligible, where N represents the number of
particles, / denotes the particle size (radius), and L signifies a macro-
scopic length scale. This approximation signifies an asymptotic regime
where variations in the kinetic function across distances comparable
to the particle size can be disregarded, reminiscent of the classical
Boltzmann equation. Under these conditions and hypothesis (iv), the
authors derived a kinetic equation for the distribution of cells and a
reduced hydrodynamic-type model for the first few moments of the cell
density distribution, assuming that the macroscopic motion is slow.

Cells of more realistic shape (rod-shaped cells) were considered
in Hittmeir et al. (2021) [17]. The authors built a kinetic model in
which a pair of colliding co-oriented cells (rods with angle difference
|6, — 6,] < =/2) change their orientation to their average alignment;
otherwise (|6, — 6,| > z/2) both colliding cells reverse their direction
of motion. This complex interaction consists of a partial polar alignment
and a partial reversal. Again, the kinetic model is obtained using the
zero-order approximation of the interaction operator and the molecular
chaos assumption. For special sets of cell orientations, the authors
identify the corresponding set of equilibrium distributions and derive a
hydrodynamic-type model in the limit % — oo.

Over the last decade, the validity of Boltzmann formalism has come
into question. Evidence has shown that in some biological systems, this
modeling approach is not enough to reproduce the observed system
dynamics due to either weak binary interactions when stronger, multi-
particle interactions are needed [30], or due to rapid cluster formation
that violates the molecular chaos hypothesis [21,28,29]. These latter
studies suggest that biologically-relevant phenomena reliant on cluster

formation, such as the transitions from unordered to collective mo-
tion [18,31,32], may not be accurately modeled with Boltzmann-type
equations. However, results from Thiiroff et al. (2013) [28] suggest that
a Boltzmann approach can be appropriate for systems that align weakly
or gradually over time.

In this paper, we present a refined kinetic model that offers a more
precise representation of cell interactions, taking into account both
the nature of these interactions and the specific asymptotic regime
governing the interaction operator. Furthermore, we examine the com-
patibility between these assumptions and the underlying hypothesis of
molecular chaos.

We assume that cells are rod-shaped and when a given cell strikes
a second cell, it instantly turns around its “head” (the tip of the rod
in the direction of motion) to match a second cell’s orientation. Thus,
in our model, the re-orientations are truly nematic and also asymmetric,
in agreement with empirical observations of myxobacteria alignment,
Fig. 1. For the asymptotic parameter regime, our model goes beyond
the zero-order approximation used in the above-mentioned papers, by
including the next-order correction. In fact, if one takes the values of
model parameters from typical experiments with myxobacteria, one
can see that the second-order correction term (in a non-dimensional
equation) can be as large as 0.1 and, thus, is not negligible. We
derive our main kinetic equation for the nematic alignment under
these assumptions (Section 2, Eq. (12)). In Section 3, we reduce this
general kinetic equation to a system of numerically tractable PDEs by
assuming only a finite number of orientations are present. The system
turns out to be conservative and of the hyperbolic type. We then use a
Lax-Friedrichs numerical algorithm, specifically designed to treat such
systems, to obtain the numerical solutions.

Additionally, in Section 3 we perform a comparative study of the
numerical solutions of the PDEs with the agent-based simulations to
determine the validity of the molecular chaos assumption. Our main
finding here is that, unless an appreciable amount of noise is added to
the model, the molecular chaos assumption does not hold. We show
that even in simple cases the agent model exhibits cluster formation,
with the rate of clustering increasing with the number of cells for the
asymptotic regime considered.

As previously discussed, these results do not come as a complete sur-
prise; instead, they validate the criticisms directed towards the Boltz-
mann framework when applied to scenarios involving self-propelled,
rod-shaped cells engaged in asymmetric nematic alignment.

2. Derivation of kinetic equation

Our goal is to derive a tractable kinetic description of a system of
N self-propelled rods in of length / moving at constant speed v in 2
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Fig. 2. Geometry of the collision scheme considered in our model. P, is the set of
heads of rods with orientation #, that will hit the side of the rod with orientation 6
having its head at x, at time 7, when it moves for Ar units of time. Likewise, a rod
with orientation 0 at x at time ¢ will hit the side of a rod with orientation 6, having
its head in P, at time ¢. P, is formed by vectors /e(§) and v At(e(6,)—e(0)). P, is formed
by vectors /e(6,) and v Ar(e(d,) — e(6)).

dimensions, starting from a microscopic description of collisions. Let
f(x,0,1) be the probability a rod with orientation 6 has its head located
at x € 2 = [0, L] x [0, L] at time . We will next derive a kinetic
equation for f by finding an expression for the change in f over a
single time step of size Ar. To this end, we make several assumptions
about rod collisions. First, we assume that collisions are binary events,
with the striking rod reorienting to match the struck rod’s orientation
modulo z. This results in the nematic alignment of rods. Motivated
by M. xanthus dynamics, we further assume that reorientation occurs
through the head of the rod. Since we assume binary collisions, we will
make use of the 2-particle distribution function f,(x,6,x,,6;,1) to help
calculate collision events.
Denote by Af the change of f along the trajectory:

Af(x,0,1) = f(x+ve(d) At,0,t + Ar) — f(x,6,1),

with NAf representing the change in the number of rods with a given
location and orientation. In the absence of collisions, the change is
zero. If a collision occurred it could result in the gain or loss of rods
of orientation 6. The associated geometry of rods for gain and loss is
determined by fixing a spatial location x and considering two cases
using two (non-interacting) rods with orientations 6 and 6, and heads
at x. We then look at the sets of collisions in the next d¢ time that will
result in either a gain of a rod with orientation 6 (due to a collision
with a 6-rod) or an equivalent loss (due to the #-rod colliding). This
yields two regions P;(x,0,0,) and P,(x,0,0,) where another rod could
be located to cause a collision (see Fig. 2).
We can now use this setup to derive the change 4f.

T
Af(x,G,t):—(N—l)/ / £2(x.0.%,,0,,1) dx,d6,
-z J P,(x,0,0))

0+7/2
+ (N-1) / fo(x,01,%Xq,0,1)dx;d0,
0-/2 JP(x0.0))
0+1/2
+(N-1) / fo(x,01,%,0 + 7, t)dx,d0,
0-/2 JP/(x0+7.6))

(€Y

To get a closed-form equation for f we employ a commonly used
assumption that 2-particle distribution f,(x, ,x,,6,,) can be written as
the product of the marginal distributions f(x,0,t) and f(x;,6,,1), i.e.

f[2(%,0,x1,0,,1) = f(x,0,0) f(x1,0},1), (2)

for all pairs (x,6) and (x;, 0,). This first-order moment closure is known
as statistical independence, or molecular chaos, as it implies that the
presence of one rod does not affect the probability of finding the other
at the given position and orientation. Next, we write the integral terms
using a Taylor expansion in x;

FX,0,,0) = f£(X,0,,0 + VY f(X,0,,1) - (X, —x) + O(|x; —x/|%), 3)
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so that only an integral over 6, remains. Note that |x; — x| = O(/) since
two rods must be close to enable collision. A geometric computation
shows that the regions P, and P, where collisions can take place have
area |P|| = |Py| = lv At|sin(@ — 0,)|. Substituting the Taylor expansion
into the expression for Af and using the areas of P;, P, with the
integrals

2
/ x| —x)dx| = ! UAtlsin(ﬁ—el)le(01)+0(l3u Ar), 4
Py(x.0.0)) 2
and
2
/ o = dx; = “UA 6 — 6,)] e(8) + OPv 41), (5)
P(x.0.0)) 2
we obtain
0+7/2

Af(x,0,1) = (N — Div At/ sin(@ — 0))| f(x, 0 + 7,0 f(x,0,,1) dO,

0-1/2

-7

0+71/2
—(N = Dilv At/ sin(@ — 0,)| £(x,0,1) f(x,0, + 7,1) db,
/2

12 0+1/2
L W= Difoar / ['sin(0 — 01 (X, 8;,1) (e(6) - Vi f(x,0,1) + (6 + 7)
[

2 /2
VY, f(x,0 +x,1)) do,
(N = DPv At (042
N 2 /077!/2
+e(d, + 1)V, f(x,0, + 7.,1)) do,
+O(NPv Armax | £ max |V2 f]) + O(N I Af%).

I'sin(6 = 0))| £(x,0,1) (e(0)) - Vi f(x,0,,1)

(6)
Dividing the equation above by Ar and letting A4r — 0, we obtain the

kinetic equation

(N = D?v

0,/ +ve(0)-V,f = (N = DIvQy + ——

Q,+0 (NPvumax|f|max|V2f]),

)

where

O+7/2
0, = / I'sin@ = )| (f(X, 0 + 7.0 (%,0,,0) = [(X, 0,0 (x,6, +7,1)) dby,
4

/2
®
and

O+7/2
Q1=/ p | sin(6 — 6))1f(x,0,,0e(0) - Vs (f(x,0,1) — f(x,0 + 7,1)) db,
0-n

0+n/2
- / [sin(0 — 0| f(x,0,0e(0,) - Vi (f(x,0,,1) — f(x,0, + 7)) d0,.
0-x/2
9
In deriving the Q, term we used the identity e(6 + z) = —e(6).

We nondimensionalize Eq. (7) by setting = = L/v and rescaling the
variables using

R=x/L, i=t/r, f&0,0)=L>fRL,06,r). (10)

Dropping hats, the resulting scaled kinetic equation is

— — 12 3

o +e@) v = B0, 4 LN Q1+0<%>, an
where we assumed that the variations in the kinetic density f are
bounded, that is max | /| max |V§ f| £ C. For a typical experiment with
N = 1000 M. xanthus bacteria (! = 5 pm) on a domain of size L =
103 um, we have parameter values AL 5, T; = 0.025, and l}i—’: =
0.000125. Thus, when C is of order 1, a reasonable approximation is
keeping only the first two terms on the right-hand side. We set k = 2’—5
The parameter « is related to the mean free path d and rod length / by

K< —.

T 2d
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See (A.1) of the Appendix for details. The binary collision assumption
fails if d is of order / or smaller, meaning that « should be small. In
the numerical simulations in the subsequent sections, we will restrict
k < 0.5. The resulting kinetic equation becomes

o f+e) -V f= 2KTLQO(f)+KQ1(f)- 12)
In the model of alignment that we consider in this paper, a rod after
an interaction assumes the orientation of the rod it collides with. The
set of orientations 6;, 6, + =, i = 1,...,k, if present initially, will be
preserved by the dynamics of transport and collision. In such situations,
the kinetic density f is determined by the set of 2k densities of the
corresponding orientations, and Eq. (12) can be written as a system
of 2k partial differential equations for the orientation densities. An
example of such a system is considered in the following sections.

3. Numerical solutions and results from agent-based simulations
for case study

In the absence of correlations in the underlying system, kinetic
equations derived from Boltzmann’s hypothesis should accurately
model the system’s evolution in time. However, the presence of cor-
relations can cause discrepancies to appear. Here we will test the
accuracy of our kinetic equation by comparing the behavior of nu-
merical solutions to agent-based simulations of the underlying system.
We will use a test case to demonstrate that even for simple setups,
the microscopic rules of collision lead to a buildup of orientational
correlations, causing the correlation-free model to underestimate the
effects of rod-rod interactions. While this test case does not capture
the complexity present in many physical systems, it is enough to
demonstrate the need to account for correlations between rods when
modeling active matter systems such as bacterial communities.

3.1. A model with two orientations

Consider Eq. (12) for distributions with » fixed orientations
fx.0.0 =37, p;(x,)8(6—6,), x = [x, y]”. This substitution will result in
a system of n PDEs in two spatial dimensions. This system is typically
non-conservative, making it more difficult to solve numerically over
long periods of time. To illustrate our point about the growth of
correlations, we will focus on a reduced case with two orientation
angles 0, and 6, where |6, — 6,] < x/2. Then there is no nematic
alignment and, thus, the term Q,(f) vanishes. Additionally, as we will
show, the system of two PDEs can be written in a conservative form
under certain assumptions about the initial distribution of orientations.
This makes accurate numerical solutions easier to obtain. Substituting
f(x,0,1) = p(x,1)6(0 —0,) + p,(x,1)6(6 — 6,) into (12) yields a system for
p = (py, py) of the form

9;p + A(p)d,p + B(p)d,p =0 13)

where the matrices A and B are given by

—x|sin(6; — 6,)| cos(6,)p,

_ cos(#,) + k| sin(6, — 0,)| cos(6,)p,
cos(6,) + k| sin(6, — 0,)| cos(6,)p,

—k|sin@, — 6,)] cos(d,)p, ]

_ [ sin(6,) + x| sin(8, — 8,)] sin(6,)p,

—x|sin(@, — 6,)] sin(é,)p,
—x| sin(6; — 6,)] sin(0,)p,

sin(6,) + x| sin(6, — 6,)| sin(6,)p,

To simplify these kinetic equations to a form easily analyzed, we
make two assumptions: that all densities vary only in the spatial
direction x so the problem is effectively 1D with p(x,7) = p(x,1), and
that 6, = ’Z’, 0, = %” so the system can be put into conservation form.
In this setting, the system (13) is simply

2
o + %t& (o1 [1=xp]) =0
14

2
00y — gax (2 [1=xpi]) =0.
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We restrict our analysis to the regime 0 < k < 0.5 to enforce the mean
free path of rods is greater than the rod length / (see Appendix A).
We will consider a test case with two opposing waves of rods over a
constant background density. Each wave is a Gaussian moving over a
uniform background density of rods. The initial conditions for p;, and
p, are of the form

b.
pi(x.0) = a; + ———~xe*/@0]) (15)

2no;
with the constraints /01 /01 01(x,0) + py(x,0)dxdy = 1 from conservation
and an enforced constraint a;/b; = r; for the ratio of background
cells to the cells forming the waves. The final parameters ¢; and o;
then control the location and width of the waves. Additionally, the
maximum amplitude a;+b;/ (\/Eai) set below the bound established in
Appendix B. As time evolves, the linear factor 1 — kp; inside the spatial
derivative will decrease both the left-and right-moving waves’ speeds
when they interact. Finally, we set ¢; = 0.25, ¢, = 0.75, 6, = 0, = 0.0625,
and r; = 7 so the two waves’ peaks will move towards each other and
meet at x = 0.5. We numerically solve the system (14) using the method
described in Appendix C.

3.2. Agent-based model setup

For the agent-based model, we set the domain size to L = 400, the
velocity to v = \/5 Each rod i = 1,..., N followed the equations of
motion

dx; ; T

- = v[cos(8;), sin(6;)]

7 (16)
o = O =050 =T,).

where () is the Delta distribution and T;, denotes the times when
the ith rod collides with another rod k and reorients. The x-coordinate
of the initial location of each rod was determined through random
sampling of the initial density profiles p;(x,0) defined in Eq. (15). The
y-coordinates were drawn from a uniform distribution U (0, L) to match
the assumption in the simplified PDE model (14). Collisions between
rods were determined by in a manner consistent with the schematic in
Fig. 2 as follows.

The path traveled by rod i was parameterized by I;(s) = x;(r) +
sve(d;). Two non-parallel paths intersect when I(s;) = I (s,), where
51 = (%,(1) = X,(1)) - €0 + 7/2) and s, = (x,(1) — X, (1)) - €(6; + x/2). This
intersection corresponds to rod i colliding with rod k if

1. 0 < sy < 4¢ (the collision happens in 4z time)

2. 55 < s, (rod k arrives first)

3. [T (sy) = Ti(spIl < 1 (the tail of rod k has not passed the point
where the paths cross).

If a collision is detected, rod i undergoes a reorientation to angle 6, at
time 7+ A4t /2. While this is an approximation to the actual collision time,
it can be made rigorous by restricted the mean-free path of rods to be
greater than the rod length / so that ¢ + Ar/2 is the average collision
time. This has a physical argument based on the physical timescale of
reorientation //v (see Appendix A). We confirmed this approximation
was valid by comparing it with simulations where a reorientation
occurred exactly at time s; and found no significant difference in the
density distributions produced by the simulations. We also enforced
collisions were binary by enforcing that a rod that would collide with
multiple rods in a single time step only reoriented once upon the first
collision. Lastly, we used the mean free path restriction to take time
steps of A1 = /v in the simulation, reducing computational time.

The simulations are deterministic after initial rod positions are
sampled, so we combined 1000 simulations to smooth fluctuations and
recover the mean behavior. It is worth noting that the systems (13)
and (14) describe the evolution of the underlying ensemble average.
Each realization of the agent-based model is a single member of the
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Fig. 3. (A) Numerical solution of the kinetic equations for x = 0.1. (B) Density profile for agent-based simulations for k¥ = 0.1 with N = 2856 rods. (C) Density profile for agent-based
simulations for x = 0.1 with N =45700 rods. (Inset) The discrepancy at the final time between the kinetic model density profile and the density profile from agent simulations for
various numbers of rods. The results indicate that the agent simulations show much greater changes in the density profile and do not converge to the kinetic model in the limit

N - o0, - 0.

ensemble, so to reasonably compare the agent simulations to the an-
alytical system, we must average over different realizations. While an
individual realization does not necessarily have a uniform distribution
in the y-direction (and in fact does not usually have a profile in the x-
direction that closely matches the analytic solution), after performing
this averaging, the agent density profile in the y-direction closely
resembles a uniform distribution as measured via the Kolmogorov-
Smirnov test and Kullback-Leibler divergence (see Appendix D for
details). Since the solutions of system (14) vary spatially only in the
x-direction, we compared them to agent-based simulations by looking
only at the x-coordinates of simulated rods. We then constructed a 1D
kernel density estimate (KDE) using these values. The resulting density
profiles were then scaled to probability densities on x € [0, 1] so they
could be compared to the density profiles obtained from numerically
solving the kinetic equations.

3.3. Discrepancy between agent-based model and kinetic equations due to
cluster formation

Our agent-based simulations deviate from the numerical solutions of
the kinetic equations, with the latter exhibiting a far less pronounced
change in the density profile shape (Fig. 3 A&B). The peaks of the den-
sity profiles for both orientations slow down slightly as they approach
each other, but the slowdown and the increase in the peak density
are much greater in the agent framework. If this discrepancy is due
to not being near the limit N — o0, | — 0 with « held constant,
increasing the number of simulated rods while keeping x « NI? fixed
should theoretically improve the agreement. However, we see that this
is not the case (Fig. 3C). The simulations using higher numbers of rods
showed greater discrepancies. This suggests the disagreement is due
to one or more flaws in the assumptions used to derive the kinetic
equations.

The key assumption used in deriving the Boltzmann-type equation
was the statistical independence of the joint probability distribution (2).
This allowed us to express the probability that a pair of rods would have
a spatial configuration leading to a collision in terms of the probability
of each rod individually occupying the corresponding spatial region.
This assumption is invalid if there are correlations between rods. Such
correlations appear in clusters of aligned rods since they have a high
chance of having similar orientations due to collisions. Our collision
scheme results in both rods possessing the same orientation, so cluster
formation is possible and would be a violation of our assumption of
statistical independence.

For our purposes a cluster of rods was defined as a group of k cells
at spatial locations x, ..., X, with min;; [|x; — x;|| < eforall 1 <i < k.
To measure the clustering present in our agent simulations, we used
MATLAB’s dbscan algorithm to group rods. The minimum distance
between the heads of rods was picked to be ¢ = 1/2 + var = %l. This

value provided a reasonable upper bound that would capture groups
of rods that were co-aligned due to collisions. We then measured the
proportion of rods in clusters of size k > 4 (Fig. 4A). As expected,
clusters grew over time in our agent simulations, with the rate of
growth increasing with « for fixed N. This increase in x corresponds to

a greater rod length, increasing the chance of collisions between rods.
3.4. Quantifying loss of statistical independence

Since cluster formation is linked to a loss of statistical indepen-
dence [21,28,29], we next quantified the extent of this loss. Observing
a rod with orientation 6, would decrease the probability of a nearby
rod having orientation 6,. This is typically captured using two-particle
or higher correlation functions. If the system is spatially homogeneous
or can be approximated as such, then there are several ingenious ways
to calculate these quantities [33-35]. Such an approach is commonly
used to analyze systems near the onset of polar or nematic order. In
our case, we are far from spatial homogeneity, so we use a different
approach.

In our work, we directly calculated metrics from agent simulation
data related to the quantity f,(x;,0;,x,,0,,1) — f(x;,0,,1)f(x,,6,,1) to
see if a loss of independence is present. We first divided our domain
Q = [0, L] x [0, L] into 22 square subregions Qij, ij =1,..,2"
with side length L/2". Since subregions should be large enough to
contain small clusters of rods, we set m = 5 so that L/2" = 12.5.
We pooled all rods appearing in £;; across 1000 simulations with
different initial agent locations x;(0). Then we calculated coarse-grained
approximations of the joint and marginal distributions conditioned on
rods being in @;;

# pairs of rods with orientations (6,,6,) in box ij
# pairs of rods in box ij
#rods with orientation 6, in box ij
#rods in box ij
# rods with orientation 6, in box ij
# rods in box ij

170,.05.1) =

17,1 = a7

[0, =

To measure the loss of statistical independence based on orientations
in Q;; at time f, we chose Pearson’s correlation coefficient calculated
from the estimates of the conditional joint and marginal

g (Zm20000,0,.0) = M a5
ry, ()= — 18
e Y m12(6, = MPf1(6,.1)
where M the mean orientation calculated from f/(6,,t) and £ (8,,1).
Averaging over all subregions then gives us an average correlation ry g, .
As shown in Fig. 4B, the metric ry 4, (1) shows similar trends over
time to the cluster formation. The loss of statistical independence
increases over time, with higher values of x showing a greater loss
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Fig. 4. (A) The percentage of rods in clusters with more than 4 rods over time. This quantity grows over time as rods collide and co-orient. (B) The loss of statistical independence
measured via a local orientation correlation coefficient ry 4, (). Here, the correlations growing over time indicate that it becomes rarer to see nearby rods having different orientations,
e.g. cluster formation. (C) Snapshots of an agent simulation at the end of a simulation. The snapshot is taken at the center of the domain where the two waves interact.
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Fig. 5. (A) The total number of collisions experienced on average per rod over time for x = 0.001 (blue), x = 0.01 (orange), and x = 0.1 (purple). (B) The fraction of rods in
clusters with more than 4 rods versus the mean number of collisions experienced per rod by time ¢. This is plotted for x = 0.001 (blue), « = 0.01 (orange), and « = 0.1 (purple) (C)
The orientational correlation coefficient ry 4, (r) between nearby pairs of rods versus the mean number of collisions experienced per rod by time . Both figures show some data

collapse when compared to Fig. 3, especially for low mean rod collisions per rod.

for fixed N. This reflects the fact that the chance of finding a pair of
rods close together with different orientations is lowered from what is
expected if statistical independence holds.

Since cluster formation results from the co-alignment between rods
upon collision, it is natural to see if the increase in cluster growth with
higher values of « is due to a greater number of collisions. Calculating
the mean number of collisions per rod by time ¢ shows that the number
does increase as x increases (Fig. 5A). Furthermore, there is strong
evidence of data collapse when plotting both the proportion of rods
in clusters (Fig. 5B) and the loss of statistical independence versus the
cumulative number of collisions per rod (Fig. 5C). There is a slight
difference in the rescaled curve for ¥ = 0.1 compared to the other two
curves. This results from some rods starting in clusters at ¢ = 0 at higher
densities. The reasons for the deviation in the rescaled ry 4, cure for
k = 0.1 is less clear but could result from cluster—cluster interactions
once most rods reside in such clusters. The rescaling is based on rod-rod
collisions, so cluster—cluster interactions might not fully be accounted
for.

3.5. Improving agreement between agent simulations and kinetic equations
by inhibiting cluster formation

While the results of our simulations have indicated close links
between cluster formation, loss of independence, and the discrepancy
between the equations and agent simulations, they have not shown a
strict cause and effect. To illustrate that clustering is the main cause
of the discrepancy, we introduce diffusion in y-direction into our agent
simulations. The addition of this noise will cause rods forming a cluster
to slowly drift apart at a rate dependent on the noise strength. This

addition will not impact the test case we considered for the kinetic
model. Since initial conditions are constant in the y-direction, the
system given in (14) will remain unchanged by the vertical diffusion.

We implemented the same sets of agent simulations as before (N =
2856, k = 0.1) with the addition of different levels of noise ¢. Agent
rods step in the y-direction a random distance drawn from a normal
distribution N (0, ¢) every At = [ /v. Since agent simulations are run with
unscaled variables, we nondimensionalize the noise by using the scaling
c—o/l/ \/5) in order to compare the strength of the noise to the rod
length /. The results of these simulations show that the addition of noise
in the y-direction improves agreement between the agent simulations
and the kinetic equations, with the former now resembling the latter
for a sufficient level of noise (Fig. 6A). Increasing the noise strength
from zero reduces the measured discrepancy between the kinetic and
agent density profiles (Fig. 6B) and decreases the proportion of rods
in clusters (Fig. 6C). However, the discrepancy is reduced only up
to a point. Once the strength of the scaled noise exceeds roughly 1
(corresponding to the standard deviation of the normal distribution
equaling the projection of a rod in the y-direction), the discrepancy
increases slightly before plateauing. A close analysis of the simulation
average showed that this discrepancy results from rods in the uniform
background being added to the leading front of a wave by rods in the
opposing wave (Movie 1). Why this is the case is unclear; however, the
reduction in clustering slows down at around the same level of noise. It
is possible that there are some aspects of rod correlations that the added
diffusion does not affect. For example, our collision scheme results in
both rods having similar x-coordinates. The addition of vertical diffu-
sion does not change this either. Therefore, successive collisions result
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Fig. 6. (A) Density profile for agent-based simulations with y-directional scaled noise of 1.06 for x = 0.1 with N = 2856 rods. A scaled noise level of 1 corresponds to an agent rod’s
vertical movement over time 4r = //v being distributed normally as y(r +d1) — y(r) ~ N(Isin(6;),!sin(6,)) = N(I/ \/5,1 / \/5) in between collisions, or equivalently to a vertical diffusion
coefficient of /?/4. (B) Percentage of rods in clusters with more than 4 rods versus noise in y-direction. Increasing the noise in the vertical direction decreases the proportion of
rods in larger clusters (C) Discrepancy between the kinetic model and the agent-based simulations for different levels of white noise in the y-direction. The discrepancy initially
drops sharply but then increases slightly once the strength of the noise increases past 1, the length of a rod projected in the y-direction. Snapshots of agent simulations near noise
levels of 0, 1, and 2 are shown on the right. The snapshots are taken at the final time in the center of the domain ([150, 250] x [150, 250]) where the two waves interact.

in more rods sharing similar x-coordinates, and potentially forming
vertical bands of rods regardless of vertical diffusion.

4. Discussion

In this paper, we developed a kinetic model for the alignment of
self-propelled hard rods where collisions result in asymmetric align-
ment. Using this model, we showed Boltzmann formalism severely
underestimates the change in rod density profiles when two opposing
waves of rods interact. We explicitly measured the loss of statisti-
cal independence that invalidates the classic assumption of molecular
chaos Boltzmann-type equations rely on. Such a loss corresponds to the
formation of rod clusters due to alignment from binary rod collisions.
Our results mirror those in other studies [21,28], however, we have
built upon these works by showing that mechanisms that destroy or
inhibit cluster formation help restore agreement between the kinetic
model and agent-based implementations of the microscopic alignment
rules. As this discrepancy occurs even in the simple setup we consider,
our work highlights the need to extend current methodologies beyond
Boltzmann-type kinetic equations in order to accurately capture the
properties of active matter in biological systems.

Boltzmann’s hypothesis can be justified when the mean free path is
large compared to the range of local interactions, however, this is rarely

satisfied at realistic densities when ordered motion is established [36].
Additionally, several studies have indicated that rapid cluster formation
can lead to a strong violation of the molecular chaos assumption needed
in the Boltzmann approach [21,28]. While gradual alignment results
in a better match, in principle any collision rule between particles
resulting in alignment can cause correlations to appear. Such collisions
are prevalent in collective dynamics at the cellular level due to a low
Reynolds number, where cells must actively exert energy to maintain
their motion. This is in contrast to Boltzmann gas dynamics, where
collisions are assumed to be non-elastic and conserve momentum,
resulting in particles simply bouncing off each other. In addition to
violations of Boltzmann’s hypothesis, the assumption of binary inter-
actions used in such models is not enough to reproduce the observed
dynamics in some biological systems [30]. Binary interactions can
simply be too weak to produce the alignment seen experimentally,
even when corrections are made to account phenomenologically for
correlations. These breakdowns of Boltzmann-type models suggest they
are an overly-simplistic approach to modeling the emergence or sta-
bility of collective alignment. The emergence of local order almost
by definition involves the breakdown of statistical independence and
the growth of correlations as agents align and start moving together,
violating Boltzmann’s hypothesis.
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There are several ways to extend kinetic models to incorporate
orientational correlations. Perhaps the simplest is to explicitly extend
the kinetic model to explicitly include equations for clusters of various
sizes. Gain and loss terms for these additional equations are then the
natural result of collisions among clusters and rods [37,38]. Peruani
et al. (2010) developed a framework where cluster size was explicitly
tracked in a hierarchy of equations, while Weber et al. (2013) [38] con-
sidered a simplified framework with two reaction equations for clusters
and single cells. Another set of approaches for incorporating correla-
tions involves direct modifications to the moment closure method. A
simple example is replacing the joint distribution f,(x,,8,, x,, 6,,t) with
20, —0) f(x1,0,,1)f(x,,6,,1), where y(6, — 6,) is a phenomenological
term accounting for correlations between different angles [30]. More
sophisticated methods involve higher-order moment closures of the
BBGKY hierarchy [6,39,40] using the so-called cluster expansion that
explicitly incorporates the evolution of the joint distribution f, [41].
Such an approach was used by Chou and Ihle for Vicsek-style models
to extend beyond mean-field theory [42]. With the rapid advancement
of biological studies in the last decades, developing and applying
new analytical models to understand active matter in biology is of
crucial importance. Creating a tractable class of models that can capture
correlations or non-binary interactions would provide a cornerstone for
this young field.
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Appendix A. Mean free path

The mean free path (MFP) is defined as the average distance that
a rod moves between collisions. This distance can be computed as
the product of the speed v and the time 7 a rod moves between re-
orientations. To estimate 7, we first compute the number of rods with
orientation e(d) = (cos@,sin#) that will collide with a given rod (rod

Mathematical Biosciences 376 (2024) 109266

1) in the time [t*,7* + Ar], were r* marks the last change in rod 1’s
orientation. Without loss of generality, we consider rod 1 as moving
horizontally to the right, as in Fig. 7. Suppose that a coordinate system
is chosen so that the rod is at rest. Then the velocity of rods with
orientation 6 is described by the vector w = v(cos 6 — 1, sin #). The heads
of the rods that rod 1 can collide with are located in a parallelogram P
formed by vectors w Ar and /e(6). The area of this parallelogram equals
| sin @(0)|vl At. Using that N f(x, 0,t*) is the local number of rods with a
given orientation, we estimate the number of collisions with #-oriented
rods in time Ar as v/N f(x,0,t*)|sin p(0)| Az, which is maximized at
@ = r/2. Thus, the number of collisions over all orientations in At time
can be estimated as

vIN At/f(x,&,t*)dG < n(x,1")vl At,

where n(x,1*) is the local rod number density. From this, we obtain
an upper bound for the frequency of collisions as n(x,t*)vl. The time
between collisions and the MFP are then bounded by
S 1 ’ > 1 '
= n(x, t*)vl ~ n(x, %)l
Note that both 7 and the MFP d are local quantities depending on x.
For the model we consider in this paper, we restrict the MFP to
d > I. The rationale behind this is physics-based. When two rods collide,
there is a characteristic time scale for reorientation to occur given by
7y = [ /v [7]. Therefore it makes sense to restrict the mean time between
collisions 7 to the regime r > 7, = I/v. This naturally yields d > I.
Our assumption that d > / puts a restriction on the local density of
the form n(x,r*)I* < 1, and subsequently on the parameter « of the form

_ NP 1, w1
K—mﬁzl m)?x n(x,t )SE (A.l)
Here we use that N/L? is a lower bound on the maximum of n(x, t*).
Note that we cannot have x = 0 without the local density being

identically 0.

Appendix B. Domain of hyperbolicity of system of Eqgs. (14)

Here we will determine conditions under which system (14) is
hyperbolic. The system is given by

2
iax [1(1=xpy)] =0

opy +
2 (B.1)

2
0y — gax [172(1 - KP])] =0,

2
where k = % Denote the column vector U = (p, p,)" and column

of the fluxes F(U) = \/75(/)1 — Kp1py,—py + kp1py)T. Then the system of
equations is expressed as

o,U + 0, F(U) = 0.
The system is hyperbolic if the eigenvalues of the gradient matrix

ﬁ I —kpy —Kpy
2

VyFU) =
vFO kpy  —l+xp

are real. The eigenvalues equal

hy= —— (x(pl ~p2) £ \[K20y — 92+ 4~ dx (o + p2>> .

2v2

Thus, the system is hyperbolic whenever
K2(py = p2)* +4 = 4K(p; +p3) 2 0

with a sufficient condition

k(py+pp) < 1.

Since (A.1) implies « < 0.5, our kinetic model (14) must be restricted
to cases where the sum of the maximum density profiles for p, and p,
total less than 2.
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>, I(cos 6,sin 0)

wdt

Fig. 7. Vector geometry used in the estimation of the MFP. (A) Rod at x where e(9) = (cos 0, sin @) moves with velocity ve(d). In the reference coordinates of a horizontally moving
rod with velocity (v,0), the rod velocity is w. (B) a rod moving horizontally to the right, during time interval [¢*,7* + A¢] can collide with a rod which has orientation e(9) whose
center is located in the parallelogram P, formed by vectors w At and /e(f). The area of the parallelogram equals |sin@|vl At.
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Fig. 8. Kernel density estimates using rods from agent simulations in 2D space. (A) Initial rod positions taken from 1000 simulations. (B) Initial rod positions taken from the
equivalent of 10° simulations. (C) Final rod positions take from the 1000 simulations used in (A).

Appendix C. Numerical methods

We express the system in (14) in flux form
o,U =—0,F, (c.1)

. 2
with U = (p, p,)" and F(U) = %(P] — KPPy, —py + Kpypy)T . Next, we
discretize the equation in space using the Lax-Friedrichs method [43]
and use the Heun time-stepping in time

U"=U"- &4t RHS(UD),

urtl =ur+ A (RHSU" + RHS@TM)
2 ! '
and define
£ —F_
RHSWU)) = ——IH/QAX i
with
R FU,.)+FU) K
Fip= % ~ 2 Wi =)

where K = cos(0,)(1 + k| sin(, — 6,)]) is the upper bound on the speed
of propagation given p,, p, < 1. Therefore, the CFL condition for the
scheme above is K4r/Ax < 1, and the additional diffusion introduced
by the scheme is proportional to D = K4x/2. The scheme is first order
in space and second order in time, but we found that it was sufficient
for our simulations. For the results presented in the body of the paper,
we chose a mesh size that gave KAr/Ax = 0.0024 and D = 0.15. We
compared the numerical solutions this mesh gave to one with a new
spatial discretization 10 times smaller (4x/10). For this mesh, KA7/Ax =
0.024 and D = 0.015, lowering the effective diffusion by a factor of 10.
Additionally, the difference between the density profiles with the two
different meshes (measured via the L? norm) was 6.55x 104, indicating
the effect from the numerical diffusion is minimal and cannot account

for the fact that the final discrepancy in Fig. 6 does not vanish. This
can also be seen from the profiles themselves. Numerical diffusion will
cause the peaks of the profiles to decrease, but this is not observed
(Fig. 3A).

Appendix D. Averaging agent-based simulations

It is not immediately clear if the average agent-based simulations
yields a distribution uniform in the y-direction as assumed in the
analytical model (14). We tested uniformity in the y-direction us-
ing the Kolmogorov-Smirnov (KS) test and the continuous version of
Kullback-Leibler (KL) divergence. All tests below were done with all
rods regardless of orientation.

Fig. 8 below shows a kernel density estimate (KDE) of the com-
bined initial rod positions with ¥ = 0.1 in three cases: the initial
conditions over all 1000 simulations (2856000 rods), initial conditions
corresponding to 10° simulations (2.856 x 10% rod positions), and the
final distribution of rods at the end of the simulations (2856000 rods).
In all three cases, there was some variability in the y-direction, with
the initial conditions from 10 simulations appearing the most uniform,
and the final rod positions from 1000 simulations appearing the least
uniform. Since one of the predictions of the analytical model is that
uniformity in the y-direction should be conserved, this indicated two
possibilities. Either uniform initial conditions in the y-direction are un-
stable, or the analytical model is failing to match the agent simulations.
Since the agent simulations run on the microscopic rules the analytical
model was derived from, the latter would suggest this disagreement is
another way in which the Boltzmann hypothesis is failing.

The rejection rates from the KS test for each of the three sets of
rod positions are given in Table D.1 below. For each, the x-direction
was divided into bins of equal size, and the KS test was performed on
the rods in each bin. Each test resulted in either an acceptance of the
null hypothesis (that the distribution is uniform in the y-direction) or
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Table D.1

Results of the Kolmogorov-Smirnov test on the distribution of rods in the y-direction
with various bin sizes for the x-direction. The distribution of rods in the y-direction
was compared to a uniform distribution.

KS Test 400 bins 40 bins 4 bins 1 bin

IC 103 sims 6.25% 7.50% 0% 0%

IC 10° sims 4.76% 5.13% 0% 0%

FC 10° sims 8.25% 45% 75% 0%
Table D.2

Measurements of the Kullback-Leibler divergence on the distribution of rods in the
y-direction. The KL divergence was measured for two initial conditions with 10° and

10° rods and for the final distribution of rods from the initial conditions with 10° rods.

IC 10° sims IC 10° sims FC 10° sims

Average KL divergence 6x 1073 3x107° 1.5%x 1073

a rejection. All tests were done at standard level of rejection a = 0.05.
IC indicates initial conditions, FC indicates final conditions at the end
of the simulation.

The rates of rejection were slightly lower for the finest and coarsest
bin sizes, but in all cases the results are the same when all rod positions
are considered together. The null hypothesis is not rejected, indicating
the distribution is close to uniform in the y-direction when all rods are
considered together or when the rods are grouped into bins with small
widths. Since the final rod positions averaged over 1000 simulations
appeared the least uniform, the final KS test with all rods was redone
at « = 0.1 and a = 0.2, corresponding to a stricter test condition. In
both cases the KS test again did not reject the null hypothesis.

For the KL divergence, the KDE from each of the three cases was
measured against a uniform distribution at each value of x where the
KDE was calculated. The values of the divergence where then averaged
over x to get an average. The results are presented in Table D.2 below.
In all three cases, the divergence is quite low, indicated that from an
entropic viewpoint, the KDEs resemble uniform distributions in the
y-direction.

From the KDEs, the KS test, and the KL divergence, we concluded
the distribution of rod positions in the y-direction is not perfectly
uniform, but does resemble a uniform distribution.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mbs.2024.109266.
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