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ABSTRACT

This study presents an enhanced protein design algorithm that aims to emulate natural heterogeneity of protein sequences. Initial analy-
sis revealed that natural proteins exhibit a permutation composition lower than the theoretical maximum, suggesting a selective utilization
of the 20-letter amino acid alphabet. By not constraining the amino acid composition of the protein sequence but instead allowing ran-
dom reshuffling of the composition, the resulting design algorithm generates sequences that maintain lower permutation compositions in
equilibrium, aligning closely with natural proteins. Folding free energy computations demonstrated that the designed sequences refold to
their native structures with high precision, except for proteins with large disordered regions. In addition, direct coupling analysis showed
a strong correlation between predicted and actual protein contacts, with accuracy exceeding 82% for a large number of top pairs (>4L).
The algorithm also resolved biases in previous designs, ensuring a more accurate representation of protein interactions. Overall, it not only
mimics the natural heterogeneity of proteins but also ensures correct folding, marking a significant advancement in protein design and
engineering.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0232831

I. INTRODUCTION The field of protein design has advanced significantly in recent
years, driven by improvements in computational power, algo-
rithm development, and our understanding of protein structure and

function. Current state-of-the-art approaches include both rational

Protein design is a rapidly growing field with the potential to
revolutionize medicine, biotechnology, and our understanding of
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the principles of life.”” The ability to create proteins with specific
functions and properties has profound implications, including the
development of highly specific therapeutics and diagnostics for cur-
rently incurable diseases, as well as the creation of bio-materials and
enzymes with tailored properties, such as environmental respon-
siveness and enhanced sustainability for the chemical industry,
supporting the green revolution.

design and directed evolution techniques. Rational design requires
knowledge of protein structures to engineer proteins with desired
structures or functions. This can include designing proteins from
scratch with little resemblance to the natural ones or modifying
existing proteins to enhance their stability, activity, or specificity.
Directed evolution mimics the natural evolutionary process by gen-
erating large libraries of protein variants and selecting those with
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the desired traits.” In addition, machine learning and artificial
intelligence are increasingly integrated into protein design work-
flows, enabling the prediction of protein structures and functions
from amino acid sequences with unprecedented accuracy. Recent
breakthroughs include the use of deep learning models, such as
AlphaFold, which have achieved remarkable success in predicting
protein structures with atomic-level precision, thereby providing
invaluable insights into the design of proteins.*

Despite these advancements, current design approaches have
limitations. Rational design often requires extensive knowledge of
the target protein structure, which may not always be available.
Moreover, it can be challenging to accurately predict the func-
tional consequences of specific modifications. Directed evolution,
while powerful, is inherently random and requires high-throughput
screening methods that can be time-consuming and resource-
intensive. In addition, both methods can struggle with the vast com-
binatorial space of possible protein sequences, making it difficult
to explore all potential designs comprehensively. These limitations
highlight the need for more efficient and unbiased methodologies
that can explore a wider range of sequence space and yield functional
proteins with high precision.

A potential solution to these limitations is the use of coarse-
grained protein models for design. These models enable rapid explo-
ration of the sequence space through simple point mutations and
residue pair-swapping by simplifying the representation of proteins,
thereby significantly accelerating computational processes. How-
ever, the use of coarse-grained models comes with its own set of
challenges. One significant issue is that these models can easily pro-
duce trivial solutions resembling homopolymers, where sequences
consist of repetitions of the same few amino acids. Such sequences
contain very little information and cannot fold back to a target
structure. For instance, various design methods, such as Rosetta,
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FIG. 1. Logarithm of the number of permutations for a given protein composition vs
the protein length. The plot shows three types of proteins: natural proteins from the
PF00015 family (black x’s), random sequences generated from the average pro-
tein composition (blue diamonds), and random sequences excluding cysteine and
proline amino acids (red diamonds). Each point represents a protein sequence.
The data reveal that natural proteins exhibit a permutation composition lower
than the maximum possible with an 18-letter alphabet, and similar to the average
composition.
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incorporate solutions to avoid homopolymer sequences by using
the average composition of amino acids in nature and other con-
straints to ensure sequence diversity.” Previously, it was shown that
highly heterogeneous sequences fold systematically better.”” How-
ever, when heterogeneity is enforced either through a bias or by fix-
ing the protein composition, the resulting sequences do not exhibit
the same level of heterogeneity as natural sequences (see Fig. 1). This
discrepancy often leads to designs that cannot be compared to the
alignments of natural sequences from different organisms, which are
the results of evolution to solve the inverse folding problem.

This work presents an approach to protein design that
addresses existing limitations by combining point mutation and pair
swap moves in a Metropolis Monte Carlo algorithm. This method
allows the design of sequences without imposing biases on protein
composition, thereby recovering the natural permutations that are
lost when average amino acid compositions are used. Such designed
sequences are analyzed using direct coupling analysis (DCA), and
for specific proteins selected from the pool of design candidates,
we test their refolding capabilities. DCA has emerged as a powerful
tool for inferring direct interactions between residues within protein
sequences based purely on evolutionary data.” Our results demon-
strate the effectiveness of this approach in designing sequences that
fold to a target structure and have compositions compatible with
natural proteins.

Il. METHODS
A. The Caterpillar protein model

This sequence design procedure is based on the Caterpillar
model.” This model represents the protein backbone as a fully atom-
istic five-bead system, with simplified (coarse-grained) side chains
depicted by spherically symmetric potentials centered on the Ca
atoms. It can simulate both protein folding and the design of fold-
able proteins, facilitated by the Monte Carlo method used for the
simulation.

The Caterpillar model” is a coarse-grained model of protein
folding that represents the protein backbone using a five-atom rep-
resentation per residue (see Fig. 1). In this model, the degrees of
freedom are limited to the torsional angles ¢, and ¢,, while all other
structural parameters are kept fixed at values obtained from the lit-
erature.” This simplified representation allows the model to capture
the essential features of protein folding while remaining compu-
tationally efficient. The total energy of a protein, E, in the Cater-
pillar model is given by the sum of the backbone hydrogen bond
energy, the side-chain interaction energy, and the residue-solvent
interaction energy, scaled appropriately,

E = Ey + aE(&, Enon, Q),

E(&,Enon, Q) = Y eyl (ri) + Exon ), Esol(Q — ),
% %

where

e Ep is the total energy of the backbone hydrogen bonds as
defined in Eq. (2),

e « is a scaling factor that balances the contributions of
hydrogen bonding and other interactions, and
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e Epon rescales the Dolittle hydrophobicity index to match
the experimental conditions.

Large values of a may lead to the breaking of the maxi-
mum valence principle, favoring structures dominated by hydrogen
bonds, while small values may overly favor side-chain and solvation
interactions, resulting in overly compact structures.

1. Backbone hydrogen bond interactions

Backbone hydrogen bonds are a key factor in stabilizing sec-
ondary structures, such as alpha-helices and beta-sheets. In the
Caterpillar model, these interactions are modeled using a 10-12
Lennard-Jones type potential,’” which is defined by the following
expression:

En = —en(cos 6 cos 92)V|:5(0)12 — 6(0)10], (2)

TOH ToH
where

e ron is the distance between the hydrogen atom of the amide
group (NH) and the oxygen atom of the carboxyl group
(CO) of the main chain,

e 0=20 A is the characteristic distance for hydrogen
bonding,

o ¢y = —3.1kpTRer is the hydrogen bond strength,

e 0; and 0, are the angles that determine the orientation of the
hydrogen bond, and

e v =2isan exponent that modulates the angular dependence.

The 10-12 Lennard-Jones potential is combined with an angu-
lar term (cos 61 cos6,)" to ensure proper alignment of the hydrogen
bond donor and acceptor groups, stabilizing secondary structures.

2. Side chain interactions

The side chain interactions are modeled using effective
sphere-sphere potentials centered on the C, atoms of the amino
acids. These interactions are represented by a sigmoidal function
that smoothly transitions from attractive to repulsive regions. The
side chain interaction energy between residues i and j is given by

1
T3 e o)W

3

Eij(ry) = SZATF(“J’) = SgAT

where

o r;; is the distance between the C, atoms at the centers of
spheres i and j;

e 7max = 12 A is the distance at which the potential equals half
of its maximum value, &; /2

e W = 0.4 A controls the sharpness of the sigmoidal transition;
and

° Sg a7 are elements of a 20 x 20 matrix, each defining the
interaction strength between different types of amino acids
(see Table S1).

The selection of terms for the Scar matrix is arbitrary
and has varied across different versions of the model. In the
initial implementation of the Caterpillar model,” the classical
Miyazawa-Jernigan potentials'' and other approaches were tested,
all of which successfully led to sequences that folded into the
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target structures during the design process. In a subsequent study,”
a method was introduced to adjust the Scat matrix to align the ener-
gies of natural sequences with those generated by the Caterpillar
model. This method involves optimizing the interaction parameters
of the coarse-grained model by iteratively minimizing the difference
between the computed and observed properties of natural pro-
tein sequences, using the maximum entropy principle (MEP). This
approach ensures that the model parameters produce an interaction
matrix closely matching the energy profiles and structural features of
natural sequences, leading to a more accurate representation of pro-
tein folding and stability. The results were promising, and this ver-
sion of the Scar matrix is employed in the current work. Although
the current Scar model captures essential aspects of protein fold-
ing, it still lacks the ability to fully reflect the intricate and diverse
interactions between amino acids that occur in natural proteins.
In natural proteins, amino acid interactions are influenced by var-
ious factors, such as side-chain flexibility, chemical environments,
and long-range interactions that are highly context-dependent. The
current implementation of Scar simplifies or averages these com-
plexities, meaning it may miss some of the fine details that are critical
for accurately representing the full range of amino acid behavior in
natural biological systems. It is important to note that, although the
amino acids in this model do not directly correspond to biological
ones, this virtual system retains the complexity of the design prob-
lem and provides valuable insights into the underlying processes.
Ongoing work aims to further refine the Scar matrix to bridge the
gap between synthetic Caterpillar sequences and natural ones. This
model is shown schematically in Fig. 2(a).

3. Residue-solvent interactions

The residue-solvent interactions are modeled to penalize the
exposure of hydrophobic residues and the burial of hydrophilic ones,
simulating the effect of solvation on protein stability. This is imple-
mented as a simple energy penalty based on the degree of surface
exposure of each residue,

e [Q - O], if S Q, ey

2
. i
0, if Q2 Q, &2

>

Een (01— Q) ={ g (4)

>

where

e Q;=Y,[(ry) represents the number of contacts that a
residue i makes with other residues;

e Q is the threshold for the number of contacts in the native
structure, above which the amino acid is considered fully
buried; and

e ¢l are the residue-specific solvation energies, taken from
the Dolittle hydrophobicity index.'” They are positive for
hydrophobic residues and negative for hydrophilic ones.

This term penalizes the exposure of hydrophobic residues and
the burial of hydrophilic ones, thereby promoting a protein structure
with a hydrophobic core and a hydrophilic exterior.

B. Virtual move parallel tempering for sequence
space sampling

The complex energy landscape associated with protein fold-
ing and design requires advanced sampling schemes. To sample
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FIG. 2. Schematics of Caterpillar energy and design algo-

rithm used in this work. Caterpillar energy terms are high-
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the sequence space extensively, the virtual move parallel tempering
(VMPT) algorithm was employed.'* In VMPT, the sampling process
is distinct from the acceptance of moves. The free energies associ-
ated with the collective variables sampled during the simulations are
computed from histograms that accumulate the acceptance proba-
bilities of the new and old configurations, respectively. These are the
acceptance probability T,—, for moving from the old to the new state
and T, for rejection. The probability T,—, of accepting a move is
given by

exp (-f(AE))

Toan N ] 5
1+ exp (-B(AE)) )

while the rejection probability for the old state is
Too : ©)

" 1+exp (-B(AE))

This approach also accumulates a bias potential W, which
adaptively pushes the simulation away from oversampled regions.
Over time, W converges to the inverse of the free energy projected
over the same collective variable for which the bias potential W is
defined.

Multiple replicas at different temperatures are simulated in par-
allel, with periodic exchanges of configurations governed by the
Metropolis criterion, ensuring detailed balance. The actual Markov
chain of the Monte Carlo simulation follows the standard Metropolis
algorithm, where a trial move is accepted or rejected with probability
Pycc = min (1,exp (-B(AE))). Generally, the sampling and accep-
tance criteria do not have to be the same as long as both respect
detailed balance.*"”

This decoupling has several advantages. It ensures unbiased
sampling, as all configurations are visited with the correct Boltz-
mann weight. Multiple replicas at different temperatures are simu-
lated in parallel, with periodic exchanges of configurations governed
by the Metropolis criterion, and “virtually” exchanged between all
temperatures, ensuring uniform sampling across all temperatures

WAVEIFPMNIPGKFRVAHEA

Pmutation — i (1, exp (AW))

E P = min (1,exp (—-BIAE) + AW))

RAVKIFPETMPGKRVWAQEQ

b lighted in a PDB structure in panel (a), with the Sgat shown
visually below the E,t equation. In panel (b), an overview
of the design algorithm is shown.

Virtual
Move
Parallel
Tempering

and faster convergence of the adaptive bias potential. This, in turn,
helps toward more efficient sampling of challenging regions of the
free energy landscape since the bias potential can efficiently steer
the simulation away from oversampled regions. We provide a visual
schematic for this design process in Fig. 2(b).

C. Sequence design

During the design, the backbone of the protein is maintained
rigidly while the sequence of the protein is altered using two genetic
mutation moves: point mutation (P™?%°") and pair swap (P***P).
Point mutation generates random variations in sequence composi-
tion, while pair swap follows the Metropolis algorithm to minimize
the sequence’s energy at low temperatures. These operators strike
a balance between exploration and exploitation during the opti-
mization process. P™**"*" introduces stochastic variations into the
sequence composition, generating diverse and potentially promis-
ing solutions. This expands the search space and prevents premature
convergence. In contrast, P***, inspired by the Metropolis algo-
rithm, optimizes the sequence by minimizing its energy based on
the target structure. At low temperatures, it meticulously evaluates
the energetic consequences of each swap operation, selecting swaps
that reduce the overall energy of the sequence.

The acceptance rules in the original algorithm are

PR _ min (1,exp (-B(AE — Ep In (ANp)) + AW)),  (7)

Pt = min (1, exp (-B(AE) + AW)), (8)

where f3 is the inverse temperature, AE is the energy difference
between new and old sequences, and AW is the adaptive VMPT
bias. The acceptance rule for point mutation includes a bias term
Ep In(ANp), where Np = N!/(nalny!...n;!). Here, N is the pro-
tein length and ng4, n, . . ., n; are the numbers of each type of amino
acid used. This term acts as a bias forcing the sampling away from
homopolymers and toward highly heterogeneous sequences. The
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weight Ep = 10 sets the relative importance of this bias compared
to the Caterpillar energies.

If instead the algorithm is designed to no longer rely on the bias
over heterogeneity, the acceptance rules are

P::Etaﬁon =min (1,exp (AW)), 9)

Pie? = min (1,exp (-B(AE) + AW)). (10)

In this algorithm, Pje? remains unchanged, while PR no
longer depends on the AE — Ep In(ANp) terms, making the Markov
chain preferentially sample regions of the sequence space close to
random sequences. As we describe in Sec. I1I, this new mutation
probability means that mutations will always be accepted and is a
key modification of the algorithm.

However, it is important to note that in VMPT, the sampling
process is distinct from the acceptance of moves and is unchanged
compared to the previous design algorithm. Thus, the weight for
PmURten remains unchanged and will correctly weight the sampled
sequences,

exp (-B(AE — Ep In (ANp)) + AW)
1 +exp (-B(AE - Ep In (ANp)) + AW)

(1mn

ACCon =

and

1

1+ exp (BAE—Ep In(ANp)) + AWy (12

aACCy—o =

This decoupling has several advantages. It ensures unbiased
sampling, as all configurations are visited with the correct Boltz-
mann weight. It also allows for more efficient sampling of rare events
since move acceptance does not affect configuration probability. In
addition, it simplifies implementation, allowing independent sam-
pling and acceptance processes. For the current design approach,
VMPT enhances sequence sampling. The decoupling of sampling
and acceptance ensures correct sampling when combining random
point mutation with standard pair swapping.

D. Direct coupling analysis

The mean field approximation of direct coupling analysis
(DCA)® can be employed to deduce direct interactions between
residues within protein sequences based solely on evolutionary
sequence data. This method requires multiple sequence alignment
(MSA) of a protein family, which is a collection of homologous
sequences that mostly fold into a common structure. Essentially,
MSA aligns these sequences to highlight similarities and differences
at each position in the protein chain.

DCA works by analyzing the statistical correlations between
the positions of residues in the aligned sequences and building a
covariance matrix C = Fjj(Aj, 4;) — fi(A:i) fi(4;) of the frequencies
Fjj and f; of finding a residue of type A; at position i when residue
Aj is at position j. It distinguishes between direct correlations, which
suggest that two residues are likely interacting directly within the
protein structure, and indirect correlations, which can arise when
two residues both interact with a third residue rather than with each
other. The primary challenge in DCA is to correctly identify these
direct correlations from the observed data.

ARTICLE pubs.aip.org/aipl/jcp

The mean field approximation (mfDCA) addresses this chal-
lenge by focusing on the most critical interactions and filtering
out the noise created by indirect correlations. This simplification
not only makes the computational process more efficient but also
enhances the accuracy of predicting which residues are directly
interacting in the protein structure.

The mathematical foundation of DCA is built on a Boltzmann
distribution, where the probability of a protein sequence is defined
as being proportional to the Hamiltonian,

EDCA(A) = Z elj(A,-,Aj) + Z h,(A,) (13)

i<j i

In this equation, A = (Ay1,...,Ar) represents the amino acid
sequence of the protein, where L is the length of the sequence. The
term e;j(Aj, Aj) represents the coupling energies between residues
A; and A; at positions i and j, indicating the strength and nature of
their direct interaction. The term h;(A;) represents the local field for
residue A;, reflecting how much a particular residue prefers to be at
a specific position in the sequence.

At the core of mfDCA is the relationship between the cou-
pling matrix e; and the covariance matrix C derived from the
MSA. The covariance matrix captures how residues at different posi-
tions co-vary across the sequences in the alignment. By inverting
this covariance matrix, mfDCA estimates the coupling energies ej;,
thereby identifying direct interactions. This relationship is expressed
ase;j(AiAj) ~ C,»}l (Ai,Aj), linking the statistical analysis directly to
the physical interactions in the protein structure.

E. DCA on caterpillar sequences

The inherent properties of the Caterpillar model create an ideal
setting for testing the capabilities of DCA. This model generates
sequences with minimized structural frustration and eliminates the
biological pressures of functional constraints, thus enabling the gen-
eration of highly reliable statistical data for DCA. The large number
of sequences designed with the Caterpillar model, selected specifi-
cally for their ability to fold, provides an ideal framework for gen-
erating covariance matrices with superior statistical quality. These
matrices are free from the confounding biological functions com-
monly found in natural proteins. In addition, there is a significant
parallel between Eqgs. (1) and (13): the Scac matrix, which stores inter-
action energies between residue types, closely resembles the e;; terms
in the DCA Hamiltonian that capture interaction energies between
residues at specific positions. The similarity between the energy
functional structures of the DCA and Caterpillar energy functions
suggests that DCA should be particularly effective when applied to
sequences generated by using the Caterpillar design model. Since
both models share similar underlying principles in capturing amino
acid interactions, we expect DCA to provide highly accurate predic-
tions when analyzing sequences designed by the Caterpillar model.
Consequently, the relationship between these terms can be expressed
mathematically by

€ij
I(ry)
where I'(rj) is the caterpillar radial function for the distance

between those positions in the native structure [see Eq. (3)] and const
is an arbitrary constant.

Scat(i>]) o< + const, (14)
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By averaging e;; for each pair of positions and normalizing by
the Caterpillar radial function for the distance between those posi-
tions in the native structure, Sq., can be inferred, which should be
correlated with the Sca; used for the design.

F. Analytical solution for the matrix extraction
procedure

To analytically identify the relationship between the
residue-residue interaction matrix S and the DCA covariance
matrix C, Mathematica 14 was used to invert the covariance matrix
C and compute the couplings e;;(Ai, A;) = —~C™" between residues of
type A and B at positions i and j, respectively. Since the numerical
inversion of C is only feasible when sufficient statistical data are
available, a numerical approximation is often employed, where a
baseline of pseudo-weights pw is uniformly added to C.

To this end, it is assumed that all the covariance elements
are equal except for the block diagonal terms corresponding to the
homo-residue interactions, which are scaled by a factor b < 1 to
imitate a lower probability of encountering homo-pairs.

—b(l—pW)F+% (1-pu)F

(1-py)F b(l—pw)F+%

b(l—pw)F+% (l—pW)F+%

(1-pu)F+ 22 b(1- pu)F + £
[ q q

((l—pw)f+pq“’)2

. o)
((1 pu)f + q)

where there are N blocks and each block is of size g — 1.
The interaction matrix S is then obtained by accumulating
elements from C~! based on certain conditions,

Slkl1= X C'li-(qg-1)+kj-(g-1)+1]. (19

)
abs(i—j)>4

By solving Eq. (19) numerically, it is found that the S matrix has
one value on the diagonal S[k, k] = Saiag and another for all the ele-
ments off the diagonal S[k, 1] = Sofrdiags k # L. The difference between
them, G = Sdiag — Soff diag> results in

. o)
((1 pu)f + q)
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The protein length is N while the alphabet size including gaps
is g = 21 and includes the gaps. Corrections to the covariance matrix

C= FPW;}ﬁ - fow(ia) fow( jB), where p , is the pseudo-count weight
and where

FPWE = b(1 - pu) P+ 22 pPW = (1-p)F? + 22 (15)
q q’

FPW§® = b(1 - p,)Fy® + £53j % i, FPWS = (1- p,)F’ + Py,
T
a*fBj+i,
(16)
fow= (l—pw)fm+— (17)

Here, we indicated with « and S the amino acids types from
the 20 letter alphabet, while i and j are the residue indices along the
sequence. Assuming that Fgﬁ =F and fix = f, the pseudo-weighted
covariance matrix C is then

(b1 -puF+ Py o (1= pF e 2y ]
q q

(l—pW)F+% b(l—pW)F+%

—b(l—pW)F+% (1-pu)F

(1-py)F b(l—pW)F+%

((l—pw)f+pqw)2

, (18)

(

_ (-1

b+1’ (20)

which for 1 > b > 0 results in a flat S matrix with a positive diagonal
shift of G; a direct result of homo-residue pairs have a systematic
lower probability of appearing controlled by the factor b.

G. Folding simulations

To characterize the equilibrium configuration of each design,
we selected on sequence per proteins (for a total of four sequences)
to test their refolding properties. During the folding simulation, the
folding free energy F is computed as a function of several order
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parameters. Each case will be described separately later in this article,
but all will be similar to the following example.

First, a convenient order parameter that tracks the progress of
the folding process is defined. The chosen parameter is the distance
root mean square deviation (DRMSD). The DRMSD is a metric
used to quantify the difference between two sets of atomic coordi-
nates, typically in the context of comparing the structural similarity
of proteins or other macromolecules. DRMSD is calculated by first
determining the pairwise distances between equivalent atoms in the
two structures being compared. These distances are then squared,
summed, and averaged over all atom pairs. Finally, the square root
of this average is taken to obtain the DRMSD value. Mathematically,
DRMSD is defined as

N
DRMSD = lz (di - d))?,
Ni=l

where N is the total number of atom pairs, d; is the distance between
the ith pair of atoms in the first structure, and d; is the corresponding
distance in the second structure. DRMSD provides a comprehensive
measure of structural deviation, making it a useful tool for assess-
ing the degree of conformational changes or structural similarity
between macromolecular models.

a) 140
0 |
135
-9
Z 1
e 30 =
125
120
-350 -300 -250 -200 -150 -100 -50
c) d)
-350 -300 -250 -200 -150
E

b) 140

135

%
Z 130
125

120
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To compute the free energy F(DRMSD)), the following relation
is used:

F(DRMSD) = —kT In [P(DRMSD)], 1)

where F(DRMSD) is the free energy of the state with the order para-
meter DRMSD and P(DRMSD) denotes a normalized histogram
of the number of sampled conformations with the order parameter
DRMSD. In practice, a direct (brute force) calculation of this his-
togram is inefficient, as the system tends to become trapped in local
minima, especially at low temperatures. To address this issue, the
virtual move parallel tempering (VMPT) algorithm is incorporated.

Ill. RESULTS AND DISCUSSION

Initially, we analyzed the permutations from the PF00015 fam-
ily, one of the largest protein families, as a representative of natural
proteins and studied them as a function of their length (see Fig. 1).
The results demonstrate that natural proteins have a permutation
composition lower than the maximum possible with an 18-letter
alphabet. This suggests that natural proteins, on average, do not uti-
lize the full extent of the 20-letter alphabet. Even with a reduced
alphabet, it would be atypical to bias toward the highest permuta-
tion values. Historically, average compositions from natural proteins

100

-200 -150 -100 -50

140 0
135 -20
130 40
125

-60
120

-80
115
110 -100
100 -140

-200 -150 -100 -50 0
E
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FIG. 3. Plot of In Np vs energy E for the (a) low temperature T = 0.5 (reduced units), (b) high temperature T = 10 (reduced units) for the constrained algorithm, (c) low
temperature T = 0.1 (reduced units), and (d) high temperature T = 10 (reduced units) for the unconstrained algorithm. On comparing panels (c) and (d), it is visible that the
unconstrained design algorithm produces sequences with the same heterogeneity In Np at low and high temperature.
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have been used as constraints for design. Figure 1 shows no sig-
nificant difference between the two approaches, but both yield
sequences with permutations higher than natural ones.

Given that both traditional methods and the Caterpillar design
exhibit heterogeneity systematically larger than that of natural
sequences, an alternative method is proposed. In addition, in a pre-
vious study,”'® it was observed that sequences generated with the
design algorithm had a systematically lower probability of homo-
pairs. This effect resulted from the heterogeneity InNp, which
slightly lowers the probability of homo-residue pairs (e.g., AA or
LL), leading, incorrectly, to more repulsive interactions along the
matrix diagonal. To further support this hypothesis, the DCA inver-
sion procedure for a covariance matrix with all equal values except
for terms corresponding to homo-residue pairs was analytically
solved, applying a small shift to lower the probability (see Sec. II). If
an effective interaction is extracted from such a covariance matrix,
a flat interaction matrix with a positive diagonal is obtained. If
instead b = 0, the diagonal term in the extracted interaction matrix
disappears.

This observation led us to substitute the bias over permutations
with a point mutation move that is always accepted, thereby allowing
the algorithm to run without bias at high temperature (see Sec. II).
This modification aimed to produce sequences more closely mirror-
ing the natural heterogeneity observed in proteins. In the following
sections, the previous design approach will be referred to as con-
strained, in contrast to the current approach, which will be referred
to as unconstrained.

Designed sequences were generated using the unconstrained
algorithm. The sequences in equilibrium exhibit lower composition
permutations. This change in equilibrium composition is apparent
when projecting the sequences sampled during the design simula-
tion over the free energy landscape F(E,In Np), which is a function
of two collective variables: the energy E and the heterogeneity In Np.
By comparing F(E,In Np) calculated with the constrained design
approach and the unconstrained one (Fig. 3), it is observed that
the design methods at a low temperature (T = 0.1 in reduced units)
achieve similar equilibrium energies but very different heterogeneity
ln N p.

The unconstrained approach yields compositions compatible
with natural proteins regarding the number of permutations (see
Fig. 4). On the other hand, the similarity between the equilibrium
energies indicates a similar level of optimization.

A. Refolding tests of sequences generated
with the unconstrained design algorithm

Having demonstrated that the unconstrained design algorithm
leads to sequences with more natural heterogeneity, tests were con-
ducted to determine if the sequences still fold back to the target
structures. To achieve this, a sequence for each of the target pro-
teins corresponding to the minimum of the free energy F(E,In Np)
at the lowest temperature T = 0.1 was isolated. For each of the iso-
lated sequences, the folding free energy F(DRMSD) was computed
(see Methods for details), during which the protein conformational
landscape is projected over the DRMSD from the native state. In the
past, this combination has proven effective in estimating the folding
ability of artificial sequences.!” The computed landscapes (see Fig. 5)
showed consistent refolding within 2 and 4 A from the native struc-
ture. An exception is the FKBP12 protein (PDBID: 2PPN), which
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FIG. 4. Logarithm of the number of permutations for a given protein composition
vs protein length. The plot shows three types of proteins: natural proteins from
the methyl-accepting chemotaxis protein (MCP) signaling family (PF00015, black
x’s), artificially designed proteins (blue diamonds), and random sequences exclud-
ing cysteine and proline amino acids (green diamonds). Each point represents a
protein sequence. The plot demonstrates that the unconstrained design approach
produces compositions compatible with natural proteins regarding the number of
permutations.

has a large disordered region. Ignoring that region in the RMSD cal-
culations, the folded core of the protein exhibits a refolded structure
with similar precision as the other structures (see 3D comparison in
Fig. S1).

To assess the quality of all designed sequences, rather than
just a selected few, DCA was performed on all the sequences sam-
pled in the low-temperature free energy minima. First, the direct

4 L \
n
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m[— 1PGB
s | = INXW ,
1 1WI2
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2+ 1 |
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/M 1
A N
wn ny
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FIG. 5. Refolding tests of sequences generated with the unconstrained design
algorithm. Refolding of the sequences with the corresponding free energy calcu-
lation of the conformational landscape projected over the DRMSD from the native
state showed consistent refolding within 2—4 A from the native structure. The
exception is the FKBP12 protein (PDBID: 2PPN), which has a large disordered
region. If that region is ignored in the RMSD calculations, the folded core of the
protein shows a refolded structure with similar precision as the other structures.
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information (DI) pairs were computed, for which the top ones is above 95% for the top 500 pairs. Comparable accuracy is achieved
should, theoretically, have a high correlation with the actual contacts with the current design algorithm for the proteins 2PPN, INXW,
between residues. In fact, DI pairs are used as an effective con- 1PGB, and 1W1I2 (see Fig. 6).

tact prediction approach for structure prediction.'® When applied The final test involves extracting the interaction matrices
to sequences designed with the constrained algorithm to fold to a from the direct coupling interactions by averaging the DI over
target structure, the agreement with DI and actual protein contacts all the protein contacts (see Sec. 1I), as described in a recent

FKBP12 (PDB: 2PPN). Top N/2 (5.4*L) TPR: 0.88 Transcriptional regulatory protein WalR (PDB: 1INXW). Top N/2 (5.7*L) TPR: 0.83
ans sanane eeee By v
1004 PDB contacts & i;i 25 ?: \ PDB contacts :: v%i .igig :

« PDB contacts
« DI pair misses )
= Dl pair hits o238

+ PDB contacts
« DI pair misses
1004 « DI pair hits

£
- He
e

e iy
:
eofiapes
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" .g“b’

; LI i ]
100
Immunoglobulin G-binding protein G (PDB: 1PGB). Top N/2 (4.7*L) TPR: 0.82 PDZ Domain (PDB: 1WI2).Top N/2 (4.6*L) TPR: 0.84
PDB contacts o oo 100 PDB contacts
50 - PDB contacts o H :E S: « PDB contacts _;_
DI pair misses’e o ee oo = DI pair misses °

DI pair hits = DI pair hits
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FIG. 6. Comparison of predicted and crystallographic contacts for four proteins. True positive contacts predicted from DCA of artificial sequences generated using the
unconstrained design algorithm are represented in red, and false positive contacts are represented by the black crosses. Actual contacts determined from crystallography
are represented in blue and gray (contacts defined as a-carbon atoms within 12 A of each other). The figure demonstrates an excellent agreement between the predicted
and crystallographic contacts.
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INXW
1WI2 4
2PPN

FIG. 7. Scatterplot comparing residue-residue interaction matrices computed
using two different methods, Caterpillar and DCA, for four proteins of vary-
ing lengths. Each point represents a residue pair from the proteins 1PGB (56
residues), INXW (118 residues), 1WI2 (104 residues), and 2PPN (107 residues).
The x axis shows the Caterpillar interaction values, while the y axis shows the
DCA interaction values. The correlation between the two methods is evident from
the clustering of points along the diagonal line. The white band in the plot at (0.8,
0.1) is due to the exclusion of cysteine and proline terms in the S matrix.

publication using the previous design approach.”” The previous
results indicated that the original interaction matrix can be extracted
from a family of sequences designed to fold into a target struc-
ture. Figure 7 shows that the same result is reproduced with the
updated design approach. Notably, for the updated algorithm, the
gap between the diagonal and the other elements of the DCA
couplings matrix is no longer present (see Fig. 7).

The observed strong correlation between direct information
(DI) predictions and the protein contact map is noteworthy. This
accurate prediction of contacts serves as an initial indication that
these sequences are viable solutions to the protein folding prob-
lem. Predicting a high number of true positive contacts implies that
the equilibrium configuration is likely the folded structure. If this
principle did not hold, structure-based models would not function
as effectively as they do.”’ Furthermore, in cases where there is no
well-defined structure to fold into, such as with random proteins or
intrinsically disordered proteins (IDPs), DCA produces only a faint
signal, reinforcing this concept.”’

IV. CONCLUSIONS

This study explored the design and analysis of protein
sequences using an algorithm that aims to match the heterogeneity
of natural sequences. Our initial analysis demonstrated that natural
proteins have a permutation composition lower than the theoret-
ical maximum with an 18-letter alphabet, suggesting they do not
utilize the full 20-letter alphabet to its highest permutation val-
ues. This finding was consistent with historical data where average
compositions from natural proteins were used as design constraints.

An alternative algorithm was designed to generate sequences
that, when compared to natural proteins, shows a lower permutation
composition. This equilibrium shift was further illustrated through
the free energy landscape F(E,In Np), which revealed that while

ARTICLE pubs.aip.org/aipl/jcp

the equilibrium energies were similar between the constrained and
unconstrained design methods, the heterogeneity was significantly
different. The unconstrained design approach produced sequences
with permutation compositions compatible with natural proteins,
indicating a refined level of optimization.

To validate the effectiveness of this algorithm, the refolding
capabilities of the designed sequences were tested. The folding free
energy F(DRMSD) computations confirmed that these sequences
could refold to their native structures within 2-4 A, except for the
2PPN protein, which contains a large disordered region. Ignoring
this region, the refolded core structure displayed similar precision
to other proteins, underscoring the robustness of the unconstrained
design approach.

Furthermore, DCA performed on all designed sequences
revealed an excellent correlation between the direct information
(DI) pairs and the actual contacts within the target protein struc-
tures, with an accuracy above 82% for a large number of top pairs
(>4L) for proteins, such as INXW, 1PGB, 1WI2, and 2PPN. This
high level of agreement suggests that the unconstrained algorithm
reliably produces important sequence changes that favor folding and
correct contact formation of the target structure, comparable with
natural proteins.

Finally, it was demonstrated that interaction matrices derived
from the unconstrained design approach showed no artificial gap
between the diagonal and other elements, a problem observed in the
constrained algorithm due to biases in heterogeneity. This confirms
that the unconstrained design approach provides a more accurate
representation of protein interactions.

In summary, this algorithm not only produces sequences that
mirror the natural heterogeneity of proteins but also generates
sequences that can fold correctly, making it a significant advance-
ment in the field of protein design. The results of this study pave the
way for more refined and efficient protein engineering methodolo-
gies that better mimic the complexity of natural proteins. Further-
more, the algorithm can be extended to design novel folds. In fact, we
can leverage the same strategy used in previous studies,'*** where we
successfully identified novel folds for generalized heteropolymers,
including specific knotted topologies. The approach involves an ini-
tial prescreening of the folded landscape using an algorithm that
we refer to as SEEK, which identifies the best candidates for further
design refinement. By applying this methodology, we could explore
a wider range of protein folds, advancing the ability to design novel
structures with unprecedented complexity and specificity.

SUPPLEMENTARY MATERIAL

The supplementary material includes the following: Figure S1:
comparing x-ray and refolded structures using the Caterpillar model
to demonstrate foldability prediction accuracy and Fig. S2: showing
strong agreement between DCA-predicted and Caterpillar refolded
contacts for the studied proteins. These materials provide additional
validation for the findings in the main publication.
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