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Abstract

Given a graph G with a set F'(v) of forbidden values at each v € V(G), an F-avoiding
orientation of G is an orientation in which deg™ (v) ¢ F (v) for each vertex v. Akbari,
Dalirrooyfard, Ehsani, Ozeki, and Sherkati conjectured that if | F'(v)| < % deg(v) for
each v € V(G), then G has an F-avoiding orientation, and they showed that this
statement is true when % is replaced by %. In this paper, we take a step toward this
conjecture by proving that if |F (v)| < L% deg(v)] for each vertex v, then G has an
F-avoiding orientation. Furthermore, we show that if the maximum degree of G is
subexponential in terms of the minimum degree, then this coefficient of % can be
increased to v/2 — 1 — o(1) & 0.414. Our main tool is a new sufficient condition for
the existence of an F'-avoiding orientation based on the Combinatorial Nullstellensatz
of Alon and Tarsi.
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1 Introduction

An orientation of a graph G is an assignment of a direction uv or vu to each edge
{u, v} € E(G). For an orientation D of a graph G and a vertex v € V(G), we denote
by E*(v) the arcs outgoing from v in D, and we denote by E~ (v) the arcs incoming
to v. We write dngIS(v) = |ET(v)| and degp(v) = |E™ (v)|. We write N for the set
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{0, 1, 2, ...} of nonnegative integers. In 1976, Frank and Gyarfas [12] proved that for
a graph G and two mappings a, b : V(G) — N satisfying a(v) < b(v) for every
vertex v, G has an orientation D satisfying a(v) < dngIS (v) < b(v) for every vertex
v if and only if for each subset U € V(G),

> a(w) —dW) < |[EGIUD| < Y b,

velU velU

where d(U) is the number of edges joining U and U =V(G) \ U, and G[U] is the
subgraph of G induced by U'.

Recently, Akbari, Dalirrooyfard, Ehsani, Ozeki and Sherkati [1] considered the
similar problem of finding an orientation of a graph that avoids a certain out-degree at
each vertex. Given a graph G and a function f : V(G) — N, we say that an orientation
D of G is f-avoiding if dngIS (v) # f(v) foreachv € V(G). It was proved in [1] that
there is an f-avoiding orientation for every 2-connected graph G that is not an odd
cycle and for every function f : V(G) — N, and that an odd cycle has an f-avoiding
orientation if and only if f(v) # 1 for some vertex v of the cycle. Frank, Tardos,
and Sebd [13] considered the same problem modulo 2, or in other words, with parity
constraints on the out-degrees of the vertices in G.

In addition to considering orientations that avoid a single given out-degree at each
vertex, Akbari et al. considered the graph orientation problem in which each vertex
has a list of forbidden out-degrees. Given a graph G and a function F : V(G) — 2N,
an orientation D of G is said to be F-avoiding if degg(v) ¢ F(v) foreachv € V(G).

The problem of finding an F-avoiding orientation of a graph G can be represented
in the language of general factors, introduced by Lovész [23] and defined as follows.
Given a graph G and a function H : V(G) — 2, a spanning subgraph G’ C G is an
H-factor if deg/ (v) € H(v) for each v € V(G). To represent the problem of finding
an F-avoiding orientation of G in the setting of H-factors, we construct a graph GV
by replacing each edge e € E(G) with a vertex v, of degree 2 whose neighbors are the
endpoints of e, and we define a function H : V(G") — 2N so that H(v) = N\ F(v)
foreachv € V(G) and H(v,) = {1} for each e € E(G). Then, it is easy to check that
the problem of finding an F-avoiding orientation of G is equivalent to the problem
of finding an H-factor of GV, Cornuéjols [5] and Sebd [28] give polynomial-time
algorithms for checking whether G has an H-factor whenever i ¢ H (v) implies that
i+ 1e H(v) foreachi € Nand v € V(G), which allow us to check in polynomial
time whether G has an F-avoiding orientation whenever the function H defined from
F as described above satisfies this condition.

The concept of an F-avoiding orientation is also related to nowhere-zero flows
and in particular to Tutte’s 3-flow conjecture, which is stated as follows. Given a
directed graph D and a positive integer k, a nowhere-zero k-flow on D is an assignment
¢ : E(D) — Zj \ {0} satisfying Zeeﬁ(v) o(v) = ZeeE,(v) ¢ (v) (mod k) at each
vertex v € V(G). When k = 3, a nowhere-zero 3-flow can be interpreted as an
orientation of a graph G, and an orientation D of G is a nowhere-zero 3-flow if and
only if degz(v) = deg},(v) (mod 3) holds for each vertex v € V(G). Tutte’s 3-flow
conjecture states that every graph G with no edge-cut of size 1 or 3 admits a nowhere-
zero 3-flow (see [18, Conjecture (Co)] or [4]). It has long been known that Tutte’s
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3-flow conjecture is equivalent to the statement that every 5-regular graph with no
edge-cut of size 1 or 3 has an F-avoiding orientation where F(v) = {0, 2, 3, 5} at
each vertex v (see [4, Unsolved Problem 48] for this equivalent formulation).

It is conjectured that for every graph G, as long as F forbids less than roughly half
of the possible out-degrees at each vertex, then G has an F'-avoiding orientation.

Conjecture 1.1 [1] Let G be a graph, and let F : V(G) — 2N, If

1
[F()] = 5 (degg(w) — 1)

for each v € V(G), then G has an F-avoiding orientation.

If Conjecture 1.1 is true, then the upper bound %(degc(v) — 1) is sharp. To show
sharpness, take a 2k-regular graph G on n vertices with independence number less
than k”? Then, G has no F-avoiding orientation with F(v) = {k,k+1,...,2k — 1}
for each vertex v. The graph Ko is such an example.

One can also compare the size of each forbidden list F(v) to the out-degree of
v in some fixed orientation. Since every graph G has an orientation D in which
each v € V(G) satisfies dngIS(v) > |degs(v)/2], the following conjecture implies
Conjecture 1.1 with an error of at most 1.

Conjecture 1.2 [1] Let G be a graph, and let F : V(G) — 2N, If G has an orientation
D such that

degi(v) > [F(v)| + 1

for every v € V(G), then G has an F-avoiding orientation.

One tool that was used extensively in [1] is the following theorem, called the Com-
binatorial Nullstellensatz, introduced by Alon and Tarsi in [3] and further developed
as a tool by Alon [2].

Theorem 1.3 (Combinatorial Nullstellensatz, [3]) Let K be a field, and let f be a
polynomial in the ring K[x1, ..., x,]. Suppose that the degree of f ist; + --- + 1y,

where each t; is a nonnegative integer, and suppose that the coefficient of [];_, x;" in
f is nonzero. Then, if S1, ..., S, are subsets of K each satisfying |S;| > t;, then there
exist elements s1 € Sy, ...,s, € S, so that

fGst,...,80) #0.

We note that Shirazi and Verstraéte [30] used the Combinatorial Nullstellensatz
to prove a result similar to Conjecture 1.1 for F-avoiding subgraphs. They proved
that for every graph G, if F : V(G) — 2N qatisfies |F(v)| < ldegs (v)/2] for
each v € V(G), then G has a spanning subgraph H such that degy (v) ¢ F(v) for
each v € V(G). Frank, Lau, and Szab6 [11] proved the same result using elementary
methods.
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In graph theory, the Combinatorial Nullstellensatz is often used for list coloring
problems (see e.g. [3, 10, 17] or the monograph [33]). In this case, the polynomial
f in the statement of the Combinatorial Nullstellensatz is the graph polynomial of
a graph G, introduced by Li and Li [21] and defined as follows. For an arbitrary
fixed orientation D of G, the incidence matrix of D is defined as the matrix M =
(mye : v € V(G),e € E(G)) for which my, = 1ife € Ez;'(v), Mmye = —1 if
e € E;(v), and my, = 0 otherwise (see e.g. [15, Sect. 2.6]). Then, given a field K,
the graph polynomial of G is the polynomial in the ring K[x, : v € V(G)] defined

as f = ]_[eGE(G) ZUGV(G) mvexv). Equivalently, f}; = [[(x, — x,), where the
product is taken over all directed arcs uv € E(D). With this definition, a proper
coloring V(G) — K can be translated into an assignment of values of K to the
variables x,, and f}; takes a nonzero value for a given assignment if and only if the
corresponding coloring of G is proper.

One convenient property of the graph polynomial is that its coefficients can be
determined solely by counting Eulerian orientations of the graph (see [2] for acomplete
explanation). These are defined as follows. An orientation D of a graph G is said to
be Eulerian if deg‘['; (v) = degp(v) holds for all v € V(G). A subgraph H of G is
called even if |E(H)| is even and is called odd otherwise. Given an orientation D
of G, we let EE(D) and E O(D), respectively, denote the number of even and odd
subgraphs of G that are Eulerian with respect to D. If G has an orientation D satisfying
EE(D) # EO(D), then we say that D is an Alon-Tarsi orientation. Alon and Tarsi
[3] first considered these orientations and proved the following groundbreaking result,
which has deep applications in list-coloring: If D is an Alon-Tarsi orientation of G, and
if L is a list assignment on G for which |L(v)| > deg‘g(v) at each vertex v € V(G),
then G is L-choosable. Motivated by this beautiful result, Jensen and Toft [19] defined
the Alon-Tarsi number of a graph G, denoted by AT (G), as the minimum value k such
that G has an Alon-Tarsi orientation of maximum out-degree less than k. Alon and
Tarsi’s result can then be rephrased as ch(G) < AT(G), where ch(G) is the list
chromatic number of the graph.

In their work on F-avoiding orientations, Akbari et al. [1] also apply the Combi-
natorial Nullstellensatz. However, they do not apply this tool to the graph polynomial
defined above. Rather, given a graph G, they define a polynomial P in a ring with a
set {y. : e € E(G)} of algebraically independent variables which can take the val-
ues 1 or —1. It turns out that there is a bijection between variable assignments on P
and orientations of G. Similarly to the graph polynomial, the coefficients of P can be
determined by counting Eulerian orientations in G, and the following theorem relating
F-avoiding orientations and Alon-Tarsi orientations holds. In fact, the theorem stated
in [1] is slightly weaker, but the following version is an easily proven corollary.

Theorem 1.4 [1] Let G be a graph, let H be a spanning subgraph of G, and let
F : V(G) — 2N be a map. If there exists an Alon-Tarsi orientation D of H such that
[F(v)] < deg'g(v) for every vertex v € V(G), then G has an F-avoiding orientation.

Theorem 1.4 shows a deep connection between the list coloring and F-avoiding
orientation problems. We will in fact see in Theorem 3.1 that this connection is a
special case of a more general duality between dual polynomials obtained from a
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common matrix. In the case of Theorem 1.4, the polynomials for list coloring and
F-avoiding orientations are related via the incidence matrix of a graph. Furthermore,
by using Theorem 1.4 along with a result of Huang, Wong, and Zhu [17], one can
immediately prove Conjecture 1.1 for the complete graph K,,. Indeed, Huang et al.
[17] proved that if N is a maximum matching in K,,, then AT(K,, — N) = [n/2],
which implies that K,, — N has an Alon-Tarsi orientation in which each vertex has its
out-degree at least (n — 2) — [n/2] + 1 = | in — 1]. Hence, Theorem 1.4 implies
that K,, has an F-avoiding orientation whenever | F (v)| < %n — 1 for each vertex v.

Since every graph G has an orientation D in which degz v) > L% degG(v)J for
each vertex v, and since EE(D) > EO(D) = 0 whenever G is bipartite, Theorem
1.4 also implies that a bipartite graph G has an F-avoiding orientation whenever
[F(v)| < %degG (v) for each v. Furthermore, it is well known that every graph G
contains a spanning bipartite subgraph H satisfying degy (v) > % degg (v) for each
vertex v. As a consequence, we have the following result.

Theorem 1.5 [1] Let G be a graph, and let F : V(G) — 2N pe a map. If |F(v)| <
% degs (v) for each vertex v € V(G), then G has an F-avoiding orientation.

Using arecent result of Lovasz, Thomassen, Wu, and Zhang [24] on Tutte’s 3-flow con-
jecture, Akbari et al. [1] also proved that when G is d-regular and d-edge-connected,
it is enough to require that | F'(v)| < (d — 5)/3 for each vertex v € V(G) in order to
guarantee an F'-avoiding orientation.

Let us now state the main results of this paper. First, we introduce the following
theorem, which gives a factor—% approximation towards Conjecture 1.2.

Theorem 1.6 Let G be a graph, and let F : V(G) — 2N. If G has an orientation D
such that

2
|F(v)] < gdegz(w—l

for each v € V(G), then G has an F-avoiding orientation.

Since every graph has an orientation D in whicheach v € V (G) satisfies dngDr (v) >
L% degg (v)J , Theorem 1.6 also implies that Conjecture 1.1 holds with a coefficient of

roughly %, which improves Theorem 1.5 (see our Theorem 4.2). We also show thatif G
is a graph whose maximum degree is subexponential in terms of its minimum degree,
then Conjecture 1.1 holds with an even greater coefficient of roughly /2 — 1 ~ 0.414.

Theorem 1.7 Let G be a graph of minimum degree 8 and maximum degree A = ¢°®,
andlet F : V(G) — 2N If

IF(v)| < («/5 1 0(1)) degg (v)
for each v € V(G), then G has an F-avoiding orientation.
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Note that in the statement of Theorem 1.7, our function o(1) approaches O as
8 — 00, and the rate at which o(1) approaches 0 depends on how quickly § dominates
log A.

One of the novel features in this paper is a general setup of dual graph polynomials
(see Sect. 3) and the use of multiplied incidence matrix permanents. Special cases of
these ideas have been used previously in related problems [6-9, 27, 32], but here we
provide a unified general treatment for the first time.

Our paper is organized as follows. In Sect. 2, we prove a sufficient condition (The-
orem 2.1) for the existence of an F-avoiding orientation in a graph G, which is the
main tool that we use throughout the paper. To prove our sufficient condition, we apply
the Combinatorial Nullstellensatz using a polynomial similar to the one used in [1].
In Sect. 3, we show that our polynomial in Sect. 2 has a dual relationship with the
traditional graph polynomial via the multiplied incidence matrix of a graph, and we
show that this relationship is a special case of a more general duality relation. In Sect.
4, we establish a lemma about fractionally weighted subgraphs, and we use this lemma
to prove Theorem 1.6. In Sect. 5, we make use of a randomized approach involving
the Lovasz Local Lemma to prove Theorem 1.7. Finally, in Sect. 6, we pose some
open questions.

2 A Sufficient Condition for an F-Avoiding Orientation

In this section, we give a sufficient condition based on the Combinatorial Nullstellen-
satz (Theorem 1.3) for the existence of an F-avoiding orientation in a graph.

Henceforth, we make a technical change to the definition of an F-avoiding orien-
tation. Given a graph G with an orientation D and a function F : V(G) — 2%, rather
than considering the out-degree of each vertex, we consider the imbalance of each
vertex v € V(G), which is defined by Mubayi, Will, and West [26] as the difference
deg} (v) — deg}, (v). We say that D is F-avoiding if deg},(v) — degp,(v) ¢ F(v) for
each v € V(G). This change is for technical reasons which will become clear later in
this section. Since the imbalance of a vertex in a given graph can be uniquely deter-
mined from its out-degree and vice versa, and since our main result of this section is
only concerned with the size of each forbidden set F (v), our result still holds when
the original definition of an F-avoiding orientation is used.

Before stating our condition, we need to establish some notation. We consider
a graph G. We order its vertices as vy, ..., vy, and we define an incidence matrix
M = (my : v € V(G), e € E(G)) for G with respect to the acyclic orientation on G
in which each edge v;v; is oriented from v; tov; ifi < j. For each vertex v; € V(G),
we let E&(v;) denote the edges viv; € E(G) with j > i, and we let E& (v;) denote
the edges v;v; € E(G) with j < i. Similarly, we write degé(vi) = |E(I§(vl~)| and
deg® (vi) = |E&(vi)]. For each edge ¢ € E(G), we consider a variable y,. Given an
orientation D of G, and given an edge e = v;v; withi < j, wesety, = lifeis
oriented from v; to v; in D, and we set y, = —1 otherwise. Given D, we observe that
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the imbalance of each vertex v can be expressed as a linear polynomial:

degh(v) —degp() = D Ye— D Ye= Y Mucle

eeEg(v) eeE(L;(v) e€E(G)

Now, suppose that for each vertex v; € V(G), we have alist F (v;) of #; integers. We
would like to find an F-avoiding orientation of G, thatis, an orientation D of E(G) such
that for each vertex v € V (G), the imbalance of v satisfies deg‘g (v)—degpy(v) ¢ F(v).
We fix a field K of characteristic 0, and over K we define the polynomial’

A= T v 3 ve-a

i=laeF ) \ eeER(v)) e€EL(v)

By the Combinatorial Nullstellensatz (Theorem 1.3), if f; has anonzero term of degree
deg fo for which the maximum exponent of each variable y, is 1, then there exists a
vector in {—1, 1}£(©) at which fy has a nonzero evaluation, and hence G also has an
F-avoiding orientation.

For each vertex v € V(G), we write t, = |F(v)|]. We observe that deg fo =
ZveV(G) ty and t; = t,; for each v; € V(G). Since each term of degree deg fy =
Zvev(G) t, in the monomial expansion of fj is obtained by choosing exactly one

ye term from each factor (Ze eER () Ye — Y e ELu) Ye ~ a), the terms of maximum

degree in the monomial expansion of fj are exactly the same as the terms of maximum
degree in the monomial expansion of

1

fr=ﬁ Yoove— D ve|l = [T | Do mueve

i=1 eEEg(Ui) eGEé(U,') veV(G) \ecE(G)

by

Therefore, rather than working with fj, we work with the simpler polynomial f. By
our previous discussion, if f has a nonzero term of degree ) |, .y (g, fv for which the
maximum exponent of each variable y, is 1, then G has an F-avoiding orientation.

Given an edge set A C E(G), we write y4 = YeyYey - - - Yeia» Where A =
{e1,e2,...,¢ea)}. We say that a monomial P € K[y, : e € E(G)] is square-free
if for eachedge e € E(G), yZ does not divide P. Observe that after removing its coef-
ficient, a square-free monomial P € K[y, : e € E(G)] is of the form yA for some
edge set A C E(G). Therefore, if the monomial expansion of f contains a square-free
term with a nonzero coefficient, then by the Combinatorial Nullstellensatz, G has an
F-avoiding orientation.

Now, we are ready to state our sufficient condition for when G has an F-avoiding
orientation. Although we prove the following theorem within the framework of for-

! Here, we consider the integer values a € F(v;) as multiples of the multiplicative identity 1 € K. Since
K has characteristic 0, every element a € F(v;) can be expressed as a multiple of 1 in K.
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bidden vertex imbalances, it is easy to see that the theorem also holds in the setting of
forbidden vertex out-degrees.

Theorem 2.1 Let F : V(G) — 2% be an assignment of forbidden imbalances for a
graph G. Suppose that there exists an ordering of V(G) and a spanning subgraph H
of G such that for each vertex v € V(G),

|F(v)| < degk (v) — 2degk (v) + degk (v).

Then G has an F-avoiding orientation.

Proof In the proof we use the notation introduced above. We also set E = E(G).
In order to prove that G has an F-avoiding orientation, we show that the monomial
expansion of f over K contains a square-free term and then apply the Combinatorial
Nullstellensatz as described above. Given an edge set A C E, we say that y4 is in
the support of f if the monomial y4 has nonzero coefficient in the expansion of f.
If y4 is in the support of f, we also say that A is in the support of f, and we write
A € Supp(f).Foreach j (1 < j < n), we write

j !
=111 D2 »— D | -

i=1 \ecEE(v) ecEL(v)

and we observe that f = f;,.
We prove the following stronger claim:
For each j (1 < j < n), there exists an edge set A; C E such that

(@) A; € Supp(f;),
(b) ifk > j,then A; N EE(v) € Ef (vp).

By setting j = n in the claim, we obtain an edge set A, € E which is in the support
of f, = f. Since A, is an edge set (and not a multiset), y4» is square-free and thus
satisfies the theorem. When proving the claim, we work in the quotient ring

K'=Kl[y.:e € El/(y?:ecE),

where (ye2 : e € E) is the ideal generated by the squares of the variables y,. This
allows us to ignore all terms in the expansion of each f; divisible by a square, which
is desirable, as we are only interested in finding a square-free term in the expansion
of f.

We prove the claim by induction on j. When j = 1, we observe that

n

=1 D0 | = > ¥
ecER) ACE§ (v1)
[Al=t1
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Since ] = |F(v1)| < degh (v1) —2 degh; (v))+degk (v1) = deg® (v)), we can choose
A1 to be any set of #; edges of H incident with v;. Hence the claim holds for j = 1.

Now, let 2 < j < n, and suppose the claim holds for j — 1. That is, suppose that
we have a set A;_; satisfying yAi-t e Supp(fj—1) and in particular

Aj_1NEEW;) C EL®)).

We would like to show that the claim holds for j. First, we will show that f; has
a nonzero expansion in our quotient ring, implying the existence of a square-free
monomial in the expansion of f; over K’. Then, we will show that the square-free
monomial that we have found in the support of f; satisfies condition (b). As

lj

fj:fj—l‘ Z Ye — Z Ye s

e€ER(v)) e€EL(v))
we can express f; in the following form:

ti—a a
J
Ij

szfj—l'Z(taj>(—1)lj_a Do DS B ¢))

a=0 eeE(L;(vj) eeEg(vj)

When the sum in (1) is restricted to a single value a, each monomial in the expansion
of (1) has exactly a variables y, for which e € E g(v ;). Since none of these variables
Ye appears in f;_1, any nonzero term in the expansion of (1) for a fixed value of a is
also a nonzero term in the expansion of (1) when the sum is taken over all values of a.

We restrict our attention to terms in the expansion of (1) that occur whena = m :=
min{z;, degﬁ(v 7)) in the sum. Hence, we only consider the expansion of

tji—m m

ficv | DD e > e - )

ecEL()) ecER))

m
Wefixaset A’ C EIIS (v;) withm edges and observe that A" € Supp (ZEg(vj) ye) .

Furthermore, we write B =A;_; \ E é(v i), and we write

fici=yPg+r,

where g and r are polynomials, and r does not have any terms divisible by yZ. Observe
thatevery term of g is a constant times amonomial P of degreed := deg(f;—1)—|B| =
|A;—1\B| = |Aj_1NEE(v;)| corresponding to a subset of d edges of E5 (v;). Observe
alsothat A;_1 N E(L; (v}) is in the support of g.
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Now, we would like to show that

tj—m

2 #0, 3)

ecEL(v))

in the quotient ring K’. Observe that if (3) holds in K’, then since B N E(L;(vj) =0,
it also holds that

rj—m rj—m

i | Y2 e =0Pg+n| D e )

ecEL(v)) e€cEL(v))

is nonzero in K’. Also, since no y, withe € E g (v;) divides (4) in K ', it follows that
(2) has a nonzero monomial expansion in K’ (and hence a square-free term) whenever
(3) holds. Therefore, in order to prove condition (a) of our claim, it is enough to prove
3). )
j—m
If m = t;, then (3) clearly holds, and g - (ZeeEé(u_,) ye> " hasa square-free

monomial y® corresponding to an edge subset S C E (L;(v 7). Then, the edge set A; =
A’UBUS corresponds to a square-free monomial in the support of f;. By construction,
the only edges of A j\ A;_; thatdo not belong to E (H) are those that belong to E(L; (v)),
which implies condition (b). Hence, the induction step is complete, and the claim is
proven.

Otherwise, we have m = degf[(vj). We write EL = Eé(vj) andb =d +t; —
degfl(vj). We also expand g as

g= Y oy’

DCEL
|D]=d

Then,
tj—degR (v))
g > v = (tj —degf )| Y cpy” >
ecEL DCEL UCEL
|D|=d |U|=t;—degk (v))
= (i —degfr! Y | D0 en |y 5)
ycEL DCY
|Y]=b \ID|=d
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Hence, in order to show that (3) holds and prove the first condition of our induction
hypothesis, it is enough to show that the expression above is nonzero in our quotient
ring.

The expression (5) may be expressed as follows. Let O be the matrix whose rows
are indexed by the b-subsets of £ and whose columns are indexed by the d-subsets of
EL. GivenasetY C EL ofsizebandaset D C EL of size d, we let the (Y, D)-entry
of Q be 1if D C Y and equal 0 otherwise. In other words, Q is a set-inclusion matrix.
Then, the coefficients in (5) are equal to the entries in the vector

(tj — degh (vj))! O, (6)

where 7 is the column vector with entries indexed by subsets D C E L of size d and
whose D-entry equals cp. Since g is nonzero in our quotient ring, we have that t # 0.
Thus, to prove that (3) holds, it suffices to show that (6) is nonzero.

Now, sinced = |[Aj_1 N E é (v;)], it follows from condition (b) of the induction
hypothesis that d < degfi (vj). Therefore, b < t; + degﬁ(vj) — degg (v;), which
by our initial assumption is at most |EL| — degf, (vj) < |E L| — 4. Therefore, since

d < b < |EL|—d, it follows that (‘EbLl) > ('%L‘), and hence it follows from a classical
result of Gottlieb [14, Corollary 1(b)] about set-inclusion matrices that Q has full
column rank. Hence, the matrix product in (6) is nonzero, and thus (3) holds.

ti—m
Therefore, g - (Zeegé(v ) ye) ' again has a square-free monomial y3 corre-

sponding to an edge subset S C Eé(vj). Welet Aj = A’UBUS, and then A;
corresponds to a square-free monomial in the support of f;.

Finally, we check that our edge set A satisfies condition (b). By construction, the
only edges of A; \ A;_; that do not belong to E(H) are those that belong to Eé(vj),
which implies (b). Hence, the induction step is complete, and the claim is proven.
As stated at the beginning of the proof, the claim together with the Combinatorial
Nullstellensatz implies our theorem. O

3 Dual Polynomials

In this section, we take a brief aside to show that our polynomial f used in the proof of
Theorem 2.1 is related to the traditional graph polynomial and that this relationship is
a special case of a more general duality relation. As a corollary, we obtain a simplified
proof of Theorem 1.4.

We consider the following setup. Let A = (g;; : 1 <i <n,1 < j < m) be an
n X m matrix, and let« = («y, ..., ®,) and 8 = (B, ..., Bn) be nonnegative integer
vectors. Let A%# be obtained from A by making exactly o; copies of each row i in A
and then subsequently making exactly 8; copies of each column j. We fix a field K
and thering K[x;,y; : 1 <i <n,1 < j < m]. Given vectors « and B as above, we
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define the dual polynomials

Note that when only one polynomial is given, its dual is not uniquely determined, since
the correspondence between g and g* depends on the vectors « and 8. We say that g
and g* are duals of each other, as the factors of g are obtained from the rows of A, while
the factors of g* are obtained from the columns of A. This relationship is reminiscent
to the relationship between dual linear programs, whose respective constraints are
given by the rows and the columns of a common matrix.

We write x* = [[i_; /" and y# = [T, yfj . We denote the coefficient of a
monomial y# in the polynomial g by coeff(y?, g). For a vector u = (u1, ..., u;), we
write |lu]|; = Zf‘: 1 lu;|. Finally, if M is a square matrix, then we denote by per(M)
its permanent. We have the following result.

Theorem 3.1 If |le||1 = || Bll1, then (]_[;f’:1 B,!) coeff (yﬁ, g) = (IT/=, ai!) coeff (x*,
g*) = per(A®F).

Proof We first show that ([T}, B;!) coeff (y, g) = per(A*#). Consider the mono-
mial expansion of g containing m/%l' terms, each of which is obtained by choosing a
term from each of the ||| factors Z]”-’:l a;j;jy; of g and taking the product of these
terms. Each of the factors Z?:l a;jjy;j of g can be associated with a distinct row in

the matrix A%1 (where 1 refers to the all-1 vector of length m). Therefore, each term
P in the monomial expansion of g divisible by y# corresponds to a choice of [|e]|
entries from A%! with one entry from each row and S ;j entries in each column j,
and the coefficient of P is equal to the product of all [J«||; of these entries. Hence,
coeff(y#, g) is equal to ) _ a,, where o runs over all choices of ||| entries from
A®! consisting of one entry from each row and f ; entries from each column j, and
a 1is the product of all of the values from A% contained in o. Furthermore, a choice
of B; entries from column j of A%l can be represented in B ! ways as a choice of
one entry from each of the 8; columns of A%P corresponding to column j of A%,
Therefore, (]_[';’=1 B;!) coeff P, g) = >, ar, where 7 runs over all choices of [|e|||

entries from A% consisting of one entry from each row and one entry from each col-
umn, and . is the product of all of the values from A%# contained in 7. Equivalently,
(TT', Bj!) coeff(y?, g) = per(A®F).

By using the transpose of A and swapping « and 3, the same argument shows that
(TT/2; @i!) coeff(x*, g*) = per((AT)P*) = per(A*PF). o

We note that considering the permanent of a matrix appears naturally when using
the polynomial method. The first such appearances may have been used by DeVos et

@ Springer



Combinatorica (2024) 44:1091-1113 1103

al. [6-8]. It was also used in relation to the problem of total weight choosability (see
e.g. [9] and [27], [32]). In fact, in [32], Zhu similarly considers the permanent of a
matrix obtained by making copies of the rows or columns of a smaller matrix.

In one special case of this matrix setting, A is the incidence matrix M of a graph
G, and B € {0, 1}/E©)l indexes an edge set E/ € E(G). If f is defined as in Sect.
2 and coeff(y#, f) # 0, then the Combinatorial Nullstellensatz tells us that G has
an F-avoiding orientation when |F (v)| < ¢, for each vertex v of G. Furthermore,
the polynomial dual to f is f* = [],,cg (xu — Xu), which is the traditional graph
polynomial of G[E’]. A famous result of Alon and Tarsi [3] tells us that if D is an
orientation of a graph H satisfying deg'g (v) = t, ateach vertex v € V(H), then

coeff< 1_[ xf)”,f*)

veV(G)

— |[EE(D) — EO(D)|. (AT)

Therefore, if there exists an Alon-Tarsi orientation D of G[E’] in which degg )=t
for each v € V(G), then (AT) and Theorem 3.1 tell us that

-1
( 1_[ tv!) coeff(yﬂ,f)‘: coeff( l_[ x{,”,f*)

VeV (G) veV(G)
Hence, the existence of the Alon-Tarsi orientation D on G[E’] implies that G has an
F-avoiding orientation whenever | F (v)| < t, for each v € V(G), proving Theorem
1.4. Theorem 3.1 gives us a sufficient condition for the existence of a nowhere-zero
p-flow, for each prime p. In fact, the theorem gives us a stronger conclusion, which
we describe below.

Recall that a function ¢ : E(G) — {1, ..., p — 1} on a graph G yields a nowhere-
zero p-flow if and only if the congruence ZeeEﬂv) ¢(e) — ZeeE’(v)(p(e) =0
(mod p) holds at each vertex v € V(G). Generalizing the notion of a nowhere-zero
flow, we say that a graph G is Zy-connected if for every function b : V(G) — Z,
with }° ) b(v) = 0, there exists ¢ : E(G) — Z), \ {0} such that

=|EE(D) — EO(D)| # 0.

D b= Y. ¢le)=b) )

ecEt(v) ecE~(v)

for each v € V(G). Since ey () (Leer #0) = Leep-y #®) = 0
(mod p), it follows that if (7) is satisfied at every vertex v € V(G) \ {u} for some
u € V(G), then (7) also holds at u.

Theorem 3.2 Let p > 3 be a prime, and let G be a graph. Let G'P~2) be obtained
from G by replacing each edge with p — 2 parallel edges, and let H be a spanning
subgraph of GP=2 with exactly (p — 1)(|V(G)| — 1) edges. If, for some u € V (H),
H has an orientation D in which dngDr(v) = p—1foreachv € V(G)\ {u} and such
that EE(D) — EO(D) # 0 (mod p), then G is Zp-connected.
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Proof Consider an arbitrary orientation of the edges of G. From this orientation,
define the incidence matrix M = (my, : v € V(G),e € E(G)) of G and consider
any b : V(G) — Z, with Zvev(G) b(v) = 0. We fix a vertex u € V(G), the field
Zp, and aring Zp[xy, ye : v € V(G), e € E(G)] in which we define the polynomial

o= 1 T [ X meoe-a

veV(G)\u} acZy\Ib®)} \ecE(G)

It is straightforward to show that there is a function ¢ : E(G) — Z, \ {0} satisfying
(7) if and only if there is an assignment from the set Z, \ {0} to each variable y, that
gives go a nonzero evaluation. Furthermore, every term of maximum degree in the
expansion of gg is also a maximum-degree term in the expansion of

p—1 oy

8 = 1_[ Z MyeYe = 1_[ Z MyeYe )

veV(G)\{u} \ecE(G) veV(G) \ecE(G)

where o, = p—1foreachv € V(G)\{u},anda, = 0. Welet 8 € {0, ..., p—2}IE(O
be a vector indexing which edges of G, and how many copies of each edge, belong
to H. Since the maximum degree terms in g and go are equal, it follows that if
coeff(y#, g) # 0, then by the Combinatorial Nullstellensatz, gy has an assignment
for each y, from Z, \ {0} that makes go nonzero.

Note that ) cy g yow = (p = D(V(G)| = 1) = |E(H)| = }_,cp(G) Pe- Thus
we can apply Theorem 3.1, which shows that coeff(y#, g) # 0 if and only if
coeff (x%, g*) # 0, where

Be

g = 1_[ Z MyeXy = 1_[ Z MyeXy

ecE(G) \veV(G) ecE(H) \veV(G)

However, since g* is the graph polynomial of H, and since D is an orientation of H
satisfying dngDr(v) = ay ateachv € V(H) and EE(D) — EO(D) # 01in Z, it
follows from (AT) that | coeff(x%, g*)| = |EE(D) — EO(D)| # 0. Therefore, an
assignment from Z, \ {0} to each y, giving go a nonzero evaluation exists. This implies
that G is Zp-connected. O

4 A Step Toward Conjectures 1.1 and 1.2

In this section, we prove Theorem 1.6, which establishes relaxations of Conjectures
1.1 and 1.2 with slightly smaller constant factors. Our main tool is Theorem 2.1 along
with a fractional rounding method.

Many graph theory problems can be described as integer programming problems.
Often, we find a fractional solution, and then use rounding to obtain an integer solution
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that approximately solves the original problem. The following lemma shows how this
is done.

Lemma 4.1 Given a graph G = (V, E), let M = (my, : v € V,e € E) be a real-
valued matrix in which my, # 0 only if v € e. Let'y € [0, 11F be a vector, and let
X = My. Then, there exists a 01-vector y € {0, 1}F such that X' = MYy’ satisfies
X, > X, — by for each v € V(G), where b, = max{|my.| : e € E}. Furthermore, we
may choose y' so that x|, > X, — b, whenever b, > 0.

Proof Givent € [0, 11€, we write fr(t) = {e : 0 < t, < 1}. Letz € [0, 11¥ be
a solution of Mz > x with minimum size of fr(z). We know that z exists, because
z =y satisfies the inequality.

First we show that the subgraph H of G induced by the edges in fr(z) is acyclic. If
H contains a cycle C, then we claim that there exists a non-trivial vector & € RE with
its support contained in E(C) such that Ma > 0. Indeed, let M’ be obtained from
M by taking the columns corresponding to E(C) and rows corresponding to V (C).
As C is a cycle, M’ is a square matrix. Since m,, = 0 whenever v ¢ e, finding our
vector o with support contained in E(C) is equivalent to finding a nontrivial vector
o' satisfying M'a’ > 0. If M’ is singular, then ¢’ may be taken from the nullspace of
M’. On the other hand, if M’ is invertible, then &’ may be taken as the unique solution
to M'a’ = e, where ¢, is the unit vector corresponding to some vertex u € V(C). In
both cases, we find our vector &’ and hence also our vector «.

Now, we can choose a value p > 0 such thatz+ pa € [0, 11 and | fr(z + pa)| <
| fr(z)|. Then, we have M(z + pa) = Mz + pMa > Mz, which contradicts our
choice of z. Thus, we conclude that the subgraph H of G induced by fr(z) is acyclic.

Now, if H is non-empty, then H has a leaf v incident to a single edge e = vu €
E(H). If we change the value of z., only the coordinates v and u of Mz change.
We can change z, to 0 or 1 so that the u-coordinate of Mz increases, while the v-
coordinate decreases by less than b,. We consider H — e and repeat this process until
fr(z) is empty, and we write y’ for the new integer vector we obtain from z. We write
x' = My, and by our observation above, x|, > x, — b, for each v € V(G), with a
strict inequality whenever b, > 0. O

As a warm-up for our proof of Theorem 1.6, we first prove an easier result, which
is an approximation of Conjecture 1.1. By choosing an orientation of G that makes
the in-degree and out-degree as equal as possible at each vertex, Theorem 1.6 implies

the following result with only a constant error.

Theorem 4.2 Let G be a graph, and let F : V(G) — 2N. If. for each v € V(G) we
have,

|[F(v)| = %deg(v) -1

then G has an F-avoiding orientation.

@ Springer



1106 Combinatorica (2024) 44:1091-1113

Proof By Theorem 2.1, we just need to show that there exist an ordering of vertices
V1, ..., Uy, and a subgraph H of G such that for each vertex v € V(G), it holds that

degf; (v) — 2 degl; (v) + degh (v) > |5 deg(v)] — 1.

We fix an ordering vy, ..., v, of the vertices of G. Also, we define a matrix M =
(mye : v € V(G), e € E(G)) as follows. For each edge e = v;v; withi < j, we let
the column of M corresponding to e have entries 1 and —2 in the rows corresponding
to v; and v}, respectively, and we let all other entries in the column be 0. Our task is
equivalent to finding a O1-vector y’ € {0, 1}¥ such that the vector X' = My’ satisfies
X, > I_% deg(v)] — degé (v) — 1. We begin with a vector y € Rf with 1/3 in each of
its entries, and we observe that x = MYy satisfies

2 1 1
X, = —3 degé (v) + 3 degé (v) = 3 degs (v) — degé(v)

for each v € V(G). Hence, by Lemma 4.1, there exists y' € {0, 1}£ such that the
vector X' = MYy’ satisfies

1
X, > 3 deg(v) — degh(v) — 2

at each vertex v € V(G). Equivalently, x|, > L% deg(v)] — degé(v) — 1 at each v,
completing the proof. O

Using a similar method, we also prove Theorem 1.6, which gives a %-approximation
of Conjecture 1.2.

Proof of Theorem 1.6 Again, by Theorem 2.1, we just need to show that there exists an
ordering vy, ..., v, of V(G), as well as a subgraph H of G such that for each vertex
v € V(G), it holds that

degl (v) — 2 degh; (v) + degh (v) > |3 degh (v)| — 1.

We fix an ordering vy, ..., v, of V(G), and then define a matrix M as in the proof of
Theorem 4.2. To find a subgraph H satisfying the above inequality for each v € V (G),
it is equivalent to find an integer vector y’ € {0, 1}£ such that the vector X' = My’
satisfies x|, > L% degB(v)J — degé(v) — 1 for each v.

We say that an edge v;v; withi < j is a forward edge in D if it is oriented from v;
to v;; otherwise, we call it a backward edge in D. We write degL+(v) for the number
of backward edges outgoing from v in D, and we write deg”~ (v) for the number of
forward edges incoming to v in D. Similarly, we write deg®* (v) for the number of
forward edges outgoing from v in D, and deg®~ (v) for the number of backward edges
incoming to v in D.

Let vy, ..., v, be an ordering of V(G) with the minimum possible number of
forward edges. We argue that for each v € V(G), it holds that degL+(v) > degL_(v).
Indeed, if this inequality does not hold for v, then we can move v to the first position
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in our vertex ordering and decrease the number of forward edges in D by degl— (v) —
degl* (v) > 0, a contradiction.

Now, lety, = % for each forward edge e in D, and let y, = 0 for each backward
edge e in D. Letting x = My, we have

2
Xy + degg (v) — 3 deg}, (v)
= % (e () — 2degh () + (deg"~(v) + deg" ()
— %(deg”(v) + deg®* (v))

- %(deg”(v) ~ degh (v)) > 0.

Therefore, for each v € V(G), we have x,, > %deg‘g (v) — degé (v). Since |mye| <2
for each entry m,, in M, it follows from Lemma 4.1 that there exists an integer vector
y € {0, 1}F such that the vector x' = My’ satisfies x, > %degg(v) —degl(v) —2
for each v € V(G). Equivalently, for each vertex v, we have xy’ > L% dngIS )] —
degé(v) — 1, completing the proof. O

5 Graphs with a Relaxed Regularity Condition

In this section, we prove Theorem 1.7, which holds for large graphs whose maximum
degree is subexponential in terms of their minimum degree. For our proof, we need
some preliminary lemmas and definitions. We use the Chernoff bound, a probabilistic
tool that can be found in many textbooks (e.g. [25, Chap. 4]).

Lemma 5.1 Let X be a binomially distributed variable with parameters n and p. Let
w=np,andlet 0 < § < 1. Then,

1
Pr(X > (14 8)u) < exp <—§52u>
and
1 2
Pr(X < (1—-%8w) <exp —58 uwl.

Mitzenmacher and Upfal [25] point out that for the first statement of the lemma, it
is enough to let u < np, and for the second statement of the lemma, it is enough to
let > np. We use the following corollary of the Chernoff bound.

Lemma 5.2 Let X be a binomially distributed variable with parameters n and p, and
let0 <y < 1. Then,

1
Pr(|X — pn| > yn) <2exp (—Ey2n) .
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Proof First, suppose that p > %y. Since X is a binomially distributed variable with
mean of np, we can apply Lemma 5.1 with 4 = np and § = y/2p < 1. Then,

2
by Lemma 5.1, our inequality fails with probability at most 2 exp (—1—121’711) <
2exp (—ﬁyzn).
Next, suppose that p < %y. In this case, we only need to prove the upper bound

of the inequality. Since pn < yn, we can apply Lemma 5.1 with 4 = yn and
6 = 1 to show that the upper bound fails with probability at most exp —%yn) <

2exp (—%y%). O
We also use the following well-known symmetric form of the Lovasz Local Lemma.

Lemma 5.3 [29] Let A be a collection of (bad) events in a probability space. Suppose
that each bad event in A occurs with probability at most p and is independent with
all but fewer than D other bad events in A. If

Dp < 1/e,

then with positive probability, no bad event in A occurs.

Now, we are ready to prove Theorem 1.7. Writing & = +/2 — 1, we can restate
Theorem 1.7 as follows.

Theorem 5.4 Let G be a graph of minimum degree § and maximum degree A = ¢°®,
and let F : V(G) — 2N, If

[F(v)] < (@ —o(1)) deg (v)
for each v € V(G), then G has an F-avoiding orientation.

In the statement of the theorem, our function o(1) approaches 0 as § — oo, and
the rate at which o(1) approaches 0 depends on how quickly 6 dominates log A.

Proof Lety > 0 be a fixed value. We randomly choose an ordering of V (G) by using
a function ¢ to map each vertex v € V(G) uniformly at random to the real interval
[0, 1] and then letting V (G) be ordered according to the left-right order of the image
of V(G) in [0, 1]. Since two vertices are mapped to the same value with probability
0, we can assume that all values ¢ (v) are distinct.

Consider a vertex v € V(G), and write d = deg; (v). We observe that by Lemma
5.2, it holds with probability at least 1 — 2 exp (—15>d) that

(@(v) — y)d < degh(v) < (@) +y)d. (8)

Now, we probabilistically create a subgraph H € G.If uv € E(G) and ¢ (u) = x
and ¢ (v) = y, then we add the edge uv to H with probability

o

o y) T ifOfoaanda+(%)x§y§1,
'x’ = .
Py 0 otherwise.
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We make some observations about H. First, by construction, a vertex v € V(G) for
which ¢ (v) < « satisfies deg%{(v) = 0, and a vertex v € V(G) for which ¢ (v) > «
satisfies degfl (v) = 0. Next, consider a vertex v € V(G), and write d = degs (v). If
¢ (v) < «, then we claim that by our simplified Chernoff bound (Lemma 5.2), it holds
with probability at least 1 — 2 exp (—éyzd) that

(@ —¢() —y)d < degff (v) < (@ — p(v) + y)d. ©)

Indeed, each neighbor w € N (v) becomes a right-neighbor of v in H independently
with probability

1 o 1l -«
fo p(@(v), y)dy = T—a (I—a-— T¢(v)) =a—¢(v),

and hence Lemma 5.2 applies.
On the other hand, if ¢ (v) > «, we claim that Lemma 5.2 implies that, with
probability at least 1 — 2exp (—752d), we have

1 1
§(¢(U) —a —y)d < degi;(v) < §(¢(v) —a+y)d. (10)

Indeed, each neighbor w of v becomes a left-neighbor of v in H with probability

1 2 1
/ p(x. p()dx = (%) @W) —a) = ~(@ (V) —a),
0 - 2

so Lemma 5.2 applies.
Now, depending on the value of ¢ (v), we see from (8) and (9) or from (8) and (10)
that the distribution on deg’ (v) — 2 degk, (v) + degf (v) is centered around ad. In

particular, with probability at least 1 — 4 exp(—%yzd),
(@ —2y)d < degk (v) — 2degh; (v) + degh (v) < (@ +2y)d. (11)

Now we apply the Lovasz Local Lemma (Lemma 5.3). For each vertex v, we define
a bad event B, to be the event that (11) does not hold for v. We have seen that the
probability of each bad event B, is at most 4 exp(— % ¥28). Furthermore, the vertices
and edges involved in a given bad event B, induce a star in G centered at v, and two
bad events are independent if and only if their corresponding stars are disjoint. Hence,
B, is dependent with at most A? other bad events. Hence, by Lemma 5.3, as long as

1
(A2 + 1) -dexp (—EVZ(S) <1/e,

the equation (11) holds for each vertex v with positive probability. Since A =
exp(o(8)), the inequality holds when § is sufficiently large, and we hence conclude that
with positive probability, our random process chooses a subgraph H C G that satisfies
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(11) at each vertex v € V(G). Thus, a subgraph H satisfying (11) exists. Therefore,
by Theorem 2.1, if each vertex v € V(G) has a list F'(v) of at most (« — 2y) degs (v)
forbidden values, then G has an F-avoiding orientation. Letting y tend to O completes
the proof. O

Finally, we show that if we use Theorem 2.1 to prove for some constant 8 that
every regular graph G has an F-avoiding orientation when |F'(v)| < g deg(v), then
B < a+o(1).Inother words, the coefficient « —o(1) in Theorem 5.4 is essentially best
possible. To show this, consider the complete graph G = K,,, and order its vertices as
V1, ..., Uy. Suppose that we can use Theorem 2.1 to show that G has an F-avoiding
orientation whenever | F'(v)| < B(n—1) ateach vertex v € V(G). We partition V (K,)
into two sets A and B, where A contains all vertices v; for which i < |8n], and B
contains all other vertices. Given an oriented subgraph H of G, we say that the weight
w(v) of a vertex v € V(G) is given by

w(v) = degh (v) — 2degh (v) + degh (v).

In order to apply Theorem 2.1, the weight of each vertex v € V(G) must satisfy
w() = pn —1).

Now, lete(A) and e(B) denote the number of edges in H[A] and H[B], respectively,
and let e(A, B) denote the number of edges with one endpoint in A and one endpoint
in B. We observe that if Theorem 2.1 applies, then the total weight w(A) of all vertices
in A satisfies

LBn]
1
[Bn]B(n —1) < w(A) = Z(i —1)—e(A)+e(A,B) < ELﬂn — 1]|pn] +e(A, B),

i=1

(12)

and the total weight w(B) of all vertices in B satisfies

(n— BB —1) <wB)= Y (-1

i=|Bn]+1

—2¢(A, B) — e(B) < % (n2 —n—pn)? - Lf}nj) —2¢(A, B). (13)

We eliminate the quantity e(A, B) by doubling (12) and adding (13), and then simpli-
fying yields

(14 o(1)n? (1/82 +8— 1) <0.
2 2

This implies that 8 < « + o(1). Therefore, the coefficient of « — o(1) appearing in
Theorem 5.4 is close to best possible when using Theorem 2.1.
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6 Conclusion

It is natural to ask whether Conjecture 1.1 could be proved for every graph G using
Theorem 1.4 by finding a suitable orientation D of G, which would give a stronger
result. In other words, the following question emerges.

Question 6.1 Does every graph G have a spanning subgraph with an Alon-Tarsi ori-
entation in which each vertex v has out-degree at least %(degG(v) —1)?

If Question 6.1 has a negative answer, we can still ask the similar question where
—1 is replaced with an arbitrary constant —C.

If the answer to Question 6.1 is affirmative, then it would imply that every graph
G on n vertices and of maximum degree A has a subgraph H with at least |E(G)| —
n/2 edges for which AT(H) < L%A + %J. Indeed, given an affirmative answer to
Question 6.1 and a graph G, we could first find a subgraph H of G with an Alon-
Tarsi orientation D as described in the question. This subgraph necessarily has at least
ZveV(G) %(degG (v) — 1) = |[E(G)| — n/2 edges. Then, after reversing the direction
given by D for each edge of H, we obtain an Alon-Tarsi orientation of H in which
each vertex has out-degree at most %degG(v) + %, implying that AT(H) < LATHJ.
This leads us to the following problem.

Question 6.2 Does there exist a constant C such that every graph G of maximum
degree A has a matching M such that AT(G — M) < %A +C?

If the answer to Question 6.2 is affirmative, it is natural to ask for the optimal value
of C. We note that C cannot be smaller than %, since for any odd n and any maximum
matching M in K,,, AT(K,, — M) = % (see [17]).

Our requirement that M be a matching rather than an arbitrary set of n/2 edges is
inspired by the following two results, which both show that if a matching is removed
from a graph G, then the upper bound on some coloring parameter of G can be reduced.
For planar graphs, Zhu [31] has shown that the Alon-Tarsi number is at most 5 and
that this upper bound is tight, but Grytczuk and Zhu [16] have also shown that every
planar graph G contains a matching M for which AT(G — M) < 4. Furthermore, it
is well-known that a graph G of maximum degree A satisfies x(G) < A + 1 and
that this bound is tight for cliques. However, every graph G of maximum degree A
contains a matching M for which x (G — M) < (ATHW. Indeed, Lovasz [22] proved
a result on graph coloring which implies, as shown by Jesurum [20], that every graph
of maximum degree A has a | A/k|-defective k-coloring, in which each vertex is
adjacent to at most | A /k| vertices of the same color. By letting k = (AT'H], we see
that every graph has a 1-defective (%l—coloring, in which the monochromatically
colored edges form a matching. By removing this matching M of monochromatic
edges from G, we obtain a graph with chromatic number at most (AT'H].
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