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Abstract

Given a graph G with a set F(v) of forbidden values at each v ∈ V (G), an F-avoiding

orientation of G is an orientation in which deg+(v) /∈ F(v) for each vertex v. Akbari,

Dalirrooyfard, Ehsani, Ozeki, and Sherkati conjectured that if |F(v)| < 1
2

deg(v) for

each v ∈ V (G), then G has an F-avoiding orientation, and they showed that this

statement is true when 1
2

is replaced by 1
4

. In this paper, we take a step toward this

conjecture by proving that if |F(v)| < � 1
3

deg(v)� for each vertex v, then G has an

F-avoiding orientation. Furthermore, we show that if the maximum degree of G is

subexponential in terms of the minimum degree, then this coefficient of 1
3

can be

increased to
√

2 − 1 − o(1) ≈ 0.414. Our main tool is a new sufficient condition for

the existence of an F-avoiding orientation based on the Combinatorial Nullstellensatz

of Alon and Tarsi.
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1 Introduction

An orientation of a graph G is an assignment of a direction uv or vu to each edge

{u, v} ∈ E(G). For an orientation D of a graph G and a vertex v ∈ V (G), we denote

by E+(v) the arcs outgoing from v in D, and we denote by E−(v) the arcs incoming

to v. We write deg+
D(v) = |E+(v)| and deg−

D(v) = |E−(v)|. We write N for the set
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{0, 1, 2, . . . } of nonnegative integers. In 1976, Frank and Gyárfás [12] proved that for

a graph G and two mappings a, b : V (G) −→ N satisfying a(v) ≤ b(v) for every

vertex v, G has an orientation D satisfying a(v) ≤ deg+
D(v) ≤ b(v) for every vertex

v if and only if for each subset U ⊆ V (G),

∑

v∈U

a(v) − d(U ) ≤ |E(G[U ])| ≤
∑

v∈U

b(v),

where d(U ) is the number of edges joining U and U = V (G) \ U , and G[U ] is the

subgraph of G induced by U .

Recently, Akbari, Dalirrooyfard, Ehsani, Ozeki and Sherkati [1] considered the

similar problem of finding an orientation of a graph that avoids a certain out-degree at

each vertex. Given a graph G and a function f : V (G) −→ N, we say that an orientation

D of G is f -avoiding if deg+
D(v) 
= f (v) for each v ∈ V (G). It was proved in [1] that

there is an f -avoiding orientation for every 2-connected graph G that is not an odd

cycle and for every function f : V (G) −→ N, and that an odd cycle has an f -avoiding

orientation if and only if f (v) 
= 1 for some vertex v of the cycle. Frank, Tardos,

and Sebő [13] considered the same problem modulo 2, or in other words, with parity

constraints on the out-degrees of the vertices in G.

In addition to considering orientations that avoid a single given out-degree at each

vertex, Akbari et al. considered the graph orientation problem in which each vertex

has a list of forbidden out-degrees. Given a graph G and a function F : V (G) −→ 2N,

an orientation D of G is said to be F-avoiding if deg+
D(v) /∈ F(v) for each v ∈ V (G).

The problem of finding an F-avoiding orientation of a graph G can be represented

in the language of general factors, introduced by Lovász [23] and defined as follows.

Given a graph G and a function H : V (G) → 2N, a spanning subgraph G ′ ⊆ G is an

H -factor if degG ′(v) ∈ H(v) for each v ∈ V (G). To represent the problem of finding

an F-avoiding orientation of G in the setting of H -factors, we construct a graph G(1)

by replacing each edge e ∈ E(G) with a vertex ve of degree 2 whose neighbors are the

endpoints of e, and we define a function H : V (G(1)) → 2N so that H(v) = N\ F(v)

for each v ∈ V (G) and H(ve) = {1} for each e ∈ E(G). Then, it is easy to check that

the problem of finding an F-avoiding orientation of G is equivalent to the problem

of finding an H -factor of G(1). Cornuéjols [5] and Sebő [28] give polynomial-time

algorithms for checking whether G has an H -factor whenever i /∈ H(v) implies that

i + 1 ∈ H(v) for each i ∈ N and v ∈ V (G), which allow us to check in polynomial

time whether G has an F-avoiding orientation whenever the function H defined from

F as described above satisfies this condition.

The concept of an F-avoiding orientation is also related to nowhere-zero flows

and in particular to Tutte’s 3-flow conjecture, which is stated as follows. Given a

directed graph D and a positive integer k, a nowhere-zero k-flow on D is an assignment

φ : E(D) → Zk \ {0} satisfying
∑

e∈E+(v) φ(v) ≡
∑

e∈E−(v) φ(v) (mod k) at each

vertex v ∈ V (G). When k = 3, a nowhere-zero 3-flow can be interpreted as an

orientation of a graph G, and an orientation D of G is a nowhere-zero 3-flow if and

only if deg+
D(v) ≡ deg−

D(v) (mod 3) holds for each vertex v ∈ V (G). Tutte’s 3-flow

conjecture states that every graph G with no edge-cut of size 1 or 3 admits a nowhere-

zero 3-flow (see [18, Conjecture (C2)] or [4]). It has long been known that Tutte’s
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3-flow conjecture is equivalent to the statement that every 5-regular graph with no

edge-cut of size 1 or 3 has an F-avoiding orientation where F(v) = {0, 2, 3, 5} at

each vertex v (see [4, Unsolved Problem 48] for this equivalent formulation).

It is conjectured that for every graph G, as long as F forbids less than roughly half

of the possible out-degrees at each vertex, then G has an F-avoiding orientation.

Conjecture 1.1 [1] Let G be a graph, and let F : V (G) −→ 2N. If

|F(v)| ≤
1

2
(degG(v) − 1)

for each v ∈ V (G), then G has an F-avoiding orientation.

If Conjecture 1.1 is true, then the upper bound 1
2
(degG(v) − 1) is sharp. To show

sharpness, take a 2k-regular graph G on n vertices with independence number less

than n
k+1

. Then, G has no F-avoiding orientation with F(v) = {k, k + 1, . . . , 2k − 1}
for each vertex v. The graph K2k+1 is such an example.

One can also compare the size of each forbidden list F(v) to the out-degree of

v in some fixed orientation. Since every graph G has an orientation D in which

each v ∈ V (G) satisfies deg+
D(v) ≥ �degG(v)/2�, the following conjecture implies

Conjecture 1.1 with an error of at most 1.

Conjecture 1.2 [1] Let G be a graph, and let F : V (G) −→ 2N. If G has an orientation

D such that

deg+
D(v) ≥ |F(v)| + 1

for every v ∈ V (G), then G has an F-avoiding orientation.

One tool that was used extensively in [1] is the following theorem, called the Com-

binatorial Nullstellensatz, introduced by Alon and Tarsi in [3] and further developed

as a tool by Alon [2].

Theorem 1.3 (Combinatorial Nullstellensatz, [3]) Let K be a field, and let f be a

polynomial in the ring K [x1, . . . , xn]. Suppose that the degree of f is t1 + · · · + tn ,

where each ti is a nonnegative integer, and suppose that the coefficient of
∏n

i=1 x
ti
i in

f is nonzero. Then, if S1, . . . , Sn are subsets of K each satisfying |Si | > ti , then there

exist elements s1 ∈ S1, . . . , sn ∈ Sn so that

f (s1, . . . , sn) 
= 0.

We note that Shirazi and Verstraëte [30] used the Combinatorial Nullstellensatz

to prove a result similar to Conjecture 1.1 for F-avoiding subgraphs. They proved

that for every graph G, if F : V (G) → 2N satisfies |F(v)| < �degG(v)/2� for

each v ∈ V (G), then G has a spanning subgraph H such that degH (v) /∈ F(v) for

each v ∈ V (G). Frank, Lau, and Szabó [11] proved the same result using elementary

methods.
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In graph theory, the Combinatorial Nullstellensatz is often used for list coloring

problems (see e.g. [3, 10, 17] or the monograph [33]). In this case, the polynomial

f in the statement of the Combinatorial Nullstellensatz is the graph polynomial of

a graph G, introduced by Li and Li [21] and defined as follows. For an arbitrary

fixed orientation D of G, the incidence matrix of D is defined as the matrix M =
(mve : v ∈ V (G), e ∈ E(G)) for which mve = 1 if e ∈ E+

G (v), mve = −1 if

e ∈ E−
G (v), and mve = 0 otherwise (see e.g. [15, Sect. 2.6]). Then, given a field K ,

the graph polynomial of G is the polynomial in the ring K [xv : v ∈ V (G)] defined

as f ∗
D =

∏

e∈E(G)

(

∑

v∈V (G) mvexv

)

. Equivalently, f ∗
D =

∏

(xu − xv), where the

product is taken over all directed arcs uv ∈ E(D). With this definition, a proper

coloring V (G) → K can be translated into an assignment of values of K to the

variables xv , and f ∗
D takes a nonzero value for a given assignment if and only if the

corresponding coloring of G is proper.

One convenient property of the graph polynomial is that its coefficients can be

determined solely by counting Eulerian orientations of the graph (see [2] for a complete

explanation). These are defined as follows. An orientation D of a graph G is said to

be Eulerian if deg+
D(v) = deg−

D(v) holds for all v ∈ V (G). A subgraph H of G is

called even if |E(H)| is even and is called odd otherwise. Given an orientation D

of G, we let E E(D) and E O(D), respectively, denote the number of even and odd

subgraphs of G that are Eulerian with respect to D. If G has an orientation D satisfying

E E(D) 
= E O(D), then we say that D is an Alon-Tarsi orientation. Alon and Tarsi

[3] first considered these orientations and proved the following groundbreaking result,

which has deep applications in list-coloring: If D is an Alon-Tarsi orientation of G, and

if L is a list assignment on G for which |L(v)| > deg+
D(v) at each vertex v ∈ V (G),

then G is L-choosable. Motivated by this beautiful result, Jensen and Toft [19] defined

the Alon-Tarsi number of a graph G, denoted by AT(G), as the minimum value k such

that G has an Alon-Tarsi orientation of maximum out-degree less than k. Alon and

Tarsi’s result can then be rephrased as ch(G) ≤ AT(G), where ch(G) is the list

chromatic number of the graph.

In their work on F-avoiding orientations, Akbari et al. [1] also apply the Combi-

natorial Nullstellensatz. However, they do not apply this tool to the graph polynomial

defined above. Rather, given a graph G, they define a polynomial P in a ring with a

set {ye : e ∈ E(G)} of algebraically independent variables which can take the val-

ues 1 or −1. It turns out that there is a bijection between variable assignments on P

and orientations of G. Similarly to the graph polynomial, the coefficients of P can be

determined by counting Eulerian orientations in G, and the following theorem relating

F-avoiding orientations and Alon-Tarsi orientations holds. In fact, the theorem stated

in [1] is slightly weaker, but the following version is an easily proven corollary.

Theorem 1.4 [1] Let G be a graph, let H be a spanning subgraph of G, and let

F : V (G) −→ 2N be a map. If there exists an Alon-Tarsi orientation D of H such that

|F(v)| ≤ deg+
D(v) for every vertex v ∈ V (G), then G has an F-avoiding orientation.

Theorem 1.4 shows a deep connection between the list coloring and F-avoiding

orientation problems. We will in fact see in Theorem 3.1 that this connection is a

special case of a more general duality between dual polynomials obtained from a
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common matrix. In the case of Theorem 1.4, the polynomials for list coloring and

F-avoiding orientations are related via the incidence matrix of a graph. Furthermore,

by using Theorem 1.4 along with a result of Huang, Wong, and Zhu [17], one can

immediately prove Conjecture 1.1 for the complete graph Kn . Indeed, Huang et al.

[17] proved that if N is a maximum matching in Kn , then AT(Kn − N ) = �n/2�,

which implies that Kn − N has an Alon-Tarsi orientation in which each vertex has its

out-degree at least (n − 2) − �n/2� + 1 =
⌊

1
2

n − 1
⌋

. Hence, Theorem 1.4 implies

that Kn has an F-avoiding orientation whenever |F(v)| ≤ 1
2

n − 1 for each vertex v.

Since every graph G has an orientation D in which deg+
D(v) ≥

⌊

1
2

degG(v)
⌋

for

each vertex v, and since E E(D) > E O(D) = 0 whenever G is bipartite, Theorem

1.4 also implies that a bipartite graph G has an F-avoiding orientation whenever

|F(v)| ≤ 1
2

degG(v) for each v. Furthermore, it is well known that every graph G

contains a spanning bipartite subgraph H satisfying degH (v) ≥ 1
2

degG(v) for each

vertex v. As a consequence, we have the following result.

Theorem 1.5 [1] Let G be a graph, and let F : V (G) −→ 2N be a map. If |F(v)| ≤
1
4

degG(v) for each vertex v ∈ V (G), then G has an F-avoiding orientation.

Using a recent result of Lovász, Thomassen, Wu, and Zhang [24] on Tutte’s 3-flow con-

jecture, Akbari et al. [1] also proved that when G is d-regular and d-edge-connected,

it is enough to require that |F(v)| ≤ (d − 5)/3 for each vertex v ∈ V (G) in order to

guarantee an F-avoiding orientation.

Let us now state the main results of this paper. First, we introduce the following

theorem, which gives a factor- 2
3

approximation towards Conjecture 1.2.

Theorem 1.6 Let G be a graph, and let F : V (G) → 2N. If G has an orientation D

such that

|F(v)| ≤
2

3
deg+

D(v) − 1

for each v ∈ V (G), then G has an F-avoiding orientation.

Since every graph has an orientation D in which each v ∈ V (G) satisfies deg+
D(v) ≥

⌊

1
2

degG(v)
⌋

, Theorem 1.6 also implies that Conjecture 1.1 holds with a coefficient of

roughly 1
3

, which improves Theorem 1.5 (see our Theorem 4.2). We also show that if G

is a graph whose maximum degree is subexponential in terms of its minimum degree,

then Conjecture 1.1 holds with an even greater coefficient of roughly
√

2−1 ≈ 0.414.

Theorem 1.7 Let G be a graph of minimum degree δ and maximum degree � = eo(δ),

and let F : V (G) → 2N. If

|F(v)| ≤
(√

2 − 1 − o(1)

)

degG(v)

for each v ∈ V (G), then G has an F-avoiding orientation.
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Note that in the statement of Theorem 1.7, our function o(1) approaches 0 as

δ → ∞, and the rate at which o(1) approaches 0 depends on how quickly δ dominates

log �.

One of the novel features in this paper is a general setup of dual graph polynomials

(see Sect. 3) and the use of multiplied incidence matrix permanents. Special cases of

these ideas have been used previously in related problems [6–9, 27, 32], but here we

provide a unified general treatment for the first time.

Our paper is organized as follows. In Sect. 2, we prove a sufficient condition (The-

orem 2.1) for the existence of an F-avoiding orientation in a graph G, which is the

main tool that we use throughout the paper. To prove our sufficient condition, we apply

the Combinatorial Nullstellensatz using a polynomial similar to the one used in [1].

In Sect. 3, we show that our polynomial in Sect. 2 has a dual relationship with the

traditional graph polynomial via the multiplied incidence matrix of a graph, and we

show that this relationship is a special case of a more general duality relation. In Sect.

4, we establish a lemma about fractionally weighted subgraphs, and we use this lemma

to prove Theorem 1.6. In Sect. 5, we make use of a randomized approach involving

the Lovász Local Lemma to prove Theorem 1.7. Finally, in Sect. 6, we pose some

open questions.

2 A Sufficient Condition for an F-Avoiding Orientation

In this section, we give a sufficient condition based on the Combinatorial Nullstellen-

satz (Theorem 1.3) for the existence of an F-avoiding orientation in a graph.

Henceforth, we make a technical change to the definition of an F-avoiding orien-

tation. Given a graph G with an orientation D and a function F : V (G) → 2Z, rather

than considering the out-degree of each vertex, we consider the imbalance of each

vertex v ∈ V (G), which is defined by Mubayi, Will, and West [26] as the difference

deg+
D(v) − deg−

D(v). We say that D is F-avoiding if deg+
D(v) − deg−

D(v) /∈ F(v) for

each v ∈ V (G). This change is for technical reasons which will become clear later in

this section. Since the imbalance of a vertex in a given graph can be uniquely deter-

mined from its out-degree and vice versa, and since our main result of this section is

only concerned with the size of each forbidden set F(v), our result still holds when

the original definition of an F-avoiding orientation is used.

Before stating our condition, we need to establish some notation. We consider

a graph G. We order its vertices as v1, . . . , vn , and we define an incidence matrix

M = (mve : v ∈ V (G), e ∈ E(G)) for G with respect to the acyclic orientation on G

in which each edge viv j is oriented from vi to v j if i < j . For each vertex vi ∈ V (G),

we let E R
G(vi ) denote the edges viv j ∈ E(G) with j > i , and we let E L

G(vi ) denote

the edges viv j ∈ E(G) with j < i . Similarly, we write degL
G(vi ) = |E L

G(vi )| and

degR
G(vi ) = |E R

G(vi )|. For each edge e ∈ E(G), we consider a variable ye. Given an

orientation D of G, and given an edge e = viv j with i < j , we set ye = 1 if e is

oriented from vi to v j in D, and we set ye = −1 otherwise. Given D, we observe that
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the imbalance of each vertex v can be expressed as a linear polynomial:

deg+
D(v) − deg−

D(v) =
∑

e∈E R
G (v)

ye −
∑

e∈E L
G (v)

ye =
∑

e∈E(G)

mve ye.

Now, suppose that for each vertex vi ∈ V (G), we have a list F(vi ) of ti integers. We

would like to find an F-avoiding orientation of G, that is, an orientation D of E(G) such

that for each vertex v ∈ V (G), the imbalance of v satisfies deg+
D(v)−deg−

D(v) /∈ F(v).

We fix a field K of characteristic 0, and over K we define the polynomial1

f0 =
n

∏

i=1

∏

a∈F(vi )

»

¼

½

∑

e∈E R
G (vi )

ye −
∑

e∈E L
G (vi )

ye − a

¾

¿

À
.

By the Combinatorial Nullstellensatz (Theorem 1.3), if f0 has a nonzero term of degree

deg f0 for which the maximum exponent of each variable ye is 1, then there exists a

vector in {−1, 1}E(G) at which f0 has a nonzero evaluation, and hence G also has an

F-avoiding orientation.

For each vertex v ∈ V (G), we write tv = |F(v)|. We observe that deg f0 =
∑

v∈V (G) tv and ti = tvi
for each vi ∈ V (G). Since each term of degree deg f0 =

∑

v∈V (G) tv in the monomial expansion of f0 is obtained by choosing exactly one

ye term from each factor
(

∑

e∈E R
G (vi )

ye −
∑

e∈E L
G (vi )

ye − a
)

, the terms of maximum

degree in the monomial expansion of f0 are exactly the same as the terms of maximum

degree in the monomial expansion of

f :=
n

∏

i=1

»

¼

½

∑

e∈E R
G (vi )

ye −
∑

e∈E L
G (vi )

ye

¾

¿

À

ti

=
∏

v∈V (G)

»

½

∑

e∈E(G)

mve ye

¾

À

tv

.

Therefore, rather than working with f0, we work with the simpler polynomial f . By

our previous discussion, if f has a nonzero term of degree
∑

v∈V (G) tv for which the

maximum exponent of each variable ye is 1, then G has an F-avoiding orientation.

Given an edge set A ⊆ E(G), we write y A = ye1 ye2 . . . ye|A| , where A =
{e1, e2, . . . , e|A|}. We say that a monomial P ∈ K [ye : e ∈ E(G)] is square-free

if for each edge e ∈ E(G), y2
e does not divide P . Observe that after removing its coef-

ficient, a square-free monomial P ∈ K [ye : e ∈ E(G)] is of the form y A for some

edge set A ⊆ E(G). Therefore, if the monomial expansion of f contains a square-free

term with a nonzero coefficient, then by the Combinatorial Nullstellensatz, G has an

F-avoiding orientation.

Now, we are ready to state our sufficient condition for when G has an F-avoiding

orientation. Although we prove the following theorem within the framework of for-

1 Here, we consider the integer values a ∈ F(vi ) as multiples of the multiplicative identity 1 ∈ K . Since

K has characteristic 0, every element a ∈ F(vi ) can be expressed as a multiple of 1 in K .
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bidden vertex imbalances, it is easy to see that the theorem also holds in the setting of

forbidden vertex out-degrees.

Theorem 2.1 Let F : V (G) → 2Z be an assignment of forbidden imbalances for a

graph G. Suppose that there exists an ordering of V (G) and a spanning subgraph H

of G such that for each vertex v ∈ V (G),

|F(v)| ≤ degL
G(v) − 2 degL

H (v) + degR
H (v).

Then G has an F-avoiding orientation.

Proof In the proof we use the notation introduced above. We also set E = E(G).

In order to prove that G has an F-avoiding orientation, we show that the monomial

expansion of f over K contains a square-free term and then apply the Combinatorial

Nullstellensatz as described above. Given an edge set A ⊆ E , we say that y A is in

the support of f if the monomial y A has nonzero coefficient in the expansion of f .

If y A is in the support of f , we also say that A is in the support of f , and we write

A ∈ Supp( f ). For each j (1 ≤ j ≤ n), we write

f j =
j

∏

i=1

»

¼

½

∑

e∈E R
G (vi )

ye −
∑

e∈E L
G (vi )

ye

¾

¿

À

ti

,

and we observe that f = fn .

We prove the following stronger claim:

For each j (1 ≤ j ≤ n), there exists an edge set A j ⊆ E such that

(a) A j ∈ Supp( f j ),

(b) if k > j , then A j ∩ E L
G(vk) ⊆ E L

H (vk).

By setting j = n in the claim, we obtain an edge set An ⊆ E which is in the support

of fn = f . Since An is an edge set (and not a multiset), y An is square-free and thus

satisfies the theorem. When proving the claim, we work in the quotient ring

K ′ = K [ye : e ∈ E]/〈y2
e : e ∈ E〉,

where 〈y2
e : e ∈ E〉 is the ideal generated by the squares of the variables ye. This

allows us to ignore all terms in the expansion of each f j divisible by a square, which

is desirable, as we are only interested in finding a square-free term in the expansion

of f .

We prove the claim by induction on j . When j = 1, we observe that

f1 =

»

¼

½

∑

e∈E R
G (v1)

ye

¾

¿

À

t1

= t1!
∑

A⊆E R
G (v1)

|A|=t1

y A.
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Since t1 = |F(v1)| ≤ degL
G(v1)−2 degL

H (v1)+degR
H (v1) = degR

H (v1), we can choose

A1 to be any set of t1 edges of H incident with v1. Hence the claim holds for j = 1.

Now, let 2 ≤ j ≤ n, and suppose the claim holds for j − 1. That is, suppose that

we have a set A j−1 satisfying y A j−1 ∈ Supp( f j−1) and in particular

A j−1 ∩ E L
G(v j ) ⊆ E L

H (v j ).

We would like to show that the claim holds for j . First, we will show that f j has

a nonzero expansion in our quotient ring, implying the existence of a square-free

monomial in the expansion of f j over K ′. Then, we will show that the square-free

monomial that we have found in the support of f j satisfies condition (b). As

f j = f j−1 ·

»

¼

½

∑

e∈E R
G (v j )

ye −
∑

e∈E L
G (v j )

ye

¾

¿

À

t j

,

we can express f j in the following form:

f j = f j−1 ·
t j

∑

a=0

(

t j

a

)

(−1)t j −a

»

¼

½

∑

e∈E L
G (v j )

ye

¾

¿

À

t j −a »

¼

½

∑

e∈E R
G (v j )

ye

¾

¿

À

a

. (1)

When the sum in (1) is restricted to a single value a, each monomial in the expansion

of (1) has exactly a variables ye for which e ∈ E R
G(v j ). Since none of these variables

ye appears in f j−1, any nonzero term in the expansion of (1) for a fixed value of a is

also a nonzero term in the expansion of (1) when the sum is taken over all values of a.

We restrict our attention to terms in the expansion of (1) that occur when a = m :=
min{t j , degR

H (v j )} in the sum. Hence, we only consider the expansion of

f j−1 ·

»

¼

½

∑

e∈E L
G (v j )

ye

¾

¿

À

t j −m »

¼

½

∑

e∈E R
G (v j )

ye

¾

¿

À

m

. (2)

We fix a set A′ ⊆ E R
H (v j )with m edges and observe that A′ ∈ Supp

(

∑

E R
G (v j )

ye

)m

.

Furthermore, we write B = A j−1 \ E L
G(v j ), and we write

f j−1 = yB g + r ,

where g and r are polynomials, and r does not have any terms divisible by yB . Observe

that every term of g is a constant times a monomial P of degree d := deg( f j−1)−|B| =
|A j−1\B| = |A j−1∩E L

G(v j )| corresponding to a subset of d edges of E L
G(v j ). Observe

also that A j−1 ∩ E L
G(v j ) is in the support of g.
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Now, we would like to show that

g ·

»

¼

½

∑

e∈E L
G (v j )

ye

¾

¿

À

t j −m


= 0, (3)

in the quotient ring K ′. Observe that if (3) holds in K ′, then since B ∩ E L
G(v j ) = ∅,

it also holds that

f j−1 ·

»

¼

½

∑

e∈E L
G (v j )

ye

¾

¿

À

t j −m

= (yB g + r)

»

¼

½

∑

e∈E L
G (v j )

ye

¾

¿

À

t j −m

(4)

is nonzero in K ′. Also, since no ye with e ∈ E R
G(v j ) divides (4) in K ′, it follows that

(2) has a nonzero monomial expansion in K ′ (and hence a square-free term) whenever

(3) holds. Therefore, in order to prove condition (a) of our claim, it is enough to prove

(3).

If m = t j , then (3) clearly holds, and g ·
(

∑

e∈E L
G (v j )

ye

)t j −m

has a square-free

monomial yS corresponding to an edge subset S ⊆ E L
G(v j ). Then, the edge set A j =

A′∪B∪S corresponds to a square-free monomial in the support of f j . By construction,

the only edges of A j \A j−1 that do not belong to E(H) are those that belong to E L
G(v j ),

which implies condition (b). Hence, the induction step is complete, and the claim is

proven.

Otherwise, we have m = degR
H (v j ). We write E L = E L

G(v j ) and b = d + t j −
degR

H (v j ). We also expand g as

g =
∑

D⊆E L

|D|=d

cD yD .

Then,

g

»

½

∑

e∈E L

ye

¾

À

t j −degR
H (v j )

= (t j − degR
H (v j ))!

»

¼

¼

½

∑

D⊆E L

|D|=d

cD yD

¾

¿

¿

À

»

¼

¼

¼

½

∑

U⊆E L

|U |=t j −degR
H (v j )

yU

¾

¿

¿

¿

À

= (t j − degR
H (v j ))!

∑

Y⊆E L

|Y |=b

»

¼

¼

½

∑

D⊆Y
|D|=d

cD

¾

¿

¿

À

yY . (5)
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Hence, in order to show that (3) holds and prove the first condition of our induction

hypothesis, it is enough to show that the expression above is nonzero in our quotient

ring.

The expression (5) may be expressed as follows. Let Q be the matrix whose rows

are indexed by the b-subsets of E L and whose columns are indexed by the d-subsets of

E L . Given a set Y ⊆ E L of size b and a set D ⊆ E L of size d, we let the (Y , D)-entry

of Q be 1 if D ⊆ Y and equal 0 otherwise. In other words, Q is a set-inclusion matrix.

Then, the coefficients in (5) are equal to the entries in the vector

(t j − degR
H (v j ))! Qτ, (6)

where τ is the column vector with entries indexed by subsets D ⊆ E L of size d and

whose D-entry equals cD . Since g is nonzero in our quotient ring, we have that τ 
= 0.

Thus, to prove that (3) holds, it suffices to show that (6) is nonzero.

Now, since d = |A j−1 ∩ E L
G(v j )|, it follows from condition (b) of the induction

hypothesis that d ≤ degL
H (v j ). Therefore, b ≤ t j + degL

H (v j ) − degR
H (v j ), which

by our initial assumption is at most |E L | − degL
H (v j ) ≤ |E L | − d. Therefore, since

d ≤ b ≤ |E L |−d, it follows that
(|E L |

b

)

≥
(|E L |

d

)

, and hence it follows from a classical

result of Gottlieb [14, Corollary 1(b)] about set-inclusion matrices that Q has full

column rank. Hence, the matrix product in (6) is nonzero, and thus (3) holds.

Therefore, g ·
(

∑

e∈E L
G (v j )

ye

)t j −m

again has a square-free monomial yS corre-

sponding to an edge subset S ⊆ E L
G(v j ). We let A j = A′ ∪ B ∪ S, and then A j

corresponds to a square-free monomial in the support of f j .

Finally, we check that our edge set A j satisfies condition (b). By construction, the

only edges of A j \ A j−1 that do not belong to E(H) are those that belong to E L
G(v j ),

which implies (b). Hence, the induction step is complete, and the claim is proven.

As stated at the beginning of the proof, the claim together with the Combinatorial

Nullstellensatz implies our theorem. ��

3 Dual Polynomials

In this section, we take a brief aside to show that our polynomial f used in the proof of

Theorem 2.1 is related to the traditional graph polynomial and that this relationship is

a special case of a more general duality relation. As a corollary, we obtain a simplified

proof of Theorem 1.4.

We consider the following setup. Let A = (ai j : 1 ≤ i ≤ n, 1 ≤ j ≤ m) be an

n ×m matrix, and let ³ = (³1, . . . , ³n) and ´ = (´1, . . . , ´m) be nonnegative integer

vectors. Let A³,´ be obtained from A by making exactly ³i copies of each row i in A

and then subsequently making exactly ´ j copies of each column j . We fix a field K

and the ring K [xi , y j : 1 ≤ i ≤ n, 1 ≤ j ≤ m]. Given vectors ³ and ´ as above, we

123



1102 Combinatorica (2024) 44:1091–1113

define the dual polynomials

g =
n

∏

i=1

»

½

m
∑

j=1

ai j y j

¾

À

³i

,

g∗ =
m

∏

j=1

(

n
∑

i=1

ai j xi

)´ j

.

Note that when only one polynomial is given, its dual is not uniquely determined, since

the correspondence between g and g∗ depends on the vectors ³ and ´. We say that g

and g∗ are duals of each other, as the factors of g are obtained from the rows of A, while

the factors of g∗ are obtained from the columns of A. This relationship is reminiscent

to the relationship between dual linear programs, whose respective constraints are

given by the rows and the columns of a common matrix.

We write x³ =
∏n

i=1 x
³i

i and y´ =
∏m

j=1 y
´ j

j . We denote the coefficient of a

monomial y´ in the polynomial g by coeff(y´ , g). For a vector u = (u1, . . . , uk), we

write ‖u‖1 =
∑k

i=1 |ui |. Finally, if M is a square matrix, then we denote by per(M)

its permanent. We have the following result.

Theorem 3.1 If ‖³‖1 = ‖´‖1, then (
∏m

j=1 ´ j !) coeff
(

y´ , g
)

=
(
∏n

i=1 ³i !
)

coeff(x³,

g∗) = per(A³,´).

Proof We first show that (
∏m

j=1 ´ j !) coeff
(

y´ , g
)

= per(A³,´). Consider the mono-

mial expansion of g containing m‖³‖1 terms, each of which is obtained by choosing a

term from each of the ‖³‖1 factors
∑m

j=1 ai j y j of g and taking the product of these

terms. Each of the factors
∑m

j=1 ai j y j of g can be associated with a distinct row in

the matrix A³,1 (where 1 refers to the all-1 vector of length m). Therefore, each term

P in the monomial expansion of g divisible by y´ corresponds to a choice of ‖³‖1

entries from A³,1 with one entry from each row and ´ j entries in each column j ,

and the coefficient of P is equal to the product of all ‖³‖1 of these entries. Hence,

coeff(y´ , g) is equal to
∑

σ aσ , where σ runs over all choices of ‖³‖1 entries from

A³,1 consisting of one entry from each row and ´ j entries from each column j , and

aσ is the product of all of the values from A³,1 contained in σ . Furthermore, a choice

of ´ j entries from column j of A³,1 can be represented in ´ j ! ways as a choice of

one entry from each of the ´ j columns of A³,´ corresponding to column j of A³,1.

Therefore, (
∏m

j=1 ´ j !) coeff(y´ , g) =
∑

τ aτ , where τ runs over all choices of ‖³‖1

entries from A³,´ consisting of one entry from each row and one entry from each col-

umn, and aτ is the product of all of the values from A³,´ contained in τ . Equivalently,
(
∏m

i=1 ´ j !
)

coeff(y´ , g) = per(A³,´).

By using the transpose of A and swapping ³ and ´, the same argument shows that
(
∏n

i=1 ³i !
)

coeff(x³, g∗) = per((AT )´,³) = per(A³,´). ��

We note that considering the permanent of a matrix appears naturally when using

the polynomial method. The first such appearances may have been used by DeVos et
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al. [6–8]. It was also used in relation to the problem of total weight choosability (see

e.g. [9] and [27], [32]). In fact, in [32], Zhu similarly considers the permanent of a

matrix obtained by making copies of the rows or columns of a smaller matrix.

In one special case of this matrix setting, A is the incidence matrix M of a graph

G, and ´ ∈ {0, 1}|E(G)| indexes an edge set E ′ ⊆ E(G). If f is defined as in Sect.

2 and coeff(y´ , f ) 
= 0, then the Combinatorial Nullstellensatz tells us that G has

an F-avoiding orientation when |F(v)| ≤ tv for each vertex v of G. Furthermore,

the polynomial dual to f is f ∗ =
∏

uv∈E ′(xu − xv), which is the traditional graph

polynomial of G[E ′]. A famous result of Alon and Tarsi [3] tells us that if D is an

orientation of a graph H satisfying deg+
D(v) = tv at each vertex v ∈ V (H), then

∣

∣

∣

∣

coeff

(

∏

v∈V (G)

x tv
v , f ∗

)
∣

∣

∣

∣

= |E E(D) − E O(D)|. (AT)

Therefore, if there exists an Alon-Tarsi orientation D of G[E ′] in which deg+
D(v) = tv

for each v ∈ V (G), then (AT) and Theorem 3.1 tell us that

(

∏

v∈V (G)

tv !
)−1∣

∣

∣

∣

coeff

(

y´ , f

)
∣

∣

∣

∣

=
∣

∣

∣

∣

coeff

(

∏

v∈V (G)

x tv
v , f ∗

)
∣

∣

∣

∣

= |E E(D) − E O(D)| 
= 0.

Hence, the existence of the Alon-Tarsi orientation D on G[E ′] implies that G has an

F-avoiding orientation whenever |F(v)| ≤ tv for each v ∈ V (G), proving Theorem

1.4. Theorem 3.1 gives us a sufficient condition for the existence of a nowhere-zero

p-flow, for each prime p. In fact, the theorem gives us a stronger conclusion, which

we describe below.

Recall that a function φ : E(G) → {1, . . . , p − 1} on a graph G yields a nowhere-

zero p-flow if and only if the congruence
∑

e∈E+(v) φ(e) −
∑

e∈E−(v) φ(e) ≡ 0

(mod p) holds at each vertex v ∈ V (G). Generalizing the notion of a nowhere-zero

flow, we say that a graph G is Zp-connected if for every function b : V (G) → Zp

with
∑

v∈V (G) b(v) = 0, there exists φ : E(G) → Zp \ {0} such that

∑

e∈E+(v)

φ(e) −
∑

e∈E−(v)

φ(e) = b(v) (7)

for each v ∈ V (G). Since
∑

v∈V (G)

(

∑

e∈E+(v) φ(v) −
∑

e∈E−(v) φ(v)

)

≡ 0

(mod p), it follows that if (7) is satisfied at every vertex v ∈ V (G) \ {u} for some

u ∈ V (G), then (7) also holds at u.

Theorem 3.2 Let p ≥ 3 be a prime, and let G be a graph. Let G(p−2) be obtained

from G by replacing each edge with p − 2 parallel edges, and let H be a spanning

subgraph of G(p−2) with exactly (p − 1)(|V (G)| − 1) edges. If, for some u ∈ V (H),

H has an orientation D in which deg+
D(v) = p − 1 for each v ∈ V (G) \ {u} and such

that E E(D) − E O(D) 
≡ 0 (mod p), then G is Zp-connected.
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Proof Consider an arbitrary orientation of the edges of G. From this orientation,

define the incidence matrix M = (mve : v ∈ V (G), e ∈ E(G)) of G and consider

any b : V (G) → Zp with
∑

v∈V (G) b(v) = 0. We fix a vertex u ∈ V (G), the field

Zp, and a ring Zp[xv, ye : v ∈ V (G), e ∈ E(G)] in which we define the polynomial

g0 =
∏

v∈V (G)\{u}

∏

a∈Zp\{b(v)}

»

½

∑

e∈E(G)

mve ye − a

¾

À .

It is straightforward to show that there is a function φ : E(G) → Zp \ {0} satisfying

(7) if and only if there is an assignment from the set Zp \ {0} to each variable ye that

gives g0 a nonzero evaluation. Furthermore, every term of maximum degree in the

expansion of g0 is also a maximum-degree term in the expansion of

g =
∏

v∈V (G)\{u}

»

½

∑

e∈E(G)

mve ye

¾

À

p−1

=
∏

v∈V (G)

»

½

∑

e∈E(G)

mve ye

¾

À

³v

,

where ³v = p−1 for each v ∈ V (G)\{u}, and ³u = 0. We let ´ ∈ {0, . . . , p−2}|E(G)|

be a vector indexing which edges of G, and how many copies of each edge, belong

to H . Since the maximum degree terms in g and g0 are equal, it follows that if

coeff(y´ , g) 
= 0, then by the Combinatorial Nullstellensatz, g0 has an assignment

for each ye from Zp \ {0} that makes g0 nonzero.

Note that
∑

v∈V (G) ³v = (p − 1)(|V (G)| − 1) = |E(H)| =
∑

e∈E(G) ´e. Thus

we can apply Theorem 3.1, which shows that coeff(y´ , g) 
= 0 if and only if

coeff(x³, g∗) 
= 0, where

g∗ =
∏

e∈E(G)

»

½

∑

v∈V (G)

mvexv

¾

À

´e

=
∏

e∈E(H)

»

½

∑

v∈V (G)

mvexv

¾

À .

However, since g∗ is the graph polynomial of H , and since D is an orientation of H

satisfying deg+
D(v) = ³v at each v ∈ V (H) and E E(D) − E O(D) 
= 0 in Zp, it

follows from (AT) that | coeff(x³, g∗)| = |E E(D) − E O(D)| 
= 0. Therefore, an

assignment from Zp \{0} to each ye giving g0 a nonzero evaluation exists. This implies

that G is Zp-connected. ��

4 A Step Toward Conjectures 1.1 and 1.2

In this section, we prove Theorem 1.6, which establishes relaxations of Conjectures

1.1 and 1.2 with slightly smaller constant factors. Our main tool is Theorem 2.1 along

with a fractional rounding method.

Many graph theory problems can be described as integer programming problems.

Often, we find a fractional solution, and then use rounding to obtain an integer solution
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that approximately solves the original problem. The following lemma shows how this

is done.

Lemma 4.1 Given a graph G = (V , E), let M = (mve : v ∈ V , e ∈ E) be a real-

valued matrix in which mve 
= 0 only if v ∈ e. Let y ∈ [0, 1]E be a vector, and let

x = My. Then, there exists a 01-vector y′ ∈ {0, 1}E such that x′ = My′ satisfies

x′
v ≥ xv − bv for each v ∈ V (G), where bv = max{|mve| : e ∈ E}. Furthermore, we

may choose y′ so that x′
v > xv − bv whenever bv > 0.

Proof Given t ∈ [0, 1]E , we write f r(t) = {e : 0 < te < 1}. Let z ∈ [0, 1]E be

a solution of Mz ≥ x with minimum size of f r(z). We know that z exists, because

z = y satisfies the inequality.

First we show that the subgraph H of G induced by the edges in f r(z) is acyclic. If

H contains a cycle C , then we claim that there exists a non-trivial vector ³ ∈ R
E with

its support contained in E(C) such that M³ ≥ 0. Indeed, let M ′ be obtained from

M by taking the columns corresponding to E(C) and rows corresponding to V (C).

As C is a cycle, M ′ is a square matrix. Since mve = 0 whenever v /∈ e, finding our

vector ³ with support contained in E(C) is equivalent to finding a nontrivial vector

³′ satisfying M ′³′ ≥ 0. If M ′ is singular, then ³′ may be taken from the nullspace of

M ′. On the other hand, if M ′ is invertible, then ³′ may be taken as the unique solution

to M ′³′ = eu , where eu is the unit vector corresponding to some vertex u ∈ V (C). In

both cases, we find our vector ³′ and hence also our vector ³.

Now, we can choose a value p > 0 such that z + p³ ∈ [0, 1]E and | f r(z + p³)| <

| f r(z)|. Then, we have M(z + p³) = Mz + pM³ ≥ Mz, which contradicts our

choice of z. Thus, we conclude that the subgraph H of G induced by f r(z) is acyclic.

Now, if H is non-empty, then H has a leaf v incident to a single edge e = vu ∈
E(H). If we change the value of ze, only the coordinates v and u of Mz change.

We can change ze to 0 or 1 so that the u-coordinate of Mz increases, while the v-

coordinate decreases by less than bv . We consider H − e and repeat this process until

f r(z) is empty, and we write y′ for the new integer vector we obtain from z. We write

x′ = My′, and by our observation above, x′
v ≥ xv − bv for each v ∈ V (G), with a

strict inequality whenever bv > 0. ��

As a warm-up for our proof of Theorem 1.6, we first prove an easier result, which

is an approximation of Conjecture 1.1. By choosing an orientation of G that makes

the in-degree and out-degree as equal as possible at each vertex, Theorem 1.6 implies

the following result with only a constant error.

Theorem 4.2 Let G be a graph, and let F : V (G) → 2N. If, for each v ∈ V (G) we

have,

|F(v)| ≤
1

3
deg(v) − 1,

then G has an F-avoiding orientation.
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Proof By Theorem 2.1, we just need to show that there exist an ordering of vertices

v1, . . . , vn , and a subgraph H of G such that for each vertex v ∈ V (G), it holds that

degL
G(v) − 2 degL

H (v) + degR
H (v) ≥ � 1

3
deg(v)� − 1.

We fix an ordering v1, . . . , vn of the vertices of G. Also, we define a matrix M =
(mve : v ∈ V (G), e ∈ E(G)) as follows. For each edge e = viv j with i < j , we let

the column of M corresponding to e have entries 1 and −2 in the rows corresponding

to vi and v j , respectively, and we let all other entries in the column be 0. Our task is

equivalent to finding a 01-vector y′ ∈ {0, 1}E such that the vector x′ = My′ satisfies

x′
v ≥ � 1

3
deg(v)� − degL

G(v) − 1. We begin with a vector y ∈ R
E with 1/3 in each of

its entries, and we observe that x = My satisfies

xv = −
2

3
degL

G(v) +
1

3
degR

G(v) =
1

3
degG(v) − degL

G(v)

for each v ∈ V (G). Hence, by Lemma 4.1, there exists y′ ∈ {0, 1}E such that the

vector x′ = My′ satisfies

x′
v >

1

3
deg(v) − degL

G(v) − 2

at each vertex v ∈ V (G). Equivalently, x′
v ≥ � 1

3
deg(v)� − degL

G(v) − 1 at each v,

completing the proof. ��

Using a similar method, we also prove Theorem 1.6, which gives a 2
3

-approximation

of Conjecture 1.2.

Proof of Theorem 1.6 Again, by Theorem 2.1, we just need to show that there exists an

ordering v1, . . . , vn of V (G), as well as a subgraph H of G such that for each vertex

v ∈ V (G), it holds that

degL
G(v) − 2 degL

H (v) + degR
H (v) ≥ � 2

3
deg+

D(v)� − 1.

We fix an ordering v1, . . . , vn of V (G), and then define a matrix M as in the proof of

Theorem 4.2. To find a subgraph H satisfying the above inequality for each v ∈ V (G),

it is equivalent to find an integer vector y′ ∈ {0, 1}E such that the vector x′ = My′

satisfies x′
v ≥ � 2

3
deg+

D(v)� − degL
G(v) − 1 for each v.

We say that an edge viv j with i < j is a forward edge in D if it is oriented from vi

to v j ; otherwise, we call it a backward edge in D. We write degL+(v) for the number

of backward edges outgoing from v in D, and we write degL−(v) for the number of

forward edges incoming to v in D. Similarly, we write degR+(v) for the number of

forward edges outgoing from v in D, and degR−(v) for the number of backward edges

incoming to v in D.

Let v1, . . . , vn be an ordering of V (G) with the minimum possible number of

forward edges. We argue that for each v ∈ V (G), it holds that degL+(v) ≥ degL−(v).

Indeed, if this inequality does not hold for v, then we can move v to the first position
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in our vertex ordering and decrease the number of forward edges in D by degL−(v)−
degL+(v) > 0, a contradiction.

Now, let ye = 2
3

for each forward edge e in D, and let ye = 0 for each backward

edge e in D. Letting x = My, we have

xv + degL
G(v) −

2

3
deg+

D(v)

=
2

3
(degR+(v) − 2 degL−(v)) + (degL−(v) + degL+(v))

−
2

3
(degL+(v) + degR+(v))

=
1

3
(degL+(v) − degL−(v)) ≥ 0.

Therefore, for each v ∈ V (G), we have xv ≥ 2
3

deg+
D(v) − degL

G(v). Since |mve| ≤ 2

for each entry mev in M , it follows from Lemma 4.1 that there exists an integer vector

y′ ∈ {0, 1}E such that the vector x′ = My′ satisfies x′
v > 2

3
deg+

D(v) − degL
G(v) − 2

for each v ∈ V (G). Equivalently, for each vertex v, we have xv
′ ≥ � 2

3
deg+

D(v)� −
degL

G(v) − 1, completing the proof. ��

5 Graphs with a Relaxed Regularity Condition

In this section, we prove Theorem 1.7, which holds for large graphs whose maximum

degree is subexponential in terms of their minimum degree. For our proof, we need

some preliminary lemmas and definitions. We use the Chernoff bound, a probabilistic

tool that can be found in many textbooks (e.g. [25, Chap. 4]).

Lemma 5.1 Let X be a binomially distributed variable with parameters n and p. Let

μ = np, and let 0 < δ ≤ 1. Then,

Pr(X > (1 + δ)μ) ≤ exp

(

−
1

3
δ2μ

)

and

Pr(X < (1 − δ)μ) ≤ exp

(

−
1

3
δ2μ

)

.

Mitzenmacher and Upfal [25] point out that for the first statement of the lemma, it

is enough to let μ ≤ np, and for the second statement of the lemma, it is enough to

let μ ≥ np. We use the following corollary of the Chernoff bound.

Lemma 5.2 Let X be a binomially distributed variable with parameters n and p, and

let 0 < γ < 1. Then,

Pr(|X − pn| ≥ γ n) ≤ 2 exp

(

−
1

12
γ 2n

)

.
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Proof First, suppose that p ≥ 1
2
γ . Since X is a binomially distributed variable with

mean of np, we can apply Lemma 5.1 with μ = np and δ = γ /2p ≤ 1. Then,

by Lemma 5.1, our inequality fails with probability at most 2 exp
(

− 1
12

γ 2

p
n
)

≤
2 exp

(

− 1
12

γ 2n
)

.

Next, suppose that p < 1
2
γ . In this case, we only need to prove the upper bound

of the inequality. Since pn < γ n, we can apply Lemma 5.1 with μ = γ n and

δ = 1 to show that the upper bound fails with probability at most exp(− 1
3
γ n) <

2 exp
(

− 1
12

γ 2n
)

. ��

We also use the following well-known symmetric form of the Lovász Local Lemma.

Lemma 5.3 [29] Let A be a collection of (bad) events in a probability space. Suppose

that each bad event in A occurs with probability at most p and is independent with

all but fewer than D other bad events in A. If

Dp < 1/e,

then with positive probability, no bad event in A occurs.

Now, we are ready to prove Theorem 1.7. Writing ³ =
√

2 − 1, we can restate

Theorem 1.7 as follows.

Theorem 5.4 Let G be a graph of minimum degree δ and maximum degree � = eo(δ),

and let F : V (G) → 2N. If

|F(v)| ≤ (³ − o(1)) degG(v)

for each v ∈ V (G), then G has an F-avoiding orientation.

In the statement of the theorem, our function o(1) approaches 0 as δ → ∞, and

the rate at which o(1) approaches 0 depends on how quickly δ dominates log �.

Proof Let γ > 0 be a fixed value. We randomly choose an ordering of V (G) by using

a function φ to map each vertex v ∈ V (G) uniformly at random to the real interval

[0, 1] and then letting V (G) be ordered according to the left-right order of the image

of V (G) in [0, 1]. Since two vertices are mapped to the same value with probability

0, we can assume that all values φ(v) are distinct.

Consider a vertex v ∈ V (G), and write d = degG(v). We observe that by Lemma

5.2, it holds with probability at least 1 − 2 exp
(

− 1
12

γ 2d
)

that

(φ(v) − γ )d < degL
G(v) < (φ(v) + γ )d. (8)

Now, we probabilistically create a subgraph H ⊆ G. If uv ∈ E(G) and φ(u) = x

and φ(v) = y, then we add the edge uv to H with probability

p(x, y) =
{

³
1−³

if 0 ≤ x ≤ ³ and ³ +
(

1−³
³

)

x ≤ y ≤ 1,

0 otherwise.
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We make some observations about H . First, by construction, a vertex v ∈ V (G) for

which φ(v) ≤ ³ satisfies degL
H (v) = 0, and a vertex v ∈ V (G) for which φ(v) ≥ ³

satisfies degR
H (v) = 0. Next, consider a vertex v ∈ V (G), and write d = degG(v). If

φ(v) ≤ ³, then we claim that by our simplified Chernoff bound (Lemma 5.2), it holds

with probability at least 1 − 2 exp
(

− 1
12

γ 2d
)

that

(³ − φ(v) − γ )d ≤ degR
H (v) ≤ (³ − φ(v) + γ )d. (9)

Indeed, each neighbor w ∈ N (v) becomes a right-neighbor of v in H independently

with probability

∫ 1

0

p(φ(v), y)dy =
³

1 − ³
· (1 − ³ −

1 − ³

³
φ(v)) = ³ − φ(v),

and hence Lemma 5.2 applies.

On the other hand, if φ(v) ≥ ³, we claim that Lemma 5.2 implies that, with

probability at least 1 − 2 exp
(

− 1
12

γ 2d
)

, we have

1

2
(φ(v) − ³ − γ )d ≤ degL

H (v) ≤
1

2
(φ(v) − ³ + γ )d. (10)

Indeed, each neighbor w of v becomes a left-neighbor of v in H with probability

∫ 1

0

p(x, φ(v))dx =
(

³

1 − ³

)2

(φ(v) − ³) =
1

2
(φ(v) − ³),

so Lemma 5.2 applies.

Now, depending on the value of φ(v), we see from (8) and (9) or from (8) and (10)

that the distribution on degL
G(v) − 2 degL

H (v) + degR
H (v) is centered around ³d. In

particular, with probability at least 1 − 4 exp(− 1
12

γ 2d),

(³ − 2γ )d < degL
G(v) − 2 degL

H (v) + degR
H (v) < (³ + 2γ )d. (11)

Now we apply the Lovász Local Lemma (Lemma 5.3). For each vertex v, we define

a bad event Bv to be the event that (11) does not hold for v. We have seen that the

probability of each bad event Bv is at most 4 exp(− 1
12

γ 2δ). Furthermore, the vertices

and edges involved in a given bad event Bv induce a star in G centered at v, and two

bad events are independent if and only if their corresponding stars are disjoint. Hence,

Bv is dependent with at most �2 other bad events. Hence, by Lemma 5.3, as long as

(�2 + 1) · 4 exp

(

−
1

12
γ 2δ

)

< 1/e,

the equation (11) holds for each vertex v with positive probability. Since � =
exp(o(δ)), the inequality holds when δ is sufficiently large, and we hence conclude that

with positive probability, our random process chooses a subgraph H ⊆ G that satisfies
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(11) at each vertex v ∈ V (G). Thus, a subgraph H satisfying (11) exists. Therefore,

by Theorem 2.1, if each vertex v ∈ V (G) has a list F(v) of at most (³ − 2γ ) degG(v)

forbidden values, then G has an F-avoiding orientation. Letting γ tend to 0 completes

the proof. ��

Finally, we show that if we use Theorem 2.1 to prove for some constant ´ that

every regular graph G has an F-avoiding orientation when |F(v)| ≤ ´ deg(v), then

´ ≤ ³+o(1). In other words, the coefficient ³−o(1) in Theorem 5.4 is essentially best

possible. To show this, consider the complete graph G = Kn , and order its vertices as

v1, . . . , vn . Suppose that we can use Theorem 2.1 to show that G has an F-avoiding

orientation whenever |F(v)| ≤ ´(n−1) at each vertex v ∈ V (G). We partition V (Kn)

into two sets A and B, where A contains all vertices vi for which i ≤ �´n�, and B

contains all other vertices. Given an oriented subgraph H of G, we say that the weight

w(v) of a vertex v ∈ V (G) is given by

w(v) = degL
G(v) − 2 degL

H (v) + degR
H (v).

In order to apply Theorem 2.1, the weight of each vertex v ∈ V (G) must satisfy

w(v) ≥ ´(n − 1).

Now, let e(A) and e(B) denote the number of edges in H [A] and H [B], respectively,

and let e(A, B) denote the number of edges with one endpoint in A and one endpoint

in B. We observe that if Theorem 2.1 applies, then the total weight w(A) of all vertices

in A satisfies

�´n�´(n − 1) ≤ w(A) =
�´n�
∑

i=1

(i − 1) − e(A) + e(A, B) ≤
1

2
�´n − 1��´n� + e(A, B),

(12)

and the total weight w(B) of all vertices in B satisfies

(n − �´n�)´(n − 1) ≤ w(B) =
n

∑

i=�´n�+1

(i − 1)

−2e(A, B) − e(B) ≤
1

2

(

n2 − n − �´n�2 − �´n�
)

− 2e(A, B). (13)

We eliminate the quantity e(A, B) by doubling (12) and adding (13), and then simpli-

fying yields

(1 + o(1))n2

(

1

2
´2 + ´ −

1

2

)

≤ 0.

This implies that ´ ≤ ³ + o(1). Therefore, the coefficient of ³ − o(1) appearing in

Theorem 5.4 is close to best possible when using Theorem 2.1.
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6 Conclusion

It is natural to ask whether Conjecture 1.1 could be proved for every graph G using

Theorem 1.4 by finding a suitable orientation D of G, which would give a stronger

result. In other words, the following question emerges.

Question 6.1 Does every graph G have a spanning subgraph with an Alon-Tarsi ori-

entation in which each vertex v has out-degree at least 1
2
(degG(v) − 1)?

If Question 6.1 has a negative answer, we can still ask the similar question where

−1 is replaced with an arbitrary constant −C .

If the answer to Question 6.1 is affirmative, then it would imply that every graph

G on n vertices and of maximum degree � has a subgraph H with at least |E(G)| −
n/2 edges for which AT(H) ≤ � 1

2
� + 3

2
�. Indeed, given an affirmative answer to

Question 6.1 and a graph G, we could first find a subgraph H of G with an Alon-

Tarsi orientation D as described in the question. This subgraph necessarily has at least
∑

v∈V (G)
1
2
(degG(v) − 1) = |E(G)| − n/2 edges. Then, after reversing the direction

given by D for each edge of H , we obtain an Alon-Tarsi orientation of H in which

each vertex has out-degree at most 1
2

degG(v) + 1
2

, implying that AT(H) ≤ ��+3
2

�.

This leads us to the following problem.

Question 6.2 Does there exist a constant C such that every graph G of maximum

degree � has a matching M such that AT(G − M) ≤ 1
2
� + C?

If the answer to Question 6.2 is affirmative, it is natural to ask for the optimal value

of C . We note that C cannot be smaller than 1
2

, since for any odd n and any maximum

matching M in Kn , AT(Kn − M) = n+1
2

(see [17]).

Our requirement that M be a matching rather than an arbitrary set of n/2 edges is

inspired by the following two results, which both show that if a matching is removed

from a graph G, then the upper bound on some coloring parameter of G can be reduced.

For planar graphs, Zhu [31] has shown that the Alon-Tarsi number is at most 5 and

that this upper bound is tight, but Grytczuk and Zhu [16] have also shown that every

planar graph G contains a matching M for which AT(G − M) ≤ 4. Furthermore, it

is well-known that a graph G of maximum degree � satisfies χ(G) ≤ � + 1 and

that this bound is tight for cliques. However, every graph G of maximum degree �

contains a matching M for which χ(G − M) ≤ ��+1
2

�. Indeed, Lovász [22] proved

a result on graph coloring which implies, as shown by Jesurum [20], that every graph

of maximum degree � has a ��/k�-defective k-coloring, in which each vertex is

adjacent to at most ��/k� vertices of the same color. By letting k = ��+1
2

�, we see

that every graph has a 1-defective ��+1
2

�-coloring, in which the monochromatically

colored edges form a matching. By removing this matching M of monochromatic

edges from G, we obtain a graph with chromatic number at most ��+1
2

�.
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