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Abstract
Consider an infinite collection of particles on the real line moving according to inde-
pendent Brownian motions and such that the i-th particle from the left gets the drift
gi−1. The case where g0 = 1 and gi = 0 for all i ∈ N corresponds to the well studied
infinite Atlas model. Under conditions on the drift vector g = (g0, g1, . . .)′ it is known
that the Markov process corresponding to the gap sequence of the associated ranked
particles has a continuum of product form stationary distributions {π g

a , a ∈ Sg}where
Sg is a semi-infinite interval of the real line. In this work we show that all of these
stationary distributions are extremal and ergodic. We also prove that any product form
stationary distribution of this Markov process that satisfies a mild integrability con-
dition must be π

g
a for some a ∈ Sg . These results are new even for the infinite Atlas

model. The work makes progress on the open problem of characterizing all the invari-
ant distributions of general competing Brownian particle systems interacting through
their relative ranks. Proofs rely on synchronous and mirror coupling of Brownian
particles and properties of the intersection local times of the various particles in the
infinite system.
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1 Introduction

1.1 Background

Consider a collection (finite or infinite) of particles on the real line moving according
to mutually independent Brownian motions and such that the i-th particle from the
left gets a constant drift gi−1. The special case when g0 = 1 and gi = 0 for i ∈
N is the well studied Atlas model. We refer to the general setting as the g-Atlas
model, where g = (g0, g1, . . .)′. Such particle systems were originally introduced in
stochastic portfolio theory [7, 13, 14] as models for stock growth evolution in equity
markets and have been investigated extensively in recent years in several different
directions. In particular, characterizations of such particle systems as uniform scaling
limits of jump processes with local interactions on integer lattices, such as the totally
asymmetric simple exclusion process, have been studied in [24]. Various types of
results for the asymptotic behavior of the empirical measure of the particle states have
been studied, such as propagation of chaos, characterization of the associatedMcKean-
Vlasov equation and nonlinear Markov processes [21, 39], large deviation principles
[12], characterizing the asymptotic density profile and the trajectory of the leftmost
particle via Stefan free-boundary problems [10]. These particle systems also have close
connectionswithAldous’ “Up the river” stochastic control problem [1], recently solved
in [40]. Results on wellposedness of the associated stochastic differential equations
(in the weak and strong sense) and on absence of triple collisions (three particles at
the same place at the same time) have been studied in [8, 17, 18, 20, 31, 38].

One important direction of investigation has been in the study of the long-time
behavior of such particle systems. For finite particle systems, under conditions on
the drift vector g, it follows from results of Harrison and Williams [15, 16] that
the multidimensional reflected Brownian motion describing the evolution of the gaps
between the ranked particles has a unique stationary (invariant) distribution (see [27]).
It is known that convergence of the law at time t to this stationary distribution, as
t → ∞, occurs at a geometric rate [9]. Rates of convergence to stationarity, depending
explicitly on the drift vector g and dimension have been obtained in [4, 5, 19].

In the current work we are interested in infinite particle systems. One basic result on
long-time behavior of such particle systemswas obtained in [27]which showed that for
the infinite Atlas model, i.e. when g = g1 = (1, 0, 0, . . .)′, the process describing the
gaps between the ranked particles in the system has a simple product form stationary
distribution given as π0 = ⊗∞

n=1Exp(2) (here and later, for a > 0, Exp(a) denotes
the Exponential distribution with mean 1/a). The paper [27] also conjectured that this
is the unique stationary distribution of the (gap sequence in the) infinite Atlas model.
However, this was shown to be false in [35] who gave an uncountable collection of
product form stationary distributions for the gaps in the infinite Atlas model defined
as

πa
.=

∞⊗

i=1

Exp(2 + ia), a ≥ 0.
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As in the finite dimensional settings it is of interest to investigate convergence of the
laws at time t to the stationary distributions as t → ∞. Due to the multiplicity of
stationary distributions, a meaningful goal is to understand the local stability structure
of this infinite dimensional stochastic dynamical system and identify the basins of
attraction of the various stationary distributions. Such results, describing (weak and
strong) domains of attraction of π0 have been obtained in [6, 11, 32] and (weak)
domains of attraction of πa (a �= 0) in [6]. Results analogous to [32, 35] for two-
sided infinite Brownian systems have been obtained in [33].

1.2 Goals and results

Although the above results give us a good understanding of the local stability structure
of the infinite Atlas model, the picture that one has is far from complete. A key
obstacle here is that a full characterization of all extremal invariant distributions of the
infinite Atlas model is currently an open problem. The goal of this work is to make
some progress towards this goal and, moreover, provide some characterization of the
structure of the set of invariant distributions. We will in fact consider the more general
setting of the g-Atlas model where the drift vector g ∈ D, with

D .=
{
g = (g0, g1, . . .)

′ ∈ R
∞ :

∞∑

i=0

g2i < ∞
}
. (1.1)

For this setting it is known from thework of [35] that, oncemore, the process associated
with the gap sequence of the ranked particle system has a continuum of stationary
distributions given as

π
g
a

.= ⊗∞
n=1Exp(n(2ḡn + a)), a > −2 inf

n∈N ḡn,

where ḡn
.= 1

n (g0 + · · · + gn−1). In the special case where g ∈ D1, with

D1
.= {g ∈ D : there exist N1 < N2 < · · · → ∞ such that

ḡk > ḡN j , k = 1, . . . , N j − 1, for all j ≥ 1}, (1.2)

π
g
a is also an invariant distribution for a = −2 infn∈N ḡn = −2 lim j→∞ ḡN j (see

[32, Section 4.2]). Note that g1 ∈ D1 whereas the zero drift g = (0, 0, . . .)′ is in
D but not in D1. Roughly speaking, a drift g lying in D1 produces a ‘stabilizing
interaction’ in the subsystem of the lowest N j particles for any j ≥ 1, due to which
the gaps between them stabilize in time owing to stronger upward average drifts of
the lower particles in this subsystem in comparison to the average drift of all the
N j particles. This intrinsic stabilizing influence from the drift of the particles leads
to an additional stationary distribution, namely π−2 lim j→∞ ḡN j

(in comparison to a
g ∈ D\D1). For g ∈ D\D1, where such a mechanism is absent, local stability
essentially arises from configurations with a rapidly increasing density of particles as
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one moves away from the lowest one and hence one only obtains “dense stationary
distributions" corresponding to a > −2 infn∈N ḡn .

Using Kakutani’s theorem [22] it is easy to verify that, for different values of a, the
probability measures π

g
a are mutually singular. These distributions are also special in

that they have a product form structure. In particular, if the initial distribution of the
gap process is chosen to be one of these distributions, then the laws of distinct gaps at
any fixed time are independent despite these gaps having a highly correlated temporal
evolution mechanism (see (2.2)–(2.3)). We now describe the two main results of this
work.

First result: extremality In Theorem3.3 we show that for each g ∈ D and a >

−2 infn∈N ḡn , π
g
a is an extremal invariant distribution for the gap sequence process of

the g-Atlas model. Further, if g ∈ D1, π
g
a is also an extremal invariant distribution

for a = −2 infn∈N ḡn = −2 lim j→∞ ḡN j ; in particular for the infinite Atlas model

πa = π
g1
a is extremal for all a ≥ 0. From equivalence between extremality and

ergodicity (cf. Lemma 3.2) it then follows that all these invariant distributions are
ergodic as well. This result also identifies non-trivial subsets in the weak domain
of attraction of π

g
a for each a > −2 infn∈N ḡn (a ≥ −2 infn∈N ḡn if g ∈ D1); see

Corollary3.4.
Questions about extremality and ergodicity of stationary distributions have been

addressed previously in the context of interacting particle systems on countably infi-
nite graphs (see [2, 3, 26, 37] and references therein). However, in all these cases,
the interactions are Poissonian, namely, the dynamics is given in terms of jumps of
particles to neighboring vertices in a countably infinite graph at epochs of Poisson
processes associated with edges or vertices. This enables one to use the (explicit) gen-
erator of the associated continuous-time jump-Markov processes in an effective way.
The interactions in rank based diffusions are very ‘singular’ owing to the local time
based dynamics (see (2.2)) and generator based methods seem to be less tractable.
Furthermore, unlike previous works, the state space for the gap process (i.e. R∞+ ) is
not countable and has a non-smooth boundary, and the process has intricate interac-
tions (oblique reflections) with the boundary. Hence, proving extremality requires new
techniques. Our proofs are based on constructing appropriate couplings for these infi-
nite dimensional diffusions which then allow us to prove suitable invariance properties
(see e.g. (4.10)) and a certain ‘directional strong Feller property’ (see Proposition4.3).
Such coupling techniques, based on ‘mirror’ couplings of driving Brownian motions,
are novel in the context of infinite rank based diffusions and provide a new method for
establishing semigroup continuity properties for such processes. Moreover, the cou-
pling approach introduced in the paper has the potential to be applicable to broader
families of infinite-dimensional diffusion processes for which such directional strong
Feller properties may be useful, e.g. in analysis of the ergodic behavior. Although
our setting and methods are very different, at a high level, the approach we take, of
proving extremality by showing the a.e. constancy of suitable invariant functions, is
inspired by the papers [3, 37].

Second result: characterization of product form stationary distributionsAnat-
ural question is whether there are any other product form stationary distributions of the
g-Atlas model than the ones identified in [35]. Our second main result (Theorem3.5)
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answers this question in thenegative under certain conditions by showing that if g ∈ D1
and π is a product form stationary distribution of the g-Atlas model satisfying a mild
integrability condition (see (3.2)) then it must be π

g
a for some a ≥ −2 lim j→∞ ḡN j .

Furthermore, this result gives a novel probabilistic interpretation to a in terms of the
resulting force acting on a tagged particle under the combined influence of hardcore
interactions (collision local times) and soft potentials (drift terms). See Remark3.6
for this interpretation and for a conjecture that is suggested by this interpretation.

1.3 Proof ideas

We now make some comments on proofs. The key step in proving the extremality
of π

g
a is to establish that any bounded measurable function ψ on R

∞+ that is π
g
a -a.e.

invariant, under the action of the semigroup of the Markov process corresponding to
the g-Atlas gap sequence, is constant π

g
a -a.e. If g = g1 and a = 0, we have that

π
g
a = ⊗∞

i=1Exp(2), and therefore the coordinate sequence {Zi }∞i=1 is iid under π
g
a . In

this case, from the Hewitt-Savage zero–one law it suffices to show that ψ is π
g
a -a.e.

invariant under all finite permutations of the coordinates of R∞+ . For this, in turn, it
suffices to simply prove the above invariance property for transpositions of the i-th and
(i + 1)-th coordinates, for all i ∈ N. For a general π g

a , the situation is more involved
as the coordinate sequence {Zi }∞i=1 is not iid any more. Nevertheless, from the scaling
properties of Exponential distributions it follows that, with cn

.= 2[n(2ḡn + a)]−1,
the sequence {Z̃n}n≥1, defined as Z̃n = c−1

n Zn , n ∈ N, is iid under π
g
a . In this case,

in order to invoke the Hewitt-Savage zero–one law, one needs to argue that for each
i the map ψ is π

g
a -a.e. invariant under the transformation that takes the (i, i + 1)

coordinates (zi , zi+1) to (
ci

ci+1
zi+1,

ci+1
ci

zi ) and keeps the remaining coordinates the
same. Establishing this property is at the heart of the proof of Theorem3.3. A key
technical idea in the proof is the construction of a mirror coupling of the first i + 1
Brownian motions, and synchronous coupling of the remaining Brownian motions, in
the evolution of the ranked infinite g-Atlas model corresponding to a pair of nearby
initial configurations. Estimates on the probability of a successful coupling, before any
of the first i-gap processes have hit zero or the lowest i-particles have interacted with
the higher ranked particles (in a suitable sense), are some of the important ingredients
in the proof. We refer the reader to Sect. 4.1 for additional comments on the proof
strategy.

The proof of Theorem3.5 hinges on establishing a key identity for expectations,
under the given product form invariant measure π , of certain integrals involving the
state process of the i-th gap and the collision local time for the ( j − 1)-th and j-th
particle, for i �= j (see Lemma5.4). This identity is a consequence of the product
form structure of π and basic results on local times of continuous semimartingales.
One subtlety here is that although the product form structure of an invariant measure
π implies that the laws of the various gaps at any fixed time t (when the process is
initiated at π ) are independent, the laws of the paths of the various gap processes are
not, and thus one cannot immediately deduce the independence beween the state of
the i-th gap at time t and the local time of the j-th gap at 0, at time t , for i �= j . By
using the form of the dynamics of the g-Atlas model, the identity in Lemma 5.4 allows
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us to obtain a recursive system of equations for the moment generating functions of
the coordinate projections of π that can then be solved explicitly from which it is then
readily seen that π must be π

g
a for a suitable value of a. See Sect. 5.1 for additional

comments on the proof idea.

1.4 Open problem

Of course it is immediate to construct non-product form stationary distributions of the
g-Atlas model by considering mixtures of the above product stationary distributions,
however one can ask if these mixtures are all the invariant measures of the g-Atlas
model. For the cases where g = (0, 0, . . .)′ this question was answered in the affir-
mative in [30, Theorem 4.2] under certain integrability constraints on the denseness
of particle configurations. For a general g providing such a complete characterization
is a challenging open problem.

In the context of interacting particle systems on countably infinite graphs, the anal-
ogous problem has been solved completely in a few cases such as the simple exclusion
process [26] and the zero range process [2] where the extremal probability measures
are fully characterized as an explicit collection of certain product form measures.
However, in these models the particle density associated with distinct extremal mea-
sures are scalar multiples of each other owing to certain homogeneity properties in
the dynamics (see, for example, [2, Theorem 1.10]). This, along with the Poissonian
nature of the interactions, enables one to prove useful monotonicity properties of
the ‘synchronously coupled’ dynamics (see [26, Section 2] and [2, Section 4]) using
generator methods that are crucial to the above characterization results.

A key challenge in extending these methods to rank based diffusions of the form
considered here is that, in addition to the singular local time interactions, the point
process associated with the configuration of particles with gaps distributed as π

g
a has

an intensity function ρ(x), that grows exponentially as x → ∞ when a > 0 and, due
to a nonlinear dependence on a, lacks the scalar multiple property for distinct values
of a. This is a direct consequence of the inhomogeneity of the topological interactions
in our particle systems where the local stability in a certain region of the particle cloud
is affected both by the density of particles in the neighborhood and their relative ranks
in the full system. Moreover, unlike the above interacting particle systems, in rank
based diffusions, when the initial gaps are given by a stationary distribution, the point
process of particles is typically not stationary. This phenomenon, where the gaps are
stationary while the associated point process is not, referred to as quasi-stationarity
in [30], is technically challenging. We note that this latter paper studies one setting
where the intensity function grows exponentially and the particle density lacks the
scalar multiple property for distinct values of a. However their setting, in the context
of rank based diffusions, corresponds to the case g = (0, 0, . . .)′, where the unordered
particles behave like independent standard Brownianmotions, and this fact is crucially
exploited in [30].
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1.5 Organization

Rest of the paper is organized as follows. We close this section by summarizing the
main notation used in this work. In Sect. 2 we give the precise formulation of the
model. In Sect. 3, we describe the questions of interest and give our main results.
Finally Sects. 4 and 5 give the proofs of our main results, namely Theorems3.3 and
3.5, respectively.

1.6 Notation

The following notation will be used. Let N0
.= {0, 1, 2, . . . }, R∞ .= {(x0, x1, . . .)′ :

xi ∈ R, i ∈ N0} and R
∞+

.= {(x0, x1, . . .)′ : xi ∈ R+, i ∈ N0}. We will equip R
∞+

with the partial order ‘≤’ underwhich x ≤ y for x = (xi )i∈N0 , y = (yi )i∈N0 , if xi ≤ yi
for all i ∈ N0. Borel σ -fields on a metric space S will be denoted as B(S) and the
space of probability measures on (S,B(S))will be denoted asP(S)which is equipped
with the topology of weak convergence. We will denote by Q the set of rationals. For
a Polish space S with a partial order ‘≤’, we say for γ1, γ2 ∈ P(S), γ1 ≤st γ2, if there
are S-valued random variables X1, X2 given on a common probability space with X i

distributed as γi , i = 1, 2, and X1 ≤ X2 a.s. Let X
.= C([0,∞) : R∞+ ) which is

equipped with the topology of local uniform convergence (with R
∞+ equipped with

the product topology). For γ ∈ P(R∞+ ),
let L2(γ ) be the collection of all measurable ψ : R

∞+ → R such that∫
R

∞+ |ψ(z)|2γ (d z) < ∞. We denote the inner-product and the norm on L2(γ ) as
〈·, ·〉 and ‖ · ‖ respectively.

2 Model formulation

Let

U .=
{
x = (x0, x1, . . .)

′ ∈ R
∞ :

∞∑

i=0

e−α[(xi )+]2 < ∞ for all α > 0
}
.

Recall D defined in (1.1). Following [32], an x ∈ R
∞ is called rankable if there is

a one-to-one map p from N0 onto itself such that x p(i) ≤ x p( j) whenever i < j ,
i, j ∈ N0. It is easily seen that any x ∈ U is locally finite and hence rankable.
For an x that is rankable we denote the unique permutation map p as above which
breaks ties in the lexicographic order by px . For a sequence {Wi }i∈N0 of mutually
independent standard Brownian motions given on some filtered probability space, and
y = (y0, y1, . . .)′ ∈ U , g = (g0, g1, . . .)′ ∈ D, consider the following system of
equations.

dYi (t) =
[ ∞∑

k=0

1( pY(t)(k) = i)gk

]
dt + dWi (t), (2.1)
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Yi (0) = yi , i ∈ N0, where for t ≥ 0, Y(t) = (Y0(t),Y1(t), . . .)′.
The following result is from [32] (see Theorems 3.2 and Lemma 3.4 therein).

Theorem 2.1 ([32]) For every g ∈ D and y ∈ U there is a unique weak solution
Y(·) to (2.1). Furthermore P(Y(t) ∈ U for all t ≥ 0) = 1 and for any T < ∞ and
m ∈ (0,∞), the set {i ∈ N0 : inf t∈[0,T ] Yi (t) ≤ m} is finite a.s.
When g = g1 = (1, 0, 0, . . .)′ the process given by the above theorem is the well
known (standard) infinite Atlas model. In general, the unique in law solution process
given by Theorem 2.1 will be referred to as the (g, y)-infinite Atlas model. Since this
solution process Y(t), under the conditions of the above theorem, is rankable a.s., we
can define the ranked process {Y(i)(t), i ∈ N0}t≥0 that gives the unique ranking of
Y(t) (in which ties are broken in the lexicographic order) such that Y(0)(t) ≤ Y(1)(t) ≤
Y(2)(t) ≤ · · · . From [32, Lemma 3.5], the processes defined by

B∗
i (t)

.=
∞∑

j=0

∫ t

0
1(Y j (s) = Y(i)(s))dWj (s), i ∈ N0, t ≥ 0,

are independent standard Brownian motions which can be used to write down the
following stochastic differential equation (SDE) for {Y(i)(·) : i ∈ N0}:

dY(i)(t) = gidt + dB∗
i (t) − 1

2
dL∗

i+1(t) + 1

2
dL∗

i (t), t ≥ 0, Y(i)(0) = y(i), i ∈ N0.

(2.2)

Here, L∗
0(·) ≡ 0 and for i ∈ N, L∗

i (·) denotes the local time of collision between the
(i − 1)-th and i-th particles, that is, the unique non-decreasing continuous process
satisfying L∗

i (0) = 0 and L∗
i (t) = ∫ t

0 1
(
Y(i−1)(s) = Y(i)(s)

)
dL∗

i (s) for all t ≥ 0.
The gap process for the (g, y)-infinite Atlas model is the R∞+ -valued process Z(·) =
(Z1(·), Z2(·), . . . )′ defined by

Zi (·) .= Y(i)(·) − Y(i−1)(·), i ∈ N. (2.3)

Let

V .= {z ∈ R
∞+ : for some y ∈ U , z = (y(1) − y(0), y(2) − y(1), . . .)

′}. (2.4)

Note that if z ∈ V then y(z)
.= (0, z1, z1 + z2, . . .)′ ∈ U and if y ∈ U then z( y)

.=
(y(1) − y(0), y(2) − y(2), . . .)′ ∈ V . Thus given z ∈ V we can define a unique in law
stochastic process {Z(t)}t≥0 with values inV that can be viewed as aV-valuedMarkov
process referred to as the gap process of the g-Atlas model. The Markov property of
Z(·) needs justification which we have sketched for completeness in Remark2.3 at
the end of the section.

The following result identifies an important family of stationary distributions of this
Markov process. The first statement in the theorem is from [35, Theorem 1.6]. The
second statement is due to [32, Section 4.2] and [35, Remark 4]. RecallD1 defined in
(1.2).
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Theorem 2.2 ([32, 35]) Let g ∈ D. Define for n ∈ N, ḡn
.= 1

n (g0 + · · · + gn−1). Then
for each a > −2 infn∈N ḡn, the probability measure π

g
a on R

∞+ defined as

π
g
a

.= ⊗∞
n=1 Exp(n(2ḡn + a))

is a stationary distribution for the gap process of the g-Atlas model. Furthermore,
if g ∈ D1, the above statement holds also for the case a = −2 infn∈N ḡn =
−2 lim j→∞ ḡN j . In particular, when g = g1

.= (1, 0, . . .)′ (infinite Atlas model),

π
g1
a

.= ⊗∞
n=1 Exp(2 + na) is a stationary distribution for the gap process for all

a ≥ 0.

The existence of the limit lim j→∞ ḡN j and the equality infn∈N ḡn = lim j→∞ ḡN j

follow from the definition of D1 (see first paragraph of Sect. 5).
As an immediate consequence of Kakutani’s theorem [22] we see that for any

g ∈ D and a, a′ > −2 infn∈N ḡn (and a, a′ ≥ −2 infn∈N ḡn when g ∈ D1), a �= a′,
the measures π

g
a and π

g
a′ are mutually singular.

Remark 2.3 (Markov property of the gap process) The ranked process {Y(i)(·)}i∈N0

is formally constructed in [32] as an ‘approximative version’ using limits of finite-
dimensional reflected diffusions. Namely, for any fixed k ∈ N0, {Y(i)(·)}0≤i≤k is
obtained as an almost sure limit as m → ∞, uniformly over compact time intervals,
of the first k + 1 coordinates of the reflected diffusion {Ym

(i)(·)}0≤i≤m given by the
SDE (2.2) with Ym

(i)(0) = y(i), L∗
m+1(·) ≡ 0, and a given collection {B∗

i }i∈N0 of iid
standard Brownian motions (see also Definition 4.4). Fix any time t ≥ 0. Define for
any m ∈ N0 the process {Ym,t

(i) (t + ·)}0≤i≤m similarly by setting Ym,t
(i) (t) = Y(i)(t)

and driven by the Brownian motions {B∗
i (t + ·) − B∗

i (t)}0≤i≤m via the SDE (2.2)
(again with the local time for i = m + 1 set to zero). Define Zm,t

i , 1 ≤ i ≤ m, the
gap process sequence associated with Ym,t

(i) , 0 ≤ i ≤ m. Fix k ∈ N0, s > 0, and any

bounded continuous function f : Rk → R. Let G≤t
.= σ {Zi (u) : u ≤ t, i ∈ N} and

Gt .= σ {Zi (t) : i ∈ N}. For any m ≥ k and t > 0, as {B∗
i (t + ·) − B∗

i (t)}i∈N0 is
independent of G≤t ,

E

(
f
(
Zm,t
1 (t + s), . . . , Zm,t

k (t + s)
) ∣∣∣G≤t

)
= E

(
f
(
Zm,t
1 (t + s), . . . , Zm,t

k (t + s)
) ∣∣∣Gt

)
.

Thus, to deduce the Markov property, it suffices to show that (Zm,t
1 (t + s), . . . , Zm,t

k
(t + s)) converges almost surely to (Z1(t + s), . . . , Zk(t + s)) as m → ∞
which will follow from the a.s. convergence of

(
Ym,t

(0) (t + s), . . . ,Ym,t
(k) (t + s)

)
to

(
Y(0)(t + s), . . . ,Y(k)(t + s)

)
. The latter can be shown by exploiting monotonicity

properties of rank-based diffusions [34, Theorem 3.2 and Corollary 3.9] as follows.
Fix ε > 0. By the construction of the process {Y(i)(·)}i∈N0 in [32], we can find

(random) m0 ∈ N0 such that, for any m ≥ m0, |Ym
(i)(t + s) − Y(i)(t + s)| < ε, for

0 ≤ i ≤ k. Now fix m ≥ m0. Note that Ym,t
(i) (t) ≤ Ym

(i)(t) for 0 ≤ i ≤ m by [34,
Corollary 3.9], and hence by [34, Theorem 3.2],

Ym,t
(i) (t + s) ≤ Ym

(i)(t + s) ≤ Y(i)(t + s) + ε for 0 ≤ i ≤ m.
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To construct a lower bounding process for Ym,t
(i) (t + s), define for m′ ≥ m the process

{Ym′,m,t
(i) (t + ·)}0≤i≤m started with Ym′,m,t

(i) (t) = Ym′
(i) (t) and driven by the Brownian

motions {B∗
i (t +·)− B∗

i (t)}0≤i≤m via the SDE (2.2) (and again setting the local time
for i = m+1 to be zero). By the construction of the process {Y(i)(·)}i∈N0 in [32], one
can choose m′ = m′(m, ε) large enough so that Ym′

(i) (t) ≤ Y(i)(t) + ε for 0 ≤ i ≤ m.

Moreover, if we consider the translation of the system {Ym,t
(i) (t + ·)}0≤i≤m by ε, then

the (m + 1)-particle process started from {Y(i)(t) + ε : 0 ≤ i ≤ m} at time t and
driven by the Brownian motions {B∗

i (t + ·) − B∗
i (t)}0≤i≤m has particle locations at

time t + s given by {Ym,t
(i) (t + s) + ε : 0 ≤ i ≤ m}. Hence, using [34, Theorem 3.2

and Corollary 3.9], we have

Y(i)(t + s) − ε ≤ Ym′
(i) (t + s) ≤ Ym′,m,t

(i) (t + s) ≤ Ym,t
(i) (t + s) + ε for 0 ≤ i ≤ m.

The first inequality above holds because m′ ≥ m ≥ m0. We conclude from the above
two displays that

Y(i)(t + s) − 2ε ≤ Ym,t
(i) (t + s) ≤ Y(i)(t + s) + ε for 0 ≤ i ≤ k.

This gives the desired almost sure convergence as ε > 0 is arbitrary.

3 Main results

We are interested in the extremality properties of the probability measures π
g
a . We

also ask whether these are the only product form stationary distributions.
We begin with some notation. Recall X

.= C([0,∞) : R∞+ ). Define measurable
maps {θt }t≥0 from (X,B(X)) to itself as

θt (Z)(s)
.= Z(t + s), t ≥ 0, s ≥ 0, Z ∈ X.

Given g ∈ D and z ∈ V , we denote the probability distribution of the gap process of the
g-Atlas model on (X,B(X)), with initial gap sequence z, byPg

z . Also, for γ ∈ P(R∞+ )

supported on V (namely, γ (V) = 1), let Pg
γ

.= ∫
R

∞+ P
g
z γ (d z). The corresponding

expectation operators will be denoted as Eg
z and E

g
γ respectively. Denote by I g the

collection of all invariant (stationary) probability measures of the gap process of the
g-Atlas model supported on V , namely

I g .= {γ ∈ P(X) : γ (Vc) = 0, and P
g
γ ◦ θ−1

t = P
g
γ for all t ≥ 0}.

Abusing notation, the canonical coordinate process on (X,B(X)) will be denoted
by {Z(t)}t≥0. Let M(R∞+ ) be the collection of all real measurable maps on R

∞+ . For
f ∈ M(R∞+ ), z ∈ R

∞+ and t ≥ 0 such that Eg
z (| f (Z(t))|) < ∞ we write

T g
t f (z)

.= E
g
z ( f (Z(t))). (3.1)
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Note that for g ∈ D, γ ∈ I g , and ψ ∈ L2(γ ), T g
t ψ is γ a.e. well defined and belongs

to L2(γ ). Furthermore, the collection {T g
t }t≥0 defines a contraction semigroup on

L2(γ ), namely

T g
t T g

s ψ = T g
t+sψ, and ‖T g

t ψ‖ ≤ ‖ψ‖ for all s, t ≥ 0 and ψ ∈ L2(γ ).

We now recall the definition of extremality and ergodicity. Let, for g as above and
γ ∈ I g , Igγ be the collection of all T g

t -invariant square integrable functions, namely,

I
g
γ

.= {ψ ∈ L2(γ ) : T g
t ψ = ψ, γ a.s., for all t ≥ 0}.

We denote the projection of aψ ∈ L2(γ ) on to the closed subspace Igγ as ψ̂
g
γ . Namely,

ψ̂
g
γ is the unique element of Igγ that satisfies

〈ψ, η〉 = 〈ψ̂ g
γ , η〉, for all η ∈ I

g
γ .

This projection can be obtained as the limit of 1
t

∫ t
0 T

g
s ψ ds in L2(γ ) as t → ∞ (see

(A.3)). Thus, for anyψ ∈ L2(γ ), ψ̂ g
γ (·) can be intuitively interpreted as the ‘long-time

average’ of {Eg· (ψ(Z(t)) : t ≥ 0}.
Definition 3.1 Let g ∈ D. A ν ∈ I g is said to be an extremal invariant distribution of
the gap process of the g-Atlas model if, whenever for some ε ∈ (0, 1) and ν1, ν2 ∈ I g

we have ν = εν1 + (1− ε)ν2, then ν1 = ν2 = ν. We denote the collection of all such
measures by I g

e .
We call ν ∈ I g an ergodic probability measure for the invariant distribution of the

gap process of the g-Atlas model if for allψ ∈ L2(ν), ψ̂ g
ν is constant ν-a.s. We denote

the collection of all such measures by I g
er .

We note that (cf. proof of Lemma3.2 below) if γ ∈ I g
er , then for any ψ ∈ L2(γ ),

1

t

∫ t

0
T g
s ψ(·)ds →

∫

R
∞+

ψ(x)γ (dx), in L2(γ ), as t → ∞.

The following result, which says that extremal invariant measures and ergodic
invariant measures are the same, is standard, however we provide a proof in the
appendix for completeness.

Lemma 3.2 Let g ∈ D. Then I g
e = I g

er . Let γ ∈ I g and suppose that for every
bounded measurable ψ : R∞+ → R, ψ̂ g

γ is constant, γ a.s. Then γ ∈ I g
e .

The following is the first main result of this work.

Theorem 3.3 Let g ∈ D. Then, for every a > −2 infn∈N ḡn, π
g
a ∈ I g

e = I g
er . Fur-

thermore, when g ∈ D1, π
g
a ∈ I g

e = I g
er also for a = −2 infn∈N ḡn.

The above theorem proves the extremality of the invariant measures π
g
a for suitable

values of a. As an immediate consequence of this theorem one can identify natural
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collections of measures that are in the (weak) domain of attraction of a given π
g
a , as

noted in the corollary below. We recall that a measure γ ∈ P(R∞+ ) is said to be
in the weak (resp. strong) domain of attraction of π

g
a if for any bounded continuous

function ψ : R∞+ → R,

1

t

∫ t

0
E
g
γ (ψ(Z(s)))ds →

∫

R
∞+

ψ(x)π
g
a (dx),

(resp. Eg
γ (ψ(Z(t))) → ∫

R
∞+ ψ(x)π

g
a (dx)), as t → ∞.

Corollary 3.4 Let g ∈ D. Fix any a > −2 infn∈N ḡn. Let γ ∈ P(R∞+ ) be absolutely
continuous with respect to π

g
a . Then γ lies in the weak domain of attraction of π

g
a .

The assertion holds for any a ≥ −2 infn∈N ḡn if g ∈ D1.

Sufficient conditions for a probability measure to be in the strong domain of attraction

of π
g1

0 were obtained in [11, 32] whereas weak domain of attraction results for π
g1
a ,

a ≥ 0, have been obtained in [6]. The above corollary provides a weak domain of
attraction result for a general class of g-Atlas models.

One can ask whether these are the only extremal invariant measures of the gap
process of the g-Atlas model supported on V . As noted in the Introduction, the answer
to this question when g = 0 is affirmative from results of [30, Theorem 4.2], if
one restricts to extremal measures satisfying certain integrability constraints on the
denseness of particle configurations. For a general g ∈ D (in fact even for g = g1)
this is currently a challenging open problem. However, we make partial progress
towards this goal in the next result by showing that for any g ∈ D1 (and under a mild
integrability condition), the collection {π g

a } exhausts all the extremal product form
invariant distributions. In fact we prove the substantially stronger statement that the
measures π

g
a are the only product form (extremal or not) invariant distributions under

a mild integrability condition. Qualitatively, this result says that these measures are
the only invariant distributions that preserve independence of the marginal laws of the
gaps in time.

Theorem 3.5 Let g ∈ D1 and let π ∈ I g be a product measure, i.e. π = ⊗∞
i=1πi for

some πi ∈ P(R+), i ∈ N. With F(z)
.=∑∞

j=1 e
− 1

4 (
∑ j

l=1 zl )
2
, z ∈ R

∞+ , suppose that

∫

R
∞+
F(z)π(d z) < ∞. (3.2)

Then, for some a ≥ −2 infn∈N ḡn, π = π
g
a . Moreover, a has the representation

a = E
g
π (L∗

1(1)) − 2g0 = E
g
π (L∗

k(1))

k
− 2

k
(g0 + · · · + gk−1), (3.3)

for any k ∈ N, where {L∗
i }i∈N denote the collision local times in (2.2).
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Recall that V defined in (2.4) consists of z ∈ R
∞+ for which

∑∞
j=1 e

−α(
∑ j

l=1 zl )
2

<

∞ for all α > 0. In comparison, condition (3.2) requires a finite expectation of
∑∞

j=1 e
− 1

4 (
∑ j

l=1 zl )
2
when z is distributed as π . Roughly speaking, condition (3.2) puts

a restriction on the rate of increase of the density of particles as one moves away from
the lowest ranked particle.

Several remarks are in order.

Remark 3.6 (Probabilistic interpretation of a) The equalities (3.3) give a probabilistic
interpretation to a. By stationarity of π , Eg

π (L∗
1(1)) can be thought of as the expected

rate of change of the local time L∗
1. Hence,

E
g
π (L∗

1(1))
2 is intuitively the expected rate at

which the bottom particle is ‘pushed down’ by the particle above it during collisions
and g0 denotes its upward drift in time. Thus, a/2 captures the difference between
two kinds of forces acting on the bottom particle: the hardcore interactions due to
collisions and the soft potential corresponding to the drift. For k > 1, one obtains a
similar interpretation as follows. Consider the subsystem consisting of the k lowest
particles viewed as a rank based diffusion (Y k

0 , . . . ,Y k
k−1), where Y

k
i gets upward drift

g j if its rank in the subsystem is j , and it is reflected downwards when it collides with
theminimumof the particles outside the subsystem. It can be deduced that each particle
Y k
i accrues roughly the same proportion of local time due to downward reflection as

time grows. Moreover, it asymptotically spends an equal proportion of time at each
rank j ∈ {0, . . . , k − 1}.

Hence,
E
g
π (L∗

k (1))
2k and 1

k (g0+· · ·+gk−1) respectively quantify the effect of reflection
and drift on each particle among the lowest k particles, and a/2 captures the differ-
ence between these effects. The positivity of a implies that the hardcore interactions
dominate in the long term. Indeed, the results of [41] show that when g = g1, under

π
g1
a , for any k ∈ N, Y(k)(t)/t → −a/2 almost surely as t → ∞. We conjecture that

the same result is true for any g ∈ D1.

Remark 3.7 When g /∈ D, uniqueness in law for the infinite-dimensional gap process
is currently an open problem, and thereforewhat onemeans by a stationary distribution
is not clear. However, under conditions, for g /∈ D, one can still construct stationary
‘approximative’ versions of this gap process by taking ‘limits’ of finite-dimensional
processes [32, Definition 7] (see also Definition4.4 below). See [32, Theorem 4.4,
Lemma 4.5 and Section 4.2] and [35, Remark 3] for some situations where such
versions can be constructed. Theorem3.5 can be extended to such settings as follows,
as is clear from an inspection of the proof. Suppose g satisfies infn≥1 ḡn > −∞ and
there exist N1 < N2 < · · · → ∞ such that ḡk > ḡN j for all k = 1, . . . , N j −
1, j ≥ 1. If there is a stationary approximative version of the infinite-dimensional
gap process with initial (invariant) distribution π supported on V , and if π is a product
measure that satisfies the integrability property in (3.2), then π = π

g
a for some a ≥

−2 lim j→∞ ḡN j .

Remark 3.8 Stationary distributions for finite dimensional reflected Brownianmotions
(with drift) in the positive orthant, have been studied in [15, 16]. In particular, the
paper [15] shows that the unique stationary distribution can be characterized through
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an identity, holding true for all suitable smooth test functions, referred to as the Basic
Adjoint Relationship (BAR) (see [15, Section 8]). Using this characterization it is
shown in [15, Section 9] that if the stationary distribution is product form then it
must necessarily be a product of Exponential distributions. The proof relies on using
a suitable class of exponential test functions in the BAR to characterize the moment
generating function of the stationary distribution. In the infinite dimensional setting
considered here, although similar test functions are useful, we do not know of a similar
BAR characterization for all stationary distributions. To circumvent this, we show in
Lemma5.4 that for any product form stationary distribution, one can obtain ‘local’
descriptions for the expectations of certain path functionals of the process. This result
is key and essentially plays the role of BAR in our context in obtaining a recursive
system of equations for the moment generating functions of the marginal distributions
that can then be solved explicitly to prove Theorem3.5.

Remark 3.9 A referee has proposed the following interesting direction of investigation.
Suppose that γ � π

g
b for some b ≥ −2 infn∈N ḡn . Then one may conjecture that, for

each k ∈ N,

E
g
γ (L∗

k(t))

kt
− 2

k
(g0 + · · · + gk−1) → b as t → ∞.

One may also ask the following ‘domain of attraction’ question. Given b ≥
−2 infn∈N ḡn , identify the set Vb ⊂ V such that for z ∈ Vb, for each k ∈ N,

E
g
z (L∗

k(t))

kt
− 2

k
(g0 + · · · + gk−1) → b as t → ∞.

In this case, we conjecture that any γ ∈ P(R∞+ ) supported on Vb is in the strong
domain of attraction of π

g
b . We leave the study of these questions for future work.

Rest of the paper is devoted to the proofs of Theorem 3.3 and Theorem3.5. Proof
of Lemma 3.2 is given in the Appendix for completeness.

4 Proof of Theorem3.3

We will only prove the first statement in Theorem3.3. The proof of the second is
similar and is therefore omitted.

We begin with the following definition. Let Y
.= C([0,∞) : R∞+ × R

∞+ ).

Definition 4.1 Let g ∈ D and γ, γ ′ ∈ P(R∞+ ) be such that γ (V) = γ ′(V) = 1.
We say that a probability measure Pg

γ,γ ′ on (Y,B(Y)) defines a coupling of the gap
process of the g-Atlasmodel with initial distributions γ, γ ′, if, denoting the coordinate
processes on Y as Z(1) and Z(2), namely

Z(1)(ω)(t)
.= ω(1)(t), Z(2)(ω)(t)

.= ω(2)(t), ω = (ω(1), ω(2)) ∈ Y, t ≥ 0,
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we have

P
g
γ,γ ′ ◦ (Z(1))−1 = P

g
γ , P

g
γ,γ ′ ◦ (Z(2))−1 = P

g
γ ′ .

Define the coupling time

τc
.= inf{t ≥ 0 : Z(1)(s) = Z(2)(s) for all s ≥ t},

where τc
.= ∞ if the above set is empty.When γ = δz and γ ′ = δz′ for some z, z′ ∈ V ,

we write Pg
γ,γ ′ = P

g
z,z′ .

Since g ∈ D will be fixed throughout the section, we will frequently suppress it from
the notation.

Consider now γ = π
g
a , where a is as in the statement of the theorem, and a bounded

measurable map ψ0 : R∞+ → R such that

Ttψ0 = ψ0, γ a.s. for every t ≥ 0, (4.1)

where Tt is defined as in (3.1), namely, Ttψ0(z) is defined for γ a.e. z as Ttψ0(z) =
Ez(ψ0(Z(t))), t ≥ 0. In order to prove Theorem3.3 it suffices, in view of Lemma 3.2,
to show that ψ0 is γ -a.e. constant. This, in view of (4.1), is equivalent to showing that
for some fixed t0 > 0,ψ

.= Tt0ψ0 is γ -a.e. constant. For the rest of the section we will
fix a t0 > 0 and consider ψ defined as above. Note that (4.1) holds with ψ0 replaced
by ψ .

4.1 Proof overview

Before we proceed to the details, we give a brief overview of the proof strategy for
showing that ψ is γ -a.e. constant. The first step is to show using the Tt -invariance
of ψ that for any t ≥ 0, ψ(Z(t)) = ψ(z) for γ -a.e. z. Moreover, using the product
form of γ , the same conclusion is seen to hold for the process Z(·) started from a
‘perturbed’ initial point obtained by changing any two co-ordinates of γ -a.e. z by
given numbers (see (4.8)). Up to this point, we only use quite general arguments not
involving the specific dynamics of the g-Atlas model. However, the dynamics comes
into play crucially in the subsequent steps, which involve construction of a coupling
of two g-Atlas models started from initial points that differ at a finite number of co-
ordinates. This is achieved by a combination of ‘mirror’ and synchronous couplings
of the infinite collection of driving Brownian motions (see (4.14) and (4.15)). The
coupling is utilized in two ways. First, it is shown that for any s > 0, the coupled
g-Atlas models coalesce with positive probability by time s (Proposition 4.2). Using
this and (4.8), it follows that the value of ψ remains unchanged upon changing any
pair of coordinates by rational numbers (see (4.10)). To extend this to perturbation by
real numbers (see (4.11) and (4.12)), we need a key ‘directional strong Feller property’
described in Proposition4.3, which is once again established using the coupling. The
equality of ψ under pairwise perturbations is then extended to perturbation by any
finite permutation via straightforward algebraic manipulations. The proof of γ almost
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sure constancy of ψ , and hence of Theorem3.3, is finally achieved by an application
of the Hewitt-Savage zero–one law.

4.2 Preliminary results

Now, we proceed to the details. We begin by noting that, from (4.1) (with ψ0 replaced
by ψ),

0 = Eγ

(
ψ(Z(t))2

)
− Eγ

(
ψ(Z(0))2

)

= Eγ

(
ψ(Z(t))2

)
+ Eγ

(
ψ(Z(0))2

)
− 2Eγ (ψ(Z(0))ψ(Z(t)))

= Eγ (ψ(Z(t)) − ψ(Z(0)))2 .

This says

ψ(Z(t)) = ψ(Z(0)), Pγ a.s., for every t ≥ 0. (4.2)

Next let

H(z, t)
.= Ez|ψ(Z(t)) − ψ(Z(0))|, z ∈ V, t ≥ 0.

For i ∈ N, x, y ∈ R+, and γ̄ ∈ P(V) of the form γ̄ = ⊗∞
i=1γ̄i for some γ̄i ∈ P(R+),

i ∈ N, define

η
γ̄

i (x, y, t)
.=
∫

R
∞+
H(z1, . . . , zi−1, x, y, zi+2, . . . , t)

∏

j∈N\{i,i+1}
γ̄ j (dz j ). (4.3)

We have from the Markov property that

Eγ̄ |ψ(Z(t)) − ψ(Z(0))| =
∫

R
2+

η
γ̄

i (x, y, t)γ̄i (dx)γ̄i+1(dy). (4.4)

Now take γ̄ = γ = π
g
a = ⊗∞

i=1γi . Then, from (4.2),

0 = Eγ |ψ(Z(t)) − ψ(Z(0))| =
∫

R
2+

η
γ

i (x, y, t)γi (dx)γi+1(dy). (4.5)

Recall that, for each i ∈ N, γi is an Exponential distribution and thus is mutually
absolutely continuous with respect to the Lebesgue measure λ on R+. Since η

γ

i is
nonnegative, we have from this mutual absolute continuity property that, for any
i ∈ N,

η
γ

i (x, y, t) = 0, λ ⊗ λ a.e. (x, y) ∈ R
2+, for every t ≥ 0. (4.6)
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Fix δ1, δ2 > 0, i ∈ N, t ≥ 0. For y ≥ 0, let ςδ2(y)
.= δ21y>δ2 . Letting Z be a

R
∞+ -valued random variable distributed as γ , denote by γ̃ ∈ P(R∞+ ) the probability

distribution of Z̃
.= Z + δ1ei − ςδ2(Zi+1)ei+1 where ei is the unit vector in R∞+ with

1 at the i-th coordinate. Note that by definition in (4.3), ηγ

i = η
γ̃

i , and in particular,
from (4.6),

η
γ̃

i (x + δ1, y − ςδ2(y), t) = η
γ

i (x + δ1, y − ςδ2(y), t) = 0, λ ⊗ λ a.e. (x, y) ∈ R
2+.

Thus, in view of (4.4),

Eγ̃ |ψ(Z(t)) − ψ(Z(0))| =
∫

R
2+

η
γ̃

i (x, y, t)γ̃i (dx)γ̃i+1(dy)

=
∫

R
2+

η
γ̃

i (x + δ1, y − ςδ2(y), t)γi (dx)γi+1(dy) = 0,

(4.7)

where we have used the fact that γi ⊗ γi+1 is mutually absolutely continuous with
respect to λ⊗λ. For z ∈ V , let βδ1,δ2(z)

.= z+δ1ei −ςδ2(zi+1)ei+1. Then, combining
(4.5) and (4.7), we have

Ez |ψ(Z(t)) − ψ(Z(0))| = Eβδ1,δ2 (z) |ψ(Z(t)) − ψ(Z(0))|
= 0, γ a.e. z, for every t ≥ 0.

Since βδ1,δ2(z) = z + δ1ei − δ2ei+1
.= zδ1,δ2,i when zi+1 > δ2, we get

ψ(Z(t)) = ψ(z), Pz a.e., ψ(Z(t))

= ψ(zδ1,δ2,i ), Pzδ1,δ2,i a.e., for γ a.e. z with zi+1 > δ2, for every t ≥ 0.

(4.8)

We will need the following proposition. The proof is given in Sect. 4.4.

Proposition 4.2 Fix i ∈ N, z ∈ V with z > 0, and δ1 > 0, δ2 ∈ (0, zi+1). Then
there exists a coupling Pz,δ1,δ2,i of the gap process of the g-Atlas model with initial
distributions δz and δzδ1,δ2,i such that, for any s > 0,

Pz,δ1,δ2,i (Z
(1)(s) = Z(2)(s)) > 0.
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Now, for δ1, δ2 > 0 and s > 0,

∫

{z:zi+1>δ2}
|ψ(zδ1,δ2,i ) − ψ(z)|Pz,δ1,δ2,i (Z

(1)(s) = Z(2)(s))γ (d z)

=
∫

{z:zi+1>δ2}
Ez,δ1,δ2,i

[
|ψ(zδ1,δ2,i ) − ψ(z)|1{Z(1)(s)=Z(2)(s)}

]
γ (d z)

=
∫

{z:zi+1>δ2}
Ez,δ1,δ2,i

[
|ψ(Z(2)(s)) − ψ(Z(1)(s))|1{Z(1)(s)=Z(2)(s)}

]
γ (d z) = 0,

where Z(i) are as given by Proposition4.2 and the second equality follows from (4.8).
Hence, from Proposition4.2, for every δ1, δ2 > 0 and i ∈ N,

ψ(z + δ1ei − δ2ei+1) = ψ(z) for γ a.e. z with zi+1 > δ2.

Thus we have shown that

γ (∪δ1,δ2∈Q∩(0,∞){z : zi+1 > δ2, and ψ(z + δ1ei − δ2ei+1) �= ψ(z)}) = 0.

(4.9)

This implies that

γ (z : ψ(z + δ1ei − δ2ei+1)

= ψ(z) for all δ1 ∈ (0,∞) ∩ Q, δ2 ∈ (0, zi+1) ∩ Q) = 1. (4.10)

To see this, let B denote the event on the left side of (4.10). Then if z ∈ Bc and zi+1 > 0,
then for some δ1, δ2 ∈ (0,∞) ∩ Q, zi+1 > δ2 and ψ(z + δ1ei − δ2ei+1) �= ψ(z),
which shows that z is in the event on the left side of (4.9) which in view of (4.9) says
that γ (Bc) = 0, proving the statement in (4.10). The following proposition enables us
to extend (4.10) to all (δ1, δ2) ∈ (0,∞) × (0, zi+1). The proof is given in Sect. 4.4.

Proposition 4.3 For each z ∈ V with z > 0 and i ∈ N, the map (δ1, δ2) �→ ψ(z +
δ1ei −δ2ei+1) is right continuous on [0,∞)×[0, zi+1). That is, if (δ1, δ2) ∈ [0,∞)×
[0, zi+1) and δ1,n ↓ δ1 and δ2,n ∈ [0, zi+1) with δ2,n ↓ δ2 as n → ∞, then ψ(z +
δ1,nei − δ2,nei+1) → ψ(z + δ1ei − δ2ei+1) as n → ∞.

We remark that our proof shows that in the above proposition ψ can be taken to
be Tt0ψ0 for any real bounded measurable function ψ0 on R

∞+ and t0 > 0, namely it
need not be {Tt }-invariant. Thus the property established in the above proposition can
be viewed as a certain type of ‘directional strong Feller property’.
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4.3 Completing the proof of Theorem3.3

As an immediate consequence of the above proposition and (4.10) we have that for γ

a.e. z,

ψ(z + δ1ei − δ2ei+1) = ψ(z) for all δ1 ∈ (0,∞), δ2 ∈ (0, zi+1), i ∈ N.

(4.11)

A similar argument shows that, for γ a.e. z,

ψ(z − δ1ei + δ2ei+1) = ψ(z) for all δ1 ∈ (0, zi ), δ2 ∈ (0,∞), i ∈ N. (4.12)

We now proceed to the proof of the first statement in Theorem 3.3. Recall that γ =
π

g
a

.= ⊗∞
n=1Exp(n(2ḡn + a)), where a satisfies the condition in Theorem3.3. For

notational simplicity, let cn
.= 2[n(2ḡn +a)]−1, n ∈ N. Let ψ̃ : V → R be defined as

ψ̃(z1, z2, z3, . . .)
.= ψ(c1z1, c2z2, c3z3, . . .), z = (z1, z2, . . .) ∈ V

if (c1z1, c2z2, c3z3, . . .) ∈ V . For all other z ∈ V , set ψ̃(z) = 0. We denote π
g1

0
.=

⊗∞
n=1Exp(2) as π0 for simplicity. Observe that, for any i ∈ N0,

π0(z : ψ̃(z1, z2, . . . , zi−1, zi , zi+1, zi+2, . . .)

= ψ̃(z1, z2, . . . , zi−1, zi+1, zi , zi+2, . . .))

= π
g
a (z : ψ(z1, z2, . . . , zi−1, zi , zi+1, zi+2, . . .)

= ψ

(
z1, z2, . . . , zi−1,

ci
ci+1

zi+1,
ci+1

ci
zi , zi+2, . . .

))
. (4.13)

Consider the set C ∈ B(X) with π
g
a (C) = 1 on which the two statements in (4.11)

and (4.12) hold. Then for any z ∈ C such that zi > 0 for all i ∈ N, we have,

ψ(z1, z2, . . . , zi−1, zi , zi+1, zi+2, . . .)

= ψ

(
z1, z2, . . . , zi−1,

ci
ci+1

zi+1,
ci+1

ci
zi , zi+2, . . .

)
.

Indeed, if ci
ci+1

zi+1 − zi > 0, then the statement follows from (4.11) on taking δ1 =
ci

ci+1
zi+1 − zi and δ2 = ci+1

ci
δ1, and if zi − ci

ci+1
zi+1 > 0, the statement follows from

(4.12) on taking δ1 = zi − ci
ci+1

zi+1 and δ2 = ci+1
ci

δ1. Since π
g
a (C) = 1, we have that

the probability on the right side of (4.13) is 1 and so,

π0(z : ψ̃(z1, z2, . . . , zi−1, zi , zi+1, zi+2, . . .)

= ψ̃(z1, z2, . . . , zi−1, zi+1, zi , zi+2, . . .)) = 1.
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As any finite permutation can be obtained as a composition of finitely many adjacent
transpositions, it now follows that, in fact for any finite permutation ρ : N → N,

π0(z : ψ̃(z1, z2, . . .) = ψ̃(zρ(1), zρ(2), . . .)) = 1.

Now using the Hewitt-Savage zero–one law (cf. [23, Theorem 2.15]), ψ̃ is π0 a.e.
constant, namely, there is a α ∈ R such that π0(z : ψ̃(z) = α) = 1. This shows that

π
g
a (z : ψ(z) = α) = π0(z : ψ̃(z) = α) = 1.

Hence, ψ is constant π g
a a.s. Appealing to Lemma3.2, this completes the proof of the

first statement in Theorem3.3. The second statement follows similarly. ��

4.4 Proofs of Propositions 4.2 and 4.3

Recall that we fix g ∈ D. Also, throughout this section we fix z ∈ V such that z > 0
and i ∈ N. Define for δ2 ∈ (0, zi+1) and δ1 > 0

y
.= (0, z1, z1 + z2, . . .)

′, yδ1,δ2 .= y +
i−1∑

j=0

(δ2 − δ1)e j + δ2ei .

Observe that, with the above choice of starting points of the particles, the correspond-
ing gaps are z( y) = z and z( yδ1,δ2) = zδ1,δ2 .

Let B0, B1, . . . be a sequence of mutually independent standard Brownian motions
on some probability space (�,F ,P). Consider the (i + 1)-dimensional diffusion
process

�(t) = �(0) + DB(i)(t) + bt, t ≥ 0,

where �(0) = (z1, . . . , zi , (zi+1 + δ2)/2)′, B(i)(·) = (B0(·), B1(·), . . . , Bi (·))′, b =
(g1 − g0, . . . , gi − gi−1,−gi )′, and D is an (i + 1) × (i + 1) matrix with Dj j = −1
for all 1 ≤ j ≤ i + 1, Dj( j+1) = 1 for all 1 ≤ j ≤ i and Djl = 0 otherwise. The
process {�(t) : t ≥ 0} will be used to analyze the evolution of the first i + 1 gaps
before any of them hit zero or the lowest i particles interact with the higher ranked
particles (in an appropriate sense), as stated more precisely later.

It can be checked that D is non-singular and (D−1) jl = −1 for all 1 ≤ j ≤ l ≤ i+1
and (D−1) jl = 0 otherwise. Let �̃(0)

.= (z1, . . . , zi−1, zi + δ1, (zi+1 − δ2)/2)′ and
define v

.= D−1(�̃(0)−�(0)) = (δ2−δ1, . . . , δ2−δ1, δ2)
′. Also define the stopping

time

σ
.= inf{t ≥ 0 : v′B(i)(t) = ‖v‖2/2},
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where ‖ · ‖ denotes the standard Euclidean norm. Define the mirror coupled (i + 1)-

dimensional Brownian motion B̃
(i)

by

B̃
(i)

(t) =
(
I − 2vv′

‖v‖2
)
B(i)(t)1[t≤σ ] + (B(i)(t) − v)1[t>σ ], t ≥ 0. (4.14)

Since
(
I − 2vv′

‖v‖2
)
is a unitary matrix, it follows from the strong Markov property

that B̃
(i)

is indeed a Brownian motion. B̃
(i)

can be thought of as the reflection of the
Brownian motion B(i) in a hyperplane perpendicular to the vector v till the first time σ

when B(i) hits this hyperplane (which is also the first meeting time of B(i) and B̃
(i)
),

and then coalescing with B(i). Using B̃
(i)
, define a coupled version of the process �

by

�̃(t) = �̃(0) + D B̃
(i)

(t) + bt, t ≥ 0.

Extend B̃
(i)

to an infinite collection of standard Brownianmotions B̃ = (B̃0, B̃1, . . . )
′

.= (B̃
(i)

, Bi+1, . . . )
′.

Our arguments will involve a coupling of two copies of the infinite ordered g-Atlas
model started from y and yδ1,δ2 and respectively driven by the Brownian motions
{Bj } j∈N0 and {B̃ j } j∈N0 . For the finite particle g-Atlas model, this coupling can be
directly constructed using the existence of a strong solution to the finite version of the
SDE (2.2). However, for the infinite g-Atlas model, this is a delicate issue. We will
use the recipe of approximative versions of [32], which we now introduce.

Definition 4.4 Suppose x ∈ U and consider a collection of independent standard
Brownian motions {B∗

j } j∈N0 . Consider for fixedm ∈ N, the system of SDE in (2.2) for
i = 0, 1, . . . ,m,with starting configuration X∗

i (0) = xi , 0 ≤ i ≤ m, local timesof col-
lision between the (i−1)-th and i-th particles denoted by L∗

i , 1 ≤ i ≤ m, and L∗
0(·) ≡

L∗
m+1(·) ≡ 0. Denote by X∗,(m)(·) = (X∗,(m)

0 (·), . . . , X∗,(m)
m (·))′ and L∗,(m)(·) =

(L∗,(m)
0 (·), . . . , L∗,(m)

m (·))′ the unique strong solution to this finite-dimensional sys-
tem of reflected SDE with driving Brownian motions (B∗

0 (·), . . . , B∗
m(·))′.

Then (see [32, Definition 7 and Theorem 3.7], [32, Lemma 6.4] and the discussion
following it), there exist continuous R∞-valued processes X∗(·) .= (X∗

i (·) : i ∈ N0)
′,

L∗(·) .= (L∗
i (·) : i ∈ N0)

′, adapted to Ft
.= σ {B∗

i (s) : s ≤ t, i ∈ N0}, such that, a.s.
X∗ satisfies (2.2) with associated local times given by L∗ and for any T ∈ (0,∞),

lim
m→∞ sup

t∈[0,T ]

[∣∣∣X∗,(m)
i (t) − X∗

i (t)
∣∣∣+
∣∣∣L∗,(m)

i (t) − L∗
i (t)
∣∣∣
]

= 0 a.s., for all i ∈ N0.

Wewill call X∗(·) the ‘infinite ordered g-Atlas model’ with driving Brownianmotions
{B∗

j } j∈N0 started from x = (x0, x1, x2 . . . )′.

We denote the infinite ordered g-Atlas model defined on (�,F ,P) with initial
condition y and driving Brownianmotions {Bj } j∈N0 as X = (X0, X1, . . .)

′. Similarly,
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denote the infinite ordered g-Atlas model defined on (�,F ,P) with initial condition
yδ1,δ2 and driving Brownian motions {B̃ j } j∈N0 as X̃ = (X̃0, X̃1, . . .)

′. Denote the gap
processes associated with X and X̃ as Z and Z̃ respectively, namely

Zi
.= Xi − Xi−1, Z̃i

.= X̃i − X̃i−1, ; i ∈ N.

It then follows that

Pz,δ1,δ2,i
.= P ◦ (Z, Z̃)−1 (4.15)

is a coupling of the gap process of the g-Atlas model with initial distributions
δz and δzδ1,δ2,i . Moreover, the process {�(t) : t ≥ 0} gives the evolution of

{
(
Z1(t), . . . , Zi (t),

yi+yi+1+δ2
2 − Xi (t)

)′ : t ≥ 0} before any of the co-ordinates

of �(·) hit zero or Xi+1 hits the level
yi+yi+1+δ2

2 (note that zi+1 > δ2 guarantees that

Xi+1(0) >
yi+yi+1+δ2

2 ). This can be seen from (2.2). Similarly, {�̃(t) : t ≥ 0} gives
the evolution of {

(
Z̃1(t), . . . , Z̃i (t),

yi+yi+1+δ2
2 − X̃i (t)

)′ : t ≥ 0} before any of the

co-ordinates of �̃(·) hit zero or X̃i+1 hits the level
yi+yi+1+δ2

2 from above.
We will now construct tractable events of positive probability under which the

‘mirror coupled’ processes � and �̃ will successfully couple before any of their co-
ordinates hit zero or Xi+1 (equivalently, X̃i+1) hits the level

yi+yi+1+δ2
2 . Towards this

end, observe that D .= {D−1x : x ∈ R
i+1+ } is a polyhedral convex domain contained

in the nonpositive orthant of Ri+1. Let L denote the line segment joining D−1�(0)
and D−1�̃(0). By convexity of D, and since �(0), �̃(0) > 0,

r
.= inf

u∈L
dist(u, ∂D) > 0, (4.16)

where ∂D denotes the boundary of D and dist denotes Euclidean distance of a point
from this set. Also define the processes

M(t)
.= v′

‖v‖ B(i)(t), M⊥(t)
.=
(
I − vv′

‖v‖2
)
B(i)(t) =

(
I − vv′

‖v‖2
)
B̃

(i)
(t), t ≥ 0,

where the last equality can be verified from (4.14). Observe that M is a standard
Brownian motion and moreover, M and M⊥ are independent Gaussian processes.

From a geometric point of view, 2M denotes the component of B̃
(i) − B(i) along the

vector v and M⊥ denotes the ‘synchronously’ coupled projections of B̃
(i)

and B(i)

along the hyperplane perpendicular to v. Define the stopping time

τ ∗ .= inf{t ≥ 0 : M(t) = −r/4 or ‖M⊥(t)‖ = r/4}.
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Consider any t ≤ σ ∧ τ ∗ ∧ r
8‖D−1b‖+1

. Note that, if M(t) ≥ 0, then, using t ≤ σ ,

u
.= D−1�(0) + M(t)

v

‖v‖ =
(
1 − v′B(i)(t)

‖v‖2
)
D−1�(0) + v′B(i)(t)

‖v‖2 D−1�̃(0) ∈ L.

Furthermore,

‖D−1�(t) − u‖ = ‖M⊥(t) + D−1bt‖ ≤ ‖M⊥(t)‖ + ‖D−1b‖t ≤ 3r

8
.

Hence, by definition of r , D−1�(t) /∈ ∂D. If, on the other hand, M(t) < 0, then
recalling t ≤ τ ∗,

‖D−1�(t) − D−1�(0)‖ = ‖B(i)(t) + D−1bt‖ = ‖M(t)
v

‖v‖ + M⊥(t) + D−1bt‖

≤ |M(t)| + ‖M⊥(t)‖ + ‖D−1b‖t ≤ 5r

8
,

again implying D−1�(t) /∈ ∂D. Hence, we conclude that, on the event {σ ≤ τ ∗ ∧
r

8‖D−1b‖+1
}, D−1�(t) /∈ ∂D for all t ≤ σ . A similar argument gives D−1�̃(t) /∈ ∂D

for all t ≤ σ on the same event.
Since g ∈ D, the sequence {gi } is bounded. Let gl ∈ [1,∞) be such that

g j ≥ −gl for all j ∈ N0.

Fix any

δ ∈ (0, zi+1/(2 + 4gl)). (4.17)

For s ∈ (0, δ] and δ1, δ2 ∈ (0, δ), define the following events in F :

E1(s)
.=
{

inf
j≥i+1

inf
0≤t≤s

(y j + Bj (r)) >
yi + yi+1 + δ2

2
+ glδ

}
,

E2(s)
.=
⎧
⎨

⎩ inf
t≤s∧ r

8‖D−1b‖+1

M(t) > −r/4, sup
t≤s∧ r

8‖D−1b‖+1

M(t) ≥ ‖v‖/2, sup
t≤s∧ r

8‖D−1b‖+1

‖M⊥(t)‖ < r/4

⎫
⎬

⎭ .

(4.18)

Let E(s)
.= E1(s)∩E2(s). For notational convenience, we suppress the dependence

of E1(s), E2(s), E(s) on δ1, δ2.
We claim that E(s) ⊆ {τc ≤ s}. To see this, observe that on the event E1(s),

the ordered Atlas particles Xi+1 and X̃i+1 stay above the level yi+yi+1+δ2
2 by

time s. Moreover, on E2(s), {σ ≤ τ ∗ ∧ r
8‖D−1b‖+1

∧ s} which, by the previ-

ous discussion, implies D−1�(t) /∈ ∂D and D−1�̃(t) /∈ ∂D for all t ≤ σ ,
that is, none of the co-ordinates of �(·) or �̃(·) hit zero by time σ . Hence,
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for all t ≤ σ , �(t) =
(
Z1(t), . . . , Zi (t),

yi+yi+1+δ2
2 − Xi (t)

)′
and �̃(t) =

(
Z̃1(t), . . . , Z̃i (t),

yi+yi+1+δ2
2 − X̃i (t)

)′
. Further, by the mirror coupling dynamics,

�(σ) = �̃(σ ) and thus, under E(s),

(
Z1(t), . . . , Zi (t),

yi + yi+1 + δ2

2
− Xi (t)

)

=
(
Z̃1(t), . . . , Z̃i (t),

yi + yi+1 + δ2

2
− X̃i (t)

)

for all t ≥ σ . As σ ≤ s under E(s), we conclude that the above equality holds
for all t ≥ s. Finally, as Xi and Xi+1 (also, X̃i and X̃i+1) do not meet by time σ ,
X j (t) = X̃ j (t) for all j ≥ i + 1, for all t ≤ σ , and hence for all t ≥ 0. These
observations imply τc ≤ s on E(s).

The following lemma gives a key estimate on the probabilities of this event. Recall
t0 > 0 for which ψ = Tt0ψ0.

Lemma 4.5 For any η > 0, there is a δ0 ∈ (0, δ) and t1 ∈ (0, t0 ∧ δ) such that
Pz,δ1,δ2,i (τc > t1) ≤ P(E(t1)c) ≤ η for all δ1, δ2 ∈ (0, δ0).

Proof Note that the inequality Pz,δ1,δ2,i (τc > t1) ≤ P(E(t1)c) is immediate from the
discussion above the lemma. Now fix η ∈ (0, 1). Constants appearing in this proof
may depend on z and this dependence is not noted explicitly. By a union bound and
properties of Brownian motion we see that for any δ2 ∈ (0, δ) and s ∈ (0, 1),

P((E1(s))c) ≤ 2
∞∑

j=i+1

�̄

(
y j − yi+1 + 1

2 (zi+1 − δ2) − glδ√
s

)
, (4.19)

where for u ∈ R,

�̄(u) = 1√
2π

∫ ∞

u
e−v2/2dv. (4.20)

Note that, for u ≥ 0, �̄(u) ≤ √
2e−u2/4. By our condition on δ in (4.17) and using

δ2 ∈ (0, δ),

1

2
(zi+1 − δ2) − glδ ≥ 1

2
(zi+1 − (2gl + 1)δ)

.= c1 > 0.

Thus, from (4.19) it follows that

P((E1(s))c) ≤ √
8e−c21/4s

∞∑

j=i+1

e−(y j−yi+1)
2/4s

≤ √
8e−c21/4s

∞∑

j=i+1

e−(y j−yi+1)
2/4 ≤ √

8e−c21/4sey
2
i+1/4

∞∑

j=i+1

e−y2j /8,
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where the first inequality uses (a+b)2 ≥ a2+b2 for a, b ≥ 0, the second uses the fact
that s ∈ (0, 1), and the third uses the inequality (a − b)2 ≥ a2/2 − b2 for a, b ∈ R.
Thus, choosing t ′ ∈ (0, 1) such that

√
8e−c21/4t

′
ey

2
i+1/4

∞∑

j=i+1

e−y2j /8 ≤ η/4,

(here we use y ∈ U), we obtain

P((E1(s))c) ≤ η/4 for all δ2 ∈ (0, δ) and all s ≤ t ′. (4.21)

Without loss of generality we assume that t ′ < t0 ∧ δ. Next, note that, by the indepen-
dence of M and M⊥, for any s ∈ (0, r

8‖D−1b‖+1
],

P((E2(s))c)

= 1 − P

(
inf
t≤s

M(t) > −r/4, sup
t≤s

M(t) ≥ ‖v‖/2
)
P

(
sup
t≤s

‖M⊥(t)‖ < r/4

)
.

(4.22)

Recall r defined in (4.16).Writing r = r(δ1, δ2) to highlight its dependence on δ1, δ2, it
follows from (4.16) and the explicit form of�(0) and �̃(0) that there exists δ′ ∈ (0, δ)
and c2 > 0 such that

inf
δ1,δ2∈(0,δ′)

r(δ1, δ2)
.= c2 > 0.

Hence, we obtain t1 ∈ (0, t ′ ∧ r
8‖D−1b‖+1

) such that

P

(
inf
t≤t1

M(t) > −r/4

)
≥ 1 − η/4,

P

(
sup
t≤t1

‖M⊥(t)‖ < r/4

)
≥ 1 − η/4, for all δ1, δ2 ∈ (0, δ′). (4.23)

Recall v = D−1(�̃(0) − �(0)). As �̃(0) − �(0) = (0, . . . , 0, δ1,−δ2) and D−1

depends only on i and not on δ1, δ2, we can obtain c3 > 0 depending only on i such
that

‖v‖ ≤ c3

√
δ21 + δ22 for all δ1, δ2 > 0.

Hence, we obtain δ0 ∈ (0, δ′) depending on t1 such that

P

(
sup
t≤t1

M(t) ≥ ‖v‖/2
)

≥ 1 − η/4 for all δ1, δ2 ∈ (0, δ0). (4.24)

123



S. Banerjee, A. Budhiraja

From (4.23) and (4.24), for all δ1, δ2 ∈ (0, δ0),

P

(
inf
t≤t1

M(t) > −r/4, sup
t≤t1

M(t)

≥ ‖v‖/2) ≥ P

(
inf
t≤t1

M(t) > −r/4

)
− P

(
sup
t≤t1

M(t) < ‖v‖/2
)

≥ 1 − η/2.

(4.25)

Using (4.23) and (4.25) in (4.22), we obtain for all δ1, δ2 ∈ (0, δ0),

P((E2(t1))
c) ≤ 1 − (1 − η/2)(1 − η/4) ≤ 3η/4. (4.26)

From (4.21) and (4.26), we conclude

P((E(t1))
c) ≤ P((E1(t1))

c) + P((E2(t1))
c) ≤ η for all δ1, δ2 ∈ (0, δ0),

which proves the lemma. ��
Proof of Proposition 4.3 In order to prove the proposition it suffices to show the right
continuity of (δ1, δ2) �→ ψ(z + δ1ei − δ2ei+1) at (δ1, δ2) = (0, 0). Recall that
ψ = Tt0ψ0. Let ε > 0 be arbitrary and let η

.= ε/(2‖ψ0‖∞). Let δ be as in (4.17) and,
for this chosen η, let δ0 ∈ (0, δ) and t1 ∈ (0, t0 ∧ δ) be as in Lemma4.5. For δ1 > 0,
δ2 ∈ (0, zi+1), let Pz,δ1,δ2,i be as in (4.15) and let Ez,δ1,δ2,i be the corresponding
expectation operator. For any δ1, δ2 ∈ (0, δ0),

|ψ(z + δ1ei − δ2ei+1) − ψ(z)| = |Ezδ1,δ2,i ψ0(Z(t0)) − Ezψ0(Z(t0))|
≤ Ez,δ1,δ2,i

[
|ψ0(Z(1)(t0)) − ψ0(Z(2)(t0))|1{τc>t1}

]

≤ 2‖ψ0‖∞Pz,δ1,δ2,i (τc > t1)

≤ 2‖ψ0‖∞P(E(t1)
c) ≤ 2‖ψ0‖∞η = ε,

where the fourth inequality usesLemma4.5. Since ε > 0 is arbitrary, the result follows.
��

Proof of Proposition 4.2 Let z and δ1, δ2 be as in the statement of the proposition and
let Pz,δ1,δ2,i be as in (4.15). Recall the event E2(s) from (4.18) (defined for any s > 0)
and consider the following modification of E1(s):

Ẽ1(s)
.=
{

inf
j≥i+1

inf
0≤t≤s

(y j + Bj (t) − tgl) >
yi + yi+1 + δ2

2

}
, s > 0.

Let Ẽ(s)
.= Ẽ1(s) ∩ E2(s). From the definition of the coupling Pz,δ1,δ2,i it is easily

seen by an argument similar to that given before Lemma 4.5 that

Pz,δ1,δ2,i (Z
(1)(s) = Z(2)(s)) ≥ P(Ẽ(s)).
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Note that, as Ẽ1(s) is given in terms of Brownian motions {Bj } j≥i+1 and E2(s) is
defined in terms of {Bj } j≤i , Ẽ1(s) and E2(s) are independent. Thus, for any s > 0,
P(Ẽ(s)) = P(Ẽ1(s))P(E2(s)) and it suffices to show that each term in the product is
positive.

As y ∈ U , y j → ∞ as j → ∞. Hence, we can obtain j0 ≥ i +2 depending on s, i

such that y j ≥ 2sgl + 2(yi + yi+1 + δ2) for all j ≥ j0 and
∑∞

j= j0 �̄
(

y j
4
√
s

)
≤ 1/4.

Thus,

P

(
inf
j≥ j0

inf
0≤t≤s

(y j + Bj (t) − tgl) >
yi + yi+1 + δ2

2

)

≥ P

(
inf
j≥ j0

inf
0≤t≤s

(
y j
2

+ Bj (t)) >
yi + yi+1 + δ2

2

)

≥ 1 − 2
∞∑

j= j0

�̄

(
y j
4
√
s

)
≥ 1/2. (4.27)

Moreover, from standard Brownian motion estimates,

P

(
inf

i+1≤ j< j0
inf

0≤t≤s
(y j + Bj (t) − tgl) >

yi + yi+1 + δ2

2

)
> 0. (4.28)

From the independence of the events considered in (4.27) and (4.28), we conclude
that P(Ẽ1(s)) > 0. Finally, from standard Brownian motion estimates and the explicit
form of M(·) and M⊥ in terms of B(i)(·),

P

⎛

⎝ inf
t≤s∧ r

8‖D−1b‖+1

M(t) ≥ −r/4, sup
t≤s∧ r

8‖D−1b‖+1

M(t)

≥ ‖v‖/2, sup
t≤s∧ r

8‖D−1b‖+1

‖M⊥(t)‖ ≤ r/4

⎞

⎠

= P

⎛

⎝ inf
t≤s∧ r

8‖D−1b‖+1

M(t) ≥ −r/4, sup
t≤s∧ r

8‖D−1b‖+1

M(t) ≥ ‖v‖/2
⎞

⎠

×P

⎛

⎝ sup
t≤s∧ r

8‖D−1b‖+1

‖M⊥(t)‖ ≤ r/4

⎞

⎠ > 0.

The result follows. ��
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5 Proof of Theorem3.5

RecallD1 from (1.2). Observe that for g ∈ D1, ḡN j+1 < ḡN j for all j ≥ 1. Moreover,
as g ∈ D, infn∈N ḡn ≥ infn∈N gn > −∞. Thus, ḡ∞

.= lim j→∞ ḡN j exists, is finite,
and lim j→∞ ḡN j = infn∈N ḡn . As adding the same drift −ḡ∞dt to each ordered
particle in (2.2) keeps the gaps unchanged, we can assume without loss of generality
that infn∈N gn = ḡ∞ = 0. In particular, ḡn > 0 for all n ∈ N.

Fix g ∈ D1 and letπ = ⊗∞
i=1πi be as in the statement of Theorem3.5. The assump-

tion (3.2) on π will be taken to hold throughout the section. From Theorem2.1 we can
construct a filtered probability space (�,F ,P, {Ft }) equippedwithmutually indepen-
dent real {Ft }t≥0-Brownianmotions {B∗

i }i∈N0 and continuous processes {Y(i), i ∈ N0}
that solve the SDE (2.2), where {L∗

i }i∈N0 are as introduced below (2.2), such that with
{Zi }i∈N defined as in (2.3), the process Z = (Z1, Z2, . . .)

′ has the distribution P
g
π .

Furthermore, without loss of generality, we can assume that Y(0)(0) = 0. We will
write P and E respectively for the probability and expectation under the law of this
R

∞-valued process.

5.1 Proof overview

First we give an overview of the approach. We will use moment generating functions
(m.g.f) to identify the marginals of π ; so the first step is to establish finiteness of
the m.g.f. of any fixed gap in a positive interval around zero. This is achieved in
Lemma5.1 by using comparison techniques between the gap processes of infinite
and finite versions of the model, the latter having a unique invariant distribution that
is a product of Exponential distributions. Lemmas5.2 and 5.3 together establish the
uniform integrability of { 1

ε

∫ 1
0 1{0≤Zi (s)≤ε}ds, ε ∈ (0, 1/2)} for any i ∈ N, which is

later used in showing the existence of limε↓0 1
ε
πi [0, ε] and to identify this asE(L∗

i (1))
(L∗

i being the local time at zero of the i-th gap in (2.2)). Lemma5.4, which is key to
the proof of Theorem3.5, gives an explicit representation for the expectation of the
integral of a function of the i-th gap process against the j-th local time process for
i �= j . The aforementioned uniform integrability is crucially used here. For any i ∈ N,
the m.g.f. of the i-th gap at time 1 is then identified by an application of Itô’s formula
to exponential functions of the gap and using the representation in Lemma5.4 to
evaluate the local time terms. The obtainedm.g.f. corresponds to that of an exponential
random variable. The associated rates are then shown to agree with that ofπ g

a for some
a ≥ −2 infn∈N ḡn via a recursive relation resulting from taking expectations in (5.1).
The representation (3.3) is obtained as a by-product of our computations.

5.2 Preliminary results

We begin with some preliminary results.

Lemma 5.1 For any i ∈ N and λ < 2
∑i−1

k=0 gk, we have
∫
R+ eλzπi (dz) < ∞.

Proof Recall the sequence {N j } associated with g ∈ D1. Fix any d ∈ N such that
Nd > i and consider the Nd dimensional (g, y)-Atlas model defined by replacing ∞
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with Nd − 1 in equation (2.1). This model has been studied extensively in previous
works (see e.g. [32, 34]) and it is well known that, since g ∈ D1, the associated
gap sequence {Z j }Nd−1

j=1 defined by (2.3), where the processes Y( j) are defined by

(2.2), for j = 0, 1, . . . , Nd − 1, has a unique stationary distribution π̃ (Nd−1) .=
⊗Nd−1

l=1 Exp(2 l(ḡl − ḡNd )) (see [32, Proposition 2.2(4)]). Using monotonocity and
comparison estimates for finite and infinite Atlas models (cf. [32, Corollary 3.14]
and [34, equations (58)–(60)]) it now follows that the probability measure π |Nd−1

on R
Nd−1
+ given as the first Nd − 1 marginal distribution of π satisfies π |Nd−1 ≤st

π̃ (Nd−1). In particular, πi ≤st Exp(2i(ḡi − ḡNd )) for all Nd > i . Since ḡNd → 0 as
d → ∞, we can find a d ∈ N, with Nd > i , such that λ < 2i(ḡi − ḡNd ). Then

∫

R+
eλzπi (dz) ≤

∫

R+
eλzExp(2i(ḡi − ḡNd ))(dz) < ∞

which completes the proof. ��
The next three lemmas concern the collection {Zi , L∗

i } described above. We remind
the reader that in these lemmas the probability measure P and the expectation E

correspond to Pg
π and Eg

π respectively, where g and π are as fixed at the beginning of
the section.

Lemma 5.2 For every i ∈ N, E(L∗
i (1))

2 < ∞.

Proof From (2.2) it follows that, for i ∈ N, and 0 ≤ t ≤ 1,

Zi (t) = Zi (0) + hi t + W ∗
i (t) − 1

2
L∗
i−1(t) − 1

2
L∗
i+1(t) + L∗

i (t), (5.1)

where for i ∈ N, hi = gi − gi−1 and W ∗
i = B∗

i − B∗
i−1. This says that

L∗
i+1(1) = 2(Zi (0) − Zi (1) + hi + W ∗

i (1) + L∗
i (1)) − L∗

i−1(1).

From this and Lemma5.1 it follows that if for some i ∈ N E(L∗
i (1))

2 < ∞, then
E(L∗

i+1(1))
2 < ∞ as well. Thus it suffices to show that E(L∗

1(1))
2 < ∞. From (2.2),

and recalling that Y(0)(0) = 0, we see that

Y(0)(1) = g0 + B∗
1 (1) − 1

2
L∗
1(1)

which says that

L∗
1(1) = 2(−Y(0)(1) + g0 + B∗

1 (1)).

Thus to prove the lemma it suffices to show that

E

(
inf
j∈N0

Y j (1)

)2

< ∞, (5.2)
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where {Y j } solve the system of equations in (2.1) with Y0(0) = 0 and the vector

(Y1(0),Y2(0) − Y1(0),Y3(0) − Y2(0), . . .)

distributed as π .
Note that for x > g0,

P( inf
j∈N0

Y j (1) > x) ≤ P(g0 + B∗
1 (1) > x) ≤ √

2e−(x−g0)2/4. (5.3)

Next, as g ∈ D, there exists gl > 0 such that gi ≥ −gl for all i ∈ N0. Thus, we
have, for x ≥ 0,

P( inf
j∈N0

Y j (1) < −x) ≤ P( inf
j∈N0

(Y j (0) + Wj (1)) < gl − x)

≤
∞∑

j=0

P(Wj (1) ≤ gl − x − Y j (0)) =
∞∑

j=0

E�̄(x + Y j (0) − gl),

where �̄(z) was defined in (4.20). Thus, for x ≥ gl ,

P( inf
j∈N0

Y j (1) ≤ −x) ≤ √
2

∞∑

j=0

Ee−(x+Y j (0)−gl )2/4 ≤ √
2e−(x−gl )2/4

∞∑

j=0

Ee−(Y j (0))2/4.

The desired square integrability in (5.2) is now immediate from (5.3) and the above
on observing that

∞∑

j=0

Ee−(Y j (0))2/4 = 1 +
∫

R
∞+

⎛

⎝
∞∑

j=1

e− 1
4 (
∑ j

l=1 zl )
2

⎞

⎠π(d z) < ∞

by our assumption. ��

The next lemma will allow us to interchange expectations and limits as ε → 0.

Lemma 5.3 The family { 1
ε

∫ 1
0 1{0≤Zi (s)≤ε}ds, ε ∈ (0, 1/2)} is uniformly integrable.

Proof For ε ∈ (0, 1/2), define ψε : R → R as

ψε(z)
.=
{

z2
2 if 0 ≤ z ≤ ε
ε2

2 + (z − ε)ε if z > ε.
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Note that ψε is a C1 function with an absolutely continuous derivative. It then follows
from Itô’s formula (see [25, Problem 3.7.3]) applied to Zi given by (5.1), that

ψε(Zi (1)) = ψε(Zi (0)) +
∫ 1

0
ψ ′

ε(Zi (s))hids +
∫ 1

0
ψ ′

ε(Zi (s))dW
∗
i (s)

− 1

2

∫ 1

0
ψ ′

ε(Zi (s))dL
∗
i+1(s) − 1

2

∫ 1

0
ψ ′

ε(Zi (s))dL
∗
i−1(s)

+
∫ 1

0
ψ ′

ε(Zi (s))dL
∗
i (s) +

∫ 1

0
ψ ′′

ε (Zi (s))ds. (5.4)

Note that, for all z ∈ R+,

0 ≤ ψε(z) ≤ zε, 0 ≤ ψ ′
ε(z) ≤ ε, ψ ′

ε(0) = 0.

Also,

ψ ′′
ε (z) =

{
1 if 0 ≤ z < ε

0 if z > ε.

Combining these, and dividing by ε in (5.4), we have

1

ε

∫ 1

0
1{0≤Zi (s)≤ε}ds ≤ Zi (1) − 1

ε

∫ 1

0
ψ ′

ε(Zi (s))dW
∗
i (s) + |hi | + 1

2
L∗
i−1(1)

+ 1

2
L∗
i+1(1).

The desired uniform integrability now follows fromLemmas5.1 and 5.2 and the obser-
vation that

E

(
1

ε

∫ 1

0
ψ ′

ε(Zi (s))dW
∗
i (s)

)2

≤ 2.

��
The following lemmawill be key to provingTheorem3.5. Itwill be used to represent

expectations of integrals of nonnegativemeasurable functionswith respect to local time
in terms of stationary integrals and the ‘density’ of πi at zero for each i , as described
in the lemma. We note that the product form structure of π is crucially exploited here.

Lemma 5.4 For any i ∈ N, the limit νi
.= limε↓0 1

ε
πi [0, ε] exists and νi = E(L∗

i (1)).
Furthermore, for any measurable f : R+ → R+ and i, j ∈ N, i �= j ,

E

∫ 1

0
f (Zi (s))dL

∗
j (s) = ν j

∫

R+
f (z)πi (dz). (5.5)
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Proof From results on local times of continuous semimartingales (see e.g. [29, Corol-
lary VI.1.9]) it follows that, for all t ∈ [0, 1] and i ∈ N, 1

ε

∫ t
0 1{0≤Zi (s)≤ε}ds converges

a.s. to 1/2-times the semimartingale local time �i (t) of Zi at 0 (as defined in [29,
VI.1.2]) as ε ↓ 0. Furthermore, one has (see [29, Exercise VI.1.16 (3)]) that

�i (t) = 2
[
hi

∫ t

0
1{Zi (s)=0}ds − 1

2

∫ t

0
1{Zi (s)=0}dL∗

i−1(s)

− 1

2

∫ t

0
1{Zi (s)=0}dL∗

i+1(s) +
∫ t

0
1{Zi (s)=0}dL∗

i (s)
]

= 2
∫ t

0
1{Zi (s)=0}dL∗

i (s) = 2L∗
i (t),

where the first equality on the last line follows from the facts that
∫ t
0 1{Zi (s)=0}ds = 0

(which follows from �i (t) < ∞), and that the Atlas model does not have triple
collisions a.s. (see [32, Theorem 5.1]). It then follows that, as ε ↓ 0,

1

ε

∫ t

0
1{0≤Zi (s)≤ε}ds → L∗

i (t), a.s. for every t ∈ [0, 1] and i ∈ N. (5.6)

Combining this with Lemma5.3 and using the fact that Z is a stationary process, we
now have that, as ε ↓ 0,

1

ε
πi [0, ε] = E

1

ε

∫ 1

0
1{0≤Zi (s)≤ε}ds → E(L∗

i (1)), for all i ∈ N.

This proves the first statement in the lemma. In order to prove (5.5) it suffices to
consider the case where f is bounded (as the general case can be then recovered by
monotone convergence theorem). In fact by appealing to the monotone class theorem
(cf. [28, Theorem I.8]) we can assume without loss of generality that f is a continuous
and bounded function. From (5.6) we can find �0 ∈ F such that P(�0) = 1 and for
all ω ∈ �0

1

ε

∫ t

0
1{0≤Zi (s,ω)≤ε}ds → L∗

i (t, ω), for every t ∈ [0, 1] ∩ Q, (5.7)

and L∗
i (1, ω) < ∞ for all i ∈ N. In particular this says that, for every ω ∈ �0 and

i ∈ N, the collection of measures {�ε,ω
i , ε ∈ (0, 1/2)} defined as

�
ε,ω
i [a, b] .= 1

ε

∫ b

a
1{0≤Zi (s,ω)≤ε}ds, 0 ≤ a ≤ b ≤ 1

is relatively compact in the weak convergence topology. From this and using (5.7)
again we now see that, for every ω ∈ �0 and i ∈ N, �

ε,ω
i converges weakly to �ω

i
defined as

�ω
i [a, b] .= L∗

i (b, ω) − L∗
i (a, ω), 0 ≤ a ≤ b ≤ 1.
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From the sample path continuity of Zi we can assume without loss of generality that
for every ω ∈ �0 and i ∈ N, s �→ f (Zi (s, ω)) is a continuous map. From the above
weak convergence it then follows that, for ω ∈ �0 and i, j ∈ N,

∫ 1

0
f (Zi (s, ω))dL∗

j (s, ω) =
∫ 1

0
f (Zi (s, ω))d�ω

j (s)

= lim
ε→0

∫ 1

0
f (Zi (s, ω))d�

ε,ω
j (s)

= lim
ε→0

1

ε

∫ 1

0
f (Zi (s, ω))1{0≤Z j (s,ω)≤ε}ds.

Using Lemma5.3 and the fact that Z is a stationary process with a product form
stationary distribution, we now see that for i, j ∈ N, i �= j ,

E

∫ 1

0
f (Zi (s))dL

∗
j (s) = lim

ε→0

1

ε
E

∫ 1

0
f (Zi (s))1{0≤Z j (s)≤ε}ds

= lim
ε→0

1

ε
π j [0, ε]

∫
f (z)πi (dz) = ν j

∫
f (z)πi (dz).

��

5.3 Proof of Theorem3.5

We now complete the proof of the theorem. Recalling Lemmas 5.1 and 5.2), taking
expectations in (5.1), and using the identity νi = E(L∗

i (1)) for i ∈ N, we see that, for
all i ∈ N,

hi + νi − 1

2
νi+1 − 1

2
νi−1 = 0. (5.8)

Applying the above identity for i = 1, and setting a
.= ν1 − 2g0, we have

ν2 = 2ν1 + 2h1 = 2(g0 + g1) + 2(ν1 − 2g0) = 2(g0 + g1) + 2a.

Proceeding by induction, suppose that for some k ≥ 2,

νi = ia + 2(g0 + · · · + gi−1), for all 1 ≤ i ≤ k.

Then from (5.8),

νk+1 = 2(νk − 1

2
νk−1 + hk)

= 2ak + 4(g0 + · · · + gk−1) − a(k − 1) − 2(g0 + · · · + gk−2) + 2(gk − gk−1)

= (k + 1)a + 2(g0 + · · · + gk).
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Thus it follows that, for every k ≥ 1,

νk = ka + 2(g0 + · · · + gk−1) = k(a + 2ḡk). (5.9)

Fix i ∈ N and λ <
∑i−1

k=0 gk . Then by Itô’s formula applied to Zi given by (5.1),

eλZi (1) = eλZi (0) + λhi

∫ 1

0
eλZi (s)ds + λ

∫ 1

0
eλZi (s)dW ∗

i (s) − λ

2

∫ 1

0
eλZi (s)dL∗

i−1(s)

− λ

2

∫ 1

0
eλZi (s)dL∗

i+1(s) + λ

∫ 1

0
eλZi (s)dL∗

i (s) + λ2
∫ 1

0
eλZi (s)ds.

(5.10)

Since λ <
∑i−1

k=0 gk , from Lemma5.1,
∫ 1
0 Ee2λZi (s)ds = ∫

R+ e2λzπi (dz) < ∞ and
consequently the stochastic integral in the above display has mean 0. Moreover, note
that

E

∫ 1

0
eλZi (s)dL∗

i (s) = E

∫ 1

0
dL∗

i (s) = E(L∗
i (1)) = νi .

Thus taking expectations in (5.10) and using Lemma 5.4, we have,

∫

R+
eλzπi (dz) =

∫

R+
eλzπi (dz) + λhi

∫

R+
eλzπi (dz) − λ

2
νi−1

∫

R+
eλzπi (dz)

− λ

2
νi+1

∫

R+
eλzπi (dz) + λνi + λ2

∫

R+
eλzπi (dz).

Rearranging terms, we have

λνi =
(

−λhi + λ

2
νi−1 + λ

2
νi+1 − λ2

)∫

R+
eλzπi (dz) = (λνi − λ2)

∫

R+
eλzπi (dz),

where the second equality in the above display follows from (5.8). Thus we have
shown that for all i ∈ N and λ <

∑i−1
k=0 gk ,

∫

R+
eλzπi (dz) = νi

νi − λ
.

Thus, since
∑i−1

k=0 gk = i ḡi > 0, by uniqueness of Laplace transforms, we must
have that πi = Exp(νi ) for each i ∈ N. Finally note that, since by Lemma 5.1,∫
R+ eλzπ1(dz) < ∞ for all λ < 2g0, we must have that a = ν1 − 2g0 ≥ 0. Thus, in
view of (5.9), we have shown that, for some a ≥ 0, πi = Exp(νi ) = Exp(i(2ḡi + a))

for all i ∈ N and so π = π
g
a for some a ≥ 0.

The assertion (3.3) follows from (5.9) upon recalling that νk = E(L∗
k(1)) for k ∈ N.

��

123



Extremal invariant distributions of infinite Brownian particle systems...

Appendix: Proof of Lemma 3.2

We will like to acknowledge the lecture notes of Sethuraman [36] which are used at
several steps in the proof below.

Since g ∈ D will be fixed in the proof we suppress it from the notation. Let γ ∈ I.
Define

G
.= {η − Ttη : η ∈ L2(γ ), t ≥ 0}.

We claim that [(span(G))cl ]⊥ ⊂ Iγ , where [(span(G))cl ]⊥ denotes the orthogonal
complement of the closure of the linear subspace generated by G in L2(γ ). Indeed,
if ψ ∈ [(span(G))cl ]⊥, then for all η ∈ L2(γ ) and t ≥ 0, 〈ψ, η − Ttη〉 = 0. Taking
η = ψ ,

〈ψ,ψ〉 = 〈ψ, Ttψ〉 for all t ≥ 0. (A.1)

Using this, and the contraction property of Tt , for all t ≥ 0,

0 ≤ 〈Ttψ − ψ, Ttψ − ψ〉 = 〈Ttψ, Ttψ〉 + 〈ψ,ψ〉 − 2〈ψ, Ttψ〉
= 〈Ttψ, Ttψ〉 + 〈ψ,ψ〉 − 2〈ψ,ψ〉 = 〈Ttψ, Ttψ〉 − 〈ψ,ψ〉 ≤ 0,

where the first equality on the second line follows from (A.1). This says that
Ttψ = ψ (as elements of L2(γ )) for all t ≥ 0 and so ψ ∈ Iγ and shows the
claim [(span(G))cl ]⊥ ⊂ Iγ . Any ψ ∈ L2(γ ) can be written as ψ = ψ̂γ + ψ̃γ where
ψ̂γ ∈ [(span(G))cl ]⊥ ⊂ Iγ and ψ̃γ ∈ (span(G))cl .

Next, for ψ ∈ L2(γ ) and t > 0, define Atψ ∈ L2(γ ) as

Atψ
.= 1

t

∫ t

0
Tsψ ds.

Then Atψ = At ψ̂γ + At ψ̃γ . By definition At ψ̂γ = ψ̂γ . Also, if φ ∈ G then for some
t0 ≥ 0 and η ∈ L2(γ ) φ = η − Tt0η. Then from the contraction property of Tt it
follows that

‖Atφ‖ ≤ 2‖η‖t0
t

→ 0 as t → ∞.

Similarly, if φ ∈ span(G), there is a c(φ) ∈ (0,∞) such that

‖Atφ‖ ≤ c(φ)

t
→ 0 as t → ∞.

Finally, let φ ∈ (span(G))cl . Then, given ε > 0, there is a φε ∈ span(G) such that
‖φ − φε‖ ≤ ε. It follows, using again the contraction property, that for all t > 0,

‖Atφ‖ ≤ ‖At (φ − φε)‖ + ‖Atφ
ε‖ ≤ ‖φ − φε‖ + c(φε)

t
≤ ε + c(φε)

t
.
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Thus lim supt→∞ ‖Atφ‖ ≤ ε. Since ε > 0 is arbitrary, we obtain

lim
t→∞ ‖Atφ‖ = 0 for all φ ∈ (span(G))cl . (A.2)

From these observations we obtain, for any ψ ∈ L2(γ ),

lim
t→∞ Atψ = lim

t→∞(At ψ̂γ + At ψ̃γ ) = lim
t→∞(ψ̂γ + At ψ̃γ ) = ψ̂γ . (A.3)

The above convergence in fact shows that [(span(G))cl ]⊥ = Iγ and consequently
ψ̂γ is the projection of ψ on to Iγ . To see this, recall that it was argued above that
[(span(G))cl ]⊥ ⊂ Iγ . Now consider the reverse inclusion and let ϕ ∈ Iγ . Then we
can write ϕ = ϕ1 +ϕ2 where ϕ1 ∈ (span(G))cl and ϕ2 ∈ [(span(G))cl ]⊥ ⊂ Iγ . Thus,
for t ≥ 0,

ϕ = Atϕ = Atϕ1 + Atϕ2 = Atϕ1 + ϕ2.

As t → ∞, we have from (A.2) that, Atϕ1 → 0, which says that ϕ = ϕ2.
This proves the inclusion Iγ ⊂ [(span(G))cl ]⊥ and we have the claimed statement
[(span(G))cl ]⊥ = Iγ .

Now we proceed to the proof of the statements in the lemma. We first consider the
second statement in the lemma. Fix γ ∈ I. Suppose that for every boundedmeasurable
map ψ : R∞+ → R, ψ̂γ is constant γ a.s. We will now show that this implies γ ∈ Ie.
Suppose there is a ε ∈ (0, 1) and γ1, γ2 ∈ I such that γ = εγ1 + (1 − ε)γ2.
Note that since from (A.3) ψ̂γ = limt→∞ Atψ and γ is invariant, we must have
ψ̂γ = ∫

R
∞+ ψ dγ , and so from (A.3) it follows that

∫

R
∞+

(
Atψ −

∫
ψdγ

)2

dγ = ‖Atψ − ψ̂γ ‖2 → 0 as t → ∞.

Also, from definition,

lim sup
t→∞

∫

R
∞+

(
Atψ −

∫
ψdγ

)2

dγ1 ≤ lim sup
t→∞

ε−1
∫

R
∞+

(
Atψ −

∫
ψdγ

)2

dγ = 0.

Thus Atψ → ∫
ψdγ in L2(γ1). Also, since γ1 ∈ I, ∫ Atψdγ1 = ∫ ψdγ1

and consequently,
∫

ψdγ1 = ∫ ψdγ . Since ψ is an arbitrary bounded measurable
function, we must have γ = γ1. This proves that γ ∈ Ie. We have thus shown the
second statement in the lemma and in fact also shown that Ier ⊂ Ie.

Finally we argue that Ie ⊂ Ier . Suppose γ ∈ Ie and that γ /∈ Ier . Then there is a
ψ ∈ L2(γ ) such that ψ̂γ is not a.s. constant under γ . Thus there is a c ∈ R such that,
with A = {ψ̂γ > c}, γ (A)

.= ε ∈ (0, 1). Note that by definition

Tt ψ̂γ = ψ̂γ , γ a.s. for all t ≥ 0.
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We refer to this property as ψ̂γ is harmonic (with respect to the semigroup {Tt }). We
claim that this implies that 1A is harmonic as well, namely

Tt1A = 1A, γ a.s. for all t ≥ 0. (A.4)

To see this, note that, from the definition of Tt , if f ∈ L2(γ ) is harmonic, then

| f | = |Tt f | ≤ Tt | f |, γ a.s. (A.5)

This, together with the fact that Tt is a contraction, says that

‖ f ‖ ≤ ‖Tt | f |‖ ≤ ‖ f ‖

which in view of (A.5) shows that | f | is harmonic. From the linearity of Tt it then
follows that f ∨ 0 = 1

2 ( f + | f |) is harmonic as well. This implies that if f1, f2
are harmonic then f1 ∨ f2 and f1 ∧ f2 are harmonic as well. Recalling tha ψ̂γ is

harmonic, we now have that gn
.=
(
n
(
ψ̂γ − c

)+ ∧ 1

)
is harmonic for every n ∈ N.

The property in (A.4) is now immediate from this on observing that gn → 1A a.s. and
dominated convergence theorem. This proves the claim.

Consider the probability measures γ1, γ2 on (R∞+ ,B(R∞+ )) defined as

γ1(B)
.= ε−1γ (B ∩ A), γ2(B)

.= (1 − ε)−1γ (B ∩ Ac), B ∈ B(R∞+ ).

Using (A.4) it is easily seen that γ1, γ2 ∈ I. Indeed, if B ∈ B(R∞+ ) and t ≥ 0,

∫

R
∞+
Tt1B dγ1 = ε−1

∫

A
Tt1B dγ = ε−1

∫

A
Tt1AB dγ + ε−1

∫

A
Tt1AcB dγ

= ε−1
∫

A
Tt1AB dγ = ε−1

∫

R
∞+
Tt1AB dγ = ε−1γ (B ∩ A) = γ1(B),

where the third and fourth equalities follow from (A.4) and the fifth uses the invariance
of γ . This shows the invariance of γ1 from which (together with the fact that γ is
invariant) the invariance of γ2 follows immediately.

Finally note that γ1 �= γ2, and by definition γ = εγ1 + (1− ε)γ2. This contradicts
the fact that γ ∈ Ie and thus wemust have γ ∈ Ier . We have thus shown that Ie ⊂ Ier
which completes the proof. ��
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