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Abstract

Consider an infinite collection of particles on the real line moving according to inde-
pendent Brownian motions and such that the i-th particle from the left gets the drift
gi—1. The case where gop = 1 and g; = 0 for all i € N corresponds to the well studied
infinite Atlas model. Under conditions on the drift vector g = (go, g1, . ..)’ itis known
that the Markov process corresponding to the gap sequence of the associated ranked
particles has a continuum of product form stationary distributions {778, a € S8} where
S is a semi-infinite interval of the real line. In this work we show that all of these
stationary distributions are extremal and ergodic. We also prove that any product form
stationary distribution of this Markov process that satisfies a mild integrability con-
dition must be & for some a € S&. These results are new even for the infinite Atlas
model. The work makes progress on the open problem of characterizing all the invari-
ant distributions of general competing Brownian particle systems interacting through
their relative ranks. Proofs rely on synchronous and mirror coupling of Brownian
particles and properties of the intersection local times of the various particles in the
infinite system.
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1 Introduction
1.1 Background

Consider a collection (finite or infinite) of particles on the real line moving according
to mutually independent Brownian motions and such that the i-th particle from the
left gets a constant drift g;_;. The special case when go = 1 and g; = 0 fori €
N is the well studied Atlas model. We refer to the general setting as the g-Atlas
model, where g = (go, g1, .. .)". Such particle systems were originally introduced in
stochastic portfolio theory [7, 13, 14] as models for stock growth evolution in equity
markets and have been investigated extensively in recent years in several different
directions. In particular, characterizations of such particle systems as uniform scaling
limits of jump processes with local interactions on integer lattices, such as the totally
asymmetric simple exclusion process, have been studied in [24]. Various types of
results for the asymptotic behavior of the empirical measure of the particle states have
been studied, such as propagation of chaos, characterization of the associated McKean-
Vlasov equation and nonlinear Markov processes [21, 39], large deviation principles
[12], characterizing the asymptotic density profile and the trajectory of the leftmost
particle via Stefan free-boundary problems [10]. These particle systems also have close
connections with Aldous’ “Up the river” stochastic control problem [ 1], recently solved
in [40]. Results on wellposedness of the associated stochastic differential equations
(in the weak and strong sense) and on absence of triple collisions (three particles at
the same place at the same time) have been studied in [8, 17, 18, 20, 31, 38].

One important direction of investigation has been in the study of the long-time
behavior of such particle systems. For finite particle systems, under conditions on
the drift vector g, it follows from results of Harrison and Williams [15, 16] that
the multidimensional reflected Brownian motion describing the evolution of the gaps
between the ranked particles has a unique stationary (invariant) distribution (see [27]).
It is known that convergence of the law at time ¢ to this stationary distribution, as
t — 00, occurs at a geometric rate [9]. Rates of convergence to stationarity, depending
explicitly on the drift vector g and dimension have been obtained in [4, 5, 19].

In the current work we are interested in infinite particle systems. One basic result on
long-time behavior of such particle systems was obtained in [27] which showed that for
the infinite Atlas model, i.e. when g = g1 = (1,0,0,...), the process describing the
gaps between the ranked particles in the system has a simple product form stationary
distribution given as 7o = ®;° Exp(2) (here and later, for a > 0, Exp(a) denotes
the Exponential distribution with mean 1/a). The paper [27] also conjectured that this
is the unique stationary distribution of the (gap sequence in the) infinite Atlas model.
However, this was shown to be false in [35] who gave an uncountable collection of
product form stationary distributions for the gaps in the infinite Atlas model defined
as

o0
Ty = ®Exp(2+ia), a>0.

i=1
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As in the finite dimensional settings it is of interest to investigate convergence of the
laws at time ¢ to the stationary distributions as + — oo. Due to the multiplicity of
stationary distributions, a meaningful goal is to understand the local stability structure
of this infinite dimensional stochastic dynamical system and identify the basins of
attraction of the various stationary distributions. Such results, describing (weak and
strong) domains of attraction of wy have been obtained in [6, 11, 32] and (weak)
domains of attraction of 7, (@ # 0) in [6]. Results analogous to [32, 35] for two-
sided infinite Brownian systems have been obtained in [33].

1.2 Goals and results

Although the above results give us a good understanding of the local stability structure
of the infinite Atlas model, the picture that one has is far from complete. A key
obstacle here is that a full characterization of all extremal invariant distributions of the
infinite Atlas model is currently an open problem. The goal of this work is to make
some progress towards this goal and, moreover, provide some characterization of the
structure of the set of invariant distributions. We will in fact consider the more general
setting of the g-Atlas model where the drift vector g € D, with

o0
Dﬁ{g=(go,g1,...)’eR°°:Zg,.2<oo]. (1.1)
i=0

For this setting it is known from the work of [35] that, once more, the process associated
with the gap sequence of the ranked particle system has a continuum of stationary
distributions given as

n§ = Q0L Exp(12gn +a)), @ > =2 inf g,

where g, = %(go + -+ gu—1). Inthe special case where g € Dy, with

Dy = {g € D: there exist Ny < N, < --- — 00 such that
g >8gn, k=1,... N;j—1, forall j > 1}, (1.2)

7§ is also an invariant distribution for a = —2inf,cy g, = —21lim j—o0 &N; (see

[32, Section 4.2]). Note that g1 € D; whereas the zero drift g = (0,0,...) is in
D but not in D;. Roughly speaking, a drift g lying in D; produces a ‘stabilizing
interaction’ in the subsystem of the lowest N; particles for any j > 1, due to which
the gaps between them stabilize in time owing to stronger upward average drifts of
the lower particles in this subsystem in comparison to the average drift of all the
N particles. This intrinsic stabilizing influence from the drift of the particles leads
to an additional stationary distribution, namely 7_»1im jroo &N (in comparison to a
g € D\Dy). For g € D\D;, where such a mechanism is absent, local stability
essentially arises from configurations with a rapidly increasing density of particles as
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one moves away from the lowest one and hence one only obtains “dense stationary
distributions" corresponding to a > —2inf,cN g,.

Using Kakutani’s theorem [22] it is easy to verify that, for different values of a, the
probability measures 77§ are mutually singular. These distributions are also special in
that they have a product form structure. In particular, if the initial distribution of the
gap process is chosen to be one of these distributions, then the laws of distinct gaps at
any fixed time are independent despite these gaps having a highly correlated temporal
evolution mechanism (see (2.2)—(2.3)). We now describe the two main results of this
work.

First result: extremality In Theorem 3.3 we show that for each g € D and a >
—2inf,en gn, & is an extremal invariant distribution for the gap sequence process of
the g-Atlas model. Further, if g € Dy, n;lg is also an extremal invariant distribution
fora = =2inf,en gn = —21limj_, o gn;; in particular for the infinite Atlas model
T, = 7k l is extremal for all @ > 0. From equivalence between extremality and
ergodicity (cf. Lemma 3.2) it then follows that all these invariant distributions are
ergodic as well. This result also identifies non-trivial subsets in the weak domain
of attraction of 7& for each a > —2inf, ey gy (a > —2inf,cy g, if g € Dy); see
Corollary 3.4.

Questions about extremality and ergodicity of stationary distributions have been
addressed previously in the context of interacting particle systems on countably infi-
nite graphs (see [2, 3, 26, 37] and references therein). However, in all these cases,
the interactions are Poissonian, namely, the dynamics is given in terms of jumps of
particles to neighboring vertices in a countably infinite graph at epochs of Poisson
processes associated with edges or vertices. This enables one to use the (explicit) gen-
erator of the associated continuous-time jump-Markov processes in an effective way.
The interactions in rank based diffusions are very ‘singular’ owing to the local time
based dynamics (see (2.2)) and generator based methods seem to be less tractable.
Furthermore, unlike previous works, the state space for the gap process (i.e. RT) is
not countable and has a non-smooth boundary, and the process has intricate interac-
tions (oblique reflections) with the boundary. Hence, proving extremality requires new
techniques. Our proofs are based on constructing appropriate couplings for these infi-
nite dimensional diffusions which then allow us to prove suitable invariance properties
(seee.g. (4.10)) and a certain ‘directional strong Feller property’ (see Proposition4.3).
Such coupling techniques, based on ‘mirror’ couplings of driving Brownian motions,
are novel in the context of infinite rank based diffusions and provide a new method for
establishing semigroup continuity properties for such processes. Moreover, the cou-
pling approach introduced in the paper has the potential to be applicable to broader
families of infinite-dimensional diffusion processes for which such directional strong
Feller properties may be useful, e.g. in analysis of the ergodic behavior. Although
our setting and methods are very different, at a high level, the approach we take, of
proving extremality by showing the a.e. constancy of suitable invariant functions, is
inspired by the papers [3, 37].

Second result: characterization of product form stationary distributions A nat-
ural question is whether there are any other product form stationary distributions of the
g-Atlas model than the ones identified in [35]. Our second main result (Theorem 3.5)
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answers this question in the negative under certain conditions by showing thatif g € Dy
and 7 is a product form stationary distribution of the g-Atlas model satisfying a mild
integrability condition (see (3.2)) then it must be 78 for some a > —21im 00 gNj.
Furthermore, this result gives a novel probabilistic interpretation to a in terms of the
resulting force acting on a tagged particle under the combined influence of hardcore
interactions (collision local times) and soft potentials (drift terms). See Remark 3.6
for this interpretation and for a conjecture that is suggested by this interpretation.

1.3 Proof ideas

We now make some comments on proofs. The key step in proving the extremality
of 78 is to establish that any bounded measurable function v on RS that is nf-ae.
invariant, under the action of the semigroup of the Markov process corresponding to
the g-Atlas gap sequence, is constant 75-a.e. If g = g! and a = 0, we have that
7t = ®l9i] Exp(2), and therefore the coordinate sequence {Z; }1901 is iid under £ . In
this case, from the Hewitt-Savage zero—one law it suffices to show that i is 7f-ae.
invariant under all finite permutations of the coordinates of Rof. For this, in turn, it
suffices to simply prove the above invariance property for transpositions of the i-th and
(i + 1)-th coordinates, for all i € N. For a general 7§, the situation is more involved
as the coordinate sequence {Z;}°, is not iid any more. Nevertheless, from the scaling
properties of Exponential distributions it follows that, with ¢, = 2[n(2g, + a)]_l,
the sequence {Zn}nzl, defined as Zn = C;] Zn, n € N, is iid under nf. In this case,
in order to invoke the Hewitt-Savage zero—one law, one needs to argue that for each
i the map ¥ is w8-a.e. invariant under the transformation that takes the (i,i + 1)
coordinates (z;, Zj+1) to (Cic—ilzi+1, C"C—tlz,-) and keeps the remaining coordinates the
same. Establishing this property is at the heart of the proof of Theorem3.3. A key
technical idea in the proof is the construction of a mirror coupling of the first i + 1
Brownian motions, and synchronous coupling of the remaining Brownian motions, in
the evolution of the ranked infinite g-Atlas model corresponding to a pair of nearby
initial configurations. Estimates on the probability of a successful coupling, before any
of the first i-gap processes have hit zero or the lowest i-particles have interacted with
the higher ranked particles (in a suitable sense), are some of the important ingredients
in the proof. We refer the reader to Sect.4.1 for additional comments on the proof
strategy.

The proof of Theorem 3.5 hinges on establishing a key identity for expectations,
under the given product form invariant measure s, of certain integrals involving the
state process of the i-th gap and the collision local time for the (j — 1)-th and j-th
particle, for i # j (see Lemma5.4). This identity is a consequence of the product
form structure of 7 and basic results on local times of continuous semimartingales.
One subtlety here is that although the product form structure of an invariant measure
 implies that the laws of the various gaps at any fixed time ¢ (when the process is
initiated at 7r) are independent, the laws of the paths of the various gap processes are
not, and thus one cannot immediately deduce the independence beween the state of
the i-th gap at time ¢ and the local time of the j-th gap at 0, at time #, fori # j. By
using the form of the dynamics of the g-Atlas model, the identity in Lemma 5.4 allows
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us to obtain a recursive system of equations for the moment generating functions of
the coordinate projections of r that can then be solved explicitly from which it is then
readily seen that 7 must be 77§ for a suitable value of a. See Sect.5.1 for additional
comments on the proof idea.

1.4 Open problem

Of course it is immediate to construct non-product form stationary distributions of the
g-Atlas model by considering mixtures of the above product stationary distributions,
however one can ask if these mixtures are all the invariant measures of the g-Atlas
model. For the cases where g = (0,0, ...)" this question was answered in the affir-
mative in [30, Theorem 4.2] under certain integrability constraints on the denseness
of particle configurations. For a general g providing such a complete characterization
is a challenging open problem.

In the context of interacting particle systems on countably infinite graphs, the anal-
ogous problem has been solved completely in a few cases such as the simple exclusion
process [26] and the zero range process [2] where the extremal probability measures
are fully characterized as an explicit collection of certain product form measures.
However, in these models the particle density associated with distinct extremal mea-
sures are scalar multiples of each other owing to certain homogeneity properties in
the dynamics (see, for example, [2, Theorem 1.10]). This, along with the Poissonian
nature of the interactions, enables one to prove useful monotonicity properties of
the ‘synchronously coupled’” dynamics (see [26, Section 2] and [2, Section 4]) using
generator methods that are crucial to the above characterization results.

A key challenge in extending these methods to rank based diffusions of the form
considered here is that, in addition to the singular local time interactions, the point
process associated with the configuration of particles with gaps distributed as 78 has
an intensity function p(x), that grows exponentially as x — oo when a > 0 and, due
to a nonlinear dependence on a, lacks the scalar multiple property for distinct values
of a. This is a direct consequence of the inhomogeneity of the topological interactions
in our particle systems where the local stability in a certain region of the particle cloud
is affected both by the density of particles in the neighborhood and their relative ranks
in the full system. Moreover, unlike the above interacting particle systems, in rank
based diffusions, when the initial gaps are given by a stationary distribution, the point
process of particles is typically not stationary. This phenomenon, where the gaps are
stationary while the associated point process is not, referred to as quasi-stationarity
in [30], is technically challenging. We note that this latter paper studies one setting
where the intensity function grows exponentially and the particle density lacks the
scalar multiple property for distinct values of a. However their setting, in the context
of rank based diffusions, corresponds to the case g = (0, 0, .. .)’, where the unordered
particles behave like independent standard Brownian motions, and this fact is crucially
exploited in [30].
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1.5 Organization

Rest of the paper is organized as follows. We close this section by summarizing the
main notation used in this work. In Sect.2 we give the precise formulation of the
model. In Sect.3, we describe the questions of interest and give our main results.
Finally Sects.4 and 5 give the proofs of our main results, namely Theorems 3.3 and
3.5, respectively.

1.6 Notation

The following notation will be used. Let Ng = {0, 1,2, ...}, R® = {(xp, x1,...)" :
x;i € R, i € No} and R = {(x0, x1,...) : x; € Ry, i € No}. We will equip RY
with the partial order ‘<’ under whichx < yforx = (x;)ieng, ¥ = (Vi)ieNg.1fxi < i
for all i € Np. Borel o-fields on a metric space S will be denoted as 5(S) and the
space of probability measures on (S, B(S)) will be denoted as P(S) which is equipped
with the topology of weak convergence. We will denote by Q the set of rationals. For
a Polish space S with a partial order ‘<’, we say for y1, y2 € P(S), y1 <st 12, if there
are S-valued random variables X |, X2 given on a common probability space with X;
distributed as y;, i = 1,2, and X; < X7 as. Let X = C([0, oo) : R3°) which is
equipped with the topology of local uniform convergence (with RS equipped with
the product topology). For y € P(RY),

let Lz(y) be the collection of all measurable i : Rﬁf’ — R such that
fRio |1ﬁ(z)|2y(dz) < 00. We denote the inner-product and the norm on Lz(y) as

(-, ) and || - || respectively.

2 Model formulation

Let

o0
U= {x = (x0,x1,..) € R Ym0 < oo foralla > o}.
=0

Recall D defined in (1.1). Following [32], an x € R* is called rankable if there is
a one-to-one map p from Ny onto itself such that x,;) < xp(;) wheneveri < j,
i,j € Np. It is easily seen that any x € U is locally finite and hence rankable.
For an x that is rankable we denote the unique permutation map p as above which
breaks ties in the lexicographic order by p,. For a sequence {W;};cn, of mutually
independent standard Brownian motions given on some filtered probability space, and
y = (o, y1,...) €U, g = (g0,81,...) € D, consider the following system of
equations.

dY;(t) = [Z L(py( (k) = i)gk} dt +dW;(1), (2.1)

k=0
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Y;(0) = y;, i € Ny, where fort > 0, Y(t) = (Yo(0), Y1(2),...).
The following result is from [32] (see Theorems 3.2 and Lemma 3.4 therein).

Theorem 2.1 ([32]) For every g € D and y € U there is a unique weak solution
Y () to (2.1). Furthermore P(Y(t) € U forallt > 0) = 1 and for any T < 0o and
m € (0, 00), the set {i € Ng :inf;¢jo,7)Yi(t) < m} is finite a.s.

When g = g' = (1,0,0,...) the process given by the above theorem is the well
known (standard) infinite Atlas model. In general, the unique in law solution process
given by Theorem 2.1 will be referred to as the (g, y)-infinite Atlas model. Since this
solution process Y (¢), under the conditions of the above theorem, is rankable a.s., we
can define the ranked process {Y(;(f),i € Np};>o that gives the unique ranking of
Y (#) (in which ties are broken in the lexicographic order) such that Y () < Y(1)(¢) <
Yoy (t) < ---.From [32, Lemma 3.5], the processes defined by

o t
HOESY / 1(Y;(s) = Y5 (s))dW;(s), i € No. 1 >0,
=070

are independent standard Brownian motions which can be used to write down the
following stochastic differential equation (SDE) for {Y(;(:) : i € Np}:

1 1
dY(i)(l‘) = g;dt +dB;k(l‘) - EdL;:_l(l‘) + EdL;k(l‘), t>0, Y(l')(O) = Y@i)» i € Np.
2.2)

Here, LS(-) = 0and fori € N, L;“(~) denotes the local time of collision between the
(i — 1)-th and i-th particles, that is, the unique non-decreasing continuous process
satisfying L7(0) = 0 and L} (¢) = fot 1 (Y(i,l)(s) = Y(,-)(s)) dL’(s) forall > 0.
The gap process for the (g, y)-infinite Atlas model is the R°-valued process Z(-) =
(Z1(), Z3(+), ...) defined by

Zi() =Y () = Yi-n(), i eN. (23)
Let
V={ze R_O,’_O : for some Yy € U,z = (y(l) — Y0), Y2) — Y(1)s - - )/} 2.4

Note that if z € V then y(z) = (0,z1,21 +22,...) € U andif y € U then z(y) =
(Y1) = Y©), Y2) — Y@2)» --.)" € V. Thus given z € V we can define a unique in law
stochastic process {Z(¢)};>0 with values in V that can be viewed as a V-valued Markov
process referred to as the gap process of the g-Atlas model. The Markov property of
Z(-) needs justification which we have sketched for completeness in Remark 2.3 at
the end of the section.

The following result identifies an important family of stationary distributions of this
Markov process. The first statement in the theorem is from [35, Theorem 1.6]. The
second statement is due to [32, Section 4.2] and [35, Remark 4]. Recall D; defined in
(1.2).
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Theorem 2.2 ([32,35]) Let g € D. Define forn € N, g, = L(go+--- + gu—1). Then
for each a > —2inf, ey gn, the probability measure 5 on RS defined as

7§ =@ Exp(n(2g, + a))

is a stationary distribution for the gap process of the g-Atlas model. Furthermore,

if g € D, the above statement holds also for the case a = —2inf,eng, =

—21lim;j 00 gn;. In particular, when g = gl = (1,0,...) (infinite Atlas model),
1

8 = ®

a > 0.

oo
n=1

Exp(2 + na) is a stationary distribution for the gap process for all
The existence of the limit limj_, »c gn; and the equality inf,en g, = limj 0 &N,
follow from the definition of D; (see first paragraph of Sect.5).
As an immediate consequence of Kakutani’s theorem [22] we see that for any
ge€Danda,d > —2inf,cn g, (and a,a’ > —2inf,cn g, when g € D), a # d/,
the measures 7 and Jrf, are mutually singular.

Remark 2.3 (Markov property of the gap process) The ranked process {¥((-)}ien,
is formally constructed in [32] as an ‘approximative version’ using limits of finite-
dimensional reflected diffusions. Namely, for any fixed k € N, {Y)(-)}o<i<k is
obtained as an almost sure limit as m — oo, uniformly over compact time intervals,
of the first k + 1 coordinates of the reflected diffusion {Y(’lfl)(~)}0§i5m given by the
SDE (2.2) with Y(’lfl) (0) = y@), Ly, 1(-) = 0, and a given collection {B;"};cn, of iid
standard Brownian motions (see also Definition 4.4). Fix any time ¢ > 0. Define for
any m € Ny the process {Y(;}' (t + -)}o<i<n similarly by setting Y1) (1) = Y(;)(t)
and driven by the Brownian motions {B(t 4 -) — B} (¢)}o<i<m via the SDE (2.2)
(again with the local time for i = m + 1 set to zero). Define Z;"’t, 1 <i < m,the
gap process sequence associated with Y(';l)” ,0 <i <m.Fixk € Ny, s > 0, and any
bounded continuous function f : RF - R. Let G« =0{Zi(u):u <t,i € N}and
G =o0{Zi(t) :i € N}. Foranym > kandt > 0,as {B/(t +-) — B (t)}ien, is
independent of G,
G).

Thus, to deduce the Markov property, it suffices to show that (Z;””(t +58), ..., Z,'("’t
(t 4+ s)) converges almost surely to (Zi(t +s),...,Zk(t+5s)) as m — o0

E(f (2 @49, 2 0 +9) [G=) =B (£ (]t 450 Z @ +9)

which will follow from the a.s. convergence of <Y("5)’t(t +58), ..., Y(YZ)"(t + s)) to

(Yo (t +5),.... Y@ (t +5)). The latter can be shown by exploiting monotonicity
properties of rank-based diffusions [34, Theorem 3.2 and Corollary 3.9] as follows.

Fix € > 0. By the construction of the process {¥(;)(-)}ien, in [32], we can find
(random) mg € Ny such that, for any m > my, |Y(”l.1) (t+s)—Yi@+s) < e, for
0 <i < k. Now fix m > mg. Note that Y('?)’t(t) < Y(’;’)(t) for0 < i < m by [34,
Corollary 3.9], and hence by [34, Theorem 3.2],

Yg?)”(z +8) S Y +5) S Yot +5)+e for 0<i <m.
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To construct a lower bounding process for Y(’;’)’t (t + ), define for m" > m the process

{Yg'),’m’t(t + )}o<i<m started with Y(’;l)/’m’t(t) = Y(’i")/ (¢) and driven by the Brownian
motions {B](t +-) — B (t)}o<i<m via the SDE (2.2) (and again setting the local time
fori = m + 1 to be zero). By the construction of the process {Y(;)(:)};en, in [32], one
can choose m’ = m’(m, €) large enough so that Y(’?)/ () <Yp@)+efor0<i <m.
Moreover, if we consider the translation of the system {Y (rlf')’t (t 4+ -)}o<i<m by €, then
the (m + 1)-particle process started from {Y;)(t) + € : 0 < i < m} at time ¢ and
driven by the Brownian motions {B}(t 4 -) — B (t)}o<i<m has particle locations at
time ¢ + s given by {Y(’f.)"(t +5) 4+ € : 0 <i < m}. Hence, using [34, Theorem 3.2
and Corollary 3.9], we have

Yy (t +5) —e < Y (t+5) < Y{;@’”"”(t +5) <Yt +5)+€ for 0<i<m.

The first inequality above holds because m’ > m > mg. We conclude from the above
two displays that

Yyt +5) — 2€ < Y(’;’)”(t +5) < Y4t +5)+e for 0<i <k

This gives the desired almost sure convergence as € > 0 is arbitrary.

3 Main results

We are interested in the extremality properties of the probability measures 5. We
also ask whether these are the only product form stationary distributions.

We begin with some notation. Recall X = C([0, c0) : R%°). Define measurable
maps {6;};>0 from (X, B(X)) to itself as

0(Z)(s)=Z(t+s5),t>0,5>0, ZeX

Given g € Dandz € V, we denote the probability distribution of the gap process of the
g-Atlas model on (X, B(X)), with initial gap sequence z, by ]P’g. Also, fory € P(RY)
supported on V (namely, y (V) = 1), let P5 = fRf P¥ y(dz). The corresponding

expectation operators will be denoted as Ef and ]E§ respectively. Denote by Z8 the
collection of all invariant (stationary) probability measures of the gap process of the
g-Atlas model supported on V, namely

I8 ={y e PX):y(V°) =0, and }P’ﬁ o@t_l = P)% for all r > 0}.

Abusing notation, the canonical coordinate process on (X, 5(X)) will be denoted
by {Z(1)};>0. Let M(RS®) be the collection of all real measurable maps on RS°. For
f e M(RY), z € RY and ¢ > 0 such that EE (| f(Z(1))]) < 0o we write

TE f(2) = ES(f(Z(1)). (3.1)
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Note that for g € D, y € Z8,and ¥ € L(y), T,gw is y a.e. well defined and belongs
to L2(y). Furthermore, the collection {Ttg }r>0 defines a contraction semigroup on
L?(y), namely

TETEY = TE ¢, and TSy | < |y | forall s,z > Oand ¥ € L*(y).

We now recall the definition of extremality and ergodicity. Let, for g as above and
y €18, H§ be the collection of all T,g -invariant square integrable functions, namely,

]1§ ={y e L*(y): TSy =, y as., forall t > 0}.

We denote the projection of a/ € L?(y) on to the closed subspace H§ as 1@5 . Namely,
1/}5 is the unique element of ]If, that satisfies

(W m) = (Ff.n). foralln € I¢.

This projection can be obtained as the limit of % f(; nglﬁ ds in Lz(y) ast — oo (see

(A.3)). Thus, for any ¥ € L2(y), 1}5 (+) can be intuitively interpreted as the ‘long-time
average’ of (B8 (W (Z(1)) : t > 0}.

Definition 3.1 Let g € D. A v € Z¥ is said to be an extremal invariant distribution of
the gap process of the g-Atlas model if, whenever for some ¢ € (0, 1) and vy, vy € 78
we have v = egv; + (1 — €)vp, then vi = v» = v. We denote the collection of all such
measures by Z5 .

We call v € Z8 an ergodic probability measure for the invariant distribution of the
gap process of the g-Atlas model if for all v € L*(v), ¥$ is constant v-a.s. We denote
the collection of all such measures by Z5..

We note that (cf. proof of Lemma3.2 below) if y € Z5., then for any ¥ € L(y),
L L2
" T v (ds — Y(x)y(dx), in L“(y), ast — o0.
0 RY

The following result, which says that extremal invariant measures and ergodic
invariant measures are the same, is standard, however we provide a proof in the
appendix for completeness.

Lemma3.2 Let g € D. Then I§ = TI5. Let y € I#8 and suppose that for every
bounded measurable  : R — R, wf is constant, y a.s. Then'y € T§.

The following is the first main result of this work.

Theorem 3.3 Let g € D. Then, for every a > —2infnen &n, 185 € I8 = I5.. Fur-
thermore, when g € Dy, 78 18 =785 also fora = =2 inf, cN gn.

The above theorem proves the extremality of the invariant measures 75 for suitable
values of a. As an immediate consequence of this theorem one can identify natural
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collections of measures that are in the (weak) domain of attraction of a given ng, as

noted in the corollary below. ~ We recall that a measure y € P(RT) is said to be
in the weak (resp. strong) domain of attraction of 7§ if for any bounded continuous
function ¢ : Rf — R,

t
1[ ]E;‘;(I//(Z(S)))ds—>/ ¥ (x)7s (dx),
rJo RY®

(resp. ES (W(Z(1))) — fRf Vv (x)mf (dx)), as t — oo.

Corollary3.4 Let g € D. Fix any a > —2inf,eN gn. Let y € P(RY) be absolutely
continuous with respect to &. Then y lies in the weak domain of attraction of 7§ .
The assertion holds for any a > —2inf,cN g, if g € D1.

Sufficient conditions for a probability measure to be in the strong domain of attraction

of 7'[6" I were obtained in [11, 32] whereas weak domain of attraction results for 2 1,
a > 0, have been obtained in [6]. The above corollary provides a weak domain of
attraction result for a general class of g-Atlas models.

One can ask whether these are the only extremal invariant measures of the gap
process of the g-Atlas model supported on V. As noted in the Introduction, the answer
to this question when g = 0 is affirmative from results of [30, Theorem 4.2], if
one restricts to extremal measures satisfying certain integrability constraints on the
denseness of particle configurations. For a general g € D (in fact even for g = g)
this is currently a challenging open problem. However, we make partial progress
towards this goal in the next result by showing that for any g € D; (and under a mild
integrability condition), the collection {7} exhausts all the extremal product form
invariant distributions. In fact we prove the substantially stronger statement that the
measures 77} are the only product form (extremal or not) invariant distributions under
a mild integrability condition. Qualitatively, this result says that these measures are
the only invariant distributions that preserve independence of the marginal laws of the
gaps in time.

Theorem 3.5 Let g € Dy and let w € I8 be a product measure, i.e. 1 = Q72 m; for
somemr; € P(Ry), i € N. With F(z) = Zj‘;l 1 21)2, z € RS, suppose that

/ F(z)m(dz) < oc. (3.2)
Roo

+

Then, for some a > —2inf,cN gn, T = rrf . Moreover, a has the representation

EE(L*(1 2
Er @) _ Z(go+ -+ gk—1), (3.3)

a=E§(Li(1) — 280 = = -

for any k € N, where {L;‘}ieN denote the collision local times in (2.2).
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Recall that V' defined in (2.4) consists of z € RS for which Zi"zl e i)’
oo for all « > 0. In comparison, condition (3.2) requires a finite expectation of

Z?’; 1 e~ 14 2” when z is distributed as 7. Roughly speaking, condition (3.2) puts
arestriction on the rate of increase of the density of particles as one moves away from
the lowest ranked particle.

Several remarks are in order.

Remark 3.6 (Probabilistic interpretation of a) The equalities (3.3) give a probabilistic
interpretation to a. By stationarity of 7, EE (L’l‘( 1)) can be thought of as the expected

. ES(LY() . . ..
rate of change of the local time L. Hence, ACHOIEN intuitively the expected rate at

which the bottom particle is ‘pushed down’ by the particle above it during collisions
and go denotes its upward drift in time. Thus, a/2 captures the difference between
two kinds of forces acting on the bottom particle: the hardcore interactions due to
collisions and the soft potential corresponding to the drift. For k > 1, one obtains a
similar interpretation as follows. Consider the subsystem consisting of the k lowest
particles viewed as a rank based diffusion (¥, k .Y ,f_l ), where Y. l.k gets upward drift
gj if its rank in the subsystem is j, and it is reflected downwards when it collides with
the minimum of the particles outside the subsystem. It can be deduced that each particle
Yik accrues roughly the same proportion of local time due to downward reflection as
time grows. Moreover, it asymptotically spends an equal proportion of time at each
rank j € {0, ...,k — 1}.

8 1%
Hence, W and % (go+- - -+gk—1) respectively quantify the effect of reflection

and drift on each particle among the lowest k particles, and a/2 captures the differ-
ence between these effects. The positivity of a implies that the hardcore interactions
dominate in the long term. Indeed, the results of [41] show that when g = gl, under

1
g  forany k € N, Y (t)/t — —a/2 almost surely as ¢t — oo. We conjecture that
the same result is true for any g € Dj.

Remark 3.7 When g ¢ D, uniqueness in law for the infinite-dimensional gap process
is currently an open problem, and therefore what one means by a stationary distribution
is not clear. However, under conditions, for g ¢ D, one can still construct stationary
‘approximative’ versions of this gap process by taking ‘limits’ of finite-dimensional
processes [32, Definition 7] (see also Definition4.4 below). See [32, Theorem 4.4,
Lemma 4.5 and Section 4.2] and [35, Remark 3] for some situations where such
versions can be constructed. Theorem 3.5 can be extended to such settings as follows,
as is clear from an inspection of the proof. Suppose g satisfies inf,~ g, > —oo and
there exist Ny < N < --- — o0 such that g > gNj forallk = 1,...,N; —
1, j > 1. If there is a stationary approximative version of the infinite-dimensional
gap process with initial (invariant) distribution v supported on V), and if 7 is a product
measure that satisfies the integrability property in (3.2), then 7 = £ for some a >
—21imj 00 gN;-

Remark 3.8 Stationary distributions for finite dimensional reflected Brownian motions
(with drift) in the positive orthant, have been studied in [15, 16]. In particular, the
paper [15] shows that the unique stationary distribution can be characterized through
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an identity, holding true for all suitable smooth test functions, referred to as the Basic
Adjoint Relationship (BAR) (see [15, Section 8]). Using this characterization it is
shown in [15, Section 9] that if the stationary distribution is product form then it
must necessarily be a product of Exponential distributions. The proof relies on using
a suitable class of exponential test functions in the BAR to characterize the moment
generating function of the stationary distribution. In the infinite dimensional setting
considered here, although similar test functions are useful, we do not know of a similar
BAR characterization for all stationary distributions. To circumvent this, we show in
Lemma5.4 that for any product form stationary distribution, one can obtain ‘local’
descriptions for the expectations of certain path functionals of the process. This result
is key and essentially plays the role of BAR in our context in obtaining a recursive
system of equations for the moment generating functions of the marginal distributions
that can then be solved explicitly to prove Theorem 3.5.

Remark 3.9 A referee has proposed the following interesting direction of investigation.
Suppose that y < nl‘f for some b > —2inf, <N g,. Then one may conjecture that, for
eachk e N,

EE(L*(t)) 2
yktk _%(g0_|_...+gk,1)—>bast—>oo.

One may also ask the following ‘domain of attraction’ question. Given b >
—2inf,cN gn, identify the set V, C V such that for z € V), for each k € N,

ES(LF@) 2
L——(go+-~-+gk_1)—> bast — oo.
kt k
In this case, we conjecture that any y € P(RS) supported on V), is in the strong
domain of attraction of n,f . We leave the study of these questions for future work.

Rest of the paper is devoted to the proofs of Theorem 3.3 and Theorem 3.5. Proof
of Lemma 3.2 is given in the Appendix for completeness.

4 Proof of Theorem 3.3

We will only prove the first statement in Theorem3.3. The proof of the second is
similar and is therefore omitted.
We begin with the following definition. Let Y = C([0, c0) : RS x R°).

Definition4.1 Let g € D and y,y’ € P(RS) be such that y (V) = y'(V) = 1.
We say that a probability measure Pi , on (Y, B(Y)) defines a coupling of the gap
process of the g-Atlas model with initial distributions y, y’, if, denoting the coordinate

processes on Y as Z(1 and Z®, namely

ZV @)1 = 0P @), ZP)@) = 0@ @), o = (0P, 0®)eY, t >0,
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we have
8 MDy\—=1 _ mg g 2\—-1 _ p&
IP’M/, o(Z'7)" =Py, Py,y’ o(Z') ' = IP’y,.
Define the coupling time
. =inf{r > 0: ZW(s) = ZP(s) forall s > 1},

where 7, = oo if the above setis empty. When y = §; and y’ = §, forsome z,z' € V,
we write ]P’f; = P .

Since g € D will be fixed throughout the section, we will frequently suppress it from
the notation.

Consider now y = nf , where a is as in the statement of the theorem, and a bounded
measurable map ¥ : RY — R such that

Tio = Yo, y as. forevery t > 0, 4.1

where T; is defined as in (3.1), namely, T; v (z) is defined for y a.e. z as Ty (2) =
E;(¥o(Z(t))),t > 0. In order to prove Theorem 3.3 it suffices, in view of Lemma 3.2,
to show that ¥ is y-a.e. constant. This, in view of (4.1), is equivalent to showing that
for some fixed tp > 0, ¥ = Tj, ¥ is y-a.e. constant. For the rest of the section we will
fix a fo > 0 and consider ¥ defined as above. Note that (4.1) holds with ¥ replaced

by .
4.1 Proof overview

Before we proceed to the details, we give a brief overview of the proof strategy for
showing that v is y-a.e. constant. The first step is to show using the T;-invariance
of ¢ that for any t > 0, ¥ (Z(¢)) = ¥ (z) for y-a.e. z. Moreover, using the product
form of y, the same conclusion is seen to hold for the process Z(-) started from a
‘perturbed’ initial point obtained by changing any two co-ordinates of y-a.e. z by
given numbers (see (4.8)). Up to this point, we only use quite general arguments not
involving the specific dynamics of the g-Atlas model. However, the dynamics comes
into play crucially in the subsequent steps, which involve construction of a coupling
of two g-Atlas models started from initial points that differ at a finite number of co-
ordinates. This is achieved by a combination of ‘mirror’ and synchronous couplings
of the infinite collection of driving Brownian motions (see (4.14) and (4.15)). The
coupling is utilized in two ways. First, it is shown that for any s > 0, the coupled
g-Atlas models coalesce with positive probability by time s (Proposition 4.2). Using
this and (4.8), it follows that the value of i remains unchanged upon changing any
pair of coordinates by rational numbers (see (4.10)). To extend this to perturbation by
real numbers (see (4.11) and (4.12)), we need a key ‘directional strong Feller property’
described in Proposition4.3, which is once again established using the coupling. The
equality of ¥ under pairwise perturbations is then extended to perturbation by any
finite permutation via straightforward algebraic manipulations. The proof of y almost
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sure constancy of i, and hence of Theorem 3.3, is finally achieved by an application
of the Hewitt-Savage zero—one law.

4.2 Preliminary results

Now, we proceed to the details. We begin by noting that, from (4.1) (with ¥ replaced
by ),

0=E, (w(Z(t))z) ~E, (w(Z(O))Z)
=E, (v(20)?) +E, (¥(Z0)*) - 2B, (¥ (ZO)W (Z(1)))
=E, (Y(Z(1) — ¥ (Z(0)))*.

This says
Y (Z (1)) = ¥ (Z(0), Py as., forevery t > 0. 4.2)
Next let
H(z, 1) = E |y (Z(t)) — ¥ (Z(0))], z €V, 1 = 0.

Fori e N,x,y e Ry,and y € P(V) of the form y = ®:°,y; for some y; € P(R}),
i € N, define

o= [ He oo [] B @)
R JEN\{i.i+1)

We have from the Markov property that
Ey W(Z(1) — ¥ (Z(0)] = /1;3 0! (. v, 7 (dx)Fi1(dy). 4.4)
Now take ¥ = y = 7§ = ®°,y;. Then, from (4.2),
0=E, Y(Z1)) — ¥ (Z(0)| = /Rz n (Y, Dy dx)yiridy).  (4.5)
¥

Recall that, for each i € N, y; is an Exponential distribution and thus is mutually
absolutely continuous with respect to the Lebesgue measure A on R. Since 77,?/ is
nonnegative, we have from this mutual absolute continuity property that, for any
i eN,

n(x,y,1) =0, A®Arae. (x,y) € R:, foreverys > 0. (4.6)
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Fix 61,02 > 0, i € N, > 0. Fory > 0, let ¢5,(y) = 821y-s,. Letting Z be a
RS°-valued random variable distributed as y, denote by y € P(IR”) the probability
distribution of Z = Z + d1€; — 65,(Zi+1)ei+1 where e; is the unit vector in Rf with

1 at the i-th coordinate. Note that by definition in (4.3), n}’ = 1737 , and in particular,
from (4.6),

n 481,y — 6,3, =n] (x +81,y — 65,(»).1) =0, A® Lae. (x,y) € R].

Thus, in view of (4.4),

E; [W(Z(1)) — ¥ (Z(0))| = /R2 nf(x,y,t)%(dx))?m(dy)
= /Rz nf(x +31,y — 65, (), Dyi(dx)yi+1(dy) =0,
2

4.7)

where we have used the fact that y; ® y;4+1 is mutually absolutely continuous with
respectto A®A. Forz € V, let s, 5,(2) = z2+61€; — 65,(Zi+1)€i+1. Then, combining
(4.5) and (4.7), we have

Ez |Y(Z(1)) = ¥(Z0)| = Epy, 5,2) [V (Z(1)) — ¥ (Z(0))]

=0, yae.z, foreveryt > 0.
Since Bs,,5,(z) =z + 81€; — 62€i41 = 251921 when Zi41 > &2, we get

V(Z(1) = ¥ (2), Prae., ¥(Z(1))
= w(z’g"‘sz’i), P 51500 ae., for y ae. z with z;41 > 82, foreveryt > 0.
4.8)
We will need the following proposition. The proof is given in Sect.4.4.
Proposition4.2 Fixi € N,z € Vwithz > 0, and §1 > 0,82 € (0, zj+1). Then

there exists a coupling P s, s,.i of the gap process of the g-Atlas model with initial
distributions §; and 8 s, 5,.i such that, for any s > 0,

Pys1.80.0(ZV(s) = 2P (5)) > 0.
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Now, for 81,8, > 0ands > O,

/ W2 — Y @By 500 (2P (s) = 20 (5))y (d2)

{z:zit1>02}

=(/’ Bz 19 @ ) = 4@ 00 g0 | ¥(d2)
{z:zi41>02}

=/1 EwmwDwﬂmwb—wﬂmGMmehwmﬂyww=Q
{z:zi41>02}

where Z ) are as given by Proposition4.2 and the second equality follows from (4.8).
Hence, from Proposition4.2, for every 81,82 > Oandi € N,

Y(z+816; —Sreir1) = ¥(z) for y a.e. z with z;41 > 2.

Thus we have shown that

¥ (Us,5,eQn0,000{Z : zix1 > 82, and ¥ (z + d1€; — 2ei11) # ¥ (2)}) = 0.
4.9)

This implies that

y(@E:y(z+81e; —eit1)
=y (z) forall §; € (0,00)NQ, 6 € (0,z;+1) NQ) = 1. (4.10)

To see this, let B denote the event on the left side of (4.10). Thenifz € Bandz;4+1 > O,
then for some 81,8, € (0,00) N Q, zj+1 > & and Y (z + 1e; — S2ei+1) # V¥ (2),
which shows that z is in the event on the left side of (4.9) which in view of (4.9) says
that y (B€) = 0, proving the statement in (4.10). The following proposition enables us
to extend (4.10) to all (81, 82) € (0, 00) x (0, zj+1). The proof is given in Sect.4.4.

Proposition 4.3 For each z € V withz > 0 andi € N, the map (61, 82) — ¥ (z +
d1e; —6zej41) is right continuous on [0, 00) X [0, z;41). That is, if (81, 62) € [0, 00) X
[0, zix1) and 81, | 61 and 82, € [0, zj+1) with 625 | 82 as n — oo, then ¥ (z +
d1,n€i — S neiv1) —> V(z +351e; — dreiy1) asn — oo.

We remark that our proof shows that in the above proposition ¥ can be taken to
be Tj, v for any real bounded measurable function ¥y on R3° and #p > 0, namely it
need not be {7;}-invariant. Thus the property established in the above proposition can
be viewed as a certain type of ‘directional strong Feller property’.
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4.3 Completing the proof of Theorem 3.3

As an immediate consequence of the above proposition and (4.10) we have that for y
a.e.z,

V(z+ 81e; — Srei11) = ¥ (z) forall §; € (0,00),8, € (0,zi41), i €N
4.11)

A similar argument shows that, for y a.e. z,

Y(z —81e; +r2ei41) = Y (z) forall §; € (0, z),82 € (0,00), i € N. (4.12)
We now proceed to the proof of the first statement in Theorem 3.3. Recall that y =
zf = ®;° | Exp(n(2g, + a)), where a satisfies the condition in Theorem 3.3. For
notational simplicity, let ¢, = 2[n(2g, +a)]7, n e N. Let & : V — R be defined as

¥(z1,22,23,...) = ¥(c121, €222, €323, ...), 2=(21,22,...) €V

~ 1
if (c1z21, ¢222, €323, ...) € V. For all other z € V, set ¥ (z) = 0. We denote 7'[8" =
®:° Exp(2) as mo for simplicity. Observe that, for any i € Ny,

702t W (21,22, -+ s Zie1» Zi»> Zitls Zit2s -+ -)

= w(zlv L2y eee3Zi—15%i+15%is 342y -+ ))
= (2 V(21,22 s Tl Zis Tt 1s Tt 2s - - -)
Ci Ci+1
=Y (Zl, 22y e Zi—1y —Zi+1s —Zis Zi42y - - )) . (4.13)
Cit+1 Ci

Consider the set C € B(X) with £ (C) = 1 on which the two statements in (4.11)
and (4.12) hold. Then for any z € C such that z; > 0 for all i € N, we have,

Y21, 225 oo oy Zim1s iy Tidtls Zig2s -+ 2)

¢
=v\z1,22,...,%i-1,

Citl )
—Zi4+1s —Zis Zi42s -+ ) -
Cit1 Ci

Indeed, if %Ziﬂ — z; > 0, then the statement follows from (4.11) on taking §; =
mz,“ z; and 8, = C‘i&, and if z; — izi_H > 0, the statement follows from
(4.12) on taking 81 = z; — —zl+1 and 8, = ’“81 Since 72 (C) = 1, we have that
the probability on the right 51de of (4.13)is 1 and S0,

0(Z : Y(21,22, -+ Zie1, Zis Zit1s Zit2s - - )
=Y (21,22, -+ Zie1> Zit1s Zi» Zid2s - ) = L.
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As any finite permutation can be obtained as a composition of finitely many adjacent
transpositions, it now follows that, in fact for any finite permutation p : N — N,

w0z U (z1,22,...) = IZ(Zp(l),Zp(z), o)) = 1.

Now using the Hewitt-Savage zero—one law (cf. [23, Theorem 2.15]), ¥ is mp a.e.
constant, namely, there is a « € R such that 7¢(z : ¥ (z) = o) = 1. This shows that

Y@ =a)=m@z: ¥ =a)=1.

Hence, v is constant 75 a.s. Appealing to Lemma 3.2, this completes the proof of the
first statement in Theorem 3.3. The second statement follows similarly. O

4.4 Proofs of Propositions 4.2 and 4.3

Recall that we fix g € D. Also, throughout this section we fix z € V such that z > 0
and i € N. Define for 6, € (0, zj+1) and §; > 0

i—1
y=0,z1,21+22,..), Y2 =y+ 2(52 —d81)ej + doe;.
=0

Observe that, with the above choice of starting points of the particles, the correspond-
ing gaps are z(y) = z and z(yal*éz) = 70182,

Let By, Bj, ... be a sequence of mutually independent standard Brownian motions
on some probability space (€2, F, P). Consider the (i + 1)-dimensional diffusion
process

W(r) = W)+ DBV t)+bt, t >0,

where W(0) = (21, ... zi, (i1 +82)/2), BY() = (Bo(), B1()..... Bi(). b =
(g1 —80s--.,8i —&i—1,—g) ,and Disan (i + 1) x (i + 1) matrix with D;; = —1
forall1 < j <i+1,Djjy1 =1foralll < j <iand Dj; = 0 otherwise. The
process {W(¢) : t > 0} will be used to analyze the evolution of the first i 4 1 gaps
before any of them hit zero or the lowest i particles interact with the higher ranked
particles (in an appropriate sense), as stated more precisely later.

It can be checked that D is non-singular and (D’l)jl =—1foralll <j <l <i+l1
and (D’l)jl = 0 otherwise. Let U(0) = (z1, ..., zi—1, 2 + 81, (zix1 — 62)/2) and
define v = D=1 (T (0) —W(0)) = (82—, ..., 82— 81, 8) . Also define the stopping
time

o =inf{t >0: vBD@) = [[v]?/2},
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where || - || denotes the standard Euclidean norm. Define the mirror coupled (i + 1)-

dimensional Brownian motion B @ by

~ (i) 2vv ) @)
B (1) = ( T ”2) B (t)lji<o1 + (B (1) —v) 1156, t = 0. (4.14)

Since (I — ﬁ:ﬁ’;) is a unitary matrix, it follows from the strong Markov property

that E(l) is indeed a Brownian motion. B(I) can be thought of as the reflection of the
Brownian motion B in a hyperplane perpendicular to the vector v till the first time o

when B® hits this hyperplane (which is also the first meeting time of B® and E(i)),

and then coalescing with B® . Using B (i), define a coupled version of the process W
by

b)) =00 + DB (1) +bt, t > 0.

Extend E(i) to an infinite collection of standard Brownian motions B = (1§0, Bl R
@) ,
=(B", Biy1,...).

Our arguments will involve a coupling of two copies of the infinite ordered g-Atlas
model started from y and y91-%2 and respectively driven by the Brownian motions
{Bj}jen, and {B;}eN,. For the finite particle g-Atlas model, this coupling can be
directly constructed using the existence of a strong solution to the finite version of the
SDE (2.2). However, for the infinite g-Atlas model, this is a delicate issue. We will

use the recipe of approximative versions of [32], which we now introduce.

Definition 4.4 Suppose x € U and consider a collection of independent standard
Brownian motions {B;f} jeNo- Consider for fixed m € N, the system of SDE in (2.2) for
i =0,1,...,m,withstarting configuration Xl* (0) = x;,0 <i < m,local times of col-
lision between the (i — 1)-th and i-th particles denoted by Ll’.‘, 1 <i <m,and Lg(-) =
L%, () = 0. Denote by X*™ () = (X5™ (), ..., X" () and LM () =
(LZ’('")(-), e, L;k,;(m)())’ the unique strong solution to this finite-dimensional sys-
tem of reflected SDE with driving Brownian motions (Bj(-), ..., B (-))".

Then (see [32, Definition 7 and Theorem 3.7], [32, Lemma 6.4] and the discussion
following it), there exist continuous R*°-valued processes X*(-) = (X;(-) : i € No)/,
L*(-) = (Lf(-) : i € Ng)', adapted to F; = o {B/(s) : s < t,i € No}, such that, a.s.
X* satisfies (2.2) with associated local times given by L* and for any T € (0, 00),

lim sup HX*(m)(t) X (t)‘

m=00c(0,T]

L™ @) = Li0)|] =0 as, foralli € Ny,

We will call X*(-) the ‘infinite ordered g-Atlas model” with driving Brownian motions
{B}F}./ENO started from x = (xq, x1, x2...)".

We denote the infinite ordered g-Atlas model defined on (€2, F, P) with initial
condition y and driving Brownian motions {B;} jen, as X = (Xo, X1, .. .). Similarly,
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denote the infinite ordered g-Atlas model defined on (€2, , ) with initial condition
y%1%2 and driving Brownian motions { B; }jeng as X = (Xo, X1, ...). Denote the gap

processes associated with X and XasZand Z respectively, namely

Zi=Xi—Xi-1, Zi=X;—Xi_1,;ieN.
It then follows that
Prsi.00i =Po(Z,Z)"! (4.15)

is a coupling of the gap process of the g-Atlas model with initial distributions
8z and §.s;.5,.i. Moreover, the process {W(z) : ¢ > 0} gives the evolution of

5. ' /
{(21 @®,...,Zi@), M - X; (t)) : t > 0} before any of the co-ordinates

of W(-) hit zero or X; hits the level M (note that z; 1 > 8, guarantees that
Xi11(0) > M) This can be seen from (2.2). Similarly, {¥(¢) : ¢ > 0} gives

~ ~ . X ~ /
the evolution of {(Z1 @®),...,Z;@), y’ﬂ’T“Mz - X; (t)) : t > 0} before any of the

co-ordinates of W (-) hit zero or X i+1 hits the level M from above.

We will now construct tractable events of positive probability under which the
‘mirror coupled’ processes W and U will successfully couple before any of their co-
ordinates hit zero or X;41 (equivalently, X i+1) hits the level M Towards this
end, observe that D = {D™'x : x € Rfl} is a polyhedral convex domain contained
in the nonpositive orthant of R*!. Let £ denote the line segment joining D~ W (0)
and D~10(0). By convexity of D, and since W (0), U(0) > 0,

r = inf dist(u, 0D) > 0, (4.16)
uel

where 0D denotes the boundary of D and dist denotes Euclidean distance of a point
from this set. Also define the processes

M@ = ”B(’)(t) M%)—(I— o ”2> “’()—( - ”';TP)B(")U), >0,

where the last equality can be verified from (4.14). Observe that M is a standard
Brownian motion and moreover, M and M~ are independent Gau551an processes.

From a geometric point of view, 2M denotes the component of B — B® along the

vector v and M~ denotes the ‘synchronously’ coupled projections of BU) and BY
along the hyperplane perpendicular to v. Define the stopping time

*Zinf{t > 0: M(t) = —r /4 or |[M*()| = r/4}.
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Consider any r <o A T* A m. Note that, if M (¢) > 0, then, using t < o,
"B (s B (s _
u=D"'wO) + M(t)”L” ~ (1 - "“—”2()> D7'w () + v”—HZ()D’]\IJ(O) €L
v v v

Furthermore,
3r
ID7'W(t) —ull = |M*(t) + D™ 'bt|| < [M*(0)| + |D~'b||r < 3

Hence, by definition of r, D’l\ll(t) ¢ 0D. If, on the other hand, M () < 0, then
recalling 1 < 7%,

1D~ w(t) — D'w )| = B () + D be| = ||M<t>ﬁ + ML)+ Db

B S5r
< IM®|+ 1M~ + 1D~ "Bt < T

again implying D~'W(r) ¢ 9D. Hence, we conclude that, on the event {o < ™A
W}, D™'W(r) ¢ 9D forall t < o. A similar argument gives D~ (¢) ¢ 3D
for all # < o on the same event.
Since g € D, the sequence {g;} is bounded. Let g’ € [1, oo) be such that
g = —gl for all j € Np.
Fix any

8 € (0,zi11/(2 +4gh). (4.17)

For s € (0, §] and 81, 62 € (0, §), define the following events in F:

£ (s) i{ inf inf (y; + Bj(r) > 2T +g’§},
ji+10<t<s 2

Ez(s) = inf M(t) > —r/4, sup M) > |v|/2, sup HML(I‘)H <r/4;:.
t<SA —f—— r r
=8Il AT A Y

(4.18)

Let £(s) = £(s)NE?(s). For notational convenience, we suppress the dependence
of E1(s), E2(s), E(s) on 81, 8.

We claim that £(s) € {r. < s}. To see this, observe that on the event £!(s),
the ordered Atlas particles X;4; and )~(,-+1 stay above the level H)’T“MZ by

time s. Moreover, on 52(5), o < 8 A A s} which, by the previ-

M
8D~ 1h|+1
ous discussion, implies D) ¢ 0D and p’l‘lf(t) ¢ 0D for all + < o,
that is, none of the co-ordinates of W(-) or W(-) hit zero by time o. Hence,
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/ ~
for all t < o, W(r) = (Zl(t),...,zi(t),w—xia)) and U(1) =

. . . N /
(Zl(t), L Zi(), M - X; (t)) . Further, by the mirror coupling dynamics,
W(o) = U(o) and thus, under £(s),

i +Yit1+39
(zl(z), L Zi), % — Xi(t)>

= - i + i S
= (Zl(t), A0) % - X,-(t))

for all t+ > 0. As 0 < s under £(s), we conclude that the above equality holds
for all + > s. Finally, as X; and X;1 (also, X,- and )~(,~+1) do not meet by time o,
X)) = )N(j(t) forall j > i + 1, for all # < o, and hence for all # > 0. These
observations imply 7, < s on £(s).

The following lemma gives a key estimate on the probabilities of this event. Recall
to > 0 for which ¥ = T, ¥o.

Lemma4.5 For any n > 0, there is a 69 € (0,8) and t; € (0,19 A §) such that
Pz.51.60.i (tc > 11) < P(E(11)°) < n forall §1, 82 € (0, do).

Proof Note that the inequality P; s,.5,.i (7. > t1) < P(E(#1)°) is immediate from the
discussion above the lemma. Now fix n € (0, 1). Constants appearing in this proof
may depend on z and this dependence is not noted explicitly. By a union bound and
properties of Brownian motion we see that for any 8, € (0, §) and s € (0, 1),

) . 1, _ _ ol
P((gl(s))c) < 2 Z ci) (y] Yi+l + Zijlg‘i‘l 62) 8 é) ’ (419)
Jj=i+1

where for u € R,

du) = =024y, (4.20)

1 o0
—_— e
V2 /u
Note that, for u > 0, CTD(u) < ﬁe‘”z/“. By our condition on § in (4.17) and using
82 € (0,9),

1 l 1 l .
E(Zi+1 —&)—gds=> E(Zi+1 —(2g + D8 =c; >0.

Thus, from (4.19) it follows that

o
P((gl(s))c) = \/ge_c%/‘ls Z e—(Yj—yx'+|)2/4s

j=itl
oo o0
2
< Jge—c%/4s Z e—(yj—)’i+1)2/4 < Jge—c%/4ser+1/4 Z g_yj/g,
j=i+1 j=itl
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where the first inequality uses (a + b)2 > a2+ b?*fora, b > 0, the second uses the fact
that s € (0, 1), and the third uses the inequality (a — b)*> > a*/2 — b* fora, b € R.
Thus, choosing ¢’ € (0, 1) such that

o0
VBemel/4 /4 Z eVl <n/4,
j=i+1
(here we use y € U), we obtain

P((E'(5))°) < n/4 forall 8, € (0,8) and all s < ¢'. 4.21)

Without loss of generality we assume that 7’ < 7y A §. Next, note that, by the indepen-

dence of M and M, for any s € (0, W],
P((E*(5))°)
—1-P (inf M(t) > —r/4, sup M(t) > ||v||/2> P <sup M) < r/4> .
I=s t<s t<s

(4.22)

Recall r defined in (4.16). Writing r = (81, §2) to high}ight its dependence on 41, 87, it
follows from (4.16) and the explicit form of W (0) and W (0) that there exists §' € (0, §)
and ¢ > 0 such that

inf  r(81,82) =cy > 0.
81,82€(0,8")

Hence, we obtain t; € (0, A ) such that

__r
81D~ 1] +1

P (inf M(t) > —r/4> >1—n/4,
1<t

P(sup |M*(t)| <r/4) >1—n/4, forall 1,8, € (0,8). (4.23)
p

1<t

Recall v = D~ (W(0) — ¥(0)). As U(0) — ¥(0) = (0,...,0,8;,—8) and D!
depends only on i and not on 41, §2, we can obtain c3 > 0 depending only on i such

that
o]l < c3/67 + 83 forall 51,8, > 0.

Hence, we obtain §y € (0, §’) depending on 71 such that

P (sup M) > ||v||/2> > 1 —n/4 forall 81, 8, € (0, 8). (4.24)

1=n
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From (4.23) and (4.24), for all 61, 87 € (0, &p),

P (inf M(t) > —r /4, sup M(t)
1<t

1<t

= vll/2) = P(}Qﬁ M) > —V/4> —]P’<SUPM(t) < ||v||/2> >1-n/2

r<n
(4.25)
Using (4.23) and (4.25) in (4.22), we obtain for all &1, §2 € (0, o),
P(E* (1)) < 1= (1 —n/2)(1 —n/4) < 3n/4. (4.20)
From (4.21) and (4.26), we conclude
P((E@))°) = PIE" (1)) + PIE*(11))) < for all 81,83 € (0, o),
which proves the lemma. O

Proof of Proposition 4.3 In order to prove the proposition it suffices to show the right
continuity of (81,82) — ¥ (z + S1e; — S2e;41) at (81,682) = (0,0). Recall that
Y = Ty o. Let e > 0 be arbitrary and let n = &/(2||Y/o|lo0). Let 8 be as in (4.17) and,
for this chosen 7, let 69 € (0, §) and #; € (0, tp A §) be as in Lemma4.5. For §; > 0,
8 € (0,zi41), let P, s,.5,,; be as in (4.15) and let E; s, 5,,; be the corresponding
expectation operator. For any &1, 62 € (0, do),

V(2 + S1ei = B2ei1) = ¥ (@) = [Epnsna Yo(Z(10) — EYro(Z 10)|
< Eeani 10020 (10)) = %0(Z® (10) 1 g1
< 2[YollooPz.81.8,.i (Te > 11)

< 2[[YollocPE)) = 2M1P0llocn = &,

where the fourth inequality uses Lemma4.5. Since ¢ > 0is arbitrary, the result follows.
O

Proof of Proposition 4.2 Let z and &1, 82 be as in the statement of the proposition and
let P; s, 5,,; be as in (4.15). Recall the event E2(s) from (4.18) (defined for any s > 0)
and consider the following modification of £ Lis):

5 . . S
) i{ inf inf (y; + Bj(t) —1g)) > M} 5> 0.
j=i+10<t<s 2

Let 8~(s) = £l ()N Ez(s). From the definition of the coupling P, s, s, it is easily
seen by an argument similar to that given before Lemma 4.5 that

Py 51800 (ZV (5) = ZP (5)) > P(E(s)).
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Note that, as £! (s) is given in terms of Brownian motions {B;};>; 11 and E%(s) is
defined in terms of {B;};<;, &l (s) and E2(s) are independent. Thus, for any s > 0,
IE”((‘f () = ]P’((S'~ L(s)P(E%(s)) and it suffices to show that each term in the product is
positive.

Asy elU,y; — ooas j — oo. Hence, we can obtain jj > i+2depending ons,i
such that y; > 25" 4+ 2(y;i + yip1 + 82) forall j > jo and Z] =jo (:—’ﬁ) < 1/4.
Thus,

o+ Yig1 + 8
P(lnf inf (v; + B;(1) —1g) > M)

Jj=Jjo0<t=<s )
. 5
=P ( inf inf (— +B(1) > w)
J=jo 0<t<s )
>1-2 Z (_) > 1/2. (4.27)

Jj=Jo

Moreover, from standard Brownian motion estimates,

i i 8
]P’( inf inf (y; +B;() —1tg b~ w) > 0. (4.28)

i+1<j<jo0=<t=<s 2

From the independence of the events considered in (4.27) and (4.28), we conclude
that P(£!(s)) > 0. Finally, from standard Brownian motion estimates and the explicit
form of M(-) and M~ in terms of B(‘)(o),

P if,  M@=z-r/4, swp MO
=SS a1 TR

> |lv]|/2, sup 1M < r/4

tfmsnofrlbuﬂ
=P inf M) = —r/4, sup M(t) = |[v]l/2
=S A D Thi1 PSS A o Tor
xP sup IM~@®)| <r/4| > 0.
ti‘msupfrlbuﬂ
The result follows. O
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5 Proof of Theorem 3.5

Recall D; from (1.2). Observe that for g € Dy, gNj g < gNj for all j > 1. Moreover,
as g € D, inf,cn gy > infyen gy > —00. Thus, goo = lim;j g?Nj exists, is finite,
and lim; o gN_/. = inf,en g, As adding the same drift —g.odt to each ordered
particle in (2.2) keeps the gaps unchanged, we can assume without loss of generality
that inf,cN g0 = goo = 0. In particular, g, > 0 foralln € N.

Fix g € Dyandletw = ®;2,7; be as in the statement of Theorem 3.5. The assump-
tion (3.2) on 7 will be taken to hold throughout the section. From Theorem 2.1 we can
construct a filtered probability space (2, F, P, {F;}) equipped with mutually indepen-
dent real {;},>0-Brownian motions { B'};cn, and continuous processes {¥(;), i € No}
that solve the SDE (2.2), where {L]};cN, are as introduced below (2.2), such that with
{Z;}ien defined as in (2.3), the process Z = (Z1, Z5, ...)" has the distribution P%.
Furthermore, without loss of generality, we can assume that Y(5)(0) = 0. We will
write P and E respectively for the probability and expectation under the law of this
R*>-valued process.

5.1 Proof overview

First we give an overview of the approach. We will use moment generating functions
(m.g.f) to identify the marginals of 7; so the first step is to establish finiteness of
the m.g.f. of any fixed gap in a positive interval around zero. This is achieved in
Lemma35.1 by using comparison techniques between the gap processes of infinite
and finite versions of the model, the latter having a unique invariant distribution that
is a product of Exponential distributions. Lemmas 5.2 and 5.3 together establish the
uniform integrability of {% fol Lio<z(s)<e}ds, € € (0,1/2)} for any i € N, which is
later used in showing the existence of limg o %n,- [0, €] and to identify this as E(L;“(l))
(L} being the local time at zero of the i-th gap in (2.2)). Lemma 5.4, which is key to
the proof of Theorem 3.5, gives an explicit representation for the expectation of the
integral of a function of the i-th gap process against the j-th local time process for
i # j. The aforementioned uniform integrability is crucially used here. Forany i € N,
the m.g.f. of the i-th gap at time 1 is then identified by an application of Itd’s formula
to exponential functions of the gap and using the representation in Lemma5.4 to
evaluate the local time terms. The obtained m.g.f. corresponds to that of an exponential
random variable. The associated rates are then shown to agree with that of 75 for some
a > —2inf, <y g, via a recursive relation resulting from taking expectations in (5.1).
The representation (3.3) is obtained as a by-product of our computations.

5.2 Preliminary results

We begin with some preliminary results.

Lemma5.1 Foranyi € Nand A < 2 Z};}) gk, we have fR+ eMmi(dz) < oo.

Proof Recall the sequence {N,;} associated with g € Dj. Fix any d € N such that
Ny > i and consider the Ny dimensional (g, y)-Atlas model defined by replacing oo
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with Ny — 1 in equation (2.1). This model has been studied extensively in previous
works (see e.g. [32, 34]) and it is well known that, since g € Dj, the associated
gap sequence {Z j}ll.vi 1_1 defined by (2.3), where the processes Y(;y are defined by
2.2), for j = 0,1,..., Ng — 1, has a unique stationary distribution FWa=l) =
®lN:‘1f 1Exp(2l (81 — gn,)) (see [32, Proposition 2.2(4)]). Using monotonocity and
comparison estimates for finite and infinite Atlas models (cf. [32, Corollary 3.14]
and [34, equations (58)—(60)]) it now follows that the probability measure 7|y, —1

on Rﬁ"_l given as the first N; — 1 marginal distribution of 7 satisfies 7|y,—1 <gt
7WNa=D Tn particular, 7; <st Exp(2i(g; — gn,)) for all Ny > i. Since gy, — O as
d — oo,wecanfindad € N, with Ny > i, such that A < 2i(g; — gn,). Then

/ o (dz) < / PEXp(i(§; — gn,))(d2) < 00
R, R,

which completes the proof. O

The next three lemmas concern the collection {Z;, L} described above. We remind
the reader that in these lemmas the probability measure P and the expectation [E
correspond to P4 and E respectively, where g and 7 are as fixed at the beginning of
the section.

Lemma5.2 Foreveryi € N, I[‘I(L;f(l))2 < 0.
Proof From (2.2) it follows that, fori € N,and 0 < < 1,
1
Zi(t) = Zi(0) + hit + W (1) — EL?‘_l(t) - l+1(t) + L), (5.1)
where fori € N, h; = g; — gi—1 and W* = B — B |. This says that
Ly (1) =2(Zi(0) = Z; (1) + h; + W (1) + L7(1)) = L;_(1).
From this and Lemma5.1 it follows that if for some i € N IE(L;‘(I))2 < 00, then

IE(LZJrl (1))2 < oo as well. Thus it suffices to show that I[‘E(L’l‘(l))2 < 00. From (2.2),
and recalling that Y(()(0) = 0, we see that

* 1 *
Yo)(1) = go+ By (1) — 7L (1)
which says that
Li(1) = 2(=Y(0)(1) + go + Bi (1)).

Thus to prove the lemma it suffices to show that

2
E(lnf Y; (1)) < 00, 5.2)

j€No
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where {Y;} solve the system of equations in (2.1) with Y(0) = 0 and the vector
(Y1(0), Y2(0) — Y1(0), ¥3(0) — ¥2(0), ...)

distributed as 7.
Note that for x > go,

P(inf ¥;(1) > x) < P(go + Bj(1) > x) < V2e~&=80?/4 (5.3)
J€Ro
Next, as g € D, there exists g/ > 0 such that g; > —g for all i € Ny. Thus, we
have, for x > 0,

P(inf Y;(1) < —x) < P(inf (Y;(0) + W;(1)) < gl —X)
J€No J€No

<Y PWi() <g' —x—Y;(0) = Y EO(x+¥,;0) — gh,
Jj=0 j=0

where ®(z) was defined in (4.20). Thus, for x > g,

o0 o
. _ X _ol\2 (v_ol)2 (V. 2
p(jlngO Yi(l) < —x) < ﬁ} :Ee (Y (0=)7/4 < (/2= (—8) /4§ :]Ee ¥ (0))7/4
Jj=0 j=0

The desired square integrability in (5.2) is now immediate from (5.3) and the above
on observing that

[e'e} o .
ZEe—(Yj(O))2/4 =1 +/ Ze_%(lezl )? 7(dz) < o0
j=0 RE\j=1
by our assumption. O

The next lemma will allow us to interchange expectations and limits as & — 0.
Lemma 5.3 The family {% fol Lio<z:(s)<eyds, € € (0, 1/2)} is uniformly integrable.

Proof For ¢ € (0, 1/2), define ¥, : R — R as

Z2 :
N if0<z<e
Vo) =1 3 ,
St@E—¢e ifz>e
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Note that . is a C! function with an absolutely continuous derivative. It then follows
from It6’s formula (see [25, Problem 3.7.3]) applied to Z; given by (5.1), that

1 1
Ve (Zi(1)) = Yo (Zi(O) + /O W (Zi(s)hids + fo W (Zi(s)dWE(s)
1 ! 1 !
-3 / VZ ALY 6) — 5 / WA(Zi(s)LE (5)
0 0
1 1
4 /0 W(Zi(s)dLE(s) + /0 W (Zi(s))ds. (5.4)
Note that, for all z € R4,
0<ve@) <ze. 0<yl(2) <e Pl(0)=0.
Also,

() = {é fo0=e<e

ifz > e.
Combining these, and dividing by ¢ in (5.4), we have

1 ! 1 ! 1
5/0 Lio<z;(s)<eyds < Z;(1) — 5/0 Vi(Zi(s)dW(s) + |hi] +§L,’-‘_1(1)

1 k
+ 5L (.

The desired uniform integrability now follows from Lemmas 5.1 and 5.2 and the obser-
vation that

1! 2
E(—/ Wé(Zi(S))dWi*(S)> <2.
&€ Jo
O

The following lemma will be key to proving Theorem 3.5. It will be used to represent
expectations of integrals of nonnegative measurable functions with respect to local time
in terms of stationary integrals and the ‘density’ of 7r; at zero for each 7, as described
in the lemma. We note that the product form structure of 7 is crucially exploited here.

Lemma5.4 Foranyi € N, the limit v; = limg o ém [0, &] exists and v; = (L} (1)).
Furthermore, for any measurable f : Ry — Ry andi,j e N,i # j,

1
Ef F(Zi(s)dLi(s) = Vj/ f(@)mi(dz). (5.5)
0 R,

@ Springer



S. Banerjee, A. Budhiraja

Proof From results on local times of continuous semimartingales (see e.g. [29, Corol-
lary VI.1.9]) it follows that, forall# € [0, 1]andi € N, é fot L0<7; (s)<e)ds converges
a.s. to 1/2-times the semimartingale local time A;(¢) of Z; at O (as defined in [29,
VI.1.2]) as ¢ | 0. Furthermore, one has (see [29, Exercise VI.1.16 (3)]) that

t 1 t
Ai(1) =2[hi/ Lz (5)=0yds — 5/ Lz, 5)=0)d L_ (5)
0 0

l t t
- E/ 1{z,~<s>=0}dL?‘+1(S)+/ 1{z,~<s>=0}dL?‘(S)]
0 0

t
= 2/ Liz;(5)=0yd L} (s) = 2L} (1),
0

where the first equality on the last line follows from the facts that f(; liz;(s)=0yds =0
(which follows from A;(#) < 00), and that the Atlas model does not have triple
collisions a.s. (see [32, Theorem 5.1]). It then follows that, as ¢ |, 0,

1 t
—/ Lio<z;(s)<eyds — L?‘(t), a.s. forevery t € [0, 1] andi € N. (5.6)
€ Jo

Combining this with Lemma 5.3 and using the fact that Z is a stationary process, we
now have that, as ¢ | 0,

1 1!
-1;[0, ] = E—/ Lio<z:(s)<e}ds — E(L;k(l)), foralli € N.
& & Jo

This proves the first statement in the lemma. In order to prove (5.5) it suffices to
consider the case where f is bounded (as the general case can be then recovered by
monotone convergence theorem). In fact by appealing to the monotone class theorem
(cf. [28, Theorem 1.8]) we can assume without loss of generality that f is a continuous
and bounded function. From (5.6) we can find ¢ € F such that P(2¢) = 1 and for
allw € Qo

1 t
—f Lo<z;(s,0)<e}ds — L}"(t, w), foreveryt € [0, 11N Q, 5.7
€ Jo

and L7 (1, w) < oo forall i € N. In particular this says that, for every w € Q¢ and
i € N, the collection of measures {IT;", & € (0, 1/2)} defined as

1 b
“[a, b] = g/ Lio<Z:(s,0)<e}ds, 0 <a <b <1
a

1

is relatively compact in the weak convergence topology. From this and using (5.7)
again we now see that, for every w € Qpandi € N, Hf’w converges weakly to IT{
defined as

NP[a,b] = L} (b,w) — Lf(a,w), 0 <a <b < 1.

@ Springer



Extremal invariant distributions of infinite Brownian particle systems...

From the sample path continuity of Z; we can assume without loss of generality that
forevery w € Qpandi € N, s — f(Z;(s, w)) is a continuous map. From the above
weak convergence it then follows that, for w € Qp and i, j € N,

1 1
[(Zi(s,w)dLi(s,0) = | f(Zi(s, ®)dTT5(s)
0 0

1
—lim | £(Zi(s, ®)dTT5%(s)
e—=0 Jo J

1
=lim — [ f(Zi(s, 0) 0=z, (s.)<e}d5.
e=>0¢ Jo ’

Using Lemma5.3 and the fact that Z is a stationary process with a product form
stationary distribution, we now see that for i, j € N, i # j,

1 1 1
B [ F@Li6) = tim 2B [ FZ) sz, 0 zads
0 ' e=>0¢e Jo

= lim én,-[o, £l / f@mi(dz) = v; / f(@)mi(dz).

5.3 Proof of Theorem 3.5
We now complete the proof of the theorem. Recalling Lemmas 5.1 and 5.2), taking

expectations in (5.1), and using the identity v; = IE(LI’.‘( 1)) fori € N, we see that, for
alli e N,

1 1
hi +v; — EVH_I — zv,-_l =0. (5.8)

Applying the above identity for i = 1, and setting a = v; — 2go, we have
v2 = 2v; + 2hy = 2(g0 + g1) +2(v1 — 280) = 2(go + &1) + 2a.
Proceeding by induction, suppose that for some k > 2,
vi=ia+2(go+---+gi_1), forall 1 <i <k.
Then from (5.8),

1
Vi1 = 2(vg — 5 Vel + hy)

=2ak +4(go + -+ gk—1) —alk — 1) —2(go + - - + gk—2) + 2(8k — &k—1)
= (k+Da+2(go+---+ 8-
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Thus it follows that, for every k > 1,
v =ka+2(go+ -+ gk—1) = k(a + 2gk). 5.9)

Fixi e Nand A < Zf{;{) gk- Then by Itd’s formula applied to Z; given by (5.1),

1 1 1

. ) ) . A (s

P4 = HZiO) 4, / Mgy + A/ M (S)dWi*(s) - 5/ M (*)dL}kfl(s)
0 0 0

A 1 1 1
_ 5/0 eAZi(S)dL?+1(S)+)»/‘O e)LZi(S)dL;k(S)_’_)LZ/‘O Az gg
(5.10)

Since A < Z;;b gr, from Lemma5.1, fol Ee?2i() s = f]lh e (dz) < oo and
consequently the stochastic integral in the above display has mean 0. Moreover, note
that

1 1
E / FLOGLH(s) = E / dLi(s) = E(LI(1) = vi.
0 0

Thus taking expectations in (5.10) and using Lemma 5.4, we have,

A
/ Mri(dz) = / M mi(dz) + Ah; / Mmi(dz) — Evi_l / Mri(dz)
R, R, R, R,

A

— —Vit] / Mmi(dz) + v + k2/ mi(dz).
2 Ry Ry

Rearranging terms, we have

A A
AV = (—)»hi + ZVio1 + ZVig1r — kz) / eMmi(dz) = (W — ?»2)/ i (dz),
2 2 R, R,

where the second equality in the above display follows from (5.8). Thus we have
shown that for all i € Nand A < Y_0 g,

Vi
/ eMmi(dz) = ——.
Ry v — A

Thus, since Z};}) gr = ig; > 0, by uniqueness of Laplace transforms, we must

have that m; = Exp(v;) for each i € N. Finally note that, since by Lemma 5.1,

fR+ eMm(dz) < oo forall A < 280, we must have that a = v; — 2gop > 0. Thus, in

view of (5.9), we have shown that, for some a > 0, 7; = Exp(v;) = Exp(i(2g; + a))
foralli e Nandso 7w = 715 for some a > 0.

The assertion (3.3) follows from (5.9) upon recalling that vy = E(L;:(l)) fork € N.

O
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Appendix: Proof of Lemma 3.2

We will like to acknowledge the lecture notes of Sethuraman [36] which are used at
several steps in the proof below.
Since g € D will be fixed in the proof we suppress it from the notation. Let y € Z.
Define

G={n—Tmn:nelL*y),t=>0

We claim that [(span(@‘:))"’]l C I, where [(span(<G}))"’]l denotes the orthogonal
complement of the closure of the linear subspace generated by G in L?(y). Indeed,
if ¥ € [(span(G))!1*, then for all n € L>(y) and t > 0, (¥, n — Tyn) = 0. Taking
n=y,

(W, ) = (, i) forall t > 0. (A1)

Using this, and the contraction property of 7;, for all # > 0,

0<(Tiy —v.Tiy =) = (1Y, T1y) + (¥, ¥) = 2(¢, T1 )
=Ty, Tiy) + (Y. ¥) =204, ¥) = (T, i) — (¥, ¥) <0,

where the first equality on the second line follows from (A.1). This says that
T,y = ¥ (as elements of L%(y)) for all t+ > 0 and so ¢ € I, and shows the

claim [(span(G))“ 1+ ¢ I,. Any ¢ € L?(y) can be written as i = 1}}, + 1/~f,, where
1&,, € [(span((Gr))“l]L C I, and 1/7), € (span(G))d.
Next, for Y € Lz(y) and t > 0, define A; ¢ € Lz(y) as

] t
Ay = -/ Ty ds.
t Jo

Then A,y = A;I/}y + A,IZV. By definition A,Iny = 1%,. Also, if ¢ € G then for some
to>0andn € L2(y) ¢ = n — T,n. Then from the contraction property of 7; it
follows that

Oast — oo.

2|In||#
agl < 200

Similarly, if ¢ € span(G), there is a c(¢) € (0, 0o) such that

c(@)
t

|Ap|| < — — Oast — oo.

Finally, let ¢ € (span(G))<’. Then, given ¢ > 0, there is a ¢¢ € span(G) such that
lp — ¢?|| < e. It follows, using again the contraction property, that for all > 0,

[A@I < 1A (@ — @Il + [1A:p°ll < llp — °ll +

c(¢®) <8+C(¢E)
t - t
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Thus lim sup,_, o, [|A;¢] < . Since ¢ > 0 is arbitrary, we obtain

tlim |A;¢ll =0forall ¢ € (span(G))Cl. (A.2)
— 00

From these observations we obtain, for any ¢ € Lz(y),
lim Ay = lim (A, + Addy) = lim (Jy, + Ahy) =, (A3)

The above convergence in fact shows that [(span(G))d 1+ = I, and consequently
g@y is the projection of ¥ on to I,. To see this, recall that it was argued above that
[(span(G))d]l C I,,. Now consider the reverse inclusion and let ¢ € I,. Then we
can write ¢ = @1 + ¢ where ¢; € (span(G))“ and ¢, € [(span(G))“']+ c I, . Thus,
forr >0,

0 =A0=Ar01 + A2 = A1 + 2.

As t — 00, we have from (A.2) that, A;,¢o; — 0, which says that ¢ = ¢@».
This proves the inclusion I,, C [(span(G))Cl 1+ and we have the claimed statement
[(span(G)“' ]+ =1T,.

Now we proceed to the proof of the statements in the lemma. We first consider the
second statement in the lemma. Fix y € Z. Suppose that for every bounded measurable
map ¥ : R — R, 1/},, is constant y a.s. We will now show that this implies y € Z,.
Suppose there is a ¢ € (0,1) and y;1,y» € Z such that y = ey + (1 — &)y.
Note that since from (A.3) 1&,, = lim;— 0 A;¥ and y is invariant, we must have

&V = fROf Y dy, and so from (A.3) it follows that

2
/ (Atl/f —/Iﬂd)/> dy = ||Ay — 1},,”2 — 0ast — oo.
ROO

+

Also, from definition,

2 2
lim sup/ <Aﬂp —/wdy> dy) < lim sups_lf (A,xp —/wdy) dy =0.
t—00 RS t—00 R¥

+ +

Thus A, — [¥dy in L?(y). Also, since yy € Z, [ A yrdy) = [Ydy

and consequently, [ ¥dy; = [ ¥dy. Since V¥ is an arbitrary bounded measurable
function, we must have y = yj. This proves that y € Z,. We have thus shown the
second statement in the lemma and in fact also shown that Z,, C Z,.

Finally we argue that Z, C Z,,. Suppose y € Z, and that y ¢ Z,,. Then there is a
¥ € L?(y) such that Wy is not a.s. constant under y. Thus there is a ¢ € R such that,

with A = {1/fy > c}, y(A) = ¢ € (0, 1). Note that by definition
T,l/A/,, = Iﬂy, y a.s. forallt > 0.
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We refer to this property as y@y is harmonic (with respect to the semigroup {7;}). We
claim that this implies that 14 is harmonic as well, namely

Ta =14, yas. forallz > 0. (A4)

To see this, note that, from the definition of T3, if f € Lz(y) is harmonic, then

Ifl =T f1 <= Ti f, v as. (A.5)

This, together with the fact that 7; is a contraction, says that

1A < NTA I < ILFI

which in view of (A.5) shows that | f| is harmonic. From the linearity of 7; it then
follows that f v 0 = %( f + |f]) is harmonic as well. This implies that if fi, f>

are harmonic then fi; v f> and f; A f> are harmonic as well. Recalling tha &V is
R +
harmonic, we now have that g, = (n (1//y — c) A 1) is harmonic for every n € N.

The property in (A.4) is now immediate from this on observing that g, — 14 a.s. and
dominated convergence theorem. This proves the claim.
Consider the probability measures y1, 2 on (RS, B(RY)) defined as

n(B)=ely(BNA), n(B)=(1—-e) 'y(BNAY), BeBRY).

Using (A.4) it is easily seen that y|, y» € Z. Indeed, if B € B(RS®) and r > 0,

A

TledV1=8_1/ TledV=8_1/ TtlABd7/+8_1/ Tilgcpdy
® A A A
=e*‘/ TzlAde=s*‘/ Tilagdy = e 'y (BN A) = (B),
A R

00
+

where the third and fourth equalities follow from (A.4) and the fifth uses the invariance
of y. This shows the invariance of y; from which (together with the fact that y is
invariant) the invariance of y» follows immediately.

Finally note that y; # y», and by definition y = ¢y + (1 — €)y». This contradicts
the fact that y € Z, and thus we must have y € Z,,. We have thus shown thatZ, C Z,,
which completes the proof. O
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