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Abstract
We construct viscosity solutions to the special Lagrangian equation that are Lip-
schitz but not C 1, and have nonminimal gradient graphs.

1. Introduction
For a symmetric n! n matrix M with eigenvalues ¹!iºniD1, we let

F.M/D
nX
iD1

arctan.!i /:

The special Lagrangian equation for a function u on a domain in Rn is

F.D2u/D c 2
!
#n"

2
;n
"

2

"
: (1)

Here c is a constant. Equation (1), introduced in the seminal work [21], is the potential
equation for area-minimizing Lagrangian graphs of dimension n in R2n.

Classical solvability of the Dirichlet problem for (1) in a ball with smooth bound-
ary data was established for jcj large in [9] (see also [5], [15], [26], and see [6] for
classical solvability of the second boundary value problem). The existence of viscos-
ity solutions to (1) with continuous boundary data and c arbitrary was established in
[22] (see also [4], [14], [18], and [23]).

The regularity of solutions to (1) is a delicate issue. It is known that viscosity
solutions are real analytic when jcj $ .n # 2/!2 (see [38]; see also [13], [25], [34],
[36], [39]–[41], [45]), or when u is convex (see [11]; see also [2], [3], [12]). In these
cases, (1) is a concave equation [44], so by the Evans–Krylov theorem (see [19], [24])
it suffices to obtain interior C 2 estimates (see also [42]). When jcj < .n # 2/!2 the
equation is not concave, and there are examples of viscosity solutions to (1) which
are C 1 but not C 2 (see [29], [37]). However, the gradient graphs of these examples
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are analytic and area-minimizing as geometric objects. It remained open whether all
viscosity solutions to (1) are C 1, and whether they have minimal gradient graphs (see,
e.g., the conjecture at the end of the introduction in [29]). In this paper we answer
these questions in the negative.

THEOREM 1.1
There exist c 2 Œ0;"=2/, a smooth bounded domain # % R3, an analytic embedded
surface $ %%# with boundary, and a Lipschitz function u on # that is analytic in
#n$ such that
(1) F.D2u/D c in the viscosity sense in #,
(2) ru is discontinuous on $n@$ , and
(3) the graph of ru is of class C 1;1 but not C 2. It is the union of two analytic

parts, where one of the parts is minimal and the other is not.

Here we clarify what we mean in the last statement. Our approach is to first
construct a C 2;1 solution w to the degenerate Bellman equation

max
®
F.D2w/# c!;detD2w

¯
D 0; (2)

which has a compact free boundary between the operators. The function w solves
the special Lagrangian equation outside of a small smooth convex set K , in which
detD2w D 0 but F.D2w/ is not constant. It is analytic inside K and outside K , and
C 2;1 but not C 3 across @K . Thus, the graph ¹.x;rw.x//º of rw consists of two
analytic parts that meet in a C 1;1 but not C 2 fashion, where one part is minimal (the
part where x 2Kc) and the other is not (where x 2K and F.D2w/ is not constant).
To get u we take the Legendre transform of w, and we interpret the graph of ru as a
rigid motion in R3 !R3 of the graph of rw. This is a natural interpretation in view
of the fact that the gradient of the Legendre transform of a function is the inverse of
the gradient of that function (see Section 2).

We also remark that the example u from Theorem 1.1 is semiconcave, and hence
#u (which solves the special Lagrangian equation with right-hand side #c) is semi-
convex, like the examples in [29] and [37]. However, in contrast with previous exam-
ples, the example in Theorem 1.1 has nonminimal and nonsmooth gradient graph (in
the sense we describe above). Thus, unlike convexity, semiconvexity does not imply
smoothness of the gradient graph for solutions of (1).

Theorem 1.1 also says something interesting at the level of C 1 estimates for
degenerate elliptic PDEs, namely, that solutions that are smooth near the boundary
(which guarantees interior gradient bounds by the comparison principle) can have
interior gradient discontinuities. This stands in contrast with uniformly elliptic equa-
tions, which enjoy interior C 1;˛ estimates (see [7], [8], [35]; these are in fact optimal,
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see [31]). It remains open whether viscosity solutions to (1) necessarily have locally
bounded gradient (see, e.g., [27] and [5] for recent results in this direction).

On the other hand, all the known nonsmooth solutions to (1) are not C 1;1. It
remains open whether there exist C 1;1 but non-C 2 singular solutions (equivalently,
whether there exist nonflat graphical special Lagrangian cones). The smallest dimen-
sion in which such examples could exist is nD 5 (see [30]). For general uniformly
elliptic equations, such examples exist in dimensions n$ 5 (see [28]).

We will prove Theorem 1.1 in the following section. In the last section we will
discuss related examples of singular solutions to (1), that can be viewed as small per-
turbations of the singular solutions in [29] and [37]. The examples in the last section
have nonminimal gradient graphs, and the singularities appear near the center of a
ball. We expect that the examples in the last section are not C 1, and that their singu-
larities are modeled locally by examples like the one from Theorem 1.1. In particular,
we expect that the degenerate Bellman equation (2) with compact free boundaries
plays an important role in the formation of Lipschitz singularities in solutions to (1).
Furthermore, the examples in the last section suggest that this mechanism of singu-
larity formation is stable.

2. Proof of Theorem 1.1
For !> 0 to be chosen shortly, let

ˆ.x/D !x21
1C x3

C !x22
1# x3

:

The function ˆ is convex and analytic in ¹jx3j< 1º. (Note that the one-homogeneous
function of two variables x21=x3 is convex in ¹x3 > 0º since it has only one nonzero
Hessian eigenvalue and has positive second derivative in the x1 direction. The terms
in ˆ are this same function up to rigid motions, so the convexity of ˆ follows.) Each
term in ˆ is a translation of a one-homogeneous function whose Hessian has rank 1,
so D2ˆ has rank 2. It follows that

detD2ˆD 0:

Note also that the image of rˆ is contained in the paraboloid

† WD
°
y3 D

1

4!
.y22 # y21/

±
: (3)

LEMMA 2.1
The analytic function ‚.x/ D F.D2ˆ.x// has a nondegenerate local minimum at
x D 0 for !> 0 small.
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Proof
Denote by f .!/ WD arctan! and then F.D2u/DPf .!i /.

We use the expansion of order 4 for ˆ at 0,

ˆ WD !
#
x21 C x22 C x3.x22 # x21/C x23.x21 C x22/CO

#
jxj5

$$
I

hence D2ˆ.0/ is diagonal with eigenvalues 2!, 2!, and 0.
We compute D‚ and D2‚ at x D 0 and find

‚k D Fijˆijk D f 0.2!/ˆ11k C f 0.2!/ˆ22k C f 0.0/ˆ33k D 0;

and

‚kl D Fijˆijkl CFij;mnˆijkˆmnl
D f 0.2!/ˆ11kl C f 0.2!/ˆ22kl C f 0.0/ˆ33kl CO.!2/
Dˆ11kl Cˆ22kl Cˆ33kl CO.!2/

D ck!ılk CO.!2/;

with c1 D c2 D 4 and c3 D 8. In the computation above the derivatives of F are
evaluated at D2ˆ.0/, and we have used that

D3ˆDO.!/; D4ˆDO.!/; f 0.2!/D f 0.0/CO.!/; f 0.0/D 1:

Hence, if !> 0 is chosen small, then D2‚.0/ is positive definite, and the lemma
is proved.

Remark 2.2
Lemma 2.1 can also be proven by calculating the eigenvalues of D2ˆ. For aD 1

1Cx3
and b D 1

1"x3 , these are 0 and ƒ˙, where

1

2!
ƒ˙ D

1

1# x23
C a

3

2
x21C

b3

2
x22˙

!1
4

#
2abx3C.b3x22#a3x21/

$2Ca3b3x21x22
"1=2

:

Lemma 2.1 implies that for % > 0 small, the connected component K of the set
¹‚ &‚.0/C %2º containing the origin is compact, analytic, uniformly convex, and
contained in BC" . Here and below C denotes a large constant, which may change
from line to line. As a result, D2ˆ is within C% of the diagonal matrix D2ˆ.0/D
2!.I # e3˝ e3/ in K . Later we will use the map

‰.x/ WD
#
ˆ1.x/;ˆ2.x/; x3

$
;

which is an analytic diffeomorphism in a neighborhood of 0. Since
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D2.‚ ı‰"1/.0/D
#
D‰"1.0/

$T
D2‚.0/

#
D‰"1.0/

$

is positive, we also have for % sufficiently small that ‰.K/, the connected component
of ¹‚ ı‰"1 &‚.0/C %2º containing the origin, is analytic and uniformly convex.

Now, for c! WD‚.0/C %2, let v be the solution in a small neighborhood of @K to

F.D2v/D c!; vj@K Dˆ; v# j@K Dˆ# :

Here & is the outer unit normal to @K , and we obtain v using Cauchy–Kovalevskaya.
Since ˆ and v solve the same equation on @K and have the same Cauchy data there,
we have

D2vDD2ˆ on @K:

As a result, for x0 2 @K , all third derivatives of ˆ and v that involve a differentiation
in a direction tangent to @K at x0 agree. Since ‚# > 0 on @K by construction and
F.D2v/ is constant, we conclude on @K that

0 < @#
#
‚#F.D2v/

$
D Fij .ˆij# # vij#/D F##.ˆ### # v###/;

which implies that

v### <ˆ### on @K: (4)

We let K$ denote the set of points a distance less than ' from K .

LEMMA 2.3
We have detD2v < 0 on K$nK , for '> 0 small.

Proof
Let G denote determinant. Since G.D2v/DG.D2ˆ/D 0 on @K , it suffices to show
that

@#
#
G.D2v/

$
& 0 on @K , and where equality holds, that @2#

#
G.D2v/

$
< 0.

To that end we fix x0 2 @K , and we let ( denote the eigendirection at x0 corresponding
to the 0 eigenvalue of D2ˆ.x0/. We distinguish two cases.

The first case is that ( is not tangent to @K . Then at x0 we pick a system of
coordinates with & being a coordinate direction, and at x0 we compute

@#
#
G.D2v/

$
D @#

#
G.D2v/#G.D2ˆ/

$

DGij .vij# #ˆij#/
DG##.v### #ˆ###/;
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using that vijk.x0/D ˆijk.x0/ unless i D j D k D &. Since & is not perpendicular
to ( , we have that G##.D2.ˆ.x0/// > 0, and we obtain the desired (strict) inequality
using (4).

The second case is that ( is tangent to @K . Choose coordinates at x0 such that
both ( and & are coordinate directions. In these coordinates the only nonzero deriva-
tive of G is G%% > 0. In particular, G## D 0, so the previous calculation implies that
@#.G.D

2v//D 0. Combining these observations, we have

0D @#
#
G.D2v/

$
D @#

#
G.D2ˆ/

$
DG%%v%%# DG%%ˆ%%# I

hence

v%%# Dˆ%%# D 0: (5)

Now we calculate the second normal derivative:

@2#
#
G.D2v/

$
D @2#

#
G.D2v/#G.D2ˆ/

$

DG%%.v%%## #ˆ%%##/CGij;kl.vij#vkl# #ˆij#ˆkl#/
D I C II:

Since all third-order derivatives of v and ˆ involving a tangential direction agree, the
only possible nonzero terms in II are those with i D j D & or k D l D &. Using (5),
we further reduce II to terms involving G##;kl where k and l are not both ( . Finally,
using that D2ˆ.x0/ vanishes in the ( column and row, we see that G##;kl D 0 when
.k; l/¤ .(; (/; thus the term II vanishes.

To estimate the term I note that

.v## #ˆ##/%% D ).v### #ˆ###/;

where ) > 0 is the curvature of @K in the direction ( . Using (4), we conclude that

@2#
#
G.D2v/

$
D )G%%.v### #ˆ###/ < 0;

completing the proof.

Now, we let

wD
´
ˆ in K;

v in K$nK:

Note that w 2 C 2;1 and

D2w is within C% of the matrix 2!.I # e3˝ e3/ in K$ (6)
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(we assume ' was taken small). We let

$ WD rw.K/;

and we note that $ is the piece of the paraboloid † (see (3)) that lies over the projec-
tion of ‰.K/ to the horizontal plane.

LEMMA 2.4
For '0 > 0 small, the map rw is one-to-one on K$0nK and maps K$0nK diffeomor-
phically to a neighborhood of $ .

Proof
Let y DH.x/ WD .w1.x/;w2.x/; x3/. Similar calculations to those in Proposition 3.1
from [37] imply that detDH > 0 and that H is distance-expanding, up to a factor
depending on !. Both facts follow quickly from (6), which implies that DH is within
C% of the diagonal matrix with entries 2!; 2!; 1 inK$. (To verify distance-expanding
one can, e.g., combine the preceding observation with the fundamental theorem of
calculus, which implies that H.z/ #H.x/D Œ

R 1
0 DH.tz C .1 # t /x/dt * ' Œz # x*/.

In particular, H is a global diffeomorphism of K$. As noted above, the set H.K/D
‰.K/ is an analytic uniformly convex set. Thus, for'0 > 0 sufficiently small,H.K$0/
is contained in a convex neighborhoodD %H.K$/ of H.K/. We will show that rw
is injective in K$0nK .

Because H is a diffeomorphism, it suffices to check that T WD rw ı H"1 is
injective on DnH.K/. We have

T .y/D
#
y1; y2;w3

#
H"1.y/

$$
:

Since D is convex, every vertical line intersects it in a connected segment, so it is
enough to show that @3T 3 D @y3.w3.H"1.y///& 0, with strict inequality when y 2
DnH.K/. This follows directly from the identity

@y3
#
w3
#
H"1.y/

$$
D detDT.y/D detD2w

#
H"1.y/

$
detDH"1.y/ (7)

and Lemma 2.3.
It just remains to show thatrw mapsK$0 into a neighborhood of $ . Equivalently,

T maps H.K$0/ into a neighborhood of $ . Using the monotonicity @3T 3 < 0 away
from H.K/ we see that the image of T contains a small vertical segment through
every point in $ , and the result follows from the continuity of T .

For a C 2 function w, we define its Legendre transform w! on the image of the
gradient of w by the formula
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w!.rw/D x 'rw #w.x/; (8)

with w! being possibly multivalued. Although the Legendre transform is typically
used for convex functions, this definition enjoys some of the same important proper-
ties. More precisely, if detD2w.x0/¤ 0, then in a neighborhood of x0 the Legendre
transform w! is single-valued, rw! is the inverse of rw, and D2w! D .D2w/"1;
hence

F.D2w!/CF.D2w/D .n# 2l/"
2
;

where l denotes the number of negative eigenvalues of D2w. Geometrically, taking
the Legendre transform corresponds to making a rigid motion of the gradient graph,
which can be seen using the gradient-inverting property.

Using Lemma 2.4, we conclude that there exists a neighborhood of $ on which
the Legendre transform uD w! of w is single-valued. Away from $ , the function u
is analytic and has two positive Hessian eigenvalues and one negative Hessian eigen-
value, and thus it solves

F.D2u/D "

2
# c! WD c (9)

classically away from $ . We also calculate away from $ that

u33 D
1

det.D2w/
cof.D2w/33 < 0;

and u33 tends to #1 on $ . On $n@$ , the function u has a “downward” Lipschitz
singularity. Indeed, from the identity

u3
#
y1; y2;w3

#
H"1.y/

$$
D u3

#
rw

#
H"1.y/

$$
D y3

we infer that uC3 and u"3 , the limits of u3 from above and below along vertical seg-
ments through $n@$ , satisfy that

.uC3 # u"3 /
#
y1; y2;w3

#
H"1.y/

$$
D#L.y1; y2/ < 0;

where L.y1; y2/ is the length of the intersection between ‰.K/ and the vertical line
through .y1; y2; 0/.

We conclude from this discussion that u is concave along vertical lines, and on $
it cannot be touched from below by any C 2 function. As a consequence, u is a viscos-
ity super-solution to (9). Note also that F.D2w/& c!. It follows thatwk WDw#x23=k
satisfies F.D2wk/ < c

! for all k > 0. We note that D2wk has two positive eigenval-
ues and one negative eigenvalue, and by similar considerations to those above, w!k is
single-valued and solves
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F.D2w!k/D "=2#F.D2wk/ > c

classically in a neighborhood of $ . We claim that w!k converge uniformly to u in
a neighborhood of $ , which implies that u is also a viscosity subsolution to (9) and
completes the construction. To prove the claim, note that by the definition of Legendre
transform (8),

w!k
#
rw.x/# 2k"1x3e3

$
#w!

#
rw.x/

$
D#k"1x23 ;

and use that w!k have uniformly bounded gradient (their gradients lie in K$).

Remark 2.5
By combining the proofs of Lemmas 2.3 and 2.4 one can show that u is C 1;1=2 up to $
from each side at points on $n@$ , and u is C 1;1=5 on @$ . Indeed, for z0 2 $n@$ , let
x0 be either preimage underrw of z0 in @K . Lemma 2.3 shows that @#.G.D2w// < 0

at x0. Using this in (7) one can conclude that jrw.x/#rw.x0/j$ C"1jx#x0j2 for
x 2 Br.x0/\ .K$0nK/ and r small, giving C 1=2 regularity of ru on each side of $
at z0. Likewise, if z0 2 @$ , then one has @2#.G.D

2w// < 0 at x0. Using the uniform
convexity of @K , one concludes in a similar way using (7) that jrw.x/#rw.x0/j$
C"1jx # x0j5 for x 2K$0nK , corresponding to C 1=5 regularity of ru at z0.

3. Related examples
The examples in [29] and [37] are obtained by starting with an analytic solution to the
special Lagrangian equation with singular Hessian at the origin and injective gradient.
The gradient graph can then be rotated so it has a “vertical” tangent direction at the
origin, and the new potential (the Legendre transform of the original one) is C 1 but
not C 2. Rotating the gradient graphs a tiny bit further gives rise to a potential that is
multivalued in a small neighborhood of the origin. By solving the Dirichlet problem
for (1) with boundary data given by those of the multivalued potential, one obtains
solutions that cannot have minimal gradient graph. Here and below, by minimal we
mean a mass-minimizing integral varifold. In this section we outline a proof, and
we discuss the relationship between these examples and the one from the previous
section. The idea of working in rotated coordinate systems has been used to prove
regularity and Liouville-type theorems in many contexts (see, e.g., [10], [43], and
[11]).

Step 1: Calculations in [37, Section 2] show that there is a solution w to the
special Lagrangian equation with c D "=2 in B2& %R3 such that

wD 1

2
.x21 C x22/C x3.x21 # x22/

C 1

12
x23.18x

2
1 C 18x22 # x23/#

1

8
.x21 C x22/2CO

#
jxj5

$
:
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It is shown that the two largest eigenvalues ofD2w are close to 1 and that the smallest
eigenvalue !3 of D2w is analytic near the origin and satisfies

!3 D#jxj2CO
#
jxj3

$
: (10)

Remark 3.1
The expansion of w follows from the form of the polynomial P on [37, p. 1161]. We
took mD 2, which determines the coefficients a0 D #1; a1 D 6; a2 D #3=2 (see the
bottom of [37, p. 1162]). Taking & D 1=12 and using the formulas for H and !3 on
[37, pp. 1162–1163] gives the conclusions above.

Let % > 0 be small, and let tan+ D %. Let .x; y/ be coordinates of R6 with x and
y in R3. Rotating the gradient graph of w by an angle + , that is, representing the
graph in new coordinates

Qx D cos+x # sin+y; Qy D sin+xC cos+y;

we get a new potential Qw which satisfies

r Qw
#
cos+x # sin+rw.x/

$
D sin+xC cos+rw.x/;

D2 Qw
#
cos+x # sin+rw.x/

$
D
#
I # %D2w.x/

$"1#
%I CD2w.x/

$
;

F .D2 Qw/D "

2
C 3+ in B& :

Letting Q!3 be the smallest eigenvalue of D2 Qw, we conclude using (10) that

Q!3
#
cos+x # sin+rw.x/

$
D % # .1C %2/jxj2CO

#
jxj3

$
I

hence Q!3.0/D %;r Q!3.0/D 0, and

D2 Q!3.0/D#
2.1C %2/

cos2 +

#
.1# %/"2.e1˝ e1C e2˝ e2/C e3˝ e3

$
:

For % small, the connected component Z of the set ¹ Q!3 > 0º containing the origin
is thus an analytic uniformly convex set contained in BCp" . (Here and below, C
and c will denote constants independent of % that may change as we refer to them.)
Furthermore, for

‰.x/ WD . Qw1; Qw2; x3/;

the same is true for the set ‰.Z/, that is, the connected component of ¹ Q!3 ı‰"1 > 0º
containing the origin.
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Figure 1. The graph of Qw! restricted to a vertical line.

Step 2: The Legendre transform Qw! of Qw is defined in a ball B2d , and for % small
it is analytic and single-valued in B2dnBd=8. Let u be the viscosity solution to the
Dirichlet problem

F.D2u/D#3+ in B3d=2; uj@B3d=2 D Qw!;

the existence of which was established in [22]. We claim that for % small u is smooth
in BdnBd=2, and furthermore that

ku# Qw!kC2.BdnBd=2/ <C%
2:

To show this, it suffices to establish that

ku# Qw!kL1.B3d=2nBd=4/ <C%2: (11)

Indeed, the small perturbations theorem in [32] then implies that u is smooth and
bounded in C 2;˛ in B5d=4nB3d=8. Applying the Schauder interior estimates (see
[20]) to the difference of u and Qw! (which solves a linear equation with coefficients
bounded in C ˛ by the preceding observation) implies the desired C 2 estimate.

We show (11) using barriers. First, using the convexity of ‰.Z/ and arguments
similar to those in Lemma 2.4, one can show that the preimages under r Qw of verti-
cal lines are nearly vertical curves that have connected intersection with Z. As one
follows one of these curves upward, Qw3 decreases when the curve lies outside of Z
and increases when it is inside of Z. This means that Qw! is multivalued in a simple
way: the graph of Qw! along a vertical line is either single valued and concave, or it
consists of two crossing concave pieces that lie below and are connected by a convex
piece (see Figure 1). Since Qw! solves the dual equation F.D2 Qw!/D#3+ where it is
concave in the vertical direction, we conclude that the function min. Qw!/ given by the
minimum of the possible values of Qw! is a super-solution to the equation solved by
u. In particular, u&min. Qw!/.
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Second, since aij WD Fij .D2 Qw/ is nearly constant in B& , we can build a posi-
tive super-solution ' to the linearized equation aij'ij < 0 in B& that agrees (up to
an affine transformation) with jxj to a negative power outside BCp" , is glued to a
quadratic polynomial with Hessian eigenvalues smaller than #10 in BCp" , and sat-
isfies j'j & C%. More precisely, we may assume after an affine transformation that
aij D ıij CO.jxj/, so for ) small, the function jxj"1=2 is a super-solution to the lin-
earized equation in B&n¹0º. If we replace this function by a paraboloid in BCp" with
matching values and derivatives on the boundary (call the resulting function '0), then
D2'0 D #c%"5=4I in BCp" . Taking ' D C%5=4'0 does the job, since '0 & C%"1=4
in BCp" . We remark that by gluing jxj"1=2 to a paraboloid a little more carefully, we
may assume that ' is smooth.

We conclude for % small that Nw WD Qw C %' is a super-solution to the nonlin-
ear equation solved by Qw. Since D2' & #10I in BCp" , the smallest eigenvalue of
D2 Nw is everywhere negative, and by similar considerations as in the previous section,
Nw has a single-valued Legendre transform. Moreover, Nw! lies within C%2 of Qw! in
B3d=2nBd=4 and is a subsolution of the dual equation solved by u (again by similar
reasoning as in the previous section). For the last claim we use that

F.D2 Nw!/D "

2
#F.D2 Nw/ > "

2
#F.D2 Qw/D#3+:

The maximum principle implies that u$ Nw!#C%2 in B3d=2 (indeed, the function on
the right lies below u on @B3d=2 and is a smooth subsolution to the nonlinear equation
solved by u). In particular, we have

Qw! # 2C%2 & Nw! #C%2 & u&min. Qw!/D Qw!

in B3d=2nBd=4, establishing the inequality (11).
Step 3: Assume by way of contradiction that $u is a mass-minimizing integral

varifold. By the above considerations, the graphs $u WD ¹.ru.y/; y/ W y 2 Bd º and
$ Qw D ¹.x;r Qw.x// W x 2 B&º are %2-close in C 1 when y is restricted to BdnBd=2.
Note that $ Qw is graphical over its tangent 3-plane P at the origin provided ) is small,
and it lies within a cylinder of radius C)2 around P . The same is thus true of $u near
its boundary, and hence everywhere by the maximum principle. There is a competitor
for $u in the ball B of radius ) in R6 obtained by connecting $u to P on @B and
replacing $u with P in B that has mass .1C%&/jB& j, where %&( 1 for ) small (we in
fact have %& & C)3). Since this bounds the mass of $u from above in B, for ) small we
can apply the Allard theorem (as stated, e.g., in Theorem 3.2 and the remark thereafter
in [16]; see also [1] and [33]) to conclude that $u is smooth in B=2. Moreover, $u and
$ Qw are the graphs over P of maps that are %2-close in C 1 in an annulus, have gradient
bounded by C) (for $ Qw this is just from Taylor expansion and for $u this follows
from a quantitative form of the Allard theorem; see, e.g., [17, Theorem 2.1]) and solve
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the minimal surface system (this last statement due to the fact that $u and $ Qw are
mass-minimizing, so in particular they are critical points of area). Using the standard
regularity theory of systems arising as Euler–Lagrange equations of functionals with
uniformly convex integrands (the area element is uniformly convex for maps with
small gradient), we infer that $u and $ Qw are everywhere %2-close in the C 1 sense. In
particular, $u is graphical in the x variable as well, so u! is single-valued and satisfies

D2u!.0/DD2 Qw.0/CO.%2/ > C"1%I

for % small. This implies that D2u.ru!.0// is a positive matrix, contradicting the
equation for u.

One feature of the examples in this section is that the singularities occur near
the center of a ball, in contrast with the examples in the previous section, which are
only constructed in a small neighborhood of a singularity. Another feature is that the
singularities of the examples in this section exist for all choices of % small, illustrating
their stable nature.

The argument above shows that u is not well approximated by Qw! near the origin.
Instead, we need to consider the Legendre transform of a solution v to the modified
equation

max
°
F.D2v/# "

2
# 3+;detD2v

±
D 0; vD Qw on @B& .

This is in fact the starting point of our construction in Theorem 1.1, in which we
exhibit a C 2;1 solution of (2) with an analytic compact free boundary between the
two operators.

We expect that the examples constructed in the previous section are in fact local
models for the singularities appearing in this section. More precisely, we conjecture
that for all % > 0 small, the examples u constructed in this section exhibit Lipschitz
singularities, and moreover that their Legendre transforms u! solve degenerate Bell-
man equations with compact free boundaries. The main difficulty consists in showing
that solutions v to the equation above are of class C 2 and have injective gradient. On
the other hand, after an appropriate rescaling, as %! 0 the equation linearizes to a
model equation of the type

max
®
4v; v33C 1# jxj2

¯
D 0; v! 0 as jxj !1.

This problem has a compact free boundary which seems to have good regularity prop-
erties. We intend to analyze these questions further in a subsequent work.

Acknowledgments. The authors are grateful to the referees and to Yu Yuan for helpful
comments.



2942 MOONEY and SAVIN

C. Mooney was supported by a Sloan Fellowship, a University of California,
Irvine, Chancellor’s Fellowship, and National Science Foundation (NSF) CAREER
grant DMS-2143668. O. Savin was supported by the NSF grant DMS-2055617.

References

[1] W. K. ALLARD, On the first variation of a varifold, Ann. of Math. (2) 95 (1972),
417–491. MR 0307015. DOI 10.2307/1970868. (2940)

[2] J.-G. BAO and J.-Y. CHEN, Optimal regularity for convex strong solutions of special
Lagrangian equations in dimension 3, Indiana Univ. Math. J. 52 (2003), no. 5,
1231–1249. MR 2010325. DOI 10.1512/iumj.2003.52.2341. (2929)

[3] J.-G. BAO, J.-Y. CHEN, B. GUAN, and M. JI, Liouville property and regularity of a
Hessian quotient equation, Amer. J. Math. 125 (2003), no. 2, 301–316.
MR 1963687. (2929)

[4] A. BHATTACHARYA, The Dirichlet problem for the Lagrangian mean curvature
equation, preprint, arXiv:2005.14420 [math.DG]. MR 4314140. (2929)

[5] A. BHATTACHARYA, C. MOONEY, and R. SHANKAR, Gradient estimates for the
Lagrangian mean curvature equation with critical and supercritical phase,
preprint, arXiv:2205.13096, [math.AP]. (2929, 2931)

[6] S. BRENDLE and M. WARREN, A boundary value problem for minimal Lagrangian
graphs, J. Differential Geom. 84 (2010), no. 2, 267–287. MR 2652462. (2929)

[7] L. CAFFARELLI, Interior a priori estimates for solutions of fully nonlinear equations,
Ann. of Math. (2) 130 (1989), no. 1, 189–213. MR 1005611.
DOI 10.2307/1971480. (2930)

[8] L. CAFFARELLI and X. CABRÉ, “Fully nonlinear elliptic equations” in American
Mathematical Society Colloquium Publications Vol. 43 Providence, RI: American
Mathematical Society, 1995. MR 1351007. DOI 10.1090/coll/043. (2930)

[9] L. CAFFARELLI, L. NIRENBERG, and J. SPRUCK, The Dirichlet problem for nonlinear
second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,
Acta Math. 155 (1985), nos. 3–4, 261-301. MR 0806416.
DOI 10.1007/BF02392544. (2929)

[10] S.-Y. A. CHANG and Y. YUAN, A Liouville problem for the sigma-2 equation, Discrete
Contin. Dyn. Syst. 28 (2010), no. 2, 659–664. MR 2644763.
DOI 10.3934/dcds.2010.28.659. (2937)

[11] J. Y. CHEN, R. SHANKAR, and Y. YUAN, Regularity for convex viscosity solutions of
special Lagrangian equation, Comm. Pure Appl. Math. 78 (2023), no. 12,
4075–4086. MR 4655360. DOI 10.1002/cpa.22130. (2929, 2937)

[12] J. Y. CHEN, M. WARREN, and Y. YUAN, A priori estimate for convex solutions to special
Lagrangian equations and its application, Comm. Pure Appl. Math. 62 (2009),
no. 4, 583–595. MR 2492708. DOI 10.1002/cpa.20261. (2929)

[13] K.-S. CHOU and X.-J. WANG, A variational theory of the Hessian equation, Comm.
Pure Appl. Math. 54 (2001), no. 9, 1029–1064. MR 1835381.
DOI 10.1002/cpa.1016. (2929)

https://mathscinet.ams.org/mathscinet-getitem?mr=0307015
https://doi.org/10.2307/1970868
https://mathscinet.ams.org/mathscinet-getitem?mr=2010325
https://doi.org/10.1512/iumj.2003.52.2341
https://mathscinet.ams.org/mathscinet-getitem?mr=1963687
http://arxiv.org/abs/2005.14420
https://mathscinet.ams.org/mathscinet-getitem?mr=4314140
http://arxiv.org/abs/2205.13096
https://mathscinet.ams.org/mathscinet-getitem?mr=2652462
https://mathscinet.ams.org/mathscinet-getitem?mr=1005611
https://doi.org/10.2307/1971480
https://mathscinet.ams.org/mathscinet-getitem?mr=1351007
https://doi.org/10.1090/coll/043
https://mathscinet.ams.org/mathscinet-getitem?mr=0806416
https://doi.org/10.1007/BF02392544
https://mathscinet.ams.org/mathscinet-getitem?mr=2644763
https://doi.org/10.3934/dcds.2010.28.659
https://mathscinet.ams.org/mathscinet-getitem?mr=4655360
https://doi.org/10.1002/cpa.22130
https://mathscinet.ams.org/mathscinet-getitem?mr=2492708
https://doi.org/10.1002/cpa.20261
https://mathscinet.ams.org/mathscinet-getitem?mr=1835381
https://doi.org/10.1002/cpa.1016


NON C1 SOLUTIONS 2943

[14] M. CIRANT and K. PAYNE, Comparison principles for viscosity solutions of elliptic
branches of fully nonlinear equations independent of the gradient, Math. Eng. 3
(2021), no. 4, art. ID 030. MR 4147574. DOI 10.3934/mine.2021030. (2929)

[15] T. COLLINS, S. PICARD, and X. WU, Concavity of the Lagrangian phase operator and
applications, Calc. Var. Partial Differential Equations 56 (2017), no. 4, art. ID 89.
MR 3659638. DOI 10.1007/s00526-017-1191-z. (2929)

[16] C. DE LELLIS, “Allard’s interior regularity theorem: an invitation to stationary
varifolds” in Nonlinear Analysis in Geometry and Applied Mathematics. Part 2,
Harv. Univ. Cent. Math. Sci. Appl. Ser. Math., 2, Int. Press, Somerville, MA,
2018, 23–49. MR 3823880. (2940)

[17] G. DE PHILIPPIS, C. GASPARETTO, and F. SCHULZE, A short proof of Allard’s and
Brakke’s regularity theorems, Int. Math. Res. Not. IMRN 2024, no. 9, 7594–7613.
MR 4742836. DOI 10.1093/imrn/rnad281. (2940)

[18] S. DINEW, H.-S. DO, and T. D. TÔ, A viscosity approach to the Dirichlet problem for
degenerate complex Hessian-type equations, Anal. PDE 12 (2019), no. 2,
505–535. MR 3861899. DOI 10.2140/apde.2019.12.505. (2929)

[19] L. C. EVANS, Classical solutions of fully nonlinear, convex, second-order elliptic
equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 0649348.
DOI 10.1002/cpa.3160350303. (2929)

[20] D. GILBARG and N. TRUDINGER, Elliptic Partial Differential Equations of Second
Order, Springer, Berlin, 1983. MR 0737190. DOI 10.1007/978-3-642-61798-0.
(2939)

[21] R. HARVEY and H. B. LAWSON, Calibrated geometries, Acta Math. 148 (1982),
47–157. MR 0666108. DOI 10.1007/BF02392726. (2929)

[22] , Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl.
Math. 62 (2009), no. 3, 396–443. MR 2487853. DOI 10.1002/cpa.20265. (2929,
2939)

[23] , Pseudoconvexity for the special Lagrangian potential equation, Calc. Var.
Partial Differential Equations 60 (2021), no. 1, art. ID 6. MR 4179860.
DOI 10.1007/s00526-020-01850-1. (2929)

[24] N. V. KRYLOV, Boundedly nonhomogeneous elliptic and parabolic equations in a
domain, Izv. Akad. Nak. SSSR Ser. Mat. 47 (1983), no. 1, 75–108; English
translation in Math. USSR Izv. 22 (1984), 67–97. MR 0688919. (2929)

[25] C. LI, A compactness approach to Hessian estimates for special Lagrangian equations
with supercritical phase, Nonlinear Anal. 187 (2019), 434–437. MR 3955654.
DOI 10.1016/j.na.2019.05.006. (2929)

[26] S. LU, On the Dirichlet problem for Lagrangian phase equation with critical and
supercritical phase, Discrete Contin. Dyn. Syst., 43 (2023), no. 7, 2561–2575.
MR 4578557. DOI 10.3934/dcds.2023020. (2929)

[27] C. MOONEY, Homogeneous functions with nowhere vanishing Hessian determinant,
Ann. Inst. H. Poincaré Anal. Non Linéaire, 41 (2024), no. 3, 555–564.
MR 4740621. DOI 10.4171/aihpc/78. (2931)

https://mathscinet.ams.org/mathscinet-getitem?mr=4147574
https://doi.org/10.3934/mine.2021030
https://mathscinet.ams.org/mathscinet-getitem?mr=3659638
https://doi.org/10.1007/s00526-017-1191-z
https://mathscinet.ams.org/mathscinet-getitem?mr=3823880
https://mathscinet.ams.org/mathscinet-getitem?mr=4742836
https://doi.org/10.1093/imrn/rnad281
https://mathscinet.ams.org/mathscinet-getitem?mr=3861899
https://doi.org/10.2140/apde.2019.12.505
https://mathscinet.ams.org/mathscinet-getitem?mr=0649348
https://doi.org/10.1002/cpa.3160350303
https://mathscinet.ams.org/mathscinet-getitem?mr=0737190
https://doi.org/10.1007/978-3-642-61798-0
https://mathscinet.ams.org/mathscinet-getitem?mr=0666108
https://doi.org/10.1007/BF02392726
https://mathscinet.ams.org/mathscinet-getitem?mr=2487853
https://doi.org/10.1002/cpa.20265
https://mathscinet.ams.org/mathscinet-getitem?mr=4179860
https://doi.org/10.1007/s00526-020-01850-1
https://mathscinet.ams.org/mathscinet-getitem?mr=0688919
https://mathscinet.ams.org/mathscinet-getitem?mr=3955654
https://doi.org/10.1016/j.na.2019.05.006
https://mathscinet.ams.org/mathscinet-getitem?mr=4578557
https://doi.org/10.3934/dcds.2023020
https://mathscinet.ams.org/mathscinet-getitem?mr=4740621
https://doi.org/10.4171/aihpc/78


2944 MOONEY and SAVIN

[28] N. NADIRASHVILI, V. TKACHEV, and S. VLADUT, A non-classical solution to Hessian
equation from Cartan isoparametric cubic, Adv. Math. 231 (2012), nos. 3–4,
1589–1597. MR 2964616. DOI 10.1016/j.aim.2012.07.005. (2931)

[29] N. NADIRASHVILI and S. VLADUT, Singular solution to special Lagrangian equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 5, 1179–1188.
MR 2683755. DOI 10.1016/j.anihpc.2010.05.001. (2929, 2930, 2931, 2937)

[30] , Homogeneous solutions of fully nonlinear elliptic equations in four
dimensions, Comm. Pure Appl. Math. 66 (2013), no. 10, 1653–1662.
MR 3084701. DOI 10.1002/cpa.21456. (2931)

[31] , Singular solutions of Hessian elliptic equations in five dimensions, J. Math.
Pures Appl. 100 (2013), no. 6, 769–784. MR 3125267.
DOI 10.1016/j.matpur.2013.03.001. (2931)

[32] O. SAVIN, Small perturbation solutions for elliptic equations, Comm. Partial
Differential Equations 32 (2007), nos. 4–6, 557–578. MR 2334822.
DOI 10.1080/03605300500394405. (2939)

[33] L. SIMON, “Lectures on Geometric Measure Theory” in Proceedings of the Centre for
Mathematical Analysis, Australian National University, Vol. 3, Australian
National University, Centre for Mathematical Analysis, Canberra, 1983.
MR 0756417. (2940)

[34] N. S. TRUDINGER, Regularity of solutions of fully nonlinear elliptic equations, Boll.
Un. Mat. Ital. A (6) 3 (1984), no. 3, 421–430. MR 0769173. (2929)

[35] , Hölder gradient estimates for fully nonlinear elliptic equations, Proc. Roy.
Soc. Edinburgh Sect. A 108 (1988), nos. 1–2, 57–65. MR 0931007.
DOI 10.1017/S0308210500026512. (2930)

[36] J. URBAS, Some interior regularity results for solutions of Hessian equations, Calc.
Var. Partial Differential Equations 11 (2000), no. 1, 1–31. MR 1777141.
DOI 10.1007/s005260050001. (2929)

[37] D. K. WANG and Y. YUAN, Singular solutions to special Lagrangian equations with
subcritical phases and minimal surface systems, Amer. J. Math. 135 (2013), no.
5, 1157–1177. MR 3117304. DOI 10.1353/ajm.2013.0043. (2929, 2930, 2931,
2935, 2937, 2938)

[38] , Hessian estimates for special Lagrangian equations with critical and
supercritical phases in general dimensions, Amer. J. Math. 136 (2014), no. 2,
481–499. MR 3188067. DOI 10.1353/ajm.2014.0009. (2929)

[39] M. WARREN and Y. YUAN, Explicit gradient estimates for minimal Lagrangian
surfaces of dimension two, Math. Z. 262 (2009), no. 4, 867–879. MR 2511754.
DOI 10.1007/s00209-008-0403-9. (2929)

[40] , Hessian estimates for the sigma-2 equation in dimension 3, Comm. Pure
Appl. Math. 62 (2009), no. 3, 305–321. MR 2487850. DOI 10.1002/cpa.20251.
(2929)

[41] , Hessian and gradient estimates for three dimensional special Lagrangian
equations with large phase, Amer. J. Math. 132 (2010), no. 3, 751–770.
MR 2666907. DOI 10.1353/ajm.0.0115. (2929)

https://mathscinet.ams.org/mathscinet-getitem?mr=2964616
https://doi.org/10.1016/j.aim.2012.07.005
https://mathscinet.ams.org/mathscinet-getitem?mr=2683755
https://doi.org/10.1016/j.anihpc.2010.05.001
https://mathscinet.ams.org/mathscinet-getitem?mr=3084701
https://doi.org/10.1002/cpa.21456
https://mathscinet.ams.org/mathscinet-getitem?mr=3125267
https://doi.org/10.1016/j.matpur.2013.03.001
https://mathscinet.ams.org/mathscinet-getitem?mr=2334822
https://doi.org/10.1080/03605300500394405
https://mathscinet.ams.org/mathscinet-getitem?mr=0756417
https://mathscinet.ams.org/mathscinet-getitem?mr=0769173
https://mathscinet.ams.org/mathscinet-getitem?mr=0931007
https://doi.org/10.1017/S0308210500026512
https://mathscinet.ams.org/mathscinet-getitem?mr=1777141
https://doi.org/10.1007/s005260050001
https://mathscinet.ams.org/mathscinet-getitem?mr=3117304
https://doi.org/10.1353/ajm.2013.0043
https://mathscinet.ams.org/mathscinet-getitem?mr=3188067
https://doi.org/10.1353/ajm.2014.0009
https://mathscinet.ams.org/mathscinet-getitem?mr=2511754
https://doi.org/10.1007/s00209-008-0403-9
https://mathscinet.ams.org/mathscinet-getitem?mr=2487850
https://doi.org/10.1002/cpa.20251
https://mathscinet.ams.org/mathscinet-getitem?mr=2666907
https://doi.org/10.1353/ajm.0.0115


NON C1 SOLUTIONS 2945

[42] Y. YUAN, A priori estimates of fully nonlinear special Lagrangian equations, Ann.
Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 2, 261–270. MR 1808031.
DOI 10.1016/S0294-1449(00)00065-2. (2929)

[43] , A Bernstein problem for special Lagrangian equations, Invent. Math. 150
(2002), no. 1, 117–125. MR 1930884. DOI 10.1007/s00222-002-0232-0. (2937)

[44] , Global solutions to special Lagrangian equations, Proc. Amer. Math. Soc.
134 (2006), no. 5, 1355–1358. MR 2199179.
DOI 10.1090/S0002-9939-05-08081-0. (2929)

[45] X. ZHOU, Hessian estimates to special Lagrangian equation on general phases with
constraints, Calc. Var. Partial Differential Equations 61 (2022), no. 1, art. ID 4.
MR 4338249. DOI 10.1007/s00526-021-02111-5. (2929)

Mooney

Department of Mathematics, University of California, Irvine, California, USA;

mooneycr@math.uci.edu

Savin

Department of Mathematics, Columbia University, New York, New York, USA;

savin@math.columbia.edu

https://mathscinet.ams.org/mathscinet-getitem?mr=1808031
https://doi.org/10.1016/S0294-1449(00)00065-2
https://mathscinet.ams.org/mathscinet-getitem?mr=1930884
https://doi.org/10.1007/s00222-002-0232-0
https://mathscinet.ams.org/mathscinet-getitem?mr=2199179
https://doi.org/10.1090/S0002-9939-05-08081-0
https://mathscinet.ams.org/mathscinet-getitem?mr=4338249
https://doi.org/10.1007/s00526-021-02111-5
mailto:mooneycr@math.uci.edu
mailto:savin@math.columbia.edu

	Introduction
	Proof of Theorem 1.1
	Related examples
	References
	Author's addresses

