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Multistability and predominant hybrid
phenotypes in a four node mutually
repressivenetworkofTh1/Th2/Th17/Treg
differentiation

Check for updates

Atchuta Srinivas Duddu1, Elizabeth Andreas2, Harshavardhan BV1,3, Kaushal Grover4, Vivek Raj Singh 5,
Kishore Hari1,6,7, Siddharth Jhunjhunwala1, Breschine Cummins 2 , Tomas Gedeon2 &
Mohit Kumar Jolly 1

Elucidating the emergent dynamics of cellular differentiation networks is crucial to understanding cell-
fate decisions. Toggle switch – a network of mutually repressive lineage-specific transcription factors
A and B – enables two phenotypes from a common progenitor: (high A, low B) and (low A, high B).
However, the dynamics of networks enabling differentiation of more than two phenotypes from a
progenitor cell has not beenwell-studied.Here,we investigate the dynamics of a four-nodenetwork A,
B, C, andD inhibiting each other, forming a toggle tetrahedron. Our simulations show that this network
ismultistable and predominantly allows for the co-existenceof six hybrid phenotypeswhere twoof the
nodes are expressed relatively high as compared to the remaining two, for instance (highA, highB, low
C, low D). Finally, we apply our results to understand naïve CD4+ T cell differentiation into Th1, Th2,
Th17 and Treg subsets, suggesting Th1/Th2/Th17/Treg decision-making to be a two-step process.

Multistability—the co-existence ofmore than one steady state/phenotype—
is a hallmark of gene regulatory networks (GRNs) driving cellular differ-
entiation and reprogramming. It is the defining trait of a switch that allows
the ability to achieve multiple states without altering internal genetic
content1,2. Thus, decoding the emergent dynamics of underlying regulatory
networks is crucial for mapping the cell-fate trajectories. Toggle switch—a
mutually inhibitory feedback loop between two nodes—is a bistable net-
work motif. A toggle switch between two master regulators, A and B, often
leads to the co-existence of twomutually exclusive cell-states—(lowA, high
B) and (high A, low B)3,4. This feature makes it suitable for investigating the
differentiation of a precursor cell into two sister lineages. However, the
emergent dynamics of GRNs involved in the differentiation of a common
progenitor into more than three phenotypes have not yet been as well-
studied.

CD4+ T-cells offer an intriguing model system to investigate
multistable dynamics with plasticity seen among multiple CD4+ T-cell
subsets both in vitro and in vivo—Th1, Th2, Th9, Th17 and Treg.

Specific cytokines can polarize naïve CD4+ T-cells towards these dif-
ferent subsets. Each T-cell subset has unique cytokine production and
immune function profile, and retains the capacity to reprogram to other
cell-states when exposed to different cytokine environments5. The
lineage-specifying transcription factors corresponding to Th1, Th2, and
Th17 – T-bet, GATA3 and RORγT – have been shown to repress each
other, thus forming a toggle triad6. Our previous work showed that a
toggle triad between A, B and C can enable the co-existence of three
differentiated states – (high A, low B, low C), (low A, high B, low C) and
(low A, low B, high C) and switching among them. Moreover, three
hybrid or ‘double-positive’ states – (high A, high B, low C), (low A, high
B, high C) and (high A, low B, high C) were also observed, albeit at a
lower frequency than the differentiated ones. These results could explain
the experimentally observed phenotypic switching among Th1 (high T-
bet, low GATA3, low RORγT), Th2 (low T-bet, high GATA3, low
RORγT), Th17 (low T-bet, low GATA3, high RORγT), and the hybrid
Th1/Th2, Th1/Th17 and Th2/Th17 states7,8.
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Besides the Th1/Th2/Th17 toggle triad, CD4+T-cells could also
differentiate into regulatory T cells (Treg) that are immunosuppressive in
nature, with FOXP3 acting as themaster regulator5. FOXP3 can inhibit and
is inhibited by T-bet, GATA3 and RORγT directly or indirectly9–14. Also,
double-positive cells co-expressing T-bet and FOXP3, GATA3 and FOXP3,
and RORγT, and GATA3 have been reported, suggesting the presence of
hybrid Th1/Treg, Th2/Treg and Th17/Treg states5. However, it remains
unclear whether a four-node mutually repressive network among T-bet,
GATA3, RORγT and FOXP3 is sufficient to explain the co-existence of
these 10 states– four single-positive ones (Th1, Th2, Th17 andTreg) and six
double-positive ones (Th1/Th2, Th1/Th17, Th2/Th17, Th1/Treg, Th2/Treg
and Th17/Treg) and switching among them.

Here, we investigated the emergent dynamics of a toggle tetrahedron –
four nodes (A, B, C and D) repressing each other, by simulating a set of
coupleddifferential equationsover aparameterensemble.We show that this
network predominantly allows six double-positive states: (high A, high B,
lowC, lowD), (highA, lowB, highC, lowD), (highA, lowB, lowC, highD),
(lowA, high B, high C, lowD), (lowA, high B, lowC, highD) and (low, low
B, high C, highD). The presence of single-positive states, on the other hand,
is much less prevalent. We further demonstrate switching among these
states and identify the network design principles that enable their co-
existence.Our results suggest that the differentiationof a progenitor cell into
four distinct single-positive states is a two-step process: first, it acquires one
of the six double-positive (hybrid) states, following which one of the two
lineages is chosen. They also offer a mechanistic explanation for how a
‘toggle tetrahedron’ among T-bet, GATA3, RORγT, and FOXP3 allows for
the stable existence of multiple intermediate T-cell subsets.

Results
Toggle tetrahedron enables six predominant ‘double-
positive’ states
Previous reports have identified pairwise mutual inhibition between
lineage-specifying transcription factors of Th1, Th2, Th17 and Treg: T-bet,

GATA3, RORγT,and FOXP3, respectively6,9–14. We had earlier investigated
the emergent dynamics of a toggle triad, reflecting interlinked toggle
switches among T-bet, GATA3 and RORγT. Here, we incorporate the
toggle switch that FOXP3 forms with each of these three factors, thus
forming a toggle tetrahedron (TTr) – a four-node mutually repressive
network (Fig. 1A).

While the mutual inhibitions of FOXP3 with the other three
master regulators have been reported directly or indirectly, the
antagonism of FOXP3 with T-bet, GATA3, and RORγT was usually
studied one at a time, not with all three master regulators simulta-
neously. Thus, we analysed an RNA-sequencing dataset where all four
phenotypes were present, such that the antagonism of FOPX3 with T-
bet, GATA3, and RORγT could be investigated together. This RNA-
sequencing data for distinct CD4+ T-cell subsets sorted from per-
ipheral blood of healthy donors (GSE135390) including Th1, Th2,
Th17, Treg, and hybrid Th1/Th17 ones15. We quantified the enrich-
ment of previously identified Th1, Th2, Th17, and Treg-specific gene
lists16,17 in these subsets. We observed that the Th1 gene signature was
relatively enriched in Th1 and hybrid Th1/Th17 subsets compared to
Th2, Th17, and Treg (Fig. 1B, i). Similarly, the Th2 gene signature was
enriched in Th2 cells, the Treg signature in Treg cells, and the
Th17 signature in Th17 and hybrid Th1/Th17 cells (Fig. 1B, ii-iv).
These trends suggest the enrichment of Th1, Th2, Th17 and Treg
signatures in corresponding cell types.

Further, we project these scores on a scatterplot that highlights that
Treg-specific gene signature enrichment is negatively correlated individu-
ally with the enrichment of Th1 (R =− 0.75, p < 0.0001), Th2 (R =− 0.67,
p < 0.001) and Th17 (R =− 0.54, p < 0.05) specific gene signatures (Fig. 1C,
ii-iv) as well as with a common Th specific gene signature seen in Th1, Th2
and Th17 cells (R =− 0.97, p < 0.0001) (Fig. 1C, i). Together, these results
establish the mutual antagonism that the lineage-specific transcription
factor for Treg (FOXP3) has with those of Th1, Th2 and Th17—T-bet,
GATA3 and RORγT, respectively. Integrating these trends with a toggle

Fig. 1 | Transcriptomic analysis showing enrichment of Th1, Th2, Th17 and Treg
signatures corresponding to specific cell type. A Schematic showing the regulatory
network among the regulators of Th1 (T-bet), Th2 (GATA3), Th17 (RORγt), and
Treg (Foxp3), forming a toggle tetrahedron. BQuantification of difference in levels
of i) Th1, ii) Th2, iii) Th17 and iv) Treg gene signature enrichment scores across Th1,

Th2, Th17, Treg and hybrid Th1/17 cells (GSE135390). C i) Scatterplot showing
different cell types on the Th-Treg gene signature enrichment score plane. ii-iv)
Same as i) but for Th1-Treg plane, Th2-Treg place and Th17-Treg plane
(GSE135390). Pearson’s correlation coefficient values are shown. *: p value < 0.05,
**: p value < 0.01; ***: p value < 0.001 for Student's two-tailed t-test.
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triad observed among T-bet, GATA3 and RORγT7, we establish the for-
mation of a toggle tetrahedron among these four factors.

We next investigated the dynamical properties of a toggle tetrahedron
(between A, B, C and D) using a computational tool, Randomized Circuit
Perturbation (RACIPE) analysis18. The input to RACIPE is a network
topology– a list of activating and inhibiting interactions among the different
nodes. RACIPE converts the topology into a set of coupled ODEs (ordinary
differential equations) that reflect the set of interactions in that network
topology. It then samples 10,000 unique sets of kinetic parameters over a
biologically relevant range of values and generates an ensemble of mathe-
maticalmodels, eachwith aunique combinationofparameter set values. For
each such set, RACIPE randomly samples multiple initial conditions for
each node in the network, simulates the dynamics of the network topology
and reports different possible steady-state values for each node. It should be
noted that for some parameter sets, depending on initial conditions, the
system may converge to more than one steady state, showcasing multi-
stability for those specific sets. Thus, each kinetic model simulated via
RACIPE represents a distinct parameter combination, denoting the inher-
ent cell-to-cell variability in biochemical reaction rates. An ensemble of such
models can, therefore, represent the behaviour of a cell population.

Here, each kinetic model is a set of four coupled ODEs. Each ODE
tracks the levels of a node engaged in a toggle tetrahedron: A, B, C and D.
Next, we characterized the different steady states/ phenotypes enabled by
toggle tetrahedron over all parameter sets as identified by RACIPE. Among
the 10,000 parameter sets generated for the toggle tetrahedron, the network
enabled about 17%monostable cases, 34%bistable cases, 26% tristable cases,
12% tetrastable cases, 4%penta-stable cases and 7%cases ofmore than 5 co-
existing states (Fig. 2A), thus highlighting the underlying multistable
behaviour for this network topology. Given the high degree of non-linearity
in the coupled ODEs for a toggle tetrahedron—each Hill co-efficient can
take a value between 6 to 10, and when Hill functions are multiplied in the
equation for the 4 nodes—we could get polynomials of a high degree which

could lead to suchmultistable scenarios. To identifywhich specific states are
enabled by the network overall multistable sets, we normalized the
expression levels of the four nodes A, B, C and D for all solutions corre-
sponding to up to 5 co-existing states (93%of solutions) andplotted themas
a heatmap (Fig. 2B). The heatmap shows the predominance of six states
where two nodes were expressed higher relative to the other two (‘double-
positive’ states)—{highA, high B, lowC, lowD}, {lowA, lowB, highC, high
D}, {high A, low B, low C, high D}, {low A, high B, high C, low D}, {high A,
low B, high C, low D} and {low A, high B, low C, high D}—represented as
{ABcd}, {abCD}, {AbcD}, {aBCd}, {AbCd} and {aBcD} respectively, here-
after. The dominance of ‘double-positive’ states was maintained upon
varying the number of parameter sets chosen (105, instead of 104) and initial
conditions per parameter set (104, instead of 103) (Supplementary Fig. 1).

Because eachnode in aTTr is capable of exhibiting ‘high’or ‘low’ levels,
the network can have a total of 16 ( = 24) states. We quantified the fre-
quencies of these 16 states over all the parameter sets and observed a clear
dominance of the six possible ‘double-positive’ states followed by the exis-
tence of ‘triple-positive’ and ‘single-positive’ states (Fig. 2C).The six ‘double-
positive’ states ({ABcd}, {abCD}, {AbcD}, {aBCd}, {AbCd} and {aBcD}) each
accounted for about 15%of all the states occurring. The four ‘triple-positive’
states ({ABCd}, {AbCD}, {ABcD} and {aBCD}) each accounted for about 2%
of all states occurring. The ‘all-high’ and ‘all-low’ states ({ABCD} and
{abcd}) and the four ‘single-positive’ states ({Abcd}, {aBcd}, {abCd} and
{abcD}) were the least prevalent. Among the parameter sets enabling
monostability, a similar trend repeats with each of the six ‘double-positive’
states accounting for 14–16% of the cases, while each of the four ‘single-
positive’ and four ‘triple-positive’ states each account for about 1.5% of the
cases (Supplementary Data 1), reflecting the symmetry of a toggle tetra-
hedron. We have considered only the ‘double-positive’ states for further
analysis since the rest together do not have more than 10% frequency.

Next, we characterized the combinations of steady states given by
bistable parameter sets.Abistable parameter setwould give rise to two stable

Fig. 2 | Characterization of phenotypes enabled by a toggle tetrahedron.
A Frequency of monostable, bistable, tristable, tetrastable, pentastable solutions, and
more than 5 co-existing states in the toggle tetrahedron, shown as a pie chart.
B Heatmap showing the solutions obtained via RACIPE and nomenclature shows
nodes with high (low) expression levels in an uppercase (lowercase) fashion.

C Frequency distribution of states (all solutions taken together) with themost frequent
ones highlighted being – {aBcD}, {abCD}, {AbcD}, {aBCd}, {ABcd} and {AbCd}.
D Frequency distribution of 15 possible bistable combinations. For the panels C&D,
RACIPE data was collected from three independent runs. * shows p < 0.05 for
Student's two-tailed t-test.
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steady states. Thus, a total of 120 ( = 16C2) possible bistable combinations are
possible, but only 15 combinations had a frequency of more than 1% as a
fraction of all bistable combinations, and the remaining 105 ( = 120 – 15)
combinations only accounted for 19% frequency (Supplementary Data 1).
Thus, we ignored these 105 combinations for further analysis and focused
on those 15 ones also. Not surprisingly, these 15 ( = 6C2) combinations are
sets of any two ‘double-positive’ states, given their predominance in
monostable parameter sets as well as all parameter sets together. Intrigu-
ingly, out of the 15 possible combinations of bistable states - 3 states, which
are a combination of 'mirror states' (i.e., when the bistable state is—{ABcd,
abCD} / {AbCd, aBcD} / {AbcD, aBCd}, i.e. a combination of stateswhere all
four nodes switch their levels between the two states) were found to have
significantly lower frequency - together accounting for about 4.5% of the
parameter sets—each accounting for about 1.5%. The other 12 states con-
sisted of a combination of nonmirror states, i.e., a combination of states
where two nodes do not switch their levels (say {aBcD, AbcD}, where A and
B switch their levels between the two states, but C and D do not) and
together accounted for 84% of the parameter sets—each accounting for
about 7% (Fig. 2D). Put together, our results suggest that the toggle tetra-
hedron network topology allows for the co-existence of ‘double-positive’
states/ phenotypes where the expression level of two of the regulators is
higher relative to the other two.

In addition, we use the complementary tool Dynamic Signatures
Generated by Regulatory Networks (DSGRN)19,20 to analyse the behaviour
of TTr across the set of all parameters, as we did earlier for a toggle switch
and toggle triad21. DSGRN analyses the behaviour of ODE models with
piecewise constant nonlinearities,which result from taking a limit of theHill
function nonlinearities used by RACIPE as the Hill coefficient tends to
infinity. This approximation enables DSGRN to divide high-dimensional
parameter space into a finite number of regions defined by explicit

inequalities among parameters and identify the corresponding stable steady
states/phenotypes associated with all real-valued parameters within that
region. By ignoring the value of the Hill coefficient, RACIPE parameters
may be directly assigned to a DSGRN parameter region, permitting an
analytical comparison of phenotype predictions of the TTr model to
RACIPE output. Since DSGRN computes steady states by combinatorial
methods and does not use ODE simulations, the computational time using
DSGRN is several orders of magnitude smaller compared to that of
RACIPE. However, the TTr provides a challenge to the combinatorial
methodology of DSGRN, as the number of parameter regions of the TTr is
over 27 trillion. Instead of an exhaustive computation of steady states for all
these regions, we introduce two approaches. First, we explore a very small
(6561 regions out of 27 trillion) but well-studied subset of the parameter
regions that we term Strict monotone Boolean (SB) parameters. This
approach corresponds to a choice of monotone Boolean functions at each
vertex of TTr and we study the number of steady states for the corre-
sponding Boolean dynamics. Second, we perform stochastic sampling of
DSGRNparameter regions. Finally, we compare the frequencies of different
types of steady states predicted by DSGRN SB parameters and by DSGRN
stochastic parameter sampling to RACIPE stochastic samples.

We first compared the predictions of the DSGRNSB parameter subset
to the predictions obtained by a stochastic sampling of DSGRN parameter
space. We notice substantial differences in predictions. DSGRN SB para-
meters indicate a much greater frequency of double-positive states than
stochastic sampling (Fig. 3A, i). Additionally, DSGRN SB parameters pre-
dict that 12 of the 15 possible bistable states (the ones that are not a com-
bination of 'mirror states') exhibit much higher frequencies than the
remaining 3 bistable states, while DSGRN stochastic sampling only shows a
small difference between these two subsets of bistable states (Fig. 3A, ii).
Next,we compared the all-state frequencypredictions ofDSGRNto those of

Fig. 3 | State-space analysis of toggle tetrahedron using DSGRN. A Frequency of
all states (i, top) and frequency of bistable states (ii, bottom) for the DSGRN ran-
domly sampled parameters (blue) and all 6561 strict monotone Boolean parameters
(orange). Note that four sets of 10,000 parameters were sampled, the black line on the
blue bars indicate the standard deviation in frequency between these sets. B Simple
linear regression61 was used to show the relationship between RACIPE and sampled
DSGRN frequencies (black dots) for all states (i, top) and bistability (ii, bottom). The

line of best fit is indicated by the blue line, while the black line represents the line
y = x.C Same as (B) for RACIPE and strict Boolean frequencies.D Same as (B) with
strict Boolean and sampledDSGRN frequencies. Notice that when the blue line slope
and intercept are close to the black line, as we see inC, indicates that the frequencies
between the pairs are very similar.
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RACIPE (top row) and, similarly, the frequencypredictions of bistable states
(bottom row). This comparison was done to both DSGRN stochastic
sampling (Fig. 3B) and toDSGRNSBparameters (Fig. 3C).Weobserve that
low frequency predictions in RACIPE are correlated with low frequency
predictions in the DSGRN methods, and similarly for higher frequency
predictions. However, the best affine fit between DSGRN and RACIPE
predictions has a linear coefficient other than 1 (blue regression lines vs
black line in Fig. 3B, C). TheDSGRNSBparameter predictions have a linear
coefficient closer to 1 than the stochastic samples and, in this sense, may
indicate a closer relationship between the predictions of RACIPE and
DSGRNSB than betweenRACIPE andDSGRNstochastic sampling. Lastly,
and for completeness, we show the best affinefit betweenDSGRNstochastic
sampling and DSGRN SB parameters for all states (Fig. 3D, i) and bistable
states (Fig. 3D, ii). As expected from the comparisons to RACIPE, the low
and high frequencies are well correlated, but the linear coefficient differs
from 1.

We show that the steady states of SB parameters where eachmonotone
Boolean function is non-degenerate, i.e. non-constant andwhere each input
is able to affect the output, can be analytically determined (SI Section 3).We

use this analysis to confirm the numerical results (Figs. 2C and 3A) that the
double-positive equilibria occur more frequently than other types of equi-
libria.We further analyse other symmetric tetrahedron networks where the
number of positive in-edges at each node is either 1, 2 or 3. Our analysis
shows that in each of these cases within the ensemble of all compatible non-
degenerate monotone Boolean functions, the frequency of double-positive
states is higher than the frequency of other states (SI Section 3).

Dynamical traits of double-positive states enabled by toggle
tetrahedron
To further characterize the parametric space corresponding to the co-
existence of the double-positive states, we performed a bifurcation
analysis of multiple parameter sets enabling non-mirror bistable states
identified by RACIPE. For a representative parameter set enabling the
bistable state – {ABcd-AbcD}, where the expression level of nodes B and
D should switch, we chose the degradation rate of B (kB) as the bifur-
cation parameter (Fig. 4A, i). This choice wasmotivated by experimental
tools available to vary the stability (or half-life) of a protein through post-
translational modifications.

Fig. 4 | Bifurcation analysis of representative parameter sets corresponding to the
non-mirror bistable states. A Bifurcation diagrams of four representative cases
(each column denotes a different parameter set – P1-P4) with each row showing the
expression levels of the four nodes A–D. Dotted vertical line in each case marks the
RACIPE parameter value of the corresponding bifurcation parameter. B Stochastic

simulations showing switching between the bistable states (only the two nodes
switching between ‘high’ and ‘low’ are shown, the nodes always expressed ‘high’ or
always ‘low’ are not shown). Parameter sets P1, P2, P3 and P4 are provided in
Supplementary Data 2.
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We observed that at high levels of kB, the system loses bistability and
becomesmonostable as the state {ABcd}no longer exists.Conversely, at very
low levels of kB, only the state {ABcd} exists, and the system loses bistability.
In the bistable regime (kB ranging between 0.1 and 0.8, thus spanning
almost an order of magnitude), the expression levels of B and D switch
between two states – one is relatively high and the other low. The nodes A
and C also exhibit two states, but the levels of A are high in both the states,
and those of C are relatively too low to distinguish between them. For the kB
value obtained from the RACIPE generated parameter set, we performed
stochastic simulations to validate the switching between states and observed
the expression levels of B andD (Fig. 4B, i).We see that the levels of B andD
aremutually exclusive, i.e., when B is relatively high, D is low and vice versa,
as expected from the bistable state where B and D switch between states.

We performed the same analysis for three more representative para-
meter sets enabling the bistable states – {AbcD, abCD}, {AbCd, aBCd} and
{ABcd, aBcD}, and observed similar behaviours though the bifurcating
parameters were degradation rates of different nodes (kC, kA and kA
respectively) (Fig. 4A, ii-iv). In each of the cases, we see that the expression
level of thenodewhich is always ‘high’, switchesbetween two levels, but both
these levels are relatively ‘high’. Stochastic simulations showed possible
switching between the two bistable states enabled by the respective para-
meter set (Fig. 4B, ii-iv). Put together, these results highlight that the co-
existence of ‘double-positive’ states is a robust feature of TTr, and this
feature can be disrupted by altering the degradation rate of nodes in the TTr
network (i.e. the half-life of one of the TFs engaged in a TTr is drastically
manipulated).

Design principles of multistability enabled by toggle tetrahedron
A toggle tetrahedron can exhibit monostable (17% of parameter sets) or
multistable (83%ofparameter sets) dynamics. Thus,we investigated various
parameter sets from the RACIPE analysis to deduce a relationship between
the parameter sets and the different states they converged to. We

hypothesized that the relative strength of transcriptional inhibition among
the different nodes controls the different stable steady states observed. To
quantify the strength of inhibition from one regulator onto the other, we
used a metric called link strength X, where X(AB) represents the value of
inhibition from regulator A to B, in accordance with the formulation of
RACIPE framework7.

In RACIPE formalism, the strength of the inhibitory interaction is
defined by a shifted Hill function consisting of three parameters – n (Hill
coefficient corresponding to cooperativity), λ (fold-change) and T (half-
maximal concentration or threshold). For an inhibitory link, the higher the
value of n, the faster is the increase in strength of inhibition with changing
concentration of the source node, or in other words, the steeper the increase
in strength of inhibition. For inhibitory links, λ value ranges from 0.01
(strong repression) to 1 (no effect). Thus, the smaller the value of λ, the
stronger the inhibition. Similarly, the smaller the value of T, the lower is the
concentration of the source regulator needed for the inhibition to be active.
Thus, we defined the link strengthmetric, X = n/(λ *T), such that the higher
the value of X, the stronger is the strength of inhibition.

For the parameter sets that enable themonostable ‘single-positive’ state
{abcD} or {lowA, low B, lowC, highD}, we hypothesize that the inhibitions
ofA, B andCbyDare relatively stronger than inhibition ofDbyA, B andC.
To test the hypothesis, we first shortlisted the parameter sets that enable the
particular state (here, monostable {abcD}) and then calculated the strength
of inhibition between each pair of nodes for each parameter set. For every
parameter set, and for eachpair of nodes, among the two inhibitory links, we
identified the dominant one and thus quantified the frequency with which
one node inhibits the other one more strongly compared to vice versa. We
found that for approximately 70% of the parameter sets, the conditions
X(DA) > X(AD), X(DB) > X(BD) and X(DC) > X(CD) were true, i.e. inhi-
bitions originating from the node D were stronger than their opposing
counterpart in a mutually inhibitory feedback loop (Fig. 5A). On the other
hand, no such skew was observed for mutual inhibition among pairs of

Fig. 5 | Link Strength Analysis of monostable and bistable states for toggle
tetrahedron. A i) Schematic showing the links that are expected to be stronger than
their counterparts for the state {abcD} ii) Frequency of dominance of all six pairs of
mutually inhibitory links between any two nodes in a toggle tetrahedron, for all
parameter sets corresponding to the case ofmonostable {abcD}.B Same as A) but for

the monostable state – {abCD}. C Same as A) but for the non-mirror bistable state
combination – {AbcD, aBcD}. D Same as A) but for the mirror bistable state com-
bination – {ABcd, abCD}. In C andD panels, the nodes that switch between the two
states are written as X(Y), where X and Y can switch.
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nodes whose levels were low, i.e. between A and B, between B and C and
between A and C, i.e. in approximately 50% of parameter sets, X (AB) > X
(BA), and in the remaining 50%, X (BA) > X (AB) (Fig. 5A). Results for
other monostable ‘single-positive’ states show similar trends (Supplemen-
taryFig. 2A–C). For the caseofmonostable ‘double-positive’ state {abCD}or
{lowA, low B, highC, highD}, we hypothesized that the inhibition of A and
B by C and D is stronger than that of C and D by A and B. We found our
hypothesis to be true in 70% of the parameter sets corresponding to this
state, i.e. the conditions X(CA) > X(AC), X(DB) > X(BD), X(CB) > X (BC)
and X (DA) > X (AD). However, the two remaining pairwise mutual inhi-
bitions – one between A and B, and the other between C and D – did not
show any such skew (Fig. 5B). Consistent trends were observed for other
monostable ‘double-positive’ states (Supplementary Figs. 2D–F, 3B–F).
Similarly, for a monostable ‘triple positive’ state {aBCD} or {low A, high B,
high C, high D}, we noticed that in about 70% of corresponding parameter
sets, the inhibition ofAbyB,C andDwas higher than inhibition of B, C and
D by A, i.e. X (BA) > X (AB), X (CA) > X (AC) and X (DA) > X (AD).
However, no such skew was noted for pairwise mutual inhibition among B,
C and D (Supplementary Fig. 3A). These trends highlight the parametric
conditions under which TTr topology does not allow for multistable
behaviour and instead converges to one of the different possiblemonostable
scenarios. Theoretical analysis of nondegenerate monotone Boolean func-
tions also confirms the RACIPE results that for any pair of genes, the
strength of repressive connection from highly expressed gene is larger than
that from a weakly expressed gene (SI section 4). However, it should be
noted that these conditions identified for this phenomenologicalmodelmay
not be sufficient to enable these monostable scenarios when looking at a
more complete regulatory network that is closer to reality in terms of size
and complexity.

Next, we performed the link strength analysis for parameter sets
enabling bistability. In the case of bistable states, we have two predominant
combinations among the ‘double-positive’ states– apair ofmirror states and
a pair of non-mirror states.

For parameter sets enabling the non-mirror state combination of
{aBcD,AbcD}, we hypothesized the following: a) inhibition ofA, B andCby
D is overall stronger than inhibition ofDbyA, B andC; ii) inhibition ofCby
A, B andD is overall stronger than that inhibition of A, B andDbyC; iii) for
mutual inhibition between A and B, both the links are equally likely to be
stronger than the other. An analysis of corresponding parameter sets reveals
our hypothesis to be true: i) X(DC) > X(CD) in approximately 70% of
parameter sets, X(DA) > X(AD) andX(DB) > X(BD) in approximately 65%
of the parameter sets, ii) X(AC) > X(CA) and X(BC) > X(CB) in approxi-
mately 60% of parameter sets, and X(DC) > X(CD) in about 70% of para-
meter sets, and iii) X(AB) > X(BA) in about 50% of the parameter sets (Fig.
5C). In the case of parameter sets enabling bistability with the pair ofmirror
states – {abCD, ABcd}, we hypothesized that for mutual inhibition between
every pair of nodes, each inhibition is equally likely to be stronger than the
other. The results showed that for the two inhibitions between any pair of
nodes, one is stronger than the other in about 50%of the parameter sets (Fig.
5D). Similar trends were observed for the other bistable state combinations
(Supplementary Figs. 4–6). Put together, these results point towards pat-
terns in a high-dimensional parametric space that allows a toggle tetra-
hedron to enable specific combinations of states or dynamical behaviours.

Uniqueness of the dynamical traits of toggle tetrahedron
T-bet, GATA3, RORγT and FOXP3—similar to many master regulators—
are known to self-activate directly and/or indirectly7,22,23. Thus, we investi-
gated the dynamics of TTr when all 4 nodes can either self-activate (TTr
+SA) or self-inhibit (TTr+SI).We observed that compared to TTr, for TTr
+SA, the number of parameter sets corresponding to monostability, bist-
ability and tristability decreased, but those corresponding to higher-order
multistability (tetrastability and pentastability) were enhanced. However,
for the TTr+SI network, the number of parameter sets enabling multi-
stability decreased, and those corresponding to monostability increased
(Supplementary Fig. 7D, E). The frequency of single-positive and triple-

positive states changed in these two scenarios though. For TTr+SI (TTr
+SA), the frequency of triple-positive states increased (decreased), and the
frequency of single-positive states decreased (increased) (Fig. 6A, Supple-
mentary Fig. 8). Irrespective of these changes, the ‘double-positive’ states
were still the most predominant ones in case of both TTr+SA and TTr+SI
(Fig. 6A), showcasing that the salient features of a TTr remain unchanged
upon adding self-regulations

We next asked how unique the predominance of ‘double-positive’
states is to aTTr topology. Toanswer this question,we calculated the steady-
state distributions of all possible fully connected four-node networks, i.e.
networks in which each node is connected to at least one of the other 3
nodes. No self-regulatory edge was allowed in this ensemble of networks;
given that each of the 12 edges connecting any two nodes can be activatory
or inhibitory, we have a large possibility space of network topologies. We
shortlisted them, using the NetworkX library in Python24, to ensure that
each network is unique, i.e. no network is repeated in the network topology
space. We found a total of 218 possible networks, including the TTr. Next,
we compared the behaviour of the 217 networks, one at a time, with the TTr
as the reference by measuring how different or similar the frequency dis-
tribution of the 16 possible states. To minimize the computational costs of
simulating 217 networks, these simulations were done using discrete Boo-
lean modelling with a general asynchronous update scheme and simple
majority update rule, instead of RACIPE. Previous simulations for other
network topologies showed remarkable consistency in steady-state dis-
tributions obtained via RACIPE and Boolean modelling25–27, thus we chose
this modelling strategy. We used JSD (Jensen-Shannon Divergence) as our
metric to compare corresponding steady-state distributions. JSD values lie
between 0 and 1; the higher the value, the more different the two distribu-
tions are. We noticed that as we transition from TTr to other four node
networks in which one or more of the inhibitions between two nodes is
swapped with activatory edge(s), the higher the number of such swaps, the
higher the JSD (Fig. 6B). Intriguingly, for as less as three swaps, we begin to
see networks with JSD = 1, i.e. completely non-overlapping steady-state
distributions, when compared with the TTr. JSD was found to be 0 only
when there were no swaps. Put together, this result shows that the features
observed for TTr are unique to its network topology and increasingly differ
with an increasing number of swaps of inhibitions by activations in the
network topology.

Regulatory networks such as a TTr do not operate in isolation but are
often embedded in larger networks. Thus, we quantified the behaviour of
TTr when embedded in external networks of varying sizes and densities
(Fig. 6C, i).We chose these external networks of 3 sizes (10 nodes, 15 nodes,
20 nodes) and 3 densities (no. of edges = 2* no. of nodes, no. of edges = 4*
no. of nodes, no. of edges = 6* no. of nodes). These representative values of
size anddensity of the external networkwere chosen todiscern the impact of
these two parameters on the functional traits of the embedded motif. We
noticed saturating behaviour beyond a specific size or density, based on our
prior work of embedding a toggle switch or triad within a large network28.
Here, for a given size and density, we chose 100 unique randomnetworks in
which we embedded the TTr. Thus, in total, we simulated 900 ( = 3*3*100)
networks and used the abovementioned Boolean modelling strategy to
minimize computational costs. For each of these 900 networks, we mea-
sured the net frequency of the six ‘double-positive’ phenotypes, and plotted
the distribution of these frequencies for the set of 100 external networks
corresponding to a fixed size and density. We noticed that as the size and,
more importantly, the density of the external network increased, the sum of
frequencies of the ‘double-positive’ states decreased (Fig. 6C, ii). However,
the extent of the decrease is not so high that the ‘double-positive’ states do
not dominate the frequency distribution. In most cases, the six ‘double-
positive’ states remain much more frequent than the four ‘single-positive’
ones (Fig. 6C, iii; Supplementary Fig. 9), reflecting the functional resilience
of a TTr topology when embedded in external networks. This behaviour is
reminiscent of the resilience of the toggle switch when embedded in similar
external networks, where ‘single-positive’ states are the most dominant
(Supplementary Fig. 7A) and of embedded toggle triad where ‘single-
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positive’ and ‘double-positive’ states retain their dominance (Supplemen-
tary Fig. 7B, C)28.

Discussion
Multistability is a hallmarkof diverse cell-fate decision regulatorynetworks2,
and synthetic multistable circuits are being increasingly integrated into E.
coli, yeast andmammalian cells29–32. It is not only observed at an intracellular
level, but also in spatial tissue-level patterning through the emergent
dynamics of cell-cell communication networks such as Notch-Delta-Jagged
signalling33,34. Thus, decoding the dynamical traits ofmultistable networks is
critical to better understand cellular development and reprogramming and
has attracted extensive theoretical attention too35.

Most deterministic or stochastic computational models of multistable
networks have assessed the dynamics of amutually inhibitory loop between
two transcription factors (TFs), or aTF andmicro-RNA,where theTFsmay
self-activate2,36–39. Such toggle switches are extensively observed at cell-fate
bifurcation points in developmental decision-making3, where a common
progenitor can give rise to twomutually exclusive phenotypes. Consistently,
a toggle switch between nodes A and B can allow for the co-existence of
(highA, lowB), (lowA, highB) and (mediumA,mediumB) states.Here,we
have investigated the dynamics of four lineage-specific TFs mutually
repressing one another, as observed in CD4+ T-cell differentiation5, thus
forming a toggle tetrahedron.

Our results suggest that a toggle tetrahedron allows for the pre-
dominant existence of six ‘double-positive’ states where two of the four
lineage-specific TFs have relatively higher expression levels as compared to
the other two. This behaviour is fundamentally different from a toggle
switch or a toggle triad, where ‘single-positive’ (only one of the lineage-
specific TF is at relatively high levels) states dominate. A possible reason for
the predominance of ‘double-positive’ states is that they are less frustrated40

as compared to ‘single-positive’ or ‘triple-positive’ ones. Extending these
results to understand the differentiation of naïve CD4+T cells into Th1,
Th2, Th17 and Treg subsets, we can indicate that this differentiation is a
two-step process, where amultipotent cell first acquires one of the hybrid or
‘double-positive’ state (step 1), and further differentiate into one of the
‘single-positive’ states after the hybrid/progenitor cell switches to one of the
twopossible phenotypes (step 2) (Fig. 7). In this case, the naïveCD4+ Tcell
is presumed to express comparable levels of all four nodes, similar to
observations for a progenitor state in a toggle switch where A » B and B » A
are stable states but A ~ B is often unstable41. To the best of our knowledge,
there is no experimental proof for our model prediction of T-cell differ-
entiation following a two-step process. However, many ‘double-positive’
cell-states have been experimentally shown to be stable phenotypes–hybrid

Fig. 7 | Schematic representing the two-step differentiation enabled by the toggle
tetrahedron. (left) CD4+ T-cells can acquire hybrid or ‘double-positive’ states and
differentiate into a single-positive state, as enabled by dynamics of toggle tetra-
hedron among T-bet, GATA3, RORγt, and Foxp3 (right).

Fig. 6 | Features unique to the toggle tetrahedron topology. A Frequency of
monostable, bistable, tristable and other multistable states for TTr, TTr+ SI and
TTr+ SA. B Scatterplot showing the JSD value between the frequency distribution
graphs of the reference network (TTr) and the network specified by the number of
inhibiting edges swapped (on x-axis) when all steady states are taken together. C i)
Schematic representing how a TTr network is embedded in a larger random

network. ii) Sum of the frequencies of all the six ‘double-positive’ states for Boolean
simulations of networks of varying sizes and densities. iii) Fraction of sum of fre-
quencies of all the four ‘single-positive’ states (4 SP) over the sumof frequencies of all
the six ‘double-positive’ states (6DP) for Boolean simulations of networks of varying
sizes and densities. Inset shows a zoomed in version with the y-axis range – (0,3).
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Th1/Th242, hybrid Th17/Treg43 and hybrid Th1/Treg14. This information,
though not sufficient, supports what our model suggests. Our model pre-
dictions are consistent with these experimental results and provide dyna-
mical insights into how these hybrid states can be achieved. Further time-
course high-throughput analysis of CD4+T-cell differentiation8,15,44 into
multiple (> 2) subsets simultaneouslywouldhelp in testing our predictionof
two-step differentiation. It should be noted that our approximation of
CD4+ T-cell differentiation into Th1, Th2, Th17 and Treg via a toggle
tetrahedron misses certain features, such as other nodes and/or edges
affecting the network behaviour45,46 and epigenetic remodelling that could
have a time-varying influence on network dynamics47. Future efforts could
incorporate these features for a more quantitative and comprehensive
recapitulation the of dynamics of T-cell differentiation.

Previous computational models of CD4+ T-cell differentiation have
often focused on the dynamics under a specific parameter set and have
reported the presence of hybrid phenotypes12,48,49. Our analysis builds on
those efforts and quantifies the frequency of different states across a wide
parameter set ensemble, thereby demonstrating the salient features of the
TTr network topology. Importantly, this predominance of a ‘double-posi-
tive’ state in aTTr isnot seen in anyother four-nodenetwork, and is retained
even when it is embedded in larger networks, thus demonstrating the
resilience of TTr network dynamics. Future computational models of
CD4+ T-cell differentiation should incorporate additional lineage-specific
TFs such as BCL-6 and Blimp-1 (that regulate the T follicular helper cell
differentiation) and their interactions with T-bet, GATA3 and FOXP350–54,
as well as the impact of spatial inhomogeneities in cytokine signalling55.
Increasing the size of the network presents challenges to the analytical and
numerical exploration of their dynamics. Larger networks come with a
larger number of parameters, and RACIPE sampling thus covers less of the
parameter space. The number of parameter regions (i.e. DSGRN para-
meters) examined by DSGRN methodology also grows exponentially with
the size of the network.However,weobserved thatwithin the small subset of
6561 SB parameters out of 27 trillion of all parameters for TTr, there is a
surprisingly high correlation between the results from RACIPE sampling,
SB parameters, and sampling of all DSGRN parameters. We are currently
seeking an explanation of this phenomenon, since examining only SB
parameters would allow analysis of larger networks.

Overall, our results offer novel insights intoTTr dynamics andpropose
a step-wise decision-making for a common progenitor cell capable of giving
rise to more than two differentiated phenotypes. Besides, these insights can
help in the design of synthetic four-node regulatory networks exhibiting
multistability, building on prior work on two- or three-node synthetic
multistable networks29,30.

Methods
Randomized circuit perturbation (RACIPE) analysis
RACIPE18 is a computational tool used to investigate the dynamical beha-
viour exhibited by a specific network topology. It attempts to quantify all
possible steady-state behaviours the network topology can show over an
ensemble of parameter sets, instead of a specific parameter set. Thus, it
samples parameters over a biologically relevant range to generate multiple
parameter sets. A large number of parameter sets is likely to ensure that all
diverse behaviours in parametric space are accounted for. Analysing these
results provides an understanding of the different states enabled by the
topology in specific parametric spaces and an idea of the frequencies with
which these states occur.

The formulation of one-way interaction between any two nodes of the
network topology (say an inhibition from node B onto node A) is given by
the following equation:

dA
dt

¼ gA � HS B;B0
A; nBA; λAB

� �� kA � A ð1Þ

where gA and kA are intrinsic production and degradation rates of node A,
respectively, and the Hill function HS B; B0

A; nBA; λAB
� �

represents the

interaction (here inhibition) of thenodeBontonodeA.Thefirst termon the
RHS represents the net production rate of node A, while the second term
represents the degradation of node A (here, a first-order degradation is
considered). The Hill interaction consists of a combined form of negative
and positive Hill functions and is referred to as a shifted Hill equation. The
Hill function is used to represent the activation or inhibition between two
nodes because of the use of biochemical rate equation formulation of gene
expression.

HS B; B0
A; nBA; λAB

� � ¼ H� Bð Þ þ λAB � 1�H� Bð Þð Þ ð2Þ

where

H� Bð Þ ¼ 1

1þ B
B0
A

� �nBA ð3Þ

In case of the interaction being an activation, the hill function is further
divided by the fold-change parameter corresponding to the respective
interaction, i.e., in case of an activation from node B to node A, the hill
function would be, HS B;B0

A; nBA; λAB
� �

=λAB.
TheHill coefficient is chosen to vary from6 to10 forTTr, insteadof the

default range from 1 to 6 in RACIPE. This is because it allows for a bimodal
distribution for the node expression levels to segregate ‘high’ and ‘low’ states
(Supplementary Fig. 1A). We used the default values of number of para-
meter sets (=10000) and number of initial conditions per parameter set
(=1000) for our simulations, although similar behaviourwas observedwhen
taking a larger number of parameter sets and/or initial conditions (Sup-
plementary Fig. 1B). The threshold values are calculated such that for each
parameter set, every interaction has a 50% chance of being active/inactive.
For every parameter set, classification of its monostability, bistability or
othermultistability is done after simulating it for the 1000 initial conditions
and finding the number of stable steady-states obtained.

Finding SF value for TTr embedded in larger networks
We embedded the TTr motif in randomly generated networks of specific
sizes and densities, i.e., a specific number of nodes and edges in the network.
For a given pair of values for the number of nodes and edges, we generated
100 networks randomly without overlap and for each network, we ran
Boolean simulations following an asynchronous update rule56. We then
calculated the sum of frequencies for the six ‘double-positive’ states (SF)
enabled by the TTr motif.

NetworkX—for finding unique four node topologies
The constraint for us to find all possible network topologies is that they have
to have four nodes, and each node is connected to every other node via
activationor inhibition.Wefirst generated all possible topologies,with every
edge having a possibility of an activation or inhibition. To simplify the code,
we did not consider the notations of activations and inhibitions but just
marked the presence of an edge as an activation and considered its absence
as an inhibition. We then generated all possible combinations of edges
between nodes. For every classification based on the number of edges pre-
sent, we compared the network topologies within each class using the
‘nx.algorithms.is_isomorphic‘ function from NetworkX24. The ‘nx.algor-
ithms.is_isomorphic‘ function utilizes an implementation of the VF2++
algorithm57 for Graph Isomorphism testing to shortlist the unique network
topologies in our case. Finally, after obtaining the unique topologies, we
converted themtocompletedirected topologies (i.e.,markedactivations and
inhibitions again). We exported these directed network topologies in the
‘.topo’ file format for further RACIPE analysis.

Dynamic signatures generated by regulatory networks (DSGRN)
analysis
DSGRN is a computational tool devised to perform an exhaustive com-
putationof coarse dynamics (e.g., steady states) across all possible parameter
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values of a switching system21. The switching system for the TTr is given by
four equations, one for each node. The equation for node A is given; the
equations for the other nodes are analogous.

dA
dt

¼
X

X2fB;C;Dg
H�

1ðA;X; lAX ; uAX ; θAXÞ � kA*A ð4Þ

H�
1ðY ;X; lYX ; uYX ; θYXÞ ¼

uYX ;X < θYX
lYX ;X > θYX

�
ð5Þ

Notice that H�
1 ¼ uYX � lYX

� �
lim
n!1

1
1þ Xn=θnYXð Þ þ lYX , which permits a

mapping fromRACIPE parameters to DSGRNparameter regions (see21 for
details). We refer to lYX ; uYX; θYX as the lower, upper, and threshold values
of the edge X ! Y:

The parameter regions defined by DSGRN are given by collections of
inequalities derived from the topology of the TTr, one for each of A, B, C,
and D. Each node has three input edges, and therefore has eight potential
input values (example shown for node A in the first column of Table 1).
These input values toAare interleavedwith the thresholds θXAofA’s output
edges to form aDSGRNparameter region for theAnode. An example set of
DSGRNparameter inequalities for node A is given in the 2nd-4th columns of
Table 1.

The table above implicitly definesθBA<θDA and θCA<θDA; however, the
relationship of θBA; θCA remains an open choice, and therefore the table
represents two DSGRN parameter regions. The dynamics and, thus, the
different possible steady-state values for each node are determined by a
choice of DSGRN parameter20. For the TTr, there are 3 in-edges and 3 out-
edges from every node, resulting in 4242 parameter regions for each node.
Each node independently may be associated with any one of these
inequalities, resulting in 42424DSGRNparameter regions, an incomputable
number. Instead of exhaustive computations, we use both stochastic sam-
pling and a principled restriction of the number of DSGRN parameter
regions.

Stochastic simulations
As previously stated, the number of DSGRN parameter regions for TTr
makes exhaustive computing infeasible. We randomly sampled four sets of
10,000 DSGRN parameters, for a total of 40,000 parameters. For each
sample group, we used the DSGRN software (https://github.com/
marciogameiro/DSGRN) to calculate the discrete dynamics of each para-
meter, and hence the classification of its monostability, bistability or other
multistability.

Strict monotone Boolean parameters
Modelling using monotone Boolean functions has a long history58,59.
DSGRN parameters are readily described as multilevel Boolean functions60,

which have a special subset ofmonotone Boolean functions.We restrict our
attention to theseDSGRNparameter regions,whichwe call strictmonotone
Boolean (SB) parameters. The set of SB parameters are all DSGRN para-
meter regions (i.e., they respect the partial order in Table 2) such that an
input value Ik is either less than or equal to all the output thresholds of node
A. An example SB parameter is given in Table 2, where again, less than
relationships are highlighted in red.Notice that in every row (i.e., each input
value) the signs are either all ">" or all "<", this is the condition to be an SB
parameter. We note that there are additional algebraic constraints on
DSGRN parameters. Specifically, the input values (i.e., the lower and upper
values) into a node are evaluated as a sumof products, see20 formore details.

In a SB parameter, there are no input values between any two
thresholds, and therefore, the thresholdsmay occur in any of the six possible
orders. Therefore, a SB parameter table always represents six DSGRN
parameter regions. Given the small size of this collection of parameters
(6561) compared to all parameters, the high correlation between the results
from RACIPE sampling, SB parameters, and sampling of all DSGRN
parameters exhibited in Fig. 3B,D is surprising.We are currently an seeking
explanation of this phenomenon.

Data availability
The codes used in manuscript to generate all simulation data are available
here: https://github.com/The-Aviator-Frames/Toggle-Tetrahedron and
https://github.com/Eandreas1857/Tetrahedron.
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