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Abstract. We prove a sharp global W 2, p estimate for potentials of optimal transport maps that
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Key words. optimal transport, Monge–Ampère equation, regularity

MSC codes. 35J96, 35B65

DOI. 10.1137/23M1582436

1. Introduction. Optimal transport maps play an important role in physics,
geometry, economics, and meteorology. The regularity of optimal transport maps
is a delicate matter that for the most part has focused on the case that the source
and target domains are convex. However, this condition is not satisfied in many
applications. In this paper, we initiate the study of the Sobolev regularity of optimal
transport maps in the plane, where the source domain is nonconvex.

The setting is as follows. Let ⌦1 and ⌦2 be bounded domains in R2 of unit area.
We assume that ⌦2 is convex. Then the optimal transport map from ⌦1 to ⌦2 is the
gradient map of a convex function u on R2 which satisfies (see [7])

detD2
u= �⌦1

(1)

in the Alexandrov sense, u is smooth and locally uniformly convex in ⌦1, and

ru(⌦1) =⌦2.(2)

We assume further that ⌦1 is a convex domain ⌦0 with a finite number of disjoint,
C

1,1, uniformly convex holes a positive distance � from @⌦0 and from each other
removed. Our main result is the following.

Theorem 1.1. We have u2C
1,1/2

�
⌦1

�
with norm depending only on the diam-

eters of ⌦1 and ⌦2, �, and the lower and upper bounds for the boundary curvatures

of the holes in ⌦1. We also have u 2W
2, p(⌦1) for any p < 2, with norm depending

only on the same quantities and p.

Theorem 1.1 is sharp. To see this, consider the radially symmetric example where
⌦1 is an annulus with inner radius r, ⌦2 is a disk, and the potential is

u(x) =

Z |x|

0
(s2 � r

2)1/2+ ds.(3)

Below, we will refer to (3) as the model example.
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NONCONVEX PLANAR DOMAINS 4743

One motivation for Theorem 1.1 comes from the semigeostrophic equations (SGEs)
from meteorology. The SGEs lead one to consider optimal transport maps that take
a bounded density on the torus to the uniform one (see, e.g., [15]). When the source
density is bounded between positive constants, W 2,1 estimates for the potential are
available [13], [14], [24], which lead to long-time existence results for the SGEs [2],
[3], [15]. However, in physically interesting cases, the SGEs involve optimal transport
maps where the source density is allowed to vanish. In this case, W 2,1 estimates for
the potential do not always hold (see [22]). An important special situation is when the
source density is the characteristic function of a domain (which need not be convex),
as in the situation of Theorem 1.1. For the SGEs, this corresponds to a fully nonlinear
analogue of the vortex patch problem for the two-dimensional Euler equations. Global
W

2,1 estimates for optimal transport maps of nonconvex domains may be useful for
extending long-time existence results for the SGEs to this situation.

More generally, Theorem 1.1 can be viewed as a step toward obtaining global
regularity results for optimal transport maps of general nonconvex source domains.
The global regularity of optimal transport maps in the case of convex source and
target domains is well studied. Ca↵arelli proved that, in this case, the potentials are
C

1,↵ up to the boundary and C
2,↵ up to the boundary provided that the domains

are C
2 and uniformly convex [6]. Here ↵ is small. The conditions on the domains

required for global C2,↵ regularity of the potential were recently relaxed to C
1,1 and

merely convex [9] and even slightly nonconvex but close to convex in the C
1,1 sense

[10]. In two dimensions, Savin and Yu showed that convexity of the domains is enough
to get global W 2, p regularity for any p <1 [23]. As for the case of nonconvex source
domain, in [4], the authors obtain global C1,↵ estimates for potentials of optimal
transport maps in any dimension when the densities are bounded between positive
constants, the target domain is convex, and the source domain is a convex set with
finitely many convex holes removed, using ideas from [5]. (Again, here ↵ is small.) Our
methods (described below) are quite di↵erent from those in [4], and the smoothness
of the densities and the regularity properties of the holes play a delicate role in our
analysis. We remark that our methods in fact apply near any “uniformly concave”
part of the boundary of a general smooth planar source domain.

Our strategy is as follows. First, we may focus our attention on a neighborhood
of the holes in ⌦1 (the “concave part” of the boundary of ⌦1), thanks to the work of
Savin and Yu, which shows the W 2, p regularity of u (for any p) near the “convex part”
@⌦0 of the boundary of ⌦1 [23]. We carefully analyze the geometry of the sections
of u (defined in section 2), which are centered at concave boundary points. We show
that there are three possible cases, all of which are “good.” The first case is that the
complement of ⌦1 fills only a tiny fraction of the section. In this case, morally speak-
ing, u solves detD2

u= 1 in the whole section, and we can control section geometry at
smaller scales using the regularity theory for the Monge–Ampère equation. The sec-
ond case is that the complement of ⌦1 fills a positive universal fraction of the section,
and the long axis of the section is transversal to the boundary. In this case, we show
that renormalization by an a�ne transformation flattens the boundary, and we are
again in a good situation where section geometry can be controlled at smaller scales
using Pogorelov-type estimates for the Monge–Ampère equation. The last case is that
the complement of ⌦1 fills a positive universal fraction of the section, and the long axis
of the section is roughly tangent to the boundary. In this case, we are in a situation
that resembles what happens at every inner boundary point for the model example,
which has the desired regularity properties. Our analysis near the holes is valid for
any solution of the Monge–Ampère equation and does not use the convexity of ⌦2.
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4744 MOONEY AND RAKSHIT

In the course of the proof, we also prove a new interior second derivative estimate
for solutions to detD2

w= �{x2>0}, which is special to two dimensions. The classical
Pogorelov estimate bounds the tangential second derivative w11. Although this su�ces
for our application, using the partial Legendre transform, we are also able to bound
the ratio |w12|/w11 from above (see Proposition 2.3). As a result, the sections of w
centered on {x2 = 0} are well approximated by ellipsoids whose axes are aligned with
the coordinate axes. This result simplifies our proof and may be useful for future
applications.

The paper is organized as follows. In section 2, we discuss some preliminary re-
sults about the geometry of centered sections as well as some Pogorelov-type estimates
(including the one mentioned in the previous paragraph). In section 3, we prove sev-
eral key lemmas, corresponding to the three scenarios mentioned above. In section 4,
we prove Theorem 1.1. In section 5, we discuss some future directions. Finally, in
Appendix A, we prove some of the preliminary results.

2. Preliminaries. For the remainder of the paper. we fix a constant �> 0. We
let F� denote the space of convex functions on R2 that satisfy (1) and (2), where ⌦1

and ⌦2 have unit area and are contained in B��1 , ⌦2 is convex, and the source domain
⌦1 consists of a convex domain ⌦0 with convex holes removed, where the holes are
separated a distance at least � from one another and from the boundary of ⌦0 and
the boundaries of the holes have lower and upper bounds �, ��1 on their curvature.
(Here ⌦i are not fixed; they are any domains satisfying the above conditions.) We
note that F� is a compact family; namely, any sequence in F� contains (after possibly
adding constants) a subsequence that converges locally uniformly on R2 to a function
in F�. The local uniform convergence follows from the fact that the gradients lie in
B��1 and the Arzelà–Ascoli theorem. The fact that the limit lies in F� uses the weak
convergence of Monge–Ampère measures under local uniform convergence [20]. We
call constants depending only on � universal, and we say that positive quantities a and
b satisfy a⇠ b if their ratio is trapped between positive universal constants. We call
constants “absolute” if they are fixed positive numbers independent of �. (Generally,
these are dimensional constants which become absolute in view of the fact that we
are working in the plane.) Finally, we say that a⇡ b if their ratio is trapped between
absolute constants.

Let u 2 F�. For any x 2 ⌦1 and h > 0, there exists an a�ne function Lx,h such
that

Lx,h(x) = u(x) + h

and such that the set {u<Lx,h} is bounded and has center of mass x (see [6]). We call
{u<Lx,h} the centered section of height h at x, and we denote it by S

u

h
(x). One can

show that u is not linear when restricted to any line segment centered at a point in ⌦1

(see the appendix). Combined with a compactness argument, this shows that there
exists a universal modulus of continuity ! such that for any x2⌦1 and any h< 1,

diam(Su

h
(x)) !(h).(4)

In particular, for h < c0 universal, we have that S
u

h
(x) intersects at most one con-

nected component of ⌦c

1 for any x2⌦1. Below, we will always assume that h2 (0, c0),
and we will only consider sections centered in ⌦1 that are either contained in ⌦1 or
intersect a hole in ⌦1.

Such centered sections satisfy the area estimate

|Su

h
(x)|⇡ h.(5)
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NONCONVEX PLANAR DOMAINS 4745

This estimate follows from the absolute positive density of ⌦1 in such sections; see
Lemma A.3 in the appendix for a proof of (5). By a version of John’s lemma, there
exist rectangles Ru

h
(x) centered at 0 of area 4h and d0 ⇡ 1 such that

x+ d0R
u

h
(x)⇢ S

u

h
(x)⇢ x+ (d0)

�1
R

u

h
(x).(6)

We denote the short and long side lengths of Ru

h
(x) by 2�u

h
(x) and 2⇤u

h
(x), respectively

(note that �u
h
(x)⇤u

h
(x) = h), and we define the eccentricity of Ru

h
(x) by the quantity

⌘
u

h
(x) =

⇤u

h
(x)

�
u

h
(x)

.

Finally, we have the following engulfing property (see the appendix), which allows
us to compare sections in ⌦1 tangent to a hole with a section centered on the boundary
of the hole.

Proposition 2.1. If u2F�, y 2 S
u

h
(x)\ (@⌦1\@⌦0), and S

u

h
(x)⇢⌦1, then

S
u

h
(x)⇢ y+R

u

c�1h
(y)

for some universal c > 0.

We now state some Pogorelov-type estimates. The first result is Pogorelov’s
interior C2 estimate (see, e.g., [20]).

Proposition 2.2. If detD2
w = 1 in S

w

1 (0) and B� ⇢ S
w

1 (0) for some � > 0,
then |D2

w|< 
�1

in
1
2S

w

1 (0) and

Bt1/2 ⇢ S
w

h
(0)⇢B�1t1/2

for all t < 1 and some (�)> 0.

Combining Proposition 2.2 with the a�ne invariance of the Monge–Ampère equa-
tion and the area estimate (5), we have

|D2
u(x)|⇡ ⌘h(x)(7)

whenever S
u

h
(x) ⇢ ⌦1. To see this, assume after a translation and a rotation that

x= 0 and that the long side of Ru

h
(0) is horizontal. Then

u(x1, x2) := hw(x1/⇤
u

h
(0), x2/�

u

h
(0)),

where w satisfies the conditions of Proposition 2.2 with � absolute. Thus, |D2
u(0)|

h�
u

h
(0)�2|D2

w(0)| 
�1

h�
u

h
(0)�2 for some > 0 absolute. Using that h= �

u

h
(0)⇤u

h
(0)

gives the upper bound in (7). The lower bound in (7) follows similarly using that
w22(0) ⇡ 1, which comes from the equation solved by w and the absolute upper
bound on its Hessian at 0.

The next estimate is a variant of Pogorelov’s interior C2 estimate with flat bound-
ary, which to our knowledge is new.

Proposition 2.3. If detD2
w = �{x2>0} in S

w

1 (0) and B� ⇢ S
w

1 (0) ⇢ B��1 for

some �> 0, then

sup
1

2
S

w
1
(0)\{x2>0}

✓
w11 +

|w12|
w11

◆
 

�1

for some (�)> 0.

The upper bound on w11 is the classical Pogorelov estimate (see [6]) and does not
use that we are working in the plane. The upper bound on |w12|/w11 uses that we
are in the plane.
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4746 MOONEY AND RAKSHIT

Proof. We may assume after subtracting a linear function that w|@Sw
1
(0) = 0.

Let w⇤ denote the partial Legendre transform of w (the Preliminaries section of [11]
discusses the definition and relevant properties, and we recall these in section A.5 of
the appendix for the reader’s convenience). The function w

⇤ is convex in the first
variable and concave in the second and formally solves

�{x2>0}w
⇤
11 +w

⇤
22 = 0

in B1
(0) for some 1(�)> 0. More precisely, w⇤ is harmonic in {x2 > 0} and linear on

vertical segments in {x2 < 0}, and, moreover, w⇤
2 has the same limit from above and

below on {x2 = 0} along vertical lines. It is not hard to verify the first two properties
by approximating �{x2>0} with smooth positive functions of x2. The third property
can be verified using that w 2 C

1 [1], [18]. Since w
⇤ is linear on vertical segments in

{x2  0}, we have

w
⇤
2(x1, 0) = a

�1(w⇤(x1, 0)�w
⇤(x1, �a))

for any a > 0. Choosing a = 2(�) > 0 and using that w
⇤ is convex (hence locally

Lipschitz with the Lipschitz constant bounded by a constant depending only on �) in
the horizontal directions, we conclude that w⇤

2 is Lipschitz on {x2 = 0}. In particular,
w

⇤
2 is harmonic in B1

\ {x2 > 0} and Lipschitz on {x2 = 0} (with the Lipschitz
constant bounded above by a constant depending only on �). It follows from harmonic
function theory that |w⇤

12|< 
�1
3 in B1/2 \ {x2 > 0} for some 3(�)> 0. To see this,

one can apply Lemma A.6 of the appendix, appropriately rescaled. Using the relation

w12 =�w
⇤
12w11

(see (18)), we obtain the desired estimate on |w12|/w11.

As a result of Proposition 2.3, under the same assumptions, we can say that Sw

t
(0)

is approximated by (contains and is contained in dilations by constants depending only
on � of) a rectangle with axes that are aligned with the coordinate axes for all t < 1.
Indeed, if not, then S

w

t
(0) is approximated by (contains and is contained in dilations

by absolute constants times) an ellipsoid of the form AtB1, where

At(x1, x2) =
⇣
A

p
t(x1 +Kx2), A

�1
p
tx2

⌘
,

A� > 0 (this follows from the upper bound on w11), and |K|>> 1. (Here and for
the rest of this paragraph,  denotes a small positive constant depending on �.) The
function

v(x) =
1

t
w(Atx)

satisfies the conditions of Proposition 2.3 with � absolute (call it 2r). In addition, we
have

w12 = v12 �Kv11.

In Br(re2), we can find points where v11 � k and |v12| < k
�1 for some absolute

constant k > 0 to arrive at a contradiction of Proposition 2.3 when |K| is su�ciently
large depending on �.
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NONCONVEX PLANAR DOMAINS 4747

3. Key lemmas. In this section, we prove some lemmas that control the geom-
etry of sections of u 2 F� centered at concave boundary points in various scenarios.
Below, we will use several times the standard fact that if wk are convex functions
with B� ⇢ S

wk
1 (0)⇢B��1 for some �> 0, wk|@Swk

1
(0) = 0, and detD2

wk are uniformly
bounded above, then a subsequence of wk converges uniformly to a convex function
w satisfying the same properties, and the Monge–Ampère measures converge weakly
to that of the limit.

The first lemma deals with the case that ⌦c

1 bites only a small fraction of the
section.

Lemma 3.1. There is an absolute constant c1 > 0 such that the following holds.

Given M > 1, there exists ✏ > 0 depending on � and M such that if u 2 F�, x 2
@⌦1\@⌦0, and

|(x+R
u

h
(x))\⌦c

1|
|Ru

h
(x)|  ✏,

then

⌘
u

h/M
(x) c

�1
1 ⌘

u

h
(x)

and

R
u

h/M
(x)⇢ c

�1
1 M

�1/2
R

u

h
(x).

Proof. Assume by way of contradiction that the lemma is false. Then there exist
a sequence uk 2 F�, points xk on the boundaries of the holes in the source domains,
and hk > 0 such that the area fraction ✏k of the complements of the source domains
in xk+R

uk
hk
(xk) tends to zero, but the conclusions do not hold for a choice of absolute

constant c1 to be explained below and all k. After performing a rigid motion, we may
assume that xk = 0 and that Ruk

hk
(0) have short side vertical. Then up to adding a�ne

functions and taking a subsequence, the rescalings wk := h
�1
k

uk(⇤
uk
hk
(0)x1, �

uk
hk
(0)x2)

converge locally uniformly to a function w that satisfies the conditions of Proposi-
tion 2.2, with � = a0 > 0 absolute. Applying Proposition 2.2, we conclude that
B2a1M

�1/2 ⇢ S
w

1/M (0) ⇢ B(2a1)�1M�1/2 for some a1 > 0 absolute. In particular,
Ba1M

�1/2 ⇢ S
wk

1/M (0)⇢B(a1)�1M�1/2 for k large. It follows after scaling back that

a2M
�1/2

R
uk
hk
(0)⇢R

uk

hk/M
(0)⇢ (a2)

�1
M

�1/2
R

uk
hk
(0)

for some a2 > 0 absolute and all k large; hence,

�
uk

hk/M
(0)� a2M

�1/2
�
uk
hk
(0) and ⇤uk

hk/M
(0) 2(a2)

�1
M

�1/2⇤uk
hk
(0).

Define c1 := a
2
2/4, and note that c1 is an absolute positive constant. For this choice,

we get the desired contradiction when k is large.

We define

M1 := c
�6
1 ,(8)

where c1 is the absolute constant in Lemma 3.1, and we let ✏1 be the volume fraction
from the lemma corresponding to the choice M =M1. (In particular, ✏1 is universal.)

The next lemma deals with the case that ⌦c

1 bites a positive fraction of the section,
and the long axis is transversal to the boundary. We let l

u

h
(x) denote the length of

the intersection of the tangent line to @⌦1 at x 2 @⌦1 with x+R
u

h
(x). This lemma

uses the regularity and uniform convexity of the boundary.
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4748 MOONEY AND RAKSHIT

Lemma 3.2. There exists a universal constant c2 > 0 such that the following

holds. Given M > 1, there exists ✏> 0 depending on � and M such that if u2F�, x2
@⌦1\@⌦0, and, in addition,

⌘
u

h
(x)> c

�1
2 M,

|(x+R
u

h
(x))\⌦c

1|
|Ru

h
(x)| > ✏1, and

l
u

h
(x)

⇤u

h
(x)

 ✏,

then

⌘
u

h/M
(x) c

�1
2 ⌘

u

h
(x).

Furthermore, if

⌘
u

h/M
(x)> ⌘

u

h
(x),

then

R
u

h/M
(x)⇢ c

�1
2 M

�1/2
R

u

h
(x).

Proof. Assume by way of contradiction that the lemma is false for a choice of
universal constant c2 explained below. Then there exist a sequence uk 2 F�, points
xk on the boundaries of the holes in the source domains ⌦1k, and hk > 0 such that
the first two inequalities hold for Ruk

hk
(xk) and

l
uk
hk
(xk)/⇤

uk
hk
(xk)< 1/k,(9)

but the conclusion is false for all k. After performing a rigid motion, we may assume
that xk = 0, that Ruk

hk
(0) have short side vertical, and that te2 and se1 are contained

in the source domain for t 2 (0, �uk
hk
(0)) and s 2 (�⇤uk

hk
(0), 0). From here on out, we

write Rk = R
uk
hk
(0), �k = �

uk
hk
(0), and ⇤k = ⇤uk

hk
(0). We claim that up to taking a

subsequence and adding a�ne functions, the rescalings h
�1
k

uk(⇤kx1,�kx2) converge
locally uniformly to a function w such that Sw

1 (0) contains and is contained in balls
of absolute radius, and Proposition 2.3 applies to w up to swapping x1 and x2 (see
Figure 1).

Before proceeding, we note that (9) implies that �k⇤
�1
k

! 0, which in turn implies
that hk ! 0 (by the area estimate for centered sections) and thus that ⇤k ! 0 (by
the universal modulus of continuity for the diameters of centered sections).

Let sk � 0 be the slope of the tangent line to the boundary of the source domain
at 0 (we allow sk =1). Inequality (9) implies that

sk⇤k�
�1
k

> k.(10)

We first treat the case that sk > 1 for some subsequence. Then for k large, the
fact that ⇤k tend to zero and elementary geometry imply that

{x2 < |x1|/2, x1 > 0}\ S
uk
hk

(0)⇢⌦c

1.(11)

After the change of variable x1 :=⇤kx̃1, x2 := �kx̃2, the domains {x2 < |x1|/2, x1 > 0}
become {x̃2 < ⇤k�

�1
k

|x̃1|/2, x̃1 > 0}. Since the latter domains converge to the right
half-space, we conclude that w solves detD2

w= �{x2<0} in S
w

1 (0), as desired.
The alternative is that sk  1 for all k large. Uniform concavity of the boundary

implies that {x2 < skx1 � a0x
2
1} contain the holes with 0 in their boundary for some

a0 > 0 universal. Since

Rk \ {x2 < skx1 � a0x
2
1}⇢Rk \ {|x1|<a

�1
1 (s2

k
+ �k)

1/2}
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NONCONVEX PLANAR DOMAINS 4749

Rk

�c1k

rescaling limit

det D2w = 1

det D2w = 0

> c
Fig. 1. Rescaling limit in the case of nontrivial exterior area and transversal boundary.

for some a1 > 0 universal, the lower bound on the volume of the complement implies
that

⇤2
k
 a

�1
2 (s2

k
+ �k)

for some a2 > 0 universal. We claim that s
2
k
� �k for k large universal. Indeed, if

not, then the previous inequality implies that ⇤2
k
 2a�1

2 �k, which. combined with

(10), gives k <
p
2a�1/2

2 sk�
�1/2
k

, and since we assumed that sk�
�1/2
k

< 1, we get a
contradiction for k large universal. We conclude that

⇤k 
p
2a�1/2

2 sk := a
�1
3 sk(12)

when k is large universal. By the C1,1 regularity of the holes, the complements of the
domains contain {x2 < skx1 � a

�1
4 x

2
1}\ S

uk
hk

(0) for some a4 > 0 universal. In the new
coordinates defined above, the parabolic domains {x2 < skx1 � a

�1
4 x

2
1} become

�
x̃2 < sk⇤k�

�1
k

x̃1 � a
�1
4 ⇤2

k
�
�1
k

x̃
2
1

 
.

Using the bound (12) on ⇤k, we see that these domains contain
�
x̃2 < sk⇤k�

�1
k

(x̃1 � a
�1
5 x̃

2
1)
 

for some a5 > 0 universal. Using (10), we see that these domains converge to the slab
{0 < x̃1 < a5} as k tends to infinity. We conclude that w satisfies detD2

w = 1 in
{x1 < 0}\ S

w

1 (0) and that detD2
w= 0 in {0<x1 <a5}\ S

w

1 (0), as desired.
In either case, a small modification of Proposition 2.3 implies that Sw

1/M (0) con-
tains and is contained in dilations by a universal constant of a rectangle with axes
aligned with the coordinate axes. Moreover, the upper bound on the vertical sec-
ond derivative of w implies that the horizontal length l and vertical length L of this
rectangle satisfy l a

�1
6 L for a6 > 0 universal. For k large, we conclude that

⌘
uk

hk/M
(0)⇠ ⌘

uk
hk
(0)l/L
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4750 MOONEY AND RAKSHIT

provided that ⌘uk
hk
(0)l/L> 1. (Here and below, we use that if a rectangle R1 centered

at 0 is approximated by (contains and is contained in dilations by universal constants
times) another rectangle R2 centered at 0, then their side lengths �i, ⇤i (i = 1, 2)
satisfy �1 ⇠ �2, ⇤1 ⇠ ⇤2.) Since L/l  a

�1
7 M for some a7 > 0 universal by the

local universal Lipschitz regularity of w, the first inequality we assumed about ⌘uk
hk
(0)

guarantees this is satisfied (for a su�ciently small universal choice of c2). Thus, the
eccentricity ⌘

uk

hk/M
(0) increased by at most a universal factor compared to ⌘

uk
hk
(0).

Moreover, if l < a8L for a8 > 0 universal su�ciently small, then we have ⌘uk

hk/M
(0)<

⌘
uk
hk
(0). The alternative is that Sw

1/M (0) is approximated by (contains and is contained
in dilations by universal constants times) BM�1/2 ; thus, for k large, the rectangles
R

uk

hk/M
(0) are contained in universal dilations of M�1/2

Rk. This gives the desired
contradiction (namely, the conclusion is true for k large) provided that c2 was chosen
su�ciently small (but still universal).

We now define

M2 := c
�6
2 ,(13)

where c2 is the universal constant from Lemma 3.2, and we let ✏2 > 0 be the length
ratio from that lemma corresponding to the choice M =M2. Note that ✏2 is universal.

Finally, the remaining lemma is purely geometric and also uses the regularity and
convexity properties of the holes in ⌦1. Below, d denotes the distance function from
⌦c

1.

Lemma 3.3. There exists c3 > 0 universal such that the following holds. Assume

that u2F�, that x2 @⌦1\@⌦0, and that

|(x+R
u

h
(x))\⌦c

1|
|Ru

h
(x)| > ✏1,

l
u

h
(x)

⇤u

h
(x)

> ✏2.

Then

[⇤u

h
(x)]2 + sup

x+R
u
h(x)

d c
�1
3 �

u

h
(x).

Proof. Perform a rigid motion as in the proof of Lemma 3.2 so that x = 0, the
short side of Ru

h
(0) is vertical, and the hole lies beneath its tangent line at 0, which

has slope s � 0. Below, we will denote R
u

h
(0) by Rh, and we will similarly drop the

superscript u and the point (0) in the notation from the other relevant quantities.
Elementary geometry implies that lh  4max{�h, �h/s}, so the second inequality

in the hypothesis gives ✏2 < 4max{�h/⇤h, �h/(s⇤h)}. In the case that ⇤h < 4✏�1
2 �h,

the lemma is obvious since then �h ⇠⇤h. We can thus assume otherwise. This gives

s 4✏�1
2 �h/⇤h  1.(14)

We may further assume that h is small enough that in {|x1| ⇤h}, the top part
of the boundary of the hole is a graph with slope bounded by 2. Indeed, this is
guaranteed for h < c universal by the universal diameter bound on sections, and for
h� c, we have �h ⇠⇤h (in particular, that the lemma holds) by the area estimate for
sections and the universal Lipschitz bound on u. Here and below, c denotes a positive
universal constant that may change from line to line.

The uniform concavity of @⌦1 implies that

Rh \⌦c

1 ⇢Rh \ {x2 < sx1 � cx
2
1}⇢Rh \ {|x1|< c

�1(s2 + �h)
1/2}.
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NONCONVEX PLANAR DOMAINS 4751

Rh

�c1
2�h

2�h < c�1�1/2
h

< c�1�h

Fig. 2. “Model example geometry” in the case of nontrivial exterior area and roughly tangential

boundary.

Using the first inequality in the hypothesis, we conclude that

⇤2
h
< c

�1(s2 + �h).

Using (14) in the previous inequality gives

⇤2
h
 c

�1(�2
h
⇤�2
h

+ �h),

and it follows that

⇤2
h
 c

�1
�h.(15)

Furthermore, the C1,1 regularity of @⌦1 implies that the hole has a boundary portion
that lies above {x2 = sx1 � c

�1
x
2
1} in {|x1|<⇤h}. The distance of points in Rh from

⌦c

1 is thus bounded above by

c
�1(�h + |s|⇤h + c

�1⇤2
h
).

Using (14) and (15), we arrive at the desired estimate.

See Figure 2 for a summary of the results from Lemma 3.3.

4. Proof of Theorem 1.1.

Proof of Theorem 1.1. For each x 2 ⌦1, let S
u

h̄(x)
(x) be the “maximal section

contained in ⌦1” centered at x so that S
u

h̄(x)
(x) is contained in ⌦1 and tangent to

@⌦1. The existence of such a section follows from the continuity of the sections in h;
see [8]. By (4) and the universal Lipschitz bound on u, there exists c̄ > 0 universal
such that for all x in the c̄-neighborhood Nc̄ of the union of the holes in ⌦1, the
section S

u

h̄(x)
(x) is tangent to a hole and not @⌦0.

The arguments in the proof of Theorem 1.1 of [23] show that

u2W
2, p(⌦1\Nc̄)\C

1,↵(⌦1\Nc̄)

for any p > 1 and ↵ 2 (0, 1), with corresponding estimates in these spaces depending
on �, p, and ↵. More precisely, the estimates used to prove Theorem 1.1 of [23] are
local in nature and thus apply in our setting to sections centered in ⌦1\Nc̄ of height
smaller than some h1 > 0 universal chosen so that these sections do not intersect Nc̄/2.
In particular, in our setting, Theorem 1.1 of [23] has the form |D2

u| C(✏, �)d�✏ in
⌦1\Nc̄ for any ✏ > 0, from which the claim follows. Here and below, d denotes the
distance from ⌦c

1. (Alternatively, one can note that all arguments in [23] work equally
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4752 MOONEY AND RAKSHIT

well if the source density is smooth and positive in the closure of the source domain
and 1 in a neighborhood of the boundary. In our setting, we can reduce to this case
by considering the function that is u near @⌦0, glued to ⇢⌧ ⇤(u+⌧ |x|2) for ⌧ > 0 small
universal, a positive universal distance from @⌦0. Here ⇢⌧ is a standard mollifier.)

We may thus focus our attention on Nc̄. To that end, let x2Nc̄, and let d be the
distance from x to the boundary. We will prove that

|D2
u(x)| c

�1
d
�1/2

.(16)

Here and for the remainder of the proof, c denotes a positive universal constant
that may change from line to line. The W

2, p estimate from Theorem 1.1 follows
immediately from (16), and the C

1,1/2 estimate comes from integrating (16) along
line segments.

Assume after a translation that S
u

h̄(x)
(x) is tangent to a hole at the origin. Ap-

plying Proposition 2.1, we engulf Su

h̄(x)
(x) by R

u

h
(0), with h ⇠ h̄(x). We will prove

that

⌘
u

h
(0) c

�1
d
�1/2

.

Using that |Su

h̄(x)
(x)|⇠ |Ru

h
(0)|, it is easy to see that ⌘u

h̄(x)
(x) c

�1
⌘
u

h
(0). Combining

this with the above inequality and (7) gives (16).
In what follows, we will use that if h1 ⇠ h2, then R

u

h1
(0) is approximated by (con-

tains and is contained in dilations by universal constants times) Ru

h2
(0) (see section A.4

of the appendix), whence �u
h1
(0)⇠ �

u

h2
(0), ⇤u

h1
(0)⇠ ⇤u

h2
(0), and ⌘u

h1
(0)⇠ ⌘

u

h2
(0). We

will also denote ⌘u
h
(0) by ⌘h, and we will similarly drop the notation (0) and the

superscript u from the other relevant quantities.
If either ⌘h  c

�1
2 M2 or the conditions of Lemma 3.3 are satisfied, then we are

done. Indeed, in the first case, use that c�1
2 M2 is universal; hence, the desired bound

on ⌘h follows provided that c universal is su�ciently small. In the second case,
Lemma 3.3 gives ⇤2

h
 c

�1
�h; hence, ⌘h  c

�1
�
�1/2
h

. Moreover, the distance from the

boundary in Rh is at most c
�1
�h. In particular, ��1/2

h
 c

�1
d
�1/2, and we are also

done in this case.
So assume that neither is satisfied, and let t̂ be the supremum of heights t such

that ⌘s > c
�1
2 M2 and the conditions of Lemma 3.3 are not satisfied at height s for all

s2 [h, t].
We first assume that t̂  1. Then there exist ĥ 2 [h, t̂] and  2 (1, 2) such that

ĥ� t̂ and either ⌘
ĥ

 c
�1
2 M2 or the conditions of Lemma 3.3 are satisfied at height

ĥ but neither holds at height ĥ. At height ĥ, we can apply either Lemma 3.1 with
the choice M = M1 or Lemma 3.2 with the choice M = M2, giving a conclusion at
height M�1

1 ĥ or M�1
2 ĥ. Repeat applying Lemma 3.1 or 3.2 (say, the former k times

and the latter l times) until the first time M
�k

1 M
�l

2 ĥ < h. Assume that eccentricity
increased in the application of Lemma 3.2 l

0  l times. We then have

⌘h  c
�1

c
�k

1 c
�l

0
2 ⌘

ĥ
 c

�1
r
�1/2

⌘
ĥ
,

where

r := c
�k

1 M
�k/2
1 c

�l
0

2 M
�l

0
/2

2 = c
2k
1 c

2l0
2 < 1.

By Lemmas 3.1 and 3.2, we also have that

Rh ⇢ c
�1

rR
ĥ
.
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NONCONVEX PLANAR DOMAINS 4753

We now consider the case that at height ĥ, the conditions of Lemma 3.3 are
satisfied. The lemma implies that

⌘
ĥ

 c
�1
�
�1/2

ĥ
;

thus,

⌘h  c
�1

r
�1/2

�
�1/2

ĥ
.(17)

Assume after a rigid motion that the picture is oriented as in the proof of Lemma 3.3 so
that R

ĥ
has vertical short axis. Arguing as in the proof of Lemma 3.3, we have either

that �
ĥ

⇠ ⇤
ĥ
, in which case the desired estimate ⌘h  c

�1
r
�1/2

�
�1/2

ĥ
 c

�1
d
�1/2

follows from the inclusion Rh ⇢ c
�1

rR
ĥ
, or that the boundary of ⌦1 contains a

portion that lies above {x2 = sx1�c
�1

x
2
1} in {|x1|<⇤

ĥ
}, where 0 s c

�1
�
ĥ
/⇤

ĥ

and ⇤2
ĥ

 c
�1
�
ĥ
. Recall that Rh is contained in the c

�1
r times dilation of R

ĥ
.

Thus, in Rh, the distance from the boundary is at most

c
�1(r�

ĥ
+ sr⇤

ĥ
+ r

2⇤2
ĥ
).

Using the previous inequalities for s and ⇤
ĥ
, we see that the second and third terms

are bounded by c
�1

r�
ĥ

and c
�1

r
2
�
ĥ
, respectively, giving a bound on the distance

between the boundary in Rh of the size

d c
�1

r�
ĥ
.

Rearranging gives

�
�1/2

ĥ
 c

�1
r
1/2

d
�1/2

.

Using this in (17) gives

⌘h  c
�1

d
�1/2

,

and we are done with this case.
In the case that ⌘

ĥ
 c

�1
2 M2, we have

⌘h  c
�1

r
�1/2

.

Furthermore, we have that Rh is contained in a universal dilation of Br since R
ĥ
is

contained in Bc�1 ; thus, in Rh, the distance from the boundary is at most c�1
r, and

hence

⌘h  c
�1

d
�1/2

in this case as well.
Finally, we deal with the case that t̂ > 1. Since ⌘1 is still bounded by a universal

constant, we can take ĥ= 1 and repeat exactly the same arguments as above. More
precisely, by repeated application of Lemma 3.1 or 3.2 starting from height ĥ= 1, we
get

⌘h  c
�1

r
�1/2

and

Rh ⇢Bc�1r,

where r is defined in the same way as above. Combining these two conclusions, we
get ⌘h  c

�1
d
�1/2, and this completes the proof.
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4754 MOONEY AND RAKSHIT

5. Future directions. To conclude the paper, we list a few questions to be
investigated in future work:

1. Establish Sobolev regularity for optimal transport maps of a natural class of
nonconvex domains in higher dimensions. As noted above, the Pogorelov-
type estimate Proposition 2.3 is convenient but not required for the result in
this paper, so there is hope for such an extension.

2. In two dimensions, enlarge the class of source domains being considered, e.g.,
to arbitrary smooth domains. Our arguments handle concave parts of the
boundary since we only use the equation and not the convexity of the target
domain. However, convex parts of the boundary that lie inside the convex
hull of the source domain may be tricky to handle since at such points, we
do not have duality, which played an important role in the works of Ca↵arelli
[6] and Savin and Yu [23].

3. Investigate applications of our results to the existence theory for the SGEs in
cases where the source density is allowed to vanish. In previous works dealing
with the case where the source density is bounded from below by a positive
constant, W 2,1 estimates played a central role [2], [3], [15].

4. Investigate applications of the ideas in this paper to the partial regularity
theory of optimal transport maps when the domains are not convex. In this
case, optimal transport maps can have singularities, and interesting results
have been obtained about the size of the singular set [12], [17], [16], [19].
However, the fine geometric measure-theoretic structure of the singular set
is not well understood, even in two dimensions with smooth domains and
quadratic cost. In that case, a reasonable conjecture seems to be that the
one-dimensional Hausdor↵ measure of the singular set is bounded.

Appendix A. In this section, we provide some of the details that we omitted
for simplicity of presentation above.

A.1. No segments. We start with a simple lemma that will be used in some of
the subsequent proofs.

Lemma A.1. There is no convex function w on B1 ⇢R2
that satisfies

detD2
w� �{x2>0}, w|{x2=0} linear.

Proof. After subtracting an a�ne function, we may assume that w � 0 and
w|{x2=0} = 0. After subtracting a multiple of x2, we may assume further that w(0, t) =
o(t) for t > 0. It follows that for any k > 0, we can choose h> 0 small such that

R := [�1/2, 1/2]⇥ [0, 2kh]⇢ {w<h}.

The quadratic polynomial Q = 8hx2
1 + 2k�2

h
�1(x2 � kh)2 thus lies above w on the

boundary of R and for k large satisfies detD2
Q< 1. The comparison principle implies

that Q>w� 0 in R, contradicting that Q vanishes at the center of R.

We now prove the claim that functions in F� are not linear along line segments
centered in the closure of the source domain, from which the universal bound on
diameters of sections followed.

Lemma A.2. Let u2F�. Then u is not linear along any line segment centered at

a point in ⌦1.

Proof. By Lemma A.1 (appropriately rescaled), u is not linear along any segment
in ⌦1. The only remaining possibility is that u is linear along a segment that is tangent
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NONCONVEX PLANAR DOMAINS 4755

to @⌦0 at a single point that lies inside the segment. The function u cannot be linear
along the whole line l containing this segment. Indeed, if it was, then the monotonicity
of the subgradient of u implies that @u(R2) (the subgradient image of u on the whole
plane) lies in some line orthogonal to l, whence detD2

u ⌘ 0, a contradiction. We
conclude that the agreement set between u and a linear function has extremal points
outside of ⌦0. This contradicts that detD2

u= 0 outside of ⌦0.

A.2. Area estimate. Next we prove the area estimate (5). Note that if Su

h
(x)

is centered at a point x 2 ⌦1 and intersects at most one hole, then the hole lies on
one side of some line through x. Since x is the center of mass of Su

h
(x), it follows

that |Su

h
(x)\⌦1|� d|Su

h
(x)| for some d> 0 absolute. The area estimate (5) is thus a

consequence of the following general result.

Lemma A.3. Assume that S
w

t
(x) is a bounded domain in Rn

, that detD2
w= �U

for some U ⇢ S
w

t
(x), and that |U | � �|Sw

t
(x)| for some � > 0. Then there exists

(n, �)> 0 such that

t
n/2  |Sw

t
(x)| 

�1
t
n/2

.

Proof. After translating and subtracting a linear function, we may assume that
x = 0 and that w = 0 on @S

w

t
(0). By John’s lemma, there exists an ellipsoid Et

centered at zero such that c(n)Et ⇢ S
w

t
(0) ⇢ Et. In this proof, c(n) will denote a

constant depending on n that may change from line to line. Write Et = At(B1),
where At is a linear map, and let w̃(x) = |detAt|�2/n

w(Atx), Ũ = A
�1
t

U, and H =
|detAt|�2/n

t. Then c(n)B1 ⇢ S
w̃

H
(0) ⇢ B1, detD2

w̃ = �
Ũ
, and |Ũ | � c(n)�. In

particular, provided that ↵(n, �) is su�ciently close to one, we have |Sw̃

H
(0)\↵Sw̃

H
(0)|

|Ũ |/2, giving |Ũ |  2|Ũ \ ↵Sw̃

H
(0)|. Proposition 1.1 of [21] implies that H ⇠ 1 up to

multiplication by constants depending on n, �. Since |detAt| is equivalent to |Sw

t
(0)|

up to multiplication by dimensional constants, we conclude that tn/2 is equivalent to
|Sw

t
(0)| up to multiplication by constants depending on n and �, as desired.

A.3. Engulfing properties. The engulfing property Proposition 2.1 follows
from the following pair of lemmas. Before proceeding, we recall a standard renormal-
ization procedure. For u 2F�, x 2⌦1, and S

u

h
(x) contained in ⌦1 or intersecting one

hole, let

uh(y) =
1

h
u(Ahy) +Lh,

where Ah is an a�ne transformation of determinant h that takes a square centered
at 0 to x+Rh(x) and Lh is a linear function chosen so that uh = 0 on @Suh

1 (0). Then
uh solves detD2

uh = �⌦h in the normalized domain S
uh
1 (0) (equivalent to B1 up to

dilations by absolute constants), where ⌦c

h
is convex and ⌦h contains 0. We call this

procedure “renormalizing in the section S
u

h
(x).”

Lemma A.4. If u2F�, y 2 S
u

h
(x)\ (@⌦1\@⌦0), and S

u

h
(x)⇢⌦1, then

S
u

h
(x)⇢ S

u

c�1h
(y).

Here c is universal.

Proof. Assume by way of contradiction that the lemma is false. Then there exists
a sequence uk 2 F� such that S

uk
hk

(xk) are contained in the source domains and yk

are in their closures and the boundary of a hole (say, yk = 0 after a translation) but
S
uk
khk

(0) do not contain S
uk
hk

(xk). Note that we may assume that hk  c
�1

k
�1 by the
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4756 MOONEY AND RAKSHIT

uniform Lipschitz bound on uk, so hk ! 0, and the sections localize close to the holes.
After renormalizing in the sections Suk

khk
(0), we get a subsequence of rescalings wk of

uk that converge to a function w which satisfies that Sw

1 (0) is normalized, detD2
w= 1

in a domain ⌦ with ⌦c convex, and w is linear along a segment from 0 to @Sw

1 (0)
contained in ⌦. This last fact comes from the observation that the sections Suk

hk
(xk),

after renormalization, become sections of height 1/k in which detD2
wk = 1, which

are not contained in the renormalized sections Swk
1 (0) but have 0 in their boundaries.

These sections contain line segments with endpoints at 0 and @Swk
1 (0) that tend to

a line segment from 0 to @Sw

1 (0) in ⌦ on which w is linear since the heights of the
sections tend to zero. This contradicts Lemma A.1, appropriately rescaled.

Lemma A.5. Let u 2 F�. Then for all ↵ 2 (0, 1), there exists �(�, ↵) > 0 such

that

S
u

�h
(y)⇢ ↵S

u

h
(y)

for all y 2 @⌦1\@⌦0, where ↵S
u

h
(y) is the ↵-times dilation of S

u

h
(y) around y.

Proof. The argument is similar to the one above. If the lemma is false, there is
a sequence uk 2F� such that (up to translations) 0 is in the boundary of a hole and
S
uk

hk/k
(0) are not contained in ↵S

uk
hk

(0). After renormalizing in the sections S
uk
hk

(0),
we get a subsequence of rescalings wk that converge to a function w which satisfies
that S

w

1 (0) is normalized, detD2
w = 1 in a domain ⌦ with ⌦c convex and 0 2 @⌦,

and w is linear along a line segment passing through the origin with an endpoint on
@(↵Sw

1 (0)). (The reasoning is similar to above; Swk

1/k(0) are not contained in ↵Swk
1 (0),

so they contain segments passing through 0 with one endpoint on @(↵Swk
1 (0)) and the

other, by the fact that the sections are centered at 0, a positive distance depending on
↵ from 0. These segments converge to the one claimed above.) Again, we contradict
Lemma A.1.

A.4. Rectangle containments. Now we sketch the proof that if u 2 F�, 0 2
@⌦1\@⌦0, and h1 ⇠ h2, then R

u

h1
(0) is approximated by (contains and is contained

in dilations by universal constants of) R
u

h2
(0). This fact was used in the proof of

Theorem 1.1 in section 4. It su�ces to show that Su

h1
(0) is approximated by S

u

h2
(0).

After renormalizing in S
u

h1
(0) as in section A.3, we get a convex function w such that

S
w

1 (0) = {w < 0} is normalized, and we need to show that Sw

c
(0) is approximated by

B1, where c⇠ 1. Since

|Sw

c
(0)|⇠ 1,

we just need to show that Sw

c
(0) contains a ball centered at 0 that has small universal

radius. If not, then by the local universal Lipschitz bound on w, the slope of the linear
function defining S

w

c
(0) is extremely large, say, after a rotation, Ke1 with K >> 1.

But in this case, the line segment in S
w

c
(0) through the origin parallel to e1 would

intersect @Sw

c
(0) at a distance much shorter from the origin on the left than on the

right, contradicting that 0 is the center of mass of Sw

c
(0) and completing the proof.

A.5. Partial Legendre transform. Let u be a convex function on a domain
⌦ ⇢ R2. We define its partial Legendre transform by taking the usual Legendre
transform along horizontal lines:

u
⇤(p, x2) := sup

x1

(px1 � u(x1, x2)).
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NONCONVEX PLANAR DOMAINS 4757

The partial Legendre transformed is defined on {((@1u(x1, x2), x2) : (x1, x2) 2 ⌦)},
where @1 denotes the subgradient of u understood as a one-variable function on the
horizontal line with x2 constant. The function u

⇤ is convex in the horizontal directions
and concave in the vertical directions.

When u is smooth and uniformly convex, we have

u
⇤(u1(x1, x2), x2) = x1u1(x1, x2)� u(x1, x2).

By taking various derivatives of this identity, one obtains

u
⇤
11 =

1

u11
, u

⇤
12 =�u12

u11
, u

⇤
22 =�detD2

u

u11
.(18)

In particular, if detD2
u= 1, then u

⇤ is harmonic.
Finally, we recall that if u and v are convex on ⌦, then |u⇤ � v

⇤| ku� vkL1(⌦)

on the common domain of definition of u⇤ and v
⇤. In particular, C0 convergence of

convex functions in ⌦ implies C0 convergence of their partial Legendre transforms.

A.6. Boundary estimate for harmonic functions. We denote by B
+
r

the
half-ball Br \ {xn > 0} in Rn.

Lemma A.6. Let u 2 C(B+
1 ) be a harmonic function such that u|{xn=0} is Lip-

schitz, with Lipschitz constant L. Then

kuikL1(B+

1/2
) C(n)(L+ kuk

L1(B+

1
))

for all i < n.

Proof. We may assume that L+ kuk
L1(B+

1
)  1 after dividing by this quantity.

We may also assume that u 2C
1(B+

1 ); the general result follows by approximation.
Let  be a smooth cuto↵ function that is 1 in B3/4 and 0 outside of B7/8, and let
g be the function on {xn = 0} defined by u on {xn = 0} \ B1 and extended to
be zero outside. Note that |gi|, i < n, is bounded by an absolute constant. Let K

be the upper half-space Poisson kernel, and let h = K ⇤ g be the harmonic function
in the upper half-space with boundary data g. Since hi = gi on {xn = 0} and hi

tends to zero at infinity, the maximum principle implies that on the upper half-space,
|hi| kgikL1(Rn�1), which in turn is bounded by an absolute constant. To conclude,
we note that in B

+
3/4, we have u= h+ h

0, where h
0 is a harmonic function vanishing

on {xn = 0} \B3/4 and |h0| |u|+ |h| 2. The Schwarz reflection principle and the
interior gradient estimate for harmonic functions give krh

0k
L1(B+

1/2
)  C(n), so the

result follows.

Acknowledgments. C. Mooney would like to thank A. Figalli for discussions
on a related problem which led to Proposition 2.3.
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