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1. Introduction. Optimal transport maps play an important role in physics,
geometry, economics, and meteorology. The regularity of optimal transport maps
is a delicate matter that for the most part has focused on the case that the source
and target domains are convex. However, this condition is not satisfied in many
applications. In this paper, we initiate the study of the Sobolev regularity of optimal
transport maps in the plane, where the source domain is nonconvex.

The setting is as follows. Let £; and Qs be bounded domains in R? of unit area.
We assume that 25 is convex. Then the optimal transport map from Q; to €2 is the
gradient map of a convex function u on R? which satisfies (see [7])

(1) det D?u = xq,
in the Alexandrov sense, u is smooth and locally uniformly convex in €y, and
(2) Vu(Ql) = QQ.

We assume further that ; is a convex domain g with a finite number of disjoint,
C%1, uniformly convex holes a positive distance § from 09y and from each other
removed. Our main result is the following.

THEOREM 1.1. We have ue C%1/2 (STl) with norm depending only on the diam-
eters of Q1 and Qs, §, and the lower and upper bounds for the boundary curvatures
of the holes in Q. We also have u € WP (Qy) for any p < 2, with norm depending
only on the same quantities and p.

Theorem 1.1 is sharp. To see this, consider the radially symmetric example where
Q) is an annulus with inner radius r, €5 is a disk, and the potential is

||
(3) u(z) = / (32 — 7“2)1+/2 ds.
0
Below, we will refer to (3) as the model example.
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One motivation for Theorem 1.1 comes from the semigeostrophic equations (SGEs)
from meteorology. The SGEs lead one to consider optimal transport maps that take
a bounded density on the torus to the uniform one (see, e.g., [15]). When the source
density is bounded between positive constants, W21 estimates for the potential are
available [13], [14], [24], which lead to long-time existence results for the SGEs [2],
[3], [15]. However, in physically interesting cases, the SGEs involve optimal transport
maps where the source density is allowed to vanish. In this case, W2 ! estimates for
the potential do not always hold (see [22]). An important special situation is when the
source density is the characteristic function of a domain (which need not be convex),
as in the situation of Theorem 1.1. For the SGEs, this corresponds to a fully nonlinear
analogue of the vortex patch problem for the two-dimensional Euler equations. Global
W21 estimates for optimal transport maps of nonconvex domains may be useful for
extending long-time existence results for the SGEs to this situation.

More generally, Theorem 1.1 can be viewed as a step toward obtaining global
regularity results for optimal transport maps of general nonconvex source domains.
The global regularity of optimal transport maps in the case of convex source and
target domains is well studied. Caffarelli proved that, in this case, the potentials are
CY® up to the boundary and C%“ up to the boundary provided that the domains
are C? and uniformly convex [6]. Here « is small. The conditions on the domains
required for global C? regularity of the potential were recently relaxed to C*! and
merely convex [9] and even slightly nonconvex but close to convex in the C1'! sense
[10]. In two dimensions, Savin and Yu showed that convexity of the domains is enough
to get global W2 P regularity for any p < oo [23]. As for the case of nonconvex source
domain, in [4], the authors obtain global C*® estimates for potentials of optimal
transport maps in any dimension when the densities are bounded between positive
constants, the target domain is convex, and the source domain is a convex set with
finitely many convex holes removed, using ideas from [5]. (Again, here « is small.) Our
methods (described below) are quite different from those in [4], and the smoothness
of the densities and the regularity properties of the holes play a delicate role in our
analysis. We remark that our methods in fact apply near any “uniformly concave”
part of the boundary of a general smooth planar source domain.

Our strategy is as follows. First, we may focus our attention on a neighborhood
of the holes in ©; (the “concave part” of the boundary of Q), thanks to the work of
Savin and Yu, which shows the W?2 P regularity of u (for any p) near the “convex part”
09 of the boundary of € [23]. We carefully analyze the geometry of the sections
of u (defined in section 2), which are centered at concave boundary points. We show
that there are three possible cases, all of which are “good.” The first case is that the
complement of €2, fills only a tiny fraction of the section. In this case, morally speak-
ing, u solves det D?u =1 in the whole section, and we can control section geometry at
smaller scales using the regularity theory for the Monge-Ampere equation. The sec-
ond case is that the complement of §2; fills a positive universal fraction of the section,
and the long axis of the section is transversal to the boundary. In this case, we show
that renormalization by an affine transformation flattens the boundary, and we are
again in a good situation where section geometry can be controlled at smaller scales
using Pogorelov-type estimates for the Monge-Ampere equation. The last case is that
the complement of €); fills a positive universal fraction of the section, and the long axis
of the section is roughly tangent to the boundary. In this case, we are in a situation
that resembles what happens at every inner boundary point for the model example,
which has the desired regularity properties. Our analysis near the holes is valid for
any solution of the Monge-Ampere equation and does not use the convexity of (2s.
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In the course of the proof, we also prove a new interior second derivative estimate
for solutions to det D?w = X{z2>0}, Which is special to two dimensions. The classical
Pogorelov estimate bounds the tangential second derivative wy;. Although this suffices
for our application, using the partial Legendre transform, we are also able to bound
the ratio |wiz|/wi1 from above (see Proposition 2.3). As a result, the sections of w
centered on {x2 =0} are well approximated by ellipsoids whose axes are aligned with
the coordinate axes. This result simplifies our proof and may be useful for future
applications.

The paper is organized as follows. In section 2, we discuss some preliminary re-
sults about the geometry of centered sections as well as some Pogorelov-type estimates
(including the one mentioned in the previous paragraph). In section 3, we prove sev-
eral key lemmas, corresponding to the three scenarios mentioned above. In section 4,
we prove Theorem 1.1. In section 5, we discuss some future directions. Finally, in
Appendix A, we prove some of the preliminary results.

2. Preliminaries. For the remainder of the paper. we fix a constant 6 > 0. We
let F5 denote the space of convex functions on R? that satisfy (1) and (2), where
and €2 have unit area and are contained in Bs-1, {)5 is convex, and the source domain
4 consists of a convex domain g with convex holes removed, where the holes are
separated a distance at least § from one another and from the boundary of €y and
the boundaries of the holes have lower and upper bounds &, 6~ on their curvature.
(Here ©; are not fixed; they are any domains satisfying the above conditions.) We
note that Fs is a compact family; namely, any sequence in Fs contains (after possibly
adding constants) a subsequence that converges locally uniformly on R? to a function
in Fs. The local uniform convergence follows from the fact that the gradients lie in
Bgs-1 and the Arzela—Ascoli theorem. The fact that the limit lies in Fj uses the weak
convergence of Monge-Ampére measures under local uniform convergence [20]. We
call constants depending only on § universal, and we say that positive quantities a and
b satisfy a ~ b if their ratio is trapped between positive universal constants. We call
constants “absolute” if they are fixed positive numbers independent of §. (Generally,
these are dimensional constants which become absolute in view of the fact that we
are working in the plane.) Finally, we say that a &b if their ratio is trapped between
absolute constants.

Let u € Fs5. For any z € Q; and h > 0, there exists an affine function L, ; such
that

Lyp(z)=u(z)+h

and such that the set {u < L, 5} is bounded and has center of mass x (see [6]). We call
{u < Ly} the centered section of height h at x, and we denote it by S} (z). One can
show that u is not linear when restricted to any line segment centered at a point in 0
(see the appendix). Combined with a compactness argument, this shows that there
exists a universal modulus of continuity w such that for any z € Q; and any h < 1,

(4) diam (S} (x)) <w(h).

In particular, for h < ¢o universal, we have that Sj*(z) intersects at most one con-
nected component of Q$ for any = € Q. Below, we will always assume that h € (0, cp),
and we will only consider sections centered in ©; that are either contained in Q; or
intersect a hole in Q5.

Such centered sections satisfy the area estimate

(5) 1S (z)| ~ h.
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This estimate follows from the absolute positive density of €2; in such sections; see
Lemma A.3 in the appendix for a proof of (5). By a version of John’s lemma, there
exist rectangles Rj'(x) centered at 0 of area 4h and dy ~ 1 such that

(6) r+doRy(z) C S (x) Ca+ (do) 'Ry (x).

We denote the short and long side lengths of R} (x) by 2A} (x) and 2A}(x), respectively
(note that A} (z)A}(z) =h), and we define the eccentricity of R} (z) by the quantity

wi oy AR(@)
Finally, we have the following engulfing property (see the appendix), which allows

us to compare sections in €23 tangent to a hole with a section centered on the boundary
of the hole.

PROPOSITION 2.1. Ifu € Fs, y € Sp(x) N (01\0), and Sjt(x) C Q, then
Sii(x) Cy+ R (y)

for some universal ¢ > 0.

We now state some Pogorelov-type estimates. The first result is Pogorelov’s
interior C? estimate (see, e.g., [20]).

PROPOSITION 2.2. If det D?>w = 1 in S¥(0) and By C S¥(0) for some A > 0,
then |D?w| < k™1 in 1S1(0) and

Bntl/Q - S;LU(O) C Blﬂfltl/2

for allt <1 and some k(\) > 0.

Combining Proposition 2.2 with the affine invariance of the Monge-Ampere equa-
tion and the area estimate (5), we have
(7) |D*u(z)| = ()

whenever Sp'(z) C Qy. To see this, assume after a translation and a rotation that
=0 and that the long side of R}(0) is horizontal. Then

u(zy, x2) := hw(z1 /A}L(0), 22/A}1(0)),

where w satisfies the conditions of Proposition 2.2 with A absolute. Thus, |D?u(0)| <
hAL(0) 72| D?w(0)| < k= 1hAY(0) 2 for some > 0 absolute. Using that h = A} (0)A¥(0)
gives the upper bound in (7). The lower bound in (7) follows similarly using that
wy2(0) &~ 1, which comes from the equation solved by w and the absolute upper
bound on its Hessian at 0.

The next estimate is a variant of Pogorelov’s interior C? estimate with flat bound-
ary, which to our knowledge is new.

PROPOSITION 2.3. If det D*w = x(z,>0} in S{(0) and By C S}"(0) C By-1 for
some A >0, then

w
sup (wn + | 12) <k !
151 (0)n{z2>0} Wit

for some k() > 0.

The upper bound on wy; is the classical Pogorelov estimate (see [6]) and does not
use that we are working in the plane. The upper bound on |wia|/w11 uses that we
are in the plane.
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Proof. We may assume after subtracting a linear function that w\as;v(o) = 0.
Let w* denote the partial Legendre transform of w (the Preliminaries section of [11]
discusses the definition and relevant properties, and we recall these in section A.5 of
the appendix for the reader’s convenience). The function w* is convex in the first
variable and concave in the second and formally solves

X{z2>0} W11 + W3y =0

in By, (0) for some k1(A) > 0. More precisely, w* is harmonic in {2 > 0} and linear on
vertical segments in {2 < 0}, and, moreover, wj has the same limit from above and
below on {z2 =0} along vertical lines. It is not hard to verify the first two properties
by approximating X,y with smooth positive functions of zz. The third property
can be verified using that w € C* [1], [18]. Since w* is linear on vertical segments in
{z2 <0}, we have

wi(z1, 0) =a H(w* (21, 0) —w* (21, —a))

for any a > 0. Choosing a = k3(A\) > 0 and using that w* is convex (hence locally
Lipschitz with the Lipschitz constant bounded by a constant depending only on A) in
the horizontal directions, we conclude that w3 is Lipschitz on {z2 =0}. In particular,
w3 is harmonic in B,, N {x2 > 0} and Lipschitz on {x3 = 0} (with the Lipschitz
constant bounded above by a constant depending only on A). It follows from harmonic
function theory that |w},| < k3" in By, /2 N {z2 >0} for some k3(\) > 0. To see this,
one can apply Lemma A.6 of the appendix, appropriately rescaled. Using the relation

*
W12 = —WioW11

(see (18)), we obtain the desired estimate on |wia|/w1;1. |

As aresult of Proposition 2.3, under the same assumptions, we can say that S}*(0)
is approximated by (contains and is contained in dilations by constants depending only
on A of) a rectangle with axes that are aligned with the coordinate axes for all ¢ < 1.
Indeed, if not, then S}*(0) is approximated by (contains and is contained in dilations
by absolute constants times) an ellipsoid of the form A;B;, where

A1, 72) = (A\/i(:c1 + Ka), A*lx/ixg) ,

A > Kk >0 (this follows from the upper bound on wy;), and |K|>> 1. (Here and for
the rest of this paragraph,  denotes a small positive constant depending on A.) The
function

v(x) = %w(Atx)

satisfies the conditions of Proposition 2.3 with A absolute (call it 2r). In addition, we
have

wig = v12 — Kvry.

In B,(rez), we can find points where v1; > k and |via| < k=% for some absolute
constant k> 0 to arrive at a contradiction of Proposition 2.3 when |K| is sufficiently
large depending on .
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3. Key lemmas. In this section, we prove some lemmas that control the geom-
etry of sections of u € Fs centered at concave boundary points in various scenarios.
Below, we will use several times the standard fact that if w; are convex functions
with By C 577 (0) C By-1 for some A > 0, U)k|asi"k(0) =0, and det D?wy, are uniformly
bounded above, then a subsequence of wy converges uniformly to a convex function
w satisfying the same properties, and the Monge—Ampere measures converge weakly
to that of the limit.

The first lemma deals with the case that 2§ bites only a small fraction of the
section.

LEMMA 3.1. There is an absolute constant c¢; > 0 such that the following holds.
Given M > 1, there exists € > 0 depending on § and M such that if uw € Fs, x €
391\890, and

[+ Bp@) 095 _
Bl ©

then
iy (2) < e ()
and
W) C oy MV R ().

Proof. Assume by way of contradiction that the lemma is false. Then there exist
a sequence ug € Fgs, points xy on the boundaries of the holes in the source domains,
and hj > 0 such that the area fraction € of the complements of the source domains
in xy, +RZ’; (x1) tends to zero, but the conclusions do not hold for a choice of absolute
constant ¢; to be explained below and all k. After performing a rigid motion, we may
assume that z = 0 and that R}*(0) have short side vertical. Then up to adding affine
functions and taking a subsequence, the rescalings wy := hj, 'uy, (ALE(0)21, Ak (0)z2)
converge locally uniformly to a function w that satisfies the conditions of Proposi-
tion 2.2, with A = ag > 0 absolute. Applying Proposition 2.2, we conclude that
By, ar-172 C Sf’/M(O) C B(aq,)-1m-1/2 for some a; > 0 absolute. In particular,
By, a-1/2 C Sf’/’}\/I(O) C B(g,)-10m-1/2 for k large. It follows after scaling back that

a1)

as M2 RE(0) € Ry y,(0) C (ag) "' M2 Ry (0)

for some as > 0 absolute and all k large; hence,

Ak 3 (0) = aa MTH2NR(0) and Aj* ) (0) < 2(ag) "' M2 (0).
Define c; := a3/4, and note that ¢; is an absolute positive constant. For this choice,
we get the desired contradiction when k is large. ]
We define
(8) My =¢;®,

where ¢; is the absolute constant in Lemma 3.1, and we let ¢; be the volume fraction
from the lemma corresponding to the choice M = M;. (In particular, €; is universal.)

The next lemma deals with the case that 2§ bites a positive fraction of the section,
and the long axis is transversal to the boundary. We let [}'(x) denote the length of
the intersection of the tangent line to 0€; at x € 9Qy with « + R} (z). This lemma
uses the regularity and uniform convexity of the boundary.
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LEMMA 3.2. There exists a universal constant ca > 0 such that the following
holds. Given M > 1, there exists e >0 depending on § and M such that if u € Fs, x €
01\0Q, and, in addition,

|(z + Ry (x)) N Q|
| Ry ()]

ni(z) > ey ' M, > €1, and

then

iy (2) < o5 ().

Furthermore, if
Mhyaa (%) > 15 (),
then
(@) C e 'MTYP Ry ().

Proof. Assume by way of contradiction that the lemma is false for a choice of
universal constant cp explained below. Then there exist a sequence uy € Fy, points
x1 on the boundaries of the holes in the source domains Q15, and hx > 0 such that
the first two inequalities hold for R}*(zy) and

9) Uy (@) /A (i) < 1/k,

but the conclusion is false for all k. After performing a rigid motion, we may assume
that xj, =0, that R;*(0) have short side vertical, and that te and se; are contained
in the source domain for ¢ € (0, \;*(0)) and s € (=A;*(0), 0). From here on out, we
write Ry = R;*(0), A, = A5 (0), and Ax = Aj*(0). We claim that up to taking a
subsequence and adding affine functions, the rescalings h;luk (Akx1, \px2) converge
locally uniformly to a function w such that S3’(0) contains and is contained in balls
of absolute radius, and Proposition 2.3 applies to w up to swapping x; and x5 (see
Figure 1).

Before proceeding, we note that (9) implies that )\kAI;I — 0, which in turn implies
that hy — 0 (by the area estimate for centered sections) and thus that Ay — 0 (by
the universal modulus of continuity for the diameters of centered sections).

Let si > 0 be the slope of the tangent line to the boundary of the source domain
at 0 (we allow s, = 00). Inequality (9) implies that

(10) SkAkAlzl > k.

We first treat the case that sp > 1 for some subsequence. Then for k large, the
fact that Ay tend to zero and elementary geometry imply that

(11) {z2 <|21]/2, 21 >0} N SR*(0) C QF.

After the change of variable x1 := A&7, @2 := Ao, the domains {xo < |21]/2, 21 > 0}
become {#s < AxA; '|1|/2, 1 > 0}. Since the latter domains converge to the right
half-space, we conclude that w solves det D?w = X{zs<0} in S7°(0), as desired.

The alternative is that s <1 for all £ large. Uniform concavity of the boundary
implies that {xy < spx1 — apz?} contain the holes with 0 in their boundary for some
ap > 0 universal. Since

R N{xe < sy — aoxf} C R N{|z1]| < al_l(sﬁ + )\k)l/Q}
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R, \
S o, AN

l rescaling limit

v

detD*w =1 -

det D*w =0 >

«—
>C

Fic. 1. Rescaling limit in the case of nontrivial exterior area and transversal boundary.

for some a; > 0 universal, the lower bound on the volume of the complement implies
that

AR <ay'(sh+ k)

for some as > 0 universal. We claim that s7 > \j, for k large universal. Indeed, if
not, then the previous inequality implies that Ai < 2ay ' \g, which. combined with
(10), gives k < \/iaz_lﬂsk)\;lp, and since we assumed that sk)\,zlﬂ <1, we get a
contradiction for k large universal. We conclude that

(12) A < \@az_l/st = a;lsk

when k is large universal. By the C''»! regularity of the holes, the complements of the
domains contain {zy < spr; —a; 23} N S,,%(0) for some aq > 0 universal. In the new
coordinates defined above, the parabolic domains {xs < spx; — aj "x?} become

{Za < splpA; '3 —ag "ARN AT
Using the bound (12) on Ag, we see that these domains contain
{Fs < s, (31 — a5 ')}

for some a5 > 0 universal. Using (10), we see that these domains converge to the slab
{0 < 71 < as} as k tends to infinity. We conclude that w satisfies det D?*w = 1 in
{z1 <0} N S¥(0) and that det D?w =0 in {0 <z < as} N S¥(0), as desired.

In either case, a small modification of Proposition 2.3 implies that Si"/ 27(0) con-
tains and is contained in dilations by a universal constant of a rectangle with axes
aligned with the coordinate axes. Moreover, the upper bound on the vertical sec-
ond derivative of w implies that the horizontal length [ and vertical length L of this
rectangle satisfy | <ag 'L for ag > 0 universal. For k large, we conclude that

7% 0 (0) ~ s (0)1/L
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provided that 7,*(0)//L > 1. (Here and below, we use that if a rectangle 1?; centered
at 0 is approximated by (contains and is contained in dilations by universal constants
times) another rectangle R centered at 0, then their side lengths A;, A; (i = 1, 2)
satisfy A1 ~ Ao, Ay ~ Ag.) Since L/l < a;lM for some a7; > 0 universal by the
local universal Lipschitz regularity of w, the first inequality we assumed about n}f: (0)
guarantees this is satisfied (for a sufficiently small universal choice of ¢3). Thus, the
eccentricity 7,* /M(O) increased by at most a universal factor compared to 7, (0).
Moreover, if I < agL for ag > 0 universal sufficiently small, then we have nZ: /M (0) <
My (0). The alternative is that S},,(0) is approximated by (contains and is contained
in dilations by universal constants times) Bj,;-1,2; thus, for k large, the rectangles
Ry" ,(0) are contained in universal dilations of M —1/2R,.. This gives the desired
contradiction (namely, the conclusion is true for k large) provided that co was chosen
sufficiently small (but still universal). O

We now define
(13) My :=c; ",

where ¢z is the universal constant from Lemma 3.2, and we let €5 > 0 be the length
ratio from that lemma corresponding to the choice M = Ms. Note that €5 is universal.
Finally, the remaining lemma is purely geometric and also uses the regularity and
convexity properties of the holes in {2;. Below, d denotes the distance function from
Qf.
LEMMA 3.3. There exists cs > 0 universal such that the following holds. Assume
that u € Fs, that x € 9Q1\0Q0, and that

@+ Bi@)nog] - (@)
| R ()] L AR()

> €9

Then

[Aj(@)? + sup d<cpiAi().
z+R ()

Proof. Perform a rigid motion as in the proof of Lemma 3.2 so that z = 0, the
short side of R} (0) is vertical, and the hole lies beneath its tangent line at 0, which
has slope s > 0. Below, we will denote R} (0) by R, and we will similarly drop the
superscript u and the point (0) in the notation from the other relevant quantities.

Elementary geometry implies that I, <4max{\n, An/s}, so the second inequality
in the hypothesis gives ea < 4max{A,/Ap, A\n/(sAp)}. In the case that A < 462_1/\h7
the lemma is obvious since then A, ~ A,. We can thus assume otherwise. This gives

(14) s <dey '\ /Ap < 1.

We may further assume that & is small enough that in {|z1| < Ay}, the top part
of the boundary of the hole is a graph with slope bounded by 2. Indeed, this is
guaranteed for h < ¢ universal by the universal diameter bound on sections, and for
h > ¢, we have A\, ~ Aj, (in particular, that the lemma holds) by the area estimate for
sections and the universal Lipschitz bound on uw. Here and below, ¢ denotes a positive
universal constant that may change from line to line.

The uniform concavity of 9€2; implies that

Ry NQS C Ry N {my < sz — ca?} € Ry 0 {|z| < ¢ L(s? + M) /2.
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2A, < ¢T3}

A
\4

24
< C_lﬂh Q¢ h

F1G. 2. “Model example geometry” in the case of nontrivial exterior area and roughly tangential
boundary.

Using the first inequality in the hypothesis, we conclude that
AF < H(s?+ ).
Using (14) in the previous inequality gives
A7 <cTHOZAL 2 4 M),
and it follows that
(15) A7 <c .

Furthermore, the C'+! regularity of 9§2; implies that the hole has a boundary portion
that lies above {wy = sz1 — ¢ 12?2} in {|z1| < Ay, }. The distance of points in R}, from
Q¢ is thus bounded above by

O+ [s|An + AR,

Using (14) and (15), we arrive at the desired estimate. d
See Figure 2 for a summary of the results from Lemma 3.3.
4. Proof of Theorem 1.1.

Proof of Theorem 1.1. For each z € 4, let S} m)(;v) be the “maximal section
contained in €;” centered at x so that Sy . (x) is contained in ; and tangent to
09. The existence of such a section follows %rom the continuity of the sections in h;
see [8]. By (4) and the universal Lipschitz bound on wu, there exists ¢ > 0 universal
such that for all z in the é-neighborhood N; of the union of the holes in Qq, the
section S, (x) is tangent to a hole and not 9.

The arguments in the proof of Theorem 1.1 of [23] show that

u e W2"p(Ql\N5) n Cl’a(Q1\N5)

for any p>1 and a € (0, 1), with corresponding estimates in these spaces depending
on §, p, and a. More precisely, the estimates used to prove Theorem 1.1 of [23] are
local in nature and thus apply in our setting to sections centered in Q;\Nz of height
smaller than some h; > 0 universal chosen so that these sections do not intersect Nz/o.
In particular, in our setting, Theorem 1.1 of [23] has the form |D?u| < C(e, §)d=¢ in
Q4 \N; for any € > 0, from which the claim follows. Here and below, d denotes the
distance from Q. (Alternatively, one can note that all arguments in [23] work equally
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well if the source density is smooth and positive in the closure of the source domain
and 1 in a neighborhood of the boundary. In our setting, we can reduce to this case
by considering the function that is u near 9Qg, glued to p, * (u+7|z|?) for 7 > 0 small
universal, a positive universal distance from 9. Here p, is a standard mollifier.)

We may thus focus our attention on Nz. To that end, let & € Nz, and let d be the
distance from x to the boundary. We will prove that

(16) |D?u(z)| < ¢ td V2.

Here and for the remainder of the proof, ¢ denotes a positive universal constant
that may change from line to line. The W?? estimate from Theorem 1.1 follows
immediately from (16), and the C*'/? estimate comes from integrating (16) along
line segments.

Assume after a translation that Sﬁ(z)(m) is tangent to a hole at the origin. Ap-
plying Proposition 2.1, we engulf S%f(m) (z) by R¥(0), with h ~ h(z). We will prove
that

() e e
Using that |S}f(z) (x)] ~ |R¥(0)], it is easy to see that n%(m)(x) <c¢ 'n*(0). Combining
this with the above inequality and (7) gives (16).

In what follows, we will use that if hy ~ hy, then Rj; (0) is approximated by (con-
tains and is contained in dilations by universal constants times) R} (0) (see section A.4
of the appendix), whence Aj (0) ~ A} (0), A} (0) ~ Ay (0), and ny (0) ~nj;_(0). We
will also denote nj'(0) by s, and we will similarly drop the notation (0) and the
superscript v from the other relevant quantities.

If either n, < C;lMQ or the conditions of Lemma 3.3 are satisfied, then we are
done. Indeed, in the first case, use that c; LM, is universal; hence, the desired bound
on 7y follows provided that ¢ universal is sufficiently small. In the second case,
Lemma 3.3 gives A,% < ¢ 'Ap; hence, ny, < c_l)\;l/Z. Moreover, the distance from the
boundary in Ry, is at most ¢~')j,. In particular, )\;1/2 < ¢ 'd=Y2  and we are also
done in this case.

So assume that neither is satisfied, and let £ be the supremum of heights ¢ such
that 7y > c5 LM, and the conditions of Lemma 3.3 are not satisfied at height s for all
s€h, t].

We first assume that £ < 1. Then there exist k € [h, f] and & € (1, 2) such that
wh > { and either N < Co LM, or the conditions of Lemma 3.3 are satisfied at height
rh but neither holds at height h. At height h, we can apply either Lemma 3.1 with
the choice M = M; or Lemma 3.2 with the choice M = M, giving a conclusion at
height Ml_liz or M{lﬁ. Repeat applying Lemma 3.1 or 3.2 (say, the former & times
and the latter [ times) until the first time M, * M, 'h < h. Assume that eccentricity
increased in the application of Lemma 3.2 I’ <[ times. We then have
—1/2

/
-1 —k _—1 —1
Np<c ey m<cr Nyis

where
/ / /
ri= cl_le_k/Qc{l M2_l /2= Akl < 1.
By Lemmas 3.1 and 3.2, we also have that

-1
R, Cc rR,;.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/03/25 to 169.234.26.36 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONCONVEX PLANAR DOMAINS 4753

We now consider the case that at height Hil, the conditions of Lemma 3.3 are
satisfied. The lemma implies that

—1y—1/2,
nﬁﬁgc /\Kfz 5
thus,
—1,,—1/2y—1/2
(17) Mh < rT A L

Assume after a rigid motion that the picture is oriented as in the proof of Lemma 3.3 so
that R, ; has vertical short axis. Arguing as in the proof of Lemma 3.3, we have either
that A_; ~ A,_;, in which case the desired estimate 1, < c_lr_1/2/\;£/2 < e 1d—1/2
follows from the inclusion Rj C C_erKiw or that the boundary of 2; contains a
portion that lies above {zy = sz1 —c¢ tat} in {|z1| <A_;}, where 0< s <c™'A_; /A
and Aih < 671)\%' Recall that Ry, is contained in the ¢~ !r times dilation of R, ;.
Thus, in Ry, the distance from the boundary is at most

671(7")\'#I +srA,j + TzAiiL)'

Using the previous inequalities for s and A_;, we see that the second and third terms
are bounded by ¢™'rA_; and ¢~'r?\ ; respectively, giving a bound on the distance
between the boundary in R}, of the size

d< 0717‘)\%.
Rearranging gives
A<yt 2,
Using this in (17) gives

Mh < C_ld_1/27

and we are done with this case.
In the case that n,_; < cglMg, we have

nn < c /2

Furthermore, we have that R; is contained in a universal dilation of B, since R; is
contained in B,-1; thus, in Ry, the distance from the boundary is at most ¢~ 'r, and
hence

< lg-1/2

in this case as well.

Finally, we deal with the case that £ > 1. Since 7, is still bounded by a universal
constant, we can take h=1 and repeat exactly the same arguments as above. More
precisely, by repeated application of Lemma 3.1 or 3.2 starting from height h= 1, we
get

< ¢ lrm /2
and
Ry C Be-1,,
where r is defined in the same way as above. Combining these two conclusions, we
get np, < ¢ 'd~1/2, and this completes the proof. 0
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5. Future directions. To conclude the paper, we list a few questions to be
investigated in future work:

1. Establish Sobolev regularity for optimal transport maps of a natural class of
nonconvex domains in higher dimensions. As noted above, the Pogorelov-
type estimate Proposition 2.3 is convenient but not required for the result in
this paper, so there is hope for such an extension.

2. In two dimensions, enlarge the class of source domains being considered, e.g.,
to arbitrary smooth domains. Our arguments handle concave parts of the
boundary since we only use the equation and not the convexity of the target
domain. However, convex parts of the boundary that lie inside the convex
hull of the source domain may be tricky to handle since at such points, we
do not have duality, which played an important role in the works of Caffarelli
[6] and Savin and Yu [23].

3. Investigate applications of our results to the existence theory for the SGEs in
cases where the source density is allowed to vanish. In previous works dealing
with the case where the source density is bounded from below by a positive
constant, W21 estimates played a central role [2], [3], [15].

4. Investigate applications of the ideas in this paper to the partial regularity
theory of optimal transport maps when the domains are not convex. In this
case, optimal transport maps can have singularities, and interesting results
have been obtained about the size of the singular set [12], [17], [16], [19].
However, the fine geometric measure-theoretic structure of the singular set
is not well understood, even in two dimensions with smooth domains and
quadratic cost. In that case, a reasonable conjecture seems to be that the
one-dimensional Hausdorff measure of the singular set is bounded.

Appendix A. In this section, we provide some of the details that we omitted
for simplicity of presentation above.

A.1. No segments. We start with a simple lemma that will be used in some of
the subsequent proofs.

LEMMA A.1. There is no convex function w on By C R? that satisfies
det D?w > X{z2>0}> Wl{z,—0} linear.

Proof. After subtracting an affine function, we may assume that w > 0 and
w|{z,—0} = 0. After subtracting a multiple of x5, we may assume further that w(0, t) =
o(t) for ¢ > 0. It follows that for any k >0, we can choose h > 0 small such that

R:=[-1/2,1/2] x [0, 2kh] C {w < h}.

The quadratic polynomial @ = 8ha? + 2k~2h (x5 — kh)? thus lies above w on the
boundary of R and for k large satisfies det D?@Q < 1. The comparison principle implies
that @ >w >0 in R, contradicting that @ vanishes at the center of R. 0

We now prove the claim that functions in Fs are not linear along line segments
centered in the closure of the source domain, from which the universal bound on
diameters of sections followed.

LEMMA A.2. Let u € Fs5. Then u is not linear along any line segment centered at
a point in €.

_ Proof. By Lemma A.1 (appropriately rescaled), u is not linear along any segment
in ;. The only remaining possibility is that u is linear along a segment that is tangent
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to 08¢ at a single point that lies inside the segment. The function u cannot be linear
along the whole line [ containing this segment. Indeed, if it was, then the monotonicity
of the subgradient of u implies that du(R?) (the subgradient image of u on the whole
plane) lies in some line orthogonal to [, whence det D?u = 0, a contradiction. We
conclude that the agreement set between v and a linear function has extremal points
outside of . This contradicts that det D?u =0 outside of Q. 0

A.2. Area estimate. Next we prove the area estimate (5). Note that if S}'(z)
is centered at a point x € ; and intersects at most one hole, then the hole lies on
one side of some line through z. Since z is the center of mass of S}(x), it follows
that |S}(z) N Q1| > d| Sy (x)| for some d > 0 absolute. The area estimate (5) is thus a
consequence of the following general result.

LEMMA A.3. Assume that S*(x) is a bounded domain in R™, that det D*w = xyu
for some U C S} (x), and that |U| > XS (x)| for some A > 0. Then there exists
k(n, A) >0 such that

kt™V2 <SP (z)| < kM2,

Proof. After translating and subtracting a linear function, we may assume that
z = 0 and that w = 0 on 05{°(0). By John’s lemma, there exists an ellipsoid E;
centered at zero such that c(n)E, C S{*(0) C E;. In this proof, ¢(n) will denote a
constant depending on n that may change from line to line. Write Ey = Ay(By),
where A, is a linear map, and let w(z) = |det A;|~%/"w(A,;z), U = A;'U, and H =
|det A¢|~2/"t. Then ¢(n)B; C S%(0) C By, det D*w = x5, and |[U| > c(n)A\. In
particular, provided that a(n, A) is sufficiently close to one, we have |S%(0)\aS%(0)| <
|U|/2, giving |U| < 2|U N aS%(0)]. Proposition 1.1 of [21] implies that H ~ 1 up to
multiplication by constants depending on n, A. Since | det A;| is equivalent to |S(0)]
up to multiplication by dimensional constants, we conclude that ¢"/2 is equivalent to
[S3(0)] up to multiplication by constants depending on n and A, as desired. |

A.3. Engulfing properties. The engulfing property Proposition 2.1 follows
from the following pair of lemmas. Before proceeding, we recall a standard renormal-
ization procedure. For u € Fj, x € 2y, and S}'(z) contained in {2; or intersecting one
hole, let

1
up(y) = Eu(Ahy) + Ly,

where Ay, is an affine transformation of determinant h that takes a square centered
at 0 to x + Ry, (z) and Ly, is a linear function chosen so that u, =0 on 857" (0). Then
uy, solves det D*uy, = xq, in the normalized domain S} (0) (equivalent to B; up to
dilations by absolute constants), where ¢ is convex and §j, contains 0. We call this
procedure “renormalizing in the section S} (z).”

LEMMA A4. Ifue Fs,y€ Si(x)N(021\0Q), and Sj'(x) C Q, then

Si(x) C 5% (w).

Here c is universal.

Proof. Assume by way of contradiction that the lemma is false. Then there exists
a sequence uy € Fs such that S;f; (zx) are contained in the source domains and yy,
are in their closures and the boundary of a hole (say, y, = 0 after a translation) but
Sk (0) do not contain S;* (xy). Note that we may assume that hy < ¢ 'k~" by the
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uniform Lipschitz bound on ug, so hx — 0, and the sections localize close to the holes.
After renormalizing in the sections S;} (0), we get a subsequence of rescalings wy, of
uy, that converge to a function w which satisfies that Si(0) is normalized, det D?w =1
in a domain  with Q¢ convex, and w is linear along a segment from 0 to 957 (0)
contained in Q. This last fact comes from the observation that the sections Sy (),
after renormalization, become sections of height 1/k in which det D?wj, = 1, which
are not contained in the renormalized sections S}"*(0) but have 0 in their boundaries.
These sections contain line segments with endpoints at 0 and 957"%(0) that tend to
a line segment from 0 to 951 (0) in Q on which w is linear since the heights of the
sections tend to zero. This contradicts Lemma A.1, appropriately rescaled. 0

LEMMA A.5. Let u € Fs. Then for all a € (0, 1), there exists 5(d, «) > 0 such
that

Sgn(y) CaSi(y)

for all y € 91\, where aSi(y) is the a-times dilation of Sy (y) around y.

Proof. The argument is similar to the one above. If the lemma is false, there is

a sequence uy € Fs such that (up to translations) 0 is in the boundary of a hole and
;L‘:/k(O) are not contained in a5, (0). After renormalizing in the sections S (0),
we get a subsequence of rescalings wy that converge to a function w which satisfies
that S¥(0) is normalized, det D*w = 1 in a domain Q with Q¢ convex and 0 € 99,
and w is linear along a line segment passing through the origin with an endpoint on
9(aS37(0)). (The reasoning is similar to above; S;”/’“k (0) are not contained in aS7"*(0),
so they contain segments passing through 0 with one endpoint on 9(«S;"*(0)) and the
other, by the fact that the sections are centered at 0, a positive distance depending on
a from 0. These segments converge to the one claimed above.) Again, we contradict
Lemma A.1. 0

A.4. Rectangle containments. Now we sketch the proof that if u € Fs,0 €
021\0Q0, and hy ~ hy, then R} (0) is approximated by (contains and is contained
in dilations by universal constants of) R} (0). This fact was used in the proof of
Theorem 1.1 in section 4. It suffices to show that S} (0) is approximated by S} (0).
After renormalizing in Sy (0) as in section A.3, we get a convex function w such that
517(0) = {w < 0} is normalized, and we need to show that S¥(0) is approximated by
By, where ¢~ 1. Since

1S (0) ~ 1,

we just need to show that S¥(0) contains a ball centered at 0 that has small universal
radius. If not, then by the local universal Lipschitz bound on w, the slope of the linear
function defining S¥(0) is extremely large, say, after a rotation, Ke; with K >> 1.
But in this case, the line segment in S¥(0) through the origin parallel to e; would
intersect 0S¥ (0) at a distance much shorter from the origin on the left than on the
right, contradicting that 0 is the center of mass of S¥(0) and completing the proof.

A.5. Partial Legendre transform. Let u be a convex function on a domain
Q C R%2. We define its partial Legendre transform by taking the usual Legendre
transform along horizontal lines:

u*(p, x2) :=sup(pr1 — u(w1, T2)).
T
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The partial Legendre transformed is defined on {((d1u(x1, z2), x2) : (x1, z2) € Q)},
where 0; denotes the subgradient of u understood as a one-variable function on the
horizontal line with x5 constant. The function ©* is convex in the horizontal directions
and concave in the vertical directions.

When u is smooth and uniformly convex, we have

u*(u1 (21, T2), T2) = 11 (21, 2) — u(21, T2).
By taking various derivatives of this identity, one obtains

2
(18) wh= o ufp= 2= SO
U1l u11 U1l
In particular, if det D?u = 1, then v* is harmonic.
Finally, we recall that if 4 and v are convex on €, then |[u* —v*| < |lu — v|[ (@)
on the common domain of definition of u* and v*. In particular, C° convergence of
convex functions in € implies C° convergence of their partial Legendre transforms.

A.6. Boundary estimate for harmonic functions. We denote by B, the
half-ball B, N {z, >0} in R™.

LEMMA A.6. Let u € C’(Bif') be a harmonic function such that ulg,, —oy is Lip-
schitz, with Lipschitz constant L. Then

||uiHLoc(Bl+/2) <C(n)(L+ ||U||Loc(Bl+))

for all i <n.
Proof. We may assume that L + |Jul| L) S1 after dividing by this quantity.

We may also assume that u € C°°(Bj"); the general result follows by approximation.
Let ¢ be a smooth cutoff function that is 1 in B34 and 0 outside of By/g, and let
g be the function on {z, = 0} defined by uy on {z, = 0} N B; and extended to
be zero outside. Note that |g;|, 7 < n, is bounded by an absolute constant. Let K
be the upper half-space Poisson kernel, and let h = K x g be the harmonic function
in the upper half-space with boundary data g. Since h; = g; on {x,, = 0} and h;
tends to zero at infinity, the maximum principle implies that on the upper half-space,
|hi| <1|gill o rn—1y, Which in turn is bounded by an absolute constant. To conclude,
we note that in B;‘ 4» we have v = h + k', where b/ is a harmonic function vanishing
on {z,, =0} N Bsy and |h| <|u| + |h| < 2. The Schwarz reflection principle and the
interior gradient estimate for harmonic functions give |[VA/[| BY,) < C(n), so the
result follows. d

Acknowledgments. C. Mooney would like to thank A. Figalli for discussions
on a related problem which led to Proposition 2.3.
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