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Counterexamples to maximal regularity for operators
in divergence form

Sebastian Bechtel , Connor Mooney, and Mark Veraar

Abstract. In this paper, we present counterexamples to maximal Lp-
regularity for a parabolic PDE. The example is a second-order opera-
tor in divergence form with space and time-dependent coefficients. It is
well-known from Lions’ theory that such operators admit maximal L2-
regularity on H−1 under a coercivity condition on the coefficients, and
without any regularity conditions in time and space. We show that in
general one cannot expect maximal Lp-regularity on H−1(Rd) or L2-
regularity on L2(Rd).
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1. Introduction. Let V and H be complex Hilbert spaces such that V ↪→ H
densely and continuously. Identifying H∗ with its dual, we can view H as a
subspace of V ∗, which is the dual of V . We start with the abstract problem

{
u′ − Au = f, on (0, 1),

u(0) = 0.
(CP)

Here A : (0, 1) → L(V, V ∗) is strongly measurable and f ∈ L2(0, 1;V ∗). More-
over, we suppose that there are Λ,λ > 0 such that for all t ∈ (0, 1) and v ∈ V ,
one has

‖A(t)v‖V ∗ ≤ Λ‖v‖V , Re〈A(t)v, v〉 ≥ λ‖v‖2V .
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By Lions’ theory [19], it is known that (CP) has a unique weak solution
u ∈ H1(0, 1;V ∗) ∩ L2(0, 1;V ). More generally (see [8, XVIII.3.5]), if f ∈
L2(0, 1;V ∗)+L1(0, 1;H), then (CP) has a unique weak solution u ∈ L2(0, 1;V )
such that u′ ∈ L2(0, 1;V ∗) + L1(0, 1;H).

In this paper, we study two problems concerning the regularity of u.

Problem 1. Let p ∈ (1,∞)\{2}. Under what condition on A does the following
hold: for all f ∈ Lp(0, 1;V ∗), there is a unique weak solution u which is in
Lp(0, 1;V )?

Using the equation, this also gives u ∈ H1,p(0, 1;V ∗). Problem 1 can equiv-
alently be formulated as the question whether there is a constant C > 0 such
that for all step functions f valued inH and with u the unique solution to (CP)
given by Lions’ result for p = 2, one has the estimate

‖u‖Lp(0,1;V ) ≤ C‖f‖Lp(0,1;V ∗).

It is well-known that regularity results fail for the endpoint cases p = 1
and p = ∞ unless V = V ∗ and thus A is a family of bounded operators on
V (see [6,14] and also [16, Thm. 17.4.4 & Cor. 17.4.5]). Hence, we can safely
concentrate on the case p ∈ (1,∞) in this paper.

The second problem is a variation of Lions’ problem [19, p. 68], who origi-
nally asked this question for symmetric A.

Problem 2. Under what condition on A does the following hold: for all f ∈
L2(0, 1;H), the unique weak solution u satisfies u′ ∈ L2(0, 1;H)?

Again using the equation, one also has Au ∈ L2(0, 1;H). However, it is un-
clear what this tells about the regularity of u since the domain of the operators
A(t) in H are not easy to describe in general.

Both problems have in common (at least if p > 2) that they imply regu-
larity of u such as u ∈ Cα([0, 1]; [H,V ]λ) for some α > 0 and λ ∈ (0, 1). Such
properties are for instance useful in the study of non-linear problems. They
follow from standard interpolation estimates and Sobolev embeddings. In Li-
ons’ general L2-setting, one can only obtain C([0, 1];H) or Hölder regularity
of small order, compare with Theorem 2.2.

If A is autonomous, that is to say, the family A(t) does not depend on t,
then in both problems the answer is affirmative. Indeed, in Problem 1, this can
be concluded from Lions’ result and [16, Thm. 17.2.31]. Concerning Problem 2,
this follows from a result of de Simon [9].

Otherwise, some conditions are needed. In the case of Problem 1, it is
sufficient that the mapping t +→ A(t) ∈ L(V, V ∗) is (piecewise relatively) con-
tinuous [2,21]. Without any continuity, it is only known that there is some
ε > 0 depending on Λ, λ such that Problem 1 holds with p ∈ (2− ε, 2+ ε), see
Theorem 2.2. For Problem 2, the situation is even more delicate. Based on an
abstract counterexample for the Kato square root problem due to McIntosh,
Dier constructed a first non-symmetric counterexample to Problem 2 in his
PhD thesis, see also [3, Sec. 5]. Moreover, Fackler constructed a counterexam-
ple that is symmetric and C

1
2 -Hölder continuous [12]. To the contrary, with
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slightly more regularity (for instance C
1
2+ε-Hölder regularity), many positive

results were given [1,4,7,10,13,15,21]. We also recommend the survey [3] for
an overview of Problem 2.

The counterexamples due to Dier and Fackler are abstract and not differ-
ential operators. As is highlighted by the solution to the Kato square root
problem [5], the extra structure of a differential operator can be beneficial
compared to the general situation. It is hence of interest to find counterex-
amples to Problems 1 and 2 that are differential operators. For Problem 2,
this was explicitly pointed out in [13, Problem 6.1] and [3, Prop. 12.1]. To be
more precise with our setting, we work with H = L2(Rd) and V = H1(Rd). If
B : [0, 1]×Rd → Cd×d is elliptic in the sense that there exist constants Λ,λ > 0
such that for all t ∈ [0, 1] and x ∈ Rd, one has

|B(t, x)ξ| ≤ Λ|ξ|, ReB(t, x)ξ · ξ ≥ λ|ξ|2 (ξ ∈ Cd),

then consider the problem
{
u′ − div(B∇u) = f, on (0, 1),

u(0) = 0,
(P)

where f ∈ L2(0, 1;H−1(Rd)). In the notation of (CP), we have put A(t)v =
−div(B(t)∇v). Lions’ theory yields a unique solution u in the regularity class
H1(0, 1;L2(Rd))∩L2(0, 1;H1(Rd)). Problems 1 and 2 ask if for all elliptic co-
efficients, one has the regularity u ∈ Lp(0, 1;H1(Rd)) or u′ ∈ L2(0, 1;L2(Rd))
when the forcing term f is taken from Lp(0, 1;H−1(Rd)) or L2(0, 1;L2(Rd)).
The answer is negative in both cases and the respective counterexamples will
be the content of the present article. More precisely, based on a construction
of the second-named author [20], we will obtain equations whose solutions fail
to have higher Lr(Ls)-integrability (Theorem 2.4). Based on this result, we
produce a counterexample to Problem 1 for every p .= 2 in Theorem 2.5. In
particular, this shows sharpness of Theorem 2.2 which we mentioned briefly
above. Concerning Problem 2, we will show in Theorem 2.7 that it fails in the
worst possible way for general elliptic problems in divergence form.

2. Maximal regularity in Hilbert spaces.

2.1. Known positive results. We present the results regarding Problem 1 that
were already discussed in the introduction.

A function u ∈ L2(0, 1;V ) ∩ H1(0, 1;V ∗) is called a solution to (CP) if for
all t ∈ [0, 1],

u(t) −
t∫

0

Auds =
t∫

0

fds,

where the integrals are defined as Bochner integrals in V ∗.
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One can check that u is a solution to (CP) if and only if for all φ ∈
C∞

c ((0, 1);V ), one has

−
1∫

0

〈u(s),φ′(s)〉ds −
1∫

0

〈A(s)u(s),φ(s)〉ds =
1∫

0

〈f(s),φ(s)〉ds. (2.1)

Theorem 2.1 (Lions). In the situation of (CP), there is a unique solution u ∈
L2(0, 1;V )∩H1(0, 1;V ∗). Constants in the maximal regularity estimate depend
only on Λ and λ.

Based on a perturbation principle for isomorphisms in complex interpola-
tion scales due to Sneiberg [22], Lions’ result can be extended to p close to 2,
see [11, Thm. 4.2].

Theorem 2.2. In the situation of Lions’ result (Theorem 2.1), there exists ε >
0 depending on Λ, λ, and the pair (V,H) such that Problem 1 has a positive
solution for p ∈ (2 − ε, 2 + ε).

It will be clear from Theorem 2.5 that one cannot improve the latter to all
p ∈ (1,∞), even if f ∈ Lp(0, 1;H).

2.2. A preliminary counterexample from the literature. Our proof relies on
an example by the second-named author from [20]. We recall some of the
details of that example here for the reader’s convenience. In [20], complex-
valued solutions ζ : (−∞, 1) × Rd → C to linear, uniformly parabolic PDEs
with complex coefficients B : (−∞, 1) × Rd → Cd×d of the form

∂tζ = div(B(t, x)∇ζ) (2.2)

are constructed, with the following properties. First, (2.2) holds in the sense of
distributions. Moreover, ζ and B are smooth away from (−∞, 1)× {0} (hence
the equation holds classically away from {x = 0}), and ζ is locally Lipschitz
on (−∞, 1) × Rd. Second, the solutions are chosen to obey certain scaling
symmetries. Solutions of the following form are constructed:

ζ(t, x) = (1 − t)−µ/2e−i log(1−t)/2w(x/(1 − t)1/2), (2.3)
B(t, x) = a(x/(1 − t)1/2), (2.4)

for appropriate choices of a parameter µ ∈ R, a function w : Rd → C, and
uniformly elliptic coefficients a : Rd → Cd×d. The parabolic PDE (2.2) is
equivalent to the following elliptic PDE for w on Rd:

div(a(x)∇w) =
1
2
(iw + µw + x · ∇w). (2.5)

In [20], it is shown that for any choice of the parameter µ satisfying

0 ≤ µ < d/2,

one can find a uniformly elliptic matrix field a on Rd that is smooth away
from 0, and a solution w to (2.5) on Rd that is smooth away from 0 and
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locally Lipschitz on Rd, such that the following estimates are satisfied: for all
multi-indices α and all |x| ≥ 1, we have

|∂αw(x)| ≤ Cα|x|−|α|−µ, (2.6)
|∂αa(x)| ≤ Cα|x|−|α|. (2.7)

The desired solutions ζ and coefficients B for the parabolic problem (2.2) are
then obtained through (2.3) and (2.4). We stress that the coefficients a satisfy
the boundedness and uniform ellipticity conditions

|a(x)ξ| ≤ Λ|ξ|, Re(a(x)ξ · ξ) ≥ λ|ξ|2

for some λ, Λ > 0 depending on µ and all x ∈ Rd and ξ ∈ Cd, so B satisfies
the conditions (1.1) with the same λ and Λ.

We will only use the properties discussed above in the sequel. For the details
of how w and a are chosen, the interested reader can consult Section 3 in [20].
Roughly speaking, for judicious choices of the form of w and a, one can reduce
the PDE (2.5) to a system of ODEs. These can be solved by fixing a choice of
w and solving for the coefficients in a.

Remark 2.3. When split into real and imaginary parts, the Equation (2.2)
can be understood as a system of two equations, which are coupled through
the imaginary part of B. An important philosophical point in [20] is that
when the imaginary part of B is taken to be symmetric, that part of B does
not contribute to the ellipticity condition. This allows strong coupling of the
equations without breaking the ellipticity condition.

2.3. Failure of Lr(Ls)-integrability for variational solutions. The following
counterexample is based on the construction from the previous subsection and
is the basis for our subsequent counterexamples to Problems 1 and 2.

Theorem 2.4 (Failure of higher integrability). Let d ≥ 2. For every s, r ∈
(1,∞) with 2

r + d
s < d

2 , there exists an elliptic matrix B : [0, 1] × Rd → Cd×d

and f ∈ L∞(0, 1;L2(Rd)) such that the unique solution u to (P) satisfies u .∈
Lr(0, 1;Ls(Rd)).

Proof. Pick 2
r + d

s < µ < d
2 and fix the corresponding w, a, ζ, and B as

described in Section 2.2.
Step 1: General setup. It is clear from (2.2) and the properties of w and B
that the weak derivative ∂tζ exists on (0, T ) as an L2(BR)-valued function for
any T < 1 and R > 0, where BR is a shorthand notation for the Euclidean
ball of radius R in Rd. Now let

u(t, x) = tζ(t, x)η(x),

f(t, x) = η(x)ζ(t, x) − t
d∑

k,$=1

[Bk,$(t, x) +B$,k(t, x)]∂kζ(t, x)∂$η(x)

− tζ(t, x)div(B(t, x)∇η(x)),

where the cut-off function η ∈ C∞
c (Rd) is such that η(x) = 1 for |x| ≤ 1,

η(x) = 0 for |x| ≥ 2, and 0 ≤ η ≤ 1 on Rd.
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We claim that u ∈ L2(0, 1;H1(Rd)) ∩ H1(0, 1;H−1(Rd)) is the unique so-
lution to (P), and f ∈ L∞(0, 1;L2(Rd)). Then, using (2.2), it is elementary to
check that for t ∈ (0, 1) and x ∈ Rd\{0}, one pointwise has

{
∂tu(t, x) − div(B(t, x)∇u(t, x)) = f(t, x),

u(t, 0) = 0.

Moreover, it also holds in distributional sense on (0, 1)×Rd. Hence, by density
and (2.1), it is a solution to (P).

Thus, it remains to check u ∈ L2(0, 1;H1(Rd)) and f ∈ L∞(0, 1;L2(Rd))
in order to find that u is the unique solution to (P) provided by Theorem 2.1.
Step 2: u ∈ L2(0, 1;H1(Rd)). Fix t ∈ (0, 1) and let α be a multi-index with
|α| ≤ 1. By definition of ζ and using (2.6), one has

‖∂αζ(t, ·)‖L2(B2) ≤ (1 − t)−
µ+|α|

2 + d
4 ‖∂αw‖L2(B2/(1−t)1/2 )

≤ (1 − t)−
µ+|α|

2 + d
4

[
Cd,w + C0‖| · |−µ−|α|‖L2(B2/(1−t)1/2\B1)

]

≤ (1 − t)−
µ+|α|

2 + d
4

[
Cd,w + C0Cd(1 − t)

µ+|α|
2 − d

4

]

≤ Cd,w(1 − t)−
µ+|α|

2 + d
4 + C ′

d,w (2.8)

for some constant C ′
d,w only depending on d and w and with

Cd,w = |B1|1/2 sup
x∈B1

(|w(x)|+ |∇w(x)|).

Note that Cd,w is finite since w is Lipschitz. Recall that d
4 − µ

2 is positive.
Thus, by definition of u and using (2.8), we find

‖u(t, ·)‖L2(Rd) ≤ t‖ζ(t, ·)‖L2(B2) ≤ Cd,w + C ′
d,w.

Thus, u is bounded as an L2(Rd)-valued function and therefore in particular
u ∈ L2(0, 1;L2(Rd)). Similarly,

‖∇u(t, ·)‖L2(Rd) ≤ ‖∇ζ(t, ·)‖L2(B2) + ‖∇η‖∞‖ζ(t, ·)‖L2(B2\B1)

≤ Cd,w(1 − t)−
µ+1
2 + d

4 + C ′
d,w + C ′

d,w‖η‖∞.

By the choice of µ, we have −µ+1
2 + d

4 > − 1
2 , therefore and also ∇u ∈

L2(0, 1;L2(Rd)).
Step 3: f ∈ L∞(0, 1;L2(Rd)). To estimate the norm of f , we consider all parts
separately. The fact that ηζ ∈ L∞(0, 1;L2(Rd)) follows from (2.8). Due to
the support properties of ∇η and the boundedness of B, it suffices to prove
a uniform estimate for ‖∂mζ(t, ·)‖L2(B2\B1) to estimate Bk,$∂mζ∂nη. For this,
calculate with (2.6) that

‖∂mζ(t, ·)‖L2(B2\B1) = (1 − t)−
µ
2 − 1

2 ‖(∂mw)(·/(1 − t)1/2)‖L2(B2\B1)

≤ C1‖| · |−1−µ‖L2(B2\B1).
(2.9)

It remains to estimate ζdiv(B∇η). Again, due to the support properties of
∇η, it suffices to consider x ∈ B2\B1. First, by (2.6) and definition of ζ,

|ζ(t, x)| ≤ (1 − t)−µ/2|w(x/(1 − t)1/2)| ≤ C1,0.
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Thus it remains to estimate ‖∂αBk,$(t, ·)∂βη‖L2(B2\B1) for |α| ≤ 1 and 1 ≤
|β| ≤ 2. Since Bk,$ and ∂βη are uniformly bounded, it is enough to show that
‖∂αBk,$(t, ·)‖L2(B2\B1) is uniformly bounded for |α| = 1. Indeed, this follows
from the analogous calculation to (2.9) using (2.7) instead of (2.6).
Step 4: u .∈ Lr(0, 1;Ls(Rd)). Similar to (2.8) but using B1 ⊆ B1/(1−t)1/2 ,

‖ζ(t, ·)‖Ls(B1) = (1 − t)−
µ
2 + d

2s ‖w‖Ls(B1/(1−t)1/2 )
≥ (1 − t)−

µ
2 + d

2s ‖w‖Ls(B1).

Therefore, with t ∈ (12 , 1),

‖u(t, ·)‖Ls(Rd) ≥ t‖ζ(t, ·)‖Ls(B1) ≥ 1
2
(1 − t)−

µ
2 + d

2s ‖w‖Ls(B1).

By the choice of µ, r, and s, we have −µ
2 + d

2 s < − 1
r , and therefore u .∈

Lr(0, 1;Ls(Rd)). !

2.4. Negative result concerning Problem 1. The following result shows that
for time-dependent operators in the variational setting, maximal L2-regularity
cannot be extrapolated to maximal Lp-regularity for p .= 2 besides the small
interval given in Theorem 2.2. It answers Problem 1 in a negative way in the
setting of elliptic differential operators.

Theorem 2.5 (Failure of extrapolation of maximal Lp-regularity). Let d ≥ 2.
For every p ∈ (1,∞)\{2}, there exists B : [0, 1] × Rd → Cd×d elliptic and
f ∈ Lp(0, 1;H−1(Rd)) such that the unique solution u to (P) satisfies u /∈
Lp(0, 1;H1(Rd)).

Proof. We divide the proof into two cases.
Case 1: p > 2. We appeal to Theorem 2.4. If d ≥ 3, put r = p and

s = 2∗ := 2d
d−2 and if d = 2, put r = p and s > 2p

p−2 . In both cases, the condition
2
r +

d
s < d

2 is satisfied, so that Theorem 2.4 yields B : [0, 1]×Rd → Cd×d elliptic
and f ∈ L∞(0, 1;L2(Rd)) ⊆ Lp(0, 1;L2(Rd)) such that the unique solution
u to (2.4) satisfies u .∈ Lr(0, 1;Ls(Rd)). This implies u .∈ Lp(0, 1;H1(Rd))
since otherwise the Sobolev embedding yields a contradiction to the previous
assertion.

Case 2: p < 2. We use a duality argument that resembles [17, Thm. 6.2]. By
the first part, there are f ∈ Lp′

(0, 1;H−1(Rd)), elliptic coefficients B : [0, 1] ×
Rd → Cd×d, and a solution u ∈ L2(0, 1;H1(Rd)) ∩ H1(0, 1;H−1(Rd)) to the
equation

{
∂tu − div(B∇u) = f,

u(0) = 0,
(2.10)

such that u .∈ Lp′
(0, 1;H1(Rd)). Assume for the sake of contradiction that for

every A : [−1, 0] × Rd → Cd×d and g̃ ∈ L2(−1, 0;H−1(Rd)), there is a unique
solution ṽ ∈ L2(−1, 0;H1(Rd)) ∩ H1(−1, 0;H−1(Rd)) to the problem

{
∂tṽ − div(A∇ṽ) = g̃,

ṽ(−1) = 0,
(2.11)
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satisfying the estimate

‖∂tṽ‖Lp(−1,0;H−1(Rd)) + ‖ṽ‖Lp(−1,0;H1(Rd)) ≤ C‖g̃‖Lp(−1,0;H−1(Rd)), (2.12)

where the constant C > 0 does not depend on ṽ and g̃. By translation, the
question on (−1, 0) is equivalent to that on (0, 1). Both intervals are related by
the transformation v +→ −v. We write for instance ũ(t) = u(−t) to translate
u to a function on (−1, 0) and vice versa. Specialize A = (B̃)∗ in (2.11). Since
u(0) = 0 = v(1), we can use integration by parts to obtain

1∫

0

〈g, u〉dt =
0∫

−1

〈g̃, ũ〉dt =
0∫

−1

〈(ṽ)′, ũ〉 + ((B̃)∗∇ṽ|∇ũ)2dt

=
1∫

0

−〈v′, u〉 + (∇v|B∇u)2dt

=
1∫

0

〈v, u′〉 + (∇v|B∇u)2dt.

Plug in (2.10) to deduce
1∫

0

〈g, u〉dt =
1∫

0

〈v, f〉dt.

Hence, using (2.12), we can estimate
∣∣∣∣∣∣

1∫

0

〈g, u〉dt

∣∣∣∣∣∣
≤ ‖v‖Lp(0,1;H1(Rd))‖f‖Lp′ (0,1;H−1(Rd))

≤ C‖g‖Lp(0,1;H−1(Rd))‖f‖Lp′ (0,1;H−1(Rd)).

Since g was arbitrary, by duality, we obtain u ∈ Lp′
(0, 1;H1(Rd)), which gives

a contraction. !

Remark 2.6. For the case p > 2, we saw that although f ∈ L∞(0, 1;L2(Rd)),
the unique solution u to (P) satisfies u /∈ Lp(0, 1;H1(Rd)).

2.5. Negative result concerning Problem 2. We show that Problem 2 fails in
the worst possible way in the case of elliptic operators in divergence form:
for every ν ∈ (1/2, 1], there exist coefficients B and a forcing term f ∈
L∞(0, 1;L2(Rd)) such that the unique solution u to (P) satisfies u /∈ Hν(0, 1;
L2(Rd)). This solves Lions’ problem in a negative way also for elliptic opera-
tors. It would still be interesting to find a counterexample for ν = 1 where the
coefficients are Hölder continuous of order α for some α ≤ 1/2, and this would
then be an optimal counterexample due to the positive results for which we
refer to the survey [3]. The present coefficient function cannot even be contin-
uous, see Remark 2.8. There seems to be some room for improvement in the
regularity of B as the regularity is much worse than H1 in time.
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Theorem 2.7 (Failure of maximal L2-regularity on L2(Rd)). Let d ≥ 2. For
every ν ∈ (1/2, 1], there exists B : [0, 1] × Rd → Cd×d elliptic and f ∈
L∞(0, 1;L2(Rd)) such that the unique solution to (P) satisfies u /∈ Hν(0, 1;L2).
Proof. The strategy is as for the case p > 2 in Theorem 2.5. Let ν ∈ (1/2, 1]
and let 0 < θ < 1

2ν . Then define parameters r and s through 1
r = 1

2 − νθ
and 1

s = 1
2 − 1−θ

d . They satisfy the condition in Theorem 2.5, consequently
there is B : [0, 1] × Rd → Cd×d elliptic and f ∈ L∞(0, 1;L2(Rd)) such that
the unique solution u to (P) satisfies u /∈ Lr(0, 1;Ls(Rd)). Suppose that
u ∈ Hν(0, 1;L2(Rd)). Since u ∈ L2(0, 1;H1(Rd)) by Theorem 2.1, complex
interpolation (see [16, Theorem 14.7.12]) yields u ∈ Hνθ(0, 1;H1−θ(Rd)). By
choice of θ, the Sobolev embedding is applicable and gives u ∈ Lr(0, 1;Ls(Rd)),
a contradiction. !
Remark 2.8. By construction, the given counterexample is at the same time
a counterexample for Problem 1. We have discussed in the introduction that
if t +→ B(t) ∈ L∞(Rd) is (piecewise relatively) continuous, then Problem 1 is
automatically true for all p ∈ (1,∞). Therefore, the function B in Theorem 2.7
is not continuous as a map into L∞(Rd).

The examples show some limitations of what regularity estimates can hold
for elliptic operators in divergence form. However, several issues remain for
Problems 1 and 2. For instance, the operator A used in the above counterex-
amples is not symmetric/hermitian. We do not know what can be said for
the case d = 1. The only reference we found on the one-dimensional setting
is [18], where counterexamples are given in case of Lp-integrability in time
and space for both the divergence and non-divergence setting for the range
p ∈ (1, 3/2) ∪ (3,∞). Finally, it would be interesting to see what can be said
about Problem 2 if A is more regular in time (i.e., continuous or Hölder con-
tinuous).
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