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Abstract

The lateral stress profile of a lipid bilayer constitutes a valuable link between mole-

cular simulation and mesoscopic elastic theory. Even though it is frequently calculated

in simulations, its statistical precision (or that of observables derived from it) is often

left unspecified. This omission can be problematic, as uncertainties are prerequisite to

assessing statistical significance. In this chapter, we provide a comprehensive yet

accessible overview of the statistical error analysis for the lateral stress profile. We

detail two relatively simple but powerful techniques for generating error bars: block-

averaging and bootstrapping. Combining these methods allows us to reliably esti-

mate uncertainties, even in the presence of both temporal and spatial correlations,
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which are ubiquitous in simulation data. We illustrate these techniques with simple

examples like stress moments, but also more complex observables such as the

location of stress profile extrema and the monolayer neutral surface.

We demand rigidly defined areas of doubt and uncertainty!

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1. Arena

1.1 Physical situation

1.1.1 Biomembrane asymmetry

No less than half a century ago, biologists began to realize that the two

leaflets of biological lipid membranes differ in lipid composition. Seminal

work on human red blood cells (Bretscher, 1972a,b; Verkleij et al., 1973) was

soon followed by studies on human platelets (Schick et al., 1976) until asym-

metry was also confirmed for nucleated cells (mouse LM fibroblasts) (Sandra

& Pagano, 1978). Selective labeling (e.g. with trinitrobenzenesulfonate) or

hydrolysis (e.g. with various phospholipases) suggested that some lipids

prefer to reside on the outer (exoplasmic) leaflet (e.g., PC (weakly) and

sphingomyelin (strongly)), while other lipids strongly prefer the inner

(cytosolic) side (e.g., PE and PS). This basic picture has held up

remarkably well, but has been significantly refined in recent work

(Lorent et al., 2020) that not only resolves lipid head groups but also

exquisite details about individual tail length and saturation. Furthermore,

comparing predicted surface area profiles of single-pass alpha-helical

transmembrane proteins for multiple organisms across the phylogenetic

tree suggests that this type of asymmetry is evolutionarily conserved

across all of eukarya (Lorent et al., 2020).

While lipid identity is the most conspicuous sign of asymmetry, it is not the

only one. In fact, it cannot be: once the up-down symmetry of a bilayer is

explicitly broken in one particular observable, there is no reason why it should

survive in any other one. Indeed, we generally expect asymmetric membranes

to have a nonzero spontaneous curvature (meaning, geometric up-down

symmetry, aka “flatness”, is broken) or a nontrivial electric field (because the

dipole potentials of each leaflet do not mirror one another). Recently, Hossein

and Deserno argued that the interplay between curvature-elasticity and lipid

packing can result in a difference between the individual leaflet tensions,
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a condition they refer to as “differential stress”: ΔΣ = Σupper − Σlower ≠ 0

(Foley et al., 2023; Hossein & Deserno, 2020). Balancing the two membrane

torques that result from lipid curvature and unequal leaflet strains shows that

(within a simple model) this stress is given by

z
K K( ),

0

0b 0=

(1)

where κ is the bilayer bending modulus (typically tens of kBT), z0 is the

position of the neutral1 surface (usually around 1 nm), K0b is the lipid-derived

spontaneous bilayer curvature (which depends on the compositional asym-

metry and can easily be tens of inverse microns), and K⁎
0 is the equilibrium

membrane curvature at which bilayer torques are balanced. Putting in num-

bers, one finds that compositionally asymmetric (K0b ≠ 0) but flat (K0
⁎ = 0)

membranes (which we know exist, because we can make stable asymmetric

giant unilamellar vesicles) must be differentially stressed by several mN/m.

This is remarkable, because this stress is at least two orders of magnitude bigger

than typical relaxed biomembrane tensions (Morris & Homann, 2001), and in

fact surprisingly close to bilayer rupture tension (Evans & Heinrich, 2003).

Taken together, these considerations have invigorated investigations into

intrinsically stressed lipid bilayers, and more subtle aspects of a membrane’s

mechanical stress distribution.

1.1.2 The lateral stress profile

Membranes can have any particular tension, or no tension, but as we have

just seen, being tensionless does not mean that the underlying material is

unstressed: the total bilayer tension Σ = Σupper + Σlower can vanish while the

differential stress ΔΣ = Σupper − Σlower can be nonzero—namely, when the

two individual leaflet tensions are equal and opposite. This type of sub-

division can be microscopically refined by defining a local stress tensor Σ(r).

If the membrane lies in the xy-plane, then Σ is diagonal in the

xyz-coordinate system and, due to translational symmetry, can only depend

on z. Additionally exploiting rotational symmetry around the z-axis, we

see that it must have the form Σ = diag(Σ∥(z), Σ∥(z), Σ⊥(z)). Finally,

mechanical equilibrium implies ∇ ⋅ Σ = 0, or ∂iΣij = 0. The only nontrivial

1 For clarity, we wish to remind the reader that there are two subtly different reference surfaces in use.

The neutral surface, which we talk about here, is the surface within a leaflet which, if picked as the

reference surface for strain and bending, decouples stretching and bending contributions in an

underlying elastic description. The pivotal plane is the surface within a leaflet at which curvature does

not create area strain. Notice that the latter does not require any reference to an elastic model to be

well-defined, while the former requires by definition such a connection.
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condition here is ∂zΣ⊥(z) = 0, which states that the stress along the

membrane normal must be constant. However, the tangential component

Σ∥(z) is unrestricted; in fact, it generally is a strongly varying function of z.

Considering a volume preserving deformation that stretches a small rec-

tangular “box” containing the membrane but shrinks it perpendicularly

(Rowlinson and Widom, 2003), one realizes that the effective (or “excess”)

lateral stress is given by the function

z z( ) ( ) .= (2)

This so-called “lateral stress profile” plays a major role in membrane mechanics.

Roughly assuming that within the membrane headgroup region an oil-water

surface tension of (30 mN/m) is spread out across (1 nm) suggests that we

should expect magnitudes for Σ(z) in the range of hundreds of bars.2

Let us illustrate the usefulness of the stress profile with three examples.

First, since Σ(z) enters as a contribution to the elastic functional (namely,

one that is linear in the strain tensor), its moments encode important elastic

information; for instance, integrating over the upper (“+”) leaflet, one finds

(Hamm & Kozlov, 2000; Szleifer, Kramer, Ben-Shaul, Gelbart, & Safran,

1990; Terzi, Ergüder, & Deserno, 2019)

z zd ( ),m
0

=+ (3a)

K z z z zd ( )( ),m 0m
0

0=+ + (3b)

z z z z¯ 2 d ( )( ) .m m ,tw
0

0
2

+ =+ + (3c)

Here, Σm+ (≡ Σupper) is the overall tension of the upper leaflet,
m+ and ¯m+

are its bending and Gaussian curvature modulus, respectively, K0m+ is its

leaflet spontaneous curvature, κm+,tw is its twist modulus, and the integrals

extend from the bilayer’s midplane all the way out to a distance at which

Σ(z) has reached its bulk value of 0.

Second, the change of Σ(z) under an infinitesimal applied membrane

strain gives us a positionally resolved lateral stretching modulus profile

(Campelo et al., 2014)

2We also alert the reader that some authors prefer to instead discuss a “lateral pressure profile”, which

differs from the stress profile only in its overall sign.
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z A
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( )
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(4)

which for instance helps us to find the position z0 of the neutral surface

(namely, as the point where the first leaflet moment of λ(z) vanishes

(Campelo et al., 2014)).

Third, if proteins in biomembranes undergo conformational transitions

that are accompanied by a depth-dependent cross-sectional area change

ΔA(z) (think of channels opening or allosteric changes of a receptor), such

transitions involve the mechanical work

W z A z zd ( ) ( ),=

(5)

which can be surprisingly large (Ollila et al., 2011).

Before moving on, it is worthwhile to spell out one caveat: the stress tensor,

and with it the stress profile, can in principle3 be defined at the molecular level,

rendering it accessible to Statistical Mechanics. Objects such as surface tension or

a pivotal plane distance, in turn, are observables that can be measured in

experiment. Eqs. (3) link these microscopic and macroscopic worlds, but where

do they come from? It turns out that many derivations of these equations are

piped through an intermediate theory: continuum elasticity. This should neither

be necessary, nor does it bode well for the actually derived connections, since it

makes them dependent on the validity of a mesoscopic middle man. In fact,

Eqs. (3a) and (3b) can be explained without relying on it (they just express stress-

and torque balance), while the same does not appear to be true for Eq. (3c).

Independent measurements of the Gaussian curvature modulus based purely on

macroscopic reasoning indeed are in conflict with this third equation (Hu et al.,

2012,2013), and the extra twist correction4 appearing in it does not

resolve the discrepancy in all cases. A similar criticism may be applied to

Eq. (4): this stretching modulus profile describes the local elasticity of a

continuum model. Our primary purpose for introducing it here is to

serve as an illustrative example of a complicated quantity derived from

3… up to some serious nuisances pertaining to a possible contour dependence. The reader will find

more details in Schofield & Henderson (1982), but these affect our main point only peripherally.
4Cognoscenti of ¯-lore will notice that the “+ 2κm+,tw” term is not usually found in the literature. It

was derived in Hamm & Kozlov (2000), where its presence was connected to a specific interpretation

of “lateral fluidity”, but subsequently buried (or forgotten). It was exhumed in Terzi, Ergüder, &

Deserno, 2019, where its inclusion was shown to yield more plausible Gaussian moduli from atomistic

simulations. But the very fact that its existence depends on some subtle decisions being made at the

mesoscopic level illustrate the original point: this ambiguity is an artifact of the intermediate theory.
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the lateral stress profile; its validity and/or applicability is not our chief

concern.5

These admonitions notwithstanding, the examples above still illustrate

why the lateral stress profile is a valuable observable. It is hence rather

frustrating that no method seems to exist to determine it in experiment

(reproducible well-calibrated local stress measurements at Angström reso-

lution are apparently difficult). However, simulations do not suffer from

such limitations, which means we can use them to obtain genuinely new

information to which experiment is (so far) blind. This is likely especially

rewarding for asymmetric membranes, whose lateral stress profile is no

longer just mirrored at the bilayer midplane and hence contains positionally

resolved information about the underlying differential stress.

1.2 Challenges

One surprising challenge for the lateral stress profile is that we are not fully sure

how to actually define and calculate it. Pointwise stresses are subtle

(Rowlinson & Widom, 2003; Schofield & Henderson, 1982)! A first practical

and widely used method has been proposed by Goetz and Lipowsky (1998),

but subsequent work has pointed out that decomposing multibody forces into

pair forces is not unique (Admal & Tadmor, 2010; Schofield & Henderson,

1982), leading to different methods for calculating the stress profile that can

yield rather different results. Insisting on further requirements (e.g., enforcing

the strong6 law of action and reaction, and hence a symmetric stress tensor

(Vanegas et al., 2014)) may still leave legitimate alternative choices that lead to

different stress profiles (Nakagawa & Noguchi, 2016). This is a bit embar-

rassing, and to the best of our knowledge most practitioners just agree to not

talk about it. Since the differences between routines that enforce a symmetric

stress tensor appear not to be very noticeable (Nakagawa & Noguchi, 2016;

Vanegas et al., 2014), the problem is maybe also not that pressing, and so we

will follow the time honored path of dodging the issue.

Another item to pay attention to is that the lateral stress profile Σ(z)

depends on z, and so it is essential that subsequent membrane snapshots

5However, recent work has found that measurements based only on macroscopic elastic considerations

are in good agreement with the neutral surface values derived via Eq. (4) (Foley & Deserno, 2024).
6Newton’s third law states that the forces which two particles exert onto one another are equal in

magnitude and opposite in direction. In its strong form the law additionally requires them to act along

the line between the two particles. An example where the strong form fails is the Lorentz force

between two moving charged particles; albeit, here we should really also consider the momentum

stored in the electromagnetic field.
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from an MD trajectory are positionally aligned, for instance by fixing the

z-position of the center of mass to the middle of the simulation box. But

even if the overall position is locked in place, membranes undulate, and this

smears out Σ(z) via some kernel w(z) when statistics are accumulated lat-

erally. Interestingly, as long as w(z) is symmetric, the zeroth, first, and

second bilayer moments of Σ(z) do not change upon smearing (Hu et al.,

2013). The same is unfortunately not true for monolayer moments, such as

those in Eq. (3); here the usual strategy is to make sure the blurring is small

enough, for example compared to the value z0 entering the moments.

Insisting that the undulation-induced rms-width of w(z) is only fz0, with f

“small enough”, restricts one to membranes with lipid number (Hu et al., 2013)

N f
k T

z

a
32 ,lipids

3 2

B

0
2

× ×

(6)

where aℓ is the typical area of a lipid.

In this chapter we will look into the issue that the inevitable spatiotemporal

correlations inherent in any MD trajectory need proper accounting when

quantifying the uncertainties in Σ(z). The temporal correlations could be

handled by several different techniques, data blocking being a very popular and

straightforward option (Flyvbjerg & Petersen, 1989). Unfortunately this simple

trick does not work for the spatial correlations (say, between close stress-bins).

Moreover, interesting observables are often complicated functions of the

underlying data. We might need to calculate a moment from Σ(z), or consider

the case of backing out a neutral surface position by finding the location where

the first moment of λ(z) vanishes, which in itself is a complicated functional of

Σ(z) (see Eq. (4)). Such convoluted paths make standard linear error propa-

gation à la Cf f( ) difficult to actually calculate, even if we have a good

handle on the correlations, because the calculation of the gradients can turn

into a real pain.

2. Accounting for spatiotemporal correlations

Calculating averages on correlated data makes the uncertainty

quantification tricky. If multiple measurements of a random variable X are

correlated, then their covariance matrix is not diagonal, and hence the

variance of the standard estimator of the mean contains off-diagonal con-

tributions (see Sec. 3.1 below). Since these are typically positive (“nearby”

measurements are commonly more similar to each other rather than less),
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we would expect this to result in an underestimation of the error in our

measurement of X if we were to go by the naïve “variance of individual

measurements divided by number of measurements” recipe. As we will see

below, this is often true—but not always.

2.1 Big idea

Measurements of X can be “nearby” in time or space (or both). Temporal

correlations invariably exist downstream of MD trajectories, since subsequent

simulation frames inherit all information from their past. One might elect to

wait with a new measurement until all these correlations have decayed, but

this is almost always a huge waste of resources and time, because (i) correlations

might be fairly long and (ii) the fact that measurements are not completely

independent does not mean that the new correlated measurement has no

valuable new information. The important caveat is merely to make sure how

much is new when estimating the uncertainty.

2.2 Main tools

Solving the correlation problem is—at least in theory—straightforward, as

long as one actually knows the correlations. In practice, this is difficult

because correlations can be expensive to sample, and finding a consistent

unbiased estimator is subtle.

Thankfully, for temporal correlations that arise in a stationary stochastic

process, a method exists to account for them without having to directly

measure them: data blocking (Flyvbjerg & Petersen, 1989). This elegant

technique is easy to implement at very little computational overhead, and

as a bonus gives information on correlation times that helps answering the

crucial question “have we sampled enough?”

For spatial correlations (e.g., nearby bins of positional histograms)

blocking is not an option. In that case, directly accounting for the corre-

lations is necessary, irrespective of whether we need to do so in some

generalized linear least square fitting context (Paige, 1979), or whether we

wish to parametrically bootstrap the data (Efron & Tibshirani, 1994). In

both cases the key trick relies on the fact that we can create a correspon-

dence between a zero-mean noise vector c having a covariance matrix C

= 〈cc⊤〉 and an uncorrelated zero-mean-unit-variance noise vector g:

loosely speaking, correlations are “quadratic objects”, and to “undo” them,

we need a linear coordinate transformation that is essentially the “square

root” of C. The path to glory, hence, is Cholesky decomposition, C = LL
⊤,

such that c = Lg.
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3. Implementation

3.1 Time correlation and blocking

As a molecular simulation runs, coordinate snapshots (along with other

observables of interest) are written out, typically at some fixed frequency

with time interval Δt. After an initial equilibration period has passed

(whose length depends on composition, size, temperature, etc.), it is

assumed that the system samples the desired equilibrium ensemble.

Measurements before this point are not included in a subsequent analysis,

and from this point forward, the output sequence of observables should

constitute a stationary stochastic process; that is, one in which the joint

probability distribution is invariant under time translations.

Given a time series for a particular observable, here denoted x, a typical

goal is to determine the mean value
x
= 〈x〉 in the given simulation

ensemble. The standard estimator of the mean of the sequence of N

measurements {x1, x2, …, xN} is given by xˆ
x N i

N

i

1

1
=

=

. The immediate

next question is: how accurate is that estimate? The naïve rule of thumb is

to calculate the standard error of our sample mean as Nˆ /x , where

xˆ ( ˆ )x
N i

N

i x

2 1

1 1
2

=
=

is the (unbiased) sample variance. This is the

typical method of producing “error bars” for values obtained through

repeated measurements; the result is then reported as x Nˆ ˆ /
x x= ± .

This procedure is of course correct if the individual measurements xi

constitute independent, identically-distributed (i.i.d.) random variables

(RVs). In fact, it suffices that the xi are uncorrelated RVs, but even that is

not the case in most instances for time series measurements. If the covar-

iance of xi and xj is Cij =Cov(xi, xj), then a direct calculation shows that

N N
Var( ˆ ) ( ˆ ˆ )

1
C ,x x x

x

i j
ij

2
2

2
= = +

(7)

where x xCov( , )
x i i

2
= is the “true” variance of x. The naïve result is

obviously recovered in the case Cij x ij
2

= , that is, Cij = 0 for i ≠ j. For the

case of interest here, namely that of a stationary process, the covariance can

only depend on the separation of two measurements in time, indexed by

τ ≡ ∣i − j∣ (i.e., C is a symmetric Toeplitz matrix). In this case,

N
c

N
Var( ˆ ) 1 2

1
.

x

x

N2

1

1

= + +

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

i

k
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{
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É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (8)
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Thus, the variance of our estimator is not simply N/
x

2 ; rather this result is

scaled by a factor involving a sum over the sequence’s autocorrelation

function x x xc ( )/i i x

2 2
+ .7 Assuming that we have a sufficiently

long observation sequence that we may take the limit N → ∞ , one can

ignore the N( )1 term in Eq. (8) and use the leading order correction to

estimate Var( ˆ )
x
.8

While we could in principle move on after deriving Eq. (8), it is a bit

cumbersome in that it requires the calculation of the autocorrelation function in

order to evaluate the correction term. As it happens, there is a simpler way for

estimating Var( ˆ )
x

which can be automated and provides directly visualizable

feedback for determining whether one has sufficient data. The technique is

known as blocking (Flyvbjerg & Petersen, 1989), and it is an iterative process in

which consecutive measurements in the time series are grouped (into “blocks”)

and averaged, producing a sequence with Nk+1< Nk entries, as shown in Fig. 1.

In this example, we use blocks of size b =2, such that each iteration of

blocking halves the length of the sequence; Nk+1 = Nk/2 (in general, Nk+1 =

Nk/b). Taking b = 2 for each blocking step is a common but not necessary

step. Other factors are possible, which even permits a “denser” coverage of

the blocking axis by “interweaving” the blocking step ladders. At any rate, it

is wise to pick the total number N of observations to be a number with many

small prime factors. We will briefly comment on some further refinements in

Sec. 4.2.2.

This block-averaging is repeated, and at each step k one computes the

standard error using the naïve formula Nˆ /k k . If the data are uncorrelated,

this process leaves the mean and its standard error unchanged. However, if

the data are correlated, then block averaging results in a sequence of values

that are effectively less correlated, and the computed standard error

increases. Once sufficiently many blocking steps have been carried out, the

resulting sequence is effectively uncorrelated, and subsequent blocking

steps result in no change to Nˆ /k k .
9 It is this “plateau value” that

7Observe that cτ is a correlation coefficient and hence lies between −1 and +1. Furthermore, the sum

c
N

1

1

=

is a common measure for characterizing the effective correlation time of a process. For

instance, in the special case cτ = e−τ/T (i.e., an exponentially decaying correlation function with a

single characteristic time T), we recover Tc (1)
N

1

1
= +

=
for N T> > .

8One may worry that at this point Eq. (8) still relies on the “true” parameters σx and cτ, not our actually

available sample estimators of these quantities. One can show that when swapping to the estimators,

the only new terms that arise contribute to the N(1/ ) and higher terms which we already neglect.
9 Flyvbjerg & Petersen (1989) present this in the framework of the renormalization group, whereby

repeated iteration of the blocking transformation takes us to a fixed point of the RG flow.
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Fig. 1 The iterative block-averaging procedure. The kth-order sequence is computed
by averaging adjacent data in sequence k − 1, demonstrated here for constant block
size b = 2.

Fig. 2 Blocking curves for exponentially-correlated Gaussian processes of length
N = 214. The standard error calculated at each iteration is normalized by the original
naïve value Nˆ . Correlation times are T = 2 (lower) and T = 8 (upper). Blocking was
carried out on 25 separate realizations for each correlation time. Red curves show the
theoretical blocking curve predicted from Eq. (9), along with the relative error esti-
mate (pale red shading) from Eq. (11).
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represents the true uncertainty of the mean, hence the procedure is

ostensibly straightforward: block, and find the plateau.

As a concrete example, consider an exponentially correlated Gaussian

process. Its autocorrelation function is cτ = e−τ/T, with T being the cor-

relation time.10 Fig. 2 shows the result of the blocking procedure carried

out on several realizations of such Gaussian processes for two different

correlation times, T = 2 and T = 8. The naïvely calculated standard error is

plotted for each blocking iteration, normalized by the initial estimate

Nˆ/ (this way, our plot simply tells us how much our naïve error needs

to be scaled up). As can be seen, the shorter correlation time results in a

blocking curve which rises less steeply and “saturates” sooner than the cases

for the longer correlation time.

As it happens, for the case of exponential time correlations the sum in

Eq. (8) is a simple geometric series, easily evaluated in closed form. This

allows one to derive a theoretical result for the form of a blocking curve of

an exponentially correlated time series (Ergüder & Deserno, 2021; Janke,

2002),11

N

N

c

c

c

B k

c

c

/

/

1

1

2

( )

1

(1 )
.

k k
B k( )

2
=

+
×

(9)

Here, c ≡ c1 = e−1/T and B(k) is the accumulated block size after k blocking

steps. If each step blocks b measurements together (e.g., b = 2, as in Fig. 1)

then B(k) = bk. Taking the limit of large times (i.e., many blocks), we can

extract the plateau:

N

N

c

c T

T

T T
lim

/

/

1

1
coth

1

2

1, 1

2 , 1
,

k

k k
=

+
= =

<<

>>

l
m
oo

n
oo

(10)

which agrees with the well-known result that for large times the true

uncertainty is larger than the naïve one by a factor of T2 .12

10Here’s how to create such a process—something that can be handy for testing purposes: given a

sequence gn of i.i.d. Gaussian random numbers with zero mean and unit variance, the new sequence

r0 = g0 and r cr c g1n n n1
2

1
= ++ +

with c = e−1/T is a sequence of Gaussian random numbers with

zero mean, unit variance, and correlation time T.
11 Similar ideas lead to an expression published in the Appendix of Hess (2002), on which the routine

g_analyze in GROMACS is based.
12A note to keep in mind for all of this is that the correlation “time” T that we have been discussing is

in units of “steps”, assumed to have duration Δt; the physical correlation time is TΔt.
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Since the blocked data asymptotically approach independent Gaussian

variables, we can also estimate their relative uncertainty as (Flyvbjerg &

Petersen, 1989)

N
N

N
( ˆ / )

ˆ /

2( 1)
,k k

k k

k

=

(11)

where Nk is the number of data points left after k blocking steps. Strictly,

this only holds once we have reached the plateau, since only then do we

get independent Gaussian variables; Eq. (11) still offers a lower bound,

though.

The theoretical prediction for the entire blocking curve is included in

Fig. 2 as the two red curves, one for each correlation time, together with

“1-σ error bands” calculated via Eq. (11). The agreement at early blocking

iterations k is extremely good, and as the blocking process progresses to

fewer and fewer remaining data points, the individual blocking realizations

scatter more widely around the asymptotic prediction. Observe also that for

T = 2 and T = 8 the asymptotic plateau is approximately 2 and 4, respec-

tively, in line with the expectation from Eq. (10).

The quick-and-dirty way to evaluate the outcome of a blocking process

is to “eyeball” the plateau; but since we have a prediction for the entire

curve, a much better procedure suggests itself: fit the blocking curve to the

theory from Eq. (9) to determine c. Not only does this take advantage of

the information in the more precisely-known pre-plateau region; it is also a

single-parameter fit that does double-duty: we get the proper asymptotic

error scaling c c(1 )/ (1 )+ and the correlation time T c1/ln= .

3.2 Spatial correlation and bootstrapping

Now, we will shift our mindset away from stationary time series correla-

tions and instead consider local correlations among M RVs xi, which we

collect together as a vector x of dimension M. We will think of the

component RVs of x as corresponding to measured quantities which are

spatially near one another, with our motivating example being the mem-

brane lateral stress profile Σ(z) measured at discrete locations zi. Quantities

which for the continuous stress profile would be functionals (e.g.,

moments) are instead simply functions of a vector quantity when con-

sidered at discrete points. For simplicity, we will consider for now the

spatial correlations in isolation, and thereby assume that our data comprises

N i.i.d. measurements of x. We shall denote the mean of x in the ensemble

of interest by μ = 〈x〉, and its covariance matrix C = 〈(x − μ)(x − μ)⊤〉.
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Our quest in this section is to investigate the error on quantities f = f(μ)

obtained as a function of the mean of our correlated random vector (read:

instantaneous stress profile) x. We should note up front that for simple

linear function(al)s f(μ), one can simply calculate f(x) for each individual

measurement and determine the summary statistics from the resulting

distribution (or apply the blocking procedure from the previous section to

account for time correlation). However, more complicated observables,

such as those which are highly nonlinear and perhaps not even well-

defined for instantaneous measurements of x, require more care in their

analysis. A good example of such a functional is the location of stress

extrema, and we will examine this case in Sec. 4.1.

Blocking is no longer an option, as the vector x is not a stationary

stochastic process. Instead, we may turn to our sample estimator of the

covariance matrix,

N
x xĈ

1

1
( ˆ )( ˆ ).ij

n

N

n i i n j j1
, ,=

= (12)

Here xn,i refers to measurement n, vector component i. Clearly, the

diagonal elements xĈ ( ˆ ) ˆii
N

n i i i

1

1 ,
2 2

= = are the usual unbiased

sample estimators of the variance of each component xi. In our case, where

we have assumed that all of our measurements are i.i.d., a direct calculation

shows that the covariance of the estimator of the mean (the generalization

of the standard error of the mean) isC C N( ˆ ˆ )( ˆ ˆ ) /= ,

in simple analogy with the single-variable result of N/
2 2

= .

In the simplest cases, all that remains is to apply the complete version of

the ordinary “error propagation formula”:

Cf f
f

x

f

x
( ) ( ) C ,f

i j
i x

ij
j

x

x x

2

,
i j

=

(13)

which in the uncorrelated case Cij i ij
2

= simplifies to the well-known

weighted-sum-of-variances expressions.

Often enough this result is sufficient, but a few comments are in order. First,

it should be noted that this approximation is only the leading order term in a

series expansion with respect to the centered multivariate moments of the

underlying xi. Second, this formula only reports the variance, but f could have a

highly asymmetric distribution, warranting distinct high and low error estimates.
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And finally, this procedure requires being able to reliably evaluate the gradient

of f, which often ends up being the most burdensome requirement of Eq. (13) in

practical applications. A well-known method made possible by modern

Fig. 3 Diagram of bootstrapping workflows. Sequence (a) → (b) → (d) → (f) repre-
sents the standard non-parametric bootstrap procedure for generating a bootstrap
distribution of the mean, from which one can calculate a bootstrap distribution of f(μ).
Alternatively, (a) → (b) → (c) → (d) → (f) is the parametric bootstrap. Sequence (a) →

(b) → (c) → (e) → (f) circumvents the need to generate many bootstrap samples just
to average each one. Importantly, in all of these cases it is assumed that the mea-
surements in the sample (B) are uncorrelated with one another.
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computing which solves all of these issues is the bootstrap procedure (Efron, 1992;

Efron & Tibshirani, 1994). The bootstrap broadly comes in two flavors: non-

parametric and parametric, though both are based on the same principle of

treating the sample distribution as though it were the true distribution. Fig. 3

provides a diagrammatic representation of the sequence of steps involved in the

different bootstrap methods which we now present.

In the non-parametric bootstrap, we draw N of our measured values of

x from our data set Ωx with replacement, generating a new set 1
x
(our first

“bootstrap sample”, see Fig. 3D). We treat this set as though it is the result

of a new simulation of the same system, and calculate its mean

x
xN

i
1 1

xi

1= and our observable of interest, f1 = f(μ1). We then repeat

this procedure many times, building up sets of our means, Ωμ = {μk} (see

Fig. 3F), and of our observables, Ωf = {f k}. These sets represent our best

guesses for the distributions of μ and f, given our sample data. The more

bootstrap samples we draw, the more precisely we estimate this “best

guess” distribution. This process corresponds to the sequence (a) → (b) →

(d) → (f) in (Fig. 3).

It is critical to note that this procedure is only valid when our samples of

x are uncorrelated with one another, as was assumed at the outset of this

section. The fact that the components of x are internally correlated with

one another does not affect us here, as long as we resample entire vectors x,

preserving these internal correlations. When space and time correlations

manifest together (as they inevitably do), more care must be taken, as will

be discussed in the next section.

In practice, the number of bootstrap iterations varies from hundreds to

thousands, with the cutoff criterion usually being convergence of a chosen

summary statistic to the desired precision. If the resulting distribution for f

is symmetric, one can simply use its variance (provided it exists) to com-

municate the statistical uncertainty. In more general situations, simplistic

asymmetric confidence intervals can be reported by way of reverse per-

centiles (Efron & Tibshirani, 1994), for example for a 90% confidence

interval, locate the value f+ above which the largest 5% of the bootstrapped

values reside, and similarly determine f− below which the lowest 5% fall.

Though there exist much more sophisticated and robust methods to

generate confidence intervals by bootstrapping, this simple procedure is

usually sufficient for honest error estimation.

In the parametric bootstrap, one makes the additional assumption that

the observed data originate from some underlying distribution character-

ized by a set of parameters (hence the name), which first must be inferred
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from the data. New bootstrap sample sets are then generated by drawing

from this distribution, rather than re-sampling directly from the actual data

set (sequence (b) → (c) → (d) in Fig. 3). As in many cases, our assumption

here will be that of a Gaussian distribution. The only stumbling block to

be mindful of here is that we must generate resamples of x with the

proper internal correlations; that is, we must sample from the complete

M-dimensional multivariate Gaussian distribution with mean ˆ and cov-

ariance matrix Ĉ (the distribution parameters inferred from our data). Many

scientific libraries, such as the Python package SciPy (Virtanen et al.,

2020), provide built-in functions for generating random vectors from

multivariate Gaussian distributions. However, it is instructive to see how to

generate correlated variables by hand, as the procedure is not limited to

Gaussians.

Suppose that we are able to generate individual i.i.d. random variables gi

with 〈gi〉 = 0 and g 1
i

2
= . To generate a random vector y with given

mean μ and covariance C, we first calculate its Cholesky factorization, C

= LL
⊤(Press et al., 2007). Then, the desired result is simply y = μ + Lg,

where g is a vector whose components are i.i.d. gi of the desired dis-

tribution type, such that 〈gg⊤〉 = I, the identity matrix. That 〈y〉 = μ is

trivial, and the covariance proof is pleasantly simple:

L L L L LL Cy y g g gg( )( ) ( )( ) .= = = =

(14)

With this tool in hand, one can easily carry out the parametric bootstrap

resampling, drawing new sets of “measurements” of x from the parametric

distribution, and calculating ˆ and f ( ˆ ).

However, given that what we are interested in here is f(μ), and the

distribution for μ should be Gaussian under most circumstances due to the

central limit theorem, we have an opportunity to “cheat” a bit with the

parametric bootstrap. As mentioned above, the covariance of the mean of

N independent measurements is simply C/N. Rather than re-sampling x

just to average each set, we can skip to sampling from the inferred Gaussian

distribution of the mean with covariance C C N
ˆ ˆ /= . This is depicted in

(Fig. 3) as the sequence (c) → (e) → (f). This may seem trivial at the

moment, but it will be important for our parametric bootstrap treatment of

spatiotemporal correlations in the next section.
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3.3 Combined spatiotemporal correlation

Now we will merge what we have laid out in the prior two sections to

handle the case presented to us in reality: a time series of spatially-resolved

measurements, each individual component of which has correlations with

its nearby neighbors as well as with temporally close measurements. Our

goal remains the same as in the previous section; that is, to quantify the

error in our measurement of f(〈x〉) = f(〈x1〉, …, 〈xM〉). We may imagine

our measurements comprising a matrix X, whose elements xij correspond

to space index i and time index j. In this framework, one can in principle

quantify the spatiotemporal correlations by way of a rank-four covariance

tensor with elements Cij,kl ≡ Cov(xij, xkl). For all our sakes, we will avoid

dealing directly with such an object. Instead, we will combine the tech-

niques presented in the prior two sections by blocking and bootstrap

sampling our time series for the (spatial) vector x(t) in two distinct ways. In

the non-parametric scheme, we will generate bootstrapped time series by

randomly selecting contiguous blocks of the original time series. In the

second scheme, we will block-average the covariance of the mean and use

it to directly generate a parametrically bootstrapped distribution of values

for μx, much like path (c) → (e) → (f) of Fig. 3.

To keep us from getting lost in the multi-dimensional sauce, let us

proceed with a concrete, but synthetic, example in mind. Consider a time

series of N = 214 measurements (taken at times {t1, …, tN}) of Gaussian

vectors x with M = 25 components. The time correlation for a chosen

spatial component xi of the vector x is

c x t x t x( )
1

( ( ) ( ) ) ei

i

i i i
T

2

2 /
+ =

(15)

with T = 4. These components are also spatially correlated at any fixed time

point t with a time independent exponential form,

x t x x t xC ( ( ) )( ( ) ) eij i i j j i j
i j /

= (16)

with decay length λ = 3 (this being step units as before; physically λ = 3Δz

if one is thinking of a stress profile measured at discrete z values). The

standard deviation σi of each component of x is taken to vary with i, the

form of which does not particularly concern us, and the spatial covariance

matrix C is visualized in (Fig. 4). We will refer back to this example process

as we explore how to deal with space-time correlation.
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3.3.1 Non-parametric procedure

If we simply follow the same non-parametric bootstrap procedure from the

previous section to build a new bootstrapped time series, that is, draw N of

our vectors x(ti) randomly with replacement, the shuffling of time points

will destroy all of the time correlation information encoded into the ori-

ginal series. This will result in under-estimated errors for the exact reasons

spelled out in Sec. 3.1. If one is intent on trying to generate bootstrapped

time series data, then the re-sampling must be done in a way which

attempts to preserve the time correlations present in the data.

The simplest way of trying to do this is a procedure known as the

“simple” block bootstrap (Kunsch, 1989). In this scheme, the time series

data are divided into non-overlapping blocks of b consecutive measure-

ments, which are then re-sampled (with replacement, as before) in order to

construct a bootstrapped time series. By maintaining the local temporal

ordering within these blocks, (some of) the correlated behavior of the

original time series is reproduced in the bootstrap sets. This procedure is

diagrammed in Fig. 5. Intuitively, one should make the blocks sufficiently

long as to capture the longest correlation time present in the time series. As

we shall see in a moment, this intuition may be misleading, as it is generally

necessary to make the blocks significantly longer than the longest corre-

lation time present.

Fig. 4 Visualization of the spatial covariance matrix C defined in Eq. (16). Darker pixels
correspond to larger covariance. The diagonal elements are the variances i

2 of the
components xi of x.
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After generating a large number Nboot of block-bootstrapped time

series, we can take the mean of each one in order to generate our bootstrap

distribution of the mean as before (as in path (b) → (d) → (f) in Fig. 3).

The natural thing to investigate now is the impact of the block size b on the

outcome of this process. Fig. 6 shows how the diagonal elements of the

inferred covariance of the mean Ĉ vary on average as a function of b for a

Fig. 5 In the simple block bootstrap, the time series data for x(t) is divided into blocks
of length b, which are then taken as the basic units which are selected at random to
construct a bootstrapped time series.

Fig. 6 Effect of block size b on the simple block-bootstrap. Variance of bootstrap
distribution of the mean is plotted as a function of block size b relative to the naïvely
estimated variances (i.e., block size b = 1). Computed for the process described by Eqs.
(15) and (16) with Nboot = 500. The red curve is the square of Eq. (9), with B(k) = b, the
horizontal axis here. The horizontal dashed line is the saturation value of (1 + c)/(1−c).
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realization of our benchmark process described by Eqs. (15) and (16). The

naïve bootstrap which ignores time correlations corresponds to b = 1, and

so the values presented are divided by this result, such that the curve goes

to 1 for b = 1.

As should be expected, as the block size increases, so does the variance

of our bootstrap distribution of the mean, up to a saturation or plateau

value, as was the case for our block-averaging procedure in Sec. 3.1.

Perhaps unexpected is that this is not just similar, but in fact follows the

same theoretical blocking curve presented in Eq. (9). The square of this is

plotted as the red curve in Fig. 6 (squared because we are plotting the

variance rather than the standard deviation of the mean distribution), in

which we simply substitute B(k) = b, as this is our control parameter now

rather than blocking iteration k. We cannot continue to increase block size

without bound, as we eventually have blocks comparable in length to our

original time series, and thus have very few distinct bootstrapped series to

create from them. As such, for high values of b, the covariance of the mean

becomes erratic, in analogy to the previous blocking situation where the

curves become erratic when there is not much data left to block-average.

As a final note on non-parametric block bootstrapping, bear in mind

that this simple procedure of selecting non-overlapping blocks of fixed size

is only the simplest form of block bootstrapping. It can be generalized to

overlapping blocks, and for varying block size (Davison & Hinkley, 1997).

Of particular interest is the stationary block bootstrap (Politis & Romano,

1994), wherein block sizes are chosen randomly from a geometric dis-

tribution. The resulting bootstrapped time series then retains the property

of stationarity, in line with the original data. We defer the interested reader

to the literature for these more advanced techniques.

3.3.2 Parametric procedure

The non-parametric block bootstrap procedure just covered inadvertently

brought us back to the block-averaging process from Sec. 3.1. For our next

approach to spatiotemporal correlations, we will directly apply the pro-

cedure of block-averaging to our time series x(t) in order to calculate the

blocked covariance of the mean Ĉ , the higher-dimensional analogy to

our blocked error of the mean for scalar blocking.

The blocking procedure itself is schematically identical to that already

shown in Fig. 1, with the added detail that the individual measurements are

vectors x with M components. What is different is what we calculate at each

blocking order k: our naïve estimator error of the mean Nˆ ˆ /k k=
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generalizes to the naïve estimator of the covariance matrix of the mean

C C Nˆ ˆ /k k= , with the covariance matrix being estimated as usual by

Eq. (12). Note that tracking this process for any one of the diagonal

components of the matrix is identical (save for a square root) to the

situation of scalar blocking we tackled before. For our benchmark process

of Eqs. (15) and (16), the blocking curves for the diagonal elements are

shown in the top-left plot of (Fig. 7), together with the square of Eq. (9)

and shaded error estimate from Eq. (11). Alongside this is shown

the result of averaging these curves, which naturally yields a more

well-behaved blocking curve. The shaded error region for this plot is

Fig. 7 Top Left: Blocking curves for the diagonal elements of the covariance of the
mean, C Nˆ / , normalized to the naïve estimate; compare to (Fig. 2). Top Right: Aver-
aging all of the blocking curves from the first figure produces a more well-behaved
blocking curve. Note: the red shaded standard error is based on the assumption of
independent processes, which is not the case here due to spatial correlation. Bottom
Left: Naïve covariance of the mean without blocking. Bottom Center: Blocked covar-
iance of the mean Ĉ found by averaging C Nˆ /k k for k = 6, 7, and 8 (beginning of the
plateau region in top left plot). Bottom Right: Covariance of the mean estimated by
uniformly scaling up the naïve estimate (bottom left) by the blocking plateau value
(1 + c)/(1 − c) see Eq. (9). The gray scale is the same across all figures in the bottom
row, with white corresponding to zero and darker pixels being higher values.
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simply scaled down by M1/ (1/5 for our case), based on the result of

averaging M Gaussian RVs. This is not precisely correct though, due to

the diagonal elements being spatially correlated, but we can at least take

this as a lower bound on the error of the mean blocking curve as k

increases.

The lower three plots of (Fig. 7) show the full estimated covariance

matrices Ĉ from three different calculations. On the left is the naïve result,

taking C N
ˆ / at face value. It is scarcely visible due to the color scale being

shared across all three plots, indicating how dramatically this calculation

under-estimates the covariance of the mean. The middle lower plot shows

the result of the blocking process just described above, obtained by aver-

aging the first few values of C Nˆ /k k in the “plateau region” (k = 6, 7, 8).

The final plot in the row is obtained by scaling the naïve estimate from the

left plot by the estimate of the plateau value of the normalized blocking

curve (dashed line in upper figures, corresponding to (1 + c)/(1 − c) from

Eq. (9). This produces a much less noisy result than the directly blocked

version (center), but importantly relies on the assumption that the corre-

lation time T does not vary between components of the vector x, which is

true in our benchmark case (and likely true in most real situations of

interest here), but not generally.

With our blocked covariance of the mean Ĉ in hand, either from

averaging the plateau region or the simple scaling method, we are able to

generate samples of μ parametrically from our inferred distribution of the

mean. This corresponds to path (b) → (c) → (e) → (f) in Fig. 3, with the

important modification being that we no longer use the naïve estimate

C N
ˆ / in going from (c) to (e), but rather use our block-averaging pro-

cedure to determine the parameters of the inferred Gaussian distribution of

the mean. Just as before, once we have a bootstrap sample of μ, we feed this

to our function to generate our bootstrap distribution of f, from which we

calculate the desired statistics.

4. Applications and usage

4.1 Examples

Having now gone over the ins and outs of the statistical treatment in general

language, we return to our context of interest: the membrane lateral stress

profile. In practical situations, we measure Σ(z), defined in Eq. (2), at a finite

set of locations zi with even spacing Δz= zi+1 − zi. These measurements are

Quantifying uncertainty in trans-membrane stresses and moments in simulation 105



themselves taken at fixed time intervals Δt= ti+1 − ti. The stress profile is

usually conceived of as a well-defined continuum function, such that it is

obtained by averaging instantaneous stress measurements taken throughout

the duration of a simulation. Quantities of interest are then computed from

this mean stress profile. For our examples here, we will focus on the lateral

stress profile measured from membrane simulations employing the ultra-

coarse-grained Cooke lipid model (Cooke et al., 2005) with its recent flip-fix

modification (Foley & Deserno, 2020). The stress profile for one such

membrane is shown in Fig. 8. The structure of the stress profile for this

implicit-solvent model is rather different (in general, simpler) from that of

more finely-resolved models, but this is not of concern at the moment, as the

observables of interest and methods of analysis are unchanged by this fact.

4.1.1 Tension and higher moments

As a reminder, the nth monolayer moment
n

+ of Σ(z) is defined by

z z z zd ( )( ) ,
n

n

0
0=

+

(17)

Fig. 8 Lateral stress profile for an asymmetric Cooke model membrane. The bilayer
midplane is located at z = 0 (dashed vertical line). Black dots are average lateral stress
measurements, whose standard errors (computed by blocking) are comparable to the
size of the plotted points. The solid curve is the cubic spline interpolation. The circled
red points indicate the locations of the extrema of the interpolated stress profile. The
faint grey curve is a spline interpolation of the instantaneous stress profile measured
from one simulation snapshot. The units ε and σ appearing in the labels are the
coarse-grained energy and length, respectively.
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where the + indicates that we are defining this moment over the “upper”

monolayer (located in the region of positive z). The zeroth moment is the

tension, and the first and second moments are related to the mean and

Gaussian curvature moduli in the surface theory. Being linear functionals of

Σ(z), these moments are simple enough observables that it does not matter

whether we calculate them from the mean stress profile or for each

instantaneous stress measurement and then average. This means both that

their error analysis is in principle not as tricky and that we can use them as a

Fig. 9 Top: Blocking curve for the tension of the upper monolayer of the membrane
whose stress profile is shown in Fig. 8. The red curve is the fit to Eq. (9). Bottom:
Parametric bootstrap distributions of the mean monolayer tension for the same
system (Nboot = 5000). The red curve is calculated without accounting for correlations,
leading to an overly-narrow distribution. The width (mean ± standard deviation) of the
correctly bootstrapped distribution (blue) is seen to agree with the blocked error of
the mean ˆ calculated based on the top plot. The units ε and σ appearing in the
labels are the coarse-grained energy and length, respectively.
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way of verifying that our more sophisticated methods reproduce the same

results.

First, we integrate each instantaneous measurement of Σ(z) over the

upper half of the profile. Since we have measured it at fixed, equally-spaced

points, this is accomplished using one’s favorite Newton-Cotes quadrature

(or, if one had the foresight to measure at 2k + 1 values of z, Romberg

integration (Sauer, 2011)). This gives us a scalar time series of instantaneous

monolayer tensions Σm+ for the upper leaflet, whose error can be estimated

via block averaging (Sec. 3.1) to obtain the blocked error of the mean, ˆ .

The normalized blocking curve for this tension is shown in the upper plot

of Fig. 9. The fit to the theory presented in Eq. (9) isn’t quite as good as in

the artificially generated examples; this could be due to non-exponential

temporal correlations. Additionally, the tension measurements are found to

only be weakly correlated in time in this simulation (blocking only results

in a ∼ 4% increase in standard error). The time interval between mea-

surements is Δt = 10τ, where τ is the coarse-grained time unit and the

production portion of the simulation lasts 8 ⋅ 104 τ.

The (unnecessarily, in this case) more complicated way to get the same

answer is to carry out one of the bootstrapping procedures presented in

Sec. 3.3 to generate a bootstrap distribution for the mean tension of the

upper leaflet. The blue histogram in the lower plot of Fig. 9 shows exactly

this, calculated via the parametric procedure presented before. That is, we

Fig. 10 Visualization of the covariance matrix for the lateral stress profile plotted in
(Fig. 8). Here σ is the coarse-grained length unit.
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first block-average the spatial covariance matrix of the stress profile (shown

in Fig. 10) to obtain the blocked covariance of the mean. From this, we

generate Nboot mean stress profiles from a Gaussian distribution with this

prescribed covariance. Each of these is integrated to generate a mean

tension, which is then binned to produce the histogram.

Also shown in Fig. 9 is an example of what happens if one does not

account for correlations, resulting in the red histogram with nearly half the

width of the proper mean distribution. This is generated by two blunders:

The first is the skipping of the blocking step and using the naïve covariance

of the mean (which in this case is a relatively minor contribution). The

second is that the parametric samples are generated assuming that each Σ(zi)

is independent from all its neighbors; that is, we ignore the off-diagonal

elements of the spatial covariance matrix. In the non-parametric case, this is

equivalent to resampling each Σ(zi) independently instead of redrawing

entire stress profile snapshots.

As can be seen, spatiotemporal correlations in stress measurements can

result in pronounced under-estimation of error measures of the zeroth

moment. The same logic carries through to higher moments as well, with

the only modification being the multiple of z z( )n0 in the integrand.

4.1.2 Locations of stress extrema

Next, we will quantify the errors in estimates of structural features of the

lateral stress profile, as properties such as maxima and minima are some-

times attributed special theoretical importance (Campelo et al., 2014). In

Fig. 8 we have circled the red points lying at the five local extrema of the

stress profile. For the equilibrium simulation average Σ(z), these peaks are

well-defined. However, these are emergent structures: instantaneous

snapshots of the lateral stress profile, like the one shown as the thin grey

line in Fig. 8, consist of noisy rapid oscillations, masking the existence of

the time-averaged extrema. As such, we no longer have the option of

measuring these observables for each configuration, as in the previous case,

and we instead turn to the methods of Sec. 3.3.

In fact, the main portion of work necessary to accomplish our

analysis here has already been covered in the previous example. We

need a bootstrap sample of mean lateral stress profiles Σ(z), which in the

previous example we computed parametrically. Here, for the sake of

comparison, we also carry out the non-parametric method as well. The

equilibrium portion of the trajectory (8000 measurements) was divided

into 50 blocks of 160 consecutive measurements. Nboot = 5000
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bootstrapped time series of equal length were then constructed by

randomly selecting from these blocks. For each of these series, a mean

stress profile is calculated and interpolated by a natural cubic spline in

order to locate extrema.

Fig. 11 plots the distributions of the locations of the central three

extrema of the stress profile using both the non-parametric and parametric

approaches (blue and yellow, respectively). The two methods agree

excellently. Although the effect is somewhat small (partly due to having

good sampling statistics), we can see that these distributions are skewed.

This is one of the many benefits of the bootstrap: since we have a dis-

tribution, we can calculate asymmetric confidence intervals from the

quantiles. For the three extrema shown in the figure, the locations are

z =−1.346 σ, z = 0.537 σ, and z = 1.782 σ with 95% confidence intervals

[−1.379, −1.305], [0.514, 0.557], and [1.769, 1.794], respectively.

Also shown in the plots of Fig. 11 as the red histograms are the

bootstrap distributions obtained if one erroneously ignores correlations and

re-samples each individual stress profile point individually. Note that we

see exactly the opposite effect to what we saw in the previous example:

ignoring correlations here results in significantly over-estimating the widths

of the distributions. This is actually rather intuitive; if one re-samples

neighboring points independently, the locations of maxima and minima are

much more likely to move than if neighboring points move in a correlated

manner. These wider distributions also have more pronounced skewness.

Thus, we see that spatiotemporal correlations can have strong effects on

error estimates in either direction!

Fig. 11 Bootstrap distributions of the middle three extrema of the stress profile in
Fig. 8. All histograms were created from Nboot = 5000 values. The red histogram shows
the resulting (incorrect) bootstrap distribution when correlations are ignored. σ is the
coarse-grained length unit.
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4.1.3 Lateral stretching modulus profile and neutral surface

Finally, we turn now to our most complicated example: the lateral

stretching modulus profile, and from it, the neutral surface location z0. As

mentioned in the introduction, the lateral stretching modulus profile,

which we denote by λ(z), essentially gives an area expansion modulus per

unit thickness to every height within the membrane and is defined as

z A
z

A
( )

( )
.=

While it is an interesting quantity in its own right, it has particular sig-

nificance for providing a way to calculate the location of the monolayer

neutral surface z0, the location of the reference surface for which bending

and stretching de-couple in the free energy. In particular, it has been

shown (Campelo et al., 2014) that

z

z z z

z z

d ( )

d ( )
.0

0

0

=+

(18)

Let’s briefly outline the steps we need to take just to compute this

numerically, before tackling the steps required to put error bars on the

number we get. We first run a few small (256 lipids), flat, symmetric

membrane simulations at increasing area strains u = (A − A0)/A0 and

calculate the lateral stress profile Σ(z; u) from each one; from these, we can

numerically approximate ∂Σ/∂u = A0 ∂Σ/∂A by fitting a line through

Σ(zi, u) for each fixed zi point.
14 We take this as our approximate λ(z)

measured for the rest area A0 and then numerically evaluate the integrals in

Eq. (18) to arrive at our z0 measurement.

Multiple stress profiles, linear regressions, and numerical integrations

all compose together to produce the final answer. This is once again

where the conceptual simplicity of bootstrapping shines: we need a dis-

tribution of z0 values to quantify our uncertainty, and we get that by re-

sampling our data and re-running the calculation for every bootstrap

iteration. More concretely, we simulated our small membrane patch at six

area strains, starting from zero strain, yielding six lateral stress profiles

14Actually, it is subtly more complicated than this, as briefly mentioned in Campelo et al. (2014) and

further discussed in the SI of Foley & Deserno, 2024. Since the membrane thickness changes for

different values of area strain u, the stress profiles from each simulation must be re-scaled such that

material points from each simulation are being compared correctly across measured functions Σ(z).

This requires interpolating between the discretely measured stresses, which we do with natural cubic

splines.
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Σ(z). For each bootstrap iteration, we resample all six of the these profiles

using the parametric method of Sec. 3.3, and then proceed through the

steps described above to calculate λ(z) and then z0. We repeated this

Nboot = 1000 times, and our bootstrapped λ(z) profiles are plotted in

Fig. 12, along with the inferred value for z0 and its one-sigma confidence

interval. If one neglects correlations, the resulting error bars are under-

estimated by about a factor of two (not plotted).

4.2 Parameter tuning

All numerical methods come with a list of parameters that define the

performance of one’s algorithm, and whose choice is based on some meta-

considerations. For MD simulations, some very obvious choices include

total simulation time, system size, parameters in the thermostat or barostat,

how much of the initial trajectory to discard, etc. Here we wish to spe-

cifically mention a few choices directly related to the routines we have

discussed, and make some suggestions for how to pick good values.

4.2.1 Stress profile analysis

• An important first choice is the membrane size. Bigger systems reduce

finite-size effects and increase the statistics, but the increased undulations

Fig. 12 Bootstrap sample of Nboot = 1000 lateral stretching modulus profiles λ(z),
plotted as faint black curves. The neutral surface location z0 as calculated from Eq. (18)
is plotted as the vertical red line, with its one-sigma confidence interval shown as the
shaded band. The units ε and σ appearing in the labels are the coarse-grained energy
and length, respectively.
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blur the stress profile in the normal direction, say by some Gaussian

kernel g(x). One could deal with this in multiple ways:

– Put the bilayer under a minor tension. This need not strongly affect

the stress profile, since fairly minor tensions already suffice to flatten

membranes. A membrane with bending rigidity κ under tension Σ has

its undulations strongly suppressed on scales larger than / .

For typical values κ ∼ 30 kBT, a small tension Σ = 0.5 mN/m gives

λ ∼ 16 nm.

– Another possibility, which we would only recommend if blurring is

still quite small, is to try a raw deconvolution via the fairly simplistic

procedure x x g x( ) FFT [ FFT [ ( )]/FFT [ ( )]]0 .

– The approach that is probably both safest and most straightforward

remains to simply simulate a smaller membrane. Eq. (6) might be a

good first guide to how small is “small enough”.

• How many bins should one use to resolve the stress profile? Many useful

recipes have been developed for how to pick a suitable bins-size while

sampling a histogram, but this usually refers to a situation where a fixed

number of measurements are to be binned. This is not the case here

since the number of entries in our finite Δz stress bins arise as averages

over a large number of inter-particle stress measurements that are

strongly correlated within a bin and even across bins. At this point, we

have no simple answer and instead encourage the reader to make a good

judgement call that balances loss of detail (too few bins) against just

plotting noise (too many bins). Since the values of the stress are generally

calculated at evenly spaced intervals Δz, one practical consideration is to

choose the number of points of the form 2k + 1 for some k, as this allows

one to numerically compute integrals to higher accuracy using

Romberg’s method (Sauer, 2011).

• We also wish to point out that binning is not exclusively a matter of

numerics, since locally resolving continuum thermodynamic observables

requires some spatial averaging, which to first order is what the bins are

doing. Picking too small a bin size is therefore not just numerically

awkward but also physically dubious. Clearly, this question deserves

further study.

4.2.2 Blocking

• What block size do we choose? Since we want to block many times,

picking b = 2 (or, rather, picking N = 2n with some n) seems most

natural, but there are other options. Realize that all we need is a number
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that contains many small prime factors. For instance, N = 1536 = 29 × 3

also offers many blocks. Furthermore, we can choose the order in which

we pick factors and thus create more data-points on the abscissa: the two

sequences (3, 2, …, 2) and (2, …, 2, 3) create an interlaced set of two

blocking ladders that captures all points reachable by one 3-block and

the rest being 2 blocks, no matter at what point “3” happens. When we

graph the resulting block averages, not having exclusively used b = 2, we

just plot the result against an “effective” blocking number

k f f f f flog ( ) log ( ),k

i

k

ieff 2 1 2 3

1

2= × × × × =

=

(19)

which is just k if all blocking factors fi are equal to 2. Fig. 13 illustrates

the principle. With many distinct factors this interlacing yields a fairly

dense coverage of the blocking axis, but be warned that these values are

not all independent of each other—which matters if we fit a blocking
curve to it.

4.2.3 Bootstrapping

• For all bootstrapping methods, the choice of Nboot is a free parameter to

be chosen, and it determines in how much detail one resolves the

bootstrap distribution. It generally varies from hundreds to thousands

depending on the situation, and the general idea is to pick a value large

enough that whatever statistic you calculate from the bootstrap

Fig. 13 Example how a number N of data points not equal to a power of 2 can be
turned into a larger and denser set of effective k values along the blocking axis. The
arrows show some example blocking sequences.
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distribution should come out the same every time (within the desired

accuracy). That is, your error bar should not be itself a wildly varying

stochastic variable just because you calculate it using a stochastic method!

• For the simple block bootstrap we must choose a block size b. As we

have seen, the influence of this choice follows the same theoretical form

as block averaging (see Fig. 6). This suggests that if we (somehow) know

the correlation time beforehand, we can choose a block size which puts

us comfortably into the plateau region of Fig. 6 by inverting Eq. (9).

Barring knowing the correlation time at the outset, one can do exactly

what is shown in that figure: block bootstrap with increasing block size

until the error saturates. This is unfortunately somewhat slow,

depending on the size of the time series.

4.3 Words of caution

The algorithms we have discussed here help to better quantify the

uncertainties arising when calculating observables related to a membrane’s

lateral stress profile in the presence of ubiquitous spatiotemporal correla-

tions. Once they are black-boxed into convenient packages, it is tempting

to forget what’s under the hood. But like any set of numerical routines, the

user ought to be alert to some of the more common failure modes. In the

following we collect a number of caveats, none of which are particularly

mysterious, especially in hindsight. Our goal is merely to instill a certain

level of vigilance in future users.

4.3.1 Blocking

• Do we even have enough data for the blocking curve to plateau? This is

usually easy to see by just looking at it, but this evidently requires

looking at it. One tell-tale sign that we might need to do so is an

inferred correlation time that is not “sufficiently much” shorter than the

total time of our trajectory. Fig. 14 gives an idea of what exactly this

means by plotting the inferred correlation time Tfit extracted by fitting

to Eq. (9) for trajectories of varying length N but always the same single-

exponential correlation time T. The result is sobering: even for a tra-

jectory 8 times longer than the true correlation time T (shaded band in

Fig. 14), the estimated Tfit comes out around 30% too low, and the

range of potential fit values is quite wide. The inset of the figure shows a

selection of blocking curves from this process, indicating a lack of a clear

plateau. Recall, though, that in reality you will only see one of them!

This could be one that is still strongly increasing or, maybe worse, one
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that has started to decrease again, falsely suggesting that the plateau has

already happened. So, if your blocking-inferred correlation time is more

than ∼ 10% of your trajectory length, you probably need more data!

• One may wonder whether simply measuring more often can allow us to

escape the mire of “not enough data”, as this would increase our N

without having to actually simulate longer. Unfortunately, it is T/N

which matters, where T is the correlation time in measurement steps.

Thus, if we double our measurement frequency (cutting our time

interval Δt in half) to achieve 2N data points, we also double T = τ/Δt,

and will not have gained any ground in our blocking analysis.

Intuitively, measuring more frequently gets us more data, but these

more closely-spaced data points are more highly correlated, and the net

result is a wash.15

• We admit that there is a back door—but it is very risky. When we

sample more frequently, we will of course pin down the early parts of the

blocking curve very well. If we happen to know that we indeed only

Fig. 14 Inferred correlation time Tfit determined from fitting the blocking curve to the
theory in Eq. (9) for varying time series trajectory length N. In all cases, series are
exponentially correlated Gaussian processes with correlation time T = 16 steps (indi-
cated by the dashed horizontal line). Points are the median of 1000 runs, bars indicate
the surrounding middle 50% of fitted values. Inset: 15 example blocking curves with
N⁄T corresponding to the highlighted data value in the main plot, with true plateau
shown by the dashed line.

15This statement is informed by our general experience, and tested against exponentially correlated

data; it is possible that this does not hold for other forms of correlation one might encounter.
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have a single correlation time T, then even those early parts determine

T—and hence the plateau—quite well. The catch is that we rarely know

that this is true, especially if “maybe not having sampled enough” is one

of our primary concerns.

• The analytical prediction (9) assumes a process with a single exponential

correlation time, but this is not always true. If it is not, the prediction

fails to describe the blocking curve and will generally give an incorrect

idea of both the plateau and the implied correlation time. A conceivably

automatic way to check for this is to monitor the goodness of fit to the

blocking data.

• The easiest-to-treat deviation from a single exponential process is one

that contains two well-separated exponential time scales T1 and T2,

giving a correlation function of the form ( )w we eT T2
1

/
2

/1 2+ ,

where w1 and w2 are weights that add to 1. It is easy to generalize Eq. (9)

for this case, or even for the case of more correlation times, but the

resulting function is usually very poorly constrained by the measured

blocking curve. The reason is that we are basically on our way to

demand an inverse Laplace transform—a quintessential ill-posed pro-

blem. Hence, instead of automating even a two-times (and hence three-

parameter) fit, we instead recommend looking out for the failure of a

one-time fit and, if a two-times scenario appears plausible, try to fit this

very carefully by judiciously picking initial values for the times and the

weighting factor.

4.3.2 Bootstrapping

• A full bootstrap does not merely give distribution functions for the

observables of interest; it gives a joint distribution function for all of

them. Hence, if these observables are {x1, x2, …, xn}, and one is

interested in some function of them, f(x1, x2, …, xn), we recommend to

not just determine the uncertainties δxi and from there infer the

uncertainty δf by error propagation à la Eq. (13) (let alone its simplified

version that drops all the correlation). Instead, one should bootstrap f,

because this includes not just all correlations but accounts for all non-

linearities in the transformation from {xi} to f.

• We are used to taking Gaussian errors in “raw” measurements for

granted, because we can frequently appeal to the Central Limit

Theorem. However, for random variables that are functions of Gaussian

random variables this is generally no longer true. This is challenging for

any nonlinear function, but it becomes particularly bad if the function
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has a singularity at a point with a finite probability density. Let us give

two examples:

1. Consider a random variable X with a probability density pX(x) that is

nonzero at x = 0, and assume we are interested in the random

variable Z = 1/X. It is easy to see that its probability density is

pZ(z) = pX(1/z)/z
2 and thus has a fat tail with 1/z2 asymptotics.

2. Assume that both X and Y are (uncorrelated) Gaussian random variables

with zero mean and standard deviations σX and σY. Then Z=X/Y follows

the Cauchy distribution pZ(z) = a/[π(a2 + z2)] with the scale parameter

a = σX/σY. Observe that it again has a fat tail.16

This in particular implies that (in either case) pZ(z) has infinite variance,

the Central Limit Theorem does not apply to it, and the error of the

mean does not decrease with additional measurements. We would

notice this during bootstrapping because the distribution function for Z

does not narrow down when doing more bootstraps.

• Having to divide two measured random variables happens of course all

the time. For instance, Eq. (18) for the neutral surface z0 is exactly of

this form. But since in this case the denominator has a vanishingly small

probability density at 0, we do not run into fat-tail difficulties.

• If even the raw measurements are not Gaussian, we could strive to

sample from whatever non-Gaussian distribution we presume to be

applicable. However, we should then recall that any subsequent least-

square fitting might no longer be the correct procedure, given that

χ2-minimization is only a maximum likelihood estimator in the case of

Gaussian errors.

• If we are interested in a distinct peak in Σ(z), which we identify by

running some peak-finding routine (either applied to the raw data or

some numerical interpolation of it), then this can get difficult if the peak

is only weakly pronounced and possibly in the vicinity of other weak

peaks. The problem is that resampled data might shift the peak beyond

recognition or even eliminate it altogether for some fraction of

resampled profiles. Technically, this corresponds to another fat-tailed

distribution function for the peak position, but the more pragmatic

conclusion is that such a peak is simply not robustly enough present to

reason about it. For instance, the stress profile in Fig. 15 has two clearly

pronounced maxima at z ≈ ±1.54 σ and two pronounced minima at

16While we’re at it: the ratio of two Gaussians with nonzero mean and non-identical standard

deviations does not even have to be monomodal. Check out X (2, 1) and Y (2, 5).
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z ≈ ±2.93 σ, but what happens near z = 0? Is this a single minimum, or

two very close minima with a maximum at z = 0? The answer depends

on the individual bootstrap, which suggests to not press the point.

5. Connections

This double-volume of “Methods in Enzymology” is dedicated to

membranes exhibiting lateral and/or transverse heterogeneities. And while

the conceptually most visible aspect of this relates to the lipids, physical

properties often have a habit of percolating down the chain of observables.

For instance, if two different lipid membrane phases have different lateral

stress profiles, and these phases come into contact, not only will we phy-

sically have to navigate a “compositional transition”, in which somehow

the phase-dependent lipid mole fractions have to switch from one value to

another; we also face a “stress transition”, in which not just an overall

balance of tension must happen but also higher moments (such as torques)

will demand attention. Depending on how dissimilar the phases are, this

might lead to a local change of lipid order, the excitation of lipid tilt, a

localized “kink” of the membrane across the contact line, or other inter-

esting phenomena. For asymmetric membranes the two sides of the stress

profiles are different, which gives us different leaflet-moments and hence

material properties, and due to differential stress the two sides can

Fig. 15 Lateral stress profile for a symmetric Cooke model membrane. Note the
ambiguous extrema near the midplane.
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additionally be “offset” by some amount. All these effects are highly

informative of both local and global physics, and so the stress profile is

likely an even more interesting observable for such heterogeneous systems.

Let us give just a few pointers to how this might beneficially com-

plement the methods discussed in other chapters in this volume. To begin,

creating asymmetric membranes for simulations poses challenges not pre-

sent in the symmetric case, namely, what relative abundance of generally

different lipids one places into the two leaflets. Chapters 5 and 9 discuss in

detail how this might be achieved, with Chapter 5 discussing a variety of

methods while Chapter 9 discusses in detail so-called P21 boundary con-

ditions. One possible (albeit not the only plausible) condition one might

elect to achieve is a membrane in which differential stress between the

leaflets is canceled. This requires measuring leaflet stresses via the stress

profile, and comparing different methods we must be able to ascertain

whether stress differences are statistically significant. Chapter 6 examines

many ways in which differential stress can affect both the morphology of

vesicles, as well as their propensity to undergo fission or fusion. Due to the

focus on a spherical geometry, the lateral stress profile is also calculated for

such curved surfaces, which gives rise to interesting new effects, but of

course the uncertainty analysis discussed here will work just the same.

Next, Chapter 1 discusses phase coexistence between different fluid

membrane phases (such as Lo/Ld). The balance of stresses and their higher

moments across the domain interfaces we mentioned above would add to

our understanding of domain formation. In fact, Chapter 4 proposes a

specific protocol in which the location of that interface can be controlled

and aligned with the simulation box, and in such a setup the detailed

mechanics of the stress-transition could be exceptionally well studied. In

Chapter 14, the authors propose computing the average curvature sampled

per lipid on a fluctuating bilayer, from which they infer the spontaneous

curvature of individual lipids (relative to the mean spontaneous curvature

of the bilayer). This is complementary to the lateral stress profile, which

indicates the product of the mean spontaneous curvature and bending

modulus. In principle, the combination of the two techniques, along with

computation of the bending modulus, would provide absolute spontaneous

curvatures for each lipid. The authors also connect specific interactions

between lipids to spontaneous curvature—interactions that may be evident

as peaks in the lateral stress profile.
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