

1 **The Influence of ENSO Diversity on Future Atlantic Tropical Cyclone Activity**

2
3 Teryn J. Mueller,^a Christina M. Patricola,^{a,b} Emily Bercos-Hickey,^b

4 ^a *Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa.*

5 ^b *Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.*

6
7 *Corresponding author:* Christina M. Patricola, cmp28@iastate.edu

8
9 Manuscript submitted to *Journal of Climate* - May 12, 2023

10 Revised January 10, 2024; April 2, 2024

11

ABSTRACT

12 The El Niño–Southern Oscillation (ENSO) influences seasonal Atlantic tropical cyclone
13 (TC) activity by impacting environmental conditions important for TC genesis. However, the
14 influence of future climate change on the teleconnection between ENSO and Atlantic TCs is
15 uncertain, as climate change is expected to impact both ENSO and the mean climate state. We
16 used the Weather Research and Forecasting model on a tropical channel domain to simulate 5-
17 member ensembles of Atlantic TC seasons in historical and future climates under different
18 ENSO conditions. Experiments were forced with idealized sea-surface temperature
19 configurations based on the Community Earth System Model (CESM) Large Ensemble
20 representing: a monthly-varying climatology, Eastern Pacific El Niño, Central Pacific El Niño,
21 and La Niña. The historical simulations produced fewer Atlantic TCs during Eastern Pacific El
22 Niño compared to Central Pacific El Niño, consistent with observations and other modeling
23 studies. For each ENSO state, the future simulations produced a similar teleconnection with
24 Atlantic TCs as in the historical simulations. Specifically, La Niña continues to enhance
25 Atlantic TC activity, and El Niño continues to suppress Atlantic TCs, with greater suppression
26 during Eastern Pacific El Niño compared to Central Pacific El Niño. In addition, we found a
27 decrease in Atlantic TC frequency in the future relative to historical regardless of ENSO state,
28 which was associated with a future increase in northern tropical Atlantic vertical wind shear
29 and a future decrease in the zonal tropical Pacific SST gradient, corresponding to a more El
30 Niño-like mean climate state. Our results indicate that ENSO will remain useful for seasonal
31 Atlantic TC prediction in the future.

32

33 **1. Introduction**

34 Tropical cyclones (TCs) are both damaging and deadly, with \$1.387 trillion in damages
35 and 6,897 deaths in the United States between 1980 and 2023 (Smith, 2022; NOAA, 2024).
36 Due to the high economic costs and safety threats posed by TCs, there is an urgent need to
37 improve future projections of TC activity. In order to better project future changes in TC
38 activity, it can be informative to consider patterns of climate variability that create seasonal
39 anomalies in the necessary ingredients for TC genesis, including warm sea surface
40 temperatures (SSTs), a moist mid-troposphere, atmospheric instability, and weak vertical wind
41 shear. One major influence on seasonal TC activity in several basins is the El Niño–Southern
42 Oscillation (ENSO) (e.g., Lin et al. 2020) – the leading mode of tropical climate variability.

43 The positive phase of ENSO, or El Niño, is characterized by warm sea surface temperature
44 anomalies (SSTAs) in the central-eastern equatorial tropical Pacific, whereas the negative
45 phase, La Niña, is characterized by cool SSTAs in the same region. Along with these SSTAs,
46 ENSO also causes fluctuations in the Walker Circulation (Bjerknes, 1966), the large-scale
47 zonal and vertical atmospheric circulation over the tropics, by shifting the location of deep
48 convection in the tropical Pacific and altering tropical upper-tropospheric and lower-
49 tropospheric zonal winds.

50 ENSO's modulation of the Walker Circulation – through shifting the location of tropical
51 Pacific deep convection and changing lower- and upper-level winds – impacts vertical wind
52 shear, relative humidity, and instability over the Atlantic TC genesis region. Many studies have
53 found that compared to La Niña and ENSO neutral conditions, El Niño events drive a decrease
54 in the frequency and intensity of Atlantic TCs by increasing Atlantic vertical wind shear (e.g.,
55 Gray 1984; Goldenberg & Shapiro, 1996; Bove et al., 1998; Landsea et al., 1999; Pielke &
56 Landsea, 1999; Smith et al., 2007; Klotzbach et al., 2017, Lin et al., 2020). This relationship
57 between El Niño and Atlantic vertical wind shear exists due to warm SSTAs in the equatorial
58 eastern-central Pacific, which shift tropical Pacific deep convection eastward, causing upper-
59 level westerly wind anomalies and increased vertical wind shear over the Atlantic TC main
60 development region (e.g., Horel & Wallace, 1981; Hoerling & Kumar, 2002). Likewise, La
61 Niña enhances Atlantic TC development by weakening vertical wind shear in the Atlantic. In
62 addition, instability and relative humidity, two other factors important for Atlantic TCs,
63 decrease during El Niño (Camargo et al., 2007a) due to anomalous upper-tropospheric
64 warming (Chiang & Sobel, 2002; Tang & Neelin, 2004), which also stems from a shift in the
65 Walker Circulation.

66 To fully explain ENSO's influence on Atlantic TCs, we must consider variations in the
67 spatial patterns of SSTAs during El Niño events, often referred to as ENSO diversity (e.g.,
68 Capotondi et al., 2015a; Timmermann et al., 2018; Capotondi et al., 2020). These variations in
69 El Niño events are often categorized into two groups, known as Eastern Pacific El Niño and
70 Central Pacific El Niño (or El Niño Modoki) (Ashok et al., 2007; Kao & Yu, 2009). Eastern
71 Pacific (EP) El Niño is characterized by maximum SST warming in the eastern tropical Pacific,
72 whereas Central Pacific (CP) El Niño is characterized by maximum SST warming in the central
73 tropical Pacific, with SSTAs tending to be stronger during EP El Niño compared to CP El Niño.
74 A third “mixed El Niño” category was introduced to account for El Niño events that share
75 attributes from both categories (Kug et al., 2009; Ashok et al., 2012), as CP and EP El Niño do

76 not represent the full spectrum of spatial patterns of SSTAs. As described above, tropical
77 Pacific deep convection shifts eastward and strongly impacts upper-tropospheric winds during
78 El Niño; the nature of this response depends on both the magnitude and location of the SSTAs
79 and, therefore, depends on the type of El Niño event (Patricola et al., 2016). La Niña, on the
80 other hand, has a relatively smaller longitudinal shift in deep convection (Kug et al., 2009; Kug
81 & Ham, 2011; Ren & Jin, 2011). Although the differences in spatial patterns of SSTAs during
82 El Niño events tend to be more pronounced during ENSO's boreal winter peak, compared to
83 the hurricane season's boreal autumn peak, ENSO diversity is nonetheless important in
84 modulating the zonal shifts in tropical Pacific deep convection that influence Atlantic hurricane
85 seasons (Patricola et al. 2016).

86 ENSO diversity can substantially modulate the teleconnection between ENSO and Atlantic
87 TCs in the present climate, as found in climate simulations forced with observed SST patterns
88 characteristic of the different El Niño types (Patricola et al., 2016). The climate model
89 simulations demonstrated that CP El Niño suppressed Atlantic TCs, but was less effective at
90 doing so than EP El Niño for magnitudes of SST warming corresponding to strong observed
91 events (i.e., stronger warming for EP El Niño compared to CP El Niño). The response in
92 Atlantic TCs was driven primarily by changes in vertical wind shear, with secondary
93 contributions from relative humidity. Note that this is similar to the reanalysis-based findings
94 of Camargo et al. (2007b) in that wind shear and relative humidity are important contributors
95 to ENSO's influence of Atlantic TCs. Camargo et al. (2007b) found that relative humidity was
96 the most important factor, but we note that older reanalysis data such as the NCEP/NCAR I
97 (Kalnay et al. 1996) used in their study has large uncertainty in relative humidity estimates.
98 The strength of the wind shear and humidity responses were related to the zonal shifts in
99 tropical Pacific deep convection and the Walker Circulation, which depended on the magnitude
100 and location of the SSTA forcings.

101 A major gap in our understanding of the ENSO-TC teleconnection is how ENSO's
102 influence on seasonal Atlantic TC activity in the historical climate may be altered by future
103 greenhouse gas emissions (Lin et al., 2020), potentially through changes in ENSO (including
104 frequency, intensity, and diversity), as well as through changes in the tropical Pacific SST
105 climatology associated with mean climate change, including possible changes in tropical
106 Pacific zonal SST gradients. Projecting future changes in ENSO is a challenge, as there is no
107 agreement on future change in ENSO frequency, amplitude, subsurface ocean temperatures,
108 and ENSO diversity (e.g. Ashok et al., 2007; Yeh et al. 2009; Collins et al., 2010; T. Lee &

109 McPhaden, 2010; Kug et al., 2012; Kim and Yu, 2012; Stevenson, 2012; Yeh et al., 2014;
110 Zheng et al., 2016).

111 One major reason for this lack of agreement in changes in ENSO involves uncertainty in
112 the future of the tropical Pacific zonal SST gradient (e.g., Seager et al., 2019; S. Lee et al.,
113 2022). Part of this uncertainty stems from coupled global climate models (GCMs) suffering
114 from substantial biases in climatological SSTs in the eastern tropical Pacific (Richter, 2015;
115 Zuidema et al., 2016). The occurrence of these biases in the ENSO region can directly impact
116 simulated ENSO variability (e.g., Capotondi et al., 2015b) and can influence future projections
117 of ENSO (Tang et al., 2021). Along with these GCM biases, state-of-the-art climate models,
118 such as those participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5)
119 and Phase 6 (CMIP6), produce a general agreement that the mean tropical Pacific zonal SST
120 gradient will weaken (that is, become more El Niño-like) in the future (An et al., 2008; Cai et
121 al., 2015; Fredriksen et al., 2020; Erickson et al., 2023), even though recent observations
122 suggest the opposite has been occurring (Seager et al., 2019; Zhao & Allen, 2019). This
123 discrepancy between the recently observed La Niña-like trends and the future projections of El
124 Niño-like trends has caused uncertainty in future ENSO projections (e.g., Seager et al., 2019;
125 Tang et al., 2021), as the reliability of the GCMs has been questioned due to their large biases
126 in the eastern Pacific cold tongue. Given the complexity of simulating ENSO and the
127 uncertainty of how model biases may impact future ENSO projections, substantial uncertainty
128 exists regarding how ENSO may change in the future.

129 Along with the uncertainty in future changes in ENSO, there is also uncertainty in how
130 greenhouse gas (GHG) emissions have influenced North Atlantic TC frequency (e.g., Knutson
131 et al. 2019) and will influence it in the future (e.g., Pielke et al. 2005; Bengtsson et al., 2007;
132 Gualdi et al., 2007; Garner et al., 2009; Knutson et al., 2010; Knutson et al., 2020). Notably,
133 understanding the controls on global TC frequency remains an elusive problem for which there
134 is no theory (Sobel et al., 2021). As for TC intensity, there is better agreement that TCs will
135 become stronger in the future (e.g., Bengtsson et al., 2007; Elsner et al., 2008; Knutson et al.,
136 2010; Yu et al., 2010; Zhao & Held, 2010; Walsh et al., 2016; Knutson et al., 2020).

137 An important key to projecting future changes in Atlantic TC activity lies in understanding
138 how the current ENSO-Atlantic TC teleconnection, as well as ENSO itself, may change with
139 GHG emissions. This multifaceted problem is split into three questions: (1) How will GHG
140 emissions impact ENSO? (2) How will GHG emissions impact climatological Atlantic TC

141 frequency and intensity? (3) How will the existing teleconnection between ENSO and Atlantic
142 TCs change in the future?

143 The primary focus of this paper is to understand how the current teleconnection between
144 ENSO and Atlantic TCs could change in the future. Given that environmental conditions
145 important for TC genesis (e.g., vertical wind shear) may be altered by future changes in ENSO
146 and the mean climate, it is possible that the ENSO-TC teleconnection could change with a
147 changing climate; this is especially the case given the importance of thresholds in the response
148 of TCs to vertical wind shear (Tao and Zhang, 2014). We will also work towards addressing
149 how ENSO may change in the future and how Atlantic TC activity may change in association
150 with mean-climate change irrespective of ENSO. Here, we performed simulations using the
151 Weather Research and Forecasting (WRF) model to simulate how seasonal Atlantic TC activity
152 responds to different phases of ENSO in historical and future climates. We used the
153 Community Earth System Model 1 (CESM1) Large Ensemble (LENS; Kay et al., 2015) to
154 create idealized SST patterns representing the different phases of ENSO in both climate states.
155 We used SST data from a large 35-member ensemble, rather than multimodel ensembles such
156 as CMIP6 which tend to have relatively few ensemble members from each model, in order to
157 have sufficient sample sizes of ENSO events. Large ensembles also are best suited to quantify
158 future changes in ENSO, as internal variability is large compared to future anthropogenic
159 changes in ENSO (Maher et al., 2018; Zheng et al., 2018; J. Lee et al. 2021). This paper first
160 investigates future ENSO projections in CESM LENS and then uses CESM LENS to create
161 SST forcings representative of various ENSO patterns. We then ran WRF experiments and
162 analyzed Atlantic TC frequency and intensity during ENSO events in the historical climate.
163 We evaluated the influence of future changes in the mean climate state on Atlantic TCs before
164 finally investigating possible changes in the teleconnection between ENSO and Atlantic TCs
165 by comparing historical and future simulations forced by idealized ENSO scenarios.
166 Developing an understanding of the influence of climate change on the ENSO-Atlantic TC
167 relationship addresses a major knowledge gap identified by the scientific community (Lin et
168 al., 2020).

169

170 **2. Data**

171 *a. Observational Datasets*

172 Observed SST is based on the Extended Reconstructed Sea Surface Temperature Version
173 5 (ERSSTv5), which has global, monthly data from 1854 to present at a resolution of 2.0°
174 latitude x 2.0° longitude (Huang et al., 2017). We used ERSSTv5 to identify observed ENSO
175 events and to serve as the basis for the model bias correction.

176 The initial, surface boundary, and lateral boundary conditions for the WRF historical
177 climate simulations were based on the 6-hourly, 2.5° latitude x 2.5° longitude resolution
178 National Centers for Environmental Prediction (NCEP-II) reanalysis (Kanamitsu et al., 2002).

179 Observational TC data were obtained from the Atlantic hurricane database (HURDAT2;
180 Landsea and Franklin 2013) as archived in the International Best Track Archive for Climate
181 Stewardship (IBTrACS, Knapp et al., 2010). HURDAT2 extends from 1851 to present and
182 includes six-hourly location and intensity information. HURDAT2 has a potential low bias in
183 the pre-satellite era (before 1966 in the North Atlantic) due to observational limitations, which
184 must be considered when investigating TC trends (Vecchi and Knutson 2008, 2011; Vecchi et
185 al. 2021).

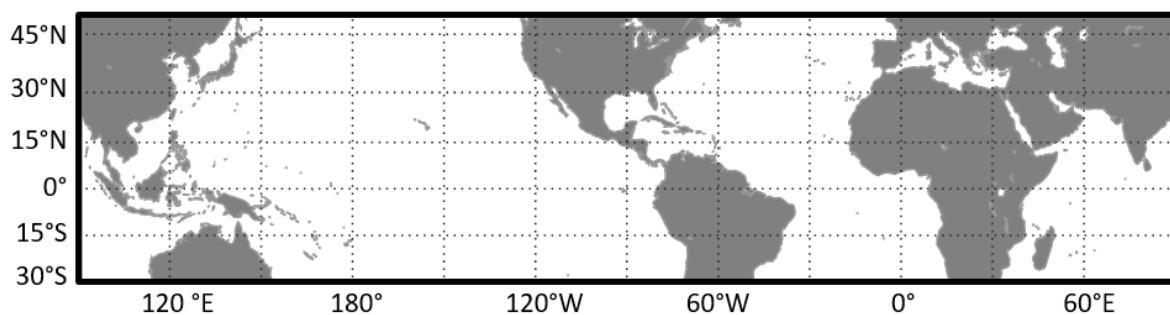
186 *b. CESM Large Ensemble Data*

187 SST forcings and future climate change perturbations for the WRF simulations were
188 constructed from the Community Earth System Model Large Ensemble (CESM LENS; Kay et
189 al., 2015). CESM LENS is a set of coupled atmosphere-ocean climate model simulations
190 performed with the nominal 1° latitude/longitude version of CESM version 1. CESM LENS
191 has 40 ensemble members and covers the years 1920-2100, with the Representative
192 Concentration Pathway 8.5 (RCP8.5) used for future climate simulations from 2006-2100. We
193 used 35 ensemble members, which included the data accessible at the time of this study.

194 **3. Methods**

195 *a. ENSO Index*

196 To identify ENSO events, we used the ENSO Longitude Index (ELI), which can capture
197 ENSO diversity by estimating zonal variations in tropical Pacific deep convection associated
198 with ENSO (Williams & Patricola, 2018). ELI is calculated for each month by: (1) calculating
199 the tropical-average SST (i.e., convective threshold), (2) identifying which points in the
200 tropical Pacific meet or exceed the tropical-average SST, and (3) calculating the average
201 longitude for the points that satisfy the second condition (Williams and Patricola, 2018). This


202 index was chosen over other ENSO metrics, such as the Niño 3.4 index, as ELI is unique in
203 capturing ENSO diversity in one index, whereas Niño 3.4 is unable to capture ENSO diversity
204 due to its construction (SSTA over a fixed region). In addition, ELI has demonstrated value in
205 operational seasonal Atlantic TC prediction (Klotzbach et al. 2022). Since ELI represents the
206 longitude of tropical Pacific deep convection, it captures the most important difference between
207 each ENSO state that causes the teleconnection with Atlantic TC frequency. Although ELI
208 does not directly measure SSTA strength, ELI and the Niño3.4 index are strongly correlated
209 during the August-October Atlantic hurricane season peak ($R = 0.91$ over the period 1950-
210 2022). In addition, ELI is able to distinguish between EP and CP El Niño events during boreal
211 summer, as shown in Figure 1b from Williams and Patricola (2018). An important difference
212 between ELI and the Niño3.4 index is that ELI more clearly identifies extreme El Niño events
213 during boreal winter (Fig. 1a from Williams and Patricola, 2018), where an extreme El Niño
214 event is one characterized by both strong SSTAs and a strong eastward shift in tropical Pacific
215 deep convection. In addition, the Niño3.4 index quantifies SSTAs but is not designed to
216 capture zonal shifts in deep convection.

217 *b. Regional Climate Model Simulations*

218 We performed regional climate model simulations using the Weather Research and
219 Forecasting (WRF) model, version 4.3.3 (Skamarock et al., 2019). The WRF simulations used
220 an atmosphere-only model in order to prescribe ENSO conditions and to mitigate basin-scale
221 SST biases that can cause errors in simulations of TCs (Hsu et al., 2019). SSTs were prescribed
222 from CESM LENS data, as explained in section 3.b.2. The WRF experiments use a 27 km
223 resolution tropical channel model (TCM) domain that covers 30°S to 50°N around the globe
224 (Fig. 1), with 48 vertical layers from the surface to 50 hPa and a 60 second time step (Patricola
225 et al., 2016; Fu et al., 2019). This resolution is high enough to represent TCs and allows a large
226 domain suitable for capturing the influence of ENSO on the Atlantic. We note that at 27 km,
227 the model struggles to simulate intense TCs (Category 3 and stronger), as expected given the
228 resolution (Davis, 2018).

229 The initial, lateral boundary, and land surface boundary conditions were based on the 6-
230 hourly NCEP-II reanalysis data from 1989, a year characterized by a near-neutral phase of the
231 Atlantic Multidecadal Oscillation (AMO), to minimize potential influences of the mid-latitude
232 lateral boundary conditions (LBCs) on the simulation (Patricola et al., 2016). This was done
233 because the AMO has a substantial influence on Atlantic TC activity (Goldenberg et al. 2001;

234 Bell and Chelliah, 2006). Previous research has found little sensitivity to the year selected for
 235 LBCs for TCM simulations involving TC applications (Patricola et al., 2016). The simulation
 236 length was from May 1 - December 1, which was chosen to include the Atlantic hurricane
 237 season (June 1 - November 30), along with an additional month for model spin-up. Each of the
 238 five ensemble members per experiment was made under the same GHG concentrations and
 239 SST forcings, with slightly different initial conditions created by starting the runs on different
 240 days (May 1 through May 5). The experiments were limited to five ensemble members due to
 241 computational expenses; however, this ensemble size is suitable for such applications (J. Lee
 242 et al., 2021) and was sufficient to reveal climate change responses. The model
 243 parameterizations are consistent with the TCM configuration from Patricola et al. (2014) and
 244 were chosen for their ability to reasonably reproduce TC frequency at 27 km resolution.

245
 246 **Fig. 1.** Domain used in the WRF simulations (30°S -50°N, 180°E-180°W).
 247

248

Climate State	SST Forcing	ELI Values	Number of Years in SST Composite
Historical	Climatological	-	735
Historical	Central Pacific El Niño	175°E-180°E	36
Historical	Eastern Pacific El Niño	East of 190°E	6
Historical	La Niña	West of 160°E	66
Future	Climatological	-	735
Future	Central Pacific El Niño	175°E-180°E	56
Future	Eastern Pacific El Niño	East of 190°E	17
Future	La Niña	West of 160°E	181

249 **Table 1.** Summary of WRF experiments performed, including climate state (historical, 1980-2000 and
 250 future, 2080-2100), SST forcing, ELI values used to categorize the ENSO SST forcings, and number
 251 of years in each SST composite (out of a possible 735 total years).

252

253

Greenhouse Gas	Historical	Future
Carbon dioxide (CO ₂)	354 ppm	845 ppm
Methane (CH ₄)	1723 ppb	3640 ppb
Trichlorofluoromethane (CFC-11)	265 ppt	357 ppt
Dichlorodifluoromethane (CFC-12)	497 ppt	196 ppt
Nitrous oxide (N ₂ O)	308 ppb	421 ppb
Chlorodifluoromethane (CFC-22)	169 ppt	143 ppt
Carbon tetrachloride (CCl ₄)	104 ppt	93 ppt

254 **Table 2.** Greenhouse gas concentrations prescribed in the historical and future climate WRF
 255 simulations, with units in parts per million (ppm), parts per billion (ppb), or parts per trillion (ppt).

256 1) CLIMATE SCENARIOS

257 We performed experiments representing two climate states, namely a historical (1980-
 258 2000) and a future (2080-2100) climate (Table 1), with each climate state including four
 259 prescribed ENSO conditions discussed in the next section. For the historical climate, LBCs
 260 were based on 6-hourly NCEP-II reanalysis, whereas SSTs were prescribed using ENSO
 261 composites developed from the CESM LENS over 1980-2000 (see section 3.b.2). For SSTs,
 262 21 years were sufficient to represent 95% of the internal variability of ENSO (Maher et al.,
 263 2018), considering the use of 35 ensemble members. The GHG concentrations for the historical
 264 climate (Table 2) were prescribed according to the World Data Center for Greenhouse Gases
 265 (Tsutsumi et al., 2009) and the Carbon Dioxide Information Analysis Center (Bullister et al.,
 266 2015).

267 The future climate simulations were created using the pseudo-global warming approach
 268 (Schär et al. 1996) for the LBCs and initial conditions, with prescribed bias-corrected SSTs.
 269 Specifically, the 1989 NCEP-II reanalysis data were used for the initial, lateral, and surface
 270 boundary conditions, but with additional climate change differences, or deltas, prescribed to
 271 the temperature, pressure, and humidity-related variables. The deltas were created by
 272 calculating the difference between the future climate (2080-2100) and the historical climate
 273 (1980-2000) CESM LENS data, and accounted for spatial (horizontal and vertical) and
 274 seasonal variations in the future change. SSTs were prescribed from the CESM LENS, with
 275 forcings created using the years 2080-2100. The pseudo global warming approach for the LBCs
 276 and initial conditions creates a future climate that has a realistic estimation of the mean state,
 277 while using SSTs from CESM LENS allows us to account for potential changes in ENSO's
 278 spatial patterns and magnitude. The RCP8.5 emissions scenario was used to represent GHG

279 concentrations at the end of the twenty-first-century (Table 2; Riahi et al., 2011). RCP8.5 is
280 the high-end estimate for global mean temperature increase by the end of the twenty-first
281 century and represents what are currently considered to be the potential maximum impacts of
282 climate change in the next century.

283

284 2) SST FORCINGS

285 We performed WRF experiments using SST forcings representing four different ENSO
286 conditions, including monthly-varying climatological SST (neutral ENSO), Central Pacific El
287 Niño, Eastern Pacific El Niño, and La Niña, in each of the historical and the future climates
288 (Table 1). These SST configurations were created with the CESM LENS data.

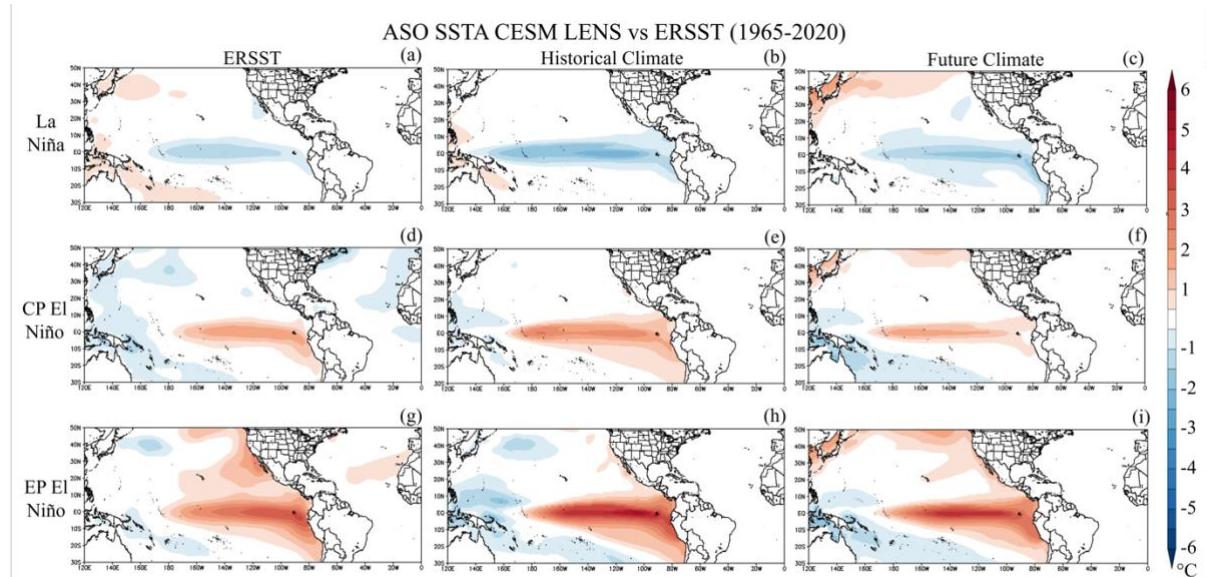
289 The climatological monthly SSTs were calculated by first creating the monthly averages
290 for each climate state (1980-2000 and 2080-2100) using all 35 ensemble members and then
291 subtracting the model biases from them. The model bias was calculated by taking the CESM
292 climatological monthly average of 1980-2000 and subtracting the ERSSTv5 observed monthly
293 average SSTs of the same years. We used the SST bias of the historical period for the future
294 period, which assumes that the bias is unchanged in the future. We note that this procedure
295 corrects only for mean-state SST biases, which is relatively straightforward, and does not
296 correct for any biases in ENSO characteristics and variability.

297 The SST patterns for each of the three ENSO states in both the historical (Fig. 2b, e, and h)
298 and future climates (Fig. 2c, f, and i) were calculated using composites of SSTs based on ELI.
299 In particular, ENSO events were identified based on ELI averaged over August, September,
300 and October (ASO) for each simulated CESM LENS year, to represent the peak hurricane
301 season when the teleconnection between ENSO and Atlantic TCs is strongest. We note that
302 while the ASO average was used to identify ENSO events, the SST forcings use the monthly
303 SST. This choice does not change the sample size of events. We used the 10th (west of 160°E)
304 and 90th (east of 175°E) percentile ELI values from ERSSTv5 observations over 1854-2020 to
305 define the ENSO state (La Niña and El Niño, respectively). The range of ASO ELI values in
306 CESM LENS was roughly 175°E-200°E for El Niño and 155°E-160°E for La Niña. For our
307 final SST configurations prescribed to WRF, we used the ASO ELI bin that was west of 160°E
308 to represent La Niña, the ASO ELI bin 175°E-180°E to represent Central Pacific El Niño, and
309 ASO ELI east of 190°E to represent Eastern Pacific El Niño. The extremes of ELI were chosen
310 to represent the range of ENSO diversity. We note that the ELI values typical of El Niño and

311 La Niña events depends on the season, therefore, different values are used to identify ENSO
312 events in ASO compared to December–February. We chose to define the Eastern Pacific and
313 Central Pacific El Niño events with a gap in ELI of 10 degrees of longitude in between, to
314 clearly capture the two distinct patterns. The events with ELI in between tended to correspond
315 to mixed El Niño events with warm SSTAs in both the Eastern and Central Pacific. This mixed
316 El Niño pattern was not used as forcing for WRF simulations in this study due to the primary
317 focus on the Eastern Pacific El Niño and Central Pacific El Niño events, as well as
318 computational limitations. We suspect that the mixed El Niño pattern would have produced
319 results in between those from the Eastern Pacific and Central Pacific El Niño events.

320 Each of the events from all of the ensemble members categorized in each ELI bin were
321 averaged to create a monthly SST composite representing each ENSO state. We note that the
322 ENSO SST forcings were applied only over the Pacific basin; all other basins were prescribed
323 the monthly SST corresponding to the climatology for the given climate state (i.e., historical
324 or future). This was done to control the SSTs, such that ENSO was the only major SST pattern
325 changing between each experiment. The SSTs were corrected for the monthly model bias.

326 The SSTA composites for ENSO events from the historical CESM LENS simulations (Fig.
327 2b, e, and h) reasonably capture the patterns expected based on observations (Fig. 2a, d, and
328 g). There are some relatively minor differences between the observed and CEMS LENS
329 historical SSTAs, with stronger SST cooling (warming) during historical La Niña (EP and CP
330 El Niño) and maximum EP El Niño SSTAs shifted slightly from the East Pacific toward the
331 Central Pacific in CESM compared to observations. Furthermore, the SSTA composites for
332 ENSO events in the future CESM LENS simulations retain the signatures of the corresponding
333 historical events. We emphasize that the SSTAs alone do not fully represent the strength of
334 ENSO events, which also depend on changes in the mean-state SST.


335

336 3) TC TRACKING

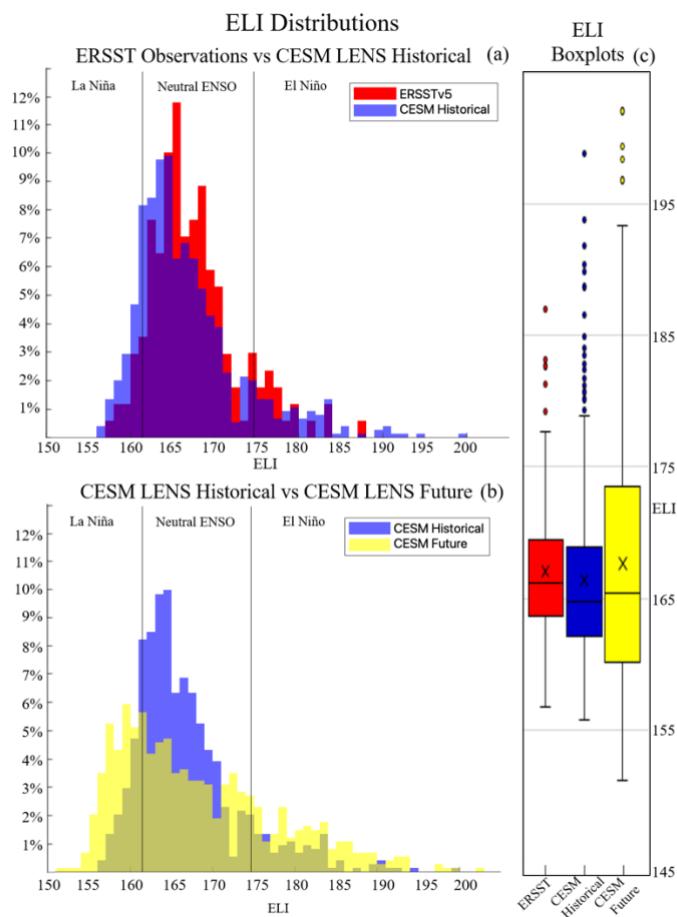
337 We tracked simulated Atlantic TCs every 6-hours using the algorithm of Walsh (1997),
338 which included criteria that the system must have a warm core, be a closed-off low, have a 850
339 hPa mean wind speed greater than the 300 hPa mean wind speed, have a minimum 10-meter
340 wind speed of 17.5 ms^{-1} , and an additional requirement that TCs last longer than two days to
341 avoid minor disturbances influencing results. These requirements detect systems that meet the
342 standard to be considered at least a tropical storm. Accumulated Cyclone Energy (ACE; Bell

343 et al., 2000) was also calculated for each TC and then summed for each season by adding all
 344 of the squared 6-hourly maximum 10-meter wind speeds together for each TC over the whole
 345 season and dividing by 10,000. ACE (10^4 kt 2) was calculated because it is a more
 346 comprehensive metric for TC activity that considers TC number, intensity, and duration.

347

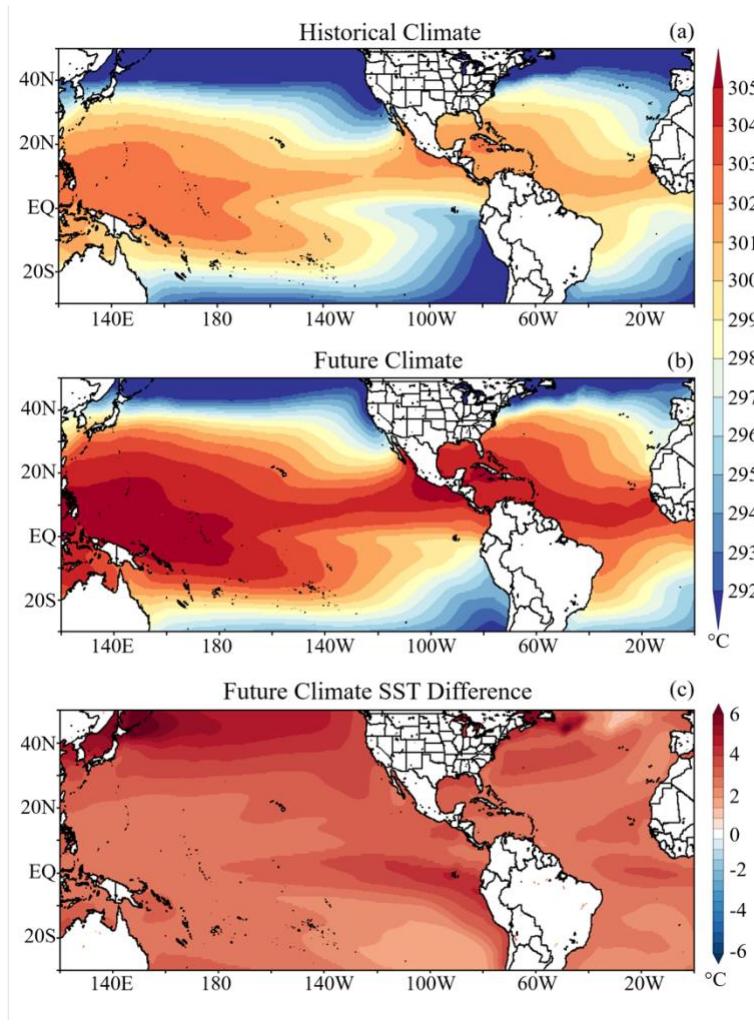
348
 349 **Fig. 2.** Aug-Oct SSTAs (°C) from composites of (top) La Niña, (middle row) CP El Niño, and (bottom)
 350 EP El Niño events from the ERSSTv5 observations over (left) 1965-2020, (middle column) the CESM
 351 LENS historical simulation and the (right) CESM LENS future simulation. The observed composites
 352 included 1973, 1975, 1988, 1998, 1999, 2010, 2016, and 2020 for La Niña, 1965, 1972, and 1982 for
 353 CP El Niño, and 1997 and 2015 for EP El Niño.

354


355 4. Results

356 a. ENSO and Mean-state SST in the CESM LENS

357 We first compared ENSO during ASO in the historical CESM LENS with observations to
 358 determine any model biases. The LENS historical simulations reproduced the frequency of El
 359 Niño events reasonably well while doubling the frequency of La Niña events compared to
 360 observations, which is apparent in the ELI distribution and histograms (Fig. 3a and c). In
 361 addition, although the LENS reproduced the frequency of observed El Niño events well, the
 362 LENS simulated El Niño events with stronger magnitudes than observed. We also compared
 363 composites of SSTAs for El Niño and La Niña events from the CESM LENS historical
 364 simulations (Fig. 2b, e, and h) and observations (Fig. 2a, d, and g) and found that the SSTAs
 365 are reasonably similar between the two, albeit with stronger SSTAs in LENS than in
 366 observations.


Having evaluated how well the CESM LENS historical simulation represents observed ENSO frequency and magnitude, we then investigated how the CESM LENS projects ENSO to change in the future. We found that the CESM LENS projects a substantial increase in the number of extreme ENSO events during ASO, similar to the projected change during boreal winter (Williams and Patricola, 2018), along with a change in the mean state toward more El Niño-like conditions (Fig. 3b and c). This shift to more El Niño-like conditions is consistent with the future SST warming pattern in CESM LENS, with greater warming over the Eastern Pacific cold tongue than in the surrounding areas (Fig. 4c).

375
376

377
378 **Fig. 3.** Histograms showing Aug-Oct averaged ELI ($^{\circ}$ E) from (a) ERSSTv5 observations (red) over the
379 years 1854-2022 compared to CESM LENS over the years 1980-2000 and from 35 ensemble members
380 (blue), and (b) CESM LENS over the years 1980-2000 (blue) compared to CESM LENS over the years
381 2080-2100 (yellow). The two lines represent the ELI values used to characterize either El Niño or La
382 Niña. The boxplot (c) compares the Aug-Oct ELI ($^{\circ}$ E) values from ERSSTv5 observations and the
383 CESM LENS historical and future simulations, with x representing the average.

384

385
 386 **Fig. 4.** Climatological Aug-Oct SSTs ($^{\circ}\text{C}$) from the (a) historical CESM LENS simulation over 1980-
 387 2000, (b) future CESM LENS simulation over 2080-2100, and (c) the difference between the future
 388 minus the historical simulations. The SSTs represent the mean-state prescribed for the historical and
 389 future WRF simulations.

390
 391 *b. Influence of ENSO on Atlantic TCs in the Historical Climate*

392 We compared TC activity in the WRF historical simulations with observations to gauge
 393 how well the model represents TC activity and its response to ENSO. Overall, the WRF
 394 historical climatology simulation produced more Atlantic TCs than observations, with 59%
 395 more Atlantic TCs and 18% more ACE per year than the observed climatology (Table 3). The
 396 bias in the TC count was greater than the bias in ACE, which is likely associated with the
 397 inability of the model to represent intense TCs due to its resolution. We note that despite the
 398 lack of intense TCs (category 4 and 5 hurricanes) in the model, the model is able to simulate
 399 changes in TC intensity in response to ENSO and climate change. For this reason, and because
 400 ACE is a commonly used metric for TC activity, we included ACE in the analysis despite the
 401 limitation that the model fails to simulate the most intense TCs.

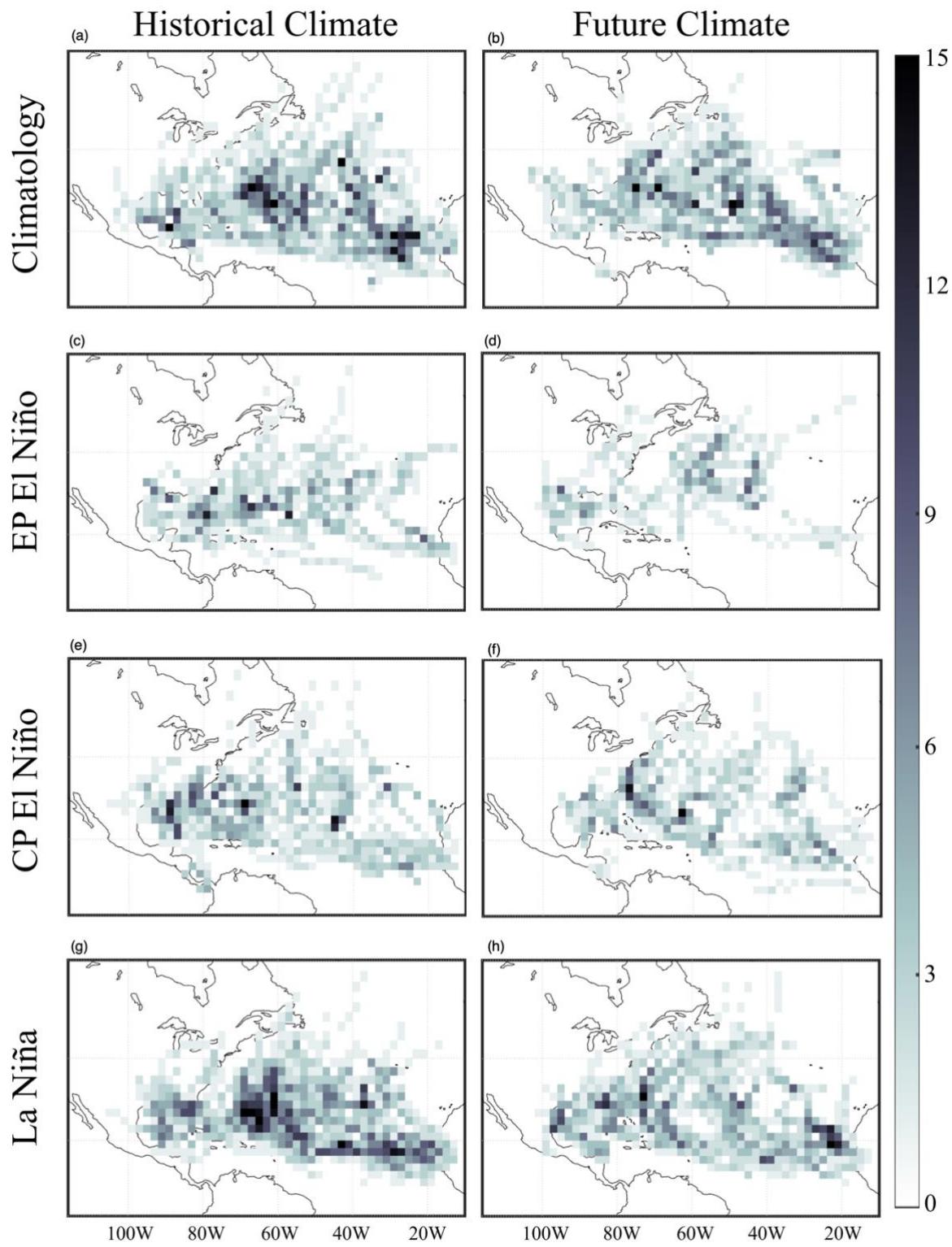
402 The TC track density from the five-member ensemble of the historical simulations clearly
403 shows a decrease in Atlantic TC frequency in both historical El Niño experiments (Fig. 5c and
404 e) compared to the historical climatology simulation (Fig. 5a), whereas La Niña produced a
405 moderate increase in TC frequency (Fig. 5g). The Atlantic TC response simulated by WRF is
406 consistent with the observed TC response during El Niño and La Niña (Table 3), although
407 internal atmospheric variability was not well accounted for due to the small sample sizes for
408 observed El Niño events. Relatively few observed El Niño events, along with the use of
409 different EP El Niño ELI bins between the observations and the simulations, could explain
410 differences between the observed and simulated influence of CP and EP El Niño on Atlantic
411 TC activity. SST conditions in the Atlantic also impact observed TC activity, as the Atlantic
412 Meridional Mode (AMM) was positive for both observed EP El Niño years, which would cause
413 less suppression of Atlantic TCs than the EP El Niño would cause with a neutral AMM
414 (Patricola et al., 2014; Klotzbach et al., 2011).

415 We quantified the Atlantic TC activity response to ENSO using the number of TCs per year
416 and ACE. The five-member ensemble of historical climatology simulations produced an
417 average of 20 TCs per year and an average seasonal ACE of 120.7 (Table 3). In response to the
418 ENSO SST forcings in the historical climate, the WRF simulations produced a 55% decrease
419 in TCs per year and a 58% decrease in ACE per year during Eastern Pacific El Niño relative to
420 the climatology simulation (Table 3). This simulated suppression of TCs was greater than
421 observed, likely due to the differences in ELI used to define El Niño and influences outside of
422 the Pacific, such as the AMM, on the observed findings. The Central Pacific El Niño
423 simulations produced a 39% decrease in Atlantic TCs per year and a 44% decrease in ACE per
424 year compared to the climatological simulations (Table 3), which is relatively similar to
425 observations. Atlantic TC suppression was less effective in the CP El Niño experiment
426 compared to the EP El Niño experiment, consistent with Patricola et al. (2016). This indicates
427 that Atlantic TC suppression is greater the further east that tropical Pacific deep convection is
428 located. This response is not well characterized in the limited historical observations of CP and
429 EP El Niño, but is apparent when comparing El Niño to the climatology and La Niña
430 simulations. The historical La Niña simulation produced a moderate 8% increase in Atlantic
431 TCs per year and an 11% increase in ACE per year (Table 3) compared to the climatology
432 simulation. The difference in TC activity between La Niña and the climatology was weaker in
433 the WRF simulations compared to observations, although both increased TCs and seasonal
434 ACE during La Niña. The increase in the ensemble-mean number of TCs in the La Niña

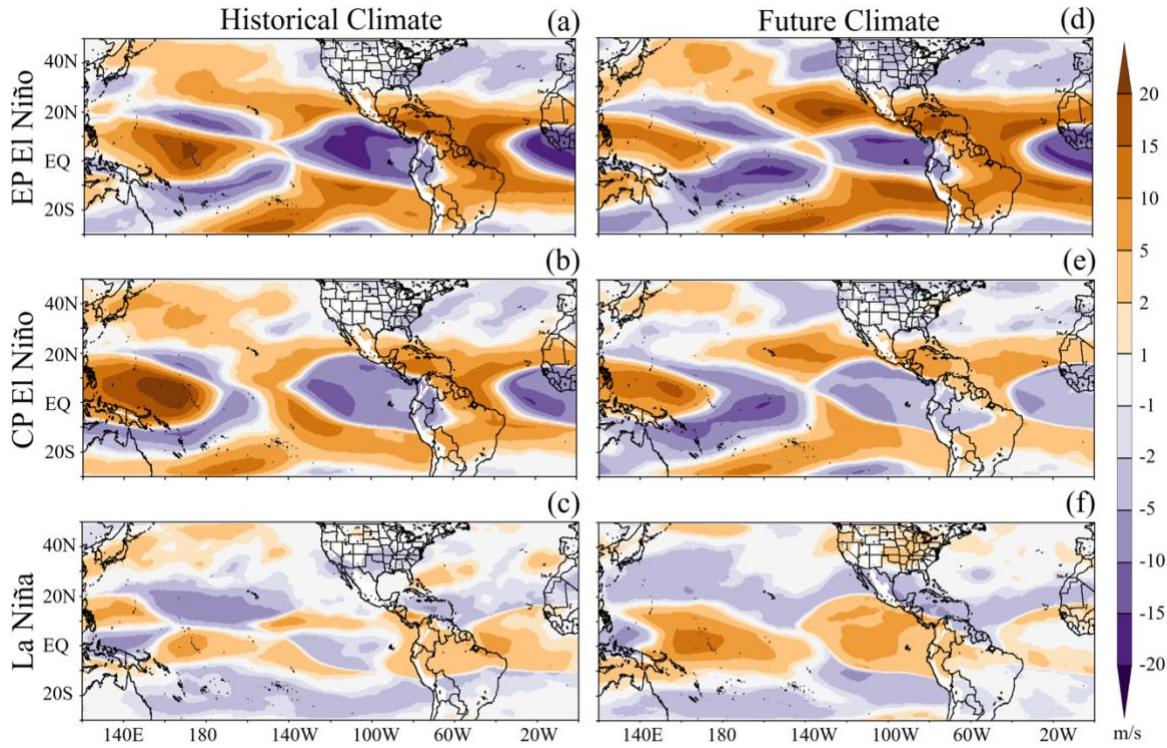
435 historical simulation was less than one standard deviation above the ensemble-mean number
436 of TCs in the control historical simulation.

437 To understand the physical mechanisms driving the Atlantic TC response to ENSO, we
438 investigated vertical wind shear (VWS) between 850 hPa and 200 hPa and 700 hPa relative
439 humidity (RH) in the historical simulations. We focused on physical variables impacted by
440 ENSO instead of using the genesis potential index (GPI), which considers the aforementioned
441 large-scale variables, together with low-level vorticity and potential intensity, together. We
442 chose this approach because metrics like GPI can poorly explain future changes in TCs
443 (Camargo, 2013), likely because GPI is an empirical index developed using historical climate
444 data. There is an increase in VWS over most of the Atlantic TC genesis region for both El Niño
445 types and a decrease in VWS for La Niña in the historical climate (Fig. 6a-c). EP El Niño
446 produced VWS enhancements of up to 10 ms^{-1} over the Atlantic TC genesis region (Fig. 6a).
447 This large anomaly caused the average VWS over a substantial portion of the Atlantic TC
448 genesis region to change from a range of $0\text{-}7.5 \text{ ms}^{-1}$ to a range of $10\text{-}20 \text{ ms}^{-1}$ (not shown). This
449 is important because VWS exceeding values of $10\text{-}12 \text{ ms}^{-1}$ are typically unfavorable for TCs
450 (Zhang and Tao, 2013; Tao and Zhang, 2014; Tao and Zhang, 2015; Rios-Berrios and Torn,
451 2017). CP El Niño enhanced VWS (Fig. 6b), but not as strongly as EP El Niño, resulting in
452 most of the Atlantic TC genesis region increasing from an ASO average VWS of $0\text{-}7.5 \text{ ms}^{-1}$ to
453 $5\text{-}17.5 \text{ ms}^{-1}$ (not shown). The historical La Niña simulations produced a slight reduction in
454 VWS ($2\text{-}5 \text{ ms}^{-1}$) over much of the Atlantic TC genesis region (Fig. 6c), consistent with the
455 slight increase in Atlantic TC activity. The simulated VWS response to ENSO is closely related
456 to the 200 hPa zonal wind response (not shown), which is driven by the location of tropical
457 Pacific deep convection. Therefore, the longitude of maximum tropical Pacific deep convection
458 indicates the main physical mechanisms by which the ENSO teleconnection influences Atlantic
459 TC activity.

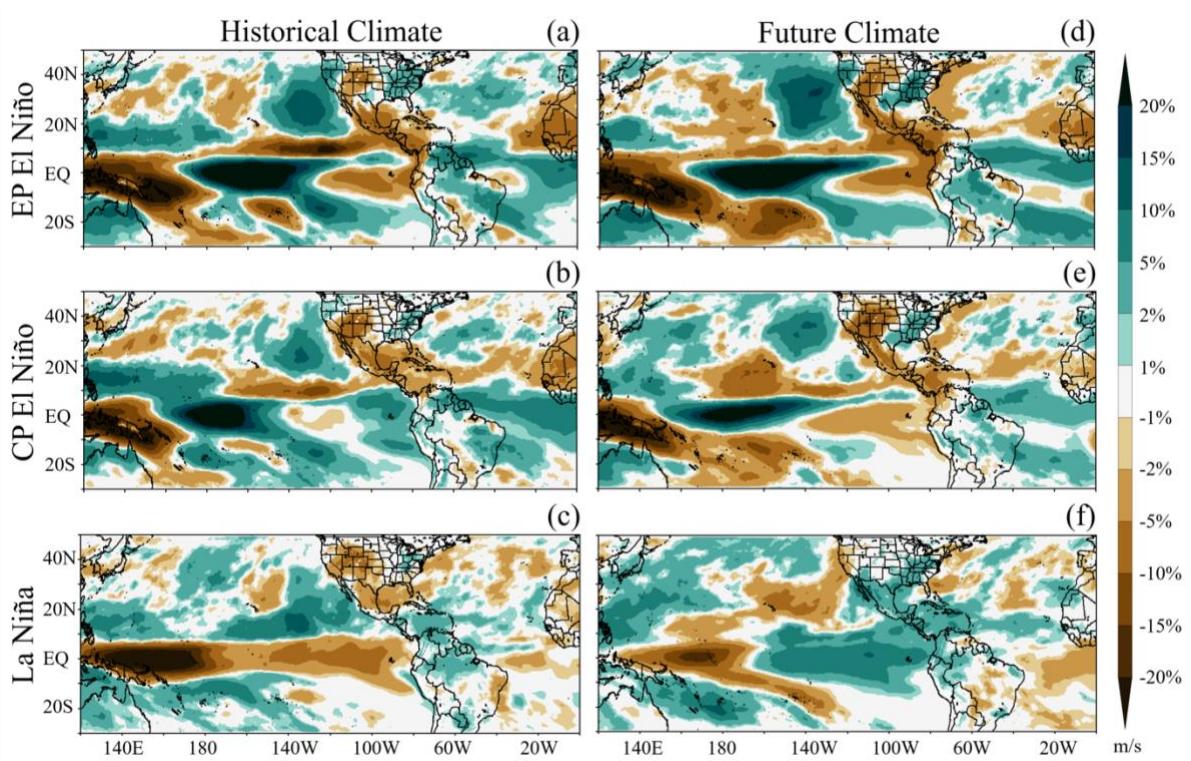
460 Mid-tropospheric RH decreased during El Niño and increased during La Niña over much
461 of the northern tropical Atlantic in the historical simulations (Fig. 7a-c), although compared to
462 VWS, RH is less correlated with the Atlantic TC frequency response. In both El Niño
463 simulations, RH slightly decreased over most of the Atlantic TC genesis region (Fig. 7a and
464 b), which along with the VWS response, helped explain the suppression of Atlantic TCs in both
465 El Niño experiments. However, CP El Niño produced a stronger RH response than EP El Niño.
466 This shows that the 200 hPa zonal wind and VWS responses are better indicators of the Atlantic
467 TC suppression; in particular, the EP El Niño simulation produced roughly 25% fewer TCs


468 than CP El Niño, which is consistent with the larger increase in VWS, but inconsistent with the
 469 smaller decrease in RH during EP El Niño compared to CP El Niño. This leads us to conclude
 470 that VWS is generally the primary explanation for the Atlantic TC response to ENSO, whereas
 471 RH is a secondary influence.

472 Overall, the results from the historical WRF experiments match the current understanding
 473 of ENSO's influence on Atlantic TCs. Our findings agree with the established influence El
 474 Niño has on Atlantic TCs, including the overall Atlantic TC reduction during El Niño (e.g.,
 475 Gray, 1984 and others), the differences in the TC response between CP and EP El Niño
 476 (Patricola et al., 2016), and the slight increase in Atlantic TCs during La Niña. Finally, Atlantic
 477 VWS responses driven by the zonal shift in the tropical Pacific deep convection and associated
 478 200 hPa zonal wind response are consistent with previous research and were the main factor
 479 driving the Atlantic TC response to ENSO, with secondary contributions from mid-
 480 tropospheric RH.


481
 482

ENSO state	Observations (1965-2020)				WRF Historical Simulations			
	Climo	EP El Niño	CP El Niño	La Niña	Climo	EP El Niño	CP El Niño	La Niña
sample or ensemble size	55	2	3	8	5	5	5	5
ELI bin	-	East of 180°E	175°E-180°E	West of 160°E	-	East of 190°E	175°E-180°E	West of 160°E
Number of TCs	12.6	9.5 (-24%)	7.7 (-40%)	14.9 (19%)	20	9 (-55%)	12.2 (-39%)	21.6 (8%)
ACE	102.6	51.81 (-50%)	50.5 (-51%)	134 (31%)	120.7	50.5 (-58%)	67.1 (-44%)	134.2 (11%)


483 **Table 3.** Average values and percent change relative to climatology (in parentheses) in seasonal Atlantic
 484 number of TCs and ACE (10^4 kt^2) from IBTrACS observations (left) and the historical WRF
 485 experiments (right). Each WRF experiment had a different SST forcing representing either La Niña, CP
 486 El Niño, or EP El Niño. The ELI bin and sample or ensemble size used to configure the SSTAs are
 487 shown. ENSO events during the years 1965-2020 were identified based on ASO ELI from ERSSTv5
 488 observations.
 489

490
491 **Fig. 5.** Atlantic TC track density (TCs per 6-hours over the five-member ensemble) over June 1 –
492 November 30 from the five-member ensemble of the WRF simulations under prescribed SST forcings
493 representing (a, b) climatology, (c, d) EP El Niño, (e, f) CP El Niño, and (g, h) La Niña for the historical
494 and future climates, respectively.
495

496
497 **Fig. 6.** Response in the Aug-Oct zonal 850 hPa to 200 hPa vertical wind shear (ms^{-1}) from the historical
498 climate (a) EP El Niño, (b) CP El Niño, and (c) La Niña simulations minus the historical climatology
499 simulation and the future climate (d) EP El Niño, (e) CP El Niño, and (f) La Niña simulations minus
500 the future climatology simulation, based on the 5-member ensemble of the WRF simulations.
501

502
503 **Fig. 7.** Response in the Aug-Oct 700 hPa relative humidity (%) from the historical climate (a) EP El
504 Niño, (b) CP El Niño, and (c) La Niña simulations minus the historical climatology simulation and the
505 future climate (d) EP El Niño, (e) CP El Niño, and (f) La Niña simulations minus the future climatology
506 simulation, based on the 5-member ensemble of WRF simulations.

507 *c. Influence of Mean Climate Change on Atlantic TCs*

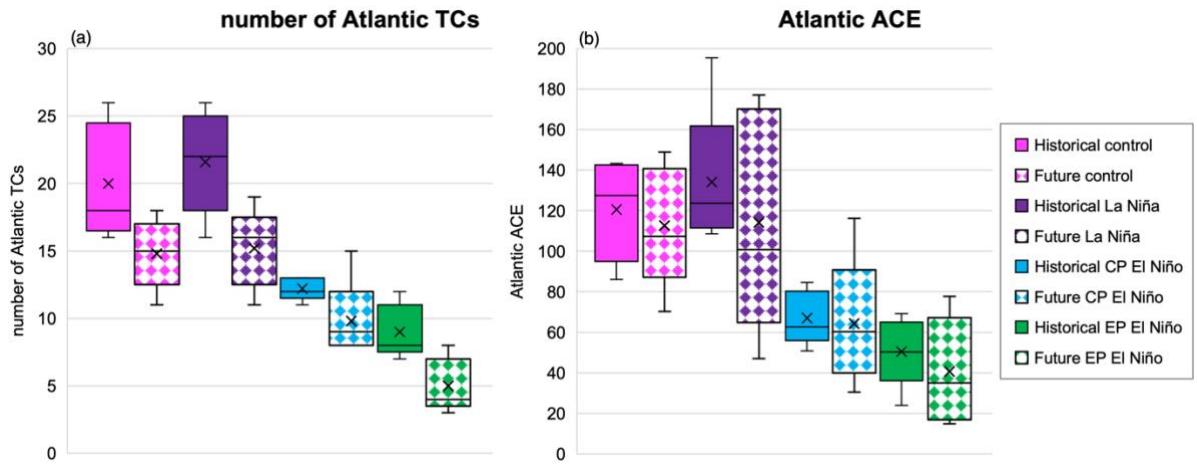
508 Before comparing the Atlantic TC response in each ENSO experiment between the future
 509 and historical climates, we analyzed the difference between the two climate states to try to
 510 separate the influences of mean climate change and changes in the ENSO teleconnection on
 511 Atlantic TCs. We found that mean-state climate change produces a decrease in future Atlantic
 512 TCs. The ensemble of future climatology simulations produced 14.8 Atlantic TCs per season,
 513 representing a 26% decrease from the 20 TCs per season in the historical climatology
 514 simulation (Tables 4 and 5 and Fig. 9a). We next investigated the connection between the TC
 515 response and large-scale environment and found a future decrease of 1-2% in 700 hPa RH over
 516 most of the Atlantic TC genesis region (Fig. 8c) and an increase of 1-5 ms^{-1} in VWS (Fig. 8b
 517 and d) over the Atlantic TC genesis region. These thermodynamic and dynamic changes make
 518 sense given the future change in mean-state SST toward more El Niño-like conditions (Fig. 8a)
 519 that support a future decrease in Atlantic TC activity. The 1-5 ms^{-1} future increase in VWS
 520 brought the ASO average VWS over the TC genesis region from 0-10 ms^{-1} for the historical to
 521 2.5-15 ms^{-1} in the future (not shown). This indicates that the future mean climate state has the
 522 potential to strongly influence future changes in Atlantic TCs during El Niño, given the future
 523 increase in VWS and decrease in RH.

524 While Atlantic TC frequency decreased substantially in the future climatological
 525 simulation relative to the historical, seasonal Atlantic ACE decreased by a relatively moderate
 526 amount. The future simulations produced a 7% decrease in ACE (Table 4 and Fig. 9b), or an
 527 ensemble average of $113 \ 10^4 \text{ kt}^2$ in the future compared to $121 \ 10^4 \text{ kt}^2$ in the historical (Table
 528 5). Furthermore, the average ACE per TC increased by 26% in the future relative to the
 529 historical (Table 4). An increase in ACE per TC means that, on average, the TCs live longer
 530 and/or are more intense. We found more long-track and stronger TCs in the future simulation
 531 compared to the historical, with a primary influence from increasing TC intensity. These
 532 findings align with other research (e.g., Bengtsson et al., 2007) on future increases in TC
 533 intensity.

534

	Climatology	EP El Niño	CP El Niño	La Niña
TCs per year	-26%	-45%	-20%	-30%
ACE per year	-7%	-34%	-5%	-15%
ACE per TC	26%	19%	18%	21%

535 **Table 4.** Change in Atlantic TC activity due to mean climate change for each given ENSO state. The
 536 seasonal Atlantic number of TCs and ACE (10^4 kt^2), represented as the percentage change, calculated
 537 as (future - historical) / historical, from each five-member ensemble mean of the WRF TCM


538 experiments with prescribed SST representing climatology, EP El Niño, CP El Niño, and La Niña. This
 539 represents the TC response to mean climate change for a given ENSO state.
 540
 541

Historical				
	Climatology	EP El Niño	CP El Niño	La Niña
TCs per year	20	9 (-55%)	12.2 (-39%)	21.6 (8%)
ACE per year	120.6	50.4 (-58%)	67 (-44%)	134.1 (11%)
ACE per TC	6	5.6 (-7%)	5.5 (-10%)	6.2 (3%)
Standard deviation of TC count	3.9	1.8	0.8	3.4
Standard deviation of ACE	22.3	15.2	11.9	31.4
Future				
	Climatology	EP El Niño	CP El Niño	La Niña
TCs per year	14.8	5 (-66%)	9.8 (-34%)	15.2 (3%)
ACE per year	112.7	34 (-70%)	64.3 (-43%)	114.2 (1%)
ACE per TC	7.6	6.8 (-11%)	6.6 (-14%)	7.5 (-1%)
Standard deviation of TC count	2.3	1.8	2.6	2.6
Standard deviation of ACE	26.9	15.6	28.6	49.1

542 **Table 5.** Seasonal Atlantic TC count and ACE (10^4 kt^2) from the five-member ensemble mean of the
 543 WRF experiments with prescribed SST representing climatology, EP El Niño, CP El Niño, and La Niña
 544 in the historical and future climates. The percent change in each of the TC metrics for each ENSO
 545 experiment with respect to the corresponding climate's climatology is included in parentheses, which
 546 represents the TC response to ENSO for a given climate state. Standard deviation represents the
 547 variability between ensemble members.
 548

549 **Fig. 8.** Future change in the Aug-Oct averaged (a) SST ($^{\circ}\text{C}$), (b) 200 hPa zonal winds (ms^{-1}), (c) 700
 550 hPa RH (%), and (d) vertical wind shear (ms^{-1}) from the five-member ensemble of the climatological
 551 future minus historical WRF simulations.
 552

553

554 **Fig. 9.** Boxplots of the seasonal Atlantic (a) number of TCs and (b) ACE (10^4 kt^2) from the five-member
 555 ensemble of each WRF experiment representing different ENSO states in historical and future climates.

556

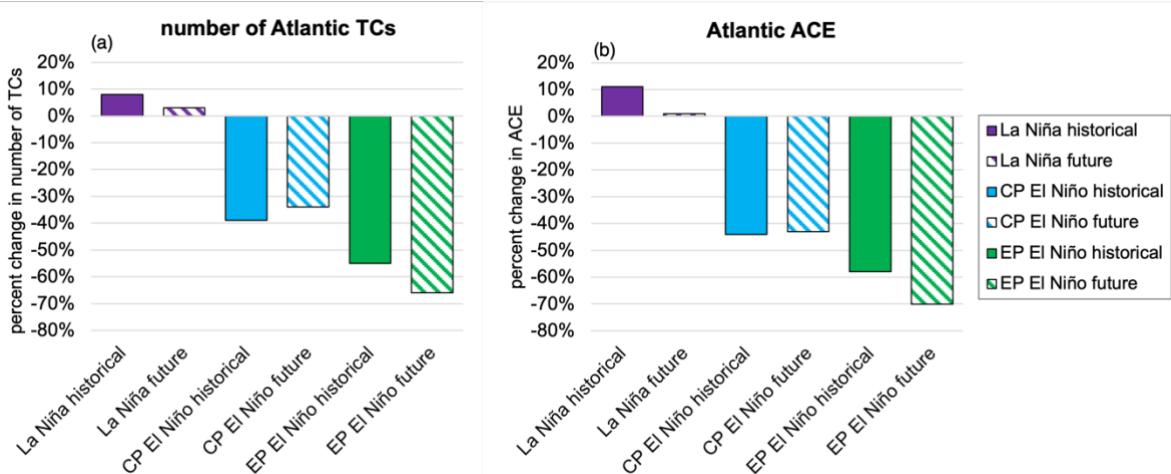
557 *d. Influence of ENSO on Atlantic TCs in a Future Climate*

558 The WRF TCM historical experiments demonstrated reasonable reliability in replicating
 559 the observed and simulated teleconnections between ENSO and Atlantic TC activity found in
 560 other research. In addition, the simulations have shown that if the CESM LENS is correct in
 561 predicting that the mean state SSTs will become more El Niño-like in the future, there could
 562 be a future reduction of Atlantic TCs under neutral ENSO conditions. These findings make
 563 sense based on the current understanding of ENSO and Atlantic TCs. Now we investigate
 564 possible changes in the ENSO-Atlantic TC teleconnection under the more El Niño-like future
 565 mean climate state.

566 The first notable response in the future ENSO experiments is that each ENSO state
 567 experienced a substantial decrease in Atlantic TC frequency in the future relative to the
 568 historical (Table 5 and Figs. 5 and 9). This is most likely due to the mean state differences
 569 described in the previous section. Each ENSO simulation produced a decrease in Atlantic TCs
 570 and an increase in ACE per TC in the future compared to the historical climate (Table 5 and
 571 Fig. 9). These results make sense, as the prescribed future decrease in the zonal tropical Pacific
 572 SST gradient shifts the mean state towards more El Niño-like conditions in the future, which
 573 in turn decreases Atlantic TC frequency in all experiments due to an average VWS increase
 574 and RH decrease (Fig. 4). Similarly, the intensity and longevity of the TCs increased in the
 575 future on average, which may be associated with warmer SSTs.

Along with the mean decrease in Atlantic TC frequency and increase in TC intensity, the teleconnection ENSO currently has with Atlantic TC frequency remains relatively similar in the future (Table 5 and Fig. 10). Compared to each of their respective climate states (Table 5), the future EP El Niño still suppressed TCs (with a 66% and 55% decrease in the future and historical, respectively), the future CP El Niño still had a weaker TC suppression compared to EP El Niño (with a 34% and 39% decrease in the future and historical, respectively), and the future La Niña still slightly enhanced TC frequency (by 3% and 8% in the future and historical, respectively). Similar to the historical climate, the increase in the ensemble-mean number of TCs in the La Niña future simulation was less than one standard deviation above the ensemble-mean number of TCs in the control future simulation. The response in TC number to ENSO supports our finding that the location of tropical Pacific deep convection is a good indicator for ENSO's influence on Atlantic TCs in both the historical and future climates, and that ENSO still impacts Atlantic VWS and 700 hPa RH (Figs. 6 and 7). Even with the ENSO - Atlantic TC teleconnection remaining similar in the future compared to the historical climate, it is worth noting that there were some relatively small differences. However, a larger ensemble would be needed to determine whether the differences are significant or associated primarily with internal atmospheric variability.

So far, we have concluded that a future mean state change toward more El Niño-like conditions causes a general decrease in Atlantic TC frequency, with a response in 200 hPa winds, VWS (driven mostly by changes in upper-tropospheric winds, rather than lower-tropospheric winds), and 700 hPa RH acting to reduce favorability for TCs. We have also determined that the ENSO-Atlantic TC teleconnection will be similar between the historical and future, with possible minor differences in strength. We now investigate whether the physical mechanisms that drive the teleconnection in the historical climate are also operating in the future climate.


The VWS responses to ENSO in the future mirrored those in the historical simulations (Fig. 6). For EP El Niño in both climates, there was a significant increase in VWS of 10 ms^{-1} or more over the Atlantic TC genesis region (Fig. 6a and d). In addition, CP El Niño in both climates produced a VWS increase of around $2-5 \text{ ms}^{-1}$ (Fig. 6b and e), again consistent with the Atlantic TC response. The La Niña experiments for both climates produced a reduction of VWS of up to 5 ms^{-1} over most of the TC genesis region (Fig. 6c and f). These teleconnections suggest that VWS is still highly correlated with the Atlantic 200 hPa zonal wind response to climate change

608 (not shown), and therefore the extent to which zonal shifts in tropical Pacific deep convection
609 impact VWS in the Atlantic.

610 The 700 hPa RH response to ENSO was relatively similar in the historical and future
611 experiments (Fig. 7). EP and CP El Niño produced a 1-5% reduction in RH over the Atlantic
612 TC genesis region in both the historical and future climates. The small differences in the
613 magnitude of the RH reduction between CP El Niño and EP El Niño once again indicate that
614 VWS is the primary factor in the ENSO relationship with Atlantic TCs. La Niña produced a 1-
615 5% RH increase over the TC genesis region for both the future and historical climates.

616 Overall, ENSO has a similar influence on VWS and 700 hPa RH in the future compared to
617 the historical climate, and the location of tropical Pacific deep convection continues to have
618 important implications for the Atlantic TC response to ENSO, most notably by impacting the
619 200 hPa winds, which heavily influence VWS over the Atlantic. The response of VWS, 700
620 hPa RH, and the 200 hPa zonal winds in the historical and future simulations supports the
621 conclusion that the influence of ENSO alone (i.e., without considering mean-state climate
622 change) on Atlantic TCs will be relatively similar between the historical and future climates.

623

624
625 **Fig. 10.** Seasonal Atlantic (a) number of TCs and (b) ACE (10^4 kt^2) expressed as percentages relative
626 to the respective climatology from the five-member ensemble of WRF experiments representing
627 different ENSO states in the historical and future climates.

628

629 5. Discussion and Conclusions

630 The teleconnection between ENSO and Atlantic TCs has historically provided a valuable
631 source of seasonal TC predictability, however, it remains unknown how this teleconnection
632 may change in the future in association with changes in both ENSO and the mean climate state.

633 It is not guaranteed that the ENSO-TC teleconnection will remain the same as the climate
634 changes, given that there are thresholds and non-linearities in the climate system, for example,
635 in the relationship between TCs and vertical wind shear. This research examines the importance
636 of ENSO diversity and associated shifts in the Walker Circulation on Atlantic TCs in the
637 historical climate and how this relationship might change in the future climate. We used WRF
638 tropical channel model simulations forced by SST patterns characteristic of the monthly-
639 varying climatology, Eastern Pacific El Niño, Central Pacific El Niño, and La Niña in historical
640 and future climates. The SST patterns were derived from the CESM LENS simulations. The
641 simulations were designed specifically to investigate changes in ENSO and the mean climate,
642 and controlled for others factors important for Atlantic TC activity, such as Atlantic SST
643 variability.

644 We first investigated how ENSO and the mean-state SST changed in the future in the
645 CESM LENS. We found a future weakening of the zonal tropical Pacific SST gradient, which
646 represents more El Niño-like mean state conditions, consistent with other studies (An et al.,
647 2008; Cai et al., 2015; Fredriksen et al., 2020; Erickson et al., 2023). In addition, both El Niño
648 and La Niña events during the peak Atlantic hurricane season became more frequent in the
649 future in the CESM LENS.

650 We then evaluated the observed relationship between ENSO and Atlantic TCs and found
651 that the WRF simulations were able to reasonably reproduce such relationships. The historical
652 simulations showed that the location of tropical Pacific deep convection strongly influenced
653 the frequency of Atlantic TCs during ENSO, with stronger Atlantic TC suppression the farther
654 eastward the tropical Pacific deep convection was located. This relationship was generally seen
655 in observations, but is harder to quantify due to the short observational record combined with
656 the influence of factors aside from ENSO, such as Atlantic SST variability, which were
657 controlled for in our WRF experiments. Furthermore, the primary observed physical
658 mechanisms for the ENSO-TC teleconnection were replicated well by the model, as vertical
659 wind shear and relative humidity were both impacted by ENSO via zonal shifts in tropical
660 Pacific deep convection. Of the two, vertical wind shear was the primary factor that drove the
661 Atlantic TC frequency response to ENSO in our simulations.

662 We investigated the influence of ENSO on Atlantic TCs in a changing climate by first
663 attempting to isolate the role of changes in the mean climate state. We found that future changes
664 in the mean climate, including a weakening of the zonal tropical Pacific SST gradient, reduced
665 Atlantic TC activity regardless of ENSO conditions. Under neutral ENSO conditions, Atlantic

666 TC frequency was reduced by 26% in the future relative to the historical. Future research
667 investigating different possible future outcomes of ENSO and the zonal tropical Pacific SST
668 gradient change (e.g. Seager et al., 2019; Sobel et al., 2023) would be useful to build upon this
669 study, given the uncertainties in both. This could include simulations in which the tropical
670 Pacific zonal SST gradient strengthened (became more La Niña-like), stayed the same, and
671 weakened more strongly than in the CESM LENS (became even more El Niño-like). Since
672 future ENSO projections are also uncertain, testing different future ENSO possibilities would
673 improve our understanding, especially since the CESM LENS future trend to more El Niño-
674 like conditions is not as strong as some other models represented in CMIP6 (Erickson &
675 Patricola, 2023).

676 Finally, the future simulations showed that the current ENSO - Atlantic TC relationship
677 holds in the future and provided strong evidence for the continued importance of zonal shifts
678 in tropical Pacific deep convection. In particular, we investigated the future ENSO
679 teleconnection with Atlantic TCs and found it to be similar to that in the historical simulations.
680 We found that in a future with a decreasing zonal tropical Pacific SST gradient, ENSO's
681 influence on Atlantic TC frequency will still strongly depend on zonal shifts in tropical Pacific
682 deep convection. Atlantic TC frequency responded significantly to zonal shifts in tropical Pacific
683 deep convection in the future, with El Niño suppressing TCs and La Niña enhancing
684 them. Furthermore, the diversity in El Niño remained an important factor in the ENSO -
685 Atlantic TC relationship, with Eastern Pacific El Niño suppressing Atlantic TCs more strongly
686 than Central Pacific El Niño in the future climate simulations, as in the historical climate
687 simulations. This suggests that the ENSO Longitude Index (ELI), which captures ENSO's
688 diversity and represents the tropical Pacific deep convection shifts that determine ENSO's
689 teleconnections with Atlantic TCs, will be useful in characterizing ENSO's influence on
690 Atlantic TCs in future climates.

691 Even though the historical ENSO - Atlantic TC teleconnection was relatively similar in the
692 future, we found slight differences in the magnitude that could be due to internal atmospheric
693 variability. To determine whether there are significant differences in the future ENSO-TC
694 teleconnection, a larger ensemble of TC-permitting simulations would be required. While
695 additional ensemble members could not be performed in this study due to the computational
696 costs, we note that five ensemble members were sufficient in determining the general future
697 ENSO-TC relationship (J. Lee et al. 2021). To provide further support for the ensemble size,
698 we tested whether a 5-member ensemble would be sufficient by randomly resampling 5

members of the 22-member ensemble of simulations forced by EP El Niño, CP El Niño, and the monthly-varying climatological SST from Patricola et al. (2016). We performed the random resampling 1,000 times and calculated the percent change in Atlantic TC number in response to each EP El Niño and CP El Niño. Results from the resampling indicate that a 5-member ensemble is suitable for this type of study. Based on the full 22-member ensembles, Atlantic TC number decreased in response to both EP El Niño and CP El Niño relative to the control simulation. When the data was resampled to a sample size of 5, only three out of the 1,000 resamples (0.3%) produced an increase or no change in Atlantic TC number for EP El Niño, and 46 of the 1,000 resamples (4.6%) produced an increase or no change in Atlantic TC number for CP El Niño. We highlight that the 5-member ensembles from this study produced a response in Atlantic TC number to both EP and CP El Niño that is consistent with the response in the 22-member ensemble from Patricola et al. (2016).

In addition, it would be useful to investigate future ENSO-TC teleconnections using the suite of global model simulations that participated in CMIP6 in order to capture differences in future projections of ENSO. It would be a substantial computational expense to do so using a similar TC-permitting dynamical modeling methodology as in this study. However, such an investigation would be more feasible with statistical-dynamical models such as the Columbia Hazard model (CHAZ; C. Lee et al. 2018) and is planned for future work. Furthermore, it would be useful to perform additional dynamical model simulations, such as those performed in this study, forced with SST patterns from additional large-ensemble simulations including those from the Multi-Model Large Ensemble Archive (Deser et al. 2020). This would enable investigation of how different future projections of both ENSO and the mean-state SST could impact the ENSO-Atlantic TC teleconnection in the future. Indeed, the importance of using both multi-models and large-ensembles for future ENSO projection has been highlighted recently by Maher et al. (2023). Using 14 single model initial-condition large ensembles, they demonstrated that different future changes in ENSO and the tropical Pacific arise from differences between the models, and not just internal variability. Such ENSO projections can be especially useful to provide estimates of future changes in the *frequency* of ENSO events. We note that our study investigated the future ENSO – Atlantic TC teleconnection without making assumptions about future changes in the frequency of ENSO. Our simulations instead investigated the teleconnection given ENSO conditions in the historical and future climates. This approach provides useful information about the future ENSO – Atlantic TC teleconnection despite the uncertainty in the frequency of ENSO events in the future.

732 In conclusion, we found that although the ENSO - Atlantic TC relationship of the historical
733 climate is maintained into the future, a future mean state change toward more El Niño-like
734 conditions drove a substantial decrease (26%) in future Atlantic TC frequency. In addition, we
735 found that the location of tropical Pacific deep convection, and its influence on tropical Atlantic
736 vertical wind shear, remained the most important factor in ENSO's influence on Atlantic TCs
737 in the future. This relationship emerged as one of the most important factors in determining
738 whether Atlantic TC frequency would increase or decrease in the future. How ENSO will
739 change is one important factor in determining how Atlantic TC frequency may change in the
740 future, as further highlighted by this research. In attempting to reduce uncertainty in future
741 projections of Atlantic TC frequency, reliable projections of future changes in both ENSO and
742 the zonal tropical Pacific SST gradient are among the leading factors to solving this complex
743 problem.

744

745 *Acknowledgments*

746 This material is based upon work supported by the National Science Foundation under
747 Grant Number AGS-2043272 and by the U.S. Department of Energy, Office of Science, Office
748 of Biological and Environmental Research, Climate and Environmental Sciences Division,
749 Regional & Global Model Analysis Program, under Award Number DE-AC02-05CH11231.
750 This work used the Extreme Science and Engineering Discovery Environment (XSEDE)
751 computing resource Stampede2 and Ranch, which is supported by National Science Foundation
752 grant number ACI-1548562, through allocations ATM190012 and ATM190016. The authors
753 acknowledge the Texas Advanced Computing Center (TACC; <http://www.tacc.utexas.edu>) at
754 The University of Texas at Austin for providing HPC resources that have contributed to the
755 research results reported within this paper. The authors also acknowledge the Community Earth
756 System Model (CESM) Large Ensemble project (<https://www.cesm.ucar.edu/community-projects/lens>). We would like to thank Phil Klotzbach, two anonymous reviewers, and the
758 Editor, for their constructive comments which have helped improve the manuscript.

759

760 *Data Availability Statement.*

761 ERSSTv5 data available at: <https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html>. CESM
762 LENS data available at: <https://www.cesm.ucar.edu/community-projects/lens/data-sets>.
763 NCEP2 reanalysis available at:

764 <https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html>. IBTrACS data available at:
765 <https://www.ncei.noaa.gov/products/international-best-track-archive>.

766

767 REFERENCES

768 An, S.-I., J.-S. Kug, Y.-G. Ham, and I.-S. Kang, 2008: Successive Modulation of ENSO to the
769 Future Greenhouse Warming. *J. Clim.*, **21**, 3–21.

770 Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and
771 its possible teleconnection. *J. Geophys. Res. C: Oceans*, **112**,
772 <https://doi.org/10.1029/2006JC003798>.

773 Ashok, K., T. P. Sabin, P. Swapna, and R. G. Murtugudde, 2012: Is a global warming signature
774 emerging in the tropical Pacific? *Geophys. Res. Lett.*, **39**,
775 <https://doi.org/10.1029/2011gl050232>.

776 Bell, G. D., and Coauthors, 2000: Climate Assessment for 1999. *Bull. Am. Meteorol. Soc.*, **81**,
777 S1–S50, [https://doi.org/10.1175/1520-0477\(2000\)81\[s1:CAF\]2.0.CO;2](https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2).

778 —, and M. Chelliah, 2006: Leading Tropical Modes Associated with Interannual and
779 Multidecadal Fluctuations in North Atlantic Hurricane Activity. *J. Clim.*, **19**, 590–612.

780 Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T.
781 Yamagata, 2007: How may tropical cyclones change in a warmer climate? *Tellus A*, **59**,
782 539–561.

783 Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial
784 anomalies of ocean temperature. *Tell'Us*, **18**, 820–829.

785 Bove, M. C., J. J. O'Brien, J. B. Eisner, C. W. Landsea, and X. Niu, 1998: Effect of El Niño
786 on U.S. Landfalling Hurricanes, Revisited. *Bull. Am. Meteorol. Soc.*, **79**, 2477–2482,
787 [https://doi.org/10.1175/1520-0477\(1998\)079<2477:eoeno>2.0.co;2](https://doi.org/10.1175/1520-0477(1998)079<2477:eoeno>2.0.co;2).

788 Bullister, J. L., 2015: Atmospheric Histories (1765–2015) for CFC-11, CFC-12, CFC-113,
789 CCl4, SF6 and N2O. *Carbon Dioxide Information Analysis Center, Oak Ridge National
790 Laboratory, US Department of Energy, Oak Ridge, Tennessee*.

791 Cai, W., and Coauthors, 2015: Increased frequency of extreme La Niña events under
792 greenhouse warming. *Nat. Clim. Chang.*, **5**, 132–137.

793 Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea, 2007a: Seasonal tropical
794 cyclone forecasts. *WMO Bull.*, **56**, 297.

795 ——, K. A. Emanuel, and A. H Sobel, 2007b: Use of a Genesis Potential Index to Diagnose
796 ENSO Effects on Tropical Cyclone Genesis. *J. Clim.*, **20**, 4819-4834.

797 ——, 2013: Global and Regional Aspects of Tropical Cyclone Activity in the CMIP5 Models.
798 *J. Clim.*, **26**, 9880–9902.

799 Capotondi, A., and Coauthors, 2015a: Understanding ENSO Diversity. *Bull. Am. Meteorol.
800 Soc.*, **96**, 921–938.

801 Capotondi, A., Y. Ham, A. Wittenberg, and J. Kug, 2015b: Climate model biases and El Niño
802 Southern Oscillation (ENSO) simulation. US CLIVAR Variations, **13**,
803 <https://repository.library.noaa.gov/view/noaa/31041>.

804 Capotondi, A., A. T. Wittenberg, J.-S. Kug, K. Takahashi, and M. McPhaden, 2020: ENSO
805 diversity. El Niño Southern Oscillation in a Changing Climate, *Geophys. Monogr.*, Vol.
806 252, Amer. Geophys. Union, 65-86, <https://doi.org/10.1002/9781119548164.ch4>.

807 Chiang, J. C. H., and A. H. Sobel, 2002: Tropical Tropospheric Temperature Variations Caused
808 by ENSO and Their Influence on the Remote Tropical Climate. *J. Clim.*, **15**, 2616–2631.

809 Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean
810 and El Niño. *Nat. Geosci.*, **3**, 391–397.

811 Davis, C. A., 2018: Resolving tropical cyclone intensity in models. *Geophysical Research
812 Letters*, **45**, 2082– 2087. <https://doi.org/10.1002/2017GL076966>.

813 Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large
814 ensembles and future prospects. *Nat. Clim. Chang.*, **10**, 277–286,
815 <https://doi.org/10.1038/s41558-020-0731-2>.

816 Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest
817 tropical cyclones. *Nature*, **455**, 92–95.

818 Erickson, N.E. and C.M. Patricola, 2023: Future Projections of the El Niño – Southern
819 Oscillation and Tropical Pacific Mean State in CMIP6. *Journal of Geophysical Research: Atmospheres*, **128**, e2022JD037563, <https://doi.org/10.1029/2022JD037563>.

821 Fredriksen, H.-B., J. Berner, A. C. Subramanian, and A. Capotondi, 2020: How does El Niño–
822 southern oscillation change under global warming—A first look at CMIP6. *Geophys. Res.*
823 *Lett.*, **47**, <https://doi.org/10.1029/2020gl090640>.

824 Fu, D., P. Chang, C. M. Patricola, and R. Saravanan, 2019: High-Resolution Tropical Channel
825 Model Simulations of Tropical Cyclone Climatology and Intraseasonal-to-Interannual
826 Variability. *J. Clim.*, **32**, 7871–7895.

827 Garner, S. T., I. M. Held, T. Knutson, and J. Sirutis, 2009: The Roles of Wind Shear and
828 Thermal Stratification in Past and Projected Changes of Atlantic Tropical Cyclone Activity.
829 *J. Clim.*, **22**, 4723–4734.

830 Goldenberg, S. B., and L. J. Shapiro, 1996: Physical Mechanisms for the Association of El
831 Niño and West African Rainfall with Atlantic Major Hurricane Activity. *Journal of*
832 *Climate*, **9**, 1169–1187, [https://doi.org/10.1175/1520-0442\(1996\)009<1169:pmftao>2.0.co;2](https://doi.org/10.1175/1520-0442(1996)009<1169:pmftao>2.0.co;2).

833 —, C. W. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in
834 Atlantic hurricane activity: causes and implications. *Science*, **293**, 474–479,
835 <https://doi.org/10.1126/science.1060040>.

836 Gray, W. M., 1984: Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb Quasi-
837 Biennial Oscillation Influences. *Mon. Weather Rev.*, **112**, 1649–1668,
838 [https://doi.org/10.1175/1520-0493\(1984\)112<1649:ASHFPI>2.0.CO;2](https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2).

839 Gualdi, S., E. Scoccimarro, and A. Navarra, 2007: Changes in Tropical Cyclone Activity Due
840 to Global Warming: Results from a High-Resolution Coupled General Circulation Model.
841 *SSRN Electronic Journal*, <https://doi.org/10.2139/ssrn.1366806>.

842 Hoerling, M. P., and A. Kumar, 2002: Atmospheric Response Patterns Associated with
843 Tropical Forcing. *J. Clim.*, **15**, 2184–2203.

844 Horel, J. D., and J. M. Wallace, 1981: Planetary-Scale Atmospheric Phenomena Associated
845 with the Southern Oscillation. *Mon. Weather Rev.*, **109**, 813–829.

846 Hsu, W.-C., C. M. Patricola, and P. Chang, 2019: The impact of climate model sea surface
847 temperature biases on tropical cyclone simulations. *Clim. Dyn.*, **53**, 173–192,
848 <https://doi.org/10.1007/s00382-018-4577-5>.

849 Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version
850 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. *J. Clim.*, **30**, 8179–8205.

851

852 Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. *Bulletin of*
853 *the American Meteorological Society*, **77**, 437–472.

854 Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter,
855 2002: NCEP–DOE AMIP-II Reanalysis (R-2). *Bull. Am. Meteorol. Soc.*, **83**, 1631–1644,
856 <https://doi.org/10.1175/BAMS-83-11-1631>.

857 Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific Types of
858 ENSO. *J. Clim.*, **22**, 615–632.

859 Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large
860 Ensemble Project: A Community Resource for Studying Climate Change in the Presence
861 of Internal Climate Variability. *Bull. Amer. Meteor. Soc.*, **96**, 1333–1349,
862 <https://doi.org/10.1175/BAMS-D-13-00255.1>.

863 Klotzbach, P. J., 2011: The Influence of El Niño–Southern Oscillation and the Atlantic
864 Multidecadal Oscillation on Caribbean Tropical Cyclone Activity. *J. Climate*, **24**, 721–731,
865 <https://doi.org/10.1175/2010JCLI3705.1>.

866 ——, M. A. Saunders, G. D. Bell, and E. S. Blake, 2017: North Atlantic Seasonal Hurricane
867 Prediction. *Climate Extremes*, 315–328, <https://doi.org/10.1002/9781119068020.ch19>.

868 ——, and Coauthors, 2022: A Hyperactive End to the Atlantic Hurricane Season October–
869 November 2020. *Bull. Am. Meteorol. Soc.*, **103**, E110–E128,
870 <https://doi.org/10.1175/BAMS-D-20-0312.1>.

871 Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. *Geophysical*
872 *Research Letters*, **39**, <https://doi.org/10.1029/2012gl052006>.

873 Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The
874 International Best Track Archive for Climate Stewardship (IBTrACS). *Bull. Am. Meteorol.*
875 *Soc.*, **91**, 363–376, <https://doi.org/10.1175/2009bams2755.1>.

876 Knutson, T., C. Landsea, and K. Emanuel, 2010: Tropical Cyclones and Climate Change: A
877 Review. *World Scientific Series on Asia-Pacific Weather and Climate*, 243–284,
878 https://doi.org/10.1142/9789814293488_0009.

879 ——, and Coauthors, 2019: Tropical Cyclones and Climate Change Assessment: Part I:
880 Detection and Attribution. *Bull. Am. Meteorol. Soc.*, **100**, 1987–2007,
881 <https://doi.org/10.1175/bams-d-18-0189.1>.

882 ——, and Coauthors, 2020: Tropical Cyclones and Climate Change Assessment: Part II:
883 Projected Response to Anthropogenic Warming. *Bull. Am. Meteorol. Soc.*, **101**, E303–
884 E322, <https://doi.org/10.1175/bams-d-18-0194.1>.

885 Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? *Geophysical Research*
886 *Letters*, **38**, <https://doi.org/10.1029/2011gl048237>.

887 ——, F.-F. Jin, and S.-I. An, 2009: Two Types of El Niño Events: Cold Tongue El Niño and
888 Warm Pool El Niño. *Journal of Climate*, **22**, 1499–1515,
889 <https://doi.org/10.1175/2008jcli2624.1>.

890 ——, Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño
891 in CMIP5 models. *Environmental Research Letters*, **7**, 034002,
892 <https://doi.org/10.1088/1748-9326/7/3/034002>.

893 Landsea, C. W., R. A. Pielke, A. M. Mestas-Nuñez, and J. A. Knaff, 1999: Atlantic Basin
894 Hurricanes: Indices of Climatic Changes. *Weather and Climate Extremes*, 89–129,
895 https://doi.org/10.1007/978-94-015-9265-9_9.

896 ——, and J. L. Franklin, 2013: Atlantic Hurricane Database Uncertainty and Presentation of a
897 New Database Format. *Monthly Weather Review*, **141**, 3576–3592,
898 <https://doi.org/10.1175/mwr-d-12-00254.1>.

899 Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial
900 Pacific. *Geophysical Research Letters*, **37**, <https://doi.org/10.1029/2010gl044007>.

901 Lee, J., Y. Planton, P. Gleckler, K. Sperber, E. Guilyardi, A. T. Wittenberg, M. J. McPhaden,
902 and G. Pallotta, 2021: Robust evaluation of ENSO in climate models: How many ensemble
903 members are needed? *Geophysical Research Letters*, **48**, e2021GL095041,
904 <https://doi.org/10.1029/2021GL095041>.

905 Lee, S., M. L'Heureux, A. T. Wittenberg, R. Seager, P. A. O'Gorman, and N. C. Johnson,
906 2022: On the future zonal contrasts of equatorial Pacific climate: Perspectives from
907 Observations, Simulations, and Theories. *npj Climate and Atmospheric Science*, **5**, 1–15,
908 <https://doi.org/10.1038/s41612-022-00301-2>.

909 Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2018: An environmentally forced
910 tropical cyclone hazard model. *J. Adv. Model. Earth Syst.*, **10**, 223–
911 241, <https://doi.org/10.1002/2017MS001186>.

912 Lin, I.-I., and Coauthors, 2020: ENSO and Tropical Cyclones. *El Niño Southern Oscillation in*
913 *a Changing Climate*, 377–408, <https://doi.org/10.1002/9781119548164.ch17>.

914 Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO Change in Climate Projections:
915 Forced Response or Internal Variability? *Geophysical Research Letters*, **45**,
916 <https://doi.org/10.1029/2018gl079764>.

917 Maher, N., Wills, R. C. J., DiNezio, P., Klavans, J., Milinski, S., Sanchez, S. C., Stevenson, S.,
918 Stuecker, M. F., and Wu, X. 2023: The future of the El Niño–Southern Oscillation: using
919 large ensembles to illuminate time-varying responses and inter-model differences, *Earth*
920 *Syst. Dynam.*, **14**, 413–431, <https://doi.org/10.5194/esd-14-413-2023>.

921 NOAA National Centers for Environmental Information (NCEI), 2024: U.S. Billion-Dollar
922 Weather and Climate Disasters. <https://www.ncei.noaa.gov/access/billions/>,
923 DOI: [10.25921/stkw-7w73](https://doi.org/10.25921/stkw-7w73)

924 Patricola, C. M., R. Saravanan, and P. Chang, 2014: The Impact of the El Niño–Southern
925 Oscillation and Atlantic Meridional Mode on Seasonal Atlantic Tropical Cyclone Activity.
926 *Journal of Climate*, **27**, 5311–5328, <https://doi.org/10.1175/jcli-d-13-00687.1>.

927 —, P. Chang, and R. Saravanan, 2016: Degree of simulated suppression of Atlantic tropical
928 cyclones modulated by flavour of El Niño. *Nature Geoscience*, **9**, 155–160,
929 <https://doi.org/10.1038/ngeo2624>.

930 Pielke, R. A., C. Landsea, M. Mayfield, J. Layer, and R. Pasch, 2005: Hurricanes and Global
931 Warming. *Bull. Am. Meteorol. Soc.*, **86**, 1571–1576, <https://doi.org/10.1175/bams-86-11-1571>.

933 Pielke, R. A., Jr, and C. N. Landsea, 1999: La Nina, El Nino, and Atlantic Hurricane Damages
934 in the United States. *Bull. Am. Meteorol. Soc.*, **80**, 2027–2034.

935 Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. *Geophysical Research*
936 *Letters*, **38**, <https://doi.org/10.1029/2010gl046031>.

937 Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas
938 emissions. *Climatic Change*, **109**, 33–57, <https://doi.org/10.1007/s10584-011-0149-y>.

939 Richter, I., 2015: Climate model biases in the eastern tropical oceans: causes, impacts and ways
940 forward. *WIREs Climate Change*, **6**, 345–358, <https://doi.org/10.1002/wcc.338>.

941 Rios-Berrios, R., and R. D. Torn, 2017: Climatological Analysis of Tropical Cyclone Intensity
942 Changes under Moderate Vertical Wind Shear. *Mon. Weather Rev.*, **145**, 1717–1738,
943 <https://doi.org/10.1175/mwr-d-16-0350.1>.

944 Schär, C., Frei, C., Lüthi, D., and Davies, H. C. 1996: Surrogate climate-change scenarios for
945 regional climate models, *Geophys. Res. Lett.*, **23**, 669–672,
946 <https://doi.org/10.1029/96GL00265>.

947 Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising
948 greenhouse gases. *Nature Climate Change*, **9**, 517–522, <https://doi.org/10.1038/s41558-019-0505-x>.

949 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers,
950 M. G. Duda, D. M. Barker, and X.-Y. Huang, 2019: A Description of the Advanced
951 Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp.
952 <https://doi:10.5065/1dfh-6p97>

953 Smith, A. B., 2022: 2021 US Billion Dollar Weather and Climate Disasters in Historical
954 Context including New County-Level Exposure, Vulnerability and Projected Damage
955 Mapping. 102nd American Meteorological Society Annual Meeting, AMS
956 <https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/389010>.

957 Smith, S. R., J. Brolley, J. J. O'Brien, and C. A. Tartaglione, 2007: ENSO's Impact on Regional
958 U.S. Hurricane Activity. *Journal of Climate*, **20**, 1404–1414,
959 <https://doi.org/10.1175/jcli4063.1>.

960 Sobel, A. H., A. A. Wing, S. J. Camargo, C. M. Patricola, G. A. Vecchi, C.-Y. Lee, and M. K.
961 Tippett, 2021: Tropical cyclone frequency. *Earth's Future*, **9**,
962 <https://doi.org/10.1029/2021ef002275>.

963 —, and Coauthors, 2023: Near-term tropical cyclone risk and coupled Earth system model
964 biases. *Proc. Natl. Acad. Sci. U. S. A.*, **120**, e2209631120,
965 <https://doi.org/10.1073/pnas.2209631120>.

966 Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first
967 century: Results from CMIP5. *Geophysical Research Letters*, **39**,
968 <https://doi.org/10.1029/2012gl052759>.

971 Tang, B. H., Neelin, J. D., 2004: ENSO Influence on Atlantic hurricanes via tropospheric
972 warming. *Geophysical Research Letters*, **31**, <https://doi.org/10.1029/2004gl021072>.

973 Tang, T., J.-J. Luo, K. Peng, L. Qi, and S. Tang, 2021: Over-projected Pacific warming and
974 extreme El Niño frequency due to CMIP5 common biases. *Natl Sci Rev*, **8**, nwab056.

975 Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and
976 ambient moisture on the formation and predictability of tropical cyclones: An ensemble-
977 mean perspective. *Journal of Advances in Modeling Earth Systems*, **6**, 384–404,
978 <https://doi.org/10.1002/2014ms000314>.

979 —, and —, 2015: Effects of vertical wind shear on the predictability of tropical cyclones:
980 Practical versus intrinsic limit. *Journal of Advances in Modeling Earth Systems*, **7**, 1534–
981 1553, <https://doi.org/10.1002/2015ms000474>.

982 Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. *Nature*,
983 **559**, 535–545, <https://doi.org/10.1038/s41586-018-0252-6>.

984 Tsutsumi, Y., Mori, K., Hirahara, T., Ikegami, M. & Conway, T. J. Technical Report of Global
985 Analysis Method for Major Greenhouse Gasses by the World Data Center for Greenhouse
986 Gasses. GAW Report No. 184,
987 https://www.wmo.int/pages/prog/arep/gaw/documents/TD_1473_GAW184_web.pdf
988 (World Meteorological Organization, 2009).

989 Vecchi, G. A., and T. R. Knutson, 2008: On Estimates of Historical North Atlantic Tropical
990 Cyclone Activity. *J. Clim.*, **21**, 3580–3600, <https://doi.org/10.1175/2008JCLI2178.1>.

991 —, and —, 2011: Estimating Annual Numbers of Atlantic Hurricanes Missing from the
992 HURDAT Database (1878–1965) Using Ship Track Density. *J. Clim.*, **24**, 1736–1746,
993 <https://doi.org/10.1175/2010JCLI3810.1>.

994 —, C. Landsea, W. Zhang, G. Villarini, and T. Knutson, 2021: Changes in Atlantic major
995 hurricane frequency since the late-19th century. *Nat. Commun.*, **12**, 4054,
996 <https://doi.org/10.1038/s41467-021-24268-5>.

997 Walsh, K., 1997: Objective Detection of Tropical Cyclones in High-Resolution Analyses. *Mon.
998 Wea. Rev.*, **125**, 1767–1779, [https://doi.org/10.1175/1520-0493\(1997\)125<1767:ODOTCI>2.0.CO;2](https://doi.org/10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO;2).

1000 Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. *WIREs Climate
1001 Change*, **7**, 65–89, <https://doi.org/10.1002/wcc.371>.

1002 Williams, I. N., and C. M. Patricola, 2018: Diversity of ENSO Events Unified by Convective
1003 Threshold Sea Surface Temperature: A Nonlinear ENSO Index. *Geophysical Research
1004 Letters*, **45**, 9236–9244, <https://doi.org/10.1029/2018gl079203>.

1005 Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño
1006 in a changing climate. *Nature*, **461**, 511–514, <https://doi.org/10.1038/nature08316>.

1007 —, —, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations,
1008 dynamics, and future changes. *Asia-Pacific Journal of Atmospheric Sciences*, **50**, 69–81,
1009 <https://doi.org/10.1007/s13143-014-0028-3>.

1010 Yu, J., Y. Wang, and K. Hamilton, 2010: Response of Tropical Cyclone Potential Intensity to
1011 a Global Warming Scenario in the IPCC AR4 CGCMs. *Journal of Climate*, **23**, 1354–1373,
1012 <https://doi.org/10.1175/2009jcli2843.1>.

1013 Zhang, F., and D. Tao, 2013: Effects of Vertical Wind Shear on the Predictability of Tropical
1014 Cyclones. *J. Atmos. Sci.*, **70**, 975–983, <https://doi.org/10.1175/jas-d-12-0133.1>.

1015 Zhao, M., and I. M. Held, 2010: An Analysis of the Effect of Global Warming on the Intensity
1016 of Atlantic Hurricanes Using a GCM with Statistical Refinement. *Journal of Climate*, **23**,
1017 6382–6393, <https://doi.org/10.1175/2010jcli3837.1>.

1018 Zhao, X., and R. J. Allen, 2019: Strengthening of the Walker Circulation in recent decades and
1019 the role of natural sea surface temperature variability. *Environmental Research
1020 Communications*, **1**, 021003, <https://doi.org/10.1088/2515-7620/ab0dab>.

1021 Zheng, X.-T., S.-P. Xie, L.-H. Lv, and Z.-Q. Zhou, 2016: Intermodel Uncertainty in ENSO
1022 Amplitude Change Tied to Pacific Ocean Warming Pattern. *Journal of Climate*, **29**, 7265–
1023 7279, <https://doi.org/10.1175/jcli-d-16-0039.1>.

1024 —, C. Hui, and S.-W. Yeh, 2018: Response of ENSO amplitude to global warming in CESM
1025 large ensemble: uncertainty due to internal variability. *Climate Dynamics*, **50**, 4019–4035,
1026 <https://doi.org/10.1007/s00382-017-3859-7>.

1027 Zuidema, P., and Coauthors, 2016: Challenges and Prospects for Reducing Coupled Climate
1028 Model SST Biases in the Eastern Tropical Atlantic and Pacific Oceans: The U.S. CLIVAR
1029 Eastern Tropical Oceans Synthesis Working Group. *Bull. Am. Meteorol. Soc.*, **97**, 2305–
1030 2328, <https://doi.org/10.1175/bams-d-15-00274.1>.