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Abstract: We investigate the application of prepivoting in conjunction with lag length selection
to correct the size and power performance of the Augmented Dickey-Fuller test for a unit root.
The bootstrap methodology used to perform the prepivoting is a residual based AR bootstrap that
ensures that bootstrap replicate time series are created under the null irrespective of whether the
originally observed series obeys the null hypothesis or not. Simulation studies wherein we examine
the performance of our proposed method are given; we evaluate our method’s performance on
ARMA(1,1) models with varying configurations for size and power performance. We also propose
a novel data dependent lag selection technique that uses bootstrap data under the null to select an
optimal lag length; the performance of our method is compared to existing lag length selection criteria.
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1. Introduction

Unit root testing is a central problem of time series and econometric analysis. For
example, the presence (or not) of a unit root in time series data has huge repercussions in
forecasting applications. In econometric analyses, unit roots render the data to be highly
sensitive to shocks; while stationary processes tend to revert to the mean in the presence of
shocks, random walks tend to diverge.

The primary approaches to unit root testing include the augmented Dickey-Fuller
(henceforth referred to as ADF) test [1], and the Phillips-Perron (PP) test [2]. Extensive
literature including the work of Schwert (1989) [3], Perron and Ng (1996) [4] as well as
Davidson and MacKinnon (2004) [5] point to evidence that PP tests underperform with
respect to size in finite samples compared to ADF tests since PP tests are highly reliant on
asymptotic results; additionally PP tests suffer from severe size distortions in the presence
of negative moving average errors. However, the ADF test may suffer from reduced power;
see Paparoditis and Politis (2018) [6] and references therein.

The ADF test examines the presence of a unit root in a stretch of time series data
X1, X2, . . . Xn by focusing on the Ordinary Least Squares (OLS) estimate ρ̂ of ρ in the
regression equation

Xt = ρXt−1 +
q

∑
i=1

aj,q∆Xt−i + et,q (1)

fitted to the observed data. In the above equation, we use the notation ∆Xt = Xt − Xt−1.
Additionally, note that the number of lagged differences (denoted by q) is allowed to vary
with the sample size n, and thus q is an abbreviated notation for qn. The null and alternative
hypotheses for the ADF testing framework are as follows.
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H0 : Xt = Xt−1 + Ut (2)

Ha : Xt = Ut (3)

A typical assumption in the above is that Ut = ∑∞
j=1 ajUt−j + et, where the aj are

autoregressive (AR) coefficients, and et is a sequence of independent, identically distributed
(i.i.d.) mean zero random variables with finite (and nonzero) variance, denoted by σ2

e ;
however, the i.i.d. assumption on et can be relaxed as discussed in Section 2. To elaborate,
the hypotheses are essentially that under the null, the series Xt is obtained by integrating
an infinite order autoregressive process, while the alternative is that the series is a de facto
infinite order autoregressive process. The process Ut can be guaranteed to be stationary
and causal by imposing conditions on its coefficients, namely ∑∞

j=1 |j|s|aj| < ∞ for some
s ≥ 1 and that ∑∞

j=1 ajzj ̸= 0 for all |z| ≤ 1.
In their seminal work on the topic, Dickey and Fuller (1979) [1] suggested the studen-

tized statistic
tn,q =

ρ̂n − 1

Ŝtd(ρ̂n)

with Ŝtd(ρ̂n) used to denote the estimated standard deviation of the OLS estimator of ρ.
We explicitly denote the importance of the lag length q by using the notation tn,q to denote
the ADF test statistic as opposed to tn. The distribution of this studentized statistic under
the null is non-standard/non-normal; however, it is free of unknown parameters, and has
been promulgated in econometric and statistics literature. Assumptions under which this
distribution is valid have been progressively relaxed since Dickey and Fuller’s original
work in 1979; see [6] for a chronological account.

The ADF test has been demonstrated to have less than ideal size and power perfor-
mance in real world applications. It is well examined in literature [3,7] that the presence
of negative MA coefficients in the data generating process causes severe size distortions,
while the work of Paparoditis and Politis [6] offers a concrete real world example wherein
the power performance is poor. The latter work also provides evidence of the asymptotic
collinearity problem in the ADF regression; the collinearity becomes more prominent for
large q, in which case loss of power ensues. The issue is then how to work with a moderate
value of q while still achieving a (close to) nominal size of the ADF test.

A succinct summary justifying the choice of adopting the prepivoting framework for
the ADF test comes from Section 3 of Beran (1988) [8], where the author demonstrates that
(under regularity conditions and in the case where the asymptotic null distribution of the
test statistic is independent of the unknown parameters) prepivoted tests have smaller order
errors in rejection probability than that of the asymptotic theory test. Since the asymptotic
null distribution of the OLS estimate ρ̂n from the ADF regression is independent of ρ,
the ADF test belongs to the category of hypothesis tests that stand to benefit from the
prepivoting framework.

The remainder of this paper is organized as follows. Section 2 reviews the asymptotic
properties of the ADF test statistic, along with conditions on qn for good size and power. We
also demonstrate that the AR-sieve bootstrap of Paparoditis and Politis [9] is a prepivoted
test in the sense of Beran [8]. Section 3 highlights the consistency of the prepivoted ADF test
against fixed and local alternatives. Section 4 details the results of numerical experiments
wherein we study the empirical performance of the prepivoted ADF test for different
lag length specifications. Section 5 introduces a novel bootstrap-based tuning parameter
selection algorithm and its application to the prepivoted ADF test, along with numerical
experiments that demonstrate its efficacy with respect to both size and power.

2. Asymptotic Properties of the ADF Test

The asymptotic properties of the ADF test primarily hinge upon the convergence
results of the test statistic tn,q under the null and the alternative, as well as the conditions
governing the underlying stationary process Ut. In what follows, we proffer a brief sum-
mary of the relaxations to assumptions under which the convergence result of the test
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statistic tn,q under the null. Dickey and Fuller [1] initially derived the non-standard null
distribution of the statistic under the assumption that the underlying process is autore-
gressive with known and finite order. The result was consequently extended in 1984 by
Said and Dickey [10] to the setup where the innovation process Ut is an invertible ARMA
process; the latter can be expressed as an AR(∞) process with exponentially decaying
coefficients. Further relaxations to conditions have been examined in literature with Chang
and Park (2002) [11] considering the case that {et} is a martingale difference sequence
and in 2018, Paparoditis and Politis [6] showed the convergence under the sole provision
that the innovation process Ut has a continuous spectral density that is strictly positive;
this is can also be stated in the equivalent form that the process Ut has a Wold-type AR
representation with respect to just white noise errors, allowing for a much larger class
of time series versus hitherto linear AR(∞) processes with i.i.d. or martingale difference
innovations. The following subsections review the two main asymptotic results of the ADF
test statistic from the work of Paparoditis and Politis (2018) [6].

2.1. Behaviour of the Test Statistic Under the Null

We now describe the convergence behavior of the test statistic tn,q. We adopt the
general framework of Paparoditis and Politis [6], and assume that Ut is a mean zero weakly
stationary process with autocovariance function γU(h) = Cov(U0, Uh) that is absolutely
summable; hence, the spectral density fU(w) = (2π)−1 ∑∞

h=−∞ γU(h)eiwh is well-defined.
We also assume that the logarithm of the spectral density fU is integrable, and therefore Ut
admits the Wold representation

Ut =
∞

∑
j=1

αjϵt−j + ϵt

where ∑∞
j=1 α2

j < ∞ and ϵt is a white noise, i.e., a weakly stationary process with zero mean,
common variance and Cov(ϵt, ϵk) = 0 for t ̸= k; see Brockwell and Davis [12].

If we further assume that fU(w) > 0 for all w, then Ut also admits the Wold-type AR
representation:

Ut =
∞

∑
j=1

bjUt−j + ϵt (4)

where ϵt is the same white noise process as above, and the coefficients bj are absolutely
summable. Additionally, b(z) = 1 − ∑∞

k=1 bjzj ̸= 0 for |z| ≤ 1; see [6] for details. The
assumption of positive spectral density of the underlying innovation process is a sine qua
non for an AR(∞) approximation to the spectral density to be consistent; this assumption
has been used by Paparoditis and Politis (2018) [6] and Kreiss, Paparoditis and Politis
(2011) [13] and has not been found to be a limitation for practical applications and has not
been found to be a limitation for practical applications.

Under all the above assumptions, and recalling the ADF regression (1) used to test unit
root hypothesis H0, the following result is true. To state it, we require an extra assumption
on the white noise process appearing in (4), namely:

E(ϵ4
t ) < ∞ and

∞

∑
n=1

n∥P1(ϵn)∥ < ∞ (5)

where Pt(Y) = E[Y|Ft]−E[Y|Ft−1], Fs is the σ-field generated by (ϵt for t ≤ s), and the
norm ∥·∥ is the Lp norm with p = 4.
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Theorem 1 (Paparoditis and Politis (2018) [6]). Assume fU(w) > 0 for all w, and Equations (4)
and (5). If pn → ∞ as n → ∞ such that pn√

n → 0, then

tn,q
d−−→

∫ 1
0 W(t)dW(t)

(
∫ 1

0 (W(t))2dt)
1
2

when H0 is true; here W(t), t ∈ [0, 1] is the standard Wiener process on [0, 1], and d−−→ denotes
convergence in distribution.

The α level ADF test therefore rejects the null H0 whenever the test statistic tn,q is
smaller than Cα where Cα is the lower α percentile of the above distribution.

Theorem 1 can be further extended to the cases wherein (1) is modified to include
an affine time trend; the same limit result except that the standard Wiener process is
replaced by

W̃t = Wt + (6t − 4)
∫ 1

0
W(s)ds − (12t − 6)

∫ 1

0
sW(s)ds

For a case by case analysis of intercept/trend inclusion, the reader is referred to the
book of Hamilton [14].

2.2. Behaviour Under the Alternative

The limiting distribution of the test statistic tn,q under the alternative is more straight-
forward; the limiting distribution is normal albeit dependent on the true ρ in (1). The work
of Paparoditis and Politis [6] establishes this limiting behavior even under their relaxed
requirement where the underlying innovation process is just assumed to possess a continu-
ous spectral density which is strictly positive; they also discuss the problem of asymptotic
collinearity in the ADF regression where increasing the number of lagged differences leads
to a reduction in power. In essence, as the chosen number of lags q increases, the regres-
sors in the ADF regression (1) become asymptotically collinear, leading to slow rate of
convergence of the estimator ρ̂n. This directly leads to a loss of power of the ADF test. We
comment on this behaviour of the prepivoted ADF test further in the following sections.

Under the same assumptions on the innovation process Ut used in Theorem 1 the
limiting behaviour of the test statistic under the alternative hypothesis Ha is as follows.

Theorem 2 (Paparoditis and Politis (2018) [6]). Assume Xt = Ut is true with Ut such that
fU(w) > 0 for all w, and Equations (4) and (5). Let q = qn → ∞ as n → ∞ in such a way that
q4

n
n → 0 and

√
n ∑∞

j=q+1 |aj| → 0. Then, as n → ∞

1. n
q Var(ρ̂n) → (1 − ρ)2 in probability

2.
√

n
q (ρ̂n − ρ)

d−−→ N (0, (1 − ρ)2).

3. Power of the Prepivoted Test

Prepivoting, as introduced by Beran [8], is the mapping of the test statistic tn,q to a
new test statistic F∗(tn,q), where F∗(·) is a consistent estimator of the distribution func-
tion of tn,q computed from the data (X1, · · · , Xn); typically, F∗(·) will be based on some
kind of bootstrap procedure. We will adopt the residual AR bootstrap of Paparoditis
and Politis [9] to generate the ith bootstrap sample denoted by (X∗

1,i, · · · , X∗
n,i) where

i = 1, . . . , B. Applying the ADF regression(1) to each of these B samples, we obtain B
bootstrap ADF statistics t∗n,q; this allows us to compute the bootstrap estimate of the CDF,
denoted by F∗(·). Thus, the prepivoted test statistic is F∗(tn,q) =

1
B ∑B

i=1 1{t∗n,q<tn,q}. The
prepivoted ADF test rejects the null hypothesis if F∗(tn,q) < α, the nominal level of the test.
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In this section, we briefly discuss the power of the prepivoted ADF test. In particular,
we show that it is consistent against the alternative hypothesis ρ < 1. We build upon the
result of Theorem 2 and obtain the following novel result.

Theorem 3. If q = qn → ∞ as n → ∞ such that q4
n

n → 0 and
√

n ∑∞
j=q+1 |aj| → 0, then the

prepivoted ADF test is consistent where the alternative is that ρ is any fixed value less than 1.

Proof. From Theorem 2 we have that
√

n
q (ρ̂n − ρ)

d−−→ N (0, (1 − ρ)2). Observe that the

ADF test statistic can be written as

tn,q =
ρ̂n − 1

Ŝtd(ρ̂)
=

ρ̂n − ρ + ρ − 1

Ŝtd(ρ̂)

The power of the prepivoted test is given by the probability of correct rejection of the
test, i.e., P(F∗(tn,q) < α|Ha) where F∗ is the bootstrap estimate of the CDF of tn,q. Let C∗

α be
an α quantile of F∗.

Then,

P(F∗(tn,q) < α|Ha) = P(tn,q < C∗
α | Ha)

= P((ρ̂n − 1) < C∗
α Ŝtd(ρ̂n)|Ha)

= P(ρ̂n − ρ < C∗
α Ŝtd(ρ̂n) + (1 − ρ)| Ha)

= P
(√

n
q

ρ̂n − ρ

1 − ρ
< C∗

α

√
n
q

Ŝtd(ρ̂n)

1 − ρ
+

√
n
q

∣∣∣∣ Ha

)
= Φ

(
C∗

α

√
n
q

Ŝtd(ρ̂n)

1 − ρ
+

√
n
q

)

Now since Ŝtd(ρ̂) =
√

q
n (1 − ρ) + op(

√
q
n ) and using consistency of bootstrap quan-

tiles (cf. Lemma 1.2.1 of Politis, Romano and Wolf [15]) and the continuous mapping
theorem, we have

Φ
(

C∗
α

√
n
q

Ŝtd(ρ̂n)

1 − ρ
+

√
n
q

)
≈ Φ

(
Cα +

√
n
q

)
(6)

where Cα is the α quantile of the Dickey-Fuller distribution. Observe therefore, that the
power of the prepivoted test tends to 1 as n → ∞.

While it is not immediately clear from this expression, the prepivoted ADF test in
fact has better power than the asymptotic ADF test. We demonstrate the same through
numerical experiments in the next two sections.

We briefly discuss the behavior of the prepivoted ADF test in the local alternative
framework. We build upon the theorem of Aylar, Westerlund and Smeekes [16], where
they derive the limiting distribution of the ADF test statistic tn,q under the local alternative
ρ = 1 + c

n for some fixed c < 0 to demonstrate non-trivial power of the prepivoted
ADF test. Their notation and assumptions are briefly reviewed as follows. The DGP
under consideration is Xt = ρXt−1 + Ut with Ut = π(L)ϵt. It is assumed that ϵt is a
martingale difference sequence with some filtration Ft with E(ϵ2

t ) = σ2, 1
n ∑n

t=1 ϵ2
t →p σ2

and E(|ϵ4
t |) < ∞. Assume π(z) ̸= 0 for all |z| ≤ 1, and ∑∞

k=0 |k|s|πk| < ∞ for some s ≥ 1.
They then assume ρ = 1 + c

n with c < 0, and q√
n → 0 as n → ∞. Then, they claim that

tn,q
d−−→

∫ 1
0 Jc(r)dW(r)

(
∫ 1

0 J2
c (r)dr)

1
2
+ c lim

q→∞
(1 − δq(1))π(1)

( ∫ 1

0
J2
c (r)dr

) 1
2

(7)
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In the above Equation (7), Jc(r) =
∫ r

v=0 exp(c(r− v))dW(v) where W(r) is the standard
Wiener process on [0, 1]. Additionally, δq(L) = ∑

q
k=1 θkLk−1, where θ(L) = π(L)−1 =

1 − ∑∞
k=1 θkLk. Given this setup, we have the following result.

Theorem 4. Under the above assumptions, the prepivoted ADF test has non-trivial power against
a local alternative of the form ρ = 1 + c

n where c is a negative constant.

Proof. Let G(·) be the continuous CDF of the limiting distribution given in (7). Note that
Jc(r) ∼ N (0, e2rc−1

2c ) for r ∈ [0, 1] and is an Ornstein-Uhlenbeck process that solves dJc(r) =
cJc(r) + dW(r) with Jc(0) = 0. Let Hloc denote the local alternative hypothesis. Then,

P(F∗(tn,q) < α|Hloc) = P(tn,q < C∗
α | Hloc)

≈ P(tn,q < Cα|Hloc) + OP(C∗
α − Cα) ≈ G(Cα) ̸= 0

where the last line follows since G(·) has infinite support.

Remark 1. The above mentioned result of Aylar, Smeekes and Westerlund fails to capture the loss of
power with increasing q. The asymptotic collinearity problem is empirically verified in Paparoditis
and Politis [6] as well as the later sections of the paper at hand. Nevertheless, the result does allow us
to demonstrate that the prepivoted ADF test has non-trivial power against local alternatives—which
can be seen in Sections 4 and 5, in particular Tables 3 and 4.

4. Numerical Experiments

In this section we provide the results of a numerical experiment. The setup is similar to
that of Paparoditis and Politis [6], wherein the authors consider the ARMA(1,1) model to be

the data generating process i.e., Xt − ϕXt−1 = Zt + θZt−1 with Zt
i.i.d.∼ N(0, 1). We consider

six different combinations of the ARMA parameters ϕ and θ; two that yield samples under
the unit root hypothesis and four that yield samples under the alternative hypothesis. For
each sample size n, we generate 10,000 time series each of length n.

This simulation allowed us to compute the empirical rejection probabilities of the
prepivoted ADF test at the nominal level 0.05. We use a ‘tuning parameter sweep’ approach
to select the lag lengths for the experiment in this section: we used the formula q = na

with varying values of a. Note that the lag length used was the same for both the ADF
regression on the original data as well as the ADF regression on the bootstrap samples.

The bootstrap methodology selected to generate bootstrap samples under the null is
from Section 2.2 of Paparoditis and Politis [9]. This is a bootstrap approach that is based on
unrestricted residuals, and the resultant bootstrap samples are generated under the null
irrespective of whether the original data obey the null or not.

Tables 1 and 2 correspond to the setting where {Xt} has a unit root. The resulting
empirical rejection probabilities should be close to the nominal level of the test i.e., 0.05.
The entry closest to 0.05 is presented in bold face. As opposed to [6], the column a = 0.05 is
omitted in all the Tables—the entries in all 6 Tables corresponding to a = 0.05 were very
similar to those of a = 0.09.

From the results of Tables 1 and 2, we observe that the prepivoted ADF test yields
accurate size when the lag length is large. The test has good size in the presence of the
negative MA parameter θ = −0.5 when lags are large, but suffers from severe over-rejection
of the null when the lag lengths are short. The test is able to achieve accurate size for all
sample sizes.

Tables 3–6 correspond to the setting where {Xt} does not have a unit root and is under
the alternative hypothesis. These empirical rejection probabilities therefore represent the
power of the prepivoted ADF test, and should ideally be as large as possible. The largest
entries in each row are represented in boldface.

The results of Tables 3–6 are encouraging. While the finite sample power of the
prepivoted ADF test is fairly low, it is much higher than the power of the asymptotic ADF
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test for the same specifications. We observe that the power tends to 1 as the sample size
increases—empirically verifying the theoretical consistency of the test. Unfortunately, we
see that the lag length chosen to optimize size does not also optimize power—the power
of the test appears to be highest when the chosen lag length is short. We also see the
manifestation of the asymptotic collinearity problem from Paparoditis and Politis [6] when
the lag lengths are allowed to increase, we observe that the power of the test reduces. In
the next section, we will develop a bootstrap method with the goal of choosing a lag length
that optimizes power while securing a size close to nominal.

Table 1. Entries represent empirical rejection probabilities of the prepivoted ADF test with q = na for
various values of a. The data generating process was ARMA(1,1) with (ϕ, θ) = (1, 0.5).

a = 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49

n = 50 0.0845 0.0916 0.0848 0.0380 0.0390 0.0585 0.0583 0.0478 0.0471 0.0510 0.0474

n = 100 0.0884 0.0898 0.0341 0.0390 0.0594 0.0615 0.0484 0.0525 0.0494 0.0552 0.0514

n = 200 0.0949 0.0944 0.0417 0.0590 0.0650 0.0492 0.0555 0.0494 0.0495 0.0552 0.0514

n = 400 0.0938 0.0382 0.0382 0.0611 0.0471 0.0537 0.0515 0.0485 0.0519 0.0542 0.0494

n = 800 0.0915 0.0354 0.0613 0.0437 0.0515 0.0496 0.0533 0.0522 0.0495 0.0505 0.0527

n = 1600 0.0886 0.0424 0.0595 0.0470 0.0527 0.0476 0.0511 0.0502 0.0489 0.0515 0.0507

Table 2. Entries represent empirical rejection probabilities of the prepivoted ADF test with q = na for
various values of a. The data generating process was ARMA(1,1) with (ϕ, θ) = (1,−0.5).

a = 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49

n = 50 0.1712 0.1675 0.1706 0.1001 0.0958 0.0708 0.0743 0.0576 0.0619 0.0541 0.0489

n = 100 0.1837 0.1844 0.1075 0.1027 0.0710 0.0767 0.0648 0.0619 0.0501 0.0501 0.0514

n = 200 0.1915 0.1953 0.1074 0.0778 0.0776 0.0635 0.0569 0.0522 0.0503 0.0528 0.0542

n = 400 0.1992 0.1083 0.1077 0.0748 0.0622 0.0571 0.0518 0.0520 0.0495 0.0527 0.0513

n = 800 0.2037 0.1128 0.0737 0.0680 0.0555 0.0553 0.0503 0.0490 0.0530 0.0534 0.0502

n = 1600 0.2118 0.1140 0.0797 0.0660 0.0568 0.0571 0.0517 0.0515 0.0550 0.0561 0.0472

Table 3. Entries represent empirical rejection probabilities of the prepivoted ADF test with q = na for
various values of a. The data generating process was ARMA(1,1) with (ϕ, θ) = (0.985, 0.5).

a = 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49

n = 50 0.1150 0.1150 0.1130 0.0851 0.0843 0.0958 0.0894 0.0902 0.0875 0.0890 0.0805

n = 100 0.1752 0.1741 0.1147 0.1078 0.1408 0.1288 0.1145 0.1229 0.1161 0.1172 0.1170

n = 200 0.3044 0.2986 0.1781 0.2271 0.2283 0.1949 0.2035 0.2037 0.1983 0.1887 0.1881

n = 400 0.6175 0.3756 0.3579 0.4897 0.4308 0.4494 0.4239 0.4117 0.4084 0.3781 0.3692

n = 800 0.9593 0.8139 0.8981 0.8501 0.8673 0.8525 0.8380 0.8265 0.8074 0.7712 0.7408

n = 1600 1.0000 0.9992 1.0000 0.9993 0.9987 0.9993 0.9986 0.9975 0.9961 0.9932 0.9855
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Table 4. Entries represent empirical rejection probabilities of the prepivoted ADF test with q = na for
various values of a. The data generating process was ARMA(1,1) with (ϕ, θ) = (0.985,−0.5).

a = 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49

n = 50 0.1884 0.1901 0.1821 0.1243 0.1238 0.1000 0.1038 0.0942 0.0961 0.0939 0.0911

n = 100 0.3074 0.3091 0.1948 0.1973 0.1489 0.1546 0.1367 0.1226 0.1199 0.1241 0.1195

n = 200 0.5455 0.5417 0.3550 0.2777 0.2686 0.2420 0.2193 0.2076 0.1983 0.2001 0.1947

n = 400 0.8786 0.6832 0.6819 0.5686 0.4975 0.4629 0.4379 0.4171 0.4168 0.3876 0.3851

n = 800 0.9989 0.9813 0.9458 0.9182 0.8920 0.8736 0.8533 0.8419 0.8162 0.7875 0.7546

n = 1600 1.0000 1.0000 0.9999 0.9998 1.0000 0.9990 0.9984 0.9975 0.9974 0.9939 0.9861

Table 5. Entries represent empirical rejection probabilities of the prepivoted ADF test with q = na for
various values of a. The data generating process was ARMA(1,1) with (ϕ, θ) = (0.97, 0.5).

a = 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49

n = 50 0.1668 0.1740 0.1728 0.1069 0.1047 0.1253 0.1267 0.1115 0.1091 0.1085 0.1171

n = 100 0.3033 0.3033 0.1644 0.1700 0.2153 0.2139 0.1877 0.1936 0.1808 0.1898 0.1764

n = 200 0.5977 0.5960 0.3511 0.4549 0.4522 0.3890 0.4117 0.3889 0.3813 0.3607 0.3346

n = 400 0.9600 0.7989 0.7913 0.8787 0.8264 0.8441 0.8129 0.7859 0.7601 0.7357 0.6897

n = 800 1.0000 0.9978 0.9998 0.9985 0.9987 0.9976 0.9982 0.9950 0.9906 0.9832 0.9730

n = 1600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

Table 6. Entries represent empirical rejection probabilities of the prepivoted ADF test with q = na for
various values of a. The data generating process was ARMA(1,1) with (ϕ, θ) = (0.97,−0.5).

a = 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49

n = 50 0.2861 0.2871 0.2817 0.1854 0.1793 0.1536 0.1500 0.1308 0.1311 0.1225 0.1151

n = 100 0.5246 0.5194 0.3356 0.3326 0.2614 0.2654 0.2336 0.2076 0.2009 0.1856 0.1817

n = 200 0.8698 0.8712 0.6678 0.5514 0.5507 0.4752 0.4482 0.4060 0.3993 0.3376 0.3516

n = 400 0.9987 0.9762 0.9774 0.9421 0.9003 0.8723 0.8372 0.8102 0.7898 0.7592 0.7092

n = 800 1.0000 1.0000 0.9999 1.0000 0.9993 0.9994 0.9983 0.9975 0.9951 0.9870 0.9775

n = 1600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998

5. Bootstrap Selection of Tuning Parameters for Hypothesis Tests

In this section, we propose a state of the art tuning parameter selection algorithm for
general hypothesis tests, and apply it to the case of lag length selection for the prepivoted
ADF test. The general algorithm proceeds as follows. Given time series data (X1, · · · Xn)
from an assumed model, and a test statistic tn,q where a tuning parameter q is involved, the
procedure is as follows:

Bootstrap Algorithm for Tuning Parameter Selection for Hypothesis Tests

1. Use an information-based choice of q from the sample (X1, · · · Xn) to obtain initial
parameter estimates for the assumed model.

2. Use the estimated parameters to compute residuals that are not restricted to be under
the null.

3. Bootstrap the residuals to construct B stretches of bootstrap data under the null .
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4. Compute the test statistic t∗n,q from each of the B bootstrap samples across the range of
acceptable values of the tuning parameter. Collect the acceptance/rejections of these
bootstrap tests as a matrix of 0s and 1s.

5. Select the tuning parameter that has empirical rejection probability closest to the
nominal level of the test; this is essentially done by computing the column averages
of the matrix generated in the previous step and selecting the index with column
average closest to the nominal level. If there is more than one such choice, select the
tuning parameter associated with the smallest fitted model.

6. The above is the optimal tuning parameter called q∗.
7. The optimal tuning parameter is fed back to the original data and the hypothesis test

is performed with q∗, i.e., computing tn,q∗ on (X1, · · · Xn).
8. Reject the null hypothesis if the p value of the test based on tn,q∗ is less than the

nominal level.

Occam’s razor postulates that if two models are equally apt in explaining a phe-
nomenon at hand, then the smallest, i.e., least complex, model is preferable. Step 5 of
the above algorithm encapsulates our preference for smaller, more parsimonious models.
There are several instances in the literature of applying some form of bootstrap with the
purpose of choosing a tuning parameter, see Leger and Romano [17], Fenga and Politis [18]
and Shao [19]. However, it is important to note that our bootstrap algorithm of Section 5
is novel. As far as we know, no other work has proposed to generate bootstrap samples
that obey the null (whether the data obey the null or not) with the purpose of choosing
the smallest model order that still yields size close to nominal. In the next subsection, we
will apply this algorithm to the ADF test in which case, as we have shown, using a smaller
model generally leads to better power.

5.1. ADF with Bootstrap-Assisted Lag Choice

In this subsection, we apply the above general bootstrap algorithm for tuning parame-
ter selection to the prepivoted ADF test. We perform numerical experiments to empirically
verify the size and power properties of our algorithm and report the results. As per the
work of Paparoditis and Politis [6], we observe that the Akaike Information Criterion (AIC)
works reasonably well with regards to both size and power of the ADF test in the case of
positive MA parameters. In the case of negative MA parameters, the AIC based tests suffer
from over-rejection of the null. The Modified AIC (MAIC) due to Ng and Perron [7] was
designed specifically to ameliorate the ADF test’s over-rejection of the null in the presence
of negative MA parameters. Their method uses a combination of GLS detrending along
with a modified information criterion to select the optimal lag length for the ADF test. The
MAIC is designed to favor larger lag lengths in the presence of a negative MA parameter,
but as shown by Paparoditis and Politis [6], this can hurt the power performance of the test
due to the asymptotic collinearity effect.

Our lag length selection algorithm, dubbed the ‘bootstrap-assisted lag choice’ (BALC)
is given below; it uses the residual AR bootstrap of Paparoditis and Politis [9] along with
the prepivoting idea of Beran [8] with the aim of selecting lag lengths that yield both
good size and power. We performed numerical experiments using an ARMA(1,1) data
generating process with six different combinations of the ARMA parameters ϕ and θ. For
each ARMA(1,1) configuration and sample size n, we generated 10,000 different time
series and recorded the performance of our novel lag length selection algorithm. This
allowed us to compute the empirical rejection probabilities corresponding to our algorithm
at the nominal level 0.05. We compare the results of our novel lag length selection method
with prepivoted ADF tests with lag lengths selected by AIC and MAIC optimality. The
experimental design is as follows:

Bootstrap Assisted Lag Choice Algorithm for the ADF Test

1. We are given a stretch of time series data X1, . . . Xn to be tested for a possible unit root.
2. Run the ADF regression (1) on this data with lag length q selected by AIC. AIC

minimization is done over the range 1 to
√

n. Denote the selected lag by qAIC.
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3. Use the estimated parameters and centered residuals from the ADF regression to
construct B1 bootstrap samples under the null, using the AR bootstrap of Paparoditis
and Politis [9].

4. For each of the bootstrap samples, perform a prepivoted ADF test with varying lag
lengths. The bootstrap methodology for the prepivoted test also uses the AR bootstrap
of Paparoditis and Politis [9], and generates B2 bootstrap samples for each q. The
range of values for q we chose was from ⌊0.5 · qAIC⌋ to ⌈1.5 · qAIC⌉. The result of these
tests is stored in a 0–1 matrix with B1 rows and appropriate number of columns.

5. The optimal q∗ is then picked by using the value of q that yields smallest type-1 error
for all of the bootstrap samples i.e., the value of q that yields column average closest
to the nominal level 0.05.

6. We then perform a prepivoted ADF test with B2 bootstrap samples on the original
data with number of lags equal to q∗.

7. The unit root null hypothesis is rejected if the p-value is less than the nominal
level 0.05.

5.2. Discussion of Simulation Results

The Tables below list the empirical rejection probabilities of the prepivoted ADF test
with lag lengths selected by three different data dependent approaches. We list the results
of our algorithm and compare them with those with lags selected by AIC, BIC and MAIC
optimality. AIC optimization is carried out over lag lengths q ranging from 1 to

√
n, while

MAIC optimization is carried out over q ranging from 1 to ⌊12 · ( n+1
100 )

0.25⌋ as per Schwert [3].
For our experiments, the values of B1, B2 were set to 250 and 100 respectively in the interest
of computational parsimony since our simulation involved 10,000 replications; in practice,
given a single dataset in hand, the values of B1, B2 can easily become of the order of 1000.
In terms of computational efficiency, for a single dataset, the computational complexity
is entirely determined by the values of B1 and B2 and the lag length initially chosen by
AIC. More specifically, the ADF regression is performed is 1 + B1B2qAIC + B2 times. Step 4
from the algorithm is highly conducive to parallelization—the search can be run over all
candidate values for q∗ at the same time since the results from one candidate value of q∗ are
independent of those for other candidate values—thereby improving the computational
efficiency and runtime of the algorithm.

Tables 7 and 8 correspond to the setting wherein the data {Xt} have a unit root. The
entries therefore list the rejection probabilities under the null, and should ideally be as
close to the nominal level 0.05 as possible. For each sample size in each Table, the rejection
probability closest to the nominal level is presented in bold.

Putting together the results of Tables 7 and 8, we see that the performance of our
method is comparable to that of AIC and MAIC. It is clear from the Tables that tests
achieve more accurate size for larger sample sizes. Not surprisingly, the bootstrap selection
method also suffers from over-rejection of the null hypothesis in the presence of negative
MA parameter.

Tables 9–12 correspond to the setting wherein the data {Xt} obey the alternative
hypothesis. The entries therefore correspond to the power of the prepivoted ADF test, and
should be as high as possible. For each sample size in each Table, the highest rejection
probability is presented in bold.

These results allow us to draw the following conclusions. First, it appears that our
method performs reasonably well with respect to finite sample power. The power of the
BALC test is higher than the power of the prepivoted test with AIC or MAIC lag lengths.
We also note that the method is consistent as its power approaches 1 with increasing sample
size. Additionally, we observe that Tables 10–12 show significant increases in the power of
our method compared to the two information based criteria. What is interesting is that the
biggest improvements are seen for intermediate sample sizes. In particular, we observe
that our method outperforms the MAIC vis-à-vis power. This can primarily be attributed
to the fact that our method is designed to favor shorter lags (provided their associated
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size is close to nominal), thereby avoiding the asymptotic collinearity problem under the
alternative hypothesis. It appears that our proposed bootstrap-assisted lag choice (BALC)
generally outperforms AIC and MAIC in the cases of size and power, with the exception
that the MAIC achieves better size in the well-known problematic case of a negative MA
parameter. The prepivoted test with lag length selected by BIC provides a comparable
but slightly higher power in the presence of a negative MA parameter as compared to our
BALC based test.

All in all, it appears that the BALC method works well at arriving at a compromise
between size and power performance. Our lag selection method yields accurate size as
well as improved power over the information based lag length selection criteria. The lag
length selection idea along with prepivoting appears to yield appreciable improvements
over the asymptotic ADF test.

Table 7. (ϕ, θ) = (1, 0.5).

n = 50 100 200 400 800 1600

AIC 0.0578 0.0512 0.0511 0.0522 0.0526 0.0544

BIC 0.0706 0.0644 0.0537 0.0499 0.0543 0.0526

MAIC 0.0465 0.0500 0.0463 0.0497 0.0541 0.0506

BALC 0.0612 0.0582 0.0541 0.0526 0.0514 0.0495

Table 8. (ϕ, θ) = (1,−0.5).

n = 50 100 200 400 800 1600

AIC 0.0964 0.0864 0.0714 0.0656 0.0593 0.0528

BIC 0.1152 0.1286 0.1101 0.0945 0.0782 0.0704

MAIC 0.0673 0.0650 0.0631 0.0602 0.0588 0.0528

BALC 0.1174 0.1056 0.1049 0.0966 0.0842 0.0761

Table 9. (ϕ, θ) = (0.985, 0.5).

n = 50 100 200 400 800 1600

AIC 0.0931 0.1166 0.1892 0.4162 0.8375 0.9987

BIC 0.1008 0.1232 0.1928 0.3812 0.8402 0.9995

MAIC 0.0893 0.1133 0.1965 0.4239 0.8462 0.9983

BALC 0.0965 0.1215 0.2113 0.4391 0.8407 0.9989

Table 10. (ϕ, θ) = (0.985,−0.5).

n = 50 100 200 400 800 1600

AIC 0.1199 0.1586 0.2429 0.4837 0.8712 0.9991

BIC 0.1432 0.2207 0.3348 0.5862 0.9290 0.9998

MAIC 0.1067 0.1395 0.2313 0.4707 0.8678 0.9985

BALC 0.1378 0.2049 0.3245 0.5769 0.8972 0.9992
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Table 11. (ϕ, θ) = (0.97, 0.5).

n = 50 100 200 400 800 1600

AIC 0.1142 0.1829 0.3786 0.7974 0.9955 1.0000

BIC 0.1286 0.2100 0.3902 0.7965 0.9958 1.0000

MAIC 0.1127 0.1819 0.3799 0.7910 0.9947 0.9999

BALC 0.1364 0.2198 0.4336 0.8205 0.9963 1.0000

Table 12. (ϕ, θ) = (0.97,−0.5).

n = 50 100 200 400 800 1600

AIC 0.1689 0.2713 0.4869 0.8521 0.9980 1.0000

BIC 0.2218 0.3721 0.6242 0.9299 0.9997 1.0000

MAIC 0.1530 0.2242 0.4499 0.8343 0.9940 1.0000

BALC 0.2071 0.3409 0.5874 0.8959 0.9993 1.0000

5.3. Comparing the BALC Lag Lengths to MAIC

Given below are histograms comparing the optimal lags selected by our BALC algo-
rithm and lags selected by MAIC optimality. They serve as evidence of the fact that the
BALC tends to pick lower lags than MAIC, while still searching in a range higher than the
lags selected by AIC—therefore splitting the difference between AIC and MAIC. The lag
lengths selected by BALC are generally shorter than those selected by MAIC. Although
there is a stochastic component to the BALC framework, we observe that the choice to cut
off the search for lags at 1.5 ∗ qAIC allows us to inflate the search space from just the value
selected by AIC while simultaneously preventing the asymptotic collinearity problem. The
asymptotic collinearity problem stems from the fact that as the number of lags q increases,
the regressors in the ADF regression become asymptotically collinear—this is the reason
for the loss in power of the ADF test as pointed out in Paparoditis and Politis (2018) [6]. If a
regression is collinear, then the OLS estimator is ill-conditioned/non-unique; fortunately,
here we have only approximate/asymptotic collinearity (under the alternative) whose
effect can be mitigated by choosing the smallest q possible. This issue is demonstrated in
Figures 1–4 and best visualized in Figures 5 and 6, where the MAIC picks fairly large lag
lengths for a significant proportion of the 10,000 DGPs whereas the BALC algorithm avoids
larger lag lengths.

Figure 1. Cont.
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Figure 1. Comparison of lag lengths selected by BALC and MAIC for (ρ, θ) = (1, 0.5), n = 200.

Figure 2. Comparison of lag lengths selected by BALC and MAIC for (ρ, θ) = (1, 0.5), n = 800.
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Figure 3. Comparison of lag lengths selected by BALC and MAIC for (ρ, θ) = (0.985, 0.5), n = 200.

Figure 4. Cont.
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Figure 4. Comparison of lag lengths selected by BALC and MAIC for (ρ, θ) = (0.985, 0.5), n = 800.

Figure 5. Comparison of lag lengths selected by BALC and MAIC for (ρ, θ) = (0.97,−0.5), n = 200.
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Figure 6. Comparison of lag lengths selected by BALC and MAIC for (ρ, θ) = (0.97,−0.5), n = 800.

5.4. A Real Data Application

Lastly, we apply our novel lag selection method to a real data example. We apply
our BALC testing procedure to the dataset of Figure 7 that is discussed in the textbook on
time series analysis by Shumway and Stoffer (2017) [20]. The dataset represents the yearly
average global temperature deviations from 1880 to 2009, with the deviations measured
in degrees Celsius with respect to the average temperature between 1951 and 1980. In
Section 3 of Paparoditis and Politis [6], the authors comment on the failure of the tseries
implementation of the ADF test to reject the null, as a consequence of selecting too many
lags. As per their discussion and diagnostic figures, there is strong evidence that the
detrended data do not contain any strong evidence for a unit root, and therefore obeys
the alternative hypothesis—evidenced by the ACF plot of the detrended data given in
Figure 8. The BALC method yields an optimal lag length of 3, compared to the tseries
ADF function’s recommendation of 5. The prepivoted ADF test with lag length q = 3
then rejects the unit root null hypothesis, which is the expected result. In contrast, the
asymptotic ADF test with q = qAIC (which also equals 5) fails to reject the null.



Stats 2024, 7 1242

Figure 7. Yearly average global temperature deviations data with superimposed fitted linear trend.
n = 130.

Figure 8. Correlogram of detrended dataset.

6. Discussion

In this paper, we have presented a novel bootstrap assisted lag length selection criterion
for the ADF test. As the asymptotic theory shows, the choice of lag length for the ADF
test significantly affects its size and power properties. The convergence rate of the ADF
estimator is different under the null and under the alternative. In addition, there is a
tug-of-war: we need a large q to ensure size close to nominal while we need a smaller q
(still diverging though) to have good power. The practical implementation of the ADF test
requires the practitioner to choose the q to use in the ADF test without knowing whether
the null or the alternative holds as this is the very question of the test. Given this difficult
situation, our paper proposes a bootstrap-based algorithm that helps the practitioner choose
a value of q that is the smallest among all q values that achieve size close to nominal. Our
Tables 7–12 show that our algorithm works well in practice as it automatically adapts to
the underlying data structure without the need for the practitioner to choose q in an ad hoc
way, e.g., by minimizing a criterion such as AIC, BIC, MAIC, etc.
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