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Byzantine-Resilient Federated PCA and Low-Rank
Column-Wise Sensing

Ankit Pratap Singh

Abstract— This work considers two related learning problems
in a federated attack-prone setting — federated principal com-
ponents analysis (PCA) and federated low rank column-wise
sensing (LRCS). The node attacks are assumed to be Byzan-
tine which means that the attackers are omniscient and can
collude. We introduce a novel provably Byzantine-resilient
communication-efficient and sample-efficient algorithm, called
Subspace-Median, that solves the PCA problem and is a key
part of the solution for the LRCS problem. We also study
the most natural Byzantine-resilient solution for federated PCA,
a geometric median based modification of the federated power
method, and explain why it is not useful. Our second main
contribution is a complete alternating gradient descent (GD)
and minimization (altGDmin) algorithm for Byzantine-resilient
horizontally federated LRCS and sample and communication
complexity guarantees for it. Extensive simulation experiments
are used to corroborate our theoretical guarantees. The ideas
that we develop for LRCS are easily extendable to other LR
recovery problems as well.

Index Terms— Federated PCA, Byzantine, matrix sensing,
linear representation learning.

I. INTRODUCTION

EDERATED learning is a setting where multiple enti-

ties/nodes/clients collaborate in solving a machine learn-
ing (ML) problem. Each node can only communicate with a
central server or service provider that we refer to as “center” in
this paper. The data observed or measured at each node/client
is stored locally and should not be shared with the center.
Summaries of it can be shared with the center. The center
typically aggregates the received summaries and broadcasts
the aggregate to all the nodes [3]. One of the challenges in
this setup is adversarial attacks on the nodes. In this work
we assume Byzantine attacks, i.e., the adversarial nodes are
omniscient and can collude [4], [5], [6], [7], [8]. “Omniscient”
means that the attacking nodes have knowledge of all the data
at every node and the exact algorithm (and all its parameters)
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implemented by every node, including center, and can use
this information to design the worst possible attacks at each
algorithm iteration.

This work develops provably Byzantine resilient algorithms
for solving two related problems — federated principal com-
ponents analysis (PCA) and horizontally-federated low rank
(LR) column-wise sensing or LRCS — in a communication-
and sample-efficient fashion. The first goal in solving both
problems is to reliably estimate the subspace spanned by the
top 7 singular vectors of an unknown symmetric n X n matrix,
®*. In case of PCA, @™ is the population covariance matrix of
the available data. For each £ = 1,2,..., L, node ¢ observes
an n X qp data matrix D, which can be used to compute an
estimate P, := DKDZ /q¢ of @*. PCA is well known to have
a large number of applications in scientific visualization and as
a pre-processing step for speeding up various ML tasks. LRCS
finds applications in accelerated dynamic MRI [9], [10], multi-
task linear representation learning and few shot learning [2],
[11], [12], and federated sketching [13], [14], [15].

A. Existing Work

1) Byzantine-Resilient Federated Machine Learning (ML):
There has been a large amount of recent work on
Byzantine-resilient federated ML algorithms, some of which
come with provable guarantees [6], [7], [8], [16], [17], [17],
(18], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29]. Some of the theoretical guarantees are asymptotic,
and almost all of them analyze the standard gradient descent
(GD) algorithm or stochastic GD. Typical solutions involve
replacing the mean/sum of the gradients from the different
nodes by a different robust statistic, such as geometric median
(of means) [16], trimmed mean, coordinate-wise mean [8] or
Krum [6].

One of the first non-asymptotic results for Byzantine attacks
is [16]. This used the geometric median (GM) of means to
replace the regular mean/sum of the partial gradients from each
node. Under standard assumptions (strong convexity, Lipschitz
gradients, sub-exponential-ity of sample gradients, and an
upper bound on the fraction of Byzantine nodes), it provided
an exponentially decaying bound on the distance between the
estimate at the ¢-th iteration and the unique global minimizer.
In follow-up work [8], the authors studied the coordinate-wise
mean and the trimmed-mean estimators and developed guaran-
tees for both convex and non-convex problems. Because these
works used coordinate-wise estimators, their results needed
smoothness and convexity along each dimension. This is
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a stronger, and sometimes impractical, assumption. Another
interesting series of works [7], [19] provides non-asymptotic
guarantees for Byzantine resilient stochastic GD. This work
develops an elaborate median based algorithm to detect and
filter out the Byzantine nodes. The theoretical analysis assumes
that the norm of the sample gradients is bounded by a constant
that does not depend on the gradient dimension. This can be
a restrictive assumption. With this assumption, they are able
to obtain sample complexity guarantees that do not depend on
the signal dimension. These works also assume that the set of
Byzantine nodes is the same for all GD iterations, while the
work of [16] allowed this set to vary at each iteration.

Most of the above works considered the homogeneous data
setting; this means that the data that is i.i.d. (independent and
identically distributed) across all nodes. More recent work has
focused on heterogeneous distributions (data is independent
across nodes but is not identically distributed) and proved
results under upper bounds on the amount of heterogeneity
[23], [24], [25], [26]. Other works rely on detection methods
to handle heterogeneous gradients [17], [18], [27], [28], [29].
These assume the existence of a trustworthy root/validation
dataset at the central server that is used for detecting the
adversarial gradients.

2) Work on Robust PCA and Subspace Learning and Track-
ing, and Other Robust Estimation Problems: There is much
work also on solving the robust PCA problem using the low
rank plus sparse (L+S) [30], [31], [32], [33], [34] or other
models, on robust subspace learning [35], [36], and on robust
subspace tracking problems [37], [38], [39]. The review arti-
cle [40] provides a comprehensive summary of the older work.
In addition there is other related work that uses the median
or vector medians for other types of outlier robust algorithms,
e.g., [41]. However, there are two key differences between
all these works and the problem that we study in this paper.
(1) All of these works assume that the outlier or the attack
is on the observed or measured data. In security literature,
such attacks (in which only the data can be corrupted) are
referred to as “data-poisoning” attacks. The algorithms from
these works cannot be used to deal with Byzantine attacks
which involve corruption of the (intermediate and/or final)
algorithm estimates sent by some nodes. (2) Secondly, almost
all of these are designed for the centralized setting. A possible
way to extend any of these ideas to the federated setting is
for the nodes to share their raw data with the center and for
the center to implement the same algorithm as that developed
in these works. However, this would not be communication-
efficient!. To distinguish from the L+-S, or other, model-based
robust PCA work, here, we use the term “resilient” to denote
attack-resilience.

3) Work on Robust Statistics - Robust Mean and Robust
Covariance Estimation: There is a large amount of existing
work in the general robust statistics literature, most of it
is on robust mean estimation, and some on robust covari-

'One exception is the work of [37] that considers the federated setting.
However this has two important limitations: (i) it assumes that, for the
initialization step, the data is outlier-free; (ii) and, it requires a much larger
number of observed samples than what traditional LR matrix completion
literature needs.
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ance estimation, e.g., see [42], [43], [44], [45], and [46].
None of these can be extended to solving our problem in a
communication-efficient fashion and most of these also have
much larger sample complexities. As an example, the work
of Minsker [46] studies the geometric median (GM), which
is one well-known approach to compute a reliable estimate of
a vector-valued quantity using multiple individual estimates
of it when some of these estimates may be corrupted by
outliers [16], [46]. In [46, Corollary 4.3], Minsker shows
the application of GM for “robust PCA” - provably accurate
robust/resilient covariance estimation followed by SVD on
the robust covariance estimate to compute its top r singular
vectors. We refer to this solution as SVD-ResCovEst. This
approach needs order g, > n? samples. Moreover, it cannot
be federated efficiently because it requires that each node ¢
shares Dy, D, with the center. This has a communication cost
of order n2. A similar discussion applies for the result of [42,
Theorem 4.35] as well.

4) Work on the LR Column-Wise Sensing (LRCS) Prob-
lem: The LRCS problem, and its phaseless measurements’
extension, LR phase retrieval, have been extensively studied
in recent years [10], [15], [47], [48], [49], [50], mostly in cen-
tralized settings. The work of [49] and [50] introduced a fast
and communication-efficient solution to attack-free federated
LRCS, called alternating GD and minimization (altGDmin).
AltGDmin is initialized using spectral initialization.

5) Federated PCA and Subspace Learning; No Attacks:
There is also somewhat related work on federated PCA and
subspace learning that does not consider any attacks or other
outliers, e.g., [51], [52], and [53].

B. Our Contributions

A natural way to make the SVD-ResCovEst approach
communication-efficient is to borrow ideas from the sketching
literature and share ®,U g,,,, for some (possibly random) n x r
matrix U 4ny. This idea is, in fact, one iteration of the power
method for computing the r-SVD of a matrix [54], [55]. It can
be converted into a provably correct solution by using the
GM to modify the power method. We refer to this solution
as Resilient Power Method (ResPowMeth), and obtain a set
of sufficient conditions for it to work. We show that this
approach is both provably resilient to Byzantine attacks and
communication efficient under certain restrictive assumptions
on the accuracy of the individual nodes’ partial covariance
estimates, which translate into a very large sample complexity
for PCA: for n-length data vectors, ResPowMeth works if

q > Cn?r2.
Our first important contribution is a novel and
well-motivated solution to Byzantine-resilient federated

subspace estimation, and PCA, that is both communication-
efficient and sample-efficient. We refer to this as
“Subspace-Median”. Its guarantee is provided in Theorem 3.1
and Corollary 1. We show how the Subspace Median can be
used to provably solve two practically useful problems: (i)
Byzantine resilient federated PCA, and (ii) the initialization
step of Byzantine-resilient horizontal federated LRCS.
For the PCA problem, we show that this works well
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with just ¢ > Cnr samples. We also develop Subspace
Median-of-Means (MoM) extensions for both problems.
These help improve the sample complexity at the cost of
reduced Byzantine/outlier tolerance. For all these algorithms,
Theorem 3.1 helps prove sample, communication, and
time complexity bounds for e-accurate subspace recovery.
Extensive simulation experiments corroborate our theoretical
results.

Our second important contribution is a provable
communication-efficient and sample-efficient complete
solution to horizontally federated LRCS. For solving it,
we develop a GM-based modification of the alternating
GD and minimization (altGDmin) algorithm from -earlier
work [49]. We use Subspace Median and Subspace MoM
to make its spectral initialization step Byzantine-resilient.
For the complete algorithm, we can show that it obtains
an e-accurate estimate of the unknown LR matrix using
only order nr?log(1/¢) samples per node, and with a total
communication cost of only order nrlog(l/e) per node.
Both costs are comparable to what basic altGDmin needs for
solving this problem in the attack-free setting [49], [50].

The overall approach that we develop for modifying the
altGDmin algorithm (use Subspace-Median for initialization
and GM of gradients for the GD step), and analyzing it, can
be extended to make GD-based solutions to many other similar
non-convex problems in federated settings Byzantine-resilient.
Some examples include vertically federated LRCS, LR matrix
completion, LR phase retrieval, LR plus sparse matrix recovery
(robust PCA). Our approach for analyzing Byzantine-resilient
PCA is also extendable to solving PCA for approximately
LR datasets, PCA for such datasets with missing entries (see
Remark 4), and also to subspace tracking and robust subspace
tracking. We describe these in Sec. VIII-A.

C. Novelty of Our Algorithmic and Proof Techniques

While both SVD and geometric median (GM) are well
known in literature, we are not aware of any notions of
“median” for subspaces. We cannot directly use the GM on
the subspace basis matrices because these do not lie in a
Euclidean space, e.g., U, —U specify the same subspace
even though |U — (-U)|r = 2y/r # 0. The design of
Subspace Median relies on the fact that the Frobenius norm
of the difference between two subspace projection matrices is
within a constant factor of the subspace distance between their
respective subspaces. Its analysis also uses the fact that these
projection matrices are bounded by /v in Frobenius norm.
We use these facts and Lemma 4 (GM lemma for bounded
inputs) to prove our key lemma, Lemma 1. This is combined
with the Davis-Kahan sin © theorem to prove Theorem 3.1.
This result is likely to be widely applicable in making various
other subspace recovery problems Byzantine resilient.

Our analysis of the AltGDmin iterations relies heavily on
the lemmas proved in [49] and the overall simplified proof
approach developed in [50]. However, we need to modify this
approach to deal with the fact that we compute the geometric
median of the gradients from the different nodes. The GM
analysis provides bounds on Frobenius norms, and hence
our analysis also uses the Frobenius norm subspace distance
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instead of the 2-norm one; see Lemma 8. At the same time it
avoids the complicated proof approach (does not need to use
the fundamental theorem of calculus) of [49]. The main new
step is the bound on the difference between the expected values
of the gradients from two good nodes conditioned on past
estimates and data’. See Lemma 2. This lemma is used along
with Lemma 6 (our GM lemma for potentially unbounded
inputs) to obtain Lemma 10. This discussion will be clearer
from the proof outline provided below Theorem 5.3.

D. Organization

We define the problems, the notation, and introduce the
geometric median in the next section. Sec. III develops the
Subspace Median and Resilient Power Method (ResPowMeth)
solutions, and provides their theoretical guarantees. Sec. IV
develops corollaries for the resilient PCA problem, compares
the three approaches — SVD-ResCovEst [46], ResPowMeth,
and Subspace Median. A summary is provided in Table I.
Subspace Median of Means is also developed here. Sec. V
develops a complete altGDmin-based solution for resilient
horizontally federated LRCS. Proofs for Sections III and IV
are provided in Sec. VI. Simulation experiments are provided
in Sec. VII. We conclude in Sec. VIIIL.

II. PROBLEM SET-UP, NOTATION, AND GEOMETRIC
MEDIAN PRELIMINARIES

A. Problem Setup

We study two interrelated problems stated below. We begin
by stating the subspace estimation meta problem that occurs in
both problems. We consider a federated setting with L nodes,
with L being a numerical constant, and assume the following.

Assumption 1 (Number of Byzantine Nodes): At most 7L
of the L total nodes are Byzantine, with 7 < 0.4 (instead
of 0.4, we can use any constant c that is strictly less than
0.5 here). Denote the set of good (non-Byzantine) nodes by
Jgood- Equivalently, this means that |Jgo0q| > (1 — 7)L.
We define a Byzantine attack below in Sec. II-A 4.

1) Resilient Federated Subspace Estimation: The goal is to
reliably estimate the subspace spanned by the top r singular
vectors of an unknown symmetric n X n matrix, ®*. Denote
the n x r matrix formed by these singular vectors by U*. Our
goal is thus to estimate span(U™). Each node ¢ € [L] observes,
or can compute, a symmetric matrix ®, which is an estimate
of ®*. Typically, the node observes an n X g, data matrix D,
and computes ®; := D;D, /q;. We use 0% > ... > o to
denote the singular values of ®*.

2) Resilient Federated PCA: Given ¢ data vectors dj €
R™, that are mutually independent and identically distributed
(i.i.d.), the goal is to find the r-dimensional principal subspace
(span of top r singular vectors) of their covariance matrix,
which we will denote by X*. We can arrange the data vectors
into an n x ¢ matrix, D := [d1,dy,...d,]. We use o} to
denote the j-th singular value of X*. We assume that all djs
are i.i.d. zero mean, sub-Gaussian vectors, with covariance

2As explained earlier, the conditional expectations are different at the
different nodes. These can be computed and bounded easily because we
assume sample-splitting.
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matrix £* and maximum sub-Gaussian norm K./[|X| =
K \/UT‘ [56, Chap 2]. The data is vertically federated, this
means that each node / has ¢¢ = ¢ = % dy’s. Denote
the corresponding sub-matrix of D by D,. Thus, D =
[D1,...,Dy,...Dyg]. This problem is an instance of resilient
federated subspace estimation with ®, = DgDZT /q.

3) Resilient Horizontally-Federated Low Rank Column-
Wise Sensing (LRCS): LRCS involves recovering an n X ¢
rank-r matrix X ™ from compressive linear measurements of
each column, i.e., from y, := Ayz}, k € [q], with y;,, € R™
with m < n, and Ay being m X n matrices which are i.i.d.
random Gaussian (each entry is i.i.d. standard Gaussian) [49].
We treat X ™ as a deterministic unknown. Here and below
lq] = {1,2,...,q}. Let Y := [y;,¥,,...,y,]. Horizontal
federation means that row sub-matrices of Y are observed at
the different nodes. To be precise, node £ observes an m X q
rows sub-matrix of Y denoted Y, with m = m /L. We assume
that node ¢ has access to Y, and {(Ag)s, k& € [q]}. Denote
the set of indices of the rows available at node ¢ by S,. Then,
(Ag)e = I§ Ay is of size i x n and Y, == IJ)Y is of
size m x ¢ with m = m/L, and with (y,); := (A)ex}
for all k € [g] Three important applications that can be
modeled as instances of LRCS are accelerated dynamic MRI
reconstruction [9], [10], federated sketching [10], [15], and
multi-task representation learning and few shot learning [2],
[11], [12]. In the representation learning problem, horizontal
federation corresponds to the setting where the /¢-th subset
of training data for the ¢ correlated linear regression tasks
is observed at node ¢. Few shot learning uses this learned
representation (column span of X ™) for learning the regression
coefficients using very few training data points (this problem is
also referred to as online subspace tracking in [10]). In multi-
coil dynamic MRI, L is the number of MRI scanners, each of
which observes a differently weighted subset of measurements
of the human organ’s image sequence. Scanners can be prone
to security threats if they are connected to the internet. As we
will see later, the initialization step for solving LRCS using an
iterative algorithm can be interpreted as an instance of resilient
federated subspace estimation.

The reason we consider vertical federation for PCA but
horizontal for LRCS is because these are the settings in which
the data on the different nodes is i.i.d. in each case. In case
of vertically federated PCA, D,’s are i.i.d. If we consider
horizontal federation for PCA, then this is no longer true
(unless we assume X* is block diagonal). For LRCS, the
opposite holds because different entries of a given vy, are
ii.d.; but the different y,’s are not identically distributed.
Guaranteeing Byzantine resilience without extra assumptions
requires the different nodes’ data be i.i.d. or i.i.d.-like (this
means that it should be possible to obtain a uniform bound
on the errors between the individual nodes’ outputs and the
quantity of interest each time the node output is shared with
the center). As we explain later, it is possible to use ideas
similar to the ones introduced here to also solve vertically
federated LRCS, but that will need extra assumptions that
ensure bounded heterogeneity.

4) Byzantine Attack Definition: We use the terms Byzantine
node/adversary/attack almost interchangeably. The output of
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a Byzantine node or adversary is the Byzantine attack. Byzan-
tine nodes are often also referred to as “bad” nodes and
non-Byzantine ones as “good” nodes. The Byzantine attack
has not been clearly mathematically defined in past work [4],
[5], [6], [7], [8], although there are definitions inspired by [57].
The following definition, taken from [4], is the most precise
one we can find.

Definition 1: The Byzantine adversary is an entity which
controls the outputs of some of the L worker nodes. It is
omniscient, in the sense that it has a perfect knowledge of
the system state at any time, i.e., it knows (i) the full state
of the center (data and algorithm, including all algorithm
parameters), and (ii) the full state of every node (data
and algorithm, including all algorithm parameters). Different
Byzantine adversaries can also collude. However, they are not
omnipotent: they cannot modify the outputs of the other (non-
Byzantine) nodes or of the center, or delay communication.

In our setting, this means the following. Let V. denote
the set of outputs of all the Byzantine nodes. Then Vy,,, =
Gby-({Datas}r_ |, A)) where A denotes the true algorithm
being implemented at each of the non-Byzantine (good) nodes
and at the center along with all its parameters; g, .(.) is a
function that can be jointly designed by all the Byzantine
nodes; and Data, is the data observed at node ¢: it is ®,
or Dy (in case of PCA), or Yy, (Ag)e, k € [q] (in case of
LRCS).

B. Notation

We use ||.|| 7 to denote the Frobenius norm and ||.|| without
a subscript to denote the (induced) lo norm (often called
the operator norm or spectral norm); ' denotes matrix or
vector transpose; |z| for a vector z denotes element-wise
absolute values; I,, (or sometimes just I) denotes the n x n
identity matrix, and e, denotes its k-th column (k-th canonical
basis vector); and M = (MTM)’lMT. We use 1;,<p)
to denote the indicator function that returns 1 if a < b
otherwise 0.

We say U is a basis matrix if it is a tall matrix with
mutually orthonormal columns; we use this to denote the
subspace spanned by its columns. For a basis matrix U,
the projection matrix for projecting onto span(U) (the sub-
space spanned by the columns of U) is denoted Py :=
UU" while that for projecting orthogonal to span(U) is
denoted Py := I — UU' “r-SVD” to refer to the top
r left singular vectors (singular vectors corresponding to the
r largest singular values) of a matrix. For basis matrices,
U17U2, W€ use SDF(Ul,Ug) = H(I — U1U1T)U2HF
as the default Subspace Distance (SD) measure between the
subspaces spanned by the two matrices. In some places,
we also use SD2(U,Us) = ||(I — U U, ")Us|. If both
matrices have r columns (denote r-dimensional subspaces),
then SDF(ljl7 U2) < \/;SDQ(Ul, Ug)

We use QR(U) to denote the orthonormalization of the
columns of U by using QR decomposition. For a matrix M,
vec(M) vectorizes it.

We reuse the letters c¢,C to denote different numerical
constants in each use with the convention that ¢ < 1 and
C > 1. Also the notation a < b means a < Cb.
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For a,b in (0,1), we use ¥(a,b) = (1 — a)log =% +
alog ¢ to denote the binary KL divergence. When computing
a median of means estimator, one splits the L node indices
into L mini-batches so that each mini-batch contains p = L / L
indices. For the ¢-th node in the ¥J-th mini-batch we use the
short form notation (1, ¢) = (¢ — 1)p + ¢, for £ € [p].

Recall that Byzantine nodes are often also referred to
as “bad” nodes and non-Byzantine ones as “good” nodes.
We use Jyood C [L] to denote the set of non-Byzantine/good
nodes and J,,, denotes the set of Byzantine nodes. Using
Assumption 1, |Jyood| =L — 7L = (1 —7)L.

C. Geometric Median (GM)

The geometric median (GM) is one well-known approach
to compute a reliable estimate of a vector-valued quantity
using multiple individual estimates of it when some of these
estimates may be corrupted by outliers [16], [46]. For L data
vectors {z1,2a,...,z1}, with each z, € R, this is defined
as

L
zén = GM{z1,22,...,z} = arg min Z Iz — z¢l|
zeRd —

This cannot be computed in closed form. Iterative algorithms
exist to solve it approximately. When we say z¢ s is a (14€p)
approximate GM, for an 0 < ¢y < 1 we mean that

L L
D o llzem =zl < (L+€0) Y llzgar — =
(=1 (=1

L

— 1+ i _ ]
( ﬁo)ggd;\lz 2z )

There are two popular iterative solutions for computing the
approximate GM. The most commonly used one in practice,
Weiszfeld’s algorithm [58], [59], does not come with a useful
iteration complexity guarantee. The recent work of [60] intro-
duced a nearly linear-time algorithm for provably computing
the approximate GM, with high probability. We provide [60,
Algorithm 1] in Appendix D. We state its guarantee next. All
theoretical results in our work use this result.

Claim 1 (Theorem 1 [60]): Pick an accuracy level 0 <
€g < 1. Consider [60, Algorithm 1] with input
{z1,22,...,2zr} and using number of iterations, Ty =
C’log(%). With probability at least 1 — copprozgm (Where
CapprozGM < 1 is a numerical constant, e.g., 0.1), the
algorithm computes zg ), that satisfies (1). Its per iteration
complexity is CLd logQ(é) and total time complexity is
O(Ldlog*(L)).

The use of the above result allows us to bound the iteration
complexity of all our algorithms. This, in turns, allows us to
get a bound on the total communication cost and the total time
cost. Although it has a simple guarantee, the algorithm [60,
Algorithm 1] itself is quite complicated. The authors of [60]
have not shown any experimental results with it. To our best
knowledge, nor have any other authors in follow-up work that
cites it. The algorithm used in practice for approximating the
GM is the Weiszfeld’s algorithm initialized using the average
of the z,’s [58]. This is an iteratively re-weighted least squares
type algorithm. We provide both algorithms in Appendix D.
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Algorithm 1 Subspace Median
Input Dy, ¢ € [L]; or ®y, £ € [L].
Parameters T, Tpow
1: Nodes / =1,...,L
2: Compute top r singular vectors, Uy, of D, (equivalently
of & := D,D}).
(Can use power method with T}, iterations)
: Central Server
. Orthonormalize: U, — QR(Uy,), { € [L]
. Compute Projection Matrices: Py, — U,U/, £ € [L]
: Compute their GM: Pgps <« approxGM{Py,, ¢ € [L]}
(Use [60, Algorithm 1] with parameter Tgas).
: Find lpes: = argming [Py, — Pemllr
8: Output U,y =Uy,_,,

AN L B~ W

~

III. RESILIENT FEDERATED SUBSPACE ESTIMATION
A. Proposed Solution: Subspace Median

Recall that our goal is to obtain a reliably accurate estimate
of span(U™), which is an r-dimensional subspace in ", when
each node computes an estimate U, of it by computing the
top r singular vectors of ®,.. Some nodes can be Byzan-
tine (Assumption 1). We develop a solution approach that
relies on the geometric median (GM). Notice from Sec. II-C
that the GM is defined for quantities whose distance can
be measured using the vector /s norm (equivalently, matrix
Frobenius norm). Our solution adapts the GM to use it for
subspaces by using the fact that the Frobenius norm between
the projection matrices of two subspaces is another measure
of subspace distance: |Py — Py+||r = V2SDp(U,U")
[61, Lemma 2.5].

Our proposed algorithm, which we refer to as “Subspace
Median”, relies on this fact. It proceeds as follows. Each
node computes the top r singular vectors of its matrix ®,,
denoted Uz, and sends these to the center. If node ¢ is good
(non-Byzantine), then Tje already has orthonormal columns;
however if the node is Byzantine, then it is not. The center first
orthonormalizes the columns of all the received U,’s using
QR. This ensures that all the U ,’s have orthonormal columns.
It then computes the projection matrices Py, = UgUZ,
¢ € [L], followed by vectorizing them, computing their GM,
and converting the GM back to an n X n matrix. Denote this by
Pc - Finally, the center finds the ¢ for which Py, is closest
to Pg s in Frobenius norm and outputs the corresponding U .

We should mention that this last step can also be replaced by
finding the top r singular vectors of Pg . However, doing this
requires time of order n2rlog(1/¢) while finding the closest
Py, only needs time of order max(n?, LlogL).

Subspace Median is summarized in Algorithm 1. We can
prove the following for it.

Lemma 1 (Subspace-Median): For a 6 > 0, consider
Algorithm 1 with Ty = C'log (£°). Assume that Assump-
tion 1 holds. Assume that, for at least (1 — 7)L nodes, the
following holds:

Pr(SDp(U*,Uy) <0)>1—p.
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Then, w.p. at least 1 — capprosam — exp(—L(0.4 — 7, p)),
SD(U*,U,u) < 236,

Here v(a,b) := (1 — a)log 1=¢ + alog % for 0 < a,b < 1 is
the binary KL divergence, and cupprozcas is the numerical
constant from Claim 1.

Proof: See Sec. VI. O

Combining this lemma with the Davis-Khan sin © theorem
(bounds the distance between the principal subspaces of two
symmetric matrices) [62] and a guarantee for the power
method [63], we can prove the following theorem.

Remark 1: We specify the power method just to have one
algorithm for computing the top r singular vectors of a matrix
for which we can specify the time compleixty. It can be
replaced by any other algorithm and our overall result remains
the same.

Theorem 3.1 (Subspace-Median Guarantee): Pick an ¢ <
1. Assume that Assumption 1 holds and that oy — oy ; > A
for a A > 0. Assume also that, for at least (1 — 7)L node
outputs, the following holds, for a p > 0.

€
P P, P < ——=Ar>1—p.
R e I ELR

Consider Algorithm 1 with T = Clog (£2).
1) Assume use of exact SVD at the nodes. Then, w.p. at least
1 — copprozam — exp(—Ly(0.4 — 7, p)),

SDF(Uout7 U*) <e

2) Assume that the power method with T),,,, iterations is
used for the SVD step. If Tpp = C %: log(%), then the
above conclusion holds w.p. at least 1 — copprozam —
exp(—L(0.4 — 7,p+ -1)).

The communication cost is nr per node. The com-
putational cost at the center is order n?Llog” (£r).
The computational cost at any node (when using power
method) is order ng,rTpo, = nqgr% log(2).
Proof: See Sec. VI. O
The assumption o — o7, ; > A (singular value gap) is
needed for ensuring that the span of U, computed at any
good node is an accurate estimate of the span of U™. It also
decides the time complexity of the computation (A appears in
the required number of power method iterations.

B. Alternate Solution 1: SVD on Resilient Covariance
Estimation (SVD-ResCovEst)

SVD-ResCovEst is the solution studied by Minsker [46] and
described earlier. It involves computing the GM of (vectorized)
P s, followed by obtaining the principal subspace (r-SVD) of
the GM matrix. In a federated setting, this is communication
inefficient since it requires that each node ¢ either shares its
raw data D, with the center (this is a matrix of size n X qy),
or, that it shares ®, = DKDZ/(M (this is of size n x n). For
PCA, as we explain in the next section, this is also sample
inefficient; it requires g, > n? / €2. See Remark 3.
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Algorithm 2 Resilient Power Method (ResPowMeth)
Parameters 7)., To v, wam

1: Central Server Randomly Initialize U,.,q with ii.d
standard Gaussian entries. Set Uy = U ;¢ 4.

2: for t € T}, do

33 Nodes /=1,...,L

4. Compute ®,U;_4

5 Central Server

6: GM — approxGM ({vec(®,U;_1), £ € [L]}\
{:|1®2Us1llF > wen})
(Use [60, Algorithm 1] with Tig s iterations on the set
of ®,U;_1s whose Frobenius norm is below wgas)

7:  Orthonormalize: using QR GM “LUR

8: Return U; « U

9: end for

10: Output U,y < U

pow

C. Alternate Solution 2: Resilient Power Method
(ResPowMeth)

A natural way to make the SVD-ResCovEst approach
communication-efficient is to borrow ideas from the sketching
literature and share ®,U ,,,,, for some (possibly random) n x r
matrix U 4. This idea is, in fact, one iteration of the power
method for computing the r-SVD of a matrix [54], [55].
It can be converted into a provably correct solution by using
the GM to modify the power method. This starts with a
random Gaussian initialization, U 4,4, and implements the
iteration: U «— QR(>_, ®,U). In our GM based modification,
we replace the summation by the GM. We refer to this solution
as Resilient Power Method (ResPowMeth), and summarize it in
Algorithm 2. As we show next, ResPowMeth works with high
probability (w.h.p.) if all the ®,’s are very accurate estimates
of ®*. The reason it needs to make the above assumption
is because it computes the GM of the node outputs ®,U at
each iteration including the first one. At the first iteration,
U, is a randomly generated matrix and thus, w.h.p., this is a
bad approximation of the desired subspace span(U™). Conse-
quently, the same is true for the column span of U Z = ®,U,.
To understand this easily, suppose U is almost orthogonal to
U*, ie., U(TU* ~ 0. Then the span of I:TZ will be almost
orthonormal to that of U*. Thus, unless all the ®,s are very
similar, the column spans of the different U Zs will not be
close. As a result, the GM of their projection matrices will not
be able to distinguish between the good and Byzantine ones.
There is a good chance that it approximates the subspace of
the Byzantine one(s). This then means that the updated U is
also a bad approximation of span(U™). The same idea repeats
at the second iteration. Thus, with significant probability,
the subspace estimates do not improve over iterations. This
intuition is captured in the guarantee provided next. It becomes
clearer in the direct one-step analysis that we provide in
Appendix C.

Theorem 3.2 (ResPowMeth Guarantee): Assume that
Assumption 1 holds and that o) — o7, ; > A for a
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A > 0. Consider ResPowMeth (Algorithm 2) with T}, =
C%log(2), Tem = log (£27), and wey = L.lofy/r.
Suppose, for at least (1 — 7)L node outputs, the following
holds

pr{ls - 8 < min (o) Af 21

Then w.p. at least 1 — copprozgrmr—c—Lp — exp(—Lyp
(0.4 — 7,p)) SDF(Uout,U*) < €. The communication
cost is nrlpe, = CnrZlog(2) per node. The com-
putatlonal cost at the center is an log (L"’“) “Tpow =

L’"’) log( ). The computational cost at any node

is nqngpow = nqw‘ & log(2).
Proof: See Sec VI A second more illustrative proof is
provided in Appendix C. O
Observe that this result assumes |[®, — ®*| <
min(e/+/r,1/(y/nr))-A. The 1/+/nr factor makes this a very
stringent requirement, e.g., even to get an ¢ = 0.5 accurate
subspace estimate, we need |[®, — ®*|| < A/y/n r. On the
other hand, the Subspace Median guarantee only assumes
[, — ®*| < (¢/4/7)A. As we will see in the next section,
this translates into a much better sample complexity for PCA

for Subspace Median than for ResPowMeth.

nrL2:c = log® (

IV. APPLICATION 1: RESILIENT FEDERATED PCA

Recall from Sec. II-A that our goal is to reliably estimate the
principal subspace of the unknown data covariance matrix %*.
Node /¢ has access to a subset of g, data vectors dj arranged
as columns of an n X gy matrix D).

A. Subspace-Median (SubsMed) for Resilient PCA

Using its data, each node can compute the empirical covari-
ance matrix 3, := DEDZ /q. This is an estimate of the true
one, X°. This allows us to use Algorithm 1 applied to D,
or 2¢ to obtain a Byzantine resilient PCA solution, and use
Theorem 3.1 to analyze it. The sample complexity needed to
get the desired bound on ||3, — £*|| w.h.p. is obtained using
[56, Theorem 4.7.1]. Combining these two results, we can
prove the following.

Corollary 1 (Subspace Median for PCA): Consider the
PCA problem as defined in Sec. II-A.2. Assume that
Assumption 1 holds and that oy —o07,; > A fora A > 0.
Consider Algorithm 1 (SubsMed) with input ® = D,D, /qq,
and parameters as set in Theorem 3.1. If

_ 4 10 nr
2> 0oR4L T

then, w.p. at least 1 — copprosaym — exp(—L(0.4 —

T, Qexp(—n) + n—lO))’ SDF(Uout» U*) <e

Proof: We prove it in Sec. VI-F. It is an immediate
corollary of Theorem 3.1 and [56, Theorem 4.7.1]. U
Remark 2 (ResPowMeth for PCA): In the setting of Cor021-
lary 1, consider Algorithm 2 (ResPowMeth) Ifg > CK 4%
max( o2y ) then SDp (U, U™) <
Remark 3 (SVD-CovEst for PCA): In the setting of Corol-
lary 1, consider SVD-ResCovEst (SVD on GM of nodes’
covariance matrix estimates) studied in [46, Corollary 4.3].
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By using [46, Corollary 4.3], and using the fact that, E||dy||*—
trace(¥*?) < Cn?K*o5? under the sub-Gaussian assumption,

we can conclude the following: If ¢, > CK4%*5712/62, then,
SDp(U,yu, U") < e with constant probability.

The reason this needs g, of order n? is because it first
obtains a resilient estimate of the entire n X n covariance
matrix, followed by r-SVD on it. For resilient estimation,
it needs to use the Frobenius norm as the error measure. The
robust estimator studied in [42, Theorem 4.35] uses a different
algorithm, but this also needs order n?/e2 sample complexity
and order n? communication complexity.

Remark 4 (Generalizations of Theorem 3.1): (1) Theorem
3.1 also holds if the dj’s are not i.i.d., but are zero mean,
independent, sub-Gaussian, and with covariance matrices that
are of the form E[dyd) ]| = U*S,U*T with all S}’s being
such that their -th singular value gap is at least A.

(2) We can also combine Theorem 3.1 with the sample
complexity bound for estimating approximately LR covari-
ance matrices given in [64, Corollary 5.52 and Remark
5.53] to show that, in this case, a much lower sample
complexity suffices. Suppose dj are i.i.d., zero mean, sub-
Gaussian, have covariance matrix X%, and are bounded with
lldi||* < K?trace(X*) and trace(X*) = roo; with stable
rank To, < n (approximately LR matrix). Then, if ¢, >
CK* % (max(ro, r)2logn)/e?, then SDp(U,u, U*) < €
Here ro is the stable rank.

(3) We can also do the above for PCA with missing data
by combining with [65, Theorem 3.22].

B. Subspace Median-of-Means (Subspace MoM)

As is well known, the use of median of means (MoM),
instead of median, improves (reduces) the sample complexity
needed to achieve a certain recovery error, but tolerates a
smaller fraction of Byzantine nodes. It is thus useful in settings
where the number of bad nodes is small. We show next
how to obtain a communication-efficient and private GMoM
estimator for federated PCA. Pick an integer L < L. In order
to implement the “mean” step, we need to combine samples
from p = L/E nodes, i.e., we need to find the r-SVD of
matrices D gy = [D(y,1), D (9,2, ..., D,p]. for all ¥ € [E]
Recall that (y ) =(9—_1)p+¢- This needs to be done without
sharing the entire matrix Dy 1y. We do this by implementing
L different federated power methods, each of which combines
samples from a different minibatch of p nodes. The output of
this step will be L subspace estimates U, V€ [L]. These
serve as inputs to the Subspace-Median algorithm to obtain the
final Subspace-MoM estimator. We summarize the complete
the algorithm in Algorithm 3. We should mention that L=1L
is the subspace median special case.

As long as the same set of 7L nodes are Byzantine for all
the power method iterations, we can prove the following.

Corollary 2: Consider Algorithm 3 and the setting of
Corollary 1. Assume that the set of Byzantine nodes remains
fixed for all iterations in this algorithm and the size of this set
is at most 7L with 7 < 0.4L/L. If

*2 T
q ~ 401°nr L
[Tz et
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TABLE I

COMPARING SUBSPACE MEDIAN (SUBSMED) WITH SVD-RESCOVEST AND RESILIENT POWER METHOD (RESPOWMETH) AND WITH THE BASIC POWER
METHOD FOR A NO-ATTACK SETTING. WE OBTAIN COMPLEXITIES FOR GUARANTEEING SD2(U,U*) < e. SUBSMED AND RESPOWMETH
ONLY BOUND SDp(U,U*) AND THIS IS WHY THE SAMPLE COMPLEXITIES FOR THESE CONTAIN AN EXTRA FACTOR OF r. THIS
TABLE SUMMARIZES THE RESULTS OF COROLLARY 1 AND THE TWO REMARKS BELOW IT

Methods— SVD-ResCovEst ResPowMeth SubsMed Basic PowMeth, no attack
[46, Cor 4.3], [42, Thm 4.35] (Proposed modific of [46, Cor 4.3]) | (Proposed) (Baseline)
Sample Comp for PCA | ™ - L max <n2r2, 6’—5) L nL n
* 2
q> CK* %z x
Communic Cost n? nr% log(2) nr nr% log(2)
Compute Cost - node n2qp 'qugT'% log(%) nger UA" log(2) | nger 'Z log(2)
Compute Cost - center | n2Llog? (%) %:m"L log( %) log® (%) n2L log? <%> UA—:an log(2)
then, the conclusion of Corollary 1 holds. The communication ~Algorithm 3 Subspace ~ Median-of-Means. ~ Recall  that

cost is Tponr = nr log(%) per node. The computational
cost at the center is order n?L log® (%) The computational

cost at any node is order nger % log(2).

C. Discussion and Comparisons

1) Comparing Subspace-Median and Subspace-MoM: For
a chosen value of L < L, the sample complexity required by
subspace-MoM reduces by a factor of 1/p = i/ L, but its
Byzantine tolerance also reduces by this factor. This matches
what is well known for other MoM estimators, e.g., that
for gradients used in [16]. Also, the communication cost of
Subspace-MoM is larger than that of Subspace Median since it
implements a power method to share samples between subsets
of nodes.

2) Comparing Subspace-Median With SVD-ResCovEst and
ResPowMeth: Consider communication cost. SVD-CovEst has
a very high cost of order n? while Subspace Median and
ResPowMeth have much lower costs of order nr and nr%
times a log factor respectively. Consider sample cost. Both
SVD-CovEst and ResPowMeth have a very high sample cost
of order n? and order n?r? respectively for e = c. Subspace
Median has a sample cost of only order nrL.

In terms of computation cost at the nodes, SVD-CovEst is
the most expensive, while both ResPowMeth and Subspace
Median have the same cost. But, at the center, Subspace
Median has a higher cost by a factor n/(r log®(n/€)). In many
practical federated applications, the nodes are power limited,
and hence their computation cost, and communication cost,
needs to be low. In terms of total algorithm speed, communica-
tion cost/time is often the main bottleneck. The computational
cost at the center is a lesser concern.

3) Comparison With Standard Federated Power Method in
the No-Attack Setting: Observe that, for a given normalized
singular value gap, the sample complexity (lower bound on q)
needed by the above result is order nrL/e? while that needed
for standard PCA (without Byzantine nodes) is order n/e?
[56, Remark 4.7.2]. The reason we need an extra factor of
L is because we are computing the individual node estimates
using ¢ = ¢/L data points and we need each of the node
estimates to be accurate (to ensure that their “median” is

(9,6) —(9—1)p+e-
1: II~1put: Batch D(19) = [D(&l),D(ig’g), .. .,D(&p)], 9 €
[L].
2: Parameters: T,
3: Central Server
4: Randomly initialize U ,4y,q with i.i.d standard Gaussian
entries. Set U (y) = Uqna-
5. for ¢t € [Ton] do
: Nodes/=1,...,L
Compute U(19,£) — D(ﬂ7g)D2;97g)U(19), {e (19 - 1)p +
[p], ¥ € [L]. Push ﬁ(ﬂ@ to center.
Central Server R 3
Compute U 9y — QR(>_7_ Uy.p)), ¥ € [L]

10:  Push U y) to nodes £ € (J —1)p + [p].
11: end for }
12: Use Algorithm 1 for the input {U (y)}5_,
13: Output U ;.

accurate). This extra factor of L is needed also in other work
that uses (geometric) median, e.g., [16] needs this too. The
reason we need an extra factor of r is because we need use
Frobenius subspace distance, SDp, to develop and analyze
the geometric median step of Subspace Median. The bound
provided by the Davis-Kahan sin Theta theorem for SDp
needs an extra factor of /7.

The per-node computational cost of standard federated PCA
is ngrTy, while that for SubsMed is ngrTyow + n?LTG -
Ignoring log factors and treating the singular value gap as a
numerical constant (ignoring T}, and Tgar), letting € = c,
and substituting the respective lower bounds on ¢, the PCA
cost is n?r while that for SubsMed for Byzantine-resilient
PCA is max(n?r?,n?L) = n? max(r?, L). Thus the compu-
tational cost is only max(r, L/r) times higher.

We summarize the comparisons in Table I.

V. APPLICATION 2: HORIZONTALLY FEDERATED LRCS

A. Problem Setting

1) Basic Problem: The LRCS problem involves recovering
an n x ¢ rank-r matrix X" = [z}, x3,...,2;], with r <
min(g, n), from y,, := Az}, k € [g] when y,, is an m-length
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vector with m < n, and the measurement matrices Ay
are known and independent and identically distributed (i.i.d.)
over k. We assume that each A; is a “random Gaussian”
matrix, i.e., each entry of it is i.i.d. standard Gaussian. Let
x* L2 yrs*v*T .= U*B* denote its reduced (rank 7)
SVD, and « := o} /0o the condition number of X*. Notice
that each measurement y,; is a global function of column x;,
but not of the entire matrix. As explained in [49], to make
it well-posed (allow for correct interpolation across columns),
we need the following incoherence assumption on the right
singular vectors.

Assumption 2 (Right Singular Vectors’ Incoherence): We
assume that maxy, ||bj|| < u\/7/qof for a constant p > 1.

2) Horizontal Federation: Consider the m X ¢ measure-
ments’ matrix,

Y = [yl,yQ,...,yq] = [Ala:’{,Agscg,...,Aqa:Z].

We assume that there are a total of L nodes and each node
observes a different disjoint subset of m rows of Y. Denote
the set of indices of the rows available at node ¢ by Sy. Thus
|Se| = m = m/L. We assume that node ¢ has access to Y,
and {(Ag)e, k € [g]}. Here (Ag)e == I;A;€ is m X n and
Y, = I;Y is of size m x ¢ with m = m/L, and with
(yp)e := (Ap) ez for all k € [¢]

Observe that the sub-matrices of rows of Y, Y,, are
identically distributed, in addition to being independent. Con-
sequently, the same is true for the partial gradients computed
at the different nodes. This is why, without extra assumptions,
we can make our solution Byzantine resilient. On the other
hand, column sub-matrices of Y are not identically distributed.
In order to obtain provable guarantees for vertical LRCS,
we will need extra assumptions that bound on the amount
of heterogeneity in the data (and hence in the nodes’ partial
gradients). This is being studied in ongoing work.

3) Byzantine Nodes: Assumption 1 holds. Also, the set of
Byzantine nodes may change at each AltGDmin algorithm
iteration.

B. Review of Basic altGDmin [49]

We first explain the basic idea [49] in the simpler no-attack
setting. AltGDmin imposes the LR constraint by expressing
the unknown matrix X as X = UB where U is an n x r
matrix and B is an r x ¢ matrix. In the absence of attacks,
the goal is to minimize

q
f(U,B):=> |y, — Ub|
k=1

AltGDmin proceeds as follows:
1) Truncated spectral initialization: Initialize U (explained
below).
2) At each iteration, update B and U as follows:

a) Minimization for B: keeping U fixed, update B
by solving ming f(U, B). Due to the form of the
LRCS measurement model, this minimization decou-
ples across columns, making it a cheap least squares
problem of recovering q different 7 length vectors. It is
solved as by, «— (AzU)'y, for each k € [q].
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b) GD for U: keeping B fixed, update U by a GD
step, followed by orthonormalizing its columns: U+ «
QR(U — nVuyf(U,B))). Here Vyf(U,B) =
Zke[q} AJI(AkUbk - yk)bl

The use of full minimization to update B is what helps
ensure that AltGDmin provably converges, and that we can
show exponential error decay with a constant step size (this
statement treats x as a numerical constant) [49], [50]. Due
to the decoupling in this step, its time complexity is only as
much as that of computing one gradient w.r.t. U. Both steps
need time of order mgnr. In a federated setting, AltGDmin is
also communication-efficient because each node needs to only
send nr scalars (gradient w.r.t U) at each iteration.

We initialize U by computing the top r singular vectors of

Xo = Z AL (yp)wunc(@)ef, where g, no(a)
ks

=(yoly<ya)

Here o := 9x%1 Y, |ly,l|?/mq and y, () is a truncated
version of the vector y obtained by zeroing out entries of y
with magnitude larger than « (the notation |y| means |y|; =
ly;| for each entry i, the notation 1,<, returns a 1-0 vector
with 1 where z; < a and zero everywhere else, and z; 025 is
the Hadamard product between the two vectors, i.e., the “.*”
operation in MATLAB)

Sample-splitting is assumed to prove the guarantees. This
means the following: we use a different independent set of
measurements and measurement matrices y,,, Ay, k € [¢] for
each new update of U and of B. We also use a different
independent set for computing the initialization threshold a.

All expected values used below are expectations conditioned
on past estimates (which are functions of past measurement
matrices and measurements, Ay, y,.). For example, E[(Vy f)¢]
conditions on the values of U, By used to compute it. This
is also the reason why E[(Vy f),] is different for different
nodes; see Lemma 2.

C. Resilient Federated Spectral Initialization

_This consists of two steps. First the truncation threshold o =
C N~ >, y#, which is a scalar needs to be computed. This

mq -
is simple: each node computes vy = 7%1 Dok Dies, (ye)?; and
sends it to the center which computes their median.

Next, we need to compute U which is the matrix of top r
left singular vectors of X, and hence also of X ¢ X J . Node
¢ has data to compute the n x ¢ matrix (Xg)y, defined as

a

(Xo0)e =Y (Ar)e (Yg)o)runces , 2)

k=1

Observe that Xy = Y _,(X)e. If all nodes were good (non-
Byzantine), we would use this fact to implement the federated
power method for this case. However, some nodes can be
Byzantine and hence this approach will not work. For reasons
similar to those explained in Sec. III, (i) an obvious GM-based
modification of the federated power method will not work
either, and (ii) nodes cannot send the entire (X), (this is
too expensive to communicate). We instead use Subspace
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Algorithm 4 Byz-AltGDmin: Initialization Using Subspace
Median

Input Y, and (Ag),

Parameters Ty, Tpouw

Nodes ¢ = 1,.‘.,512

Compute ap — 2255 3 [/ (y, )12

Central Server

a « Median{a,} 2,

Nodes / =1,...,L

Compute (Ug), < top-r-singular vectors of (X ), defined
in (2) (use power method with T}, iterations).

Central Server

Use Algorithm 1 (Subspace-Median) with parameter T s
on (Ug)e, £ € [L].

Output U ;.

Median, Algorithm 1, applied to D, = (Xg),. This is
both communication-efficient and sample-efficient. It can be
shown that it will work under a sample complexity lower
bound that is comparable to that needed in the attack-free
setting. We summarize this in Algorithm 4. We can obtain
a guarantee for this approach by applying Theorem 3.1 with
®, = (X0)e(Xo)/ /q and using the results from [49] and
[50] to ensure that the assumption needed by Theorem 3.1
holds. We directly state a guarantee for the GM of means
estimator developed next. The guarantee for Algorithm 4 is a
special case of that for the GM of means estimator developed
next with L = L, and thus its guarantee is also given by
Corollary 3 with L = L.

D. Resilient Federated Spectral Initialization: Horizontal
Subspace-MoM

As explained earlier for PCA, the use of just (geometric)
median wastes samples. Hence, we develop a median-of-
means estimator. For a parameter L < L, we would like
to form L mini-batches of p = L/Ji nodes; w.l.o.g. p is
an integer. In our current setting, the data is horizontally
federated. This requires a different approach to combine
samples than what we used for PCA in Sec. IV-B. Here,
each node can compute the n x ¢ matrix (Xg),. Com-
bining samples means combining the rows of (Ag), and
(yy)e for p nodes to obtain (X)) with k-th column
given by ZZ:l(Ak?)Z;%Z) (yk,trunc)(ﬂ,l) /p Recall that (197 g) =
(9 —1)p+¥). To compute this in a communication-efficient
and private fashion, we use a horizontally federated power
method for each of the L mini-batches. The output of each
of these power methods is U y), ¥ € [L). These are then
input to the subspace-median algorithm, Algorithm 1 to obtain
the final subspace estimate U,,:. To explain the federation
details simply, we explain them for ¥ = 1. The power
method needs to federate U «— QR((XO)(l)(XO)(Tl)U) =
QR _(X0)e (30—, (X0)/U)). This needs two steps
of information exchange between the nodes and center at
each power method iteration. In the first step, we compute
V=2 e (X0)¢"U, and in the second one we compute

U= >_rejp) (X0)cV, followed by its QR decomposition.
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We summarize the complete algorithm in Algorithm 5.
As long as the same set of 7L nodes are Byzantine for all
the power method iterations needed for the initialization step,
we can prove the following result for it>. This follows as a
corollary of Theorem 3.1 and the lemmas proved in [49] and
[50] for the attack-free case.

Corollary 3 (Initialization Using Subspace-GMoM):
Consider the Initialization steps (lines 3-22) of Algorithm 5
with Tay = Clog(%) and Tpo,y = Crk? log(3-). Assume
that Assumption 2 hold. Assume also that the set of Byzantine
nodes remains fixed for all iterations in this algorithm and
the size of this set is at most 7L with 7 < 0.4L/L. Pick a
6o < 1 and an L < L such that L is a multiple of L. If

mq > CL - 1% (n + q)r’ /63,

then w.p. at least 1 — copprosam — exp(—Lp(0.4 —
7exp(—c(n +q)) +n~1%)) — Lexp(—cmqdg/r?r?),

SDF(U*7 Uout) S 50-

The communication cost per node is order nr -
k2nr log( 50

Proof: This follows by applying Theorem 3.1 on <I’(19) =
Yi=1(X0)w.0(Xo)lgp/p and @ = E[(Xo)ea]
E[(Xo)¢|a]” for ¥ € [L] and using the results from
[49] and [50] to ensure that the assumption needed by
Theorem 3.1 holds.

The idea is almost exactly the same as for the special case
L = L. This case is simpler notation-wise and hence we
provide a proof for this case in Appendix A-B. The main
idea is as follows. Let D(«) be the positive entries’ diagonal
matrix defined in [49, Lemma 3.8]. We use [49, Lemma 3.8]
and [49, Fact 3.9] to show that E[(X)¢|a] = X*D(«) and
to bound ||(X )¢ — E[(X¢)¢|a]||. We then use this bound to
then get a bound ||®, — ®*||. In the last step, we use an easy
median-based modification of [49, Fact 3.7] to remove the
conditioning on . ]

Tpow =

E. Byzantine-Resilient Federated AltGDmin: GDmin
Iterations

We can make the altGDmin iterations resilient as follows.
In the minimization step, each node computes its own estimate
(bi)e of by, as follows:

(br)e = ((Ar)eU) (yr)e, k €[]

Here, M' := (M 'M)'M7". Each node then uses
this to compute its estimate of the gradient w.rt. U as
Ve = e (Ar)¢ ((Ar)eU(br)e — (yi)e) (br)/ - The cen-
ter receives the gradients from the different nodes, computes
their GM and uses this for the projected GD step. Since the
gradient norms are not bounded, the GM computation needs to
be preceded by the thresholding step explained in Sec. VI-A.2.

As before, to improve sample complexity (while reducing
Byzantine tolerance), we can replace GM of the gradients
by their GM of means: form L batches of size p = L/E

3This assumption can be relaxed if we instead assume that the size of the
set of nodes that are Byzantine in any one initialization iteration is at most 7L.
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each, compute the mean gradient within each batch, compute
the GM of the L mean gradients. Use appropriate scaling.
We summarize the GMoM algorithm in Algorithm 5. The
GM case corresponds to L = L. Given a good enough
initialization, a small enough fraction of Byzantine nodes,
enough samples mgq at each node at each iteration, and
assuming that Assumption 2 holds, we can prove the following
for the GD iterations.

Theorem 5.3 (AltGDmin-GMoM: Error Decay): Consider
the AltGDmin steps of Algorithm 5 with sample-splitting,
and with a step-size n < 0.5/032. Set Tgyr = Clog %,
wan = Cmo’?. Assume that Assumptions 1 and 2 holds. If,
at each iteration ¢,

mq > C1Le* % (n + r)r?,

m > Cymax(logg,logn); if 7 < 0.4f//L; and
if the initial estimate U, satisfies SDp(U*,Uy) <
do = 0.1/k? then wp. at least 1
t [Ln™10 + exp(—Ly(0.4 — 7,n~19))],

— CapproxGM —

0.12\**
SDp(U",U41) < 0441 = <1 — (no7?) K2 ) %

and [lef — (21)i1]| < i | for all k € [g).
The communication cost per node is order nr - T =
w*nrlog(L).

Proof: Consider the L =L (GM) special case since this
is notationally simpler. The extension for the general L<L
(GM of means) case is straightforward. The proof uses the
overall approach developed in [50] with the following changes.
Let {1 := (Jgood)1 be a non-Byzantine node. We now also
need a bound on the Frobenius norm of

Err := vfGM - E[vfll (Ua Bh)]a gl = (jgood)l

that is of the form cétﬁwi‘Q for a ¢ < 1 wh.p., under the
assumed sample complexity bound. This type of a bound,
along with assuming Jy < c¢//Tk2, helps ensure that the
algebra needed for showing exponential decay of the subspace
estimation error goes through. We can get the above bound on
||Err||  using Lemma 6 if we can get a similar bound on

max |V fy —E[Vfe, (U, By,)]l|F

€T good

This is proved in the lemma given next.

Lemma 2: Assume SDp(U*,U) < §; < &g. Then, w.p.
at least 1 —exp ((nJrr) —ce3 T’ZZZZ )
for all £ € Jgo0ds

IV fe(U, By) — B[V fo, U, By,)]||r < 12.5¢16;m07?

We prove this lemma by noting that

V.f@(Ua B[) - ]E[v.ffl (U’ B@l )]

= (Vfe(U,B) —E[V (U, By)))

+ ENVf(U, By)] - E[Vfe,(U, By,)))
The first term can be bounded using standard concentration
bounds. The second one requires carefully bounding ||B, —
By, || r by using the fact that both By, By, are close to G :=
U'x-.

We provide its proof and the complete proof of our Theorem
in Appendix B. O

—2exp(log g+r—ce3m),
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F. Complete Byz-AltGDmin Algorithm

Combining Corollary 3 and Theorem 5.3, and setting =
0.5/032 and §p = 0.1/k?, we can show that, at iteration
t+ 1, SDF(U*, Ut+1) S 5t+1 = (]. - 0.06/&2)t+10.1//€2
whp. Thus, in order for this to be < ¢, we need to set
T = Ck?log(1/e). Also, since we are using fresh samples
at each iteration (sample-splitting), this also means that our
sample complexity needs to be multiplied by 7.

We thus have the following final result.

Corollary 4: Consider the complete Algorithm 5 with
sample-splitting. Set 1,0, = Clog(nk), n = 0.5/0}%, T =
Cr?log(1/¢). Assume that Assumption 2 holds. If the total
number of samples per column m, satisfies

mq > CLE*12(n + q)r?log(1/€)

and m > Crx? max(log ¢, log n) log(1/¢); if at most 7L nodes
are Byzantine with 7 < 0.4L /L, if the set of Byzantine nodes
remains fixed for the initialization step power method (but can
vary for the GDmin iterations); then, w.p. at least 1—7Ln 19,
SDp(U*,Ur) <e¢, and ||z — x;|| < ¢|lx;|| for all k& € [q].

The communication cost per node is order x2nr log(%). The
computational cost at any node is order k2mnqr log(%) while
that at the center is n2L log®(Lr/e).

The above result shows that, under exactly one assumption
(Assumption 2), if each node has enough samples m (m is
of order (n + q)r?(L/L) times log factors); if the number of
Byzantine nodes is less than (0.4L/L) times the total number
of nodes, then our algorithm can recover each column of the
LR matrix X™ to e accuracy whp. To our best knowledge,
the above is the first guarantee for Byzantine resiliency for
any type of low rank matrix recovery problems studied in a
federated setting.

Observe that the above result needs total sample complexity
that is only L times that for basic AltGDmin [49].

VI. PROOFS FOR SEC IIT AND IV

All the proofs given below rely on the lemma for using
GM for robust estimation borrowed from [16]. We give these
lemmas in the section below, followed by two corollaries that
will be used in our proofs.

A. Using GM for Robust Estimation

The goal of robust estimation is to get a reliable estimate of
a vector quantity z using L individual estimates of it, denoted
z¢, when most of the estimates are good, but a few can
be arbitrarily corrupted or modified by Byzantine attackers.
A good approach to do this is to use the GM. The following
lemma, which is a minor modification of [16, Lemma 2.1],
studies this*

Lemma 3: Consider {zi,z9,...,2¢,...21} with zy C
R"™. Let z¢,, denote their GM and let zgy denote their
(1 + egnr) approximate GM estimate computed using [60,
Algorithm 1]. Fix an « € (0,1/2). Suppose that the following
holds for at least (1 — a)L zys:

llze = 2[| < €[z

4116, Lemma 2.1] does not provide an algorithm for approximating the

Geometric Median; we combine their result with Claim 1 to provide this.
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Algorithm 5 Byz-AltGDmin: Complete GMoM based algorithm

: Input: Batch 9 :  {(Ag)e, Y,k € [q]}, £ € [L]

: Parameters: T),,,,, Tq .,

. Initialization using Subspace MoM:

Nodes ¢ = 1,...,52

Compute ag — 2252 3 |y, )l

: Central Server

o — Median{ag)}5_,, where a(g) = >0_; a,0/p

: Central Server

: Let Ug = U,gnqg Where U,.qpng 1S an n X r matrix with

i.i.d standard Gaussian entries.

10: for 7 € [Tpo,,] do

11: Nodes /=1,...,L

122 Compute V; «— (Xg)/ (Ug))r—1 for £ € (9 —1)p+
[p]. ¥ € [L]. Push to center.

13:  Central Server

14 Compute V (9) — >0 Vig_1)p4e

15:  Push V() to nodes £ € (9 —1)p + [p].

16: Nodes /=1,...,L

17:  Compute Uy < >, (X ),V () for £ € (0 —1)p+[p],
¥ € [L]. Push to center.

18:  Central Server

19:  Compute U (y) QR(>)_, U (9-1)p+t)

20:  Push U y) to nodes ¢ € (9 — 1)p + [p].

21: end for }

22: Apply Algorithm 1 on {Uy}5_, to get Uy

23: Set Uy < U yut

24: AitGDmin Iterations:

25: fort =1to T do

26: Nodes {=1,...,L

27 SetU «— U;_4

28 (b)e — ((Ap)eU) (yp)e, ¥k € q]

29: (in)g — U(bk)g, Vke [q]

300 (Vi) = Xperg(Ar)d (Ar)eU (br)e—(y)e) (br)e "
V k€ [q]

31:  Push Vf, to center

32:  Central Server

33:  Compute V fy) < > ey Vfe

3 Vfem <«  approxGM ({vec(Vfw)), ¥ € [L]}\
{0 IV llr > wan})
(Use [60, Algorithm 1] with Tz, iterations on the set
of V f(9)s whose Frobenius norm is below wanr)

35:  Compute UT — QR(U,_; — S5V fawm)

36:  return Set U, «— U™. Push U, to nodes.

37: end for

38: Output Ur.

© 0N Y R W =

Let C, := % Then, w.p. at least 1 — Capprozc s

L
2= 12am — 2|

1zanm — 2[| < CaellZ]| + eam

(1—-2a)L
max z
< CoellZl| + eqrr —— =0 Izl
1- 2«
The number of iterations needed for computing zgus
is Tem = C log(EGLM), and the time complexity is
O(nLlog3( L ))
€EGM
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The second inequality follows because, using the exact GM
definition, >_, |25 — zell < 32,110 = zel| = X2, ||z¢|| and
> ¢ llzell £ Lmaxy ||z¢||. To understand this lemma simply,
fix the value o to 0.4. Then C,, = 6. We can also fix egps = €.
Then, it says the following. If at least 60% of the L estimates
are € close to Z, then, the (1 + €) approximate GM, zg s,
is 1le max(||2||, maxse[z) ||2¢||) close to Z. The next lemma
follows using the above lemma and is a minor modification
of [16, Lemma 3.5]. It fixes = 0.4 and considers the case
when most estimates are good with high probability (w.h.p.).
We provide a short proof of it in Appendix D-D.

Lemma 4: Let zy C R™, for £ € [L] and let z; s denote a
(14+€ecar) approximate GM computed using [60, Algorithm 1].
For a 7 < 0.4, suppose that, for at least (1 — 7)L z;’s,

Pr{[|z — z|| < €|z} >1-p
Then, w.p. at least 1 — copprozam — exp(—L1p(0.4 — 7, p)),

[zan — Z|| < 6¢[|Z]| + begar max ||z
Le[L]

where ¢(a,b) = (1 — a)log =% + alog ¢. The number of

iterations needed for computing zg s is Tay = C 10%(%%)’
and the time complexity is O (TLL 10g3(EGL o ))

Suppose that, for a 7 < 0.4, at least (1—7)L zys are “good”
(are € close to z) whp. Let egas = € and suppose that all z;’s,
including the corrupted ones, are bounded in 2-norm by || Z||.
Then, the (1 + ¢)-approximate GM is about 11¢||Z|| close to 2
with at least constant probability. If the GM is approximated
with probability 1, i.e., if copprozam = 0O, then, the above
result says that, for p small enough and large L, the reliability
of the GM is actually higher than that of the individual good
estimates. For example, for a p < 0.01, the probability is at
least 1 —p(©4=7) The increase depends on (0.4 —7) and L,
e.g., if 7 > 0.2 and L > 10, then, the probability is at least
1_p0.2 L Zl_pQ

1) Corollary for Bounded zys: In settings where all z,’s are
bounded, we have the following corollary of Lemma 4.

Corollary 5: In the setting of Lemma 4, if max, ||z¢]| <
||Z]], then ||zgar — 2|| < 11e||Z|| with above probability. The

number of iterations needed is T = C'log(- GLM ), and the

time complexity is O (nL logg(e GLM) .

We use this for analyzing the Subspace Median algorithm
in which the z;s are vectorized projection matrices from the
different nodes.

2) Corollary for Unbounded zys: When some z,s may not
be bounded, we need an extra thresholding step. Observe that,
from the assumption in Lemma 4, w.p. at least 1 — Lp, the
good zys are bounded by (1 + €)||Z]||. Thus, to get a set of
z¢’s that are bounded in norm, while not eliminating any of
the good ones, we can create a new set that only contains z;’s
with norm smaller than threshold wear = (1+¢€)||Z||. In other
words, we compute the GM of the set {z1,...,z.} \ {z¢ :
lzell > (1 + €)]|2]|} as the input to the GM computation
algorithm [60, Algorithm 1]. More generally, w can be set to
C|z|| for any C' > 1. In practice, to set the threshold, we only
need to have an estimate of the norm of the unknown quantity
z that we are trying to estimate.
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We have the following corollary of Lemma 6 for this
setting.

Corollary 6: Let zgs denote a (14-€c )y ) approximate GM
of {z1,..., 20} \ {ze : ||z¢]| > wan}, all vectors are in R™.
Set waar = (14 €)]|2]]. For a 7 < 0.4, suppose that, for at
least (1 —7)L z4’s,

Pr{llz— 2| <€Z[} > 1—p
Then, w.p. at least 1—cupproccr —Lp—exp(—Ly(0.4—7, p)),
lzam — Z|| < 6€||Z]| + beanm (1 + €)] 2|
< l4max(e, eqar)| Z]]

L), and

The number of iterations needed is Ty = C log(eGM

the time complexity is O (nL log® (- GLM) .

We use this for analyzing ResPowMeth with z, being the
vectorized ®,U .. It is also used later for analyzing the
GD step of the alternating GD and minimization (altGDmin)
algorithm for solving the LRCS problem.

B. Proof of Lemma 1

Since SDp(U,,U*) = (1/V2)|Pu, — Pu+|lr (61,
Lemma 2.5], thus, the lemma assumption implies that
maxee 7,,,q |Pu, — Pu-|r < V26.

Observe that | Py || < +/r for any matrix U with orthonor-
mal columns. Thus |Py,| < +/r for all ¢ including the
Byzantine ones (recall that we orthonormalize the received
Us using QR at the center before computing Pys,). Hence,
using GM Lemma 4, we have w.p. at least 1 — cqpprosamr —

exp (—L1 (0.4 — 7,p))
|Perr — Pusllr < 6V20 + Seauv/r 3)
Here Poy = GM{Puy,,¢ € [L]}. Thus,

max ||Py, — P
max. IPu, — Paumllr

< max ||Py, — Pu-~ Py — Pu+
_éngoodH U, v llFr + |Pam — Pu

< V26 + 6V25 + Searry/T = TV26 + beau VT

w.p. at least 1 — copprozam — exp(—L(0.4 — 7, p)).
Next we bound the S D between P¢ s and the node closest
to it. This is denoted ¢p.s; in the algorithm.

F

||PUZbest B PGMHF = mein HPUZ - PGMHF

< min [Py, — P,
<, min [P, ~ Penlr

< max [Py, — P
< max [[Po, — Penllr

< TV26 + e/

In this we used Jyo0¢ C [L] and hence the minimum value
over all L is smaller than that over all £ € Jy00q. We use this
to bound the SD between Uy, , and U™.

IPu.,,., — Pu-llr

<|Pu,,., —GMl|r+[GM - Py-|r

< 7\/5(5 + Seam/T + 6\/5(5 + Seam/T

< 13V26 + 10egav/r “)
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Set eap = 5\/5/\/F Thus, we have that, w.p. at least 1 —
CapproxGM — eXP(*lﬂ/’(O‘l -7, p))7

”PUfbest — Pu+||lr < 23v/26

This  then  implies that SDp(U,yu, U") =
SDp(Uy,..,, U") <236 since Uy =Uy,,_,-

Note: It is possible that lpegs; is not a good node (we cannot
prove that it is). This is why the above steps are needed to
bound ||Py,, = —Pu-|F.

C. Proof of Theorem 3.1, Exact SVD at the Nodes

The version of Davis-Kahan sin © theorem [62] stated next
is taken from [61, Corollary 2.8 ].

Claim 2 (Davis-Kahan sin© theorem [61], [62]): Let
®* P be n x n symmetric matrices with U* € R**", U €
R™*T being the matrices of top r singular/eigen vectors of
®*, P respectively. Let o > ... > o) be the eigenvalues of
& Ifor—0r,, >0and |®—B"| < (1 - %) (0r—0,y)
then
2yr||® — @7

o —0r

SDp(U,U*) <

Suppose that, for all £ € Jyo0d,
Pr{[|®, — ®"[| < b} >1—p
Using Claim 2, if by < (1 —1/v/2)A, this implies that, for all
l € Jgooa, W.p. at least 1 — p,

SDr(U,U") <

2\/7bo
A

Using Lemma 1 with § = %{Trb", this then implies that, w.p.
at least 1 — copprocamr — exp(—L(0.4 — 7,p)),

2
SDp(Uou, U™) <23 \/Zbo — 46\/?“%0

To get the right hand side < e we need by < ﬁA.
D. Proof of Theorem 3.1: SVD at Nodes Computed Using
Power Method

This proof also needs to use Claim 3 given below (this
is [63, Theorem 1.1]) that analyzes each iteration of what
the author calls “noisy power method” (power method that
is perturbed by a noise/perturbation G in each iteration {.

Claim 3: [Noisy Power Method [63]] Let U™ (nxr) denote
top r singular vectors of a symmetric n X n matrix ®*, and
let o; denote it’s i—th singular value. Consider the following
algorithm (noisy PM).

1) Let U ,.4nq be an nxr matrix with i.i.d. standard Gaussian

entries. Set U;—o = U,qnd-

2) For t =1 to T}, do,

) Uy —@U,_1 +G,
If at every step of this algorithm, we have

5|Gell < Epow(U: - U:+1)7

VT —Vr—1
TVn

BTGl < (07 = 0744)
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for some fixed parameter v and €,,, < 1/2. Then w.p.
at least 1 — 7 -C1 _ exp’ci’”, there exists a Tpoy >

C’a — log( ) so that after T}, steps we have that

H(I Ur,

pow

UL, U < o

We state below a lower bound on /r — y/r — 1 based on
Bernoulli’s inequality.
Fact 1: Writing /r — /r—1 = /r (1 —4/1 - %) and

using Bernoulli’s inequality (1 + r)m <1 + zr for every real
number 0 < x < 1 and r > —1 we have 2\[ <\r—yr—1
Suppose that, for all £ € Jyo0ds

Pr{[|®, —®"|| < bo} >1—p

Using Claim 2, if by < (1 —1/+/2)A, this implies that, for all
l € Jgood, W.p. at least 1 — p,

SDp(U,U") <

2/rbo
5 )

Suppose that U, is an estimate of U, computed using
the power method. Next we use Claim 3 to help guarantee
that SDp(U,,U;) is also bounded by 2./rby/A. Using
Claim 3 with ® = &, U = Uy, G, = 0 for all T,
%, and v = nlo, we can conclude that if T}y >
), then SDQ(U[,U() < €pow =
1/n10. Here o; = 0;(®;). Using

€pow =

UT(<I> )
OFNC A Og(

220 w.p. at least 1 —

[®¢; — ®*|| < by and Weyl’s inequality, o, — opq1 > A —
2 by and o, < o + bo. Thus, if
U +b0 A
Toow > C log(n—
p . 2b0 g(nbo)
then
%,

SDQ(ﬁ[,UZ) < €pow =

w.p. at least 1 — p — 1/nt0,
SDp (U, Uy) < 2o,
Combining this bound with the Davis-Kahan bound

A
This then implies that

from (5), we can conclude that, w.p. at least 1 — p — 1/n10,
. 2./7b b
SDp(U,U*) <2 \/Z S=aVy 6)

Applying Lemma 1 with § = 4\/77%0, this then implies that,
w.p. at least 1 — exp(—L (0.4 — 7,p + 1/n'?)),

b b
SDr(Uou, U) < 23-4y/r 7 = 92/ (7)
If we want the RHS of the above to be < ¢, we need
€
bp = ——=A
07 92
and we need Tppp > C’ZTJ;ZO log(n%) with this choice of

by. By substituting for by in the above expression, and upper
bounding to simplify it, we get the following as one valid
choice of T}

)

This used (1 + €)(1 —2¢)~ < (1 4+ €)(1 + 4€) < 1 + 6¢ for
€ < 1. Since we are using C to include all constants, and
using € < 1, this further simplifies to T}, = C %= ~ log (™)

. 2
Tpow = C(1+ GG)UA—T log(n9 Q/F
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E. Proof of Theorem 3.2

We use Claim 3 with G; = ®*U — GM{®,U}L_, and
output U, € R"*". To apply it, we need ||G|| to satisfy
the two bounds given in the claim. We use Lemma 6 to bound
it.

Suppose that, for at least (1 — 7) L, ®,’s,

Pr{|[®, — & <booi} = 1-p
Since |[U||p = /7, this implies
PI‘{H@@U — ¢*U||F < bo\/’FO'I} > 1 —p

We use this and apply Lemma 6 with z;, = vec(®,U) and
z = vec(®*U) so that ||z]] = ||®*U||r < of+/r. Setting
ecm = bg and applying the lemma, we have w.p. at least
1- CapproxGM — Lp — €xp (_L'lzb (04 -7, p))

1G]l < |Gellr = |GM{@U Y, — @°Ul|r < 14bov/r0]
Recall that o) — oy ; > A. We thus need 5||G¢|| < €A to
hold. This will hold with high probability if by/ro} < %.
Using Fact 1 and v = ¢, for the second condition of Claim 3
to hold, we need ||Gt|| <A—— 100W This then implies that we
need b()\[O'l < W

Thus we can set bg = min ( a

€ 1
70\f’ 140¢ nT) or”

We also need Tpow > C’ 1og( ). This holds if we
set Tpow = CF log( <).
Hence Wp at least 1 CapprozGMLp  —

exp (_Lw (04 - T, p)) —c—e >1- CapproxGM — C —
Lp —exp(—Ly (0.4 — 7,p))

SDF(Uouta U*) S €

F. Proof of Corollary 1

The first part is a corollary of Theorem 3.1 and [56,
Theorem 4.7.1] stated next. It gives a high probability bound
on the error between an empirical covariance matrix esti-
mate, s = DDT/Z]V, with the ¢ columns of D being
independent sub-Gaussian random vectors dj, and the true
one, X*.

Claim 4 ( [56]): Suppose that the matrix D is as defined
in Sec. IV. With probability at least 1 — 2 exp(—n),

|@—zW<aw¢?mw

Here K is the maximum sub-Gaussian norm of X*~1/2d,
over k.

Using Theorem 3.1 with ®, = S = DKDZ/(}, P =3%,
in order to guarantee SD (U ,y4, U*) < e w.h.p., we need

3o < —

By Claim 4,

M{iw—zw<cwﬂ¢QMM}>1—2wm—m

The above bound will be less than 95@? if ¢ >
922CK4nr||z* \|2

AZe2
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G. Proof of Corollary 2

Corollary 2 is again a direct corollary of Theorem 3.1
and [56, Theorem 4.7.1]. We now apply both results on
D) =20, D(ﬁﬁz)D&Z)/(qu), ¢ € [L]. The reason this
proof follows exactly as that for subspace median is because
we assume that the set of Byzantine nodes is fixed across all
iterations of this algorithm and the number of such nodes is
lower by a factor of L/ L. Consequently, for the purpose of
the proof one can assume that no more than 7L mini-batches
are Byzantine. With this, the proof remains the same once we
replace ¢ by gp and L by L.

VII. SIMULATION EXPERIMENTS

All numerical experiments were performed using MATLAB
on Intel(R)Xeon(R) CPU E3-1240 v5 @ 3.50GHz processor
with 32.0 GB RAM.

A. PCA Experiments

1) Data Generation: We generated ®* = U;u”S Full
Ui,y ' with U}, generated by orthogonalizing an n x n
standard Gaussian matrix; Sy, is a diagonal matrix of
singular values which are set as described below. This was
generated once. The model parameters n, 7,q, L, Ly,., and
entries of Sy, are set as described below in each experiment.

In all our experiments in this section, we averaged
over 1000 Monte Carlo runs. In each run, we sampled ¢
vectors from the Gaussian distribution, N (0, ®*) to form
the data matrix D. This is split into L columb sub-matrices,
D, D,,..., Dy, with each containing ¢ = ¢/ L columns. ¢, L
are set so that ¢q/L is an integer. Each run also generated
a new U,,,q to initialize the power method used by the
nodes in case of SubsMed and used by the center in case
of ResPowMeth. The same one was also used by the power
methods for SubsMoM. Note: since SubsMed and SubsMoM
run and L different power methods, ideally each could use
a different U,and and that would actually improve their
performance. To be fair to all three methods, we generated
U ana this way.

Let Ly, = 7L. In all our experiments, we fixed n =
1000 and varied 7,q, L, Ly, and S yy. In all experiments
we used a large singular value gap (this ensures that a small
value of T}, suffices). We experimented with three types of
attacks described next.

2) Attacks: To our best knowledge, the PCA problem has
not been studied for Byzantine resiliency, and hence, there are
no known difficult attacks for it. It is impossible to simulate
the most general Byzantine attack. We focused on three types
of attacks. Motivated by reverse gradient (rev) attack [66],
we generated the first one by colluding with other nodes to
set Ucorrupt as a matrix in the subspace orthogonal to that
spanned by >, U, at each iteration. This is generated as fol-
lows. Let U = Ze Ug (in case of SubsMed, SubsMoM) and
U =) ,®,U, (for ResPowMeth). Orthonormalize it U =

orth(U) and let M = I —fJfJT, obtain its QR decomposition

M YL U,y R and set Ueorrupt = (@nt /P U perp(:, 1 :
r). We call this Orthogonal attack. Since SubsMed runs all its
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iterations locally, this is generated once for SubsMed, but it is
generated at each iteration for ResPowMeth and SubsMoM.

The second attack that we call the ones attack consists of
an n X r matrix of —1 multiplied by a large constant Cly;4qck-
The third attack that we call the Alternating attack is an n X r
matrix of alternating +1, —1 multiplied by a large constant
Coattack > 0. Values of Cyisqcr Were chosen so that they do
not get filtered out, essentially 0.9wans/v/nr.

3) Algorithm Parameters: For all geometric median (GM)
computations, we used Weiszfeld’s algorithm initialized using
the average of the input data points. We set Ty = 10.
We vary Tpou-

4) Experiments: In all experiments, we compare
ResPowMeth and SubsMed. In some of them, we also
compare SubsMoM. We also report results for the basic
power method in the no attack setting. To provide a baseline
for what error can be achieved for a given value of n,q,r,
we also report results for using “standard power method”
in the no-attack setting; with this being implemented using
power method with T}, iterations. Qur reporting format is
“max SDp(meanS D), mean time” in the first table and
Just “max SD p(meanSDr)” in the others. Here max SDp
is the worst case error over all 1000 Monte Carlo runs, while
meanS D is its mean over the runs.

In our first experiment, we let n = 1000, » = 60, ¢ = 1800,
L = 3,Ly,, = 1, and we let Sy, be a full rank diagonal
matrix with first r entries set to 15, the r 4+ 1-th entry
to 1, and the others generated as 1 — (1/n),1 — (2/n),....
Next, we simulated an approximately low rank X* by setting
its first r entries set to 15, the r + 1-th entry to 1, and
the other entries to zero. We report results for both these
experiments in Table II. As can be seen, from the first to the
second experiment, the error reduces for both SubsMed and
ResPowMeth, but the reduction is much higher for SubsMed.
Notice also that, for T’)pow = 1, both ResPowMeth and
SubsMed have similar and large errors with that of SubsMed
being very marginally smaller. For T},, = 10, SubsMed
has significantly smaller errors than ResPowMeth for reasons
explained in the paper. ResPowMeth has lower errors for the
Orthogonal attack than for the other two; we believe the reason
is that the Orthogonal attack changes at each iteration for
ResPowMeth.

We also did some more experiments with (i) L = 3, Ly, =
1,7 =2, =360, (ii) L =6, Ly, =2, = 2,q = 720, and
(iii) L = 6, Lpy. = 2, 7 = 60, ¢ = 3600. All these results are
reported in Table III. Similar trends to the above are observed
for these too.

In a third set of experiments, we used L = 18, r =
60,¢ = 3600 and two values of Ly, Lyy. = 2, Ly, = 4.
For this one, we also compared SubsMoM with using L =
6 minibatches. In the L;,, = 2 case, SubsMoM has the
smallest errors, followed by SubsMed. Error of ResPowMeth
is the largest. In the Ly, = 4 case, ResPowMeth still has the
largest errors. But in this case SubsMoM with L = 6 also fails
(when taking the GM of 6 points, 4 corrupted points is too
large. SubsMed has the smallest errors in this case. We report
results for these experiments in Table IV
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TABLE 1T
n = 1000, L = 3, Ly, = 1,7 = 60, ¢ = 1800. WE REPORT “max SDr(MEANSD ), MEAN TIME” IN EACH COLUMN

[ Attacks | Methods \ Tpow = 10 | [ Attacks | Methods \ Tpow = 10 \ Tpow = 1 |
Alternatin ‘ SubsMed [ 0.375(0.348),0.680 ‘ Alternatin l SubsMed [ 0.110(0.091),0.689 [ 0.999(0.614),0.326 ‘

8 | ResPowMeth | 1.000(0.972),0475 | 8 | ResPowMeth | 0.971(0.898),0497 | 1.000(0.991),0.049 |

Ones ‘ SubsMed ‘ 0.369(0.349),0.704 ‘ Ones ‘ SubsMed ‘ 0.111(0.091),0.669 ‘ 0.999(0.607),0.331 ‘

‘ ResPowMeth [ 0.999(0.990),0.513 \ [ ResPowMeth [ 0.992(0.952),0.477 [ 0.999(0.990),0.052 \

Orthogonal ‘ SubsMed ‘ 0.365(0.348),0.689 ‘ Orthogonal ‘ SubsMed ‘ 0.106(0.091),0.672 ‘ 0.999(0.609),0.319 ‘
g ResPowMeth [ 0.999(0.366),0.500 \ g ResPowMeth [ 0.223(0.208),0.475 [ 0.999(0.993),0.048 \

[ No Attack \ Power(Baseline) [ 0.187(0.182),0.529 | [ No Attack \ Power(Baseline) [ 0.063(0.050),0.505 | 0.999(0.605),0.050 |

(a) full rank X*

(b) rank-(r + 1) X*

TABLE III
ADDITIONAL EXPERIMENTS. WE REPORT “max SD (MEANSDp)” IN EACH COLUMN

[ Attacks | Methods [ Tpow =10 | Tpow =1 | [ Attacks [ Methods [ Tpow =10 [ Tpow =1 |
Alternatin SubsMed 0.062(0.030) | 0.997(0.289) Alternatin SubsMed | 0.045(0.020) | 0.986(0.227)
8 " ResPowMeth | 0.177(0.084) | 0.999(0.424) 2 "ResPowMeth | 0.178(0.080) | 0.997(0.336)
Ones SubsMed 0.080(0.030) | 0.989(0.236) Ones SubsMed 0.048(0.020) | 0.999(0.275)
ResPowMeth 0.196(0.087) | 0.972(0.311) ResPowMeth | 0.157(0.081) | 0.999(0.383)
Orthozonal SubsMed 0.067(0.033) | 0.999(0.228) Orthozonal |__SubsMed | 0.049(0.019) | 0.999(0.204)
8 ResPowMeth | 0.125(0.066) | 0.999(0.373) 8 ResPowMeth | 0.102(0.057) | 0.999(0.339)

[ No Attack | Power(Baseline) | 0.038(0.018) | 0.968(0.211) | [ No Attack | _ Power | 0.033(0.012) | 0.975(0.203) |

@) L=3Ly.=11r=2q=360

(b) L =6,Lyy. =2, 7=2,q=T720

[ Attacks [ Methods [ Tpow =10 [ Tpow =1 ]
Alternatin: SubsMed 0.098(0.085) | 0.999(0.642)
8 ResPowMeth | 0.992(0.853) | 1.000(0.988)
Ones SubsMed 0.099(0.084) | 0.999(0.625)
ResPowMeth | 0.998(0.905) | 0.999(0.989)
Orthogonal SubsMed 0.103(0.084) | 0.999(0.610)
8 ResPowMeth | 0.223(0.184) | 0.999(0.993)

[ No Attack [ Power [ 0.043(0.036) | 0.9950.604) |

(©) L =6, Ly, =2, r = 60, q = 3600

TABLE IV
L =18, RANK-(r + 1) X*, r = 60, ¢ = 3600, T = 10, L = 6 FOR SUBSMOM.WE REPORT “max SDr(MEANSDFg)” IN EACH COLUMN

[ Attacks | Methods | Tpow =10 | [ Attacks | Methods [ Tpow =10 ]
SubsMoM 0.101(0.085) SubsMoM 0.999(0.872)
Alternating SubsMed 0.175(0.150) Alternating SubsMed 0.182(0.152)
ResPowMeth 0.522(0.463) ResPowMeth 0.987(0.894)
SubsMoM 0.098(0.085) SubsMoM 1.000(1.000)
Ones SubsMed 0.172(0.150) Ones SubsMed 0.160(0.147)
ResPowMeth 0.542(0.502) ResPowMeth 0.999(0.948)
SubsMoM 0.104(0.086) SubsMoM 1.000(1.000)
Orthogonal SubsMed 0.172(0.151) Orthogonal SubsMed 0.183(0.151)
ResPowMeth 0.223(0.191) ResPowMeth 0.216(0.179)

[ No Attack | Power(Baseline) [ 0.042(0.035) | [ No Attack [ Power(Baseline) | 0.040(0.036) ]

(a) Lbyz =2 (b) Lbyz =4

B. LRCS Experiments

In all experiments, we used n = 600, ¢ = 600, r = 4,

= 198, and L = 18 so that m = m/L = 11 and two
values of Ly, = 1,2. We simulated U" by orthogonalizing
an n X r standard Gaussian matrix; and the columns b;, were
generated i.i.d. from A/(0, I,.). We then set X* = U* B”". This
was done once (outside Monte Carlo loop). For 100 Monte
Carlo runs, we generated matrices A,k € [g] with each
entry being i.i.d. standard Gaussian and we set y, = Apx},

k € [q]. In the figures we plot Error vs Iteration where
Error = w We simulated the Reverse gradient
(Rev) attack for the gradient step. In this case, malicious
gradients are obtained by finding the empirical mean of the
gradients from all nodes: V «— %Zle Ve and set V0 =
—CV where C = 10. This forces the GD step to move
in the reverse direction of the true gradient. We used step
size n = 5. We used Weiszfeld’s method to approximately
compute geometrlc median.
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0

10 €
Method | Ly,. =1 | Ly,. =2 10°
SubsMed | 0.716(0.665) | 0.717(0.667) _
SubsMoM | 0.477(0.457) | 0.475(0.459) L%’
(a) Initialization errors
1070
10718

0

Fig. 1.

We compare Byz-AltGDmin (Median) with Byz-AltGDmin
(MoM) for both values of Ly,.. We also provide results for the
baseline algorithm - basic AltGDmin in the no attack setting.
All these are compared in Figure 1(b). We also compare the
initialization errors in Figure 1(a). As can be seen SubsMoM
based initialization error is quite a bit lower than that with
SubsMed. The same is true for the GDmin iterations.

C. How to Tune or Set Parameters for a Real Application

Consider the PCA problem and Subspace Median. Suppose
that the user of the algorithm specifies the desired dimension
r and the desired final estimation error €. Our theoretical
guarantee specifies that we need T,o,, = C% log(2), and
Tom C'log(Lr/e). Given r and e (desired error), for
setting Tz all values are known. For T}, we need o) and
A. To estimate these, at each node ¢, we compute the r-th
and (r + 1)-th singular values of &, = D,D, /q,. Denote
these by 64, and A, = Gor — 6o r+1. We use maxe{,,},
ming{Ag} in T}ey. The constants C' in various expressions
will typically need to be experimentally tuned for a given
application. It should be noted that sufficiently large values
of Taum, Tpow, €.8., setting both tO 10, works well for all
algorithms without much change in final error. If the user does
not specify 7 we can set r using the well known 90 or 99%
energy threshold heuristic. We find 7, as the smallest value of
r for which the sum of the top r singular values is at least 90%
(or 99% or similar) of the sum of all singular values of ®,.
Instead of setting € and T}, we can set a stopping criterion
for the power method being implemented at each node: exit the
loop if the estimates do not change much in subspace distance.

Consider LRCS. For Byz-AltGDmin we set wgps as
m14./rdg maxe{de,1}. The idea is to set the threshold wgas
sufficiently large to ensure that non-Byzantine updates are
not filtered out. For other parameters in Byz-AltGDmin C' =
9k2u2%, we set K max,{ke}, and take p > 2. We set
T = Cmaxg{r?}log(1/e), and n =

0.5
maxe{6¢,1}"

VIII. CONCLUSION, EXTENSIONS, AND OPEN QUESTIONS

Our work introduced a novel and well-motivated solution to
Byzantine-resilient federated subspace estimation, and PCA,

Iteration vs Error
: . :

T T
—*— Mean(No attack)
—f>— GMoMm Lbyz=2
4% GML =2

yz
—F—GMoM L, =1
—x - GM Lbyz=1

50 100 150 200

Iteration

250 300 350 400

Byz-AltGDmin (Median) vs Byz-AltGDmin (MoM) for Ly, . = 1,2; L = 18.

that is both communication-efficient and sample-efficient.
We refered to this as “Subspace-Median”. Its guarantee is
provided in Theorem 3.1 and Corollary 1. We showed how the
Subspace Median can be used to provably solve two practically
useful problems: (i) Byzantine resilient federated PCA, and
(ii) the initialization step of Byzantine-resilient horizontal
federated LRCS. We also developed Subspace Median-of-
Means (MoM) extensions for both problems. These help
improve the sample complexity at the cost of reduced Byzan-
tine/outlier tolerance. For all these algorithms, Theorem 3.1
helps prove sample, communication, and time complexity
bounds for e-accurate subspace recovery. Extensive simulation
experiments corroborate our theoretical results. Our second
important contribution is a provable communication-efficient
and sample-efficient alternating GD and minimization (alt-
GDmin) based solution to horizontally federated LRCS,
obtained by using the Subspace Median to initialize the
alternating GD and minimization (altGDmin) algorithm for
solving it. Our proposed algorithms and proof techniques are
likely to be of independent interest for many other problems.
We describe some extensions next.

A. Extensions

One component that is missing in most existing work on
Byzantine resilient federated GD, and stochastic GD, based
solutions is how to initialize the GD algorithm in such a
way that the problem becomes restricted strongly convex
in the vicinity of the desired/true solution. Most existing
works either assume strongly convex cost functions or prove
convergence to a local minimizer of a cost function. However,
good initialization of the GD algorithm is a critical component
for correctly solving a large number of practical problems. The
spectral initialization approach has been extensively used for
developing provably correct centralized iterative solutions to
many non-convex optimization problems in signal processing
and ML. It involves computing the top, or top few, singular
vectors of an appropriately defined matrix. This can be made
Byzantine resilient and communication-efficient in a feder-
ated setting, by using the Subspace Median and Subspace
MoM algorithms introduced in this work. Examples include
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LRCS, LR matrix completion, robust PCA using the LR
plus sparse model, phase retrieval (PR), sparse PR, and low
rank PR.

The overall approach developed here for modifying the
altGDmin algorithm can also be widely used in other settings.
In particular, vertically federated LRCS can be analyzed
using easy extensions of our current work. It would require
assuming that the Frobenius norm of the difference between
column-sub matrices of X ™ that are sensed at the differ-
ent nodes is bounded. This assumption is needed to ensure
bounded heterogeneity of the different nodes’ partial gradient
estimates; a common assumption used in all past work on
federated ML with heterogeneous nodes. Similar ideas can also
extend for LR matrix completion, which also involves dealing
with heterogeneous gradients. Vertically federated LRCS is
the model that is relevant for federated sketching, and for
multi-task representation learning when data for different tasks
is obtained at different nodes.

Our Byzantine resilient PCA result can be generalized
to extend it to various other PCA-based problems. Some
examples are described in Remark 4 (PCA for non-i.i.d. data,
PCA for approximately LR datasets, PCA with missing data).
Other examples include online PCA, subspace tracking, robust
subspace tracking, differentially private PCA [63].

B. Open Questions

In the current work, we treated the geometric median
computation as a black box. Both for its accuracy and its time
complexity, we relied on results from existing work. However,
notice that in the Subspace Median algorithm (which is used
in all other algorithms in this work), we need a “median”
of r-dimensional subspaces in R™. These are represented
by their n X r basis matrices. To find this though, we are
computing the geometric median (GM) of vectorized versions
of the subspace projection matrices Py := UU ' which
are of size n x n. Eventually we need to find the subspace
whose projection matrix is closest to the GM. An open
question is can we develop a more efficient algorithm to do
this computation that avoids having to compute the GM of
n? length vectors. We will explore the use of power method
type ideas for modifying the GM computation algorithm in
order to do this. Alternatively, can we define a different
notion of “median” for subspaces that can be computed more
efficiently than Subspace Median. Another related question
is whether the computation can be federated to utilize the
parallel computation power of the various nodes. In its cur-
rent form, the entire GM computation is being done at the
center. A third open question is whether we can improve the
guarantees for the Subspace Median of Means algorithms by
using more sophisticated proof techniques, such as those used
in [8].

APPENDIX A
PROOF OF LRCS INITIALIZATION, COROLLARY 3

We prove this result for the L = L setting below. The
extension for the L < L setting is straightforward. We explain
this in Appendix A-C below.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

A. Lemmas for Proving Corollary 3 for L=1L

We first state the lemmas from [49] that are used in the
proof and then provide the proof.
Lemma 5: Define the set

* |2 * |2
£ .= {é(l 761)||X HF S ay S é(1+61)||X |F}
q q
then Pr(a € &) > 1 — Lexp(—c¢mqe?) where a =
Median{a,}2_
Proof: Threshold computation: From [49] Fact 3.7 for
all £ € jgood

Pr{as € £} > 1 — exp(—émge?)

Since more than 75% of ay’s are good and the median is
same as the 50th percentile for a set of scalars. This then
implies Median{ozg}[L:1 will be upper and lower bounded by
good ay’s. Taking union bound over good ay’s w.p. at least
1 — Lexp(—émge?) =1 — pq

Pr{a € £} > 1 — Lexp(—émqe?)
O
Lemma 6 ( [49]): Define =

Zk(Ak)fT((yk)f)truncel—cr7 Yk trnc (Y © 1|yk\§\/a)-
Conditioned on «, we have the following conclusions.

(Xo)e

1) Let ¢ be a scalar standard Gaussian r.v.. Define,
Bi(a) = E[(*L{jaz)2c2 <a)]
Then,
E[(Xo)ela] = X" D(a)

where D(a) = diagonal(Bk(a), k € [q]), i.e., D(a) is
a diagonal matrix of size ¢ x ¢ with diagonal entries
defined above.

2) Fix 0 < €1 < 1. Then w.p. at least 1 — exp[(n + ¢) —
cetimg/ K]

1(Xo)e — E[(Xo)ela]l| < 11e[| X r

: 2
3) For any ¢; < 0.1, ming E [( H{ICISCHHX*"F} >

val=gl
0.92

Fact 2: For any t > 0, E[Czﬂ{czgt}] < 1, this then implies
[D(a)]| <1

B. Proof of Corollary 3 for L=1L
We will apply Theorem 3.1 with @, = (X¢),(Xo),, ®* =

E[(X0)e|JE[(Xo)e|a]T = X*D(a)?X*T, ¢ = & and
A = 0. (X*D(a)?X*T) — 0,41 (X*D()2X*T). For this
we need to bound (X ¢)e(X0); —E[(Xo0)e|]E[(Xo)ela] T
We can write

(X0)e(Xo0), —E[(Xo)ela]E[(Xo)ela] "

= (Xo)e((Xo)e — E[(Xo)ela]) T

+((Xo)e — E[(Xo)ela])E[(Xo)ela] " (8)
To bound (8) we need the bounds on (X )¢, E[(X¢)¢|a], and
(Xo)e — E[(X0)e|a]
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1) From Lemma 6 part 2, letting ¢, = e3/+/7, w.p. 1 —
exp((n + q) — cefmg/rp’r?]
1(Xo0)e — E[(Xo)e|e]|| < L.1eso] ©)
2) From Lemma 6 part 1, Fact 2
IE[(Xo)elall] < of (10)

3) Thus, for €3 < 0.1, w.p. 1 —exp[(n+q) — ceamq/ru’x?]

[(Xo)ell = [[(Xo)e — E[(Xo)eled ]| + [E[(Xo)ela]l]
<1.1(1+e3)o; < 1.307 (11)

From (8), (9),(10) and (11, and E[(Xo).|a] = X*D(a),
we have w.p. at least 1 — 2exp|(n + q) — ce3mq/ru?k?]
1(X0)e(Xo){ — X "D(a)’X" 7| <
[(Xo)elll(Xo)e — X™D()||
+ [(Xo)e = X*D(a) | D(e) X~

< 1.1.1.1e30%2 + 113072 < 2.5e507 2 (12)

To apply Theorem 3.1 to get SDp(U,u, U") < 6o,
we need [[(Xo)i(Xo)[ — X*D(a)X" 7| < gi-A.
By Lemma 6 part 3, Fact 2, and the fact that X™ is rank

r we get a lower bound on A

A >0.92%072 — 0> 0.8072 (13)

Using (13) and (12), the required condition for Theorem 3.1
holds if

50 0_*2

26+/r "
This will hold if we set €5 = ﬁé@. With this choice of €3,

the bounds hold w.p. at least 1—2 exp|(n+q)—céimq/r*u? k"]

Thus, by Theorem 3.1,

PI‘{SDF(Uouta U*) S (50|0£}
>1—co—exp(—Ly(0.4 —7,p+n"1Y)

2.5e307% < 0.8

where p = 2exp[(n + q) — cdgmq/r?u*k").
Following the same argument as given in proof of [49,
Theorem 3.1] and using Lemma 5 to remove the conditioning

on «, we get

Pr{SDp(U pus, U*) < 60}

>1—co— exp(—Lp(0.4 — 7, p + 1~ 10)) — pq,
where p, = Lexp(—cmqd3 /r?k?).

If mq > CkSp?(n+q)r?/62, then p < e=¢"+9) and p,, <
—e(na)
e .

Thus, the good event holds w.p. at least 1 — ¢y —
exp(—Lip(0.4 — 7,e~c(nta) 4 p=10)) _ g=cnta),

C. Proof of Corollary 3 for a L<L

In this case, we apply Theorem 3.1 on ®) =
S04 (Xo)(0.6)(X0)(p 0/ (p)? and & = E[(Xo)lo]
E[(X)¢|a] T /m? for 9 € [L]. To obtain the bounds needed
to apply Theorem 3.1, we use the bounds from above.
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APPENDIX B
PROOFS FOR LRCS ALTGDMIN ITERATIONS

We prove this for the simple GM setting because that is
notation-wise simpler. This is the L = L setting. The extension
to GMoM is straightforward once again.

All expected values used below are expectations conditioned
on past estimates (which are functions of past measurement
matrices and measurements, Ay, y,,). For example, E[(Vy f)]
conditions on the values of U, By used to compute it. This is
also the reason why E[(Vy f)¢] is different for different nodes;
see Lemma 2.

A. Lemmas for Proving Theorem 5.3 for L=1L:LS Step
Bounds

The next lemma bounds the 2-norm error between (by),
and an appropriately rotated version of by, g, = U T:c,*; =
(U "U*)b}; followed by also proving various important impli-
cations of this bound. Here and below U denotes the subspace
estimate at iteration t.

Lemma 7 (Lemma 3.3 of [49]): Assume
(U,U*) < 4. Consider any ¢ €
g, =U'z; = U'U"b;.

If §; < 0.02/x2, and if m > max(log ¢,logn,r), for ¢ <
0.1 then,

w.p. at least, 1 — exp(log q + 7 — ce3m)
D) {[(br)e — gpll < 1.7e16¢ b |
2) [[(Br)ell < 1.1[[(B7 )l
3) ||Bg — GHF < 1.761(5t0'T
4 |[(@e)r — @ || < 1.46:[by. ||
5) ||Xg - X*”F S 1.45t0f
6) o.(By) > 0.90;
7) Omax(By¢) < 1.10%
(only the last two bounds require the upper bound on ;).

All the lemmas given below for analyzing the GD step use

Lemma 7 in their proofs.

that
jgood~

SDyr
Let

B. Lemmas for Proving Theorem 5.3 for L=L:GD Step
Bounds

The main goal here is to bound SD (U™, U*), given that
SDr(U,U*) < §;. Here U™ is the subspace estimate at the
next, (t-1)-th iteration. We will show that SD (U™, U*) <
(1—(not?)-%)d;. In our previous work [49], [50], we obtained
this by bounding the deviation of the gradient, Vf =
2 rejq Vi from its expected value, E[Vf] = m(X —
X*)B T and then using this simple expression for the expected
gradient to obtain the rest of our bounds. In particular notice
that Py | E[V f] = mPy- ,UBB'.

In this work, to use the same proof structure, we need a
proxy for E[V f]. For this, we can use E[(V )] for any £ €
Tgood- We let £ € Jyo0q4 be one such node. In what follows,
we will use E[V f;,] = m(X,, — X*)B/, at various places.

Lemma 8: (algebra lemma) Let

Err = Ve — E[V fi, (U, B)).
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Recall that U = QR(U — (n/m)V faar). We have
SDr(U*,U") <
|1, —nBe,B;, |SDp(U*,U) + Z|[Err||
— #EVfe,(U, B)]|| — ZI[Err]|
Proof: See Appendix B-D. ]
Lemma 9: Assume SDp(U*,U) < §; < dp.

1) If n <0.5/052, Amin(Ir =B, BJ,) = 1—n|| By, ||* > 1—
n1.307% > 0 and so this matrix is p.s.d. and hence, || I, —
nBe, B/, || = Amax(Ir = 1B, B),) = 1 — nopmin(By,)* <
1 —70.8072

2) For all £ € Tyo0ds

E[Vf(U,B,) =m(X, - X*)B,

3) For all £ € Jyo0ds

IE[V fo(U, By)]|lr < ﬁll.65t0f2

Proof: The first item follows using the bounds on o7 (By)
and o (By) from Lemma 7. Second item is immediate. Third
item follows from item two and bounds on o} (By), || X¢ —
X*||F given in Lemma 7. O

The next lemma is an easy consequence of Lemmas 2 and
Lemma 6. B

Lemma 10: Let p; = exp ((n—l—r)—ce%%) +2exp(log g+
r — ce2m). If 7 < 0.4, then, w.p. at least 1 — Lp; —
exp(—Lip(0.4 — 7,p1)),

|Err||p < 14.12.5m0 2 e17/T6;
Proof: See Appendix B-F. (]

C. Proof of Theorem 5.3

The proof is an easy consequence of the above lemmas.
Using the bounds from Lemma 10, 9 and the SDp bound
from Lemma 8, setting ¢; = 0.3/175y/rx2, and using §; <
0o = 0.1//@2 in the denominator terms, we conclude the
following: if in each iteration, mq > Cis*u?(n + r)r2,
m > Cymax(logq,logn), then, w.p. at least 1 — Lp; —

exp(—L1(0.4—7,p1)), where p; = exp ((n—#r)—c%) +

2exp(log q + 7 — cm/k*)

0.8nc 2 0.3n0;?

1-— L6, + 14
* + ( w2 t 2 t
SDF(U 7U ) < 1_ 1.6-0.12770’1‘2 _ 0_1.0.32,,701«2
K K
< (1= (no}?):%)8: := 641 Applying this bound at each ¢
proves the theorem.

The numerical constants may have minor errors in various
places.

D. Proof of Algebra Lemma, Lemma 8

Recall that Err = V foa — E[V f, (U, By,)]. Let P :=
I-UU*".

GD step is given as v -uU- AV fam-

Adding and subtracting E[V fo, (U, By,)] = m(Xe —
X*)BZ, we get

U =v-LwwB, -Xx)B] - LEn (14
m m

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Multiplying both sides by P := I —U*U* T,
PU" =PU - nPUB,, B}, - %PEH‘
— PU(I, — 1B, B],) — %'PEYT (15)

Taking Frobenius
[ My ]| 7| M2 we get

norm and using ||MiMs||lp <

ot
IPO " |lr < [PU|ell: ~ nBe, B || + L |[PErr (16)

~ + Q_R

Now U U'TR* and since |MMy|r <
|M||p|| M|, this means that SDU*,U™") <
ey Tt _ . -
1T — U U U ||pl|(B)7Y|. Since [|(RN)M] =
1/Umzn(R+):1/Umzn(U )s
_ 1
IR = ——
Omin(U = Z(E[V fi, (U, By, )] + Err))

1
<
B %"E[vffl (UvBél)]” - %HETI‘H

Combining the last two bounds proves our result.

E. Bounding ||V f¢(U, B¢) — E[V f¢,(U, Bg,)]||F: Proof of
Lemma 2

From the proof of [49, Lemma 3.5 item 1 ] we can write w.p.

at least 1 — exp ((n+r) - ce%%%) —2exp(logq+7—ce2m)

IV fe = E[V fo]llp < 1.5e17/T6imom, (17)
Using (17) and Lemma 9, item 2,
IVfe —E[Vfe]llr <
IV fe —E[Vfllr + E[Vf] = E[Vfy]llr <
1.5e1Vrdimoi2 .
+ (X, - X*)B] —m(X,, — X*)B/|l[r  (18)

Using the bounds from Lemma 7,
(X — X*)B, —m(X,, — X*)B/||r
= m|U(BB/ — By, B),) ~ X"(B/ ~ B/))|r
=m|U(B,B, — By,B), + B;B}) — X*(B,— By,)"||Ir
— i [UB(B] - B]) - U(B., - B))B],

-X"(B] - BJ)||
<m(l.1o] + 1.107 + 07)||B¢ — By, ||F
= m3.207||By — By, = G||r
<m3.20}(|B; — G||r + || By, — G||r) < mllo}?e /76,

Using this in (18)
IVfe —E[Vf,]llr < 1.5e1v/rdimoi? + mllos?e/ré;
< ml12.507%€1/1d; (19)

w.p. at least 1 — exp ((n +7r)— ce%%) —2exp(logg+1r—
ceIm).
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F. Bounding Err: Proof of Lemma 10

Recall that Err = V fgar — E[V f¢, (U, By,)]. This bound
follows from the Lemma 6 and Lemma 2. We apply Lemma 6
with zy = Vf, and z = [Vfgl (U, Bgl )], a=04,7<04,
€ = 7.8¢1 = egm and wgys set to a constant C' times an
upper bound on |E[V fy,]|| . From Lemma 9, ||]E[Vfgl]||p
2méioi? < 2méoo;? The Theorem needs &y = ¢/k>. Thus,
we can set wgy = Cmo

To apply Lemma 6, we need a high probability bound on
maxee 7,,04 | Ve = E[Vfe,(U, Byl F-

By Lemma 2 and union bound and using |Jgoed| = (1 —
7)L < L, we can show that
max ||Vfg(U,B[) 7E[vf€1(U?B€1)]HF (20)
Zejgood
< Mm12.5072 €1v/10; 1)
w.p. at least
1—L(exp ((n + 1) — ced "Lq) + 2exp(logqg + 7 —
ce%ﬁ%)) =1-p.

Thus, using Lemma 6 w.p. at least 1 — Lp; — exp(—L
(04 - Tvpl))’

|Err|| < 14m12.5072 €11/70;

APPENDIX C
ONE STEP ANALYSIS OF RESPOWMETH

If we want to analyze ResPowMeth directly, we need
to bound SD(U,U*) at each iteration. Consider its first
iteration.

Let Py« = I - UU*", GM = GM{®U ana}l,.
Then,

Py~ L GM||F

SD-(U*U)< - GM RO <
r(USU) <[Py« LGM|r||(RT)"7] < o (G )

Here GM % UR*. This follows since ||(RT)!|
1/0min(RT) = 1/0min(GM).

To bound both numerator and denominator, we use the fact
that GM is an approximation of ®*U .4n4.

Suppose that

@, —

Using [56, Theorem 4.4.5], ||U ranall < 1.1(y/n + /7), and
80,

7| < bo.

||¢£U (I)*Urand” S bOHUrandH S 22b0\/E

rand —

where we used r < n. Using this and applying Lemma 6
with egpr = by, we have w.p. at least 1 — ¢g — Lp —
exp (=Ly (0.4 — 7, p))

|GM = ®*U qnal| < 31 bov/n

Then,
|Pu- GM| F
= ||PU*,J_(GM - (I)*Urand + (I)*U'rand)”F
= |Pu+, . (GM — ®"U r4na)|lr + |Pu, L ® U rana) |l p

8021
< ||GM - i)*Urand”F + 0'?-_5_1||U'r'cmol||\/7j
— 3lbovi 4 0 - 22V - T 22)
where we used |[Py+ 1@ Urend)llr < |[[Pu-,1®7
”Umnd)”F < U:+1||Umnd||\/77- Also,
Tmin(GM) (23)

> Omin(® Urand) = |2 Urand —
> Grin(®7U rana) — 31bov/n

> Omin(Pu-®"Urana) — |Pu+, 1 @ Urand| — 31bpv/n
> Opmin(Pu+® Urana) — 2207, 1v/n — 3lbgy/n (24

where we used Weyl’s inequality and ®*U,.,q =
PU* (P*Urand + PU* ,J_¢*Urand Finally,

GM||

Umin(PU* (P*Urand) = O—min(U*EU*TUTand)
2 Umin(U*)O—:Umin (U*TUrand>
(25)

We bound omin (U*TUmnd> using [67, Theorem 1.1]
which helps bound the minimum singular value of square
matrices with ii.d. zero-mean sub-Gaussian entries. i, j-th
entry of U *TUmnd is the inner product of i-th column
of U* and j—th column of U,.,s. U" has orthonormal
columns and hence each entry of U*TUmnd 1S mean-zero,
unit variance Gaussian r.v. Thus, by [67, Theorem 1.1], w.p.,
at least 1 — (Ce) — exp™ "

Umin(U TUrand > 6 \/; 1)

H
/_'\
—

\
S| =
~__—

In the above, we used Bernoulli inequality (1+z)™ < 1+ nax,

where 0 <n <1,z > —1for /1 — 1. Use e=0.1.
Thus, w.p. at least 1 — 0.1 —exp™“",

1
Omin(GM) > 070.1—= — 2207, v/n — 31byy/n

2y
Together this implies
. 31b 122 .
SDF(U*,U) < Of+0r+*l \/ﬁ ﬁ (26)
0r0. 12\[ 2207 1\/n — 3lboy/n
62boy/nr + 4407, /N1 27
0;0.1 — 4407 |\/nr — 62bgy/nr

To get this bound below ¢;, we need by < ce1//nr

and we need o/,; < c¢/(y/nr). Thus even to get € =
0.99 (any value less than one), we need by to be of

order 1/y/nr.
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APPENDIX D
GEOMETRIC MEDIAN COMPUTATION ALGORITHMS

The geometric median cannot be computed exactly.
We describe below two algorithms to compute it. The first
is the approach developed in Cohen et al [60]. This comes
with a near-linear computational complexity bound. However,
as we briefly explain below this is very complicated to
implement and needs too many parameters. No numerical
simulation results have been reported using this approach even
in [60] itself and not in works that cite it either (to our best
knowledge).

The practically used GM approach is Weiszfeld’s
algorithm [59], which is a form of iteratively re-weighted
least squares algorithms. It is simple to implement and works
well in practice. However it either comes with an asymptotic
guarantee, or with a finite time guarantee for which the
bound on the required number of iterations is not easy to
interpret. This bound depends upon the chosen initialization
for the algorithm. Because of this, we cannot provide an easily
interpretable bound on its computational complexity.

Algorithm 6 AccurateMedian(egay)

Input: points z1,...,2;, € R?  Input: desired accuracy
eaMm € (0, 1)
1: Compute a 2-approximate geometric median and use it to
center

Compute (V) := £ 37,1,z and foi= f(z®)
{Here f(z) = 3 ;e 7 — zill2}

1 1yl ;1 : o ar
Lett; = 400@( +5o5) & = 3635;]\4, and t, = f
Let €, = §(£)% and let e, = ()2

2. (1) = LineSearch(z(®), t;,t1,0,¢.)
Iteratively improve quality of approximation
Let Ty = max;ez t; <ty

3: for i € [LTGM} do
Compute €,-approximate minimum eigenvalue and
eigenvector of V2 f, (x())
4 (A9 u()) = ApproxMinEig(z(?) t;, €,)
Line search to find zUtY such that |z0+D —
xti+1H2 < t:jl

s: 20+ = LineSearch(z(, t;, t; 1, u?, e.)
6: end for
7: Output: e y-approximate geometric median z(Tem+1),

A. Cohen Et Al [60]’s Algorithm: Nearly Linear Time GM

The function ApproxMinEig in Algorithm 6 calculates
an approximation of the minimum eigenvector of V2f;(z).
This approximation is obtained using the well-known power
method, which converges rapidly on matrices with a large
eigenvalue gap. By leveraging this property, we can obtain

a concise approximation of V?2f;(x). The running time of

ApproxMinEig is O <Ld log ecLM

indicates that the algorithm’s execution time grows linearly
with L and d and logarithmically with L/egas. The function
LineSearch in Algorithm 6 performs a line search on the
function g; (), as defined in Equation 28. The line search

). This time complexity

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

aims to find the minimum value of g¢;, ,(c), subject to the
constraint [x— (y+av)|2 < -, where x is the variable being
optimized.

min
llz—(y+av)ll2< 57

fe(x) (28)

gt,y,v(a) =

To evaluate g; , . (o) approximately, an appropriate centering
procedure is utilized. This procedure allows for an efficient
estimation of the function’s value. The running time of

LineSearch is O (Ld log2< L )) The time complexity

Sepvs
indicates that the algorithm’s execution time grows linearly
with L and d, while the logarithmic term accounts for the

influence of - GLM on the running time.

B. Practical Algorithm: Weiszfeld’s Method

Weiszfeld’s algorithm, Algorithm 7, provides a simpler
approach for approximating the Geometric Median (GM). It is
easier to implement compared to Algorithm 6. It is an itera-
tively reweighted least squares algorithm. It iteratively refines
the estimate by giving higher weights to points that are closer
to the current estimate, effectively pulling the estimate towards
the dense regions of the point set. The process continues until a
desired level of approximation is achieved, often determined
by a tolerance parameter, egps. While the exact number of
iterations needed cannot be determined theoretically (as we
will see from its guarantees below), the algorithm typically
converges reasonably quickly in practice.

We provide here the two known guarantees for this
algorithm.

Theorem D.4: [Corollary 7.1 [59]] Suppose that there is
no optimal z € A = {z,...,2z1} such that it minimizes
Zle |z — z¢||. Let {z:}:>0 be the sequence generated by
Weiszfeld’s Algorithm 7 with 2y as given in the initialization
of Algorithm 7. Then, for any ¢ > 0, we have z; ¢ A and
zy — z* as t — oo. Here z* is the true GM.

Theorem D.5: [Theorem 8.2 [59]] Let {z;};>0 be the
sequence generated by Weiszfeld’s Algorithm 7 with zg as
given in the initialization of Algorithm 7. Then, for any ¢ > 0,
we have

* M *
fla) - 17 < Sl — =)

where M = (|2\LR(:\+E)Q2' Here z* is the true GM.

The first result above is asymptotic. The second one,
Theorem D.5, gives convergence rate of O(M/t) where M
is as defined in the theorem. It is not clear how to upper
bound M only in terms of the model parameters (d, L or z*).
Consequently, the rate of convergence is not clear. Moreover,
the expression for zg (initialization) is too complicated and
thus it is not clear how to bound ||zg — z*||?. Consequently,
one cannot provide an expression for the iteration complexity

that depends only on the model parameters.

C. Proof of Lemma 3

Tgo0d {€ : ||ze — 2|]| < €||Z||} and define z* :=
GM(z,...,z1) as exact Geometric median.
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Algorithm 7 Weiszfeld’s Algorithm
Input A= {21, 29y nn ,ZL}
Parameters 7', e/

Output zgns
Initialization
20 = 2p + tpdy, Where

. , .
p € argmin{f(z;) : 1 <i < L}, f(z) = Y ;; Iz — 2]l
and d, — Bo_ ¢ — lBpl—1

P Rpll” 7P L(zp)

L 1 .
L(z) = Zi;l Te==iT if z2¢ A
itz To—ay 2=z (1<j<1L)
R- Y
S B
i=1,1#]

Iterative step

— L i L 1
Rt+1 = (Zi:l sz_izfﬂ) / (Zi:l m)
Terminating Condition

1) ¢ > T Upper bound on number of iterations
2) |lze41 — el < €am

For 2z, with ¢ € Jy004, We have
lzenm — zell = |zam — 2+ 2 — 24|
2 lzem — 2l — ||z — 2|

2 llzam — 2| = 2¢)| 2] + [[ze — 2| (29)

Moreover, by triangle inequality for z, & Jjo0a. W€
have

lzan — 2l = ||lze — 2l = [[zem — 2 (30)

Summing (29), (30) we get

L L
D llzan — zdll =) llze — 2|
(=1 =1
+(2[Tg00d| — L)l|zans — || = 2| Tgoodle| 2

By definition of zgas (approximate GM), Y7, [lzanm —
2ol < (1+eam) Xpo, II2* — 2| Hence,

L
D lze = 2+ (21Tg00al — D)lzear — 2 — 2| Tyooale| 2]
{=1
L

< (L+eam) Y lI2° =z
=1

Since z* is the minimizer of min,cgn 25:1 Iz — z¢l|, so

L

L
Dol =zl <D Nz — .
=1

=1

8023

Using this to lower bound the first term on the LHS of
above,

L
Doz =zl + (21T g00al — D)l zanr — 2l = 21T go0ale 2]
{=1

L
< (+ean) ) llz" =z
=1

Arranging the terms and using the fact | 7j00a| > (1 — )L
we get

lzam — 2|
- L «
< AgooalelZll | 3oy 27 = 2l
= €EGM
2|~7good| - L 2|~7900d| - L
c20 o)z | maxe ||z
= 1-2a M " 9a

Using Claim 1 ( with constant probability 1 — capprozamr

Algorithm 6 obtains (1 + egas)—approximate geometric
L
€GM

median zgps in order Ty = C'log ( ) implies that with

probability 1 — copprozamr

2t — 2 < Cacl 2l + ecas 2z =2l

‘ - M1 = 2a)L

~ max Zy

< Coell2] + €GM%HH
— 2zl

2(1—a)
1—-2a

where C,, :=

D. Proof of Lemma 4

Given
Pr{llz — 2| < €|z} >1—p

then

L
Pr {Z“‘{|zu|<e2u} > L(1—a)+ Lbyz}

=1
> Pr{T > L(1 — a) + Luy.}

where T ~
domination)

By Chernoff’s bound for binomial distributions, the follow-
ing holds:

Binomial(L,1 — p) (First-order stochastic

Pr{T > L(1 — a) + Lyy.} > 1 — exp(—Ly)(a — 7,p))

Ly,
where 7 = b=

This then implies w.p. at least 1 — exp(—Lt)(a — 7, D)),

L

> Wilz-zi<ezly = L — @) + Liy. > L(1 — )
=1

where « € (7,1/2). Using Lemma 3

maxi<e<r ||zl

lzan — 2| < Caellz] + ean——"—~

w.p. at least 1 — copprozam — exp(—Li(a — 7,p)). Fixing
a = 0.4 we get the result.
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E. Proof of Corollary 6

Jy00a denotes the set of good node (nodes whose estimates
zy satisfy ||z — Z|| < €||2]|) with the stated probability. First
we need to show that, with high probability, none of the entries
of Jyo0a are thresholded out. Using given condition Pr{||z, —
z|| < €||Z||} > 1 — p and union bound, we conclude that,
w.p. at least 1 — (1 —7)Lp, maxee7,,,, [|2el| < (1+€)| 2] =
wa - This means that, with this probability, none of the 7004
elements are thresholded out.

For the set {z1,...,z5} \ {z¢ lzell > (1 + ¢
Iz} we apply Lemma 4. Since [|{z1,...,25}
Mzeollzel > A+ 92} = L < L (1 —-7)L <

L' < L implies 77 < 7 < 0.4 hence condition of
Lemma 4 is satisfied using Lemma 4 w.p. at least
1 — Capprozam — exp(—=L'¢¥(04 — 7/,p)) — (L — 7)Lp >
1-— CapproxGM — eXp(_L’(/}(O4 -7, p)) - Lp5

1zanr — 2[| < 6| 2[|+5ean (1+€) || 2| <14 max(e, eanr) || 2|
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