
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024 8001

Byzantine-Resilient Federated PCA and Low-Rank
Column-Wise Sensing

Ankit Pratap Singh and Namrata Vaswani , Fellow, IEEE

Abstract— This work considers two related learning problems
in a federated attack-prone setting – federated principal com-
ponents analysis (PCA) and federated low rank column-wise
sensing (LRCS). The node attacks are assumed to be Byzan-
tine which means that the attackers are omniscient and can
collude. We introduce a novel provably Byzantine-resilient
communication-efficient and sample-efficient algorithm, called
Subspace-Median, that solves the PCA problem and is a key
part of the solution for the LRCS problem. We also study
the most natural Byzantine-resilient solution for federated PCA,
a geometric median based modification of the federated power
method, and explain why it is not useful. Our second main
contribution is a complete alternating gradient descent (GD)
and minimization (altGDmin) algorithm for Byzantine-resilient
horizontally federated LRCS and sample and communication
complexity guarantees for it. Extensive simulation experiments
are used to corroborate our theoretical guarantees. The ideas
that we develop for LRCS are easily extendable to other LR
recovery problems as well.

Index Terms— Federated PCA, Byzantine, matrix sensing,
linear representation learning.

I. INTRODUCTION

FEDERATED learning is a setting where multiple enti-

ties/nodes/clients collaborate in solving a machine learn-

ing (ML) problem. Each node can only communicate with a

central server or service provider that we refer to as “center” in

this paper. The data observed or measured at each node/client

is stored locally and should not be shared with the center.

Summaries of it can be shared with the center. The center

typically aggregates the received summaries and broadcasts

the aggregate to all the nodes [3]. One of the challenges in

this setup is adversarial attacks on the nodes. In this work

we assume Byzantine attacks, i.e., the adversarial nodes are

omniscient and can collude [4], [5], [6], [7], [8]. “Omniscient”

means that the attacking nodes have knowledge of all the data

at every node and the exact algorithm (and all its parameters)

Manuscript received 22 September 2023; revised 25 May 2024; accepted
29 July 2024. Date of publication 21 August 2024; date of current ver-
sion 22 October 2024. This work was supported by the NSF under Grant
CIF-2115200. An earlier version of this paper was presented in part at ISIT
2024 [DOI: 10.1109/ISIT57864.2024.10619161] and in part at ICML 2024

[2]. (Corresponding author: Namrata Vaswani.)
The authors are with the Department of Electrical and Computer Engineer-

ing, Iowa State University, Ames, IA 50011 USA (e-mail: sankit@iastate.edu;
namrata@iastate.edu).

Communicated by Y. Chi, Associate Editor for Machine Learning and
Statistics.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2024.3442211.

Digital Object Identifier 10.1109/TIT.2024.3442211

implemented by every node, including center, and can use

this information to design the worst possible attacks at each

algorithm iteration.

This work develops provably Byzantine resilient algorithms

for solving two related problems – federated principal com-

ponents analysis (PCA) and horizontally-federated low rank

(LR) column-wise sensing or LRCS – in a communication-

and sample-efficient fashion. The first goal in solving both

problems is to reliably estimate the subspace spanned by the

top r singular vectors of an unknown symmetric n×n matrix,

Φ∗. In case of PCA, Φ∗ is the population covariance matrix of

the available data. For each � = 1, 2, . . . , L, node � observes

an n × q� data matrix D� which can be used to compute an

estimate Φ� := D�D
�
� /q� of Φ∗. PCA is well known to have

a large number of applications in scientific visualization and as

a pre-processing step for speeding up various ML tasks. LRCS

finds applications in accelerated dynamic MRI [9], [10], multi-

task linear representation learning and few shot learning [2],

[11], [12], and federated sketching [13], [14], [15].

A. Existing Work

1) Byzantine-Resilient Federated Machine Learning (ML):
There has been a large amount of recent work on

Byzantine-resilient federated ML algorithms, some of which

come with provable guarantees [6], [7], [8], [16], [17], [17],

[18], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],

[28], [29]. Some of the theoretical guarantees are asymptotic,

and almost all of them analyze the standard gradient descent

(GD) algorithm or stochastic GD. Typical solutions involve

replacing the mean/sum of the gradients from the different

nodes by a different robust statistic, such as geometric median

(of means) [16], trimmed mean, coordinate-wise mean [8] or

Krum [6].

One of the first non-asymptotic results for Byzantine attacks

is [16]. This used the geometric median (GM) of means to

replace the regular mean/sum of the partial gradients from each

node. Under standard assumptions (strong convexity, Lipschitz

gradients, sub-exponential-ity of sample gradients, and an

upper bound on the fraction of Byzantine nodes), it provided

an exponentially decaying bound on the distance between the

estimate at the t-th iteration and the unique global minimizer.

In follow-up work [8], the authors studied the coordinate-wise

mean and the trimmed-mean estimators and developed guaran-

tees for both convex and non-convex problems. Because these

works used coordinate-wise estimators, their results needed

smoothness and convexity along each dimension. This is

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8002 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

a stronger, and sometimes impractical, assumption. Another

interesting series of works [7], [19] provides non-asymptotic

guarantees for Byzantine resilient stochastic GD. This work

develops an elaborate median based algorithm to detect and

filter out the Byzantine nodes. The theoretical analysis assumes

that the norm of the sample gradients is bounded by a constant

that does not depend on the gradient dimension. This can be

a restrictive assumption. With this assumption, they are able

to obtain sample complexity guarantees that do not depend on

the signal dimension. These works also assume that the set of

Byzantine nodes is the same for all GD iterations, while the

work of [16] allowed this set to vary at each iteration.

Most of the above works considered the homogeneous data

setting; this means that the data that is i.i.d. (independent and

identically distributed) across all nodes. More recent work has

focused on heterogeneous distributions (data is independent

across nodes but is not identically distributed) and proved

results under upper bounds on the amount of heterogeneity

[23], [24], [25], [26]. Other works rely on detection methods

to handle heterogeneous gradients [17], [18], [27], [28], [29].

These assume the existence of a trustworthy root/validation

dataset at the central server that is used for detecting the

adversarial gradients.

2) Work on Robust PCA and Subspace Learning and Track-
ing, and Other Robust Estimation Problems: There is much

work also on solving the robust PCA problem using the low

rank plus sparse (L+S) [30], [31], [32], [33], [34] or other

models, on robust subspace learning [35], [36], and on robust

subspace tracking problems [37], [38], [39]. The review arti-

cle [40] provides a comprehensive summary of the older work.

In addition there is other related work that uses the median

or vector medians for other types of outlier robust algorithms,

e.g., [41]. However, there are two key differences between

all these works and the problem that we study in this paper.

(1) All of these works assume that the outlier or the attack

is on the observed or measured data. In security literature,

such attacks (in which only the data can be corrupted) are

referred to as “data-poisoning” attacks. The algorithms from

these works cannot be used to deal with Byzantine attacks

which involve corruption of the (intermediate and/or final)

algorithm estimates sent by some nodes. (2) Secondly, almost

all of these are designed for the centralized setting. A possible

way to extend any of these ideas to the federated setting is

for the nodes to share their raw data with the center and for

the center to implement the same algorithm as that developed

in these works. However, this would not be communication-

efficient1. To distinguish from the L+S, or other, model-based

robust PCA work, here, we use the term “resilient” to denote

attack-resilience.

3) Work on Robust Statistics - Robust Mean and Robust
Covariance Estimation: There is a large amount of existing

work in the general robust statistics literature, most of it

is on robust mean estimation, and some on robust covari-

1One exception is the work of [37] that considers the federated setting.
However this has two important limitations: (i) it assumes that, for the
initialization step, the data is outlier-free; (ii) and, it requires a much larger
number of observed samples than what traditional LR matrix completion
literature needs.

ance estimation, e.g., see [42], [43], [44], [45], and [46].

None of these can be extended to solving our problem in a

communication-efficient fashion and most of these also have

much larger sample complexities. As an example, the work

of Minsker [46] studies the geometric median (GM), which

is one well-known approach to compute a reliable estimate of

a vector-valued quantity using multiple individual estimates

of it when some of these estimates may be corrupted by

outliers [16], [46]. In [46, Corollary 4.3], Minsker shows

the application of GM for “robust PCA” - provably accurate

robust/resilient covariance estimation followed by SVD on

the robust covariance estimate to compute its top r singular

vectors. We refer to this solution as SVD-ResCovEst. This

approach needs order q� ≥ n2 samples. Moreover, it cannot

be federated efficiently because it requires that each node �
shares D�D

�
� with the center. This has a communication cost

of order n2. A similar discussion applies for the result of [42,

Theorem 4.35] as well.

4) Work on the LR Column-Wise Sensing (LRCS) Prob-
lem: The LRCS problem, and its phaseless measurements’

extension, LR phase retrieval, have been extensively studied

in recent years [10], [15], [47], [48], [49], [50], mostly in cen-

tralized settings. The work of [49] and [50] introduced a fast

and communication-efficient solution to attack-free federated

LRCS, called alternating GD and minimization (altGDmin).

AltGDmin is initialized using spectral initialization.

5) Federated PCA and Subspace Learning; No Attacks:
There is also somewhat related work on federated PCA and

subspace learning that does not consider any attacks or other

outliers, e.g., [51], [52], and [53].

B. Our Contributions

A natural way to make the SVD-ResCovEst approach

communication-efficient is to borrow ideas from the sketching

literature and share Φ�Uany for some (possibly random) n×r
matrix Uany . This idea is, in fact, one iteration of the power

method for computing the r-SVD of a matrix [54], [55]. It can

be converted into a provably correct solution by using the

GM to modify the power method. We refer to this solution

as Resilient Power Method (ResPowMeth), and obtain a set

of sufficient conditions for it to work. We show that this

approach is both provably resilient to Byzantine attacks and

communication efficient under certain restrictive assumptions

on the accuracy of the individual nodes’ partial covariance

estimates, which translate into a very large sample complexity

for PCA: for n-length data vectors, ResPowMeth works if

q� ≥ Cn2r2.

Our first important contribution is a novel and

well-motivated solution to Byzantine-resilient federated

subspace estimation, and PCA, that is both communication-

efficient and sample-efficient. We refer to this as

“Subspace-Median”. Its guarantee is provided in Theorem 3.1

and Corollary 1. We show how the Subspace Median can be

used to provably solve two practically useful problems: (i)

Byzantine resilient federated PCA, and (ii) the initialization

step of Byzantine-resilient horizontal federated LRCS.

For the PCA problem, we show that this works well

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8003

with just q� ≥ Cnr samples. We also develop Subspace

Median-of-Means (MoM) extensions for both problems.

These help improve the sample complexity at the cost of

reduced Byzantine/outlier tolerance. For all these algorithms,

Theorem 3.1 helps prove sample, communication, and

time complexity bounds for ε-accurate subspace recovery.

Extensive simulation experiments corroborate our theoretical

results.

Our second important contribution is a provable

communication-efficient and sample-efficient complete

solution to horizontally federated LRCS. For solving it,

we develop a GM-based modification of the alternating

GD and minimization (altGDmin) algorithm from earlier

work [49]. We use Subspace Median and Subspace MoM

to make its spectral initialization step Byzantine-resilient.

For the complete algorithm, we can show that it obtains

an ε-accurate estimate of the unknown LR matrix using

only order nr2 log(1/ε) samples per node, and with a total

communication cost of only order nr log(1/ε) per node.

Both costs are comparable to what basic altGDmin needs for

solving this problem in the attack-free setting [49], [50].

The overall approach that we develop for modifying the

altGDmin algorithm (use Subspace-Median for initialization

and GM of gradients for the GD step), and analyzing it, can

be extended to make GD-based solutions to many other similar

non-convex problems in federated settings Byzantine-resilient.

Some examples include vertically federated LRCS, LR matrix

completion, LR phase retrieval, LR plus sparse matrix recovery

(robust PCA). Our approach for analyzing Byzantine-resilient

PCA is also extendable to solving PCA for approximately

LR datasets, PCA for such datasets with missing entries (see

Remark 4), and also to subspace tracking and robust subspace

tracking. We describe these in Sec. VIII-A.

C. Novelty of Our Algorithmic and Proof Techniques

While both SVD and geometric median (GM) are well

known in literature, we are not aware of any notions of

“median” for subspaces. We cannot directly use the GM on

the subspace basis matrices because these do not lie in a

Euclidean space, e.g., U , −U specify the same subspace

even though ‖U − (−U)‖F = 2
√

r �= 0. The design of

Subspace Median relies on the fact that the Frobenius norm

of the difference between two subspace projection matrices is

within a constant factor of the subspace distance between their

respective subspaces. Its analysis also uses the fact that these

projection matrices are bounded by
√

r in Frobenius norm.

We use these facts and Lemma 4 (GM lemma for bounded

inputs) to prove our key lemma, Lemma 1. This is combined

with the Davis-Kahan sin Θ theorem to prove Theorem 3.1.

This result is likely to be widely applicable in making various

other subspace recovery problems Byzantine resilient.

Our analysis of the AltGDmin iterations relies heavily on

the lemmas proved in [49] and the overall simplified proof

approach developed in [50]. However, we need to modify this

approach to deal with the fact that we compute the geometric

median of the gradients from the different nodes. The GM

analysis provides bounds on Frobenius norms, and hence

our analysis also uses the Frobenius norm subspace distance

instead of the 2-norm one; see Lemma 8. At the same time it

avoids the complicated proof approach (does not need to use

the fundamental theorem of calculus) of [49]. The main new

step is the bound on the difference between the expected values

of the gradients from two good nodes conditioned on past

estimates and data2. See Lemma 2. This lemma is used along

with Lemma 6 (our GM lemma for potentially unbounded

inputs) to obtain Lemma 10. This discussion will be clearer

from the proof outline provided below Theorem 5.3.

D. Organization

We define the problems, the notation, and introduce the

geometric median in the next section. Sec. III develops the

Subspace Median and Resilient Power Method (ResPowMeth)

solutions, and provides their theoretical guarantees. Sec. IV

develops corollaries for the resilient PCA problem, compares

the three approaches – SVD-ResCovEst [46], ResPowMeth,

and Subspace Median. A summary is provided in Table I.

Subspace Median of Means is also developed here. Sec. V

develops a complete altGDmin-based solution for resilient

horizontally federated LRCS. Proofs for Sections III and IV

are provided in Sec. VI. Simulation experiments are provided

in Sec. VII. We conclude in Sec. VIII.

II. PROBLEM SET-UP, NOTATION, AND GEOMETRIC

MEDIAN PRELIMINARIES

A. Problem Setup

We study two interrelated problems stated below. We begin

by stating the subspace estimation meta problem that occurs in

both problems. We consider a federated setting with L nodes,

with L being a numerical constant, and assume the following.

Assumption 1 (Number of Byzantine Nodes): At most τL
of the L total nodes are Byzantine, with τ ≤ 0.4 (instead

of 0.4, we can use any constant c that is strictly less than

0.5 here). Denote the set of good (non-Byzantine) nodes by

Jgood. Equivalently, this means that |Jgood| > (1 − τ)L.

We define a Byzantine attack below in Sec. II-A.4.

1) Resilient Federated Subspace Estimation: The goal is to

reliably estimate the subspace spanned by the top r singular

vectors of an unknown symmetric n × n matrix, Φ∗. Denote

the n×r matrix formed by these singular vectors by U∗. Our

goal is thus to estimate span(U∗). Each node � ∈ [L] observes,

or can compute, a symmetric matrix Φ� which is an estimate

of Φ∗. Typically, the node observes an n× q� data matrix D�

and computes Φ� := D�D
�
� /q�. We use σ∗

1 ≥ . . . ≥ σ∗
n to

denote the singular values of Φ∗.

2) Resilient Federated PCA: Given q data vectors dk ∈
�n, that are mutually independent and identically distributed

(i.i.d.), the goal is to find the r-dimensional principal subspace

(span of top r singular vectors) of their covariance matrix,

which we will denote by Σ∗. We can arrange the data vectors

into an n × q matrix, D := [d1, d2, . . .dq]. We use σ∗
j to

denote the j-th singular value of Σ∗. We assume that all dks

are i.i.d. zero mean, sub-Gaussian vectors, with covariance

2As explained earlier, the conditional expectations are different at the
different nodes. These can be computed and bounded easily because we
assume sample-splitting.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

matrix Σ∗ and maximum sub-Gaussian norm K
√‖Σ∗‖ =

K
√

σ∗
1 [56, Chap 2]. The data is vertically federated, this

means that each node � has q� = q̃ = q
L dk’s. Denote

the corresponding sub-matrix of D by D�. Thus, D =
[D1, . . . ,D�, . . .DL]. This problem is an instance of resilient

federated subspace estimation with Φ� = D�D
�
� /q�.

3) Resilient Horizontally-Federated Low Rank Column-
Wise Sensing (LRCS): LRCS involves recovering an n × q
rank-r matrix X∗ from compressive linear measurements of

each column, i.e., from yk := Akx∗
k, k ∈ [q], with yk ∈ �m

with m 	 n, and Ak being m × n matrices which are i.i.d.

random Gaussian (each entry is i.i.d. standard Gaussian) [49].

We treat X∗ as a deterministic unknown. Here and below

[q] := {1, 2, . . . , q}. Let Y := [y1, y2, . . . ,yq]. Horizontal

federation means that row sub-matrices of Y are observed at

the different nodes. To be precise, node � observes an m̃ × q
rows sub-matrix of Y denoted Y � with m̃ = m/L. We assume

that node � has access to Y � and {(Ak)�, k ∈ [q]}. Denote

the set of indices of the rows available at node � by S�. Then,

(Ak)� := I�
S�

Ak is of size m̃ × n and Y � := I�
S�

Y is of

size m̃ × q with m̃ = m/L, and with (yk)� := (Ak)�x
∗
k

for all k ∈ [q] Three important applications that can be

modeled as instances of LRCS are accelerated dynamic MRI

reconstruction [9], [10], federated sketching [10], [15], and

multi-task representation learning and few shot learning [2],

[11], [12]. In the representation learning problem, horizontal

federation corresponds to the setting where the �-th subset

of training data for the q correlated linear regression tasks

is observed at node �. Few shot learning uses this learned

representation (column span of X∗) for learning the regression

coefficients using very few training data points (this problem is

also referred to as online subspace tracking in [10]). In multi-

coil dynamic MRI, L is the number of MRI scanners, each of

which observes a differently weighted subset of measurements

of the human organ’s image sequence. Scanners can be prone

to security threats if they are connected to the internet. As we

will see later, the initialization step for solving LRCS using an

iterative algorithm can be interpreted as an instance of resilient

federated subspace estimation.

The reason we consider vertical federation for PCA but

horizontal for LRCS is because these are the settings in which

the data on the different nodes is i.i.d. in each case. In case

of vertically federated PCA, D�’s are i.i.d. If we consider

horizontal federation for PCA, then this is no longer true

(unless we assume Σ∗ is block diagonal). For LRCS, the

opposite holds because different entries of a given yk are

i.i.d.; but the different yk’s are not identically distributed.

Guaranteeing Byzantine resilience without extra assumptions

requires the different nodes’ data be i.i.d. or i.i.d.-like (this

means that it should be possible to obtain a uniform bound

on the errors between the individual nodes’ outputs and the

quantity of interest each time the node output is shared with

the center). As we explain later, it is possible to use ideas

similar to the ones introduced here to also solve vertically

federated LRCS, but that will need extra assumptions that

ensure bounded heterogeneity.

4) Byzantine Attack Definition: We use the terms Byzantine
node/adversary/attack almost interchangeably. The output of

a Byzantine node or adversary is the Byzantine attack. Byzan-
tine nodes are often also referred to as “bad” nodes and
non-Byzantine ones as “good” nodes. The Byzantine attack

has not been clearly mathematically defined in past work [4],

[5], [6], [7], [8], although there are definitions inspired by [57].

The following definition, taken from [4], is the most precise

one we can find.

Definition 1: The Byzantine adversary is an entity which

controls the outputs of some of the L worker nodes. It is

omniscient, in the sense that it has a perfect knowledge of

the system state at any time, i.e., it knows (i) the full state

of the center (data and algorithm, including all algorithm

parameters), and (ii) the full state of every node (data

and algorithm, including all algorithm parameters). Different

Byzantine adversaries can also collude. However, they are not

omnipotent: they cannot modify the outputs of the other (non-

Byzantine) nodes or of the center, or delay communication.

In our setting, this means the following. Let ∇byz denote

the set of outputs of all the Byzantine nodes. Then ∇byz =
gbyz({Data�}L

�=1,A)) where A denotes the true algorithm

being implemented at each of the non-Byzantine (good) nodes

and at the center along with all its parameters; gbyz(.) is a

function that can be jointly designed by all the Byzantine

nodes; and Data� is the data observed at node �: it is Φ�

or D� (in case of PCA), or Y �, (Ak)�, k ∈ [q] (in case of

LRCS).

B. Notation

We use ‖.‖F to denote the Frobenius norm and ‖.‖ without

a subscript to denote the (induced) l2 norm (often called

the operator norm or spectral norm); � denotes matrix or

vector transpose; |z| for a vector z denotes element-wise

absolute values; In (or sometimes just I) denotes the n × n
identity matrix, and ek denotes its k-th column (k-th canonical

basis vector); and M † = (M�M)−1M�. We use 1{a≤b}
to denote the indicator function that returns 1 if a ≤ b
otherwise 0.

We say U is a basis matrix if it is a tall matrix with

mutually orthonormal columns; we use this to denote the

subspace spanned by its columns. For a basis matrix U ,

the projection matrix for projecting onto span(U) (the sub-

space spanned by the columns of U) is denoted PU :=
UU� while that for projecting orthogonal to span(U) is

denoted PU ,⊥ := I − UU� “r-SVD” to refer to the top

r left singular vectors (singular vectors corresponding to the

r largest singular values) of a matrix. For basis matrices,

U1, U2, we use SDF (U1, U2) := ‖(I − U1U1
�)U2‖F

as the default Subspace Distance (SD) measure between the

subspaces spanned by the two matrices. In some places,

we also use SD2(U1, U2) = ‖(I − U1U1
�)U2‖. If both

matrices have r columns (denote r-dimensional subspaces),

then SDF (U1, U2) ≤
√

rSD2(U1, U2).
We use QR(Ũ) to denote the orthonormalization of the

columns of Ũ by using QR decomposition. For a matrix M ,

vec(M) vectorizes it.

We reuse the letters c, C to denote different numerical
constants in each use with the convention that c < 1 and
C ≥ 1. Also the notation a � b means a ≤ Cb.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8005

For a, b in (0, 1), we use ψ(a, b) := (1 − a) log 1−a
1−b +

a log a
b to denote the binary KL divergence. When computing

a median of means estimator, one splits the L node indices

into L̃ mini-batches so that each mini-batch contains ρ = L/L̃
indices. For the �-th node in the ϑ-th mini-batch we use the

short form notation (ϑ, �) = (ϑ − 1)ρ + �, for � ∈ [ρ].
Recall that Byzantine nodes are often also referred to

as “bad” nodes and non-Byzantine ones as “good” nodes.

We use Jgood ⊆ [L] to denote the set of non-Byzantine/good

nodes and J c
good denotes the set of Byzantine nodes. Using

Assumption 1, |Jgood| = L − τL = (1 − τ)L.

C. Geometric Median (GM)

The geometric median (GM) is one well-known approach

to compute a reliable estimate of a vector-valued quantity

using multiple individual estimates of it when some of these

estimates may be corrupted by outliers [16], [46]. For L data

vectors {z1, z2, . . . ,zL}, with each z� ∈ �d, this is defined

as

z∗
GM := GM{z1, z2, . . . ,zL} = arg min

z∈�d

L∑
�=1

‖z − z�‖

This cannot be computed in closed form. Iterative algorithms

exist to solve it approximately. When we say zGM is a (1+ε0)
approximate GM, for an 0 < ε0 < 1 we mean that

L∑
�=1

‖zGM − z�‖ ≤ (1 + ε0)
L∑

�=1

‖z∗
GM − z�‖

= (1 + ε0) min
z∈�d

L∑
�=1

‖z − z�‖ (1)

There are two popular iterative solutions for computing the

approximate GM. The most commonly used one in practice,

Weiszfeld’s algorithm [58], [59], does not come with a useful

iteration complexity guarantee. The recent work of [60] intro-

duced a nearly linear-time algorithm for provably computing

the approximate GM, with high probability. We provide [60,

Algorithm 1] in Appendix D. We state its guarantee next. All

theoretical results in our work use this result.

Claim 1 (Theorem 1 [60]): Pick an accuracy level 0 <
ε0 < 1. Consider [60, Algorithm 1] with input

{z1, z2, . . . ,zL} and using number of iterations, TGM =
C log(L

ε0
). With probability at least 1 − capproxGM (where

capproxGM < 1 is a numerical constant, e.g., 0.1), the

algorithm computes zGM that satisfies (1). Its per iteration

complexity is CLd log2(L
ε0

) and total time complexity is

O(Ld log3(L
ε0

)).
The use of the above result allows us to bound the iteration

complexity of all our algorithms. This, in turns, allows us to

get a bound on the total communication cost and the total time

cost. Although it has a simple guarantee, the algorithm [60,

Algorithm 1] itself is quite complicated. The authors of [60]

have not shown any experimental results with it. To our best

knowledge, nor have any other authors in follow-up work that

cites it. The algorithm used in practice for approximating the

GM is the Weiszfeld’s algorithm initialized using the average

of the z�’s [58]. This is an iteratively re-weighted least squares

type algorithm. We provide both algorithms in Appendix D.

Algorithm 1 Subspace Median

Input D�, � ∈ [L]; or Φ�, � ∈ [L].
Parameters TGM , Tpow

1: Nodes � = 1, . . . , L
2: Compute top r singular vectors, Û �, of D� (equivalently

of Φ� := D�D
�
�).

(Can use power method with Tpow iterations)

3: Central Server
4: Orthonormalize: U � ← QR(Û �), � ∈ [L]
5: Compute Projection Matrices: PU�

← U �U
�
� , � ∈ [L]

6: Compute their GM: PGM ← approxGM{PU�
, � ∈ [L]}

(Use [60, Algorithm 1] with parameter TGM).

7: Find �best = arg min� ‖PU�
− PGM‖F

8: Output Uout = U �best

III. RESILIENT FEDERATED SUBSPACE ESTIMATION

A. Proposed Solution: Subspace Median

Recall that our goal is to obtain a reliably accurate estimate

of span(U∗), which is an r-dimensional subspace in �n, when

each node computes an estimate U � of it by computing the

top r singular vectors of Φ�.. Some nodes can be Byzan-

tine (Assumption 1). We develop a solution approach that

relies on the geometric median (GM). Notice from Sec. II-C

that the GM is defined for quantities whose distance can

be measured using the vector l2 norm (equivalently, matrix

Frobenius norm). Our solution adapts the GM to use it for

subspaces by using the fact that the Frobenius norm between

the projection matrices of two subspaces is another measure

of subspace distance: ‖PU − PU∗‖F =
√

2SDF (U , U∗)
[61, Lemma 2.5].

Our proposed algorithm, which we refer to as “Subspace

Median”, relies on this fact. It proceeds as follows. Each

node computes the top r singular vectors of its matrix Φ�,

denoted Û �, and sends these to the center. If node � is good

(non-Byzantine), then Û � already has orthonormal columns;

however if the node is Byzantine, then it is not. The center first

orthonormalizes the columns of all the received Û �’s using

QR. This ensures that all the U �’s have orthonormal columns.

It then computes the projection matrices PU�
:= U �U

�
� ,

� ∈ [L], followed by vectorizing them, computing their GM,

and converting the GM back to an n×n matrix. Denote this by

PGM . Finally, the center finds the � for which PU�
is closest

to PGM in Frobenius norm and outputs the corresponding U �.

We should mention that this last step can also be replaced by

finding the top r singular vectors of PGM . However, doing this

requires time of order n2r log(1/ε) while finding the closest

PU�
only needs time of order max(n2, L log L).

Subspace Median is summarized in Algorithm 1. We can

prove the following for it.

Lemma 1 (Subspace-Median): For a δ > 0, consider

Algorithm 1 with TGM = C log
(

Lr
δ

)
. Assume that Assump-

tion 1 holds. Assume that, for at least (1 − τ)L nodes, the

following holds:

Pr (SDF (U∗, U �) ≤ δ) ≥ 1 − p.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8006 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Then, w.p. at least 1 − capproxGM − exp(−Lψ(0.4 − τ, p)),

SDF (U∗, Uout) ≤ 23δ.

Here ψ(a, b) := (1 − a) log 1−a
1−b + a log a

b for 0 < a, b < 1 is

the binary KL divergence, and capproxGM is the numerical

constant from Claim 1.

Proof: See Sec. VI. �
Combining this lemma with the Davis-Khan sin Θ theorem

(bounds the distance between the principal subspaces of two

symmetric matrices) [62] and a guarantee for the power

method [63], we can prove the following theorem.

Remark 1: We specify the power method just to have one

algorithm for computing the top r singular vectors of a matrix

for which we can specify the time compleixty. It can be

replaced by any other algorithm and our overall result remains

the same.

Theorem 3.1 (Subspace-Median Guarantee): Pick an ε <
1. Assume that Assumption 1 holds and that σ∗

r − σ∗
r+1 ≥ Δ

for a Δ > 0. Assume also that, for at least (1 − τ)L node

outputs, the following holds, for a p > 0.

Pr
{
‖Φ� − Φ∗‖ ≤ ε

92
√

r
Δ
}

≥ 1 − p.

Consider Algorithm 1 with TGM = C log
(

Lr
ε

)
.

1) Assume use of exact SVD at the nodes. Then, w.p. at least

1 − capproxGM − exp(−Lψ(0.4 − τ, p)),

SDF (Uout, U
∗) ≤ ε

2) Assume that the power method with Tpow iterations is

used for the SVD step. If Tpow = C
σ∗

r

Δ log(n
ε), then the

above conclusion holds w.p. at least 1 − capproxGM −
exp(−Lψ(0.4 − τ, p + 1

n10)).
The communication cost is nr per node. The com-

putational cost at the center is order n2L log3
(

Lr
ε

)
.

The computational cost at any node (when using power

method) is order nq�rTpow = nq�r
σ∗

r

Δ log(n
ε).

Proof: See Sec. VI. �
The assumption σ∗

r − σ∗
r+1 ≥ Δ (singular value gap) is

needed for ensuring that the span of U � computed at any

good node is an accurate estimate of the span of U∗. It also

decides the time complexity of the computation (Δ appears in

the required number of power method iterations.

B. Alternate Solution 1: SVD on Resilient Covariance
Estimation (SVD-ResCovEst)

SVD-ResCovEst is the solution studied by Minsker [46] and

described earlier. It involves computing the GM of (vectorized)

Φ�s, followed by obtaining the principal subspace (r-SVD) of

the GM matrix. In a federated setting, this is communication

inefficient since it requires that each node � either shares its

raw data D� with the center (this is a matrix of size n × q�),

or, that it shares Φ� = D�D
�
� /q� (this is of size n × n). For

PCA, as we explain in the next section, this is also sample

inefficient; it requires q� ≥ n2/ε2. See Remark 3.

Algorithm 2 Resilient Power Method (ResPowMeth)

Parameters Tpow, TGM , ωGM

1: Central Server Randomly Initialize U rand with i.i.d

standard Gaussian entries. Set U0 = U rand.

2: for t ∈ Tpow do
3: Nodes � = 1, . . . , L
4: Compute Φ�U t−1

5: Central Server
6: GM ← approxGM ({vec(Φ�U t−1), � ∈ [L]}\

{� : ‖Φ�U t−1‖F > ωGM})
(Use [60, Algorithm 1] with TGM iterations on the set

of Φ�U t−1s whose Frobenius norm is below ωGM)

7: Orthonormalize: using QR GM
QR
= ÛR

8: Return U t ← Û
9: end for

10: Output Uout ← UTpow

C. Alternate Solution 2: Resilient Power Method
(ResPowMeth)

A natural way to make the SVD-ResCovEst approach

communication-efficient is to borrow ideas from the sketching

literature and share Φ�Uany for some (possibly random) n×r
matrix Uany . This idea is, in fact, one iteration of the power

method for computing the r-SVD of a matrix [54], [55].

It can be converted into a provably correct solution by using

the GM to modify the power method. This starts with a

random Gaussian initialization, U rand, and implements the

iteration: U ← QR(
∑

� Φ�U). In our GM based modification,

we replace the summation by the GM. We refer to this solution

as Resilient Power Method (ResPowMeth), and summarize it in

Algorithm 2. As we show next, ResPowMeth works with high

probability (w.h.p.) if all the Φ�’s are very accurate estimates

of Φ∗. The reason it needs to make the above assumption

is because it computes the GM of the node outputs Φ�U at

each iteration including the first one. At the first iteration,

U0 is a randomly generated matrix and thus, w.h.p., this is a

bad approximation of the desired subspace span(U∗). Conse-

quently, the same is true for the column span of Ũ
+

� = Φ�U0.

To understand this easily, suppose U0 is almost orthogonal to

U∗, i.e., U�
0 U∗ ≈ 0. Then the span of Ũ

+

� will be almost

orthonormal to that of U∗. Thus, unless all the Φ�s are very

similar, the column spans of the different Ũ
+

� s will not be

close. As a result, the GM of their projection matrices will not

be able to distinguish between the good and Byzantine ones.

There is a good chance that it approximates the subspace of

the Byzantine one(s). This then means that the updated U is

also a bad approximation of span(U∗). The same idea repeats

at the second iteration. Thus, with significant probability,

the subspace estimates do not improve over iterations. This

intuition is captured in the guarantee provided next. It becomes

clearer in the direct one-step analysis that we provide in

Appendix C.

Theorem 3.2 (ResPowMeth Guarantee): Assume that

Assumption 1 holds and that σ∗
r − σ∗

r+1 ≥ Δ for a

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8007

Δ > 0. Consider ResPowMeth (Algorithm 2) with Tpow =
C

σ∗
r

Δ log(n
ε), TGM = log

(
Lnr

ε

)
, and ωGM = 1.1σ∗

1

√
r.

Suppose, for at least (1 − τ)L node outputs, the following

holds

Pr
{
‖Φ� − Φ∗‖ ≤ 1

70
min

(
ε√
r
,

1
2
√

nr

)
Δ
}

≥ 1 − p.

Then w.p. at least 1 − capproxGM−c−Lp − exp(−Lψ
(0.4 − τ, p)) SDF (Uout, U

∗) ≤ ε. The communication

cost is nrTpow = Cnr
σ∗

r

Δ log(n
ε) per node. The com-

putational cost at the center is nrL log3
(

Lnr
ε

) · Tpow =
nrL

σ∗
r

Δ log3
(

Lnr
ε

)
log(n

ε). The computational cost at any node

is nq�rTpow = nq�r
σ∗

r

Δ log(n
ε).

Proof: See Sec. VI. A second more illustrative proof is

provided in Appendix C. �
Observe that this result assumes ‖Φ� − Φ∗‖ �

min(ε/
√

r, 1/(
√

n r))·Δ. The 1/
√

nr factor makes this a very

stringent requirement, e.g., even to get an ε = 0.5 accurate

subspace estimate, we need ‖Φ� − Φ∗‖ � Δ/
√

n r. On the

other hand, the Subspace Median guarantee only assumes

‖Φ� − Φ∗‖ � (ε/
√

r)Δ. As we will see in the next section,

this translates into a much better sample complexity for PCA

for Subspace Median than for ResPowMeth.

IV. APPLICATION 1: RESILIENT FEDERATED PCA

Recall from Sec. II-A that our goal is to reliably estimate the

principal subspace of the unknown data covariance matrix Σ∗.

Node � has access to a subset of q� data vectors dk arranged

as columns of an n × q� matrix D�.

A. Subspace-Median (SubsMed) for Resilient PCA

Using its data, each node can compute the empirical covari-

ance matrix Σ̂� := D�D
�
� /q̃. This is an estimate of the true

one, Σ∗. This allows us to use Algorithm 1 applied to D�

or Σ̂� to obtain a Byzantine resilient PCA solution, and use

Theorem 3.1 to analyze it. The sample complexity needed to

get the desired bound on ‖Σ̂� −Σ∗‖ w.h.p. is obtained using

[56, Theorem 4.7.1]. Combining these two results, we can

prove the following.

Corollary 1 (Subspace Median for PCA): Consider the

PCA problem as defined in Sec. II-A.2. Assume that

Assumption 1 holds and that σ∗
r − σ∗

r+1 ≥ Δ for a Δ > 0.

Consider Algorithm 1 (SubsMed) with input Φ = D�D
�
� /q�,

and parameters as set in Theorem 3.1. If

q� :=
q

L
≥ CK4 σ∗

1
2

Δ2
· nr

ε2
,

then, w.p. at least 1 − capproxGM − exp(−Lψ(0.4 −
τ, 2 exp(−n) + n−10)), SDF (Uout, U

∗) ≤ ε.

Proof: We prove it in Sec. VI-F. It is an immediate

corollary of Theorem 3.1 and [56, Theorem 4.7.1]. �
Remark 2 (ResPowMeth for PCA): In the setting of Corol-

lary 1, consider Algorithm 2 (ResPowMeth). If q� ≥ CK4 σ∗
1
2

Δ2 ·
max

(
n
ε2 , n2r2

)
, then SDF (Uout, U

∗) ≤ ε.

Remark 3 (SVD-CovEst for PCA): In the setting of Corol-

lary 1, consider SVD-ResCovEst (SVD on GM of nodes’

covariance matrix estimates) studied in [46, Corollary 4.3].

By using [46, Corollary 4.3], and using the fact that, E‖dk‖4−
trace(Σ∗2) ≤ Cn2K4σ∗

1
2 under the sub-Gaussian assumption,

we can conclude the following: If q� ≥ CK4 σ∗
1
2

Δ2 n2/ε2, then,

SDF (Uout, U
∗) ≤ ε with constant probability.

The reason this needs q� of order n2 is because it first

obtains a resilient estimate of the entire n × n covariance

matrix, followed by r-SVD on it. For resilient estimation,

it needs to use the Frobenius norm as the error measure. The

robust estimator studied in [42, Theorem 4.35] uses a different

algorithm, but this also needs order n2/ε2 sample complexity

and order n2 communication complexity.

Remark 4 (Generalizations of Theorem 3.1): (1) Theorem

3.1 also holds if the dk’s are not i.i.d., but are zero mean,

independent, sub-Gaussian, and with covariance matrices that

are of the form E[dkd�
k] = U∗SkU∗� with all Sk’s being

such that their r-th singular value gap is at least Δ.

(2) We can also combine Theorem 3.1 with the sample

complexity bound for estimating approximately LR covari-

ance matrices given in [64, Corollary 5.52 and Remark

5.53] to show that, in this case, a much lower sample

complexity suffices. Suppose dk are i.i.d., zero mean, sub-

Gaussian, have covariance matrix Σ∗, and are bounded with

‖dk‖2 ≤ K2trace(Σ∗) and trace(Σ∗) = r0σ
∗
1 with stable

rank r0 	 n (approximately LR matrix). Then, if q� ≥
CK4 σ∗

1
2

Δ2 (max(r0, r)2 log n)/ε2, then SDF (Uout, U
∗) ≤ ε.

Here r0 is the stable rank.

(3) We can also do the above for PCA with missing data

by combining with [65, Theorem 3.22].

B. Subspace Median-of-Means (Subspace MoM)

As is well known, the use of median of means (MoM),

instead of median, improves (reduces) the sample complexity

needed to achieve a certain recovery error, but tolerates a

smaller fraction of Byzantine nodes. It is thus useful in settings

where the number of bad nodes is small. We show next

how to obtain a communication-efficient and private GMoM

estimator for federated PCA. Pick an integer L̃ ≤ L. In order

to implement the “mean” step, we need to combine samples

from ρ = L/L̃ nodes, i.e., we need to find the r-SVD of

matrices D(ϑ) = [D(ϑ,1), D(ϑ,2), . . . ,D(ϑ,ρ)], for all ϑ ∈ [L̃].
Recall that (ϑ,�) =(ϑ−1)ρ+�. This needs to be done without

sharing the entire matrix D(ϑ,1). We do this by implementing

L̃ different federated power methods, each of which combines

samples from a different minibatch of ρ nodes. The output of

this step will be L̃ subspace estimates U (ϑ), ϑ ∈ [L̃]. These

serve as inputs to the Subspace-Median algorithm to obtain the

final Subspace-MoM estimator. We summarize the complete

the algorithm in Algorithm 3. We should mention that L̃ = L
is the subspace median special case.

As long as the same set of τL nodes are Byzantine for all

the power method iterations, we can prove the following.

Corollary 2: Consider Algorithm 3 and the setting of

Corollary 1. Assume that the set of Byzantine nodes remains

fixed for all iterations in this algorithm and the size of this set

is at most τL with τ < 0.4L̃/L. If

q

L
= q̃ ≥ CK4 σ∗

1
2

Δ2

nr

ε2
· L̃

L

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

TABLE I

COMPARING SUBSPACE MEDIAN (SUBSMED) WITH SVD-RESCOVEST AND RESILIENT POWER METHOD (RESPOWMETH) AND WITH THE BASIC POWER

METHOD FOR A NO-ATTACK SETTING. WE OBTAIN COMPLEXITIES FOR GUARANTEEING SD2(U ,U∗) ≤ ε. SUBSMED AND RESPOWMETH

ONLY BOUND SDF (U ,U∗) AND THIS IS WHY THE SAMPLE COMPLEXITIES FOR THESE CONTAIN AN EXTRA FACTOR OF r. THIS

TABLE SUMMARIZES THE RESULTS OF COROLLARY 1 AND THE TWO REMARKS BELOW IT

then, the conclusion of Corollary 1 holds. The communication

cost is Tpownr = nr
σ∗

r

Δ log(n
ε) per node. The computational

cost at the center is order n2L̃ log3
(

L̃r
ε

)
. The computational

cost at any node is order nq�r
σ∗

r

Δ log(n
ε).

C. Discussion and Comparisons

1) Comparing Subspace-Median and Subspace-MoM: For

a chosen value of L̃ ≤ L, the sample complexity required by

subspace-MoM reduces by a factor of 1/ρ = L̃/L, but its

Byzantine tolerance also reduces by this factor. This matches

what is well known for other MoM estimators, e.g., that

for gradients used in [16]. Also, the communication cost of

Subspace-MoM is larger than that of Subspace Median since it

implements a power method to share samples between subsets

of nodes.

2) Comparing Subspace-Median With SVD-ResCovEst and
ResPowMeth: Consider communication cost. SVD-CovEst has

a very high cost of order n2 while Subspace Median and

ResPowMeth have much lower costs of order nr and nr
σ∗

r

Δ
times a log factor respectively. Consider sample cost. Both

SVD-CovEst and ResPowMeth have a very high sample cost

of order n2 and order n2r2 respectively for ε = c. Subspace

Median has a sample cost of only order nrL.

In terms of computation cost at the nodes, SVD-CovEst is

the most expensive, while both ResPowMeth and Subspace

Median have the same cost. But, at the center, Subspace

Median has a higher cost by a factor n/(r log3(n/ε)). In many

practical federated applications, the nodes are power limited,

and hence their computation cost, and communication cost,

needs to be low. In terms of total algorithm speed, communica-

tion cost/time is often the main bottleneck. The computational

cost at the center is a lesser concern.

3) Comparison With Standard Federated Power Method in
the No-Attack Setting: Observe that, for a given normalized

singular value gap, the sample complexity (lower bound on q)

needed by the above result is order nrL/ε2 while that needed

for standard PCA (without Byzantine nodes) is order n/ε2

[56, Remark 4.7.2]. The reason we need an extra factor of

L is because we are computing the individual node estimates

using q̃ = q/L data points and we need each of the node

estimates to be accurate (to ensure that their “median” is

Algorithm 3 Subspace Median-of-Means. Recall that

(ϑ,�) =(ϑ−1)ρ+�.

1: Input: Batch D(ϑ) = [D(ϑ,1), D(ϑ,2), . . . ,D(ϑ,ρ)], ϑ ∈
[L̃].

2: Parameters: Tpow

3: Central Server
4: Randomly initialize U rand with i.i.d standard Gaussian

entries. Set U (ϑ) = U rand.

5: for t ∈ [Tpow] do
6: Nodes � = 1, . . . , L
7: Compute Ũ (ϑ,�) ← D(ϑ,�)D

�
(ϑ,�)U (ϑ), � ∈ (ϑ − 1)ρ +

[ρ], ϑ ∈ [L̃]. Push Ũ (ϑ,�) to center.

8: Central Server
9: Compute U (ϑ) ← QR(

∑ρ
�=1 Ũ (ϑ,�)), ϑ ∈ [L̃]

10: Push U (ϑ) to nodes � ∈ (ϑ − 1)ρ + [ρ].
11: end for
12: Use Algorithm 1 for the input {U (ϑ)}L̃

ϑ=1

13: Output Uout.

accurate). This extra factor of L is needed also in other work

that uses (geometric) median, e.g., [16] needs this too. The

reason we need an extra factor of r is because we need use

Frobenius subspace distance, SDF , to develop and analyze

the geometric median step of Subspace Median. The bound

provided by the Davis-Kahan sin Theta theorem for SDF

needs an extra factor of
√

r.

The per-node computational cost of standard federated PCA

is nq̃rTpow while that for SubsMed is nq̃rTpow + n2LTGM .

Ignoring log factors and treating the singular value gap as a

numerical constant (ignoring Tpow and TGM), letting ε = c,

and substituting the respective lower bounds on q̃, the PCA

cost is n2r while that for SubsMed for Byzantine-resilient

PCA is max(n2r2, n2L) = n2 max(r2, L). Thus the compu-

tational cost is only max(r, L/r) times higher.

We summarize the comparisons in Table I.

V. APPLICATION 2: HORIZONTALLY FEDERATED LRCS

A. Problem Setting

1) Basic Problem: The LRCS problem involves recovering

an n × q rank-r matrix X∗ = [x∗
1, x

∗
2, . . . ,x

∗
q], with r 	

min(q, n), from yk := Akx∗
k, k ∈ [q] when yk is an m-length

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8009

vector with m < n, and the measurement matrices Ak

are known and independent and identically distributed (i.i.d.)

over k. We assume that each Ak is a “random Gaussian”

matrix, i.e., each entry of it is i.i.d. standard Gaussian. Let

X∗ SV D= U∗Σ∗V ∗� := U∗B∗ denote its reduced (rank r)

SVD, and κ := σ∗
1/σ∗

r the condition number of Σ∗. Notice

that each measurement yki is a global function of column x∗
k,

but not of the entire matrix. As explained in [49], to make

it well-posed (allow for correct interpolation across columns),

we need the following incoherence assumption on the right

singular vectors.

Assumption 2 (Right Singular Vectors’ Incoherence): We

assume that maxk ‖b∗
k‖ ≤ μ

√
r/qσ∗

1 for a constant μ ≥ 1.

2) Horizontal Federation: Consider the m × q measure-

ments’ matrix,

Y = [y1, y2, . . . ,yq] = [A1x
∗
1, A2x

∗
2, . . . ,Aqx

∗
q].

We assume that there are a total of L nodes and each node

observes a different disjoint subset of m̃ rows of Y . Denote

the set of indices of the rows available at node � by S�. Thus

|S�| = m̃ = m/L. We assume that node � has access to Y �

and {(Ak)�, k ∈ [q]}. Here (Ak)� := I�
S�

Ak is m̃ × n and

Y � := I�
S�

Y is of size m̃ × q with m̃ = m/L, and with

(yk)� := (Ak)�x
∗
k for all k ∈ [q]

Observe that the sub-matrices of rows of Y , Y �, are

identically distributed, in addition to being independent. Con-

sequently, the same is true for the partial gradients computed

at the different nodes. This is why, without extra assumptions,

we can make our solution Byzantine resilient. On the other

hand, column sub-matrices of Y are not identically distributed.

In order to obtain provable guarantees for vertical LRCS,

we will need extra assumptions that bound on the amount

of heterogeneity in the data (and hence in the nodes’ partial

gradients). This is being studied in ongoing work.

3) Byzantine Nodes: Assumption 1 holds. Also, the set of

Byzantine nodes may change at each AltGDmin algorithm

iteration.

B. Review of Basic altGDmin [49]

We first explain the basic idea [49] in the simpler no-attack

setting. AltGDmin imposes the LR constraint by expressing

the unknown matrix X as X = UB where U is an n × r
matrix and B is an r × q matrix. In the absence of attacks,

the goal is to minimize

f(U , B) :=
q∑

k=1

‖yk − Ubk‖2

AltGDmin proceeds as follows:
1) Truncated spectral initialization: Initialize U (explained

below).

2) At each iteration, update B and U as follows:
a) Minimization for B: keeping U fixed, update B

by solving minB f(U , B). Due to the form of the

LRCS measurement model, this minimization decou-

ples across columns, making it a cheap least squares

problem of recovering q different r length vectors. It is

solved as bk ← (AkU)†yk for each k ∈ [q].

b) GD for U : keeping B fixed, update U by a GD

step, followed by orthonormalizing its columns: U+ ←
QR(U − η∇Uf(U , B))). Here ∇Uf(U , B) =∑

k∈[q] A
�
k (AkUbk − yk)b�

k

The use of full minimization to update B is what helps

ensure that AltGDmin provably converges, and that we can

show exponential error decay with a constant step size (this

statement treats κ as a numerical constant) [49], [50]. Due

to the decoupling in this step, its time complexity is only as

much as that of computing one gradient w.r.t. U . Both steps

need time of order mqnr. In a federated setting, AltGDmin is

also communication-efficient because each node needs to only

send nr scalars (gradient w.r.t U) at each iteration.

We initialize U by computing the top r singular vectors of

X0 :=
∑

k

A�
k (yk)trunc(α)e�

k , where ytrunc(α)

:= (y ◦ 1|y|≤√
α)

Here α := 9κ2μ2
∑

k ‖yk‖2/mq and ytrunc(α) is a truncated

version of the vector y obtained by zeroing out entries of y
with magnitude larger than α (the notation |y| means |y|i =
|yi| for each entry i, the notation 1z≤α returns a 1-0 vector

with 1 where zj < α and zero everywhere else, and z1 ◦z2 is

the Hadamard product between the two vectors, i.e., the “.*”

operation in MATLAB)

Sample-splitting is assumed to prove the guarantees. This

means the following: we use a different independent set of

measurements and measurement matrices yk, Ak, k ∈ [q] for

each new update of U and of B. We also use a different

independent set for computing the initialization threshold α.

All expected values used below are expectations conditioned

on past estimates (which are functions of past measurement

matrices and measurements, Ak, yk). For example, E[(∇Uf)�]
conditions on the values of U , B� used to compute it. This

is also the reason why E[(∇Uf)�] is different for different

nodes; see Lemma 2.

C. Resilient Federated Spectral Initialization

This consists of two steps. First the truncation threshold α =
C̃

mq

∑
k

∑
i y2

ki which is a scalar needs to be computed. This

is simple: each node computes α� = C̃
m̃q

∑
k

∑
i∈S�

(y�)2ki and

sends it to the center which computes their median.

Next, we need to compute U0 which is the matrix of top r
left singular vectors of X0, and hence also of X0X

�
0 . Node

� has data to compute the n × q matrix (X0)�, defined as

(X0)� :=
q∑

k=1

(Ak)�
�((yk)�)trunce

�
k , (2)

Observe that X0 =
∑

�(X0)�. If all nodes were good (non-

Byzantine), we would use this fact to implement the federated

power method for this case. However, some nodes can be

Byzantine and hence this approach will not work. For reasons

similar to those explained in Sec. III, (i) an obvious GM-based

modification of the federated power method will not work

either, and (ii) nodes cannot send the entire (X0)� (this is

too expensive to communicate). We instead use Subspace

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Algorithm 4 Byz-AltGDmin: Initialization Using Subspace

Median

Input Y � and (Ak)�

Parameters TGM , Tpow

Nodes � = 1, . . . , L

Compute α� ← 9κ2μ2

m̃q

∑
k ‖(yk)�‖2.

Central Server
α ← Median{α�}L

�=1

Nodes � = 1, . . . , L
Compute (U0)� ← top-r-singular vectors of (X0)� defined

in (2) (use power method with Tpow iterations).

Central Server
Use Algorithm 1 (Subspace-Median) with parameter TGM

on (U0)�, � ∈ [L].
Output Uout.

Median, Algorithm 1, applied to D� = (X0)�. This is

both communication-efficient and sample-efficient. It can be

shown that it will work under a sample complexity lower

bound that is comparable to that needed in the attack-free

setting. We summarize this in Algorithm 4. We can obtain

a guarantee for this approach by applying Theorem 3.1 with

Φ� ≡ (X0)�(X0)�� /q and using the results from [49] and

[50] to ensure that the assumption needed by Theorem 3.1

holds. We directly state a guarantee for the GM of means

estimator developed next. The guarantee for Algorithm 4 is a

special case of that for the GM of means estimator developed

next with L̃ = L, and thus its guarantee is also given by

Corollary 3 with L̃ = L.

D. Resilient Federated Spectral Initialization: Horizontal
Subspace-MoM

As explained earlier for PCA, the use of just (geometric)

median wastes samples. Hence, we develop a median-of-

means estimator. For a parameter L̃ ≤ L, we would like

to form L̃ mini-batches of ρ = L/L̃ nodes; w.l.o.g. ρ is

an integer. In our current setting, the data is horizontally

federated. This requires a different approach to combine

samples than what we used for PCA in Sec. IV-B. Here,

each node can compute the n × q matrix (X0)�. Com-

bining samples means combining the rows of (Ak)� and

(yk)� for ρ nodes to obtain (X0)(ϑ) with k-th column

given by
∑ρ

�=1(Ak)�(ϑ,�)(yk,trunc)(ϑ,�)/ρ. Recall that (ϑ, �) =
(ϑ − 1)ρ + �). To compute this in a communication-efficient

and private fashion, we use a horizontally federated power

method for each of the L̃ mini-batches. The output of each

of these power methods is U (ϑ), ϑ ∈ [L̃]. These are then

input to the subspace-median algorithm, Algorithm 1 to obtain

the final subspace estimate Uout. To explain the federation

details simply, we explain them for ϑ = 1. The power

method needs to federate U ← QR((X0)(1)(X0)�(1)U) =
QR(

∑ρ
�′=1(X0)�′(

∑ρ
�=1(X0)�� U)). This needs two steps

of information exchange between the nodes and center at

each power method iteration. In the first step, we compute

V =
∑

�∈[ρ](X0)�
�U , and in the second one we compute

Ũ =
∑

�∈[ρ](X0)�V , followed by its QR decomposition.

We summarize the complete algorithm in Algorithm 5.

As long as the same set of τL nodes are Byzantine for all

the power method iterations needed for the initialization step,

we can prove the following result for it3. This follows as a

corollary of Theorem 3.1 and the lemmas proved in [49] and

[50] for the attack-free case.

Corollary 3 (Initialization Using Subspace-GMoM):
Consider the Initialization steps (lines 3-22) of Algorithm 5

with TGM = C log(Lr
δ0

) and Tpow = Cκ2 log(n
δ0

). Assume

that Assumption 2 hold. Assume also that the set of Byzantine

nodes remains fixed for all iterations in this algorithm and

the size of this set is at most τL with τ < 0.4L̃/L. Pick a

δ0 < 1 and an L̃ < L such that L is a multiple of L̃. If

mq ≥ CL̃ · κ6μ2(n + q)r2/δ2
0 ,

then w.p. at least 1 − capproxGM − exp(−Lψ(0.4 −
τ, exp(−c(n + q)) + n−10)) − L exp(−c̃m̃qδ2

0/r2κ4),

SDF (U∗, Uout) ≤ δ0.

The communication cost per node is order nr · Tpow =
κ2nr log(n

δ0
).

Proof: This follows by applying Theorem 3.1 on Φ(ϑ) =∑ρ
�=1(X0)(ϑ,�)(X0)�(ϑ,�)/ρ and Φ∗ = E[(X0)�|α]

E[(X0)�|α]� for ϑ ∈ [L̃] and using the results from

[49] and [50] to ensure that the assumption needed by

Theorem 3.1 holds.

The idea is almost exactly the same as for the special case

L̃ = L. This case is simpler notation-wise and hence we

provide a proof for this case in Appendix A-B. The main

idea is as follows. Let D(α) be the positive entries’ diagonal

matrix defined in [49, Lemma 3.8]. We use [49, Lemma 3.8]

and [49, Fact 3.9] to show that E[(X0)�|α] = X∗D(α) and

to bound ‖(X0)� − E[(X0)�|α]‖. We then use this bound to

then get a bound ‖Φ� −Φ∗‖. In the last step, we use an easy

median-based modification of [49, Fact 3.7] to remove the

conditioning on α. �

E. Byzantine-Resilient Federated AltGDmin: GDmin
Iterations

We can make the altGDmin iterations resilient as follows.

In the minimization step, each node computes its own estimate

(bk)� of b∗
k as follows:

(bk)� = ((Ak)�U)†(yk)�, k ∈ [q]

Here, M † := (M�M)−1M�. Each node then uses

this to compute its estimate of the gradient w.r.t. U as

∇f� =
∑

k∈[q](Ak)�� ((Ak)�U(bk)� − (yk)�)(bk)�� . The cen-

ter receives the gradients from the different nodes, computes

their GM and uses this for the projected GD step. Since the

gradient norms are not bounded, the GM computation needs to

be preceded by the thresholding step explained in Sec. VI-A.2.

As before, to improve sample complexity (while reducing

Byzantine tolerance), we can replace GM of the gradients

by their GM of means: form L̃ batches of size ρ = L/L̃

3This assumption can be relaxed if we instead assume that the size of the
set of nodes that are Byzantine in any one initialization iteration is at most τL.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8011

each, compute the mean gradient within each batch, compute

the GM of the L̃ mean gradients. Use appropriate scaling.

We summarize the GMoM algorithm in Algorithm 5. The

GM case corresponds to L̃ = L. Given a good enough

initialization, a small enough fraction of Byzantine nodes,

enough samples m̃q at each node at each iteration, and

assuming that Assumption 2 holds, we can prove the following

for the GD iterations.

Theorem 5.3 (AltGDmin-GMoM: Error Decay): Consider

the AltGDmin steps of Algorithm 5 with sample-splitting,

and with a step-size η ≤ 0.5/σ∗
1
2. Set TGM = C log Lr

ε ,

ωGM = Cm̃σ∗
r
2. Assume that Assumptions 1 and 2 holds. If,

at each iteration t,

mq ≥ C1L̃κ4μ2(n + r)r2,

m̃ > C2 max(log q, log n); if τ < 0.4L̃/L; and

if the initial estimate U0 satisfies SDF (U∗, U0) ≤
δ0 = 0.1/κ2, then w.p. at least 1 − capproxGM −
t
[
Ln−10 + exp(−Lψ(0.4 − τ, n−10))

]
,

SDF (U∗, U t+1) ≤ δt+1 :=
(

1 − (ησ∗
1
2)

0.12
κ2

)t+1

δ0

and ‖x∗
k − (xk)t+1‖ ≤ δt+1‖x∗

k‖ for all k ∈ [q].
The communication cost per node is order nr · T =

κ2nr log(1
ε).

Proof: Consider the L̃ = L (GM) special case since this

is notationally simpler. The extension for the general L̃ < L
(GM of means) case is straightforward. The proof uses the

overall approach developed in [50] with the following changes.

Let �1 := (Jgood)1 be a non-Byzantine node. We now also

need a bound on the Frobenius norm of

Err := ∇fGM − E[∇f�1(U , B�1)], �1 := (Jgood)1

that is of the form cδtm̃σ∗
1
2 for a c < 1 w.h.p., under the

assumed sample complexity bound. This type of a bound,

along with assuming δ0 < c/
√

rκ2, helps ensure that the

algebra needed for showing exponential decay of the subspace

estimation error goes through. We can get the above bound on

‖Err‖F using Lemma 6 if we can get a similar bound on

max
�∈Jgood

‖∇f� − E[∇f�1(U , B�1)]‖F

This is proved in the lemma given next.

Lemma 2: Assume SDF (U∗, U) ≤ δt < δ0. Then, w.p.

at least 1−exp
(
(n+r)−cε21

m̃q
r2μ2

)
−2 exp(log q+r−cε21m̃),

for all � ∈ Jgood,

‖∇f�(U , B�) − E[∇f�1(U , B�1)]‖F ≤ 12.5ε1δtm̃σ∗
1
2

We prove this lemma by noting that

∇f�(U , B�) − E[∇f�1(U , B�1)]
= (∇f�(U , B�) − E[∇f�(U , B�)])
+ (E[∇f�(U , B�)] − E[∇f�1(U , B�1)])

The first term can be bounded using standard concentration

bounds. The second one requires carefully bounding ‖B� −
B�1‖F by using the fact that both B�, B�1 are close to G :=
U�X∗.

We provide its proof and the complete proof of our Theorem

in Appendix B. �

F. Complete Byz-AltGDmin Algorithm

Combining Corollary 3 and Theorem 5.3, and setting η =
0.5/σ∗

1
2 and δ0 = 0.1/κ2, we can show that, at iteration

t + 1, SDF (U∗, U t+1) ≤ δt+1 = (1 − 0.06/κ2)t+10.1/κ2

whp. Thus, in order for this to be ≤ ε, we need to set

T = Cκ2 log(1/ε). Also, since we are using fresh samples

at each iteration (sample-splitting), this also means that our

sample complexity needs to be multiplied by T .

We thus have the following final result.

Corollary 4: Consider the complete Algorithm 5 with

sample-splitting. Set Tpow = C log(nκ), η = 0.5/σ∗
1
2, T =

Cκ2 log(1/ε). Assume that Assumption 2 holds. If the total

number of samples per column m, satisfies

mq ≥ CL̃κ4μ2(n + q)r2 log(1/ε)

and m > Cκ2 max(log q, log n) log(1/ε); if at most τL nodes

are Byzantine with τ < 0.4L̃/L, if the set of Byzantine nodes

remains fixed for the initialization step power method (but can

vary for the GDmin iterations); then, w.p. at least 1−TLn−10,

SDF (U∗, UT) ≤ ε, and ‖xk −x∗
k‖ ≤ ε‖x∗

k‖ for all k ∈ [q].
The communication cost per node is order κ2nr log(n

ε). The

computational cost at any node is order κ2m̃nqr log(n
ε) while

that at the center is n2L̃ log3(L̃r/ε).
The above result shows that, under exactly one assumption

(Assumption 2), if each node has enough samples m̃ (m̃ is

of order (n + q)r2(L̃/L) times log factors); if the number of

Byzantine nodes is less than (0.4L̃/L) times the total number

of nodes, then our algorithm can recover each column of the

LR matrix X∗ to ε accuracy whp. To our best knowledge,

the above is the first guarantee for Byzantine resiliency for

any type of low rank matrix recovery problems studied in a

federated setting.

Observe that the above result needs total sample complexity

that is only L̃ times that for basic AltGDmin [49].

VI. PROOFS FOR SEC III AND IV

All the proofs given below rely on the lemma for using

GM for robust estimation borrowed from [16]. We give these

lemmas in the section below, followed by two corollaries that

will be used in our proofs.

A. Using GM for Robust Estimation

The goal of robust estimation is to get a reliable estimate of

a vector quantity z̃ using L individual estimates of it, denoted

z�, when most of the estimates are good, but a few can

be arbitrarily corrupted or modified by Byzantine attackers.

A good approach to do this is to use the GM. The following

lemma, which is a minor modification of [16, Lemma 2.1],

studies this4

Lemma 3: Consider {z1, z2, . . . ,z�, . . .zL} with z� ⊆
�n. Let z∗

GM denote their GM and let zGM denote their

(1 + εGM) approximate GM estimate computed using [60,

Algorithm 1]. Fix an α ∈ (0, 1/2). Suppose that the following

holds for at least (1 − α)L z�s:

‖z� − z̃‖ ≤ ε‖z̃‖.
4 [16, Lemma 2.1] does not provide an algorithm for approximating the

Geometric Median; we combine their result with Claim 1 to provide this.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8012 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Algorithm 5 Byz-AltGDmin: Complete GMoM based algorithm

1: Input: Batch ϑ : {(Ak)�, Y �, k ∈ [q]}, � ∈ [L]
2: Parameters: Tpow, TGM ,

3: Initialization using Subspace MoM:
4: Nodes � = 1, . . . , L

5: Compute α� ← 9κ2μ2

m̃q

∑
k ‖(yk)�‖2.

6: Central Server
7: α ← Median{α(ϑ)}L̃

ϑ=1, where α(ϑ) =
∑ρ

�=1 α(ϑ,�)/ρ
8: Central Server
9: Let U0 = U rand where U rand is an n × r matrix with

i.i.d standard Gaussian entries.

10: for τ ∈ [Tpow] do
11: Nodes � = 1, . . . , L
12: Compute V � ← (X0)�� (U (ϑ))τ−1 for � ∈ (ϑ − 1)ρ +

[ρ], ϑ ∈ [L̃]. Push to center.

13: Central Server
14: Compute V (ϑ) ←

∑ρ
�=1 V (ϑ−1)ρ+�

15: Push V (ϑ) to nodes � ∈ (ϑ − 1)ρ + [ρ].
16: Nodes � = 1, . . . , L
17: Compute U � ←

∑
k(X0)�V (ϑ) for � ∈ (ϑ− 1)ρ + [ρ],

ϑ ∈ [L̃]. Push to center.

18: Central Server
19: Compute U (ϑ) ← QR(

∑ρ
�=1 U (ϑ−1)ρ+�)

20: Push U (ϑ) to nodes � ∈ (ϑ − 1)ρ + [ρ].
21: end for
22: Apply Algorithm 1 on {Uϑ}L̃

ϑ=1 to get Uout.

23: Set U0 ← Uout

24: AltGDmin Iterations:
25: for t = 1 to T do
26: Nodes � = 1, . . . , L
27: Set U ← U t−1

28: (bk)� ← ((Ak)�U)†(yk)�, ∀ k ∈ [q]
29: (xk)� ← U(bk)�, ∀ k ∈ [q]
30: (∇f)� ←

∑
k∈[q](Ak)�� ((Ak)�U(bk)�−(yk)�)(bk)�

�,

∀ k ∈ [q]
31: Push ∇f� to center

32: Central Server
33: Compute ∇f(ϑ) ←

∑
�∈ϑ ∇f�

34: ∇fGM ← approxGM
(
{vec(∇f(ϑ)), ϑ ∈ [L̃]}\

{ϑ : ‖∇f(ϑ)‖F > ωGM})
(Use [60, Algorithm 1] with TGM iterations on the set

of ∇f(ϑ)s whose Frobenius norm is below ωGM)

35: Compute U+ ← QR(U t−1 − η
ρm̃∇fGM)

36: return Set U t ← U+. Push U t to nodes.

37: end for
38: Output UT .

Let Cα := 2(1−α)
1−2α . Then, w.p. at least 1 − capproxGM ,

‖zGM − z̃‖ ≤ Cαε‖z̃‖ + εGM

∑L
�=1 ‖z∗

GM − z�‖
(1 − 2α)L

≤ Cαε‖z̃‖ + εGM

max�∈[L] ‖z�‖
1 − 2α

The number of iterations needed for computing zGM

is TGM = C log(L
εGM

), and the time complexity is

O
(
nL log3(L

εGM
)
)

.

The second inequality follows because, using the exact GM

definition,
∑

� ‖z∗
GM − z�‖ ≤ ∑

� ‖0 − z�‖ =
∑

� ‖z�‖ and∑
� ‖z�‖ ≤ L max� ‖z�‖. To understand this lemma simply,

fix the value α to 0.4. Then Cα = 6. We can also fix εGM = ε.

Then, it says the following. If at least 60% of the L estimates

are ε close to z̃, then, the (1 + ε) approximate GM, zGM ,

is 11ε max(‖z̃‖, max�∈[L] ‖z�‖) close to z̃. The next lemma

follows using the above lemma and is a minor modification

of [16, Lemma 3.5]. It fixes α = 0.4 and considers the case

when most estimates are good with high probability (w.h.p.).

We provide a short proof of it in Appendix D-D.

Lemma 4: Let z� ⊆ �n, for � ∈ [L] and let zGM denote a

(1+εGM) approximate GM computed using [60, Algorithm 1].

For a τ < 0.4, suppose that, for at least (1 − τ)L z�’s,

Pr{‖z� − z̃‖ ≤ ε‖z̃‖} ≥ 1 − p

Then, w.p. at least 1 − capproxGM − exp(−Lψ(0.4 − τ, p)),

‖zGM − z̃‖ ≤ 6ε‖z̃‖ + 5εGM max
�∈[L]

‖z�‖

where ψ(a, b) = (1 − a) log 1−a
1−b + a log a

b . The number of

iterations needed for computing zGM is TGM = C log(L
εGM

),

and the time complexity is O
(
nL log3(L

εGM
)
)

.

Suppose that, for a τ < 0.4, at least (1−τ)L z�s are “good”

(are ε close to z̃) whp. Let εGM = ε and suppose that all z�’s,

including the corrupted ones, are bounded in 2-norm by ‖z̃‖.

Then, the (1+ ε)-approximate GM is about 11ε‖z̃‖ close to z̃
with at least constant probability. If the GM is approximated

with probability 1, i.e., if capproxGM = 0, then, the above

result says that, for p small enough and large L, the reliability

of the GM is actually higher than that of the individual good

estimates. For example, for a p < 0.01, the probability is at

least 1− pL(0.4−τ). The increase depends on (0.4− τ) and L,

e.g., if τ ≥ 0.2 and L ≥ 10, then, the probability is at least

1 − p0.2 L ≥ 1 − p2.

1) Corollary for Bounded z�s: In settings where all z�’s are

bounded, we have the following corollary of Lemma 4.

Corollary 5: In the setting of Lemma 4, if max� ‖z�‖ ≤
‖z̃‖, then ‖zGM − z̃‖ ≤ 11ε‖z̃‖ with above probability. The

number of iterations needed is TGM = C log(L
εGM

), and the

time complexity is O
(
nL log3(L

εGM
)
)

.

We use this for analyzing the Subspace Median algorithm

in which the z�s are vectorized projection matrices from the

different nodes.

2) Corollary for Unbounded z�s: When some z�s may not

be bounded, we need an extra thresholding step. Observe that,

from the assumption in Lemma 4, w.p. at least 1 − Lp, the

good z�s are bounded by (1 + ε)‖z̃‖. Thus, to get a set of

z�’s that are bounded in norm, while not eliminating any of

the good ones, we can create a new set that only contains z�’s

with norm smaller than threshold ωGM = (1+ε)‖z̃‖. In other

words, we compute the GM of the set {z1, . . . ,zL} \ {z� :
‖z�‖ > (1 + ε)‖z̃‖} as the input to the GM computation

algorithm [60, Algorithm 1]. More generally, ω can be set to

C‖z̃‖ for any C > 1. In practice, to set the threshold, we only

need to have an estimate of the norm of the unknown quantity

z̃ that we are trying to estimate.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8013

We have the following corollary of Lemma 6 for this

setting.

Corollary 6: Let zGM denote a (1+εGM) approximate GM

of {z1, . . . ,zL} \ {z� : ‖z�‖ > ωGM}, all vectors are in �n.

Set ωGM = (1 + ε)‖z̃‖. For a τ < 0.4, suppose that, for at

least (1 − τ)L z�’s,

Pr{‖z� − z̃‖ ≤ ε‖z̃‖} ≥ 1 − p

Then, w.p. at least 1−capproxGM−Lp−exp(−Lψ(0.4−τ, p)),

‖zGM − z̃‖ ≤ 6ε‖z̃‖ + 5εGM (1 + ε)‖z̃‖
< 14 max(ε, εGM)‖z̃‖

The number of iterations needed is TGM = C log(L
εGM

), and

the time complexity is O
(
nL log3(L

εGM
)
)

.

We use this for analyzing ResPowMeth with z� being the

vectorized Φ�U τ . It is also used later for analyzing the

GD step of the alternating GD and minimization (altGDmin)

algorithm for solving the LRCS problem.

B. Proof of Lemma 1

Since SDF (U �, U
∗) = (1/

√
2)‖PU�

− PU∗‖F [61,

Lemma 2.5], thus, the lemma assumption implies that

max�∈Jgood
‖PU�

− PU∗‖F ≤ √
2δ.

Observe that ‖PU‖F ≤ √
r for any matrix U with orthonor-

mal columns. Thus ‖PU�
‖ ≤ √

r for all � including the

Byzantine ones (recall that we orthonormalize the received

Û �’s using QR at the center before computing PU�
). Hence,

using GM Lemma 4, we have w.p. at least 1 − capproxGM −
exp (−Lψ (0.4 − τ, p))

‖PGM − PU∗‖F ≤ 6
√

2δ + 5εGM

√
r (3)

Here PGM = GM{PU�
, � ∈ [L]}. Thus,

max
�∈Jgood

‖PU�
− PGM‖F

≤ max
�∈Jgood

‖PU�
− PU∗‖F + ‖PGM − PU∗‖F

≤
√

2δ + 6
√

2δ + 5εGM

√
r = 7

√
2δ + 5εGM

√
r

w.p. at least 1 − capproxGM − exp(−Lψ(0.4 − τ, p)).
Next we bound the SD between PGM and the node closest

to it. This is denoted �best in the algorithm.

‖PU�best
− PGM‖F = min

�
‖PU�

− PGM‖F

≤ min
�∈Jgood

‖PU�
− PGM‖F

≤ max
�∈Jgood

‖PU�
− PGM‖F

≤ 7
√

2δ + 5εGM

√
r

In this we used Jgood ⊆ [L] and hence the minimum value

over all L is smaller than that over all � ∈ Jgood. We use this

to bound the SD between U �best
and U∗.

‖PU�best
− PU∗‖F

≤ ‖PU�best
− GM‖F + ‖GM − PU∗‖F

≤ 7
√

2δ + 5εGM

√
r + 6

√
2δ + 5εGM

√
r

≤ 13
√

2δ + 10εGM

√
r (4)

Set εGM = δ
√

2/
√

r. Thus, we have that, w.p. at least 1 −
capproxGM − exp(−Lψ(0.4 − τ, p)),

‖PU�best
− PU∗‖F ≤ 23

√
2δ

This then implies that SDF (Uout, U
∗) =

SDF (U �best
, U∗) ≤ 23δ since Uout = U �best

.

Note: It is possible that �best is not a good node (we cannot
prove that it is). This is why the above steps are needed to
bound ‖PU�best

− PU∗‖F .

C. Proof of Theorem 3.1, Exact SVD at the Nodes

The version of Davis-Kahan sin Θ theorem [62] stated next

is taken from [61, Corollary 2.8].

Claim 2 (Davis-Kahan sin Θ theorem [61], [62]): Let

Φ∗,Φ be n × n symmetric matrices with U∗ ∈ �n×r, U ∈
�n×r being the matrices of top r singular/eigen vectors of

Φ∗,Φ respectively. Let σ∗
1 ≥ . . . ≥ σ∗

n be the eigenvalues of

Φ∗. If σ∗
r −σ∗

r+1 > 0 and ‖Φ−Φ∗‖ ≤
(
1 − 1√

2

)
(σ∗

r −σ∗
r+1)

then

SDF (U , U∗) ≤ 2
√

r‖Φ − Φ∗‖
σ∗

r − σ∗
r+1

Suppose that, for all � ∈ Jgood,

Pr{‖Φ� − Φ∗‖ ≤ b0} ≥ 1 − p

Using Claim 2, if b0 < (1−1/
√

2)Δ, this implies that, for all

� ∈ Jgood, w.p. at least 1 − p,

SDF (U �, U
∗) ≤ 2

√
rb0

Δ

Using Lemma 1 with δ ≡ 2
√

rb0
Δ , this then implies that, w.p.

at least 1 − capproxGM − exp(−Lψ(0.4 − τ, p)),

SDF (Uout, U
∗) ≤ 23

2
√

rb0

Δ
= 46

√
r
b0

Δ
To get the right hand side ≤ ε we need b0 ≤ ε

46
√

r
Δ.

D. Proof of Theorem 3.1: SVD at Nodes Computed Using
Power Method

This proof also needs to use Claim 3 given below (this

is [63, Theorem 1.1]) that analyzes each iteration of what

the author calls “noisy power method” (power method that

is perturbed by a noise/perturbation Gt in each iteration t.
Claim 3: [Noisy Power Method [63]] Let U∗ (n×r) denote

top r singular vectors of a symmetric n × n matrix Φ∗, and

let σi denote it’s i−th singular value. Consider the following

algorithm (noisy PM).

1) Let U rand be an n×r matrix with i.i.d. standard Gaussian

entries. Set U t=0 = U rand.

2) For t = 1 to Tpow do,

a) Û t ← Φ∗U t−1 + Gt

b) Û t ← QR(Û t)
If at every step of this algorithm, we have

5‖Gt‖ ≤ εpow(σ∗
r − σ∗

r+1),

5‖U∗�Gt‖ ≤ (σ∗
r − σ∗

r+1)
√

r −√
r − 1

γ
√

n

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8014 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

for some fixed parameter γ and εpow < 1/2. Then w.p.

at least 1 − γ−C1 − exp−C2n, there exists a Tpow ≥
C

σ∗
r

σ∗
r−σ∗

r+1
log(nγ

εpow
) so that after Tpow steps we have that

‖(I − UTpowU�
Tpow

)U∗‖ ≤ εpow

We state below a lower bound on
√

r − √
r − 1 based on

Bernoulli’s inequality.

Fact 1: Writing
√

r − √
r − 1 =

√
r
(
1 −

√
1 − 1

r

)
and

using Bernoulli’s inequality (1 + r)x ≤ 1 + xr for every real

number 0 ≤ x ≤ 1 and r ≥ −1 we have 1
2
√

r
<

√
r−√

r − 1
Suppose that, for all � ∈ Jgood,

Pr{‖Φ� − Φ∗‖ ≤ b0} ≥ 1 − p

Using Claim 2, if b0 < (1−1/
√

2)Δ, this implies that, for all

� ∈ Jgood, w.p. at least 1 − p,

SDF (U �, U
∗) ≤ 2

√
rb0

Δ
(5)

Suppose that Û � is an estimate of U � computed using

the power method. Next we use Claim 3 to help guarantee

that SDF (Û �, U l) is also bounded by 2
√

rb0/Δ. Using

Claim 3 with Φ = Φ�, U = U �, Gτ = 0 for all τ ,

εpow = 2b0
Δ , and γ = n10, we can conclude that if Tpow >

C σr(Φ�)
σr(Φ�)−σr+1(Φ�)

log(n·n10

εpow
), then SD2(Û �, U �) ≤ εpow =

2b0
Δ w.p. at least 1 − p − 1/n10. Here σi = σi(Φ�). Using

‖Φ� − Φ∗‖ ≤ b0 and Weyl’s inequality, σr − σr+1 ≥ Δ −
2 b0 and σr < σ∗

r + b0. Thus, if

Tpow ≥ C
σ∗

r + b0

Δ − 2b0
log(n

Δ
b0

)

then

SD2(Û �, U �) ≤ εpow =
2b0

Δ
w.p. at least 1 − p − 1/n10. This then implies that

SDF (Û �, U �) ≤ 2b0
√

r
Δ .

Combining this bound with the Davis-Kahan bound

from (5), we can conclude that, w.p. at least 1 − p − 1/n10,

SDF (Û �, U
∗) ≤ 2

2
√

rb0

Δ
= 4

√
r
b0

Δ
(6)

Applying Lemma 1 with δ ≡ 4
√

r b0
Δ , this then implies that,

w.p. at least 1 − exp(−Lψ(0.4 − τ, p + 1/n10)),

SDF (Uout, U
∗) ≤ 23 · 4√r

b0

Δ
= 92

√
r
b0

Δ
(7)

If we want the RHS of the above to be ≤ ε, we need

b0 =
ε

92
√

r
Δ

and we need Tpow ≥ C
σ∗

r+b0
Δ−2b0

log(n Δ
b0

) with this choice of

b0. By substituting for b0 in the above expression, and upper

bounding to simplify it, we get the following as one valid

choice of Tpow

Tpow = C(1 + 6ε)
σ∗

r

Δ
log(n

92
√

r

ε
)

This used (1 + ε)(1 − 2ε)−1 < (1 + ε)(1 + 4ε) < 1 + 6ε for

ε < 1. Since we are using C to include all constants, and

using ε < 1, this further simplifies to Tpow = C
σ∗

r

Δ log(nr
ε)

E. Proof of Theorem 3.2

We use Claim 3 with Gt = Φ∗U − GM{Φ�U}L
�=1 and

output UTpow
∈ �n×r. To apply it, we need ‖Gt‖ to satisfy

the two bounds given in the claim. We use Lemma 6 to bound

it.

Suppose that, for at least (1 − τ) L, Φ�’s,

Pr{‖Φ� − Φ∗‖ ≤ b0σ
∗
1} ≥ 1 − p

Since ‖U‖F =
√

r, this implies

Pr{‖Φ�U − Φ∗U‖F ≤ b0

√
rσ∗

1} ≥ 1 − p.

We use this and apply Lemma 6 with z� ≡ vec(Φ�U) and

z̃ ≡ vec(Φ∗U) so that ‖z̃‖ = ‖Φ∗U‖F ≤ σ∗
1

√
r. Setting

εGM = b0 and applying the lemma, we have w.p. at least

1 − capproxGM − Lp − exp (−Lψ (0.4 − τ, p))

‖Gt‖ ≤ ‖Gt‖F = ‖GM{Φ�U}L
�=1 − Φ∗U‖F ≤ 14b0

√
rσ∗

1

Recall that σ∗
r − σ∗

r+1 ≥ Δ. We thus need 5‖Gt‖ ≤ εΔ to

hold. This will hold with high probability if b0
√

rσ∗
1 ≤ εΔ

70 .

Using Fact 1 and γ = c, for the second condition of Claim 3

to hold, we need ‖Gt‖ ≤ Δ 1
10c

√
nr

. This then implies that we

need b0
√

rσ∗
1 ≤ Δ

140c
√

nr
.

Thus we can set b0 = min
(

ε
70

√
r
, 1

140c
√

nr

)
Δ
σ∗
1

.

We also need Tpow > C
σ∗

r

σ∗
r−σ∗

r+1
log(nγ

ε). This holds if we

set Tpow = C
σ∗

r

Δ log(nc
ε).

Hence w.p. at least 1 − capproxGMLp −
exp (−Lψ (0.4 − τ, p)) − c − e−C2n ≥ 1 − capproxGM − c −
Lp − exp (−Lψ (0.4 − τ, p))

SDF (Uout, U
∗) ≤ ε

F. Proof of Corollary 1

The first part is a corollary of Theorem 3.1 and [56,

Theorem 4.7.1] stated next. It gives a high probability bound

on the error between an empirical covariance matrix esti-

mate, Σ̂ = DD�/q̃, with the q̃ columns of D being

independent sub-Gaussian random vectors dk, and the true

one, Σ∗.

Claim 4 ([56]): Suppose that the matrix D is as defined

in Sec. IV. With probability at least 1 − 2 exp(−n),

‖Σ̂ − Σ∗‖ ≤ CK2

√
n

q̃
‖Σ∗‖.

Here K is the maximum sub-Gaussian norm of Σ∗−1/2dk

over k.

Using Theorem 3.1 with Φ� ≡ Σ̂� = D�D
�
� /q̃, Φ∗ ≡ Σ∗,

in order to guarantee SD(Uout, U
∗) ≤ ε w.h.p., we need

‖Σ̂� − Σ∗‖ ≤ εΔ
92
√

r

By Claim 4,

Pr{‖Σ̂� − Σ∗‖ ≤ CK2

√
n

q̃
‖Σ∗‖} ≥ 1 − 2 exp(−n)

The above bound will be less than εΔ
92

√
r

if q̃ ≥
922CK4nr‖Σ∗‖2

Δ2ε2 .

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8015

G. Proof of Corollary 2

Corollary 2 is again a direct corollary of Theorem 3.1

and [56, Theorem 4.7.1]. We now apply both results on

Φ(ϑ) :=
∑ρ

�=1 D(ϑ,�)D
�
(ϑ,�)/(q̃ρ), ϑ ∈ [L̃]. The reason this

proof follows exactly as that for subspace median is because

we assume that the set of Byzantine nodes is fixed across all

iterations of this algorithm and the number of such nodes is

lower by a factor of L/L̃. Consequently, for the purpose of

the proof one can assume that no more than τL̃ mini-batches

are Byzantine. With this, the proof remains the same once we

replace q̃ by q̃ρ and L by L̃.

VII. SIMULATION EXPERIMENTS

All numerical experiments were performed using MATLAB

on Intel(R)Xeon(R) CPU E3-1240 v5 @ 3.50GHz processor

with 32.0 GB RAM.

A. PCA Experiments

1) Data Generation: We generated Φ∗ = U∗
fullSfull

U∗
full

�, with U∗
full generated by orthogonalizing an n × n

standard Gaussian matrix; Sfull is a diagonal matrix of

singular values which are set as described below. This was

generated once. The model parameters n, r, q, L, Lbyz , and

entries of Sfull are set as described below in each experiment.

In all our experiments in this section, we averaged

over 1000 Monte Carlo runs. In each run, we sampled q
vectors from the Gaussian distribution, N (0,Φ∗) to form

the data matrix D. This is split into L columb sub-matrices,

D1, D2, . . . ,DL with each containing q̃ = q/L columns. q, L
are set so that q/L is an integer. Each run also generated

a new U rand to initialize the power method used by the

nodes in case of SubsMed and used by the center in case

of ResPowMeth. The same one was also used by the power

methods for SubsMoM. Note: since SubsMed and SubsMoM

run and L̃ different power methods, ideally each could use

a different U rand and that would actually improve their

performance. To be fair to all three methods, we generated

Urand this way.

Let Lbyz = τL. In all our experiments, we fixed n =
1000 and varied r, q, L, Lbyz , and Sfull. In all experiments

we used a large singular value gap (this ensures that a small

value of Tpow suffices). We experimented with three types of

attacks described next.

2) Attacks: To our best knowledge, the PCA problem has

not been studied for Byzantine resiliency, and hence, there are

no known difficult attacks for it. It is impossible to simulate

the most general Byzantine attack. We focused on three types

of attacks. Motivated by reverse gradient (rev) attack [66],

we generated the first one by colluding with other nodes to

set U corrupt as a matrix in the subspace orthogonal to that

spanned by
∑

� Û � at each iteration. This is generated as fol-

lows. Let U =
∑

� Û � (in case of SubsMed, SubsMoM) and

U =
∑

� Φ�U t (for ResPowMeth). Orthonormalize it Ũ =
orth(U) and let M̃ = I−ŨŨ

�
, obtain its QR decomposition

M̃
QR
= UperpR and set U corrupt = (ωGM/

√
r)Uperp(:, 1 :

r). We call this Orthogonal attack. Since SubsMed runs all its

iterations locally, this is generated once for SubsMed, but it is

generated at each iteration for ResPowMeth and SubsMoM.

The second attack that we call the ones attack consists of

an n× r matrix of −1 multiplied by a large constant Cattack.

The third attack that we call the Alternating attack is an n×r
matrix of alternating +1, −1 multiplied by a large constant

Cattack > 0. Values of Cattack were chosen so that they do

not get filtered out, essentially 0.9ωGM/
√

nr.

3) Algorithm Parameters: For all geometric median (GM)

computations, we used Weiszfeld’s algorithm initialized using

the average of the input data points. We set TGM = 10.

We vary Tpow.

4) Experiments: In all experiments, we compare

ResPowMeth and SubsMed. In some of them, we also

compare SubsMoM. We also report results for the basic

power method in the no attack setting. To provide a baseline

for what error can be achieved for a given value of n, q, r,

we also report results for using “standard power method”

in the no-attack setting; with this being implemented using

power method with Tpow iterations. Our reporting format is
“max SDF (meanSDF), mean time” in the first table and
just “max SDF (meanSDF)” in the others. Here max SDF

is the worst case error over all 1000 Monte Carlo runs, while

meanSDF is its mean over the runs.

In our first experiment, we let n = 1000, r = 60, q = 1800,

L = 3, Lbyz = 1, and we let Sfull be a full rank diagonal

matrix with first r entries set to 15, the r + 1-th entry

to 1, and the others generated as 1 − (1/n), 1 − (2/n),

Next, we simulated an approximately low rank Σ∗ by setting

its first r entries set to 15, the r + 1-th entry to 1, and

the other entries to zero. We report results for both these

experiments in Table II. As can be seen, from the first to the

second experiment, the error reduces for both SubsMed and

ResPowMeth, but the reduction is much higher for SubsMed.

Notice also that, for Tpow = 1, both ResPowMeth and

SubsMed have similar and large errors with that of SubsMed

being very marginally smaller. For Tpow = 10, SubsMed

has significantly smaller errors than ResPowMeth for reasons

explained in the paper. ResPowMeth has lower errors for the

Orthogonal attack than for the other two; we believe the reason

is that the Orthogonal attack changes at each iteration for

ResPowMeth.

We also did some more experiments with (i) L = 3, Lbyz =
1, r = 2, q = 360, (ii) L = 6, Lbyz = 2, r = 2, q = 720, and

(iii) L = 6, Lbyz = 2, r = 60, q = 3600. All these results are

reported in Table III. Similar trends to the above are observed

for these too.

In a third set of experiments, we used L = 18, r =
60, q = 3600 and two values of Lbyz , Lbyz = 2, Lbyz = 4.

For this one, we also compared SubsMoM with using L̃ =
6 minibatches. In the Lbyz = 2 case, SubsMoM has the

smallest errors, followed by SubsMed. Error of ResPowMeth

is the largest. In the Lbyz = 4 case, ResPowMeth still has the

largest errors. But in this case SubsMoM with L̃ = 6 also fails

(when taking the GM of 6 points, 4 corrupted points is too

large. SubsMed has the smallest errors in this case. We report

results for these experiments in Table IV

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

TABLE II

n = 1000, L = 3, Lbyz = 1, r = 60, q = 1800. WE REPORT “maxSDF (MEANSDF), MEAN TIME” IN EACH COLUMN

TABLE III

ADDITIONAL EXPERIMENTS. WE REPORT “maxSDF (MEANSDF)” IN EACH COLUMN

TABLE IV

L = 18, RANK-(r + 1) Σ∗ , r = 60, q = 3600, TGM = 10, L̃ = 6 FOR SUBSMOM.WE REPORT “maxSDF (MEANSDF)” IN EACH COLUMN

B. LRCS Experiments
In all experiments, we used n = 600, q = 600, r = 4,

m = 198, and L = 18 so that m̃ = m/L = 11 and two

values of Lbyz = 1, 2. We simulated U∗ by orthogonalizing

an n× r standard Gaussian matrix; and the columns b∗
k were

generated i.i.d. from N (0, Ir). We then set X∗ = U∗B∗. This

was done once (outside Monte Carlo loop). For 100 Monte

Carlo runs, we generated matrices Ak, k ∈ [q] with each

entry being i.i.d. standard Gaussian and we set yk = Akx∗
k,

k ∈ [q]. In the figures we plot Error vs Iteration where

Error = SDF (U∗,U)√
r

. We simulated the Reverse gradient

(Rev) attack for the gradient step. In this case, malicious

gradients are obtained by finding the empirical mean of the

gradients from all nodes: ∇ ← 1
L

∑L
�=1 ∇� and set ∇mal =

−C∇ where C = 10. This forces the GD step to move

in the reverse direction of the true gradient. We used step

size η = 0.5
σ∗
1
2 . We used Weiszfeld’s method to approximately

compute geometric median.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8017

Fig. 1. Byz-AltGDmin (Median) vs Byz-AltGDmin (MoM) for Lbyz = 1, 2; L = 18.

We compare Byz-AltGDmin (Median) with Byz-AltGDmin

(MoM) for both values of Lbyz . We also provide results for the

baseline algorithm - basic AltGDmin in the no attack setting.

All these are compared in Figure 1(b). We also compare the

initialization errors in Figure 1(a). As can be seen SubsMoM

based initialization error is quite a bit lower than that with

SubsMed. The same is true for the GDmin iterations.

C. How to Tune or Set Parameters for a Real Application

Consider the PCA problem and Subspace Median. Suppose

that the user of the algorithm specifies the desired dimension

r and the desired final estimation error ε. Our theoretical

guarantee specifies that we need Tpow = C
σ∗

r

Δ log(n
ε), and

TGM = C log(Lr/ε). Given r and ε (desired error), for

setting TGM all values are known. For Tpow we need σ∗
r and

Δ. To estimate these, at each node �, we compute the r-th

and (r + 1)-th singular values of Φ� = D�D
�
� /q�. Denote

these by σ̂�,r, and Δ̂� = σ̂�,r − σ̂�,r+1. We use max�{σ̂�,r},

min�{Δ̂�} in Tpow. The constants C in various expressions

will typically need to be experimentally tuned for a given

application. It should be noted that sufficiently large values

of TGM , Tpow, e.g., setting both t0 10, works well for all

algorithms without much change in final error. If the user does

not specify r we can set r using the well known 90 or 99%

energy threshold heuristic. We find r� as the smallest value of

r for which the sum of the top r singular values is at least 90%

(or 99% or similar) of the sum of all singular values of Φ�.

Instead of setting ε and Tpow, we can set a stopping criterion

for the power method being implemented at each node: exit the

loop if the estimates do not change much in subspace distance.

Consider LRCS. For Byz-AltGDmin we set ωGM as

m̃14
√

rδ0 max�{σ̂�,1}. The idea is to set the threshold ωGM

sufficiently large to ensure that non-Byzantine updates are

not filtered out. For other parameters in Byz-AltGDmin C̃ =
9κ2μ2, we set κ = max�{κ�}, and take μ ≥ 2. We set

T = C max�{κ2
�} log(1/ε), and η = 0.5

max�{σ̂�,1} .

VIII. CONCLUSION, EXTENSIONS, AND OPEN QUESTIONS

Our work introduced a novel and well-motivated solution to

Byzantine-resilient federated subspace estimation, and PCA,

that is both communication-efficient and sample-efficient.

We refered to this as “Subspace-Median”. Its guarantee is

provided in Theorem 3.1 and Corollary 1. We showed how the

Subspace Median can be used to provably solve two practically

useful problems: (i) Byzantine resilient federated PCA, and

(ii) the initialization step of Byzantine-resilient horizontal

federated LRCS. We also developed Subspace Median-of-

Means (MoM) extensions for both problems. These help

improve the sample complexity at the cost of reduced Byzan-

tine/outlier tolerance. For all these algorithms, Theorem 3.1

helps prove sample, communication, and time complexity

bounds for ε-accurate subspace recovery. Extensive simulation

experiments corroborate our theoretical results. Our second

important contribution is a provable communication-efficient

and sample-efficient alternating GD and minimization (alt-

GDmin) based solution to horizontally federated LRCS,

obtained by using the Subspace Median to initialize the

alternating GD and minimization (altGDmin) algorithm for

solving it. Our proposed algorithms and proof techniques are

likely to be of independent interest for many other problems.

We describe some extensions next.

A. Extensions

One component that is missing in most existing work on

Byzantine resilient federated GD, and stochastic GD, based

solutions is how to initialize the GD algorithm in such a

way that the problem becomes restricted strongly convex

in the vicinity of the desired/true solution. Most existing

works either assume strongly convex cost functions or prove

convergence to a local minimizer of a cost function. However,

good initialization of the GD algorithm is a critical component

for correctly solving a large number of practical problems. The

spectral initialization approach has been extensively used for

developing provably correct centralized iterative solutions to

many non-convex optimization problems in signal processing

and ML. It involves computing the top, or top few, singular

vectors of an appropriately defined matrix. This can be made

Byzantine resilient and communication-efficient in a feder-

ated setting, by using the Subspace Median and Subspace

MoM algorithms introduced in this work. Examples include

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8018 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

LRCS, LR matrix completion, robust PCA using the LR

plus sparse model, phase retrieval (PR), sparse PR, and low

rank PR.

The overall approach developed here for modifying the

altGDmin algorithm can also be widely used in other settings.

In particular, vertically federated LRCS can be analyzed

using easy extensions of our current work. It would require

assuming that the Frobenius norm of the difference between

column-sub matrices of X∗ that are sensed at the differ-

ent nodes is bounded. This assumption is needed to ensure

bounded heterogeneity of the different nodes’ partial gradient

estimates; a common assumption used in all past work on

federated ML with heterogeneous nodes. Similar ideas can also

extend for LR matrix completion, which also involves dealing

with heterogeneous gradients. Vertically federated LRCS is

the model that is relevant for federated sketching, and for

multi-task representation learning when data for different tasks

is obtained at different nodes.

Our Byzantine resilient PCA result can be generalized

to extend it to various other PCA-based problems. Some

examples are described in Remark 4 (PCA for non-i.i.d. data,

PCA for approximately LR datasets, PCA with missing data).

Other examples include online PCA, subspace tracking, robust

subspace tracking, differentially private PCA [63].

B. Open Questions

In the current work, we treated the geometric median

computation as a black box. Both for its accuracy and its time

complexity, we relied on results from existing work. However,

notice that in the Subspace Median algorithm (which is used

in all other algorithms in this work), we need a “median”

of r-dimensional subspaces in �n. These are represented

by their n × r basis matrices. To find this though, we are

computing the geometric median (GM) of vectorized versions

of the subspace projection matrices PU := UU� which

are of size n × n. Eventually we need to find the subspace

whose projection matrix is closest to the GM. An open

question is can we develop a more efficient algorithm to do

this computation that avoids having to compute the GM of

n2 length vectors. We will explore the use of power method

type ideas for modifying the GM computation algorithm in

order to do this. Alternatively, can we define a different

notion of “median” for subspaces that can be computed more

efficiently than Subspace Median. Another related question

is whether the computation can be federated to utilize the

parallel computation power of the various nodes. In its cur-

rent form, the entire GM computation is being done at the

center. A third open question is whether we can improve the

guarantees for the Subspace Median of Means algorithms by

using more sophisticated proof techniques, such as those used

in [8].

APPENDIX A

PROOF OF LRCS INITIALIZATION, COROLLARY 3

We prove this result for the L̃ = L setting below. The

extension for the L̃ < L setting is straightforward. We explain

this in Appendix A-C below.

A. Lemmas for Proving Corollary 3 for L̃ = L

We first state the lemmas from [49] that are used in the

proof and then provide the proof.

Lemma 5: Define the set

E :=
{

C̃(1 − ε1)
‖X∗‖2

F

q
≤ α� ≤ C̃(1 + ε1)

‖X∗‖2
F

q

}
then Pr(α ∈ E) ≥ 1 − L exp(−c̃m̃qε21) where α =
Median{α�}L

�=1

Proof: Threshold computation: From [49] Fact 3.7 for

all � ∈ Jgood

Pr{α� ∈ E} ≥ 1 − exp(−c̃m̃qε21)

Since more than 75% of α�’s are good and the median is

same as the 50th percentile for a set of scalars. This then

implies Median{α�}L
�=1 will be upper and lower bounded by

good α�’s. Taking union bound over good α�’s w.p. at least

1 − L exp(−c̃m̃qε21) = 1 − pα

Pr{α ∈ E} ≥ 1 − L exp(−c̃m̃qε21)

�
Lemma 6 ([49]): Define (X0)� :=∑
k(Ak)�

�((yk)�)trunce
�
k , yk,trnc := (yk ◦ 1|yk|≤

√
α).

Conditioned on α, we have the following conclusions.

1) Let ζ be a scalar standard Gaussian r.v.. Define,

βk(α) := E[ζ21{‖x∗
k‖2ζ2≤α}]

Then,

E[(X0)�|α] = X∗D(α)

where D(α) = diagonal(βk(α), k ∈ [q]), i.e., D(α) is

a diagonal matrix of size q × q with diagonal entries βk

defined above.

2) Fix 0 < ε1 < 1. Then w.p. at least 1 − exp[(n + q) −
cε21m̃q/μ2κ2]

‖(X0)� − E[(X0)�|α]‖ ≤ 1.1ε1‖X∗‖F

3) For any ε1 ≤ 0.1, mink E

[
ζ21{

|ζ|≤C̃

√
1−ε1‖X∗‖F√

q‖x∗
k
‖

}
]
≥

0.92
Fact 2: For any t > 0, E[ζ21{ζ2≤t}] ≤ 1, this then implies

‖D(α)‖ ≤ 1

B. Proof of Corollary 3 for L̃ = L

We will apply Theorem 3.1 with Φ� ≡ (X0)�(X0)�� , Φ∗ ≡
E[(X0)�|α]E[(X0)�|α]� = X∗D(α)2X∗�, ε = δ0 and

Δ = σr(X∗D(α)2X∗�) − σr+1(X∗D(α)2X∗�). For this

we need to bound ‖(X0)�(X0)�� −E[(X0)�|α]E[(X0)�|α]�‖.

We can write

(X0)�(X0)�� − E[(X0)�|α]E[(X0)�|α]�

= (X0)�((X0)� − E[(X0)�|α])�

+ ((X0)� − E[(X0)�|α])E[(X0)�|α]� (8)

To bound (8) we need the bounds on (X0)�, E[(X0)�|α], and

(X0)� − E[(X0)�|α]

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8019

1) From Lemma 6 part 2, letting ε1 = ε3/
√

r, w.p. 1 −
exp[(n + q) − cε21m̃q/rμ2κ2]

‖(X0)� − E[(X0)�|α]‖ ≤ 1.1ε3σ
∗
1 (9)

2) From Lemma 6 part 1, Fact 2

‖E[(X0)�|α]‖ ≤ σ∗
1 (10)

3) Thus, for ε3 < 0.1, w.p. 1−exp[(n+q)−cε23m̃q/rμ2κ2]

‖(X0)�‖ = ‖(X0)� − E[(X0)�|α]‖ + ‖E[(X0)�|α]‖
≤ 1.1(1 + ε3)σ∗

1 < 1.3σ∗
1 (11)

.

From (8), (9),(10) and (11), and E[(X0)�|α] = X∗D(α),
we have w.p. at least 1 − 2 exp[(n + q) − cε23m̃q/rμ2κ2]

‖(X0)�(X0)�� − X∗D(α)2X∗�‖ ≤
‖(X0)�‖‖(X0)� − X∗D(α)‖
+ ‖(X0)� − X∗D(α)‖‖D(α)X∗‖
≤ 1.1.1.1ε3σ

∗
1
2 + 1.1ε3σ

∗
1
2 < 2.5ε3σ

∗
1
2 (12)

To apply Theorem 3.1 to get SDF (Uout, U
∗) < δ0,

we need ‖(X0)�(X0)�� − X∗D(α)2X∗�‖ < δ0
26

√
r
Δ.

By Lemma 6 part 3, Fact 2, and the fact that X∗ is rank

r we get a lower bound on Δ

Δ ≥ 0.922σ∗
r
2 − 0 > 0.8σ∗

r
2 (13)

Using (13) and (12), the required condition for Theorem 3.1

holds if

2.5ε3σ
∗
1
2 ≤ 0.8

δ0

26
√

r
σ∗

r
2

This will hold if we set ε3 = c√
rκ2 δ0. With this choice of ε3,

the bounds hold w.p. at least 1−2 exp[(n+q)−cδ2
0m̃q/r2μ2κ6]

Thus, by Theorem 3.1,

Pr{SDF (Uout, U
∗) ≤ δ0|α}

≥ 1 − c0 − exp(−Lψ(0.4 − τ, p + n−10))

where p = 2 exp[(n + q) − cδ2
0m̃q/r2μ2κ6].

Following the same argument as given in proof of [49,

Theorem 3.1] and using Lemma 5 to remove the conditioning

on α, we get

Pr{SDF (Uout, U
∗) ≤ δ0}

≥ 1 − c0 − exp(−Lψ(0.4 − τ, p + n−10)) − pα

where pα = L exp(−c̃m̃qδ2
0/r2κ4).

If m̃q ≥ Cκ6μ2(n+q)r2/δ2
0 , then p < e−c(n+q), and pα <

e−c(n+q).

Thus, the good event holds w.p. at least 1 − c0 −
exp(−Lψ(0.4 − τ, e−c(n+q) + n−10)) − e−c(n+q).

C. Proof of Corollary 3 for a L̃ < L

In this case, we apply Theorem 3.1 on Φ(ϑ) =∑ρ
�=1(X0)(ϑ,�)(X0)�(ϑ,�)/(m̃ρ)2 and Φ∗ = E[(X0)�|α]

E[(X0)�|α]�/m̃2 for ϑ ∈ [L̃]. To obtain the bounds needed

to apply Theorem 3.1, we use the bounds from above.

APPENDIX B

PROOFS FOR LRCS ALTGDMIN ITERATIONS

We prove this for the simple GM setting because that is

notation-wise simpler. This is the L̃ = L setting. The extension

to GMoM is straightforward once again.

All expected values used below are expectations conditioned
on past estimates (which are functions of past measurement
matrices and measurements, Ak, yk). For example, E[(∇Uf)�]
conditions on the values of U , B� used to compute it. This is
also the reason why E[(∇Uf)�] is different for different nodes;
see Lemma 2.

A. Lemmas for Proving Theorem 5.3 for L̃ = L: LS Step
Bounds

The next lemma bounds the 2-norm error between (bk)�

and an appropriately rotated version of b∗
k, gk := U�x∗

k =
(U�U∗)b∗

k; followed by also proving various important impli-

cations of this bound. Here and below U denotes the subspace

estimate at iteration t.
Lemma 7 (Lemma 3.3 of [49]): Assume that SDF

(U , U∗) ≤ δt. Consider any � ∈ Jgood. Let

gk := U�x∗
k = (U�U∗)b∗

k.

If δt ≤ 0.02/κ2, and if m̃ � max(log q, log n, r), for ε1 <
0.1 then,

w.p. at least, 1 − exp(log q + r − cε21m̃)
1) ‖(bk)� − gk‖ ≤ 1.7ε1δt‖b∗

k‖
2) ‖(bk)�‖ ≤ 1.1‖(b∗�)k‖
3) ‖B� − G‖F ≤ 1.7ε1δtσ

∗
1

4) ‖(x�)k − x∗
k‖ ≤ 1.4δt‖b∗

k‖
5) ‖X� − X∗‖F ≤ 1.4δtσ

∗
1

6) σr(B�) ≥ 0.9σ∗
r

7) σmax(B�) ≤ 1.1σ∗
1

(only the last two bounds require the upper bound on δt).

All the lemmas given below for analyzing the GD step use

Lemma 7 in their proofs.

B. Lemmas for Proving Theorem 5.3 for L̃ = L: GD Step
Bounds

The main goal here is to bound SDF (U+, U∗), given that

SDF (U , U∗) ≤ δt. Here U+ is the subspace estimate at the

next, (t+1)-th iteration. We will show that SDF (U+, U∗) ≤
(1−(ησ∗

1
2) c

κ2)δt. In our previous work [49], [50], we obtained

this by bounding the deviation of the gradient, ∇f =∑
k∈[q] ∇fk from its expected value, E[∇f] = m(X −

X∗)B� and then using this simple expression for the expected

gradient to obtain the rest of our bounds. In particular notice

that PU∗,⊥E[∇f] = mPU∗,⊥UBB�.

In this work, to use the same proof structure, we need a

proxy for E[∇f]. For this, we can use E[(∇f)�] for any � ∈
Jgood. We let �1 ∈ Jgood be one such node. In what follows,

we will use E[∇f�1] = m(X�1 − X∗)B�
�1 at various places.

Lemma 8: (algebra lemma) Let

Err = ∇fGM − E[∇f�1(U , B)].

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8020 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Recall that U+ = QR(U − (η/m̃)∇fGM). We have

SDF (U∗, U+) ≤
‖Ir − ηB�1B

�
�1‖SDF (U∗, U) + η

m̃‖Err‖F

1 − η
m̃‖E[∇f�1(U , B)]‖ − η

m̃‖Err‖
Proof: See Appendix B-D. �

Lemma 9: Assume SDF (U∗, U) ≤ δt < δ0.

1) If η ≤ 0.5/σ∗
1
2, λmin(Ir−ηB�1B

�
�1) = 1−η‖B�1‖2 > 1−

η1.3σ∗
1
2 > 0 and so this matrix is p.s.d. and hence, ‖Ir −

ηB�1B
�
�1‖ = λmax(Ir − ηB�1B

�
�1) = 1 − ησmin(B�1)

2 ≤
1 − η0.8σ∗

r
2

2) For all � ∈ Jgood,

E[∇f�(U , B�)] = m̃(X� − X∗)B�
�

3) For all � ∈ Jgood,

‖E[∇f�(U , B�)]‖F ≤ m̃1.6δtσ
∗
1
2

Proof: The first item follows using the bounds on σ∗
1(B�)

and σ∗
r (B�) from Lemma 7. Second item is immediate. Third

item follows from item two and bounds on σ∗
1(B�), ‖X� −

X∗‖F given in Lemma 7. �
The next lemma is an easy consequence of Lemmas 2 and

Lemma 6.

Lemma 10: Let p1 = exp
(
(n+r)−cε21

m̃q
rμ2

)
+2 exp(log q+

r − cε21m̃). If τ < 0.4, then, w.p. at least 1 − Lp1 −
exp(−Lψ(0.4 − τ, p1)),

‖Err‖F ≤ 14.12.5m̃σ∗2
maxε1

√
rδt

Proof: See Appendix B-F. �

C. Proof of Theorem 5.3

The proof is an easy consequence of the above lemmas.

Using the bounds from Lemma 10, 9 and the SDF bound

from Lemma 8, setting ε1 = 0.3/175
√

rκ2, and using δt ≤
δ0 = 0.1/κ2 in the denominator terms, we conclude the

following: if in each iteration, m̃q ≥ C1κ
4μ2(n + r)r2,

m̃ > C2 max(log q, log n), then, w.p. at least 1 − Lp1 −
exp(−Lψ(0.4−τ, p1)), where p1 = exp

(
(n+r)−c m̃q

r2κ4μ2

)
+

2 exp(log q + r − cm̃/κ4)

SDF (U∗, U+) ≤ (1 − 0.8ησ∗
1
2

κ2)δt + 0.3ησ∗
1
2

κ2 δt

1 − 1.6·0.1ησ∗
1
2

κ2 − 0.1·0.3ησ∗
1
2

κ2

≤ (1 − (ησ∗
1
2) c

κ2)δt := δt+1 Applying this bound at each t
proves the theorem.

The numerical constants may have minor errors in various

places.

D. Proof of Algebra Lemma, Lemma 8

Recall that Err = ∇fGM − E[∇f�1(U , B�1)]. Let P :=
I − U∗U∗T .

GD step is given as Û
+

= U − η
m̃∇fGM .

Adding and subtracting E[∇f�1(U , B�1)] = m̃(X�1 −
X∗)B�

�1 , we get

Û
+

= U − η

m̃
m̃(UB�1 − X∗)B�

�1 −
η

m̃
Err (14)

Multiplying both sides by P := I − U∗U∗�,

PÛ
+

= PU − ηPUB�1B
�
�1 −

η

m̃
PErr

= PU(Ir − ηB�1B
�
�1) −

η

m̃
PErr (15)

Taking Frobenius norm and using ‖M1M2‖F ≤
‖M1‖F ‖M2‖ we get

‖PÛ
+‖F ≤ ‖PU‖F ‖Ir − ηB�1B

�
�1‖ +

η

m̃
‖PErr‖F (16)

Now Û
+ QR

= U+R+ and since ‖M1M2‖F ≤
‖M1‖F ‖M2‖, this means that SD(U∗, U+) ≤
‖(I − U∗U∗T)Û

+‖F ‖(R+)−1‖. Since ‖(R+)−1‖ =
1/σmin(R+) = 1/σmin(Û

+
),

‖(R+)−1‖ =
1

σmin(U − η
m̃ (E[∇f�1(U , B�1)] + Err))

≤ 1
1 − η

m̃‖E[∇f�1(U , B�1)]‖ − η
m̃‖Err‖

Combining the last two bounds proves our result.

E. Bounding ‖∇f�(U, B�) − E[∇f�1 (U, B�1)]‖F : Proof of
Lemma 2

From the proof of [49, Lemma 3.5 item 1] we can write w.p.

at least 1− exp
(
(n+ r)− cε21

m̃q
rμ2

)
−2 exp(log q + r− cε21m̃)

‖∇f� − E[∇f�]‖F ≤ 1.5ε1
√

rδtm̃σ∗2
max (17)

Using (17) and Lemma 9, item 2,

‖∇f� − E[∇f�1]‖F ≤
‖∇f� − E[∇f�]‖F + ‖E[∇f�] − E[∇f�1]‖F ≤
1.5ε1

√
rδtm̃σ∗2

max

+ ‖m̃(X� − X∗)B�
� − m̃(X�1 − X∗)B�

�1‖F (18)

Using the bounds from Lemma 7,

‖m̃(X� − X∗)B�
� − m̃(X�1 − X∗)B�

�1‖F

= m̃‖U(B�B
�
� − B�1B

�
�1) − X∗(B�

� − B�
�1)‖F

= m̃‖U(B�B
�
� − B�1B

�
�1 ± B�B

�
�1) − X∗(B� − B�1)

�‖F

= m̃
∥∥∥UB�(B�

� − B�
�1) − U(B�1 − B�)B�

�1

−X∗(B�
� − B�

�1)
∥∥∥

F

≤ m̃(1.1σ∗
1 + 1.1σ∗

1 + σ∗
1)‖B� − B�1‖F

= m̃3.2σ∗
1‖B� − B�1 ± G‖F

≤ m̃3.2σ∗
1(‖B� − G‖F + ‖B�1 − G‖F) ≤ m̃11σ∗

1
2ε1

√
rδt

Using this in (18)

‖∇f� − E[∇f�1]‖F ≤ 1.5ε1
√

rδtm̃σ∗
1
2 + m̃11σ∗

1
2ε1

√
rδt

≤ m̃12.5σ∗
1
2ε1

√
rδt (19)

w.p. at least 1− exp
(
(n + r)− cε21

m̃q
rμ2

)
− 2 exp(log q + r −

cε21m̃).

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8021

F. Bounding Err: Proof of Lemma 10

Recall that Err = ∇fGM − E[∇f�1(U , B�1)]. This bound

follows from the Lemma 6 and Lemma 2. We apply Lemma 6

with z� ≡ ∇f� and z̃ ≡ E[∇f�1(U , B�1)], α = 0.4, τ < 0.4,

ε ≡ 7.8ε1 = εGM and ωGM set to a constant C times an

upper bound on ‖E[∇f�1]‖F . From Lemma 9, ‖E[∇f�1]‖F ≤
2m̃δtσ

∗
1
2 ≤ 2m̃δ0σ

∗
1
2. The Theorem needs δ0 = c/κ2. Thus,

we can set ωGM = Cm̃σ∗
r
2.

To apply Lemma 6, we need a high probability bound on

max�∈Jgood
‖ ∇f� − E[∇f�1(U , B�1)]‖F .

By Lemma 2 and union bound and using |Jgood| = (1 −
τ)L ≤ L, we can show that

max
�∈Jgood

‖∇f�(U , B�) − E[∇f�1(U , B�1)]‖F (20)

≤ m̃12.5σ∗2
maxε1

√
rδt (21)

w.p. at least

1−L
(

exp
(
(n + r) − cε21

m̃q
rμ2

)
+ 2 exp(log q + r −

cε21m̃)
)

:= 1 − p1.

Thus, using Lemma 6 w.p. at least 1 − Lp1 − exp(−Lψ
(0.4 − τ, p1)),

‖Err‖F ≤ 14m̃12.5σ∗2
maxε1

√
rδt

APPENDIX C

ONE STEP ANALYSIS OF RESPOWMETH

If we want to analyze ResPowMeth directly, we need

to bound SD(Û , U∗) at each iteration. Consider its first

iteration.

Let PU∗,⊥ = I − U∗U∗�, GM = GM{Φ�U rand}L
�=1.

Then,

SDF (U∗, Û)≤‖PU∗,⊥GM‖F ‖(R+)−1‖ ≤ ‖PU∗,⊥GM‖F

σmin(GM)

Here GM
QR
= ÛR+. This follows since ‖(R+)−1‖ =

1/σmin(R+) = 1/σmin(GM).
To bound both numerator and denominator, we use the fact

that GM is an approximation of Φ∗U rand.

Suppose that

‖Φ� − Φ∗‖ ≤ b0.

Using [56, Theorem 4.4.5], ‖U rand‖ ≤ 1.1(
√

n +
√

r), and

so,

‖Φ�U rand − Φ∗U rand‖ ≤ b0‖U rand‖ ≤ 2.2b0

√
n

where we used r ≤ n. Using this and applying Lemma 6

with εGM = b0, we have w.p. at least 1 − c0 − Lp −
exp (−Lψ (0.4 − τ, p))

‖GM − Φ∗U rand‖ ≤ 31 b0

√
n

Then,

‖PU∗,⊥GM‖F

= ‖PU∗,⊥(GM − Φ∗U rand + Φ∗U rand)‖F

= ‖PU∗,⊥(GM − Φ∗U rand)‖F + ‖PU∗,⊥Φ∗U rand)‖F

≤ ‖GM − Φ∗U rand‖F + σ∗
r+1‖U rand‖

√
r

= 31b0

√
n + σ∗

r+1 · 2.2
√

n · √r (22)

where we used ‖PU∗,⊥Φ∗U rand)‖F ≤ ‖PU∗,⊥Φ∗‖
‖U rand)‖F ≤ σ∗

r+1‖U rand‖
√

r. Also,

σmin(GM) (23)

≥ σmin(Φ∗U rand) − ‖Φ∗U rand − GM‖
≥ σmin(Φ∗U rand) − 31b0

√
n

≥ σmin(PU∗Φ∗U rand) − ‖PU∗,⊥Φ∗U rand‖ − 31b0

√
n

≥ σmin(PU∗Φ∗U rand) − 2.2σ∗
r+1

√
n − 31b0

√
n (24)

where we used Weyl’s inequality and Φ∗U rand =
PU∗Φ∗U rand + PU∗,⊥Φ∗U rand Finally,

σmin(PU∗Φ∗U rand) = σmin(U∗ΣU∗�U rand)

≥ σmin(U∗)σ∗
rσmin

(
U∗�U rand

)
(25)

We bound σmin

(
U∗�U rand

)
using [67, Theorem 1.1]

which helps bound the minimum singular value of square

matrices with i.i.d. zero-mean sub-Gaussian entries. i, j-th

entry of U∗�U rand is the inner product of i-th column

of U∗ and j−th column of U rand. U∗ has orthonormal

columns and hence each entry of U∗�U rand is mean-zero,

unit variance Gaussian r.v. Thus, by [67, Theorem 1.1], w.p.,

at least 1 − (Cε) − exp−cr

σmin(U∗�U rand) ≥ ε(
√

r −√
r − 1)

= ε
√

r

(
1 −

√
1 − 1

r

)

≥ ε
√

r

(
1 −

(
1 − 1

2r

))
= ε

1
2
√

r

In the above, we used Bernoulli inequality (1+x)n ≤ 1+nx,

where 0 ≤ n ≤ 1, x ≥ −1 for
√

1 − 1
r . Use ε = 0.1.

Thus, w.p. at least 1 − 0.1 − exp−cr,

σmin(GM) ≥ σ∗
r0.1

1
2
√

r
− 2.2σ∗

r+1

√
n − 31b0

√
n

Together this implies

SDF (U∗, Û) ≤ 31b0
√

n + σ∗
r+1 · 2.2

√
n · √r

σ∗
r0.1 1

2
√

r
− 2.2σ∗

r+1

√
n − 31b0

√
n

(26)

≤ 62b0
√

nr + 4.4σ∗
r+1

√
n · r

σ∗
r0.1 − 4.4σ∗

r+1

√
nr − 62b0

√
nr

(27)

To get this bound below ε1, we need b0 ≤ cε1/
√

nr
and we need σ∗

r+1 < c/(
√

nr). Thus even to get ε1 =
0.99 (any value less than one), we need b0 to be of

order 1/
√

nr.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8022 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

APPENDIX D

GEOMETRIC MEDIAN COMPUTATION ALGORITHMS

The geometric median cannot be computed exactly.

We describe below two algorithms to compute it. The first

is the approach developed in Cohen et al [60]. This comes

with a near-linear computational complexity bound. However,

as we briefly explain below this is very complicated to

implement and needs too many parameters. No numerical

simulation results have been reported using this approach even

in [60] itself and not in works that cite it either (to our best

knowledge).

The practically used GM approach is Weiszfeld’s

algorithm [59], which is a form of iteratively re-weighted

least squares algorithms. It is simple to implement and works

well in practice. However it either comes with an asymptotic

guarantee, or with a finite time guarantee for which the

bound on the required number of iterations is not easy to

interpret. This bound depends upon the chosen initialization

for the algorithm. Because of this, we cannot provide an easily

interpretable bound on its computational complexity.

Algorithm 6 AccurateMedian(εGM)

Input: points z1, . . . , zL ∈ R
d Input: desired accuracy

εGM ∈ (0, 1)
1: Compute a 2-approximate geometric median and use it to

center
Compute x(0) := 1

L

∑
i∈[L] zi and f̃∗ := f(x(0))

{Here f(x) =
∑

i∈[L] ‖x − zi‖2}

Let ti = 1

400f̃∗
(1+ 1

600)i−1, ε̃∗ = 1
3εGM , and t̃∗ = 2L

ε̃∗·f̃∗
Let εv = 1

8 (ε̃∗
7L)2 and let εc = (εv

36)
3
2

2: x(1) = LineSearch(x(0), t1, t1, 0, εc)
Iteratively improve quality of approximation
Let TGM = maxi∈Z ti ≤ t̃∗

3: for i ∈ [1, TGM] do
Compute εv-approximate minimum eigenvalue and

eigenvector of ∇2fti
(x(i))

4: (λ(i), u(i)) = ApproxMinEig(x(i), ti, εv)
Line search to find x(i+1) such that ‖x(i+1) −

xti+1‖2 ≤ εc

ti+1

5: x(i+1) = LineSearch(x(i), ti, ti+1, u
(i), εc)

6: end for
7: Output: εGM -approximate geometric median x(TGM+1).

A. Cohen Et Al [60]’s Algorithm: Nearly Linear Time GM

The function ApproxMinEig in Algorithm 6 calculates

an approximation of the minimum eigenvector of ∇2ft(x).
This approximation is obtained using the well-known power

method, which converges rapidly on matrices with a large

eigenvalue gap. By leveraging this property, we can obtain

a concise approximation of ∇2ft(x). The running time of

ApproxMinEig is O
(
Ld log

(
L

εGM

))
. This time complexity

indicates that the algorithm’s execution time grows linearly

with L and d and logarithmically with L/εGM . The function

LineSearch in Algorithm 6 performs a line search on the

function gt,y,v(α), as defined in Equation 28. The line search

aims to find the minimum value of gt,y,v(α), subject to the

constraint |x−(y+αv)|2 ≤ 1
49t , where x is the variable being

optimized.

gt,y,v(α) = min
‖x−(y+αv)‖2≤ 1

49t

ft(x) (28)

To evaluate gt,y,v(α) approximately, an appropriate centering

procedure is utilized. This procedure allows for an efficient

estimation of the function’s value. The running time of

LineSearch is O
(
Ld log2

(
L

εGM

))
. The time complexity

indicates that the algorithm’s execution time grows linearly

with L and d, while the logarithmic term accounts for the

influence of L
εGM

on the running time.

B. Practical Algorithm: Weiszfeld’s Method

Weiszfeld’s algorithm, Algorithm 7, provides a simpler

approach for approximating the Geometric Median (GM). It is

easier to implement compared to Algorithm 6. It is an itera-

tively reweighted least squares algorithm. It iteratively refines

the estimate by giving higher weights to points that are closer

to the current estimate, effectively pulling the estimate towards

the dense regions of the point set. The process continues until a

desired level of approximation is achieved, often determined

by a tolerance parameter, εGM . While the exact number of

iterations needed cannot be determined theoretically (as we

will see from its guarantees below), the algorithm typically

converges reasonably quickly in practice.

We provide here the two known guarantees for this

algorithm.

Theorem D.4: [Corollary 7.1 [59]] Suppose that there is

no optimal z ∈ A = {z1, . . . ,zL} such that it minimizes∑L
�=1 ‖z − z�‖. Let {zt}t≥0 be the sequence generated by

Weiszfeld’s Algorithm 7 with z0 as given in the initialization

of Algorithm 7. Then, for any t ≥ 0, we have zt /∈ A and

zt → z∗ as t → ∞. Here z∗ is the true GM.

Theorem D.5: [Theorem 8.2 [59]] Let {zt}t≥0 be the

sequence generated by Weiszfeld’s Algorithm 7 with z0 as

given in the initialization of Algorithm 7. Then, for any t ≥ 0,

we have

f(zt) − f∗ ≤ M

2t
‖z0 − z∗‖2

where M = 2L(zp)L2

(‖Rp‖−1)2 . Here z∗ is the true GM.

The first result above is asymptotic. The second one,

Theorem D.5, gives convergence rate of O(M/t) where M
is as defined in the theorem. It is not clear how to upper

bound M only in terms of the model parameters (d, L or z∗).

Consequently, the rate of convergence is not clear. Moreover,

the expression for z0 (initialization) is too complicated and

thus it is not clear how to bound ‖z0 − z∗‖2. Consequently,

one cannot provide an expression for the iteration complexity

that depends only on the model parameters.

C. Proof of Lemma 3

Jgood = {� : ‖z� − z̃‖ ≤ ε‖z̃‖} and define z∗ :=
GM(z1, . . . , zL) as exact Geometric median.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8023

Algorithm 7 Weiszfeld’s Algorithm

Input A = {z1, z2, . . . , zL}
Parameters T , εGM

Output zGM

Initialization
z0 = zp + tpdp, where

p ∈ arg min{f(zi) : 1 ≤ i ≤ L}, f(z) =
∑L

i=1 ‖z − zi‖
and dp = Rp

‖Rp‖ , tp = ‖Rp‖−1
L(zp)

L(z) =

{∑L
i=1

1
‖z−zi‖ if z /∈ A∑L

i=1,i �=j
1

‖zj−zi‖ if z = zj (1 ≤ j ≤ L)

Rj =
L∑

i=1,i �=j

zj − zi

‖zi − zj‖

Iterative step

zt+1 =
(∑L

i=1
zi

‖zi−zt‖
)/(∑L

i=1
1

‖zi−zt‖
)

Terminating Condition

1) t > T Upper bound on number of iterations

2) ‖zt+1 − zt‖2 < εGM

For z� with � ∈ Jgood, we have

‖zGM − z�‖ = ‖zGM − z̃ + z̃ − z�‖
≥ ‖zGM − z̃‖ − ‖z� − z̃‖
≥ ‖zGM − z̃‖ − 2ε‖z̃‖ + ‖z� − z̃‖ (29)

Moreover, by triangle inequality for z� /∈ Jgood, we

have

‖zGM − z�‖ ≥ ‖z� − z̃‖ − ‖zGM − z̃‖ (30)

Summing (29), (30) we get

L∑
�=1

‖zGM − z�‖ ≥
L∑

�=1

‖z� − z̃‖

+(2|Jgood| − L)‖zGM−z̃‖−2|Jgood|ε‖z̃‖

By definition of zGM (approximate GM),
∑L

�=1 ‖zGM −
z�‖ ≤ (1 + εGM)

∑L
�=1 ‖z∗ − z�‖. Hence,

L∑
�=1

‖z� − z̃‖ + (2|Jgood| − L)‖zGM − z̃‖ − 2|Jgood|ε‖z̃‖

≤ (1 + εGM)
L∑

�=1

‖z∗ − z�‖

Since z∗ is the minimizer of minz∈�n

∑L
�=1 ‖z − z�‖, so

L∑
�=1

‖z∗ − z�‖ ≤
L∑

�=1

‖z� − z̃‖.

Using this to lower bound the first term on the LHS of

above,

L∑
�=1

‖z∗ − z�‖ + (2|Jgood| − L)‖zGM − z̃‖ − 2|Jgood|ε‖z̃‖

≤ (1 + εGM)
L∑

�=1

‖z∗ − z�‖

Arranging the terms and using the fact |Jgood| ≥ (1−α)L
we get

‖zGM − z̃‖

≤ 2|Jgood|ε‖z̃‖
2|Jgood| − L

+ εGM

∑L
�=1 ‖z∗ − z�‖
2|Jgood| − L

≤ 2(1 − α)ε‖z̃‖
1 − 2α

+ εGM

max�∈[L] ‖z�‖
1 − 2α

Using Claim 1 (with constant probability 1 − capproxGM

Algorithm 6 obtains (1 + εGM)−approximate geometric

median zGM in order TGM = C log
(

L
εGM

)
) implies that with

probability 1 − capproxGM

‖zGM − z̃‖ ≤ Cαε‖z̃‖ + εGM

∑L
�=1 ‖z∗ − z�‖
(1 − 2α)L

≤ Cαε‖z̃‖ + εGM

max�∈[L] ‖z�‖
1 − 2α

where Cα := 2(1−α)
1−2α .

D. Proof of Lemma 4

Given

Pr{‖z� − z̃‖ ≤ ε‖z̃‖} ≥ 1 − p

then

Pr

{
L∑

�=1

�{‖z�−z̃‖≤ε‖z̃‖} ≥ L(1 − α) + Lbyz

}
≥ Pr{T ≥ L(1 − α) + Lbyz}

where T ∼ Binomial(L, 1 − p) (First-order stochastic

domination)

By Chernoff’s bound for binomial distributions, the follow-

ing holds:

Pr{T ≥ L(1 − α) + Lbyz} ≥ 1 − exp(−Lψ(α − τ, p))

where τ = Lbyz

L
This then implies w.p. at least 1 − exp(−Lψ(α − τ, p)),

L∑
�=1

�{‖z�−z̃‖≤ε‖z̃‖} ≥ L(1 − α) + Lbyz ≥ L(1 − α)

where α ∈ (τ, 1/2). Using Lemma 3

‖zGM − z̃‖ ≤ Cαε‖z̃‖ + εGM
max1≤�≤L ‖z�‖

1 − 2α

w.p. at least 1− capproxGM − exp(−Lψ(α− τ, p)). Fixing

α = 0.4 we get the result.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

8024 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

E. Proof of Corollary 6

Jgood denotes the set of good node (nodes whose estimates

z� satisfy ‖z� − z̃‖ ≤ ε‖z̃‖) with the stated probability. First

we need to show that, with high probability, none of the entries

of Jgood are thresholded out. Using given condition Pr{‖z�−
z̃‖ ≤ ε‖z̃‖} ≥ 1 − p and union bound, we conclude that,

w.p. at least 1− (1− τ)Lp, max�∈Jgood
‖z�‖ ≤ (1+ ε)‖z̃‖ =

ωGM . This means that, with this probability, none of the Jgood

elements are thresholded out.

For the set {z1, . . . ,zL} \ {z� : ‖z�‖ > (1 + ε)
‖z̃‖} we apply Lemma 4. Since |{z1, . . . ,zL}
\{z� : ‖z�‖ > (1 + ε)‖z̃‖}| = L′ ≤ L, (1 − τ)L ≤
L′ ≤ L implies τ ′ ≤ τ < 0.4 hence condition of

Lemma 4 is satisfied using Lemma 4 w.p. at least

1 − capproxGM − exp(−L′ψ(0.4 − τ ′, p)) − (1 − τ)Lp ≥
1 − capproxGM − exp(−Lψ(0.4 − τ, p)) − Lp,

‖zGM − z̃‖≤ 6ε‖z̃‖+5εGM (1+ε)‖z̃‖<14 max(ε, εGM)‖z̃‖

REFERENCES

[1] A. P. Singh and N. Vaswani, “Byzantine-resilient federated principal
subspace estimation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2024, pp. 2514–2519.

[2] A. P. Singh and N. Vaswani, “Byzantine resilient and fast federated
few-shot learning,” in Proc. Int. Conf. Mach. Learn., 2024, pp. 1–11.

[3] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, 2021.

[4] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vul-
nerability of distributed learning in Byzantium,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 3521–3530.

[5] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “DRACO:
Byzantine-resilient distributed training via redundant gradients,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 903–912.

[6] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[7] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient
descent,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 1–11.

[8] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 5650–5659.

[9] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob, “Accelerated dynamic
MRI exploiting sparsity and low-rank structure: K-t SLR,” IEEE Trans.
Med. Imag., vol. 30, no. 5, pp. 1042–1054, May 2011.

[10] S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank compressive
sensing for accelerated dynamic MRI,” IEEE Trans. Comput. Imag.,
vol. 9, pp. 409–424, 2023.

[11] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei, “Few-
shot learning via learning the representation, provably,” in Proc.
Int. Conf. Learn. Represent. (ICLR), 2021. [Online]. Available:
https://openreview.net/forum?id=pW2Q2xLwIMD

[12] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Proc. Int.
Conf. Mach. Learn., Jul. 2021, pp. 2089–2099.

[13] H. Qi and S. M. Hughes, “Invariance of principal components under
low-dimensional random projection of the data,” in Proc. 19th IEEE
Int. Conf. Image Process., Sep. 2012, pp. 937–940.

[14] F. P. Anaraki and S. Hughes, “Memory and computation efficient PCA
via very sparse random projections,” in Proc. Intl. Conf. Mach. Learn.
(ICML), 2014, pp. 1341–1349.

[15] R. S. Srinivasa, K. Lee, M. Junge, and J. Romberg, “Decentralized
sketching of low rank matrices,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2019, pp. 10101–10110.

[16] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 1, no. 2, pp. 1–25, 2017.

[17] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradi-
ent descent with suspicion-based fault-tolerance,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 6893–6901.

[18] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLTrust: Byzantine-robust
federated learning via trust bootstrapping,” 2020, arXiv:2012.13995.

[19] Z. Allen-Zhu, F. Ebrahimian, J. Li, and D. Alistarh, “Byzantine-resilient
non-convex stochastic gradient descent,” 2020, arXiv:2012.14368.

[20] Z. Wu, Q. Ling, T. Chen, and G. B. Giannakis, “Federated variance-
reduced stochastic gradient descent with robustness to Byzantine
attacks,” IEEE Trans. Signal Process., vol. 68, pp. 4583–4596, 2020.

[21] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives,” in Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 1–9.

[22] A. Acharya, A. Hashemi, P. Jain, S. Sanghavi, I. S. Dhillon, and
U. Topcu, “Robust training in high dimensions via block coordinate
geometric median descent,” in Proc. Int. Conf. Artif. Intell. Statist., 2022,
pp. 11145–11168.

[23] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” 2019, arXiv:1912.13445.

[24] D. Data and S. Diggavi, “Byzantine-resilient SGD in high dimensions
on heterogeneous data,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2021, pp. 2310–2315.

[25] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 1544–1551.

[26] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated
learning in a heterogeneous environment,” 2019, arXiv:1906.06629.

[27] J. Regatti, H. Chen, and A. Gupta, “Byzantine resilience with reputation
scores,” in Proc. 58th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Sep. 2022, pp. 1–8.

[28] S. Lu, R. Li, X. Chen, and Y. Ma, “Defense against local model
poisoning attacks to Byzantine-robust federated learning,” Frontiers
Comput. Sci., vol. 16, no. 6, Dec. 2022, Art. no. 166337.

[29] X. Cao and L. Lai, “Distributed gradient descent algorithm robust to an
arbitrary number of Byzantine attackers,” IEEE Trans. Signal Process.,
vol. 67, no. 22, pp. 5850–5864, Nov. 2019.

[30] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, pp. 1–37, 2011.

[31] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-
sparsity incoherence for matrix decomposition,” SIAM J. Optim., vol. 21,
no. 2, pp. 572–596, Apr. 2011.

[32] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust
PCA via gradient descent,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2016, pp. 1–9.

[33] P. Narayanamurthy and N. Vaswani, “Provable dynamic robust PCA
or robust subspace tracking,” IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1547–1577, Mar. 2019.

[34] P. Narayanamurthy and N. Vaswani, “Fast robust subspace tracking via
PCA in sparse data-dependent noise,” IEEE J. Sel. Areas Inf. Theory,
vol. 1, no. 3, pp. 723–744, Nov. 2020.

[35] T. Zhang and G. Lerman, “A novel M-estimator for robust PCA,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 749–808, 2014.

[36] X. Li, Z. Zhu, A. M.-C. So, and R. Vidal, “Nonconvex robust low-rank
matrix recovery,” SIAM J. Optim., vol. 30, no. 1, pp. 660–686, Jan. 2020.

[37] P. Narayanamurthy, N. Vaswani, and A. Ramamoorthy, “Federated over-
air subspace tracking from incomplete and corrupted data,” IEEE Trans.
Signal Process., vol. 70, pp. 3906–3920, 2022.

[38] L. T. Thanh, A. M. Rekavandi, A.-K. Seghouane, and K. Abed-Meraim,
“Robust subspace tracking with contamination mitigation via α-
divergence,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2023, pp. 1–5.

[39] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and
A. Stewart, “Being robust (in high dimensions) can be practical,” in
Proc. Int. Conf. Mach. Learn., vol. 70, Aug. 2017, pp. 999–1008.

[40] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
subspace learning: Robust PCA, robust subspace tracking, and robust
subspace recovery,” IEEE Signal Process. Mag., vol. 35, no. 4,
pp. 32–55, Jul. 2018.

[41] Y. Li, Y. Chi, H. Zhang, and Y. Liang, “Non-convex low-rank matrix
recovery with arbitrary outliers via median-truncated gradient descent,”
Inf. Inference, A J. IMA, vol. 9, no. 2, pp. 289–325, Jun. 2020.

[42] I. Diakonikolas and D. M. Kane, Algorithmic High-Dimensional Robust
Statistics. Cambridge, U.K.: Cambridge Univ. Press, 2023.

[43] I. Diakonikolas and D. M. Kane, “Recent advances in algorithmic high-
dimensional robust statistics,” 2019, arXiv:1911.05911.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

SINGH AND VASWANI: BYZANTINE-RESILIENT FEDERATED PCA AND LOW-RANK COLUMN-WISE SENSING 8025

[44] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stewart,
“Robust estimators in high-dimensions without the computational
intractability,” SIAM J. Comput., vol. 48, no. 2, pp. 742–864, Jan. 2019.

[45] K. A. Lai, A. B. Rao, and S. Vempala, “Agnostic estimation of mean
and covariance,” in Proc. IEEE 57th Annu. Symp. Found. Comput. Sci.
(FOCS), Oct. 2016, pp. 665–674.

[46] S. Minsker, “Geometric median and robust estimation in Banach spaces,”
2013, arXiv:1308.1334.

[47] S. Nayer, P. Narayanamurthy, and N. Vaswani, “Provable low rank
phase retrieval,” IEEE Trans. Inf. Theory, vol. 66, no. 9, pp. 5875–5903,
Sep. 2020.

[48] S. Nayer and N. Vaswani, “Sample-efficient low rank phase retrieval,”
IEEE Trans. Inf. Theory, vol. 67, no. 12, pp. 8190–8206, Dec. 2021.

[49] S. Nayer and N. Vaswani, “Fast and sample-efficient federated low rank
matrix recovery from column-wise linear and quadratic projections,”
IEEE Trans. Inf. Theory, vol. 69, no. 2, pp. 1177–1202, Feb. 2023.

[50] N. Vaswani, “Efficient federated low rank matrix recovery via alternating
GD and minimization: A simple proof,” IEEE Trans. Inf. Theory, vol. 70,
no. 7, pp. 5162–5167, Jul. 2024.

[51] A. Grammenos, R. M. Smith, J. Crowcroft, and C. Mascolo, “Federated
principal component analysis,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 6453–6464.

[52] Z. Zhang, G. Zhu, R. Wang, V. K. N. Lau, and K. Huang, “Turning
channel noise into an accelerator for over-the-air principal compo-
nent analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 10,
pp. 7926–7941, Oct. 2022.

[53] S. Silva, B. A. Gutman, E. Romero, P. M. Thompson, A. Altmann, and
M. Lorenzi, “Federated learning in distributed medical databases: Meta-
analysis of large-scale subcortical brain data,” in Proc. IEEE 16th Int.
Symp. Biomed. Imag. (ISBI), Apr. 2019, pp. 270–274.

[54] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins Univ. Press, 1989.

[55] S. X. Wu, H.-T. Wai, L. Li, and A. Scaglione, “A review of distributed
algorithms for principal component analysis,” Proc. IEEE, vol. 106,
no. 8, pp. 1321–1340, Aug. 2018.

[56] R. Vershynin, High-Dimensional Probability: An Introduction With
Applications in Data Science, vol. 47. Cambridge, U.K.: Cambridge
Univ. Press, 2018.

[57] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
Jul. 1982.

[58] E. Weiszfeld, “Sur le point pour lequel la somme des distances de
η points donnés est minimum,” Tohoku Math. J., First Ser., vol. 43,
pp. 355–386, 1937.

[59] A. Beck and S. Sabach, “Weiszfeld’s method: Old and new results,”
J. Optim. Theory Appl., vol. 164, no. 1, pp. 1–40, 2015.

[60] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford,
“Geometric median in nearly linear time,” in Proc. 48th Annu. ACM
Symp. Theory Comput., Jun. 2016, pp. 9–21.

[61] Y. Chen, Y. Chi, J. Fan, and C. Ma, “Spectral methods for data science:
A statistical perspective,” Found. Trends Mach. Learn., vol. 14, no. 5,
pp. 566–806, 2021.

[62] C. Davis and W. M. Kahan, “The rotation of eigenvectors by a pertur-
bation. III,” SIAM J. Numer. Anal., vol. 7, no. 1, pp. 1–46, Mar. 1970.

[63] M. Hardt and E. Price, “The noisy power method: A meta algorithm
with applications,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 2861–2869.

[64] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” 2010, arXiv:1011.3027.

[65] Y. Chen, Y. Chi, J. Fan, and C. Ma, “Spectral methods for data science:
A statistical perspective,” arXiv:2012.08496, 2020.

[66] S. Rajput, H. Wang, Z. Charles, and D. Papailiopoulos, “DETOX:
A redundancy-based framework for faster and more robust gradient
aggregation,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1–11.

[67] M. Rudelson and R. Vershynin, “Smallest singular value of a random
rectangular matrix,” Commun. Pure Appl. Math., A J. Issued Courant
Inst. Math. Sci., vol. 62, no. 12, pp. 1707–1739, Dec. 2009.

Ankit Pratap Singh received the master’s degree (Hons.) in statistics and
computing from Banaras Hindu University, Varanasi, India, in 2020. He is
currently pursuing the Ph.D. degree with the Department of Electrical and
Computer Engineering, Iowa State University, Ames, IA, USA. His research
interests include federated machine learning and information theory, with a
particular focus on Byzantine resilience, representation learning, and low-rank
matrix recovery. He received the Gold Medal from Banaras Hindu University
for his master’s degree.

Namrata Vaswani (Fellow, IEEE) received the B.Tech. degree from Indian
Institute of Technology (IIT-Delhi), India, in 1999, and the Ph.D. degree from
the University of Maryland, College Park, in 2004.

She is currently a Professor of electrical and computer engineering and
the Anderlik Professor of Engineering with Iowa State University. She is
also the Director of the CyMath (Graduate Student Led) School K-8 Math
Mentoring/Tutoring Program, Iowa State University. Her research interests
include statistical machine learning and signal processing and their appli-
cations in medical imaging and video. She is a fellow of AAAS. She was
a recipient of the IEEE Signal Processing Society (SPS) Best Paper Award
in 2014, the University of Maryland ECE Distinguished Alumni Award in
2019, and Iowa State Mid-Career Achievement in Research Award in 2019.
She has served as an Area Editor for IEEE Signal Processing Magazine and
an Associate Editor for IEEE TRANSACTIONS ON INFORMATION THEORY

and IEEE TRANSACTIONS ON SIGNAL PROCESSING. She has guest edited a
special issue for PROCEEDINGS OF THE IEEE.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:15:55 UTC from IEEE Xplore. Restrictions apply.

